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0.1. Motivation and Background

It was in the late 18th century that scientists were able to measure blood pres-
sure for the first time. Soon correlations between extraordinary blood pressure
measurements and malfunctioning of the cardiovascular system could be re-
vealed [34]. Today, cardiovascular disease is the most frequent cause of death.
In the recent decades a lot of effort has been put into understanding the complex
mechanisms that control the dynamics of blood pressure [34].

This thesis is connected to on-going research by the use of a data base, pro-
vided by Prof. Torill Berg. Berg has studied the regulation of blood pressure
in rats, and during the years collected numerous measurements.

0.2. Aim and Structure

The aim of this thesis was to develop a model that reproduces the experimental
data. To be able to model the cardiovascular system, its structure and dynamics
have to be clear. Decomposing the system into subparts simplifies the under-
standing of its components. Hence the cardiovascular system is first studied as
a basic passive system in static conditions. When the submodel is understood,
it is extended to a dynamic model. The mentioned points are organized in the
following way:

PART I As background for the mathematical and computational modeling,
the physiological basics of the cardiovascular system are introduced (Chapter 1).
This section on the cardiovascular system also includes definitions of the most
important parameters used in medical research on this field. The introduction
also presents the data measured by Prof. Berg and literature about modeling
the cardiovascular system.

PART II After introducing some common mathematical blood pressure mod-
els in Chapter 4, Chapter 5 focuses on the analysis of the mathematical models
including common properties, stability and equilibria. Up to this point, the
thesis does not differ from what can be found in literature, since many studies
use similar approaches. However, the data basis provided by Berg contains
measurements that differ from the data used in other simulation studies. Pa-
rameter estimation (Chapter 6) is therefore a key chapter. It contains an a
priori approach based on conditions derived from physical characteristics of
the cardiovascular system. In addition to this ‘direct’ estimation of parame-
ters, Section 6.2 also provides an inverse parameter estimation. Finally, the
simulations, results and errors in the different models conclude part II. At this
point the basis for the dynamic part is built.

PART III The goal of Chapter 8 is to present possible solutions for adding
dynamic response to the previously described static model. Unlike the rest of

12



the thesis, the ideas presented in part III are only preliminary. More future
work is required to successfully model the dynamic response.

PART IV The thesis will be concluded by a discussion on the applicability
and future prospects of different models.

Appendix The appendix includes additional plots from the simulations and
a brief description of the code for the different simulations. The code itself is
available on the internet [12].

0.3. Abbreviations

A list with all abbreviations used in this document can be found in the begin-
ning of the document. The parameters are often given a subscript, referring to
the part of the Cardiovascular System that is described.

13



1. Physiology of the CVS

1.1. The Cardiovascular System

All factors that have an impact on blood pressure are part of the Cardiovascular
System (CVS) or at least coupled to it. The CVS includes both the complex
network of blood vessels, where blood is transported between different organs
and the heart that pumps the blood (Figure 1.1, [14]).

On its way from the heart to the body, blood passes through vessels with dis-
tensible walls, called compliance vessels. Their main characteristic is that blood
is transported with a minimum of energy loss by keeping the mean pressure close
to constant [15]. During systole (when the heart ejects blood) compliance ves-
sels expand and store parts of the entering blood. The stored blood is released
during diastole (when the heart refills). As a consequence, the oscillating flow
that is produced by the heart, becomes almost stationary when it arrives in
the organ vessels (capillaries). Figure 1.2 shows how pressure changes from the
heart to the capillaries.

When blood approaches the organs, the network of blood vessels densifies
gradually. The diameters for single vessels decrease, but the over-all cross sec-
tion of parallel vessels becomes vast (Figure 1.2, [30]). Due to their small
diameters, these vessels have increased resistance and reduced flexibility and
are therefore called resistance vessels. The resistance causes a pressure fall.
The resulting low velocity in the distal capillaries enables exchange of products
with the surrounding tissues.

The vessel system leading back to the heart (venal system) is symmetric
with the arterial system. In the organs, the venal system is a vast network
with vessels of small diameter. Closer to the heart, there are less veins with
larger diameter. A main difference to the arterial system is that veins are more
flexible to allow blood transport in spite of the low pressure.

Furthermore, the CVS consists of two parallel systems, i. e., the systemic and
pulmonary circulations. The first supplies the body with nutrients and oxy-
gen, whereas the pulmonary system transports blood between heart and lungs
and allows gas exchange in the lungs. The systemic circulation includes vessels
from the left ventricle to all other organs and back to the right ventricle. The
circulation from the right ventricle to the lungs and back to the left ventricle
is part of the pulmonary circulation. The ventricles and the vessel network are
separated by valves preventing retrograde flow.

14



Figure 1.1.: The cardiovascular system of the human body.
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Figure 1.2.: Illustration of the mean pressure distribution, blood velocity and
cross section area along the vessel system.

Systemic arterial pressure is described by its minimum and maximum values,
i. e. diastolic and systolic pressure, respectively. It is important to note that
the systole starts where the arterial pressure has its minimum, but the systole
does not end with maximum arterial pressure. Hence, there is a difference in
the terms diastolic/systolic and diastole/systole. Figure 1.3 shows the relation
between the main pressure and flow curves [20].

The blood volume ejected by the heart during each contraction is called the
stroke volume. Cardiac output is determined by the stroke volume multiplied by
the number of heart beats per minute (heart rate). Stroke volume and cardiac
output refer to output from the left ventricle unless otherwise indicated.

CO = SV ·HR = SV/T (1.1)

with
CO ... cardiac output
SV ... stroke volume
HR ... heart rate
T ... duration of heart beat

By dividing mean arterial pressure by cardiac output we get the total periph-
eral vascular resistance (TPV R).

TPV R = MAP/CO = (MAP · T )/SV
(1.2)

with
MAP ... mean arterial pressure
T ... duration of heart beat

16



Figure 1.3.: Aortic, ventricular and atrial pressure and aortic flow in the heart
cycle.

Another important factor is the heart’s performance, which is influenced by
contractility, preload and afterload. Contractility is the heart’s ability to pump.
It is influenced by the pressure that stretches the ventricle (the preload) and
the pressure the heart is pumping against (the afterload).

17



1.2. Dynamics of the CVS

1.2.1. The Baroreceptor Loop

Dynamic behaviour of the CVS is controlled by the baroreceptor loop. The
latter is a global feedback mechanism attempting to keep the mean arterial
pressure constant. When the mean pressure changes, the baroreceptors function
to adapt heart rate, cardiac contractility and TPV R so that the pressure can
return to the desired value.

When baroreceptors, the receptors in the aorta, detect a fall in pressure,
they send a signal to the central nervous system. To react on the incoming
signal, the center of blood pressure control in the brain stem keeps track of two
main characteristics; the mean arterial pressure and its rate of change. The
baroreceptors are sensitive to deviations of the actual and the nominal values,
however the sensitivity depends on the rate of change. If the observed changes
occur rapidly, the CVS is adapted more radically.

1.3. Hypertension

When the pressure remains altered for a long period of time, the nominal value
is adapted to this new condition. The result is hypertension, where the ab-
normal elevated pressure is seen as normal and therefore stays constantly high
[8]. Hypertension is the most common disease in the CVS. The mechanisms re-
sponsible for the development of hypertension are not fully understood. Many
factors may play a role, such as Sodium intake, renal function, sympathic ner-
vous system, humoral factors, local autoregulation and elasticity of the vessel
walls, wall shear and blood viscosity [34].

18



2. Experiments and Extracted Data

2.1. Experiments and Measurements

Preparation of animals. 12–14 weeks old male spontaneous hypertensive rats
(SHR, Okamoto, SHR/NHsd strain) and their normotensive controls (WKY,
Wistar Kyoto) on conventional rat chow diet (0.7 % NaCl) were allowed food
and water ad lib until the time of the experiment. The rats were anesthetized
with pentobarbital sodium (65–75 mg/kg, intraperitoneally). Systolic blood
pressure and diastolic blood pressure were monitored through a catheter in the
femoral artery, and left vetriclar pressure by a catheter in the left ventricle,
inserted via the right carotid artery. The catheters were filled with heparinized
(100 I.U./ml) buffered saline (PBS: 0.01M Na-phosphate, pH 7.4, 0.14M NaCl),
and connected to SensoNor 840 transducers (SensoNor a/s, Horten, Norway).
The rats were then connected to a respirator and were ventilated with air
throughout the experiment. Thoracotomy was performed through the right,
forth inter-costal space, and a perivascular flow probe (2SB) was placed around
the ascending aorta. The probe was coupled to a T206 Ultrasonic Transit-Time
Flowmeter (Transonic Systems, Ithaca, N.Y., USA) and recorded flow in the
ascending aorta, also used to describe cardiac output (i. e., minus cardiac flow).
The thorax was subsequently closed. The flowprobe and transducers were cou-
pled to an amplifier and computer for storage and computation of data. Body
temperature was maintained by external heating, guided by a thermo sensor
inserted inguinally into the abdominal cavity.

Experimental design. Data were first collected during a control period of
10 min. Then, data were collected during a period adrenergic activation of the
CVS, achieved by stimulation of endogenous noradrenalin release from sym-
pathetic nerve endings using tyramine. Tyramine hydrochloride was infused
through a catheter in the femoral vein (1.26 µ mol/min/kg in PBS (0.01 mol/L
Na-phosphate, pH 7.4, 0.14 mol/L NaCl), 217 µ l/min/kg for 15 min).

2.2. Acquisition and Analysis of Data

The electronic signals (2500 signals/sec) from the probe and the transducers
were transferred to a computer with a Dash 16 ADC card (Metrabyte Corp.,
Computer Boards Inc., Tauton, MA). The program for calibration, data acqui-
sition, plotting and evaluation was written in ASYST v.4.0 software (Macmillan
Software Co., New York, NY). The data were collected in a background circular
buffer that returns 50 points of data on each of 4 channels at 20 msec intervals,
giving a resolution of several hundred points per heart beat. The systolic and
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Figure 2.1.: Example of raw data of high resolution measurements of flow over
2 seconds.

diastolic blood pressure were identified by the voltage crossing a slowly drifting
midline.

Mean Arterial Blood Pressure was calculated:

MAP = 2/3Pdia + 1/3Psys, (2.1)

with

Psys ... systolic arterial blood pressure
Pdia ... diastolic arterial blood pressure.

Recent research has shown that this approximation is not accurate for every
heart rate. Mean arterial pressure can be better approximated by a heart rate
dependent formula as given in [33]. In this work however, we have decided to
follow Berg and use Equation 2.1 for all heart rates.

TPVR was calculated as in 1.2, with mean arterial pressure from 2.1.

Heart Rate was determined from the periodicity of the oscillations in the
cardiac output curve.

Pressure and Aortic Flow. The normal protocol was to store the pressure
and aortic flow values at each systole and diastole only, and the intermediate
signals were discarded to make the amount of data manageable. However, when
greater fidelity was required, pressing an assigned key on the computer keyboard
instructed the program to store all signals collected during the last two seconds
(5000 signals from the left ventricular pressure transducer and 5000 signals from
the flow probe) into a separate file.

20



Averaging High Resolution Measurements. High resolution measurements
contained several pulses with a varying number from rat to rat. Due to the
invasive experiments, the rats’ pulses were not always regular (see Figure 2.1).
Highly unregular pulses had to be sorted out. For comparing single pulses, they
had to be extracted from the signal. The simplest characteristic in every pulse
is that its slope changes sign only once if we define the starting point to also
be at a point of changing slope sign. To sort out period after period, three
points needed to be found: the first point where the slope is positive (Point I),
the first point (Point II) where the slope is negative after Point I, and the first
point (Point III) with positive slope after Point II. To decrease the chance that
the interval from Point I to Point III is a complete period, every period was
required to contain at least 100 points. Before averaging the single pulses to
one curve, pulses with markedly different duration or maximum, were removed.
The duration of each pulse was compared to the mean of the others and was
only accepted if it differed less than ± 10 dt. The maximum of each pulse was
compared to the overall mean maximum, where a deviation of ± 20 mmHg was
allowed. Then, the pulses were averaged in a way that all the maxima occur on
the same index. An example of separated flow curves and their average can be
found in Figure 2.2.

Occurrence of Systolic and Diastolic Arterial Pressure. Since it is not known
when the measurements of systolic and diastolic arterial pressure were taken,
the time of occurrence had to be estimated. Figure 1.3 shows that diastolic
pressure coincides with an enormous slope change in the aortic flow curve.
The latter could be defined by the maximum of the third derivative of aortic
flow. However, the time of the systolic pressure is not as easy to find. As an
approximation, the maximum of aortic flow was used, even though it occurs
slightly before the pressure peak [24]. Defining systolic arterial blood pressure
at the flow peak would be correct for for rigid vessel walls. The delay, that we
do not take into account, occurs due to the flexibility of the vessel walls.
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Figure 2.2.: High resolution flow data from Figure 2.1 clipped into single periods
and averaged in a single curve.

22



3. Literature Review

3.1. Basic Models for the CVS

In Chapter 1, we have seen that the CVS is composed of three main parts:
the heart, resistance and compliance vessels. These three components form
the basis of models found in literature. Both the implementation of the single
components and the degree of complexity vary in the different approaches.

3.1.1. Complexity and Analysis of the Models

The most common basic model includes the whole CVS packed together in
six compartments. Its popularity results from being the simplest model that
contains all the main parts of the CVS. A detailed description and analysis
of the six compartment model is presented in [4]. The latter discusses also
the dynamics, equilibria and stability of the six compartment model. Parame-
ter identification is accomplished both a priori (combining literature and own
measurements) and a posteriori (based on dynamic measurements).

It is also possible to model the CVS in simpler ways. The simplest way is to
remove five compartments from the complete model and set conditions for the
incoming and outgoing signals. Another way is to lump several compartments
to one. In this way, the complexity is reduced at the expense of the physical
meaning of some the lumped parameters. Such models can were found in [15]
and [17]. Both provide physiological background and develop the models by
gradually extending a One-Compartment Model. Following this path of going
from basic to more complex models is a good approach for applications with
many unknown parameters. [15] covers also the implementation of models in
Matlab, but numerical analysis is not included.

A majority of models are based on a linear relation between resistance and
flow even though it is known that non-linear relations (such the form as given in
[36]) are more physiologically appropriate [1]. Figure 3.1 from [28] shows how
the simulated arterial pressure from a linear model compares to measured data.
The pressure maximum occurs too late and is clearly lower than the measured
systolic pressure. The gradients for both rising and falling pressure are not
steep enough around the systolic pressure. The pressure oscillations around
the closing of the aortic valve can not be reproduced by the linear model. The
diastolic part of the curve is simulated quite exact. With the available arterial
pressure measurements, the deviation between simulated and real pressure can
not be seen so clearly. However, it is important to notice, that the location
systolic pressure are not correct. Even though we can manage to increase the
modeled systolic pressure by changing the compliance, the model produces a
shape that differs from reality.
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3.1.2. The Pumping Activity of the Heart

As the heart is the pump of the system, it defines the wave form of the signal
that is sent through the body. It is therefore very important to model the heart
correctly. A typical approach to define the pumping activity of the heart, is by
a time-varying compliance or volume function. In both cases, there are models
that use mathematical functions with fitted parameters ([2], [35]) and functions
derived from physical quantities. The latter are often more complex but they
allow interpretations of the physical meaning of changing certain parameters.

The most important physical models are presented below. [15] uses Sagawa’s
approach (Equation 3.1) of modeling the heart with time-varying compliance.
This approach was first introduced in 1978 [16] and is now widely in use.

Clv(t) =


CLV D

(
CLV S
CLV D

) 1−exp (−t/τs)
1−exp (−Ts/τs) 0 ≤ t ≤ Ts

CLV S

(
CLV D
CLV S

) 1−exp (−(t−Ts)/τd)

1−exp (−(T−Ts)/τd)
TS ≤ t ≤ T

(3.1)

with

CLV D ... maximum value of Clv

CLV S ... minimum value of Clv

τs ... time constant for decreasing Clv

τd ... time constant for increasing Clv

T ... duration of one heart beat
Ts ... duration of one systole

In contrast to Sagawa’s formula for compliance, one may focus on volume
changes in the heart without extracting compliance and pressure, as can be
seen in [4]. However, Berg’s measurements allow us to include left ventricular
pressure explicitly while the volume is unknown.

A discussion and comparison of different models of the heart is given in [27]
and [9]. Both present similar definitions of compliance which are independent
of load. The more compact definition was found in [27], with a single function
valid over the whole period:

Elv = 1/Clv = 2a(Vlv − b) + c
(1− exp

(
−( t

τc
)
)α

) exp
(
−( t−td

τr

)
)α

(1− exp
(
−( tp

τc
)
)α

) exp (−( tp−td
τr

))α
(3.2)
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with

Elv ... left ventricular elastance
Vlv ... left ventricular volume
td ... starting point of relaxation process
tp ... time of peak generated pressure
a, b, c ... parameters, defined by curve fitting
τc, τr ... time constants

Being highly dependent on contractility, [27] appraises this definition to be
a reliable indicator for the heart performance. Nevertheless, the formula re-
quires the left ventricular volume which is an unknown, time-dependent func-
tion. Thus Sagawa’s approach has to be chosen, despite of the limitations.

3.2. Models of CVS Control Mechanisms

Most groups working with the CVS also study its dynamics. Typically, they
focus on short term regulation, in particular the mechanisms of the baroreceptor
loop. Their approaches may be divided into two groups: Models that reproduce
and fit measured data ([23], [11], [2], [35]) and models that reveal physiological
details in the baroreceptor control mechanism ([11], [19]). A good example
of the first model type is that [23] fits the heart rate so that the modeled
pressure is close to the measured pressure. From a physiological point of view,
this models lacks the influence of the blood pressure derivative (Section 1.2.1)
and the modeled heart rate is not compared to measurements. A collection of
control mechanisms appealing to the second group are explained in [9]. Among
those are models for central nervous system, control of the ventricles, control
of the vasculature. Another example for modeling the central nervous system’s
effect on blood pressure control is given in [19].

Some groups tried to gain more insight in the dynamics of the CVS by ap-
plying system identification techniques as described in [3], [22] and [21]. The
applied mathematical tools in the latter ones were not studied or consulted.
However, they might be useful for later work.
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Figure 3.1.: Measured pulmonary arterial pressure and velocity compared with
modeled pulmonary arterial pressure in a dog.
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Part II.

Finding Basic Models for Static
Conditions

27



4. Models of the Cardiovascular
System

As presented in Chapter 1, the CVS is composed of different vessel types. We
have seen that these vessel types can be classified as compliance and resistance
vessels. In this chapter, we introduce the physical laws of these two vessel
types and describe how they can be connected to different models. A detailed
description of the models and their equations is given in [15] and [17].

A linear relation of the changing volume V (t) in a compliance vessel is given
by the equation

V (t) = Vd + C P (t). (4.1)

Vd denotes the volume that the vessel would have when dead. Depending on the
actual pressure P (t), the vessel walls expand or relax. The extent of the expan-
sion of the vessel walls depends on the vessel’s compliance C, that describes the
vessel’s flexibility. In most models, arteries with a large diameter are considered
to be compliance vessels. Parallel compliance vessels can be lumped into one
compliance vessel, also called compliance compartment.

In contrast to flow through compliance vessels, flow through a resistor causes
a considerable pressure drop given by the relation

Q(t) =
∆P (t)

R
=

Pin(t)− Pout(t)
R

, (4.2)

with

Q(t) ... flow through the resistor
Pin(t) ... inflow pressure
Pout(t) ... outflow pressure
R ... resistance of the resistor.

The resistor may replace a single vessel or a network of many bifurcating and
converging vessels. It models the overall pressure drop in a given region.

A more complex formulation of the pressure drop over a resistor is given in
[36] and can replace Equation 4.2:

dQ(t)
dt

=
Pin(t)− Pout(t)−QR

L
, (4.3)
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with the additional parameter

L ... length of the resistor.

By applying the law of conservation of volume, the two vessel types can be
connected:

dV

dt
=

d(C P )
dt

= Qin(t)−Qout(t) (4.4)

with

Qin(t) ... inflow
Qout(t) ... outflow.

The rate of volume change in the compliance vessels must equal the differ-
ence between inflow and outflow. By using resistance and compliance vessels
as basic tools, one can set up a variety of different models. Some examples are
introduced in the next sections.

4.1. One-Compartment Model

The simplest approach is shown in Figure 4.1, which models arterial pressure
by applying Equation 4.4. The inflow into the systemic arteries is defined by
a given time dependent function. The outflow equals the flow through the
systemic resistance:

Qout =
Psa − Psv

Rsys
(4.5)

with

Psa ... systemic arterial pressure
Psv ... systemic veinous pressure
Rsys ... systemic resistance

Equation 4.4 can then be formulated as

Csa
d(P )
dt

= Qin(t)− Psa(t)− Psv(t)
Rsys

(4.6)

with

Csa ... systemic arterial compliance
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Figure 4.1.: One-Compartment and Two-Compartment Model of the cardiovas-
cular system.
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Assuming that arterial pressure is much greater than venous pressure (Psa >> Psv),
arterial pressure is defined by:

˙Psa =
Qin − Psa/Rsys

Csa
. (4.7)

Discretizing this equation by using the forward Euler method provides an
explicit scheme for the One-Compartment Model:

Psa(ti+1) = Psa(ti)∆t
Qin(ti)− Psa(ti)

Rsys

Csa
. (4.8)

4.2. Two-Compartment Model

The previous section showed a simple way of modeling blood pressure in the
arteries, but the input and the output are not connected. We will now develop
a Two-Compartment Model 4.1 that represents the CVS as a circular system.
Before we can model the CVS as a circular system, we need to model the heart
that generates the inflow into the systemic arteries. For simplicity, the heart is
only represented by the left ventricle.
By defining the heart as a compliance vessel with time-dependent compliance,

dVlv

dt
=

d

dt
Clv(t)Plv(t), (4.9)

with

Vlv ... volume of the left ventricle
Clv ... left ventricular compliance
Plv ... left ventricular pressure,

the law of conversation of volume can be applied:

d(ClvPlv)
dt

= Qin −Qout. (4.10)

The inflow and the outflow of the heart are defined by the flow through
the heart’s valves. To maintain the flow direction, the valves are modeled as
diode-like resistors, with low resistance in the desired flow direction and high
resistance in the opposite direction. By including an additional state variable
S, the definition of flow through a resistor can be extended to flow through a
diode. The variable S indicates if the valve is open (S = 1) or closed (S = 0).

Finally we connect the systemic resistor and the mitral valve diode with
a compliance vessel. This vessel represents systemic veins that transport the
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blood back to the heart. Since venous pressure is very small compared to the
arterial pressure, it is assumed constant. As a consequence, the volume in the
venous compliance compartment is not changing.

Then inflow and outflow of the heart can then be formulated by:

Qin = Qmi = Smi
Psv − Plv

Rmi

Qout = Qao = Sao
Plv − Psa

Rao

(4.11)

with
Qmi ... flow through the mitral valve
Qao ... flow through the aortic valve
Rmi ... resistance of the mitral valve
Smi ... state of the mitral valve
Sao ... state of the aortic valve
Rao ... resistance of the aotric valve.

Merging Equation 4.11 and Equation 4.10 gives

d(ClvPlv)
dt

= Smi
Psv − Plv

Rmi
− Sao

Plv − Psa

Rao
. (4.12)

Similarily we insert Equation 4.11 into Equation ??:

Csa
˙Psa = Sao

Plv − Psa

R− ao
− Psa

Rsys
. (4.13)

The equations are coupled (both depend on systemic and left ventricular
pressure) and nonlinear, since the valves’ state depend on the current pressure.
[15] suggested to discretize the equations with backward Euler. On each time
step, the calculated pressure and the valves’ states have to be stable. First, the
valves are set and the pressure is calculated. If the calculated pressure demands
another state of one or both valves, the valves are reset and the pressure is re-
calculated. This process is repeated until the result is stable. More information
on convergence of this method can be found in [15].

The complete scheme is given by

Csa
Psa(ti)− Psa(ti−1)

∆t
=

=Sao(ti)
Plv(ti)− Psa(ti)

Rao
− Psa(ti)

Rsys

Clv(ti)Plv(ti)− Clv(ti−1)Plv(ti−1)
∆t

=

=Smi(ti)
Psv(ti)− Plv(ti)

Rmi
− Sao(ti)

Plv(ti)− Psa(ti)
Rao

(4.14)
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4.3. Six-Compartment Model

The previous sections gave examples of models that are basically built up
by connecting resistors with compliance vessels. However, introducing a Six-
Compartment Model allows one to build a system containing both pulmonary
and systemic circulation.

A model which has been widely used is one which includes both the systemic
and pulmonary circulation (see Figure 4.3) with left and the right ventricle. The
systemic circulation is almost identical to that in the last example. However,
in this model, the systemic veins empty into the right ventricle instead. From
there, the pulmonary arteries lead into the pulmonary resistor, representing the
lungs. The model is completed by the pulmonary veins, which transport blood
from the lungs back into the left ventricle. All compartments in this model are
analogous to the ones used in the previous models.

Thus, the circulatory system is modeled as a closed circuit including six
resistors connected by six compliance vessels. This leads to a system of almost
linear equations where the valve states depend on the unknown pressure values.
In contrast to the other models, the Six-Compartment Model is the only model
which contains all important parts of the cardiovascular system.
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Figure 4.2.: The CVS with systemic and pulmonary circulation.
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5. Analysis

After having introduced models of the CVS, this chapter provides some analy-
sis of the One-Compartment model. The purpose is to show the parameter’s
influence on the solution.

5.1. Analytical Analysis for the One-Compartment
Model

The One-Compartment Model is a first order ODE with constant coefficients
and an initial condition:

˙P (t)−AQ(t) + BP (t) = 0
P (0) = P0

A =
1
C

B =
1

RC
=

A

R

(5.1)

Solving the equation in general gives

P (t) =
A

∫ t
0 Q(t)eBtdt + C

eBt
(5.2)

Approaching this general solution through several steps gives an idea of how
the different variables and constants influence each other.

Setting B = 0 (meaning that resistance is infinite) and Q = const leads to a
the linear solution

P (t) = AQt + P0. (5.3)

This solution is meaningful in a physical sense: finite resistance and constant
flow lead to pressure increasing linearly with time.

Changing B to a nonzero constant gives:

P (t) =
AQ

B
+

(
P0 −

AQ

B

)
exp(−Bt) (5.4)

I. e. finite resistance and constant flow let the pressure approach a constant
value. The closer the initial value P0 is chosen to the final constant, the faster
the equilibrium state is reached. This equation is a good description of the
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mean pressure behaviour and how the initial condition influences the solution.

To introduce a more realistic but simple function with a fluctuation flow pattern,
a simple sine function was chosen.

Q(t) = a sin
(

2π

T
t

)
+ b, with amplitude a > 0 (5.5)

This function provides three characteristics that can also be found in the real
flow function: amplitude (a), mean value (b) and duration of one period (T ).

This leads to the solution

P (t) =
A

∫ t
0 (a sin

(
2π
T t

)
+ b)eBtdt + C

eBt

=
Aa

B2 + (T/2π)2

[
B sin

(
2π

T
t

)
− T

2π
cos

(
2π

T
t

)]
+

Ab

B
+ Ce−Bt,

(5.6)

with

C = P0 +
Aa

B2 + (T/2π)2
T

2π
− Ab

B

P (t) =
Ab

B
+

Aa

B2 + (T/2π)2

[
B sin

(
2π

T
t

)
− T

2π
cos

(
2π

T
t

)]
+

(
P0 +

Aa

B2 + (T/2π)2
T

2π
− Ab

B

)
e−Bt.

(5.7)

Inserting B = A/R, B = 1/C, B � T/2π and letting t →∞,

P (t) ≈ bR +
a

1/CR2

[
1

CR
sin

(
2π

T
t

)
− T

2π
cos

(
2π

T
t

)]
(5.8)

We see that the mean level of the flow function and the resistance influence the
mean level of the pressure while the amplitude of the pressure oscillations are
influence by the flow’s amplitude, the resistance and the compliance.

5.2. Equilibrium State

The principle of the CVS is to maintain blood supply to all parts of the body
according to changing needs. Whenever the needs are constant, the system will
approach an equilibrium. Assuming that the body’s needs can be met by the
pumping capacity of the heart, the equilibrium will be reached when the needs
stay constant sufficiently long. In part I, the goal was to develop a model for
constant conditions, thus, equilibria are a very good indicator for checking the
validity of the model.

For the basic model to mimic physiology correctly, it must approach the
correct equilibrium under static conditions. Static conditions require constant
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resistance in all resistance vessels and constant compliance in all compliance
vessels, except for the heart.

Equilibrium is reached when the last and the first point in every period have
the same value, and the mean blood pressure remains constant. Integrating the
equation from the One-Compartment Model (Equation 4.7) over one period
gives:

C (P (0)− P (T ))︸ ︷︷ ︸
=0

= SV − 1
R

∫ T

0
Pdt. (5.9)

Equilibrium resistance is though given by

R =
1

SV

∫ T

0
Pdt =

MAP ∗ T

SV
(5.10)

with
MAP ... mean arterial pressure
SV ... stroke volume,

where

MAP =
1
T

∫ T

0
Pdt (5.11)

The given resistance is identical with the definition of TPVR (Equation 1.2).
Also, the compliance does not have any impact on the equilibrium, neither is
it coupled to the mean pressure.

Applying the same idea to the model of N compliance and N resistance com-
partments, gives:∫ T

0 Pi−1dt−
∫ T
0 Pidt

Ri−1
−

∫ T
0 Pidt−

∫ T
0 Pi+1dt

Ri
= 0 (5.12)

for i = 1, ... , N, except for the heart compartments, which cannot be described
with constant compliance and resistance.
Writing Equation 5.12 with

MPi =
1
T

∫ T

0
Pidt (5.13)

gives

MPi−1 − MPi

Ri−1
− MPi −MPi+1

Ri
= 0. (5.14)

In equilibrium, all blood that the heart pumps into the system, passes through
all compartments — meaning that the integral of the flow through each com-
partment over one period must equal the stroke volume:∫ T

0
Qi = SV for i = 1,..., N (5.15)
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6. Adapting Models to Measured Data

6.1. A Priori Parameter Estimation

6.1.1. The One-Compartment Model

Before simulating the One-Compartment Model, the outflow from the heart,
systemic resistance, systemic compliance, and an initial condition had to be
estimated. For the outflow from the heart, the high resolution cardiac output
measurements were applied. Further, systemic resistance was set to TPV R
(calculated by Equation 1.2), where mean arterial pressure was approximated
by Equation 2.1.

Since systemic compliance was unknown, it had to be estimated by applying
Equation 4.7. With two available pressure measurements per period, we could
approximate the time derivative of pressure as slope between the two points.
Of the two possible slopes, the one from systolic to diastolic pressure resulted
in smaller simulation errors and was therefore chosen for the later experiments.
The remaining parameters in Equation 4.7 had to match the approximation
of the pressure derivative, i. e. flow was set to the mean flow that occurs from
diastolic to systolic pressure, while pressure was approximated by the total
mean pressure.

Csa (Psa(td)− Psa(ts))
td − ts

= Qmean ts−td −
MAP

Rsys
(6.1)

with

ts ... time of systolic arterial pressure
td ... time of diastolic arterial pressure,

where the mean flow from systolic to diastolic pressure is given by:

Qmean ts−td =
1

td − ts

∫ td

ts

Qdt. (6.2)

The compliance is then given by:

Csa = (td − ts)
(

Qmean ts−td −
MAP

Rsys

)
/ (Psa(td)− Psa(ts)) . (6.3)

Reformulating Equation 6.3 with 1.2 gives:

Csa = (td − ts)(Qmean ts−td − CO)/ (Psa(td)− Psa(ts)) . (6.4)

According to [32], the compliance that is described by simulation models
(apparent compliance) is not the correct description of true compliance. [32]
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suggest to multiply apparent compliance by a factor of at least 1.5, to approx-
imate true compliance. The factor will be accounted for in the simulations.
Since the input flow curve starts at the beginning of systole, the initial condition
was set to diastolic pressure.

6.1.2. Two-Comparment Model

Figure 6.1.: Three periods of left ventricular compliance derived from left ven-
tricular pressure and flow through the mitral valve.

Extending the One-Compartment Model to a loop demanded a good rep-
resentation of the pumping activity of the heart. Due to the high resolution
measurements from the left ventricle and from the cardiac output, the ventri-
cle’s compliance could be approximated quite exactly by using Equation 4.14.

Clv(ti)Plv(ti)− Clv(ti−1)Plv(ti−1)
∆t

= Qmi(ti)−Qao(ti) (6.5)

With an open mitral valve, the flow through it is given by:

Qmi(ti) = (Psv − Plv(ti))/Rao. (6.6)

To include the valves’ functions, negative flow through both of the valves was
set to zero

Qmi = Qmi ∗Qmi > 0, Qao = Qao ∗Qao > 0. (6.7)
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Left ventricular compliance was found by solving Equation 6.5 for Clv(ti). De-
pending on the initial condition, the calculated curve of left ventricular com-
pliance changed from period to period. To find the solution that is (almost) in
immediate equilibrium, different initial conditions were tried out. The values
used for approximating left ventricular compliance were taken from the last of
15 calculated periods (Figure 6.1). For being able to adjust left ventricular
compliance to dynamic changes, the discrete values were used to define the pa-
rameters in Sagawas’s function (Equation 3.1, see Section 7.2).

By reusing the estimations for systemic resistance and compliance from the
the One-Compartment Model, the only unknowns were the resistance of aor-
tic and mitral valve and the systemic venous pressure. According to [15], the
unknown venous pressure may be assumed small compared to arterial pres-
sure. However, like the valve resistances, systemic venous pressure influences
the volume that is transported through the subsequent vessel compartment.
When trying to simulate the equilibrium state, the volume that passes through
each compartment per heart beat should equal the stroke volume. Hence, the
mentioned parameters have to be adapted to maintain the transported volume.
Additionally, the pressure drop from ventricular to arterial pressure during sys-
tole depends on the resistance of the aortic valve (Equation 4.2). By integrating
Equation 4.2, the conditions of transported volume per heart beat and pressure
drop over the aortic valve could be combined.

SV =
1

Rao

∫ tvc

tvo

(Plv − Psa) dt

≈ 1
Rao

∫ tvc

tvo

Plvdt−MAP ∗ (tvc − tvo)
(6.8)

with

tvo time where aortic valve opens
tvc time where aortic valve closes

Mean arterial pressure during systole was set to the total mean pressure. Be-
sides of this simplification, the exactness of the equation depends on how ac-
curately the closing and opening of the aortic valve can be detected from the
given data.

An easier approach for estimating the resistance of the aortic valve is to apply
Equation 4.2 at the time step of systolic pressure.

Qao(ts) =
1

Rao

(
Plv(ts)− Psasys

)
(6.9)

On the one hand, the latter case does not necessarily fulfill the flow condi-
tion, but on the other, it is based on exactly measured values and simplifies
calculation of the aortic resistance compared to Equation 6.8.

40



The resistance of the mitral valve may be defined analogue to Equation 6.8.

SV =
1

Rmi

∫ tvc

tvo

(Psv − Plv) dt =
1

Rmi

(
Psv ∗ (tvc − tvo)−

∫ tvc

tvo

Plvdt

)
(6.10)

with

tvo ... time where mitral valve opens
tvc ... time where mitral valve closes

Since the flow through the mitral valve was not measured, the formula could
not be simplified as in the case of the aortic valve.

The pressure drop over the systemic resistance results in the condition

SV =
T

Rsys
(MAP − Psv) . (6.11)

For Psv = 0, this equation is equal to the definition of TPV R. Hence, with a
nonzero venous pressure TPV R as systemic resistance, the condition of main-
tained flow can not be fulfilled. Redefining systemic resistance by Equation
6.11 is a way of dealing with this dilemma. In that case, another condition
is required. It may seem reasonable to assume that the resistance in the two
valves is equal, so that venous pressure is found from Equation 6.10 and the
valves’ resistances from Equation 6.8 or 6.9.

Finally, the an initial condition for ventricular and arterial pressure was set
to diastolic pressure.

6.1.3. Six-Compartment Model

For the Six-Compartment Model, the parameters of the systemic system could
be reused from the Two-Comparment Model. However, the parameters from
the pulmonary system and the right ventricle are much harder to find. The only
known condition for these compartments is, that the flux per heart beat must
equal the stroke volume when the system is in equilibrium. Some research
papers (like [7], [37]) on rats state that pulmonary resistance corresponds to
about 10% of systemic resistance. The same relation is assumed for mean
pressure in pulmonary and systemic arteries. A part from these rough guesses,
we do not have any more information about the pulmonary system.
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6.2. Inverse Problem with Method of Lagrangian
Multipliers

6.2.1. Formulation with Linear Flow-Resistance Relation

In Chapter 3, we presented a selection of modeling ideas for the CVS. The men-
tioned references include different methods for defining unknown parameters in
dynamic systems. However, these techniques were considered little flexible.
Since we wanted to develop a solver that can easily be applied to different
model equations, we needed a flexible tool. Hence, we have chosen the method
of Lagrangian Multipliers with variational formulation. The goal of this method
is to minimize an error norm (of some modeled and known values), while the
model equation is fulfilled. The method allows unknown model parameters
that are fitted to approximate the solution to some desired values. The method
is therefore called inverse method. Since the model equation does not match
the error norm equally well in every point, the equations for every point are
weighted with so-called Lagrange Multipliers.

The variational formulation was chosen due to available symbolic finite ele-
ments software [26] that enabled to produce a very flexible parameter identifi-
cation solver. The formulations below are inspired from [4] and [23].

We want to minimize the function f

f(P ) = 1/2
∫ T

0
(DP − d)2 · dt, (6.12)

while the ODE

CṖ = Q− P/R

P (0) = P0

(6.13)

is fulfilled. Here, D(t) is a function weighting the time-steps in P for compari-
son with the associated measurements given by the function d(t).

The variational formulation of the ODE as a function g with A = 1/C and
B = 1/R is given by

g(P,A, B) =
∫ T

0

(
Ṗ −AQ + ABP

)
Φi · dt = 0, ∀i ∈ 1, 2, · · · , n, (6.14)

where Φi is a test function for the i-th time interval.

The inverse problem can then be formulated as

∇f = λT∇g

g = 0,

P (0) = P0,

(6.15)

where the Lagrange Multipliers are collected in the vector λ.
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The system can be reduced to one PDE

∇L (P,A, B, λ) = 0, (6.16)

by defining L as

L(P,A, B, λ) = f − λT g, (6.17)

and ∇ as

∇ =


∂/∂pi

∂L/∂A
∂/∂B
∂/∂λi

 (6.18)

Since the problem is non-linear it has to be solved iteratively. Here we choose
the Newton Raphson method:

xi = (P i, A, B, λi) (6.19)

JL(xi) · (xi − xi−1) = ∇L(xi−1). (6.20)

P ,Q and λ are defined as follows:

P =
n∑

i=1

piΦi(t)

Q =
n∑

i=1

qiΦi(t)

λ = [λ1, ..., λn]T .

(6.21)

To simplify the formulation we define a new variational parameter W

W =
∑

i

λiΦi, (6.22)

as the sum over the products of Lagrange Multipliers and test function in the
associated time interval.
The gradient of L includes the following components

∂L

∂pi
=

∫ T

0
(D̄P − d̄)D̄Φi · dt−

∫ T

0
(Φ̇i + ABΦi)W · dt (6.23)

∂L

∂A
= W

∫ T

0
Q · dt−BW

∫ T

0
P · dt (6.24)

∂L

∂B
= −AW

∫ T

0
P · dt (6.25)
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∂L

∂λi
= −

∫ T

0
(Ṗ −AQ + ABP )Φi · dt (6.26)

with

d̄[i] = d(ti)
D̄[i, j] = D(tj)

(6.27)

giving:

∇L =


∂L/∂pi

∂L/∂A
∂L/∂B
∂L/∂λi



=


(D̄Mp− d̄)T D̄ − (K + BM)λ(

(Mq)T −B(Mp)T
)
λ

−A(Mp)T λ
−(K + BM)p + AMq.


(6.28)

The Jacobian of the gradient of L is given by

JL =
[
∇ ∂L

∂pi
,∇∂L

∂A
,∇ ∂L

∂B
,∇ ∂L

∂λi

]

=


(D̄M)T D̄ 0 −Mλ −(K + ABM)

0 0 0 (M(q−Bp))T

−Mλ 0 0 −AMp
−(K + ABM) M(q−Bp) −AMp 0,

 (6.29)

with

Mij =
∫ T

0
ΦiΦjdt (6.30)

Kij =
∫ T

0
Φ̇iΦjdt (6.31)

depending on the chosen element types. The initital condition has to be set
manually to the equation.

6.2.2. Uniqueness of Solution

To ensure that the solution for this saddle point problem is unique, bounded-
ness, coercivity and the inf-sup-condition have to be fulfilled. Since analysing a
nonlinear problem analytically is difficult, problem was linearized by assuming
that the factor A·B is known. In the following we have AB := B. The resulting
problem found below is formulated similar to [5].

Find (u, W ) ∈ X × L2 with

a(u, v) + b(v,W ) = f(v)− a(u0, v) ∀ v ∈ X

b(u, m) = 0 ∀ m ∈ L2,
(6.32)
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where

u = [P,A] with u ∈ X = H1 ×R

v ∈ H1

m ∈ L2

a1(P, v) =
∫ T

0
DT Pv · dt

a2(A, v) = 0

b(u, z) =
∫ T

0

(
Ṗ −AQ + BP

)
m · dt.

For Q and B we know that:

0 < B < C,

|Q(t)| ≤ C < ∞ ∀ t ∈ R.

Further, the constant C is used to replace constant values in the equations.

Boundedness

a(u, v) =
∫ T

0
D2Pv · dt

≤
∫ T

0
D2 · dt||P ||L2 ||v||L2

≤
∫ T

0
D2 · dt||P ||H1 ||v||L2

≤
∫ T

0
D2 · dt

(
||P ||2H1

)1/2 ||v||L2

≤
∫ T

0
D2 · dt

(
||P ||2H1 + ||A||

)1/2 ||v||L2

≤ β1||u||X ||v||L2

(6.33)

∫ T
0 D2 · dt ≤ β1 holds since D is only nonzero in few points.

b(u, m) =
∫ T

0

(
Ṗ −AQ + BP

)
m · dt

with
∫ T

0
AQ · dt > 0

≤
[∫ T

0
Ṗ · dt +

∫ T

0
BP

]
· dt||m||L2

with Poincare

≤
[∫ T

0
Ṗ · dt +

∫ T

0
CBṖ

]
· dt||m||L2

≤ β1||Ṗ ||L2 ||m||L2

≤ β1||u||X ||m||L2

(6.34)
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Coercivity

a(u, u) ≥ α||u||2 = α
(
||P ||2H1 + |A|2

)
(6.35)

This inequality was assumed to be fulfilled, however it remains to prove that
the inequality holds. We know that a physically reasonable solution for P is
an oscillating function with an upper and a lower bound. Since the pumping
activity of the heart has limits, the lenght of the periods can not become arbi-
trarily small. Further, the sign of the time derivative Pt changes once within
every period. Hence, ||P ||2H1 can assumed to be bounded.

Inf-Sup Condition

sup
P∈H1,A∈R

b(u,m)

(||P ||H1 + A2)1/2
≥ β||m|| ∀m ∈ L2 (6.36)

If the inequality holds for a particular A ∈ R and a particular P ∈ H1, it must
also hold for the supremum of the two quantities. With A = Ā and P so that
g(P̄ , Ā) = m, the equation simplifies to

(m,m)

(||P ||H1 + A2)1/2
≥ β||m|| ∀m ∈ L2. (6.37)

It remains to be shown that(
||P̄ ||2H1 + A2

)1/2 ≤ β||m||L2 . (6.38)

However, similarily to coercivity, we assume that ||P ||H1 is bounded. We have
not been able to prove that ||P ||H1 is bounded but the numerical simulations
indicate that this is the case.

6.2.3. Implementation Issues

Preconditioner

Inverse problems can lead to ill-conditioned matrices [38]. By applying an
appropriate preconditioner, the condition number can be improved. The applied
preconditioner gave good results for a certain range of step lenghts. However,
more investigation is necessary to furhter improve the numerical results. The
eigenvalue analysis was performed on the linearized variant of the Lagrange
formulation (see Analysis above). As can be seen in Table 6.1, in most cases,
the condition number of the preconditioned system is clearly smaller than in
the unconditioned system. Further, we see, that for deacreasing step length,
the condition number of the preconditioned system close to constant, while
the condition number of the the unconditioned increases. Figure 6.2 shows how
sorted absoluted values of the eigenvalues for preconditioned and unconditioned
system behave. For the unconditioned system, the values are spread while the
preconditioned values are constant – with a few exceptions.

Furthermore, notice that the components in the preconditioners are standard
elliptic preconditioners that can be constructed with e. g. multigrid methods.
Hence, applying e. g. Minimal Residual method to this preconditioned system
will give an order optimal algorithm.

46



Figure 6.2.: Absolute values of the eigenvalues of the unconditioned and the
preconditioned inverse system.

Table 6.1.: Condition numbers for unconditioned and preconditioned Systems
with Different Step Length

∆t unconditioned conditioned

32T/len(Qao) 1.2 · 103 2.7 · 103

16T/len(Qao) 1.5 · 103 3.5 · 102

8T/len(Qao) 2.6 · 103 2.9 · 102

4T/len(Qao) 5.0 · 103 3.1 · 102

2T/len(Qao) 9.9 · 103 3.2 · 102

T/len(Qao) 9.9 · 103 not converged

Implementation Structure

Even though the analysis was only accomplished for the linearized variant, we
managed to successfully implement the original equation. So far, only com-
pliance and systemic arterial pressure were set as unknowns, while systemic
resistance was approximated by TPV R. The system of equations (6.20) was
derived analytically by using the programming packages swiginac [31] and SyFi
[26]. First all unknown parameters were expressed in their variational form
(Equation 6.21 and 6.22), where the variational forms were based on symbols.
After formulating the Lagrangian (Equation 6.17), the gradient and its Jacobian
were calculated. Finally, the system of equations was solved with the package
[13], where the symbols were substitued by their values for the current iteration
step.

In contrast to the simulations for the analysis of the eigenvalues, the require-
ments and the initial condition were not set directly in the system of equations.
For the requirements on pressure to equal systolic and diastolic pressure at cer-
tain points, the functions D1 and d1 were only set nonzero on these points. The
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initial condition was added by the additional term

µ

∫ T

0
(P (0)− P0)

2 · dt (6.39)

with the additional Lagrange Multiplier µ. In this way, the conditions are
not absolute and allowed the solution to differ from the desired values. Not
knowing how well the model represents the rats’ physiology, we did not want
the conditions to affect the solution too much.
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7. Simulation Results under Static
Conditions

The preceding chapters provided all the necessary information to use mathemat-
ical models as simulation tool. We will now take a look at how well simulations
can reproduce measurements. To make sure that the models develop the de-
sired equilibrium state, the simulations were carried out for 30 heart beats. We
defined the error at a certain time in the heart beat as the difference between
the measured and the simulated pressure values. The errors of systolic and di-
astolic pressure were registered in the 30th heart beat and are further denoted
as systolic and diastolic error respectively. In the following, the errors and their
connection to model parameters are analyzed. In the simulations, it is postu-
lated for simplicity that the experimental data used in parameter estimation is
recorded under equilibrium.

7.1. Simulation Results for the One-Compartment
Model

7.1.1. One-Compartment Model with Pre-estimated Parameters

Relation of Diastolic and Systolic Errors. Figures 7.1.1, 7.1.1 and 7.1.1 are
examples of simulations of different rats; the corresponding parameters can be
found in Table 7.1. The first model is in equilibrium from the beginning while
the other two need 7-15 beats to remain stable. The fact that models have
a falling, rising or constant mean pressure before they reach the equilibrium
indicates that the correctness of the applied model depends on the individual
cases. There is no common factor for all the models that could improve the
simulation results. Even the first model that is stable from the beginning has
a large error in the systolic pressure. Comparing the all systolic and diastolic

Table 7.1.: Parameter examples for Different rats
Parameter Rat#1 Rat#2 Rat#3
SV in µ l 124.33 76.0 48.53

Psa(tsys) in mmHg 95.23 93.55 68.58
Psa(tdia) in mmHg 68.58 64.14 55.59
Rsys in mmHg s/ml 2.4 2.8 2.8
Csa in ml/mmHg 0.0059 0.0014 0.0036

error(tsys) in mmHg -8.8 0.3 -5.9
error(tdia) in mmHg 0.0 -9.4 1.1
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Figure 7.1.: One-Compartment Model: A simulation where the is in equilibrium
state instantly (Rat#1).

errors reveals two groups. In almost every case, only one of the errors (systolic
and diastolic) is large while the other is close to zero (see Figure 7.4). The
first group (Group I) is defined by well estimated systolic pressure and an
underestimated diastolic pressure. Group II contains simulations, where the
diastolic value is well approximated and the systolic value becomes too high.
As can be seen from Figure 7.4, the latter case occurs more often.

In Section 3.1.1 we showed how the modeled pressure differs from the mea-
sured values in a dog. The pressure amplitude in the simulated curve was lower
than in the measured curve. Group II corresponds to the case described in
Figure 3.1, while Group I seems to be en translated variant of Group II. In the
plots of errors versus other parameters, the dots seem to pile in two regions that
are separated by a gap. These regions correspond to the two groups mentioned
above. Since the number of plots is quite large the focus was set on the ones
that show clear differences. The rest of the plots are attached in the appendix.
All the correlated points in the plots are marked with a ‘+’ for hypertensive
and with a ‘×’ for normotensive rats.

Duration of Systole. An interesting indicator for the error is the proportion
of the interval from diastole to systole and the duration of the whole period
(Ts/T ), see Figure 7.5. First of all it is important to notice, that the values of
the factor Ts/T can be grouped into points around 0.2 and around 0.75 even

50



Figure 7.2.: One-Compartment Model: A simulation with falling mean pressure
(Rat#2).

though the duration of the period has a great variety for the different rats.
Hence, the dependency of Ts/T of the heart rate as stated in [33] could not be
observed in the given data.

The concentration of points around two factors corresponds to the groups
mentioned earlier. For small factors, systolic errors were high (around -10
mmHg) while diastolic errors were close to zero (Group II). The opposite effect
(Group I) was observed for high factors; the error of systolic pressure was close
to zero while the diastolic error was high (around -10 mmHg). We see that the
factor Ts/T is a strong indicator if the simulation reproduces either of the two
pressure values quite accurately while the other has a remarkable deviation.

Compliance. The results show that low compliance leads to good simulations
of systolic but bad for diastolic values. Higher compliance values resulted in
small errors during diastole and large errors during systole. Despite of knowing
that the applied model equation is not suitable for describing both systemic
and diastolic pressure accurately, some of the error could be due to rough ap-
proximation of compliance. To improve the compliance values, it was checked
how multiplying it with different factors would affect the results.

Figure 7.6 shows that the margin of errors gets smaller for higher factors.
The mean diastolic error is smallest for the highest factor, but the systolic er-
rors become too big (in their absolute value). Using Equation 1.6 (see Chapter
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Figure 7.3.: One-Compartment Model: A simulation rising mean pressure
(Rat#3).

6) leads to good results for the major group of the experiments. The factor
does not only help to verify the estimation of compliance but it also shows its
influence on the systolic and diastolic pressure values. As expected, we can ob-
serve that higher compliance leads to lower pressure amplitudes. However, the
correlation between changing compliance and the errors (and thus the pressure
amplitudes) is not linear.

Resistance. Resistance was defined by TPV R with the goal of establishing
an equilibrium with the desired mean arterial pressure. Small and big errors
were well distributed over high and low resistance and do not seem to influence
the result.

By comparing the model parameters with resistance (see Appendix A), one
can check how well the model assumptions are reproduced. It can be seen that
arterial pressure rises for increasing resistances. For large stroke volume (77–
140 µl) the resistance is very low and varies little. For low stroke volume (≤
58 µl) the resistance shows great variance. Over a certain resistance threshold,
the heart has obviously great difficulties to pump the blood, so that the stroke
volume does not exceed a certain value. This assumption can be amplified by
considering how the amplitude of cardiac output correlates to resistance. We
observed high amplitudes for the smallest resistance values and almost equal
amplitudes for the rest of the resistance values. Additionally, heart rate and
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Figure 7.4.: Relation of relative errors in systemic and diastolic arterial pres-
sure.

resistance are directly proportional. The last two findings might be connected
by stating that lower (higher) resistance allows the heart to pump with lower
(higher) frequency that leads to higher (lower) flow amplitudes. Knowing that
the flow amplitude is mainly influenced by compliance, the correlation of com-
pliance and resistance is not surprising.

Limitations. In all models, complex structures are collected in a few com-
partments. [10] points out that success of lumped elements depends on their
application, but that the accuracy for average behaviour and the wave form is
good in large vessels. The article also mentions that the linear approximations
for compliance and resistance vessels is too simple for individuals with ‘radically
different physiology’. Finally [10] mentions the neglected inertial effect which
occurs during blood acceleration that results in a different wave form. The lack
of detail in Berg’s measurements of the systemic arterial pressure, make it hard
to evaluate the exactness of the model.

Conclusion. It seems that the One-Compartment Model is a good tool to
give some additional information about the measured data. We have seen that
comparing the simulation results for different parameters revealed two main
groups. Marking hypertensive and normotensive cases with different colors in
the plot showed that both types occur in both of the groups. For better insight,
it is necessary to increase the number of simulated cases a lot in order to get
to more concrete solutions.
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Figure 7.5.: How Ts/T influences the systemic and diastolic errors.

7.1.2. Inverse modeling of the One-Compartment Model

We have seen that forward modeling of the One-Compartment Model leads
to non-neglectable errors. A possible reason was assumed to result from the
rough estimation of systemic arterial compliance used in the forward model
(see Chapter 6). In the following we will see if the result can be improved
by applying the inverse algorithm to the same model. The figures for this
section contain two subplots each. One subplot shows aortic flow, the other
one includes calculated pressure and lines that mark the level of systolic and
diastolic pressure.

Figure 7.7 reveals problems of the Inverse Modeling in this Simple Case: The
pressure maximum occurred much later than the flow peak and during diastole,
the pressure dropped too much. As a result of the late maximum, the amplitude
of the pressure oscillation was much higher than expected.

For improving the result, the systolic pressure value was not demanded at
the peak of the aortic flow, but where the pressure maximum naturally appears
(as found from the first simulation). In Figure 7.8, we see that the pressure
maximum now equals the measured systolic value and the end of the period is
much closer to the diastolic value.

Due to its generality, the inverse solver could easily be adapted to replace the
linear One-Compartment Model by a nonlinear Model. The latter was achieved
by using the flow pressure relation given in equation 4.3. The time derivative
of flow was calculated numerically from the given flow measurements and the
length parameter L was set as unknown. The result can be seen in Figure 7.7.
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Table 7.2.: Test Cases for Inverse Modeling
Parameter Case#1 Case#2 Case#3

max(P ) in mmHg 112 85 85
Psa(T ) in mmHg 37 51 55
Csa in ml/mmHg 0.0010 0.0010 0.0106

error(Pmax) in mmHg 27 0 0
error(Psa(T )) in mmHg -19 -4 -1

min(eigenvalue) 2.47e-03 9.99e-03 1.46e-06

Conclusion. We have seen that the starting diastolic value and the systolic
value as pressure peak could be simulated well (Table 7.2). However, even
though we tried to fit the last value to measured diastolic pressure, it lies below
in all the models. Since the first and the last values are not equal, the model is
not in equilibrium. For this reason, we decided to redo the inverse simulations
over a time-interval of two periods. We used the same initial condition as for
one period and trying to fit all the other systolic and diastolic points. The
results for the linear cases are given in Figure 7.10. Again, we could achieve a
better result by adapting the occurrence of the systole to the natural position
of maximum pressure. For the non-linear model, the result was nonphysical.

Still, mean pressure is falling in time. As presented in Chapter 5, the level
of mean pressure is defined by resistance. A possible reason could therefore
be that the approximation of TPV R was not be accurate enough. We tried
to set resistance as unknown in the inverse model, but the resulting system
of equations was singular. As mentioned above, the linear model underesti-
mates systolic pressure. Since the inverse problem forms the model so that the
measured systolic pressure is reached, the subsequent values lead to a wrong
diastolic pressure in the end of the period.

7.1.3. Comparing the Linear Forward Model with different
Compliance Values

By applying the different compliance values to the existing linear forward model,
the results of the inverse and the forward model could be compared more easily.
The results of the different forward models can be found in Table 7.3. Case#1
is based on the compliance value that pre-estimated by Equation 6.3. The com-
pliance values for Case#2 and Case#3 were found by linear inverse modeling
over one period, with the pressure maximum at the flow peak and at its natural
occurrence respectively. The analogous cases over two periods are modeled in
Case#4 and Case#5. We see that the sum of the errors is almost equal for every
case except for Case#2. The difference of the result lies in the distribution of
the total error over systolic and diastolic error. Comparing the forward models
(see Appendix) reveals that the models that are in instant equilibrium develop
simulate the diastolic pressure better than the systolic. The models that need
some periods to reach the equilibrium have a falling mean pressure that re-
sults in underestimated diastolic pressure values, while the systolic pressure is
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Table 7.3.: Errors for Forward Models with Different Compliance
Parameter Case#1 Case#2 Case#3 Case#4 Case#5

Csa in ml/mmHg 0.00118 0.00102 0.00216 0.00330 0.00223
error(Psa(td)) in mmHg 0.32 16.17 -2.70 -8.38 -3.19
error(Psa(ts)) in mmHg -9.41 -24.38 -7.13 -1.56 -6.65

estimated better.

7.2. Simulation and Results for the Two-Compartment
Model

The conditions for simulations of static Two-Compartment Models were given
in Section 6.1.2. For achieving a value as realistic as possible, the calculated
discrete values for left ventricular pressure were used (Equation 6.5) to adjust
the rest of the parameters. The plots of the results contain subplots of flow,
pressure and compliance. The first subplot shows aortic flow (blue) and mitral
flow (green), the second subplot shows the measured (red) and the simulated
(green) left ventricular pressure curve, the simulated systemic arterial pressure
(blue) and the measured systolic (red) and diastolic (light blue) arterial pres-
sure. The calculated (green) left ventricular compliance and its representation
used in the simulations (blue) are contained in the last subplot.

Trying to apply Equations 6.8 to 6.11 for estimating the unknown parameters
did not succeed because the valves’ states could not be defined correct enough.
As a consequence, the parameters were set manually and iteratively to fit the
conditions for a static system.

When setting the parameters so that the systolic arterial pressure is repro-
duced (Equation 6.9), the flow curve’s maximum was overestimated by about
25%.

The differences between the measured flow curve and the simulated model
might be due to the linear relation that was assumed between flow and resis-
tance (Equation 4.2). We have seen earlier, that the nonlinear model in the
One-Compartment Example gave markedly better results.

So far, we used a calculated function for left ventricular pressure that is not
suitable for use in a dynamic model. The next step was therefore to replace it
by Sagawa’s compliance function. Almost all parameters were extracted from
the known data or the calculated compliance function. We used least square
fitting for finding τS and τD, however the solution was improved by manually
finding values that improved the simulation results. With the result (see appen-
dix A.6) being quite different from 7.11, it turned out that some adjustments
for Sagawa’s formula were necessary. Moving the maxima and minima helped
to improve the approximation of the decreasing part of compliance (see A.7).
However, we see that the transitions between systole and diastole of ventricular

56



Table 7.4.: Parameters and resulting Volume flow through Two-Compartment
Model

Common Parameters
Parameters Values
Psv in mmHg 22.25
Rmi in mmHg 0.16
Rao in ml/mmHg 0.016
SV in ml 0.0855

Different Results for the Models
Parameter calculated Clv approximated

Clv∫ T
0 Qao in ml 0.0858 0.0889∫ T
0 Qsys in ml 0.0856 0.0889∫ T
0 Qmi in ml 0.0858 0.0767

error(Pmax) in mmHg 0 1
error(Pmin) in mmHg 8 6

pressure were not smooth. Further, the pressure maxima occurred too late and
had a far too high value. As a consequence, the systemic arterial pressure did
not reach the desired level. This fact could be changed by using an additional
function for all values smaller than a certain threshold, i. e. values smaller than
the threshold were replaced by the smooth function:

Clv(t) = min + Clvs
[
exp

{
(Clvs − Clv old(t))

40
}]8

,

∀t : Clv old(t) < min

with
min ... the new desired minimum
Clvs ... the minimum that would occur without this correction function
Clv old ... the Clv function before it is changed by this correction function.

(7.1)

To ensure continuity in the new left ventricular compliance function the mini-
mum for the rising part of the function had to be changed to

Clvs = min + Clvs. (7.2)

The final result (Figure 7.12) is almost identical with Figure A.6. The used pa-
rameters and the average flow through the compartments in these two models
can be found in Table 7.4.

As mentioned earlier, flow through the mitral valve depends on the venous
pressure. The mitral valve is only open, when venous pressure is above left ven-
tricular pressure. To ensure enough flow for the equilibrium situation, venous
pressure had to be set to a very high value. As a consequence, the resistance
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estimation given by Equation 6.11 would lead to far too low pressure values in
the aorta. Instead of applying the latter, resistance was set to TPV R.

All the simulations for the Two-Compartment Model have been done with
data from one rat. Trying to apply the final model to the data of other rats,
turned out to be difficult. Besides that the unknown parameters would have to
be redefined, the calculated compliance function of the left ventricle differed so
much that a good adaptation would require manual adjustments for every rat.

7.3. Simulation of the Six-Compartment Model

All parameters of the pulmonary system and the right ventricle were basically
unknown. Trying to manually adapt those parameters did not lead to a model
that produced acceptable results. To succeed with a Six-Compartment Model
requires measurements in more parts of the body.
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Figure 7.6.: How multiplying compliance with a factor changes the range of
diastolic and systolic errors.
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Figure 7.7.: Inverse modeling of the One-Compartment Model.

Figure 7.8.: Inverse Modeling of the One-Compartment Model with adapted
occurrence of systolic pressure.
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Figure 7.9.: Inverse Modeling of the One-Compartment Model with nonlinear
flow - resistance relation.
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Figure 7.10.: Inverse modeling of the linear One-Compartment Model over two
periods; Systole required at flow maximum (a) and at delayed (b).
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Figure 7.11.: Simulation of the Two-Compartment Model with use of calculated
Clv.
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Figure 7.12.: Simulation of the Two-Compartment Model fitted Clv.
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Part III.

Extending Basic Models with a
Feedback Mechanism responding

to Dynamic Changes
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8. Experiments and Their Impact on
the CVS

8.1. Application of Dynamical Data to the Model

To estimate the model’s reaction on dynamical changes, every parameter should
be assumed adaptable. However, the present measurements do not contain the
necessary information to find out how the parameters change. The only avail-
able quantity for approximating systemic resistance is TPV R. We have seen
before that applying TPV R is not ideal and the problems with applying the
approximated TPV R will increase for higher frequencies (Section 2.2). Further-
more, changes in venous pressure and compliance can not be estimated directly
from the measurements. Compliance has long been seen as a constant parame-
ter, but [2], [6] and [39] point out that compliance clearly reacts to dynamics in
blood pressure. The only measurements that are directly applicable, are those
of the heart rate.

8.2. Simulation Results of the Dynamic Model

In a first attempt, the measurements of TPV R and the heart rate were directly
applied to the model, trying to reproduce systolic and diastolic pressure over a
long run. The Two-Compartment Model was expanded by changing the repre-
sentation of parameters from concrete values to objects. Every object contains
one function that describes the parameter’s change in time and one that can re-
turn the functions value at a certain time. For every time interval the functions
were changed so that they lead linearly from one data point to the next. A
collection of all time varying parameters and their approximation for dynamic
changes is listed in Table 8.1. The other parameters remain constant.

Figure 8.2 shows the result for a simulation that contains an interval over
five minutes. Over most of the time, the resulting arterial pressure is constant
while it rises extremely at some local points. Solving these problems would
require more investigation. However, if it was possible to get the correct pres-
sure behaviour by applying the measured resistance and heart rate to a static
model, the baroreceptor loop could be modeled decoupled from the CVS. In
other words, large and small scale modeling could be done separately. This
approach is different from e. g. [4], where all the model parameters were fit to
approximate the measured dynamic pressure in the arteries. By separating the
model into vessel compartments and control mechanism, the parameters can
be fitted with physiological details, that might disappear in a lumped model.
The compartment model can help to understand the correlations of pressure,
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Table 8.1.: The Dynamic Two-Compartment Model
Parameter Estimation

Rsys TPV R(t)
T T (t)
Ts T (t) T (t0)

Ts(t0)

heart rate, resistance and compliance, while modeling the baroreceptor loop
can give insight into how the different processes in the body act on the chosen
parameters.

Figure 8.1.: Running the Two-Compartment Model dynamically.

Compared to what was found in e.g. [4] the long-term recordings of pressure
and heart rate are given in much less detail which makes it difficult to develop
physiologically interesting models.
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Part IV.

Conclusion
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8.3. Summary

8.3.1. Comparing Models

One-Compartment Model. The Simulations in Chapter 7 revealed remark-
able differences between the models. The nonlinear flow-resistance relation
(Equation 4.3) resulted in more exact pressure values than simulations on a
linear flow-resistance relation (Equation 4.2). Also, the time when systolic
pressure occurs was simulated more correctly with the nonlinear model.

By forward modeling of the linear models, we could show that the sum of
systolic and diastolic simulation errors is approximately equal for compliance
values defined by a simple estimation and inverse modeling. However, the in-
verse simulations were only accomplished for one example and need verification.

A lot of effort has been put into developing a solver for inverse problems. Due
to its generality, it can be applied to different kinds of models with different
measurements.

Two-Compartment Model. The parameter estimation of the Two-Compartment
Model was time–consuming and therefore only performed on one example. Fit-
ting a function to match the shape of the left ventricular compliance function
(calculated from measured data of aortic flow and ventricular pressure) was dif-
ficult. We could see, that the best fit in a mathematical sense would not neces-
sarily produce the desired simulation results. The characteristics of ventricular
compliance had a different level of influence in different regions. Nevertheless,
ventricular pressure could be simulated quite exactly.

Another difficulty was to estimate the values of the valves resistances and
the venous pressure. However, simulations of systemic arterial pressure were
acceptable. The clearest weakness in the model was revealed when comparing
the shape of measured and simulated aortic flow. The deviation is probably
due to the linear flow-resistance relation.

It remains to simulate a version of the Two-Compartment Model where the
flow pressure relation is nonlinear.

Efficiency. Both the forward and the inverse methods were order optimal, i. e.
refining the grid increases the computation time by a similar factor.

8.3.2. Can the Models Reveal Additional Information from the
Data?

Modeling may introduce parameters that are not measurable. If the chosen
model is built upon physiological ideas, new parameters give additional insight
into the problem. In all the models, compliance was an important paramter
— a parameter that is not part of Berg’s research. However, due to the few
measurements of systemic arterial pressure per period, compliance could only
be estimated roughly. Hence, the role of compliance in hypertension could not
be analyzed.
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With the developed solver for inverse modeling, we might be able to approx-
imate resistance more exactly than TPV R does.

Earlier research has shown that it is possible to create physiological models
of the baroreceptor loop. Among those were models of the parasympathic and
sympathic activity of the nervous system that were assumed to be of interest
to Prof. Berg.

8.4. Application and Future Prospectives

8.4.1. Possible Application of Computational Experiments

With additional parameters introduced by modeling, it might be easier to un-
derstand measurements in more detail. E. g., we expect compliance to be a
factor that can help to understand dynamic changes in the CVS. Models of the
baroreceptor loop separate certain physiological activities that are not measur-
able. Thus, such models might give a chance of quantifying changes in these
activities. However, replacing real experiments by computational ones is prob-
ably not possible today.

8.4.2. Strategies for Improved Models

This thesis is based on data that was produced for other purposes. The aim
was to see how these data could be applied to models. When first developing a
model, high resolution measurements will be useful in determining its accuracy.
Once developed, we only need measurements with a sufficient number of data
points to determine its parameters.

We suggest to develop two separate models. First, it is important to under-
stand how compliance and resistance need to be adjusted to simulate pressure
correctly over a long period of time. Since heart rate measurements are avail-
able, they should be directly applied to the model. When compliance and
resistance are known, they can be used to find baroreceptor models, that give
more insight into the effects that cause their change. Inverse modeling can be
helpful to test different types of models and for finding appropriate parameters.
However, forward models are needed to verify the solutions.

In addition to giving good results, it is important that the applied models
are based on quantities that have a physiological meaning. The purpose of
the models must be to add more insight for medical researchers by allocating
non-measurable physiological quantities [9].
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Appendices
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A. SOLUTIONS

A.1. The One-Compartment Model

A.1.1. A Error - Plots
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A.1.2. Compliance Correlated to Other Parameters

Compliance Correlated to Heart Rate, Stroke Volume, Ampliute of Flow
and Systemic Resistance
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Compliance Correlated to Pressure Values: Mean Pressure, Diastolic
Pressure and Systolic Pressure
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Compliance Correlated to Duration of Periods and Systoles
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Compliance Correlated to Modeling Errors (Diastolic and Systolic) and
Relative Errors (Diastolic and Systolic)
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A.1.3. Resistance Correlated to Other Parameters
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A.1.4. Forward Modeling with Different Compliance Values

Figure A.1.: Forward model with pre-estimated compliance (Case#1).

Figure A.2.: Forward model with compliance estimated from inverse modeling
over one period with systolic pressure at the flow peak (Case#2).
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Figure A.3.: Forward model with compliance estimated from inverse modeling
over one period with systolic pressure as maximum (Case#3).

A.2. The Two-Comparment Model

A.2.1. Evaluation of Left Ventricular Compliance
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Figure A.4.: Forward model with compliance estimated from inverse modeling
over two periods with systolic pressure at the flow peak (Case#5).

Figure A.5.: Forward model with compliance estimated from inverse modeling
over two periods with systolic pressure as maximum (Case#4).
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Figure A.6.: Simulation of the Two-Comparment Model with direct use of
Sagawa for Clv.
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Figure A.7.: Simulation of the Two-Comparment Model with adapted time and
changed max and min values of Clv.
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B. Programming Issues

All programs are implemented in python [18] with the mathematics package
numpy [13] and the plotting tool pylab [29]. The implementation of the linear
models were based on [15]. For finding relations between different parameters,
the plots of parameters of the one-compartment model were fitted with the
tool Scientific Python ([25]). The inverse modeling is based on the use of the
packages Swiginac (Symbolic Mathematics, [31]) and SyFi (Symbolic Finite
Elements[26]).

All programming code and applied data material can be downloaded from
[12]. The following tables give an overview of how the code can be used.

Table B.1.: Forward modeling of the One-Compartment Model
Task Command Result
Simulating one
model

Simple Shows the resulting plot

Simulating a se-
ries of Models

CollectData Collects all cases in HTML-files includ-
ing simulation plots and all known pa-
rameters; All parameters are additionally
added to the file ”Collected data.txt”

Correlating the
collected data

ProcessData Generates plots from the collected
parameters

An overview of the programs dependencies on exterior packages and other
programs is illustrated in Figure B.1. The python script readData handles
reading of measurement data, averaging high measurement data and algorihms
for finding the points in the single experiments, where the registered measure-
ments were reasonalbe. The script Rat is based on readData and provides the
parameters that are used for the different simulations. It also enables plotting of
data. Simple and Extended contain the scripts for simulating the One and Two-
Compartment Models respectively. A long sequence of the Two-Compartment
Model can be executed by running the script longRun. For running and com-
paring a bunch of One-Compartment simulations, the scripts CollectData and
ProcessData were used.

Solving the inverse problem is based on the script LagrangeSolver. This
solver is built in a general style that allows to formulate a variety of ordinary
differential equations as inverse problems. For using the solver, the unknown
variables have to be defined as (swiginac-)symbols and the trial function for
every variable has to be given. Additionally, a mesh over the given time, a
(SyFi-) reference element and the anverage step length are required. During
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Table B.2.: Inverse modeling of the One-Compartment Model
Task Command Result
Simulating a linear
flow–resistance relation
over one period

BasicRatSimulator generates a HTML–file
with results

Simulating a linear
flow– resistance relation
with adapted maximum
over one period

BasicRatSimulator max generates a HTML–file
with results

Simulating a linear
flow– resistance relation
over twp periods

RatSimulator 2P generates a HTML–file
with results

Simulating a linear
flow– resistance relation
with adapted maximum
over two periods

RatSimulator 2P max generates a HTML–file
with results

Simulating a nonlinear
flow-resistance relation
over two periods

nonlinear inverse shows a plot of the
solution

Table B.3.: Forward modeling of the Two-Compartment Model
Task Command Result
Simulating one model with an
adapted Clv-function

Extended Shows the resulting plot

Simulating one model over five
minutes

longRun Shows the resulting plot

the initialisation of a LagrangeSolver object, local-to-global mappings for the
variables are generated automatically. The mappings are given as two different
types. One mapping for all the variables and a list of mappings, with one
mapping for the every parameter.

After building an object of the class LagrangeSolver, the variables’ varia-
tional formulation on the referance element is available. These definitions of
the variables are necessary to formulate the Lagrange function and the function
for the preconditioner on the reference element. Since the Lagrange equation
may include time-dependent functions that are given by discrete values, the
LagrangeSolver enables to add a list of the functions’ symbols and the function
definition that returns a value for every node in the mesh. Further, known
points in the solution can be inserted into the final matrix. For this purpose,
list of indexes, and corresponding values needs to be transferred to the solver.
The defined functions, and the mentioned list are necessary input for setting
up the system of equations. The final Lagrange equation is then achieved by
analytical derivation of the Lagrange function. Then, the Lagrange equation is
mapped to the global time mesh, where the list of variable-specific mappings
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enables the variables to be defined by symbols with the index of the appropriate
time interval. The inverse of the preconditioner is created in the same way and
afterwards inversed symbolically.

So far, the system of equations that is given still includes symbols for the
parameters in every point of the time interval. Befor solving the system, the
current values of the parameters are inserted on every iteration step. The
initial values have to be given as input to the LagrangeSolver ’s solving function,
however, the solver disposes of a function that adapts the number of necessary
points to the given element type.

The scripts that use LagrangeSolver contain combinations of different La-
grange functions and handeling of the input data. Test is an additional script
that was used for the eigenvalue analysis. In contrast to the others, the initial
condition and the requirements on the solutions are set directly into the system
of equations.
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Figure B.1.: Diagram of all components and their dependencies on other com-
ponents and packages.
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