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Chapter 1

Introduction

1.1 Wax - Relevance of the Problem

Several crude oils contain signi�cant amounts of wax. The di�erent waxes have in a pure
state de�nite freezing (melting) and boiling temperatures. During production, transportation
and storage, the crude will attain temperatures lower than the freezing temperatures of the
waxes. At these temperatures, called wax appearance temperatures (WAT), waxes start to
form crystals in the �uid and deposits on the vessel walls. Wax build up can totally block
a pipeline. In the worst cases, production must be stopped in order to replace the plugged
portion of the pipeline (see Figure 1.1). The cost of this replacement and downtime is estimated
approximately $30,000,000 per incident (Lee & Fogler 2007). In the North Sea an o�-shore
platform had to be abandoned at a cost of about $100,000,000 (Lee & Fogler 2007). Elf
Aquitaine reported some years ago that the direct cost of removing a pipeline blockage from
a sub sea pipeline is at least $5,000,000, and that the production loss during the 40 days
downtime for the removal process is additional $25,000,000 (Singh 2000). In 1994 Mineral
Management Society (USA) reported that fourteen sub sea pipelines were plugged in the Gulf
of Mexico due to wax deposition, and this number has increased since then (Singh 2000). All
these examples indicate that wax deposition can cause considerable economic losses, and the
need and importance of wax predicting models follows. This has lead many engineers and
scientists around the world to study wax deposition and to develop wax prediction models for
the oil industry.

1.2 Physical Considerations

The �uid mixture produced from a reservoir is called crude and consists of several hydrocarbon
components which can be divided into two main groups; light and heavy hydrocarbons. The
light hydrocarbons like gas have carbon number C1-C4, while the liquid components gasoline,
kerosene and diesel have carbon number C5-C17, and the heavier hydrocarbons consist of
para�ns and napthenes. Para�ns are alkanes given by the chemical formula CnH2n+2 with
carbon number ranging from 18 to 65 or even higher (Srivastava et al. 1993). One of the
features of high molecular weight para�ns is their low solubility in most of the oil solvents at
room temperatures. At reservoir temperatures the solubility of these compounds is su�ciently
high to keep them fully dissolved in the mixture, and the crude behaves as a Newtonian �uid
with a low viscosity (Singh 2000). Once the crude leaves the reservoir, its temperature begins
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Figure 1.1: A completely blocked pipe from the Norwegian shelf

The black material is wax that has blocked an o�shore production line. There is no other
solution but to cut the pipe, which is an extremely expensive cost with regard to loss of
production, establishment of a new line connected to the well, challenges with restarting

production etc. The picture is taken by StatoilHydro.

to drop due to colder environments. On its way, the oil temperature decreases, and at a
sudden point the para�n molecules precipitate out of the solution. This will occur when the
bulk temperature reaches the critical WAT, or cloud point. Both terms are describing the
temperature at which wax begins to crystallize from a distillate fuel. Para�ns precipitate
when the bulk temperature decreases below the WAT. Crystal formation of wax particles is
an exothermal process where para�n molecules precipitate out of the oil solution and release
thermal energy to the environments. It is believed that para�ns di�use against the inner pipe
surface as a consequence of the colder surface compared to the bulk �ow temperature. This
mechanism is often described by the famous Fick's law for a binary (two medium) system
(Svendsen 1993).
Historically wax deposition problems have been known to the oil industry for several decades,
and in the beginning researchers tried to relate the phenomenon to already well-known physical
mechanisms. Mechanisms as molecular di�usion, shear dispersion, Brownian di�usion and
gravity settling have been widely discussed considering the wax deposition process. Several
hundreds of experiments indicate that molecular di�usion is the best descriptive mechanism
to the problem of deposition (Brown et al. 1993; Svendsen 1993;
Singh 2000; Lee & Fogler 2007).
It is believed that a number of events will occur when crude, rich of wax, form on a cold
inner pipe surface. We will not go into details because of the less relevance to our work,
but it is important to mention what scientists seem to anticipate about this issue. In their
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opinion solid waxes in su�cient quantities can signi�cantly a�ect oil viscosity and cause non-
Newtonian behaviour. Solid waxes can further interact to form a matrix that entraps the liquid
phase and e�ectively gels the �uid (Kok & Saracoglu 2000). The liquid is light hydrocarbons
assumed to di�use out of the gel while the heavier hydrocarbons are assumed to di�use into
the gel (Singh 2000; Lee & Fogler 2007). In this way the deposit reaches an increased wax
fraction over time. Therefore the deposit is often called gel instead of wax. In our work we
will consistently use the terms wax or deposit. We regard an oil condensate that has a low
content of waxes and consider the �uid as Newtonian.

Figure 1.2: Wax almost blocking the pipe

The inner radius available for �ow has been signi�cantly diminished because of the thick
layer of wax that occupies most of the cross section in the pipe.

1.3 Some Earlier Works and Modeling

Ramirez-Jaramillo and C.Lira-Galeana (2004) have developed and tested a simulating wax
deposition model in pipelines based on work done by Singh (2000), Svendsen (1993), Elphing-
stone (1999) etc. Results found in model pipelines indicate that deposition occurs due to radial
mass di�usion driven by a concentration gradient induced by a temperature gradient. They
conclude that the Reynold numbers and the mass Peclet number profoundly in�uence the
mass deposition rate. They found a steep increase in the solid deposition with Reynolds num-
ber up to Re ≈ 100, where a more gradual increase is observed for higher Reynolds number.
A further observation in their study was a decrease in the mass deposited when Re > 2000.
They state that the reason for this phenomenon from the fact that the shear forces acting on
the deposit layer will become larger with higher Reynolds number. At some point the shear
forces will remove deposit on the wall and thereby decrease its thickness. When estimating
the average molecular di�usion coe�cient, they found that there is an important connection
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between the mass Peclet number and the radial mass �ux. A substantial dependence of the
deposited mass layer-thickness on the determined average di�usion coe�cient were observed.

S.Todi et al., (2006) have performed experimental and modeling studies of wax deposition
in crude-oil-carrying pipelines. They studied the deposition phenomena in relation to particle
transport at all types of heat �uxes (positive (cooling), negative (heating) and zero). They
considered laminar �ow with low Reynolds number and found that deposition of the crude
tested will occur independently of the three di�erent types of heat �uxes, as long as the tem-
perature of the deposition surface is below the WAT. They also found that the distribution of
the wax particles is established as a result of Brownian di�usion and shear dispersion. During
the experiments they observed very thin layers, and the pressure transducers did not register
the decrease in diameter. Con�rmation of deposition was via a visual notice of inner pipe wall
deposition.
Ramachandran Venkatesan and H. Scott Fogler, (2004) studied and tested the well-known
Colburn analogy for the heat and mass- transfer in turbulent pipe �ow. For the crudes tested
they presumed the systems to be in thermodynamic equilibrium in the sense that the kinetics
of para�n precipitation are much faster compared to the transport rates. They further showed
that the Sherwood number must be less than the Nusselt number for a sub cooled system1.
From the Colburn analogy they achieved a larger Sherwood number than the Nusselt number,
and this caused an over-predicted mass-transfer rate. Venkatesan and Fogler consequently
showed that the Colburn analogy is very wrong for a few selected oils.
B. A. Krasovitskii and V. I. Maron, (1980) developed a mathematical model for prediction
of wax deposition in turbulent pipeline �ow. An interesting aspect of their work is that they
transformed the balance equations to the form of the Stefan problem2. They found that wax
continuously occupy more of the free pipe surface along the pipeline when the bulk temperature
reaches, or is lower than, the WAT. They noted that whereas the layer grows monotonically
along the pipe when its thickness is small, a maximum appears at some local cross section of
the pipe when the layer is thick. This is connected to the fact that when there is considerable
wax-thickness, the heat dissipation capacity increases and thereby rises the bulk temperature.
Accordingly, the temperature of the layer increases and thereby decreases the migration �ow
of para�ns. For large time scales (several days) they also observed that there is a minimum
concentration of waxes corresponding to the maximum thickness of the layer and vice versa.
Svendsen, (1993) has given an important contribution to the understanding of wax deposition
in both closed and open pipeline systems through his mathematical model based on analytical
and numerical methods. His model is widely referred to by other researchers. In the introduc-
tion he makes it clear from the assumptions that a negative radial temperature gradient must
be present in the �ow. He assumes that with a zero gradient, approximately no deposition will
occur. He further assumes that the temperature of the wall must be below the precipitation
temperatures, and that the roughness of the wall must be large enough so that wax crystals
can stick to it. In any case the model predicts that wax deposition can be considerably reduced
even when the wall temperature is below the WAT, provided the liquid/solid phase transition
is small at the wall temperature. He �nally concludes that whether the model is good must
be determined experimentally.

1A subcooled system means the center-line temperature is less than, or equal to the WAT.
2The Stefan Problem (after J. Stefan, 1835-1893) is originally based on the study of di�erential equations

with moving boundaries, describing the formation of ice in the polar seas (L.I. Rubinstein, 1972).
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Singh, (2000) developed and tested a mathematical model describing the wax deposition pro-
cess in a laboratory �ow-loop. He found that an increase in the wall temperature results in a
decrease in the thickness of the deposit, and consequently an increase in the wax content of
the deposit. He also observed that an increase in the �ow rate has a similar e�ect; a decrease
in the thickness and an increase in the solid wax fraction. The results from his mathematical
models presented in his work show an excellent agreement with the experimental data. There
is an interesting discussion related to some of the results. For three di�erent �ow-loop tests
of laminar �ow, the wax deposit virtually stopped after a certain period of time. From his
point of view this condition arises as a result of the insulating e�ect of the wax deposit, i.e.,
the thermal resistance of the wax deposit is su�cient to prevent further deposition in the
�ow-loop. Singh seems to have noticed a connection between the �ow rate, the inner wall
temperature, and the thickness of wax. He writes that for a higher �ow rate, the rate of
heat transfer is higher; hence, the rate of increase of the interface temperature is higher. His
research seems to have been an important contribution to the understanding, and predication
of wax deposition. On the same level as Svendsen he is widely referred to by others. Through
his thesis for the doctorate he built up a well described model for the physics related to the
wax deposition processes.

1.4 About This Work

It is a challenging task to predict �ow and temperature �elds of a multicomponent �uid �owing
turbulent in a hydrocarbon production pipe line. Many complicated physical processes take
place, among them, wax deposition, the topic of this thesis. The models of Svendsen (1993)
and Singh (2000) include wax deposition, but more experimental data are needed to assess
the accuracy and applicability of these and other available models. Such data were obtained
in a series of experiments carried out at StatoilHyro's Research Department in Porsgrunn
(Norway). Data from these experiments have, with the most kind assistance from employees
in that department, been made available for analysis and discussion in this thesis. The thermal
boundary conditions is an important issue in wax deposition modeling. As a prerequisite for
the analysis and discussion of the appropriate thermal boundary during wax deposition, Graetz
problem is considered in Chapter 2 and the results are summarized in Chapter 3. In the end
of Chapter 2, we also introduce the basic balance equations related to wax deposition.

Data from the wax deposition experiments at StatoilHydro's Research Department are
analyzed, presented and discussed in Chapter 4 and elsewhere in the remainder of thesis.
It turns out that the friction number formula is important for the calculation of wax layer
thickness from pressure drop measurements. Further, the importance of the thermal boundary
conditions are clearly demonstrated in the analysis. Dimensional analysis is also used in
Chapter 5.
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Chapter 2

Heat Transfer

2.1 Graetz problem

Graetz problem is a thermal entrance problem �rst studied by Graetz in 1885 (see White 2006).
The �uid properties are assumed constant. Fully developed, laminar and time independent
�ow in a circular pipe is considered. A sudden change in wall temperature is imposed at
some de�ned axial location. The temperature distribution of the incoming �uid with constant
temperature will be modi�ed downstream from this location. The problem is to �nd the
modi�ed temperature distribution.

2.1.1 Formulation of the Problem

A cylindrical coordinate system (r, θ, x) (see Figure 2.1) is appropriate for the boundary value
problem indicated above. In accordance with the assumptions above, the axial velocity is
given by the Poiseuille pro�le :

u (r) =
β

4µ

(
r2
0 − r2

)
where β = −∂p

∂x
(2.1)

The complete energy equation is approximated by :

u
∂T

∂x
∼=

k

ρ · cp

1
r

∂

∂r

(
r
∂T

∂r

)
(2.2)

Figure 2.1: Illustration of Graetz Problem
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where axial di�usion and dissipation have been neglected in relation to axial advection and
radial di�usion as we presume Pe � 1 and PrEc � 1 (see A.1-A.8). With de�nitions Peclet

number Pe = uoL
κf

, Prandtl number Pr = kf

ρCp
, and Eckert number Ec = u2

o
Cp(To−Tw) .

The boundary conditions are :

T (0, r) = To (2.3)

T (x > 0, ro) = Tw (2.4)

Graetz de�ned the following dimensionless variables :

T ∗ =
Tw − T

Tw − To
, r∗ =

r

ro
, x∗ =

2 · k
ρ · cp ·uo · do

2 ·x, (2.5)

where the average velocity and the inner diameter is given by :

uo =
βr0

2

8µ
and do = 2ro (2.6)

Combining (2.1), (2.5) and (2.6) with (2.2) gives:

∂T ∗

∂x∗
=

1
r∗ (1− r∗2)

∂

∂r∗

(
r∗

∂T ∗

∂r∗

)
(2.7)

The dimensionless boundary conditions become :

T ∗(0, r∗) = 1 (2.8)

T ∗(x∗ > 0, 1) = 0 (2.9)

2.1.2 Solution of the Problem

Since x∗ and r∗ are independent variables and equation (2.7) is linear, separation of variables
is attempted by introducing :

T ∗(x∗, r∗) = f(r∗) · g(x∗) (2.10)

If we now multiply both sides of equation (2.7) with 1
T ∗ and substitute equation (2.10), we

will obtain a new equation where we have only x∗ dependence on the right side of the equal
sign and only r∗ dependence on the left side. This can not be ful�lled except when both sides
give a common constant. Here we call this constant λ, and therefore :

dg(x∗)
dx∗

g(x∗)
=

1
r∗(1− r∗2)

(
df

dr∗
(r∗) + r∗

d2f

dr∗2

)
= −λ2 (2.11)

where equation (2.11) gives the two separate equations :

dg

dx∗
+ λ2g = 0 (2.12)

and:

r∗
d2f

d2r∗
+

df

dr∗
+ λ2r∗

(
1− r∗2

)
f = 0 (2.13)
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The general solution of (2.12) is :

g(x∗) = Ae−λ2x∗
(2.14)

With the boundary conditions in mind, we realize we have an eigenvalue problem to solve
giving a sequence of eigenvalues {λn} and eigenfunctions {fn(r∗)}, if we de�ne
fn(r∗) = fn(r∗;λn). The combination of (2.14) and (2.10) with the eigenfunctions {fn(r∗)}
in mind, we have :

T ∗(x∗, r∗) =
∞∑

n=0

Anfn(r∗)e−λ2
nx∗

(2.15)

Where the index n indicate that we have restricted values of λn, which are the representing
eigenvalues related to the Graetz functions fn. The entrance condition (2.8) gives :

∞∑
n=0

Anfn(r∗) = 1 (2.16)

and the eigenvalues are determined by the condition (2.9) giving :

fn(1, λn) = fn(1) = 0 (2.17)

Graetz showed that the eigenfunctions fn are orthogonal over the interval r∗ ∈ [0, 1] with
weight r∗(1− r∗2) (White 2006). Therefore we have :

1∫
0

r∗(1− r∗2)fm(r∗)dr∗ =
{∫ 1

0 r∗(1−r∗2)f2
m(r∗)Andr∗ ; n=m

0 ; n6=m
(2.18)

giving:

An =

∫ 1
0 r∗(1− r∗2)fn(r∗)dr∗∫ 1
0 r∗(1− r∗2)f2

n(r∗)dr∗
(2.19)

Rewriting equation (2.13) by introducing the transformations :

Z = λr∗2 and W (Z) = e
Z
2 f(r∗) (2.20)

we arrive at the Kummer equation :

Z
d2W

dZ2
+ (1− Z)

dW

dZ
+
(

λ

4
− 1

2

)
W = 0 (2.21)

The general solution for this special case is given by the Kummer`s function (Abramowitz &
Stegun 1964) which has a regular singularity at Z = 0 and an irregular singularity at ∞. An
independent solution of (2.21) is :

W (Z) = C ·M(
1
2
− λ

4
, 1, Z), where C = constant (2.22)

where :

M(a, 1, Z) = 1 +
∑
k=1

(a)k

(k!)2
Zk, a =

1
2
− λ

4
(2.23)
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and:

(a)k = a(a + 1)(a + 2)...(a + k − 1), k ≥ 1 (2.24)

The boundary conditions give :

M(a, 1, λ) = 0 (2.25)

and:
∞∑

n=0

Anfn(r∗) =
∞∑

n=0

Ane−
1
2
λnr∗2

(
1 +

K∑
k=1

(an)k

(k!)2
λk

nr∗2k

)
= 1 (2.26)

If we de�ne :

(an)k = (
1
2
− λn

4
) · (1

2
− λn

4
+ 1) · (1

2
− λn

4
+ 2) · ... · (1

2
− λn

4
+ k − 1) (2.27)

The coe�cients are :

An =

∫ 1
0

(
1− r∗2

)
e−

1
2
λnr∗2

(
1 +

K∑
k=1

(an)k

(k!)2
λk

nr∗2k

)
dr∗

∫ 1
0 (1− r∗2) e−λnr∗2

(
1 +

K∑
k=1

(an)k

(k!)2
λk

nr∗2k

)2

dr∗

(2.28)

2.1.3 Solving the Coe�cients

The coe�cients An are evaluated using series of expansion of the integrals involved (see equa-
tion 2.28). Partial integration is applied to generate the series. Details of this task are given
in (A.1-A.3. We write the expression for the coe�cients as :

An =

∫ 1
0 r∗e−βnr∗2dr∗ +

∫ 1
0

K∑
k=1

(
(an)k

(k!)2
λk

nr∗2k+1
)

e−βnr∗2dr∗ −
∫ 1
0 r∗3e−βnr∗2dr∗

(...)

−

∫ 1
0

K∑
k=1

(
(an)k

(k!)2
λk

nr∗2k+3
)

e−βnr∗2dr∗

(...)
(2.29)

where the denominator (...) is given by :

(...) =

1∫
0

r∗e−2βnr∗2dr∗ + 2

1∫
0

K∑
k=1

(
(an)k

(k!)2
λk

nr∗2k+1

)
e−2βnr∗2dr∗

+

1∫
0

K∑
k=1

(
(an)k

(k!)2
λk

nr∗2k+ 1
2

)2

e−2βnr∗2dr∗ −
1∫

0

r∗3e−2βnr∗2dr∗

− 2

1∫
0

K∑
k=1

(
(an)k

(k!)2
λk

nr∗2k+3

)
e−2βnr∗2dr∗−

1∫
0

K∑
k=1

(
(an)k

(k!)2
λk

nr∗2k+ 3
2

)2

e−2βnr∗2dr∗ (2.30)
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and : βn = λn
2

If we continue to process the equation given over, we might express the coe�cients
as following :

An =
Cn

Dn
(2.31)

The numerator :

Cn =
1

2βn

(
1− e−βn

)
+ e−βn

S∑
i=0

(2βn)i
K∑

k=1

Ãn,k
1

i∏
j=0

(2k + 2j + 2)

− e−βn

S∑
i=0

(2βn)i

i∏
j=0

(2j + 4)
− e−βn

S∑
i=0

(2βn)i
K∑

k=1

Ãn,k
1

i∏
j=0

(2k + 2j + 4)
(2.32)

The denominator :

Dn =
1

4βn

(
1− e−2βn

)
+ 2e−2βn

S∑
i=0

(4βn)i
K∑

k=1

Ãn,k
1

i∏
j=0

(2k + 2j + 2)

+ e−2βn

S∑
i=0

(4βn)i
K∑

a=1

K∑
b=1

Ãn,aÃn,b
1

i∏
j=0

(2(a + b) + 2j + 2)

− e−2βn

S∑
i=0

(4βn)i
K∑

a=1

K∑
b=1

Ãn,aÃn,b
1

i∏
j=0

(2(a + b) + 2j + 4)

− e−2βn

S∑
i=0

(4βn)i

i∏
j=0

(2j + 4)
− 2e−βn

S∑
i=0

(4βn)i
K∑

k=1

Ãn,k
1

i∏
j=0

(2k + 2j + 4)
(2.33)

where:

Ãn,γ =
(an)k

(k!)2
Zk

n, and γ = k, a, b (2.34)

It is necessary to do further calculations to determine the upper boundaries S and K. The
upper boundary K is found by numerical calculations of equation (2.35). This is done by
�nding the roots/eigenvalues and evaluate their precision based on existing tables (Shah &
London 1978; White 2006).

1 +
K∑

k=1

(an)k

(k!)2
λk

n = 0 (2.35)

For this case we have found it su�cient with an upper boundary K = 40.
How to derive S is dependent on the value of n, or how many eigenvalues we want to include
to our solution. When n increases, so does S. See A.2 for further details.
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Table 2.1: Eigenvalues of Graetz Problem
n λn S An

0 2.7043644 40 +1.476435
1 6.6790315 40 −0.806124
2 10.6733795 40 +0.588761
3 14.6710785 40 −0.475850
4 18.6698719 40 +0.405019
5 22.6691438 75 −0.355757
6 26.6686716 75 +0.319169
7 30.6684241 75 −0.290745
8 34.6686899 75 +0.267952
9 38.6704098 75 −0.249322

The coe�cients An given in the Table 2.1 above indicate that the solution will converge
slowly, and it is therefore necessary to involve a su�cient number of eigenvalues to achieve
an accurate solution for x∗ = 0. This can be con�rmed by evaluating the dimensionless
temperature function (2.38) for x∗ = 0 and r∗ = 0. The sum must converge to one according
to the boundary condition (2.8).

2.1.4 Dimensionless Temperature Pro�le

We have found an analytical expression for the coe�cients and we can now gather the most
important results from our analysis. Equation (2.15) gives the dimensionless temperature
pro�le, but for completeness we chose to repeat it here :

T ∗(x∗, r∗) =
∞∑

n=0

Anfn(r∗)e−λ2
nx∗

(2.36)

By combining the transformations (2.20) with the given solution to the Kummer equation, we
achieve an expression for the function fn (r∗) :

fn (r∗) = e−
1
2
λnr∗2

(
1 +

K∑
k=1

(an)k

(k!)2
λk

nr∗2k

)
(2.37)

The dimensionless temperature can therefore be expressed as :

T ∗Graetz (x∗, r∗) =
∞∑

n=0

Ane−λn( 1
2
r∗2+λnx∗)

(
1 +

K∑
k=1

(an)k

(k!)2
λk

nr∗2k

)
(2.38)
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In this chapter we will compare the dimensionless cup-mixing temperatures1 considering lam-
inar �ow. We therefore derive the dimensionless cup-mixing temperature based on the Graetz
temperature (2.38) (see A.4) :

T ∗Graetz−cup−mix = 4

1∫
0

r∗
(
1− r∗2

)
T ∗dr∗ = 4

∞∑
n=0

An exp(−λ2
nx)

(1− exp(−βn))
2βn

+ 4
∞∑

n=0

An exp(−λ2
n)

S∑
i=1

(2βn)i
K∑

k=1

Ãn,k
exp(−βn)

i∏
j=0

(2k + 2 + 2j)

− 4
∞∑

n=0

An exp(−λ2
nx)

S∑
i=0

(2βn)i exp(−βn)
i∏

j=0
(4 + 2j)

− 4
∞∑

n=0

An exp(−λ2
n)

S∑
i=1

(2βn)i
K∑

k=1

Ãn,k
exp(−βn)

i∏
j=0

(2k + 4 + 2j)
(2.39)

2.1.5 Accuracy of Dimensionless Temperature Pro�le

If we implement the equations (2.31)-(2.34) in Maple and derive the di�erent coe�cients,
our program will only give the ten �rst coe�cients precisely, but as we involve eigenvalues
greater than λ9 (see T able 2.1), our program reduces accuracy. Term three and four on the
right side of equation (2.33) have eigenvalues in high powers, and as the eigenvalues become
larger, the results are inaccurate and disturb the numerical calculations. We conclude that
our implemented solution must be limited to the �rst ten eigenvalues.

2.1.6 Comment

The dimensionless temperature distribution are shown in Figures (2.2)-(2.7) below. From the
�gures we see a decreasing temperature for x∗ > 0. The temperature on the wall is lower than
the bulk temperature and causes a release of energy toward the wall. The surroundings absorb
thermal energy as the �uid moves in the positive x∗-direction, until equilibrium is achieved.
We notice the strong radial temperature gradient close to the wall for 0 < x∗ < 1

10 , and that
the gradient becomes weaker as thermal equilibrium is approached as the �uid is being cooled
and transported in the pipe. We notice small waves in the pro�les where x∗ < 1

1000 . This is due
to the restricted number of eigenvalues involved. Including a larger number of eigenvalues will
decrease the "wavy e�ect" of the pro�les near x∗ = 0. Equation (2.5) gave x∗ = x

roRePr . We
�nd that the Pr number for water vapor and (unused) engine oil are 1.06 and 233, respectively
given a bulk �ow temperature at 380K, and using tables A.4 and A.5 (Incropera & DeWitt
1996). If we assume constant volume �ux and Reynolds number corresponding to laminar
�ow, this will indicate that the engine oil will be transported a distance 200 times longer than
the water before the same temperature is reached.

1The cup-mixing temperature is de�ned in equation (2.47).
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Figure 2.2: T ∗ when x∗ = 0 Figure 2.3: T ∗ when x∗ = 1
1000

Figure 2.4: T ∗ when x∗ = 1
100 Figure 2.5: T ∗ when x∗ = 1

10

Figure 2.6: T ∗ when x∗ = 1
5 Figure 2.7: T ∗ when x∗ = 1

4
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2.2 Heat Transfer in Pipe with Stationary Turbulent Flow

The general velocity �eld can be written as the following by introducing mean velocity and
�uctuating velocities :

V =
(
V (r) + v

′
x(x, t)

)
ix + v

′
r(x, t) ir + v

′
θ(x, t)iθ (2.40)

Figure 2.8: Stationary Turbulent Flow with Heat Exchange to the Environments

We presume the axial velocity component as dominating. If we further use Reynolds time
averaging, which is appropriate for stationary turbulence, we achieve the mean velocity in the
axial direction :

V (r) (2.41)

Area-averaging the mean velocity still give a good approximation to V(r) over the cross section
except near the wall (see 2.9). The velocity pro�le displayed in Figure 2.9 is derived from an
analytical expression of the eddy di�usivity (Quarmby & Anand 1969). Based on this pro�le
we further introduce an area-averaged velocity :

V =
2
r2
o

ro∫
0

rV (r)dr (2.42)

It is now of interest to investigate the loss of energy to the surroundings as a consequence
of heat loss from the bulk �ow through the pipe wall. Since the �ow is turbulent, the time
averaged thermal energy equation should be considered. When axial heat conduction and
dissipation is neglected, the equation will be (see B.1-B.7) :

V
∂T

∂x
=

1
r

∂

∂r

(
r

∂

∂r
(κ + κt)

∂T

∂r

)
(2.43)

where κ and κt are the thermal di�usivities, molecular and turbulent, respectively. κt must
be given to allow equation (2.43) to be solvable, for example as a correlation or by turbulence
modeling. It follows from (2.43) that the radial component of the heat �ux vector is
given by :

qr = −ρCp (κ + κt)
∂T

∂r
(2.44)
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Figure 2.9: Turbulent Velocity Pro�le

where κt(r = ro) = 0, and the heat �ux at the wall is :

qw = −kf

(
∂T

∂r

)
r=ro

(2.45)

qw is given by equation (2.45) for both laminar and turbulent �ow, but the temperature
distributions are di�erent in the two cases. Here we do not intend to model κt and we can
therefore not predict the heat �ux at the wall for turbulent �ow using (2.45). We will instead
use Nusselt number correlations. First we de�ne the mass �ux (in axial direction) :

Qm = 2π

ro∫
0

ρV rdr (2.46)

The Nusselt number and the cup-mixing temperature are de�ned by (White 2006) :

Nu =
qwdo

k(Tcup−mix − Tw)
and Tcup−mix =

∫
A

ρV TavdA∫
A

ρV dA
(2.47)

The temperature Tcup−mix is the the cup-mixing temperature de�ned as a mass �ow (ρV )
weighted cross sectional averaged temperature. We regard a physical system that is approxi-
mately independent of time in the sense that we have a constant inlet temperature. In reality
the temperature in production lines along the seabed will be almost independent of time, and
along the pipe we do not know exactly how the temperature will vary over the cross sections.
In the de�nition of the cup-mixing temperature we have eliminated information of the cross
sectional distribution of the temperature, and can therefore only derive a simpli�ed one di-
mensional temperature distribution from the energy equation. There are several empirical
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models for the Nusselt number in a smooth pipe with turbulent �ow, and in the literature
(Incropera & DeWitt 1996) the most recommended is the Pethukov model :

Nu =
(f

8 )RedoPr

1, 07 + 12, 7(f
8 )

1
2 (Pr

2
3 − 1)

, Redo =
V · do

ν
, Pr =

Cp ·µ
kf

(2.48)

The Pethukov friction factor f is given by :

f = (0.790 ln Redo − 1.64)−2 (2.49)

and the Petukhov model is adapted for Reynolds and Prandtl numbers within the respective
intervals :

3 · 103 < Redo < 5 · 106 0.5 < Pr < 2, 000 (2.50)

For rough pipes a model developed by A.F. Mills could be considered (Mills 1979). To progress
further with the energy balance equation (2.43), we area-average the equation using the de�-
nitions of the cup mixing temperature and the mass �ux (see B.8-B.9), �nding :

QmCp
∂Tcup−mix

∂x
= −2πroqw (2.51)

By substituting the de�ned Nusselt number (2.47) and the heat �ux (2.45) into (2.51) we �nd
by integration :

Tcup−mix = Tw + (To − Tw) exp
(
−πkfNu

QmCp
x

)
(2.52)

where Tcup−mix(x < 0) = To has been used as the boundary condition. To simplify the
temperature equation we introduce the dimensionless parameters :

T ∗cup−mix =
Tcup−mix − Tw

To − Tw
and x∗ =

x

2ro
(2.53)

Combining (2.51), (2.52) and (2.53) we �nd the following dimensionless temperature distribu-
tion :

T ∗cup−mix = exp
(
−2roπkfNu

QmCp
x∗
)

(2.54)
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2.3 Heat Conduction Through Pipe Wall for Laminar and Tur-

bulent Flow

We assume the �ow for both laminar and turbulent conditions to be stationary and fully
developed.

2.3.1 Laminar Flow

Figure 2.10: In�uence of Pipe Wall Included

For laminar �ow we have the velocity pro�le :

u (r) =
β

4µ

(
r2
0 − r2) where β = constant = −∂p

∂x
(2.55)

The mass �ux can be derived exactly since we know the velocity pro�le :

Qm =
πβr4

oρ

8µ
(2.56)

A balance equation for the heat transfer through the wall is given by (see Figure 2.10) :

Uw(Te − Tiw)2πro∆x− kw
∂T

∂r
2πr∆x = 0 (2.57)

where Uw is the heat transfer coe�cient of the wall. Integration of (2.57) yields :

Uw
ro

kw

r1∫
ro

1
r
dr =

Te∫
Tiw

dT

Te − Tiw
(2.58)
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We then achieve the heat transfer coe�cient of the wall :

Uw =
kw

ro ln
(

r1
ro

) (2.59)

The overall heat transfer coe�cient related to our system is (see (B.10-B.20)) :

1
Utot

=
1
hf

+
1

Uw
(2.60)

where hf is the heat coe�cient of the �uid inside the pipe given by :

hf =
kfNu

2ro
(2.61)

The (mean) Nusselt number for forced convection of fully developed laminar �ow inside a
circular duct with constant wall temperature is given by (Hausen 1959) :

Nu = 3.657 +
0.19

(
Re Pr 2ro

L

)0.8

1 + 0.117
(
Re Pr 2ro

L

)0.467 where Re < 2300 (2.62)

L is the pipe length, and we consider a system where L � 2ro. It is therefore a good
approximation to use Nu = 3.657. We may now derive the overall heat transfer coe�cient
from the equations (2.60), (2.61) and (2.62). This can be used in our next statement; a balance
equation for the loss of energy in the �ow direction and for the transfer of thermal energy
from the �uid through the pipe wall. The dimensions involved are energy per unit time and
per unit length :

QmCp
∂Tcup−mix

∂x
= 2πroUtot(Te − Tcup−mix) (2.63)

Integration with boundary conditions (see Figure 2.11) gives :

Tcup−mix = Te + (To − Te) exp
(
−16µUtot

βr3
oρCp

x

)
(2.64)

Let us simplify the temperature function by introducing the dimensionless variables :

T ∗cup−mix =
Tcup−mix − Te

To − Te
and x∗ =

x

2ro
(2.65)

The dimensionless temperature for laminar �ow is then :

T ∗cup−mix = exp
(
−32µUtot

βr2
oρCp

x

)
(2.66)

2.3.2 Turbulent Flow

For turbulent �ow conditions we can now express the general dimensionless temperature dis-
tribution along a pipe in a similar way as for the laminar. It is then important to use the
overall heat transfer coe�cient Utot related to turbulent �ow. There exist several empirical
models of the heat transfer coe�cient considering turbulent �ow. We have already introduced
the Pethukov Nusselt correlation from equations (2.48) and (2.49) and can therefore derive
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the heat transfer coe�cient of the �uid from (2.61). The expression for Utot is established in
(2.60), and it is straight forward to derive the overall heat transfer coe�cient for turbulent
�ow conditions, as well. The temperature distribution is almost the same as (2.64) except for
the mass �ow and the overall heat transfer coe�cient. The temperature for turbulent �ow is
therefore :

Tcup−mix = Te + (To − Te) exp
(
−2πroUtot

QmCp
x

)
(2.67)

or in dimensionless form :

T ∗cup−mix = exp
(
−4πr2

oUtot

QmCp
x∗
)

(2.68)

2.3.3 Deriving the Inner Wall Temperature

We �nd the inner wall temperature Tiw by assuming that the total heat exchange from the
�uid to the environments must equal the transfer of thermal energy from the bulk�ow to the
pipe wall. Our balance equation becomes :

Utot(Te − Tcup−mix) = hf (Tiw − Tcup−mix) (2.69)

After some manipulation we achieve a result that can be used for both turbulent and laminar
�ow. We already know that the heat transfer coe�cient related to the �uid is di�erent for
laminar and turbulent �ow. The general inner wall temperature is :

Tiw = Tcup−mix −
Utot

hf
(Tcup−mix − Te) (2.70)
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2.4 In�uence of Pipe Wall Including an Uniform Insulation on

the Inside

We assume that the insulation inside the pipe is of constant thickness everywhere on the inner
wall. The overall heat transfer coe�cient Utot will then be expressed as below for the general
case :

1
Utot

=
1
hf

+
1
Ui

+
1

Uw
(2.71)

We have included an insulating wall layer through the heat transfer coe�cient Ui in the
equation above. We derive Ui in the same way as we did for the heat transfer coe�cient of the
wall -establishing a balance equation for the heat transfer through the insulation (see Figure
2.11) :

Ui(Tw − Tiw)2πro∆x− ki
∂T

∂r
2πr∆x = 0 (2.72)

Figure 2.11: In�uence of Insulation and Pipe Wall

Integration of (2.72) gives the heat transfer coe�cient of the insulation :

Ui =
ki

ro ln
(

ro
ri

) (2.73)

It is now possible to derive the overall heat transfer coe�cient for laminar and turbulent
�ow by combining the already given heat transfer coe�cients of �uids and of insulation with
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(2.71). The temperatures are already given by the equations, (2.64)-(2.65) or (2.67)-(2.68).
Remember to replace ro with ri (see Figure 2.11) when using the mentioned equations.
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2.5 Analysis of Wax Deposition

We consider a simpli�ed situation where the condensate is being transported and cooled
through a horisontal pipe with circular cross section. The �ow is considered stationary and
turbulent. The condensate is further divided into three components, liquid (l), dissolved wax
and wax crystals (d) and solid wax (w). The liquid is determined to be the lighter hydrocarbon
components in the condensate. The dissolved wax is the same as dissolved para�ns and wax
crystals, where crystals are precipitated para�ns in the bulk �ow. The solid wax represent
the deposit on the pipe wall. We consider a situation of only wax in the deposit; that liquid
components are not involved in the deposition process. We also consider wax deposition to
occur in a localized area in the pipe (see Figure 2.12) and that the wax deposit is a uniform
and concentric layer of constant thickness. The balance equations for the problem is given
below.

Figure 2.12: Localized deposition
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2.5.1 Balance Equations

Mass Conservation

We introduce a balance equation for the �uid component (d) that contains para�ns using the
control volume method (see Figure 2.12) :

d

dt

∫
VG(t)

ρddV +
∫

AG(t)

ρd(vd − vG) · dA = 0 (2.74)

Here ρd and vd are the density [ kg
m3 ] and the velocity �eld [ms ] of the given phase related to the

mass exchange with deposit on wall. AG and VG are the geometrical area [m2] and volume
[m3] considered (with the inner radius) of the inside pipe. vG is the velocity �eld related to
any changes of VG or AG over time. We further assume time independent mass identities and
use space averages as needed to rewrite (2.74) :

π(x1 − xo)ρ̂d
d

dt
r2
i (t) + Qx(xo)−Qx(x1)−Qw(ri) = 0 (2.75)

where ρ̂d is the volume average density of the hydro-carbon components involved. Qx and Qw

are the axial and radial mass �ow rates, respectively, evaluated at locations as indicated in
Figure 2.12. By de�nition we have :

Qw(ri) = 2πri(x1 − xo)ρw
dH

dt
(2.76)

where we assume H to be dependent of the two parameters, time and inner wall temperature,
to get :

dH

dt
=

∂H(t, Tiw)
∂t

+
∂H(t, Tiw)

∂Tiw

∂Tiw

∂t
(2.77)

By de�nition we also have :

Γw = ρw
dH

dt
(2.78)

Due to lack of information (measurements) about Qx, it is hard to simplify the mass balance
equations given above.

Momentum Conservation

We assume no gravitational contributions during deposition. We also assume the wax to
occupy the total surface on the inner pipe wall within the localized area.
Thus the momentum equation is (Schulkes 2006) :

∂

∂t
(ρlAlul)−

∂

∂x
(ρlclu

2
l Al) =

∂

∂x
(PlAl) +

∂

∂x

(
µe

l Al
∂ul

∂x

)
− Slτlw

Ai
(2.79)

where Pl is the axial pressure ([Pa]) of the liquid, µe
l = µl + µT is the molecular and eddy

viscosity ([ kg
sm ]), Sl is the liquid perimeter wetter ([m]), τlw is the wall shear stress ([ kg

s2m
])

caused by the liquid, and cl is de�ned as cl = 1
Alu

2
l

∫
Al

u2
ndS. We hereby declare cl ≡ 1.
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Energy Conservation

We assume the bulk temperature to be independent of time during deposition. An assumption
that is reasonable for a �nite temperature di�erence between the bulk �ow and the cooling
environment, where changes of the bulk temperature is ignorable during the transportation
from x = xo to x = x1. The energy equation of relevance is discussed in Sections 2.1-2.4. We
therefore combine equations (2.51) and (2.47) of Section 2.2 to �nd :

∂Tcup−mix

∂x
= −

πklNu(Tcup−mix − Tcooling)
QlCp,l

(2.80)

where :

Nu = −2ri

(
∂T
∂r

)
r=ri

Tcup−mix − Tcooling
(2.81)

The rewritten inner wall temperature based on equation (2.70) of Section 2.3 is :

Tiw = Tcup−mix −
Utot

hl
(Tcup−mix − Tcooling) (2.82)

2.5.2 Considerations

As will be shown in Chapter 4, deposition is a delayed process. It can be shown that a
typical mass di�usion time scale (tw) for deposition is much smaller than the time scale for
mass transportation in the axial direction. Since the liquid is assumed to not in�uence the
deposition, we further assume constant axial velocity of the oil. In addition we consider the
dissolved wax to be transported with the same velocity as the liquid in the axial direction;
thereby ul ≡ ud = const. A typical time scale for molecular transportation with bulk �ow in
the axial direction is ttransp ∼ x1−xo

ul
. Based on typical axial velocities used in the deposition

experiments in Chapter 4, an estimated time scale for this transportation is ttransp ∼ 2s, while
tw is much larger.
We therefore state tw � ttransp. We also assume the densities to be constant and independent
of time and the wax thickness (H) to be small compared to the inner pipe radius (ro). We
therefore assume the following relation between the wax thickness and inner steel pipe radius;
H
ro

= ε � 1.

Simpli�cations of Impulse Conservation

Assuming steady state conditions and fully developed �ow, the impulse equation can be written
:

∂Pl

∂x
= −Slτlw

Al
(2.83)

2.5.3 Analysis of Γw

We analyse the mass transfer toward the wall, considering the time scale, t � 4r2
o

ν . We always
assume the wax thickness (H) considered to be very small compared to the inner radius of
the steel pipe (ro). To simplify the problem, we assume the inner wall temperature to be
independent of time, that ∂Tiw

∂t = 0. This is not unreasonable if the inner wall temperature
change very little when a small layer of wax has been established on the wall. In Chapter 4, we
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will �nd that the inner wall temperature increases fast in the initial period of each experiment
and that it seems to stabilise close to the incoming oil temperature.

From these assumptions we obtain the following mass transfer rate :

Γw = ρw
∂H

∂t
(2.84)

Including results from Chapter 5 where we derive correlation curves on the form H ≈ Btα,
gives :

Γw = Bαρwtα−1 (2.85)

The mass transfer rate, equation (2.88) above, is decreasing for increased t since α − 1 < 0.
This is what we expect based on the results of the calculated wax thickness that we present
in Chapter 4. There we will �nd a clear tendency of a damped increase of the wax thickness
over time.

The mass transfer (Γw) considering a small time scale, t � 4r2
o

ν , is perhaps more compli-
cated. Here we can not ignore the in�uence of the inner wall temperature. In the previous
chapter we found correlation curves where the inner wall temperature where not involved. We
did not �nd better correlations by involving the Tiw. We believe that the inner wall tem-
perature has an important impact on the deposition, especially in the beginning of the wax
process.

Note, we may have a singularity at t = 0. To evaluate this, more details is needed.

2.5.4 Conclusion

In this section, we introduced the balance equations used to evaluate the wax problem con-
sidering simpli�ed conditions. From the considerations, the impulse conservation, equation
(2.86) is the same as the hydraulic balance equation that we introduce in Chapter 4 (Section
4.2) where we establish the pressure drop method. In respect to mass balance and mass �ux
toward the wall, we derived the rate of deposition and information from Chapter 5 is included

to derive the rate of deposition for a larger time scale, where t � 4r2
o

ν . When it comes to
evaluating the initial rate of deposition, more details than we have here are needed.



Chapter 3

Temperature Distributions - A

Summary

The temperature equations that we found in section 2.2, 2.3 and 2.4 must be used with caution.
Simpli�cations as area averaging and assumptions of constant �uid properties were applied.
Both local (Graetz) and integral methods were used. It is of interest to compare the results
obtained by the di�erent methods in a consistent way. We expect that with turbulent �ow in a
pipe, the transfer of thermal energy per square unit at the wall will be more e�ective compared
to laminar �ow. This is one of the main properties that di�erentiate turbulent from laminar
�ow. When it comes to including an insulating layer or not, we expect that with insulation
the decrease in temperature as the �uid is transported will be less than without insulation.
In�uence of the insulation clearly depends on both its thickness and its thermal conductivity.
In section 2.3 we introduced the temperature distribution for stationary turbulent �ow using
the Petukhov Nusselt correlation. In section 2.4 the temperature distribution based on heat
conduction through the �uid and the pipe wall. In section 2.5, same as in section 2.4, but in
addition we included an insulating layer.

3.1 Temperature Distributions

In this chapter we always consider constant �uid properties. We base the results on unused
engine oil with the given properties at 320K (Incropera & DeWitt 1996). The inner pipe radius
is set to be ro = 50mm, the thickness of the pipe wall to be 8mm, and a uniform thickness
of the insulation to be 0.5mm. We further de�ne the heat conductivity of the insulation to
be two times that of oil, kins = 2koil, where koil = 0.143 J

smK . The heat conductivity of
para�ns are about two times larger than the heat conductivity of the condensate (Incropera
& DeWitt 1996). That means, we can draw a parallel between the results obtained from the
engine oil and the insulated pipe in this chapter, with the condensate and a small wax layer
that are discussed in Chapter 4. The density of the engine oil is ρoil = 871.8 kg

m3 and the

kinematic viscosity is given to be νoil = 1.61 · 10−4m2

s Further we chose the �ow rates to be

Qlam = 5.0 · 10−3 m3

s for laminar �ow and Qturb = 5.0 · 10−1 m3

s for turbulent �ow. Main codes
for numerical calculations are given in the last Section of Appendix (Maple).
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3.1.1 Laminar Flow
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Figure 3.1: Dimensionless cup-mixing temperatures considering laminar �ow

◦ : temperature from the integral method, equation (2.63) where Uw = 0
• : temperature from Graetz problem, equation (2.39)

Figure 3.1 indicates a small di�erence between the pro�le based on laminar �ow using the
integral method and the resulting pro�le from Graetz problem. Both represent dimensionless
mixing temperatures and are derived in two di�erent ways. For a few eigenvalues we can
not expect the mixing (Graetz) temperature to be representative for x∗ = 0 due to the slow
mathematical convergence of the coe�cients given by (2.28). By comparing the equation
(2.38) with di�erent numbers of eigenvalues (four or more), we �nd that, for the dimensionless
x∗ de�ned in equation (2.5), the di�erence in the pro�les where x∗ ≥ 1

100 is less than 1%. For
the case, we keep in mind that the dimensionless x∗ de�ned for the solution of the Graetz
problem is not the same as the scale used in this chapter. It is therefore necessary to do a
transformation to the dimensionless x

do
used in Figures 3.1 - 3.3. The do is the inner pipe

diameter, and we can safely compare the dimensionless (Graetz) temperature pro�le with
others found from the integral method when x

do
≥ 3900. The mixing temperature from the

integral solution is based on constant wall temperature to make it comparable with the mixing
(Graetz) temperature. It is important to mention that the Graetz pro�le in the �gure above
is valid only if EcPr ' 0.392

To−Te
� 1 and Pe ' 7.7 ∗ 106 ·L � 1. L represents the length of

the pipe considered, and the Peclet relation is clearly true for a several meters pipe length.
The Eckert-Prandtl relation holds true if the di�erence between the inlet and environmental
temperature is hold within a restricted interval.



3.1 Temperature Distributions 31

Figure 3.2: Dimensionless temperature pro�les from the integral method

◦ : temperature distribution with (0.5mm) insulation on the inner pipe wall, equation (2.66)
− : temperature distribution with no insulation on the pipe wall, equation (2.66)

There is no di�erence in the temperature pro�les in Figure 3.2, considering an insulating
layer on the wall or not. We expect the insulation thickness to be larger or the heat conductiv-
ity to be much lower to achieve a clear di�erence. An interesting aspect is how the insulation
in�uences the temperature drop more clearly under turbulent �ow (see Figure 3.3) compared
to that of laminar �ow above. This is due to the strong property of heat transfer within the
turbulent �ow. The turbulence will try to eliminate the heat while the insulation will resist
much of the thermal energy from transferring through the pipe wall. We can say that, under
turbulent �ow conditions, the insulation and its resistance to thermal conduction is working
harder compared to when it is exposed to laminar �ow, or simply, that the laminar �ow better
transports the thermal energy in the axial direction with less loss to the environment.
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3.1.2 Turbulent Flow
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Figure 3.3: Dimensionless temperature pro�les from the integral method

∗ : temp. distrib. in�uenced by (0.5mm) insulation on the inner pipe wall, equation(2.68)
• : temp. distrib. based on a clean pipe (no insulation), equation (2.68)

◦ : temp. distrib. based on a clean pipe with constant wall temperature, equation (2.54)

From Figure 3.3, we see that the in�uence of a thin layer of insulation inside the pipe result
in a much slower decreasing temperature as the �uid moves from a point to another in the
axial direction compared to the pro�les of a clean pipe. The temperature di�erence is small
considering the pro�le based on a clean pipe with constant inner wall temperature (◦) where
Uw = 0, compared to the pro�le with a variable inner wall temperature (•) where Uw = Usteel.
We keep in mind that the occurrence of a thin layer of wax, will, as can be seen in the �gure,
cause the temperature in a tube under turbulent conditions to change in a pronounced way.
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Figure 3.4: Inner wall temperatures considering turbulent �ow

� : inner wall temperature derived with a 0.5mm insulation (see equation (2.70)).
− : inner wall temperature derived with no insulation, (see equation (2.70))

The last �gure of this chapter, Figure 3.4, depicts the inner wall temperatures of turbulent
�ow. The temperature distribution at the wall is of interest, especially when considering
turbulent �ow in an insulated pipe. As mentioned in the introduction, the precipitation of
wax in crude is dependent of the temperature di�erence between the inside/outside pipe wall.
The process where wax deposits on a cold surface will provide an insulating layer on the wall
(in physical contact with the �ow) causing the temperature to quickly change from lower
to higher. This is due to the much lower heat transfer coe�cient of wax compared to the
pipe wall of steel. A prediction of the temperature along the inside wall is important to the
understanding of the wax process. Figure 3.4 is based on unused engine oil at 320K, assuming
an incoming constant temperature of 325K, and an outside wall temperature of 315K when
the �ow pass a certain axial location in the pipe. The dimensions of the pipe, insulation, and
the �ow rate is exactly the same as described in the beginning of this chapter. We still assume
the constant properties of the oil given at 320K (Incropera & DeWitt 1996). Note that we
have calculated the inner wall temperature with or without an insulation of 0.5mm compared
to a much larger inner radius of the steel pipe (50mm). By the inlet of the incoming �uid we
have a temperature di�erence about 3.8 ◦C, which must be considered a signi�cant di�erence
despite the small insulation thickness.



34 Temperature Distributions - A Summary

3.2 Conclusion

Considering laminar �ow, the temperature derived from the integral method is very much the
same as the result derived from Graetz problem. We have discussed two separate ways of solv-
ing the energy equation (2.2) and found that deriving a mathematical solution to the Graetz
problem is much more time-consuming. We have solved the Graetz problem by mathematical
analysis and we have found that a simpli�ed model from the integral method seems to be in
good agreement with our result. From numerical analysis the average di�erence between the
two graphs are 2.8% for the plotted interval in Figure 3.1. The di�erence seems to be largest
for the �rst part of the interval and the analysis give an average di�erence of 7.1% within
3900m < x < 105m. We will on the basis of these results expect good agreement for turbu-
lent �ow related to the Graetz problem. We explain this from the expectation of a (Graetz)
temperature distribution for turbulent �ow that is similar to the one found for laminar �ow,
with the exception of a larger damping of the temperature as a function of the mass �ow in
axial direction.

Finally, an important result of this chapter, is the signi�cant di�erence of the inner wall
temperature with or without a small insulating layer on the inner pipe wall under turbulent
�ow conditions. This is an interesting aspect of the study of how the inner wall tempera-
ture change in the occurrence of a small wax layer, and how this change of temperature will
in�uence the physics related to the further deposition process.



Chapter 4

Experiments

In this chapter wax deposition measurements from pipe �ow experiments carried out at Sta-
toilHydro's Research Department in Porsgrunn are analyzed and discussed. The results of
the analysis indicate that the deposited wax has a pronounced in�uence on the wall boundary
layer temperature of the �owing oil. Eight deposition experiments are performed with con-
stant �ow rates and constant incoming temperatures of the �uids. Among these, only six are
representative; those with the highest �ow rates. The reasons will be discussed in the analysis
below. We use the pressure drop method to calculate the thickness of wax deposits. Prior to
each wax experiment, we assume constant inner wall temperature and introduce temperature
variations in the pipe wall. We will �nd that the inner wall temperature seems to change
much in the beginning of each experiment. First, we choose to neglect the in�uence of the
roughness of the wall. Finally, we discuss the in�uence of a small roughness.

Figure 4.1: Wax surface
This picture illustrates a smooth surface of the wax layer from the condensate used. The

picture is taken by StatoilHydro.
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We introduce a picture of the test rig in Figure 4.2 below. The picture show the facility
used to perform the experiments discussed in this chapter.

Figure 4.2: Picture of the facility

The line marked T.S. is the test section and the visible outer pipe is the water jacket
enclosing the test pipe of oil. The test section is removable by disconnecting the �anges on

each side. The picture is taken by StatoilHydro.

4.1 Facility Description

A sketch of the pipe �ow facility used in the experiments is shown in Figure 4.3 where the
main components of the facility are indicated. Two pumps generate the pressure levels needed
to obtain the appropriate �ow rates of the test �uid and the coolant, respectively. The test
pipe is a 5.55m long steel pipe with an inner diameter of 0.0526m, and a wall thickness corre-
sponding to 0.0039 cm. The test pipe is enclosed by a cooling jacket with an inner diameter
of 0.1397m. Fully developed turbulent �ow of the condensate is assumed. Temperatures of
both the condensate and the coolant water were measured at the inlet and the outlet of the
test section. The pressure at both inlet and outlet of the test pipe was also measured and the
pressure drop is used to calculate the wax thickness. The accuracy of the pressure measure-
ments is therefore crucial for the reliability of the wax thickness calculations. The density has
also been measured during the experiments performed.
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4.1.1 Properties of Condensate Used in Wax Deposition Experiments

The density measured during wax deposition experiments are typically :
ρoil = 824 kg

m3 at Toil = 15oC

ρoil = 819 kg
m3 at Toil = 20oC

ρoil = 813 kg
m3 at Toil = 30oC

ρoil = 806 kg
m3 at Toil = 40oC

The molecular viscosity is derived from interpolation of the following (rheometer) data :
Toil = [12.4658, 20.2073, 30.0067, 39.7039, 49.4686, 59.2560]oC
µoil = 10−3 · [3.8, 2.8, 2.2, 1.8, 1.5, 1.3] kg

sm

The thermal conductivity: koil = 0.1344 J
smK

The heat capacity of the oil: Cpoil = 1950 J
kgK
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Figure 4.3: Sketch of the facility
The �gure shows a sketch of the pipe �ow facility used in the experiments. The main

components are indicated in the �gure.

Figure 4.4: Details of the test section

ri : inner pipe radius available for �ow of oil
ro : inner steel pipe (test pipe) radius
r1 : outer steel pipe/test pipe radius
r2 : inner pipe radius of water jacket

L : length of test section
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4.2 Pressure Drop and Wax Thickness

A formula relating the wax thickness to the pressure drop will now be established. When wax
deposits on the pipe wall, the cross section will decrease and cause an increase in the pressure
drop for constant �ow rates. If we assume the condensate to be incompressible and ignore the
gravitational and accelerational pressure gradients, we get the following result from hydraulic
force balance (see Figure 4.5) :

(P (x)− P (x + L))πr2
i − 2πriLτwall = 0 (4.1)

Figure 4.5: Hydraulic stresses

Thus :
dP

dx
Lπr2

i − 2πriLτwall (4.2)

where a connection between the shear stress and the Darcy friction factor is (Schulkes 2006) :

τwall =
1
8
ρoil

(
Qoil

πr2
i

)2

fD (4.3)

Thus :
dP

dx
= −

ρoilQ
2
oil

4π2r5
i

fD (4.4)

We derive the wax thickness from the following equation by replacing Darcy friction factor
with the best �t friction factor derived for non-isothermal �ow :

dP

dx
=

ρoilQ
2
oil

4π2r5
i

fBF (4.5)

where :
ri = ro −H (4.6)

H is the wax thickness and fBF is the best �t friction factor formula subject to the �ow
condition in the experiments reported here. The procedures used to obtain the fBF -formulas
are discussed in section 4.4.
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4.3 Inner Wall Temperature and Wax Thickness

When para�ns start to deposit and a wax layer is established on the wall, the thermal re-
sistance in the wall increases. A growing and insulating deposit will increase the inner wall
temperature and cause a decrease in the temperature di�erence across the thermal boundary
layer. Temperature variations across the pipe give rise to changes of the molecular viscosity
and will thereby in�uence the friction factor. It is therefore important to evaluate the inner
wall temperature during a wax experiment. From equation (2.70) we derived the inner wall
temperature given that the thermal conductivities and the radius available for the �ow are
known. The inner radius is always evaluated from the pressure drop method, and we have a
closed system by putting this together with the measured oil temperatures. We introduce the
tools to derive the inner wall temperature and start with the heat transfer coe�cient
based on the Pethukov Nusselt model (see section 2.2) :

hoil =
koilNu

2ri
=

koil
(

fBF
8

)RePr

1,07+12,7(
fBF

8
)
1
2 (Pr

2
3−1)

2ri
(4.7)

that is adapted to the Reynolds and Prandtl number within the intervals :

3 · 103 < Re < 5 · 106 0.5 < Pr < 2, 000 (4.8)

From the experiments we have typically Pr = [20, 50] and Re > 10, 000. The test pipe length
L must also be much larger than its inner diameter D, i.e. L

D ≥ 10, which is satis�ed in our
case. From the energy equation (2.63) we have the following expression for the overall heat
transfer coe�cient Utot :

Utot =
Qm,oilCp,oil

2πri(Twater − Tcup−mix)
∂Tcup−mix

∂x
(4.9)

We de�ne the measured oil temperature drop :

∆Toil,measured = Toil,in − Toil,out (4.10)

Integration of (4.9) combined with (4.10) gives :

Utot =
Qm,oilCp,oil

2πri(Twater − Toil)
∆Toil,measured

L
(4.11)

where the average oil and water temperature is :

Toil =
Toil,in + Toil,out

2
, Twater =

Twater,in + Twater,out

2
(4.12)

We derive the inner wall temperature based on equation (4.7), (4.11) and (4.12) from the use
of equation (2.70) :

Tiw = Toil −
Utot

hoil
(Toil − Twater) (4.13)

(4.11) is an acceptable approach to (4.9) by assuming that the measured oil temperatures
represent the mixing temperatures well at a given location. With small temperature variations
over the test pipe length (about 1%), we anticipate a linear temperature distribution over its
length.
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4.4 Friction Factor Formulas

Before we start analysing the wax data, we estimate the precision of the pressure measure-
ments. The inner diameter of the pipe is given as Do = 0.0525 ± 0.0003m. It is di�cult to
measure the inner diameter and it is even more challenging to measure the roughness in a
pipe. It is often a good approximation to ignore roughness considering a technical smooth
pipe, but in this study we assume it to be within the interval 0 ≤ ε ≤ 5 · 10−5m. We also
assume a pressure o�set among the measuring data, and that the real pressure drop can be
expressed as ∆P = ∆Pmeasured ± poffset. For turbulent �ow conditions we choose Haaland's
formula to model the friction factor. Before the analysis of the wax deposition, we introduce a
corrected friction factor. The Haaland factor is based on constant temperatures; an isothermal
system. If the environmental temperature deviates from the bulk �ow temperature and cause
heat exchange within the system; we have a non-isothermal system.

4.4.1 Isothermal Experiments : No Deposition

We consider experimental data obtained in a clean and smooth pipe with variable �ow rates
(of oil) to test the agreement between the Haaland (4.14) and the Darcy (4.15) friction factors.
We have the same inlet temperature of water and oil; thereby an isothermal system. All the
�ow rates considered involve turbulent �ow conditions.
The Haaland friction factor is :

fH =

(
1.8 log

(
6.9

Reoil
+
(

εsteel

3.7Do

)1.11
))−2

(4.14)

and the Darcy friction factor from hydraulic force balance is :

fD = − 4π2r5
i

ρoilQ
2
oil

dp

dx
(4.15)

We de�ne the measured pressure drop :

∆Pmeasured = Pin − Pout (4.16)

The calculated pressure based on the Haaland friction factor is :

∆Pcalculated =
ρoilQ

2
oilL

4π2r5
i

fH (4.17)

We de�ne the error in the calculated pressure drop via :

erelative =
∆Pmeasured −∆Pcalculated

∆Pmeasured
(4.18)

Finally, the average of the absolute values of erelative :

Erelative =
1
N

N∑
i=1

|erelative | (4.19)

Integration of (4.15) combined with (4.16) gives the equation we use to calculate the Darcy
friction factor. We always assume fully developed and turbulent �ow conditions, and we
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compare the Darcy with the Haaland friction factor through the equation (4.18). The Haaland
factor depends on both roughness and inner diameter of the pipe. Based on Tables C.1 and
C.2 (in Appendix) we calculate the optimal roughness, inner diameter, and pressure o�set by
varying their values within restricted intervals (in a three dimensional parameter space) using
nonlinear optimalization to minimize Erelative. The best �t is given when εsteel = 0m and
Do = 0.0526m, where we ignore the pressure o�set by setting poffset = 0 Pa. In Figure 4.6
the error in the calculated pressure drop is less than 4.5% for all isothermal data. We thereby
have good agreement between the measured Darcy and the Haaland friction factors for the
given diameter and roughness.
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Figure 4.6: Error in the calculated pressure drop for isothermal �ow, Tables C.1 and C.2 (see
Appendix)

4.4.2 Non-Isothermal Experiments : No Deposition

Radial temperature variations will occur when the �owing �uid is being cooled by heat losses
through the pipe wall. The molecular viscosity will thereby vary across the �ow, and these
variations must be taken into account when the best friction factor model is evaluated. In
our evaluation of the experiments, we use the molecular viscosity measured in a rheometer
(StatoilHydro 2007) with a reasonable accuracy (±4%). In general the molecular viscosity de-
creases rapidly with temperature (White 2006). We will therefore expect a higher oil viscosity
at the inner wall compared to that of the bulk �ow and this again increases the friction of the
wall. For non-isothermal �ow a correction factor has been introduced
(Perry & Chilton 1973) :

f = fBF = fH ·αcorrection (4.20)

where :

αcorrection =
(

µwall

µbulk

)n

(4.21)
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and n = 0.11 or n = 0.17 in the case of cooling or heating. This correlation was developed
(Sieder & Tite 1936) based on three di�erent oils. The intention was to study the e�ect
of a radial temperature gradient on the distribution of the axial and radial components of
velocity. Sieder and Tite proclaimed that this was not taken into consideration by (Graetz
1885) or (Lévêque 1928). We consider a situation where the oil is being cooled and use the
given exponent. We have derived the error in the calculated pressure drop using both the
Haaland and the corrected friction factor (see Figure 4.7) on basis of non-isothermal data in
Table C.3 (see Appendix). Figure 4.7 indicate a smaller error in the calculated pressure drop
when using the corrected friction factor, but not su�cient small. We require that the error
in the calculated pressure drops are less than 0.05 (or 5%) for the case. In Figure 4.7 we
expect an optimal error in the calculated pressure drop for n in the interval 0 to 0.11, and
from numerical calculations using all the non-isothermal data, we �nd the minimum Erelative

when n = 0.05
(see Figure 4.8).

4.4.3 Discussion of the Isothermal and Non-Isothermal Data

The accuracy of the measuring instruments are very important, especially for the lowest �ow
rates and pressure drops. From the graphs in Figures 4.6 and 4.7 it is clear that the ∆Pmeasured

are larger than the ∆Pcalculated for the lowest �ow rates and opposite for several of the highest
rates. It also appears to be a linear connection between the error in the calculated pressure
drop and the �ow rate in both Figures, and it is important to note the fact that any such
relation should not occur. We therefore carry out a linear regression analysis based on these
two parameters for both isothermal and non-isothermal data. From the results we can not
reject the hypothesis of a linear relation. In addition, the results based on isothermal data
seem to have a signi�cant auto correlation, which means that we might have a connection
between the measurements performed within each experiment. We carefully conclude that we
observe larger uncertainties among the lowest �ow rates, and a systematic relation can not be
excluded.
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Figure 4.7: Error in calculated pressure drop for non-isothermal �ow, Table C.3 (see Appendix)
◦ : Pressure drop using the Haaland friction factor

? : Pressure drop based on non-isothermal Sieder & Tite friction factor
� : Pressure drop using the best �t (non-isothermal) friction factor.
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Figure 4.8: Minimum value of |∆Erelative|
By considering a precision of only two decimals, we �nd the minimum value of |∆Erelative|

for n = 0.05. The optimal pressure drop is based on non-isothermal data.
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4.5 Experimental Results

We have eight wax experiments performed by StatoilHydro available to study. Unfortunately,
we can not include all in further work using the adapted friction factor. The initial large error
in the calculated pressure drop among two of the wax experiments with �ow rates equal to 5
m3/h and 10 m3/h can not be ignored. In Figure C.1 (see Appendix) we have marked the two
experiments showing a erelative of 0.172 and 0.132. The adapted friction factor is therefore an
inaccurate approximation to these. In the continuation we will focus on the other six where the
erelative is less than 0.4 (see Figure C.1 in Appendix). Let us �rst introduce the six experiments
involved. The experiments are named through the general matrix Toil,in − Twater,in − Qoil,
where Toil,in and Twater,in are the measured incoming oil and water temperatures in ◦C and

Qoil is the volume �ux in m3

s .

4.5.1 Observed Pressure Drop With Comments

The measured pressure drops ∆Pmeasured (4.16) are presented in Figures 4.9 - 4.11. The pres-
sure drops in all experiments increase with elapsed time, indicating that a growing wax layer
is formed on the inside of the test pipe. We notice the most rapid growth of the pressure drop
early in the experiments. The reduced growth rate with time is attributed to the temperature
development in the wall boundary layers of the �owing test �uid. A wax layer on the inside
of the test pipe increases the thermal resistance across the pipe wall and causes an increase in
the boundary layer temperature as discussed in section 4.5.2.
The observed pressure drops are �uctuating for some reason. The typical �uctuation level
may be estimated as an average deviation from a linear growth curve in a representative
time interval. In general, we have a series of N measurements in each experiment with the
given time interval to, t1, .., tn, .., tN . Evaluation of a typical �uctuation level is based on the
measured pressure drops within the �xed time interval t ∈ [tm, tM ], where m = 0.65 ·N and
M = 0.85 ·N . In Figure C.2 (see Appendix) ∆Pmeasured are considered linear in time, and
from regression analysis we derive the linear graph D to each interval. We evaluate the typical
�uctuation level of ∆Pmeasured by assuming D to represent the "�uctuation-free" pressure
drop for fully developed turbulent and stationary �ow conditions. The �uctuation level is
determined from the following expression :

Fpressure = 100%
1

M −m

M∑
q=m

∣∣∣∣∆Pmeasured,q −Dq

∆Pmeasured,q

∣∣∣∣ (4.22)

The results are shown in Table 4.1 below.

Table 4.1: Fluctuation level of the measured pressure drop
Experiment Toil,in − Twater,in −Qoil A typical �uctuation level in percent Standard deviation (Pa)

15− 10− 21 ∆Pmeasured ± 0.06% 6.41
20− 10− 15 ∆Pmeasured ± 0.05% 2.75
20− 10− 21 ∆Pmeasured ± 0.14% 13.22
20− 10− 25 ∆Pmeasured ± 0.05% 6.98
30− 10− 21 ∆Pmeasured ± 0.11% 10.02
40− 10− 21 ∆Pmeasured ± 0.32% 28.85
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In table 4.1 the �uctuation level of the measured pressure drops seem to be small in all
experiments. It should be mentioned that the pressure drops related to the experiment 40−
10− 21 indicate a statistical weak linearity compared to the other experiments for the given
interval. We conclude that the pressure transducers seem to give su�cient accuracy during
the experiments.
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Figure 4.9: Measured pressure drop during wax deposition
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Figure 4.10: Measured pressure drop during wax deposition
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Figure 4.11: Measured pressure drop during wax deposition

Note that in experiment 40-10-21 the ∆Pmeasured seems to stabilise after 100h while in
experiment 30− 10− 21 the ∆Pmeasured continues to increase.
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4.5.2 Observed Temperature Drop and Derived Inner Wall Temperature

The measured oil temperature drops ∆Toil,measured (4.10) are presented In Figures 4.12 and
4.13. A fast decrease of the temperature drop in the beginning of each experiment indicate
that thermal energy are prevented from transferring through the pipe wall as soon as para�ns
deposit on the wall. This phenomenon is a very important observation in our study and in
section 3.2 we found that a small insulating layer will in�uence the inner wall temperature
signi�cantly. This is exactly what we �nd by introducing the inner wall temperature given in
section 4.3, and the results are presented in Figures 4.14 and 4.15. It is clear that the inner
wall temperature changes quickly in the beginning of each wax experiment, and there is no
doubt that during the �rst hour or even the �rst minutes, it changes much compared to the
inner wall temperature before deposition occurs. Large temperature di�erences between inlet
oil and water seem to give larger and faster changes of the inner wall temperature during
the �rst minutes (see Figure 4.15 (c) and (e)). The temperature graphs based on experiment
20 − 10 − 15 (see Figure 4.12 (c) and 4.14 (c)) indicate an increase of the temperature drop
and a decrease of the inner wall temperature during the �rst minutes. This is not expected
to occur during wax deposition, and we consider it to be an initial condition of inaccuracies
in the measured oil temperatures. We further use the same procedure as in subsection 4.5.1
to estimate a typical �uctuation level of the temperature transducers. We rede�ne the time
intervals with m = 0.45 ·N and M = 0.65 ·N . There are temperature �uctuations in every
experiment, and we assume the temperature distribution to be approximately linear within
the given intervals (see C.3) for the case of no �uctuations. It should be mentioned that this
is only an approximation we do to estimate the typical �uctuation level :

Ftemperature = 100%
1

M −m

M∑
q=m

∣∣∣∣∆Tmeasured,q −Dq

∆Pmeasured,q

∣∣∣∣ (4.23)

The results are shown in the table 4.2 under.

Table 4.2: Fluctuation level of the measured temperature drop
Experiment Toil,in − Twater,in −Qoil A typical �uctuation level in percent Standard deviation (oC)

15− 10− 21 ∆Tmeasured ± 4.19% 0.0035
20− 10− 15 ∆Tmeasured ± 1.05% 0.0032
20− 10− 21 ∆Tmeasured ± 1.22% 0.0032
20− 10− 25 ∆Tmeasured ± 1.13% 0.0025
30− 10− 21 ∆Tmeasured ± 0.61% 0.0040
40− 10− 21 ∆Tmeasured ± 0.25% 0.0050

The typical �uctuation of the temperature measurements in the 20 − 10 − 15 experiment
is about 1.05%. An adjustment of the initial measured incoming oil temperature with less
than 0.7% is needed to give an increase of the inner wall temperature and a decrease of the
temperature drop during the �rst period. The inaccuracy can therefore explain the unexpected
initial temperature drop and inner wall temperature related to this particular experiment. In
general we have small �uctuations in the oil temperature measurements.
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Figure 4.12: Measured temperature drop during wax deposition
Note that in �gure (c) the temperature drop is �rst increasing.



52 Experiments

0 1 2 3 4 5
0.25

0.3

0.35

0.4

0.45

0.5

Time [h]
(a)

T
o
il
.
m

e
a
s
u
r
e

d
 
[
o
C

]

Temperature difference of inlet/outlet oil during the first five hours.

 

 

T
oil

 = 20 , T
water

 = 10 , Q
oil

 = 25

0 10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

Time [h]
(b)

Temperature difference of inlet/outlet oil during the experiment.

 

 

T
o
il
.
m

e
a
s
u
r
e

d
 
[
o
C

] T
oil

 = 20 , T
water

 = 10 , Q
oil

 = 25

0 1 2 3 4 5

0.8

1

1.2

1.4

Time [h]
(c)

 

 

T
o
il
.
m

e
a
s
u
r
e
d
 
[
o
C

] T
oil

 = 30 , T
water

 = 10 , Q
oil

 = 21

0 50 100 150 200 250
0.4

0.6

0.8

1

1.2

1.4

Time [h]
(d)

 

 

T
o
il
.
m

e
a
s
u
r
e
d
 
[
o
C

] T
oil

 = 30 , T
water

 = 10 , Q
oil

 = 21

0 1 2 3 4 5
1.8

1.85

1.9

1.95

2

Time [h]
(e)

 

 

T
o
il
.
m

e
a
s
u
r
e
d
 
[
o
C

] T
oil

 = 20,T
water

 = 10,Q
oil

 = 21

0 50 100 150 200 250 300 350
1.6

1.7

1.8

1.9

2

Time [h]
(f)

 

 

T
o
il
.
m

e
a
s
u
r
e
d
 
[
o
C

] T
oil

 = 20,T
water

 = 10,Q
oil

 = 21

Figure 4.13: Measured temperature drop during wax deposition
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Figure 4.14: Inner wall temperature
Inner wall temperature derived from the measured pressure drop and temperature drop in

the test pipe.
Note that in �gure (c) the inner wall temperature is �rst decreasing.
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Figure 4.15: Inner wall temperature
Inner wall temperature derived from the measured pressure drop and temperature drop in

the test pipe.
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4.5.3 Wax Thickness Calculations

The wax thickness H is derived from integration of (4.5) combined with (4.16), (4.20)-(4.21),
(4.7) and (4.9)-(4.13) :

H = ro −

(
ρoilQ

2
oilL

4π2∆Pmeasured
fH

(
µoil(Tiw)

µoil(Tcup−mix)

)0.05
) 1

5

(4.24)

The wax thickness are calculated in two ways. One, assuming the initial inner wall temperature
of the test pipe to equal the average water temperature in the cooling jacket (Tiw(to) = Twater),
or two, computing the initial inner wall temperature from (4.13). In both cases we assume no
initial wax on the pipe wall. The �rst (way) is reasonable since the thermal conductivity of
steel is much higher than that of oil. The results are presented in Figures 4.16 and 4.17 ((a),
(c) and (e)), where we note an initial negative wax thickness among four of the graphs. Next,
we calculate the initial inner wall temperature to study its e�ect on the initial wax thickness
calculation. The results are introduced in Figures 4.16 and 4.17 ((b), (d) and (f)), where we
note an improvement of the results, reducing the number of negative wax thicknesses from
four to two. All the graphs show a positive wax thickness with the exception of experiments
20 − 10 − 15 and 30 − 10 − 21. This is considered as an important observation of the fact
that the inner wall temperature is of importance when deriving the wax thickness, especially
in the beginning of a deposition process. It is also of interest to relate the negative wax
thickness to the error in the measurements. We have already found a typical �uctuation level
among the pressure and temperature transducers, indicating a minimum error related to the
measurements. In the wax thickness calculations, the �uctuations related to the pressure
drops will be further diminished by the small exponent 1

5 as indicated in the wax thickness
equation above. The negative wax thickness can therefore not be explained from a minimum
error corresponding to a typical �uctuation level in the wax calculations. We expect the error
to be larger than a typical �uctuation level, but the accuracy among the measurements is not
easy to determine from the information we have. In Figures 4.18 and 4.19 calculations based
on wax experiments during the whole time interval are presented. Finally, all the results are
shown in Figure 4.20. We note among experiments 20− 10−Qoil (where Qoil = 15, 21, 25) in
4.20, that a higher �ow rate gives a lower deposition thickness over time. This could connect
the results achieved to the Reynolds number and will be discussed in the coming chapter. We
also note that a higher incoming oil temperature gives a smaller wax thickness over time. This
is an interesting observation that can be connected to the quickly isolating e�ect of the wax
layer during the experiments. This will also be considered in the coming chapter.
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Figure 4.16: Calculated thickness of wax deposit

The di�erence in the initial wax thickness is shown. Note that experiment (d) give a
negative wax thickness during the �rst minutes even though the estimated inner wall

temperature was included. The vertical scales in the Figures (e) and (f) are not equal, but
we con�rm that the graphs are just the same except for the initial wax thickness values.
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Figure 4.17: Calculated thickness of wax deposit

The di�erence in the initial wax thickness is shown. Note that experiment (d) give a
negative wax thickness during the �rst minutes even though the estimated inner wall

temperature was included.
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Figure 4.18: Calculated thickness of wax deposit
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Figure 4.19: Calculated thickness of wax deposit
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There is no obvious connection between the plotted results and the �ow rate. We notice the
lowest �ow rates among the 20− 10−Qoil experiments indicating a larger deposition

thickness after 6o hours than with the highest �ow rates.
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4.5.4 Discussion of the Wax Thickness Calculations

Prior to each experiment, StatoilHydro has a run-in period from 10 to 15 minutes stabilising
the incoming temperatures. We assume no wax deposition during this period. As already
indicated, we found an improvement of the calculated wax thickness by not assuming the
inner wall temperature to equal the average water temperature before deposition occurs. If
we go back to the results in chapter 3 where we compared the inner wall temperature of
turbulent �ow with and without an insulating layer (see Figure 3.4), we found that a small
layer on the wall will in�uence the inner wall temperature signi�cantly. This indication should
make us aware of a possible change in the inner wall temperature during the run-in period.
It is therefore important that we do not ignore any possible initial layer at the wall in each
experiment, even though it is extremely thin compared to the test pipe radius. From least-
squares regression calculations a linear rate of the deposition thickness has been derived for
experiment 20 − 10 − 15 (see Figure C.4 in Appendix). We assume the gradient of the line
to represent the early wax thickness as a function of time. In that case a deposit layer could
increase from 0mm to 0.027mm during �ve minutes. Turbulent pipe �ow with and without
a uniform wax layer of 0.027mm, and a heat conductivity of wax that are two times to that
of oil, change the inner wall temperature from 13.39 to 14.03 ◦C. This means that the inner
wall temperature in practice can be a little higher than what we have calculated by including
the small deposit in the beginning of the experiment. From calculations, we �nd that the
thickness must be 0.31mm to reach the initial inner wall temperature giving a non-negative
wax thickness. This is not possible during the short stabilising period. Calculations based on
experiment 30−10−21 give an initial wax thickness of 0.068mm when avoiding a non-negative
thickness. We can not expected a layer of the given thickness to establish during the run-in
period either, but we keep in mind that a deposit thickness of 0.068mm is still extremely
small compared to the inner pipe radius of 26.3mm. The inner wall temperature with such
a small thickness is expected to give a temperature about 4◦C higher than without the wax
deposit when assuming the thermal conductivity of the deposit to be two times larger than oil.

To show how important a thin wax layer can be for the inner wall temperature, we de�ne
two normalized functions for further qualitative analysis. The relative inner wall temperature
:

εT =
∣∣∣∣ Twater

Twater − Toil

∣∣∣∣ ∣∣∣∣Two − Tw

Two

∣∣∣∣ (4.25)

where Two = Tiw(t, ro, ..) and Tw = Tiw(t, ri, ..).
The relative wax thickness :

εr =
H

ro
(4.26)

εT and εr as de�ned here, ful�ll the identities εT ≤ 1 and εr ≤ 1. Note that when t = 0,
εT = 0 = εr. Since the inner wall temperature in the beginning of each wax experiment
change much faster than the wax deposition (see Figure 4.21), we establish the following
general relation for our case :

εr

εT
� 1 (4.27)

This relationship holds true for all wax experiments involving a short period of time right after
wax deposition happens. A few minutes is enough. It is therefore shown that the wax thickness
in the beginning of each wax experiment has a large impact on the inner wall temperature.
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Figure 4.21: Relative inner wall temperature and relative thickness

Note the clear di�erence between the relative inner wall temperature compared to the
relative wax thickness.
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4.5.5 In�uence of Roughness On Wax Deposition

Until now the wax thickness has been derived from the assumption of zero roughness of the
pipe wall during the experiments. This is a bold assumption even though we obtain seemingly
smooth and uniform layers on the pipe wall (see Figure 4.1). It is reasonable to believe that
the roughness will increase during the wax experiments, since wax crystals that form on the
surface probably make the wall less smooth to a certain level. The roughness depends on
the deposit's composition, and from two oils we normally have two di�erent compositions of
wax deposits. Each deposit has its own identity through di�erent fractions of hydrocarbon
components etc. In our case the wax layer has a visible smooth surface and an approximate
uniform thickness. We therefore believe that the roughness stays small during the deposition
process. Considering the instance where roughness changes immediately to a constant di�erent
from zero when waxes �rst stick to the wall. This is only reasonable if the roughness change
very little during the deposition process. We must require that the pipe is hydraulically
smooth during each wax experiment. If not, there is an important question about how well
our analysis so far re�ects the physics inside the test pipe. From a mathematical perspective
we evaluate the roughness through the dimensionless roughness height ks

+ :

k+
s =

uτks

ν
(4.28)

where k+
s < 5 for a hydraulically smooth surface (see Wilcox (2006)) and uτ is the friction

velocity close to the surface given by uτ ≡ τwall
ρoil

.

For our analysis we require that ks < 5.0 · 10−5m when considering the potentially high-
est inner wall temperature associated with the kinematic viscosity in (4.24), and assuming

uτ = V
√

fBF
8 . (where V is the area-averaged velocity from equation (2.42)). We have there-

fore considered three di�erent constant roughness heights, ks = 10−6m, ks = 5.5 · 10−6m and
ks = 10−5m. The results are shown for three of the experiments in Figures 4.22 - 4.24. We
notice a decrease in the wax thickness with increased roughness, and an initially negative
thickness within the �rst stages of the experiments. The more we increase the roughness, the
more negative wax thickness appears during the early deposition. This observation is impor-
tant. In the previous work we derived the deposition thickness by setting ks = 0m. We have
here found that small changes of ks predict a clear negative deposition thickness. We have
therefore strong indications that ks must be very small during the �rst period of deposition in
a smooth pipe and that ignoring roughness is probably a good approximation to this period
in reality. At the same time, the roughness could be very small in the beginning of each
experiment and then change after a while.

It is therefore of interest to test the following hypothetical roughness height function :

ks = A(1− exp(−bt)) (4.29)

where A is a constant representing an asymptotic value of the roughness height, b is a constant
decided on the basis of how fast the roughness height will achieve an "equilibrium state", and
the variable t represent the time in hours. We emphasize that we do not have strong reasons
for this hypothetic variation of roughness, but it is still interesting to see what happens if
we compare the result where ks = 0m with the function ks = 10−5(1 − exp(−bt))m on
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experiment 20 − 10 − 25. In Figure 4.24 we have a clear negative thickness during the �rst
hours when ks = 10−5m, but from the assumption of an exponential growth toward this
value, we avoid a negative thickness. We decide the constant b from a visible evaluation of
the original graph (ks = 0m) where the deposition rate is almost constant after 15 to 20 hours

(see 4.24). We therefore set b = ln(20)
15 as an approximation. The results are shown in Figure

4.25. It is interesting to see that if the roughness increases exponentially in the beginning
of each experiment, then we see a trend of a linear growth of the deposition instead of an
exponentially growth during the �rst period of time. For large time scales (several days) there
are small variations of the thickness when considering a little or no roughness as illustrated
in Figure 4.24.
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Figure 4.22: Wax thickness derived with constant roughness
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Figure 4.23: Wax thickness derived with constant roughness
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Figure 4.24: Wax thickness derived with constant roughness.
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4.5.6 The Relative Thermal Conductivity of the Wall Insulated by Wax

In the Chapter 2 equation (2.71), we introduced the overall heat transfer coe�cient Utot on
the basis of a system consisting of an insulated pipe with a �owing �uid inside. Consider the
deposit as the insulating layer. We have calculated Utot and the wax thickness H as functions
of time. It is therefore only one unknown left in (2.71), the thermal conductivity of the
wax deposit. From the assumption of constant thermal conductivities, we derived a general
expression for the overall heat transfer coe�cient of a pipe system with concentric layers (see
section B.1, Appendix). Within each layer we assumed the temperature to be constant for
a �xed radius. We therefore derived Utot on the basis of a constant heat �ux through every
point within the layer of the given radius, a condition that is probably not satisfactory for the
deposit in the beginning of each experiment. When wax starts to form on the pipe wall, it
will take some time before the deposit can be considered a uniform and concentric layer. The
thermal conductivity of para�ns is a given property whether we have a deposit or not. We
can not reject the uncertainty related to the composition of the layer that sticks to the wall.
In the wax experiments StatoilHydro study wax deposition in a localized area in the pipe; the
test pipe. It will probably take time before the deposition layer covers the whole inner pipe
surface during deposition when crystals stick to the wall. It is therefore better to introduce a
relative thermal conductivity of the wall-layers (steel and deposit) and subsequently calculate
how it develops during the wax experiments.
We de�ne krel as :

krel =
kwaxkwall ln

(
r1
ri

)
kwax ln

(
r1
ro

)
+ kwall ln

(
ro
ri

) (4.30)

where krel is derived from (2.71) by de�ning 1
Urel

= 1
Ui

+ 1
Uw

(see section B.1, Appendix).

Here krel(t = 0) = ksteel, and we expect krel to decrease with time since the increased deposit
thickness increases the resistance from heat transfer through the pipe wall. In Figure 4.26, krel

seems to stabilise after a few hours in each experiment. A wax thickness that increases slowly
after a few hours and a thermal conductivity that appears to stabilise within one hour, could
indicate that the deposit layer after a while better ful�ll the assumptions of constant thermal
conductivity (section B.1, Appendix). We have therefore plotted the fraction of kdeposit over
koil within the time interval from 50 to 60 hours in Figure 4.27. In the Figure we observe
an interesting trend among the experiments. The experiments with the largest temperature
di�erence between the inlet of water and oil appear to have deposits with a larger thermal
conductivity. Let us introduce an expression for the thermal conductivity of the wax deposit.
The Maxwell correlation used by Singh (2000), give the following expression for the thermal
heat conductivity of the wax deposit :

kdeposit =
2kwax + koil + (kwax − koil)Fw

2kwax + koil − 2(kwax − koil)Fw
koil (4.31)

Fw represents the wax fraction of the deposit. The correlation gives kdeposit ≈ koil when the
wax fraction is small, and kdeposit ≈ kwax when the wax fraction is large. In our thermal
analysis (section 4.5.4) we assumed kdeposit = kwax ' 2koil. We expected the wax fraction
of the deposit to be large, an assumption that turns out to be inaccurate if we accept the
indications we have in Figure 4.27. Here the predicted wax deposits show a high content of
lighter hydrocarbons. This is common to all the experiments except from that with the largest
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temperature di�erence between oil and water, experiment (40 − 10 − 21). According to Sta-
toilHydro, measurements of the deposits gave a wax content between 35% and 65% depending
on the experiment. Further, we have a fundamental problem related to the calculated thermal
conductivity among several deposits. It is not consistent with equation (4.31) that some of
the deposits have a thermal conductivity less than the oil. This gives us reasons to believe
that our calculations are not su�cient for the case. Pressure and temperature measurements
are included in the calculations of the thermal conductivity. In Figure 4.27, we note that the
experiments associated with a kdeposit < koil, are those with the lowest temperature di�erence
between the oil and water. We have already mentioned (in section 4.3) that the temperature
changes about 1 % (or less) during the deposition. It is therefore important that the temper-
ature measurements give an accuracy much smaller than one percent during the experiments.
The source of error among the temperature measurements are therefore considered as crucial
for the case.
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4.6 Correlation Curves for Wax Thickness

Based on the calculated wax thickness (H) we derive a best �t curve related to each experiment.
The calculated wax thickness seems to have the general property H ∼ tα, where 0 < α < 1.
We therefore introduce the following expression for the correlation curves :

Hcorrelation = Atα (4.32)

where A and α are constant to be determined, and the correlation are based on the measured
time in hours (h) (see Table 4.3 below). It is of interest to try a log-log analysis of the

Table 4.3: Correlation parameters
Experiment A α

15− 10− 21 10−3.92 0.427
20− 10− 15 10−3.85 0.365
20− 10− 21 10−3.73 0.271
20− 10− 25 10−3.89 0.332
30− 10− 21 10−3.98 0.342

calculations to see if the results show a strong or weak linearity between log(H) and log(t).
The results based on �ve experiments are presented in Figure 4.28.
The 40 − 10 − 21 is not representative in this case since the log-log analysis give a weak
linearity compared to the others. We therefore based on these �nd the best �t line to each of
the �ve wax thickness calculations. Finally, we derive Hcorrelation, and the results are shown
in Figures 4.29 - 4.31. The curves seem to agree well with the wax thickness calculations,
especially those associated with experiments 20− 10− 21 and 20− 10− 25 in Figure 4.30.
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Figure 4.29: Best �t of calculated wax thickness based on log-log analysis
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Figure 4.30: Best �t of calculated wax thickness based on log-log analysis.



74 Experiments

0 50 100 150 200 250
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time [h]

W
ax

 th
ic

kn
es

s 
[m

m
]

Best fit of calculated wax thickness: 
− During the experiment.

 

 

T
oil

 = 30 , T
water

 = 10 , Q
oil

 = 21

Best fit

0 1 2 3 4 5
−0.05

0

0.05

0.1

0.15

0.2

Time [h]

W
ax

 th
ic

kn
es

s 
[m

m
]

Best fit of calculated wax thickness: 
− During the first five hours of the experiment.

 

 

T
oil

 = 30 , T
water

 = 10 , Q
oil

 = 21

Best fit

Figure 4.31: Best �t of calculated wax thickness based on log-log analysis
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4.7 Experimental Results - A Summary

Based on a clean pipe and isothermal �ow we found the optimal inner pipe diameter and rough-
ness. With the optimal parameters, the error in the calculated pressure drops for isothermal
�ow experiments con�rmed good agreement between the calculated and the modeling friction
factor. For isothermal �ow we used the Haaland friction factor model. Considering a clean
pipe and non-isothermal �ow we needed to correct the Haaland friction factor which is adapted
to isothermal �ow. A temperature gradient over the cross section gives a di�erent viscosity at
the wall compared to the viscosity in the bulk �ow. This was taken into consideration by a
friction factor correlation developed by Sieder and Tite in 1936, but due to large error in the
calculated pressure drops compared to those derived for isothermal �ow, we tried to �nd a
better correlation by further adjustment of the friction factor correlation. Finally, we found a
better correlation, but at the expense of larger discrepancies among the error in the calculated
pressure drops achieved for the lowest �ow rates. We could therefore not use the corrected
friction factor to predict wax thickness for the �ow rates of 5m3/h and 10m3/h. Further we
utilised the new friction factor in the prediction of the deposit thickness during the wax exper-
iments. A growing wax layer diminishes the inner pipe radius and increases the pressure drop
along test pipe for a constant �ow. Several wax thickness calculations based on an initial wall
temperature equal to the cooling water predicted a negative thickness during the beginning
of the wax experiments. By including temperature variations in the pipe wall we obtained
more consistent results of the deposit thickness. The inner wall temperature seemed to be
very sensitive to small variations of the wax thickness when the �rst layers were established
on the wall. Each experiment were allowed a period from 10 to 15 minutes to stabilise the
incoming temperatures of oil and water. During this time a small scale deposition could occur
since the inner wall temperature is lower than the WAT. We assumed an initially clean pipe in
each wax experiment; that is any possible layer is ignorable at the moment the experiment is
declared started. In the wax calculations we also calculated the inner wall temperature of the
test pipe. Through our analysis, we have seen that small changes of the wax thickness have a
large impact on the inner wall temperature during the �rst minutes or hours of the wax experi-
ments. When it comes to roughness, we always considered a hydraulic smooth pipe. We found
that after a long time (several hours), the roughness had a little impact on the wax thickness.
Further, the analysis of the thermal conductivity of the wax deposit was expected to have an
average value between koil and kwax. Among three experiments we calculated a kdeposit lower
than koil that was found to be incorrect. The accuracy among the temperature measurements
are of large importance for the case. If the accuracy of the temperature transducers are not
small enough, this would also in�uence the inner wall temperature derived earlier. In the �nal
section of this chapter we derived �tted curves based on the calculated wax thickness, which
show good approximations to the calculated deposit thickness.
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Chapter 5

Dimensional Analysis

From log-log analysis in the previous chapter we found correlation curves for the calculated
wax thickness as given by equation (4.32). Further, let us consider which physical parameters
that probably in�uence wax thickness during deposition. We therefore go back to Figure 4.20
where the wax thickness results are gathered. We believe that the averaged axial velocity
(V ) in�uence the deposition thickness (H), an assumption that is based on the wax thickness
calculations of the three experiments with constant inlet temperature of oil and water (equal
to 20 ◦C and 10 ◦C). They show an increase of wax thickness for a decrease in velocity. It is
therefore interesting to note that the largest thickness is related to experiment 15 − 10 − 21
instead of experiment 20−10−15, even though the last has the lowest �ow rate and thereby a
lower velocity. This could indicate that the incoming oil temperature (Toil,in) is of importance.
Based on the wax thickness calculations, it is possible that a low incoming oil temperature
gives a larger thickness than a higher incoming oil temperature during a constant �ow rate
operation when the water temperature is held �xed. Based on the experiments studied, we
therefore believe that a connection between deposited wax layer thickness, TWAT and Toil,in

could be considered. As already mentioned, the precipitation of para�ns will only occur when
the �uid reaches temperatures below the WAT. In the previous chapter we found that the
inner wall temperature change quickly in the beginning of each wax experiment; increasing
fast toward the incoming oil temperature. It is therefore reasons to consider the incoming oil
temperature as important here. Finally, we expect parameters as the inner diameter (Do), the
kinematic oil viscosity (ν), and the time (t) to be associated with the deposition process. We
therefore �rst assume a relationship among the quantities through a physical law given by :

F (V ,Do, ν, Toil,in, TWAT , t,H) = 0 (5.1)

The Pi theorem (Logan 2006) states that there is an equivalent physical law between the inde-
pendent dimensionless quantities that can be formed from V , Do, ν, Toil,in, TWAT and t. The
parameters involve three independent dimensions (length, time and temperature), and the
function F involve 7 parameters and 3 independent dimensions. According to the Pi theorem
it is then guaranteed that a physical law as (5.1) is equivalent to a physical law involving only
(7-3) 4 dimensionless quantities in this case.

Expressed as :

G(Π1,Π2,Π3,Π4) = 0 (5.2)
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where we de�ne the dimensionless quantities as :

Π1 =
DoV

ν
= Re , Π2 =

TWAT

Toil,in
= T̂ , Π3 =

ν

D2
o

t = t̂ and Π4 = H/Do (5.3)

We thereby express the wax thickness function as :

H = Do ·Φ(Re, T̂ , t̂) (5.4)

and in the following we assume the dimensionless function Φ on the form :

Φ = ·Reβ · T̂ γ · t̂η (5.5)

where β, γ and η are constants to be determined.
The wax thickness is therefore assumed to be on the form :

H = Do ·Reβ · T̂ γ · t̂η ≈ Btα (5.6)

and B is determined as :

B = Do ·
(

ν

3600D2
o

)α

·Reβ ·
(

TWAT

Toil,in

)γ

(5.7)

where η = α and α is the average of the α-values given in Table 4.3. B is the amplitude found
from best �t analysis related to the calculated wax thickness with the given α, through the
assumption H ≈ Btα. The results are presented in table 5.1 below. Note, in equation (5.7)
we transformed the correlation curves based on the measured time in hours to seconds.

Table 5.1: Correlation parameters from dimensional analysis
Experiment B α

15− 10− 21 10−3.76 0.347
20− 10− 15 10−3.82 0.347
20− 10− 21 10−3.87 0.347
20− 10− 25 10−3.91 0.347
30− 10− 21 10−3.99 0.347

We derive the kinematic viscosity based on the incoming oil temperature. The three wax ex-
periments where Toil,in = 20oC give a system of three equations with two unknowns; β and γ.
From calculations we �nd a negative β and a positive γ. The equations based on 20− 10− 15
and 20− 10− 21 give β = −0.313, while the equations based on 20− 10− 21 and 20− 10− 25
give β = −0.521. We derive the average value and determine β = −0.4. Determination of γ
is more challenging and we will not obtain a su�cient approximation to the calculated wax
thickness for the �ve experiments with a �xed γ in this case. We will therefore not search
for correlations with the given T̂ in power of a constant γ. Instead, we try to �nd a better
alternative for T̂ . Several combinations have been tried and the best
alternative found for a �xed γ requires that we include the incoming water temperature
Twater,in.
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We therefore rede�ne T̂ to the following :

T̂ =

√
(TWAT − Toil,in)Toil,in

Twater,in
(5.8)

The best correlation curves with the new T̂ above is found for a best �t γ, where γBF = γ = 4.2.
The results are presented in the Figures 5.1 and 5.2. We note that the correlation curves
correspond seemingly well with the calculated wax thickness.
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Figure 5.1: Best �t of calculated wax thickness based on dimensional analysis.
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Figure 5.2: Best �t of calculated wax thickness based on dimensional analysis
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5.1 Conclusion

The correlation curves based on dimensional analysis correspond well with the calculated
wax thickness for three of the four experiments. The curves are derived involving important
physical parameters. We assumed the temperature to have impact on the deposition process.
Based on results of the wax thickness calculations, we chose the WAT and the incoming
oil temperature to be most relevant when doing dimensional analysis. We could included the
cooling water temperature right from the start. From the temperature analysis in the previous
chapter, we found that the inner wall temperature increases very fast in the beginning of each
wax experiment. We further found that the inner wall temperature approaches the incoming
oil temperature after a short period in each wax experiment. Due to the isolating e�ect of a
thin wax layer on the pipe wall, we ignored the in�uence of the cooling water temperature,
when considering turbulent �ow conditions. We therefore assumed the WAT and the bulk �ow
temperature as fundamental to the understanding of the calculated wax thickness for most of
the time during the experiments. Since we did not �nd satisfactory correlation curves with
the �rst given dimensionless temperature, we rede�ned it and included the incoming water
temperature.

A correlation model on the form of equation (5.4) with the dimensionless temperature as
de�ned in equation (5.3) is controversial and should therefore be discussed. In the previous
chapter we found that the inner wall temperature has a large impact on the wax thickness. It
is also important to keep in mind that the cooling e�ect of the water is one of the "driving
mechanisms" that causes the para�ns to deposit on the wall. It is therefore not sure that
we can ignore the e�ect of the inner wall temperature and the water temperature as we �rst
did when settling a physical law for the problem of wax deposition. The main reason why
we ignored the water temperature is based on the assumption that even though the water
temperature is considerably lower than the oil temperature, the inner wall temperature will
quickly increase toward the oil temperature. The assumption is clearly based on the condition
Twater,in < Toil,in < TWAT , which is always satis�ed among the experiments analyzed here.
From the wax thickness calculations, we found that the experiment 15 − 10 − 21 gave the
largest wax thickness. From calculations of the inner wall temperature of this experiment, we
also found that the temperature on the wax surface after a few hours will be much closer to the
incoming oil temperature then that of the water. We will therefore expect from the analysis
of this experiment, that the wax deposition after a few hours will occur as a consequence
of a small temperature gradient in the thermal boundary layer close to the wall. We must
therefore except that the inner wall temperature is still of large importance even though it
is very close to the incoming oil temperature. Ignoring the inner wall temperature in the
dimensional analysis is therefore a risky approach to the problem considered and we therefore
accept that our correlation model is controversial. For the case, we should also keep in mind
that the inner wall temperature itself is di�cult to determine exactly, especially since it is
based on a very small (measured) temperature di�erence between inlet and outlet of the test
pipe. More accurate temperature measurements are therefore requested.



Chapter 6

Results and Conclusions

In Chapter 2, Graetz problem was studied and we established the cup-mixing temperatures
de�ned for the �owing �uid, giving axial temperature distribution inside a pipe of laminar or
turbulent �ow. A summary of the results were given in Chapter 3. Considering laminar �ows,
the analytical temperature distributions compared well with temperature pro�les obtained
using integral methods.

The temperature �eld in a �uid �owing in a steel pipe covered with a wax layer on the
inside, was also studied. It was found that a wax layer much thinner than the steel wall,
a�ected the inside wall temperature appreciably and further in�uenced the wall boundary
condition of the temperature of the �owing �uid.

The StatoilHydro wax deposition experiments were analyzed in Chapter 4. The analysis
revealed that the wax layer thickness increased most rapidly during the �rst minutes or hours
of all experiments and ended after typically 100 hours with a very slow growth rate compared
to the �rst minutes. The accuracy of the measured pressures and temperatures are of im-
portance when it comes to analysis of the calculated wax thickness. The friction number is
also of importance and especially during the initial wax deposition. A better understanding
of the initial deposition process requires very accurate measurements. As already indicated,
the thermal boundary layer seems to diminish quickly during the �rst minutes in each wax
experiment. We can therefore not ignore alterations of the boundary conditions for the �owing
�uid, owing to the growing wax layer.

From the results obtained, we believe that there is a strong connection between the wax
thickness and the inner wall temperature. The inner wall temperature has clearly an impact
on the wax thickness. It would therefore been interesting if StatoilHydro had measured the
inner wall temperature during the wax deposition. In this way we could have tested the
calculated inner wall temperature. Another consideration that we can also relate to the inner
wall temperature, is the initial deposition process. Whether the �rst layer has a high or low
content of lighter hydrocarbons and how long it takes before the whole inner wall of the test
section is covered with a thin waxy layer. All this together has an impact on the initial inner
wall temperature.
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Appendix A

Graetz Problem

The complete energy equation :

u
∂T

∂x
=

kf

ρCp

1
r
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∂r

(
r
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∂r

)
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(
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∂r

)2

(A.1)

Using the dimensionless variables de�ned in (2.5) together with x∗ = x
L (in (A.1)) where L

represent a characteristic (axial) length for modi�cation of the thermal energy , we have :
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L
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(A.2)

Comparing radial di�usion with dissipation by dimensional analysis :

kf

ρCp

1
r

∂

∂r

(
r
∂T

∂r

)
∼ ν

Cp

(
∂u

∂r

)2

(A.3)

Gives :
kf

ρCp

∆T

r2
o

∼ ν

Cp

u2
o

r2
o

(A.4)

Finally :
1
Pr

∼ Ec (A.5)

where the Prandtl number is Pr = ρCpν
kf

, the Eckert number is Ec = u2
o

Cp∆T , and PrEc � 1
must be ful�lled for the �uid considered.

Comparing axial advection with axial di�usion :

u
∂T

∂x
∼

kf

ρCp

∂2T

∂2x
(A.6)

Gives :

uo
∆T

L
∼

kf

ρCp

∆T

L2
(A.7)
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Finally :
Pe ∼ 1 (A.8)

where the Peclet number is de�ned as Pe = uoLρCp

kf
and Pe � 1 must be met for the �uid

considered.

A.1 Coe�cients

In general the coe�cients are determined from :

An =

∫ 1
0 r∗(1− r2

∗) exp
(
−λnr2

∗
2

)(
1 +

K∑
k=1

(an)k

(k!)2
λk

nr2k
∗

)
dr∗

∫ 1
0 r∗(1− r2

∗) exp (−λnr2
∗)
(

1 +
K∑

k=1

(an)k

(k!)2
λk

nr2k
∗

)2

dr∗

(A.9)

Including many Eigen values give :

N =
K∑

k=1

(an)k

(k!)2
λk

n → ±∞ (A.10)

and we �nd that |An| → 0 when n → ∞. We thereby expect that a restricted number of
coe�cients are su�cient to determine the solution of Graetz problem.

A.2 Analysis of the Coe�cient Terms

We introduce the analytical expressions needed to determine An. Based on (A.9) we consider
the general expression :

I =

1∫
0

Rm exp
(
−βnR2

)
dR (A.11)

where βn = λn
2 and m > 0. Integration by parts of (A.11) gives :

I =
S∑

i=0

Ii =
S∑

i=0

(2βn)i exp (−βn)
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j=0
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+
(2βn)(S+1)

i∏
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(m + 2j + 1)

1∫
0

R2(S+1) exp
(
−βnR2

)
dR (A.12)

and we ignore the integral term in (A.12) letting s →∞. It is therefore of interest
to de�ne :

∆ =
(2βn)(S+1)

i∏
j=0

(m + 2j + 1)

1∫
0

R2(S+1) exp
(
−βnR2

)
dR (A.13)

requiring :
∆

S∑
i=0

(2βn)i exp(−βn)
i∏

j=0
(m+2j+1)

� 1 (A.14)
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Taylor expansion of the exponential term in the integral expression of (A.12) gives :

1∫
0

R2(S+1) exp
(
−βnR2

)
dR =

1∫
0

R2(S+1)
(
1− βnR2 + O(R4)
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dR <

1
2S + 3

(A.15)

and estimation of a minimum value of S are determined through :

exp(−βn)
m + 1

� (2βn)(S+1)

(2S + 3)
i∏

j=0
(m + 2j + 1)

(A.16)

where we already know from (2.29)-(2.30) that m ≥ 3.
S depends on number of Eigen values included in the solution, increasing with increased n.
We set S = 40 for the �ve �rst Eigen values (λ0..λ4) where the term on left side of (A.16) is
about 109 times larger than the term on the right side. For the next �ve Eigen values (λ5..λ9)
we set S = 75 in the same matter. In accordance with the restrictions on S, we �nd it is
su�cient to state :
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Based on (2.29)-(2.30) it is further of interest to evaluate the general expression given by :

1∫
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ak+c exp

(
−βnR2

)
dR (A.18)

where a and c are constants to be determined, and Ân,k is de�ned :
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(k!)2
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n (A.19)

Integration by parts of (A.18) give the following expression :
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Ân,kR
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Finally we evaluate an expression for the general de�nition :

1∫
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K∑
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)
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where a, b and c are constants to be determined.
Integration by parts gives :
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A.3 Numerator

The numerator (2.29) are then determined from the following expressions :
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A.4 Denominator

The denominator (2.30) are determined from :
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A.5 Cup Mixing Temperature

The cup mixing temperature for incompressible �ow is :

Tcup−mix =

∫
A

uTdA∫
A

udA
(A.33)

Considering laminar �ow, we replace u with the Poiseuille pro�le given by (2.1), deriving :

Tcup−mix =
4
r4
o

ro∫
0

r
(
r2
o − r2

)
Tdr (A.34)

Transforming (A.34) on dimensionless form, and introducing the dimensionless variables
(see (2.5) and (2.53) as well) :

r∗ =
r

ro
T ∗ =

Tw − T

Tw − To
and T ∗cup−mix =

Tw − Tcup−mix

Tw − To
(A.35)

Note for the instance that r∗ are used instead of r∗; only a di�erence of notation. The cup-
mixing temperature on dimensionless form is then :

T ∗cup−mix = 4
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Replacing T ∗ with the dimensionless temperature solution of Graetz problem
T ∗Graetz (2.38) gives :
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We evaluate the four terms of the dimensionless cup mixing temperature (A.37) in the same
matter as we did for the terms of the coe�cients An.
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The result is :
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Appendix B

Turbulent Flow and Heat Transfer

The energy equation for stationary turbulent and incompressible �ow in a pipe is (by ignoring
dissipation and axial heat conduction) :
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Continuity :
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The Reynolds time averaged energy equation, with typically V � v
′
x :
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Reynolds time averaging the product of the continuity equation multiplied with the �uctuating
velocity and rewriting gives :
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In (B.4) we neglect the terms ∂
∂x(...) and ∂

∂θ (...) assuming fully developed �ow. By combining
(B.4) with (B.3) we obtain the energy equation :
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(B.5)

Further, we de�ne the thermal eddy-di�usivity by modelling the �uctuating temperature trans-
ported in the radial direction :

− v′
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(B.6)

which, introduced into equation (B.5) give :
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We will manipulate B.7 by using the de�ned cup-mixing temperature Tcup−mix and the de�ned
mass �ux Qm :

2πCp

ro∫
0

ρV ∂T
∂x rdr

2π
ro∫
0

ρV rdr

=
2π
∫ ro

0
∂
∂r

(
(k + kt) r ∂T
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)
dr

2π
ro∫
0

ρV rdr

(B.8)

Notice that k in (B.8) is the thermal conductivity while κ in (B.7) is the thermal di�usivity.
By carry out the integration of (B.8) we get :

∂Tcup.mix

∂x
= −2πroqw

CpQm
(B.9)

B.1 Heat Conduction Through Concentric Walls

Figure B.1: Radial heat �ux through a concentric element

The (radial) heat �ux which streams into the element (see B.1) must equal the (radial)
heat �ux leaving the element :

q(r)A(r)− q(r + ∆r)A(r + ∆r) = 0 (B.10)

Letting ∆r− > 0 and rewriting (B.10), we get :

d

dr
(rq(r)) = 0 (B.11)

Integration of (B.11) gives :
rq(r) = r1qw (B.12)

where qw is the heat �ux found at the inner wall of radius r1, see B.2.
Substituting Fourer`s law into (B.12) gives :

− kfr
∂T

∂r
= r1qw (B.13)

where kf is the thermal conductivity of the �uid in the inner pipe.
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Figure B.2: Heat conduction through uniform concentric layers

Further integration between two arbitrary concentric layers (see Figure B.2) gives :

Tn−1 = Tn +
r1qw

kn
ln

(
rn

rn−1

)
(B.14)

Notice that we have replaced rnqn with r1qw from (B.12). We use the Newton's law of cooling
to evaluate the temperature di�erence between the inner wall and the �uid, or the outer wall
and the environmental temperature. The temperature di�erence between the inner wall T1

and the bulk �ow Tb is (see B.2) :

(T1 − Tb) =
qw

hf
(B.15)

where hf is the heat transfer coe�cient of the �uid. The temperature di�erence between the
outer wall TN and the environmental temperature is :

(Te − Tb) =
1

hN

r1qw

rN
(B.16)

where we have replaced qn with r1qw

rN
using (B.12). We can now add the temperature di�erences

to evaluate Te − Tb :

Te − Tb = qo

(
1
hf

+
N∑

n=2

r1

kn
ln
(

rn

rn−1

)
+

r1

rN

1
hN

)
(B.17)

If we now introduce the overall heat transfer coe�cient Utot = qw

Te−Tb
and rewrite (B.17), we

get a general expression for Utot :

Utot =

(
1
hf

+
N∑

n=2

r1

kn
ln
(

rn

rn−1

)
+

r1

rN

1
hN

)−1

(B.18)
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or by de�ning the heat transfer coe�cients related to the di�erent concentric layers :

1
Un

=
r1

kn
ln
(

rn

rn−1

)
(B.19)

and rewriting the expression of Utot we have :

Utot =

(
1
hf

+
N∑

n=2

1
Un

+
r1

rN

1
hN

)−1

(B.20)

This expression is used in both Chapter 2 and Chapter 4.



Appendix C

Experiments

C.1 Isothermal Data

Table C.1: Isothermal Experiments 2007

Month-Year Toil = Twater [oC] Qoil [m3

h ] ∆P [mPa] ρoil [ kg
m3 ]

Nov-2007 40 30.00 110.97 801
Nov-2007 40 24.99 79.64 801
Nov-2007 40 20.00 53.65 801
Nov-2007 40 17.50 42.46 801
Nov-2007 40 15.04 32.62 801
Nov-2007 40 9.98 16.10 801
Nov-2007 40 4.99 4.85 801
Nov-2007 40 15.00 32.44 801
Nov-2007 40 3.45 2.62 801
Nov-2007 40 4.89 4.68 801
Nov-2007 40 7.17 9.01 801
Nov-2007 40 10.06 16.09 801
Nov-2007 40 15.19 33.18 801
Nov-2007 40 19.96 53.52 801
Nov-2007 40 24.98 79.35 801
Nov-2007 40 29.99 109.89 801
Nov-2007 30 3.56 2.86 808
Nov-2007 30 5.31 5.66 808
Nov-2007 30 10.05 17.01 808
Nov-2007 30 15.19 35.05 808
Nov-2007 30 20.00 56.65 808
Nov-2007 30 24.99 83.75 808
Nov-2007 30 29.99 115.76 808
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Table C.2: Isothermal Experiments 2008

Month-Year Toil = Twater [oC] Qoil [m3

h ] ∆P [mPa] ρoil [ kg
m3 ]

Jan-2008 60 29.88 104.3 792
Jan-2008 60 25.09 75.82 792
Jan-2008 60 20.07 51.02 792
Jan-2008 60 15.05 30.50 792
Jan-2008 60 10.15 15.68 795
Jan-2008 60 5.19 4.88 803
Jan-2008 60 24.85 74.83 792
Jan-2008 60 16.03 34.88 792
Mar-2008 40 30.02 113.39 806
Mar-2008 40 25.00 81.84 806
Mar-2008 40 20.02 55.07 806
Mar-2008 40 15.00 33.47 806
Mar-2008 40 10.00 16.37 806
Mar-2008 40 5.00 4.97 806
Mar-2008 40 20.97 59.87 806
Mar-2008 30 29.98 118.17 812
Mar-2008 30 25.00 85.78 812
Mar-2008 30 20.01 57.98 812
Mar-2008 30 15.01 35.00 812
Mar-2008 30 10.01 17.31 812
Mar-2008 30 4.99 5.31 812
Mar-2008 30 21.01 63.14 812
Feb-2008 30 21.38 64.67 811
Feb-2008 30 29.97 117.48 811
Feb-2008 30 25.01 85.29 811
Feb-2008 30 20.00 57.57 811
Feb-2008 30 15.01 34.86 811
Feb-2008 30 10.00 17.19 811
Feb-2008 30 5.00 5.23 811
Jan-2008 20 29.93 126.86 819
Jan-2008 20 25.17 93.53 819
Jan-2008 20 20.10 63.19 820
Jan-2008 20 15.13 38.81 820
Jan-2008 20 10.03 19.01 820
Jan-2008 20 5.01 5.68 823
Jan-2008 20 24.97 92.04 820
Feb-2008 20 30.03 125.15 818
Feb-2008 20 24.76 89.26 818
Feb-2008 20 20.04 61.51 818
Feb-2008 20 15.00 37.27 818
Feb-2008 20 10.03 18.48 818
Feb-2008 20 4.99 5.43 818
Mar-2008 15 25.00 97.09 824
Mar-2008 15 20.00 65.94 824
Mar-2008 15 14.99 40.09 824
Mar-2008 15 10.03 20.19 824
Mar-2008 15 5.00 6.12 824
Mar-2008 15 20.99 71.73 824
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C.2 Non-Isothermal Data

Table C.3: Non-Isothermal Experiments 2008

Month-Year Toil [oC] Twater [oC] Qoil [m3

h ] ∆P [mPa] ρoil [ kg
m3 ]

Mar-2007 40 10 20.99 62.38 808
Mar-2007 30 20 21.00 64.14 813
Feb-2007 30 10 21.00 64.40 812
Feb-2007 20 10 5.00 6.01 818
Mar-2007 15 10 20.99 72.55 824
Des-2007 20 12 15.00 43.86 814
Jan-2008 20 10 24.93 93.53 820
Feb-2008 30 9 21.00 64.51 812
Mar-2008 40 10 21.00 62.43 808
Mar-2008 15 10 21.00 72.55 824
Jan-2008 21 10 21.45 65.20 817
Jan-2008 21 12 10.05 19.01 816
Jan-2008 20 10 5.18 6.36 818
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C.3 Best �t of Measured Pressure Drops
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Figure C.2: Measured pressure drop and best �t curve
The red line shows the best �t line (D) from least-square analysis.
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C.4 Best �t of Measured Temperature Drops
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Figure C.3: Measured pressure drop and best �t curve
The blue line shows the best �t line (D) from least-square analysis.
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C.5 Best Fit of Wax Thickness Calculations
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Figure C.4: Calculated wax thickness with linear approximation

The regression line is given by : R = −0.0506 + 0.321t
and based on the measured thickness in the interval 5min to 30 min.
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Appendix D

Program Codes

D.1 Maple

# Codes used to derive graphs presented in Chapter 3

> reset;

> # Intention : Comparing the analytical solution of 
Graetz problem with the profile based on the integral 
method, using unused engine oil at 320K

> # The radius [m] on the outside (steel) wall of a smooth 
pipe:

> r_1 := 0.058;

> # The radius on the inside steel wall: 

> r_o := 0.050;

> # The radius available for flow with inside insulation 
of 0.5mm:

> r_i := 0.0495;

> # The area [m^2] on the inside of the smooth pipe, no 
insulation:

> A_o := evalf[5](Pi*r_o^2);

> # Assuming the volume flux [m^3/s]( turbulent flow) to 
be a given constant:

> Q_turb := evalf[5](1/2); 

> # Volume flux (laminar flow):

> Q_lam := evalf[5](1/(2*100));

> # The density [kg/m^3] given in the table: 

> rho := 871.8;

> # The mass flux [kg/s] (turbulent flow) is:

> F_turb := evalf[5](rho*Q_turb);
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> # The mass flux [kg/s] (laminar flow) is:

> F_lam := evalf[5](rho*Q_lam);

> # The area averaged velocity (turbulent flow) [m/s]:

> V_turb := evalf[5](Q_turb/A_o);

> # The area averaged velocity (laminar flow):

> V_lam := evalf[5](Q_lam/A_o);

> # The kinematic viscosity (from table):

> nu := evalf[5](161*10^(-6));

> # The Reynolds number is:

> R[e] := evalf[5](2*r_o*V_turb/nu);

> # The Prandtl number is given in the table:

> Pr := 1965;

> # The Darcy friction factor:

> f := evalf[5]((0.790*ln(R[e])-1.64)^(-2));

> # The Pethukov Nusselt number: 

> Nu_turb :=evalf[5](((f/8)*R[e]*Pr)/...     
  (1.07+12.7*(f/8)^(1/2)*(Pr^(2/3)-1))); 

> Nu_lam := evalf[5](3.657);

> # The specific heat at constant pressure [J/kgK] from 
the table:

> Cp := evalf[5](1.993*10^(3));

> # The thermal conductivity of oil [J/smK] from the 
table:

> k_f := 0.143;
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> # The viscosity given in the table:

> mu := 0.141;

> # The thermal conductivity of the pipe wall 
(Hydro 2007):

> k_w := 22.5;

> # The heat coefficient for laminar fluid without 
insulation:

> h_lam := evalf[5](k_f*Nu_lam/(2*r_o));

> # The heat coefficient for turbulent flow without 
insulation:

> h_turb := k_f*Nu_turb/(2*r_o);

> # The heat coefficient for laminar fluid with 
insulation:

> h_lam_i := evalf[5](k_f*Nu_lam/(2*r_i));

> # The heat coefficient for turbulent flow with 
insulation:

> h_turb_i := k_f*Nu_turb/(2*r_i);

> # The thermal conductivity of the insulation inside the 
pipe.

> # The insulation can be associated with the wax where:

> k_i := 2*k_f;

> # The heat transfer coefficient for the wall:

> U_w := k_w/(r_o*ln(r_1/r_o));

> # The heat transfer coefficient for the insulation:

> U_i := k_i/(r_o*ln(r_o/r_i));
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> # The overall heat transfer coefficient for laminar 
flow, including steel wall only:

> U_lam_w := (1/h_lam)^(-1);

> # The overall heat transfer coefficient for turbulent 
flow, including steel wall only:

> U_turb_w := (1/h_turb + 1/U_w)^(-1);

> # The overall heat transfer coefficient for laminar 
flow, including steel wall and insulation:

> U_lam_w_i := (1/h_lam_i + 1/U_i)^(-1);

> # The overall heat transfer coefficient for turbulent 
flow, including steel wall and insulation:

> U_turb_w_i := (1/h_turb_i + 1/U_i + 1/U_w)^(-1);

> # The dimensionless temperature profile derived for 
turbulent flow based on the Pethukov Nusselt 
correlation:

> T_turb_a := x-> evalf[5](exp(-2*r_i*Pi*k_f*Nu_turb*x/...    
  (F_turb*Cp)));

> # The dimensionless temperature profile based on laminar 
flow (Nusselt number), including pipe wall only:

> T_lam_a := x ->  evalf[5](exp(-2*r_o*Pi*k_f*Nu_lam*x/...       
  (F_lam*Cp)));

> # The dimensionless temperature profile based on 
turbulent flow, including pipe wall only:

> T_turb_b := x -> evalf[5](exp(-4*Pi*r_i^2*U_turb_w*x/...    
  (F_turb*Cp)));

> # The dimensionless temperature profile based on 
turbulent flow, including insulation and pipe wall:

> T_turb_c := x-> evalf[5](exp(-4*Pi*r_i^2*U_turb_w_i*x/...   
  (F_turb*Cp)));
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> # The dimensionless temperature profile based on laminar 
flow, including pipe wall only:

> T_lam_b := x-> evalf[5](exp(-4*Pi*r_o^2*U_lam_w*x/...    
  (F_lam*Cp)));

> # The dimensionless temperature profile based on laminar 
flow, including insulation and pipe wall:

> T_lam_c := x -> evalf[5](exp(-4*Pi*r_o^2*U_lam_w_i*x/...  
  (F_lam*Cp)));

> # Transforming the physical x to the one used in Graetz 
problem:

> a := 2*k_f/(rho*Cp*V_lam*2*r_o);

> # The area-averaged Graetz temperature profile 
(8 first eigenvalues):

> T_Graetz := x -> 0.5811207140*exp(-7.313586808*a*x)+   
                   0.1337702864*exp(-44.60946178*a*x)+

   0.06188452782*exp(-113.9210300*a*x)+
   0.03660743080*exp(-215.2405444*a*x)+
   0.02457468598*exp(-348.5641168*a*x)+
   0.01782201444*exp(-513.8900806*a*x)+
   0.02005425268*exp(-711.2180449*a*x)-  

                 0.000014443214*exp(-940.5522368*a*x)+ 
  0.008814253414*exp(-1201.918059*a*x)+ 
  5.5996*10^(-8)*exp(-1495.400594*a*x);

> # The dimensionless cup-mixing temperature based on 
laminar flow and the dimensionless Graetz temperature 
(8 first eigenvalues): 

> T_m := x -> 0.8190502020*exp(-7.313586808*a*x)+ 
    0.0975269400*exp(-44.60946178*a*x)+   

             0.03250393024*exp(-113.9210300*a*x)+
                  0.01544014236*exp(-215.2405444*a*x)+
                 0.008788433200*exp(-348.5641168*a*x)+
                  0.00558385500*exp(-513.8900806*a*x)+
                 0.003820188404*exp(-711.2180449*a*x)+
                  0.00275656884*exp(-940.5522368*a*x)+
                 0.002071232000*exp(-1201.918059*a*x)+
                 0.001607635356*exp(-1495.400594*a*x);
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D.2 Matlab

function Wax_deposition_20_10_21_Jan_2008()

% Basic codes used to derive the graphs in Chapter 4
% Here for a fixed wax experiment (20-10-21)

% The following physical variables and parameters are used in the script:
% Volume flow (oil):                                Q_oil           [m³/s]  
% Volume flow (water):                              Q_water         [m³/s]
% Pressure drop in oil pipe:                        dp              [Pa]
% Temperature incoming oil:                         T_oil_in        [°C]
% Temperature outgoing oil:                         T_oil_out       [°C]
% Temperature incoming water:                       T_water_in      [°C]
% Temperature outgoing water:                       T_water_out     [°C]
% Wax apperance temperature:                        T_WAT           [°C]
% Temperature difference:                           Temp_difference [°C]
% Inner wall temperature                            T_iw            [°C]
% Density of oil:                                   rho_oil         [kg/m³]
% Density of water:                                 rho_water       [kg/m³]
% Length of test pipe:                              dL              [m]
% Radius of oil/inner pipe:                         r_oil_i         [m]
% Thickness of oil/inner pipe:                      thickness       [m]
% Radius of inner jacket:                           r_water_i       [m]
% Radius of outer jacket:                           r_water_o       [m]
% Radius available for flow in oil pipe:            r_i             [m]
% Calculated thickness of wax:                      Wax_thickness   [m]
% Correlation curve of Wax_thickness                h               [m]
% Roughness of wall:                                eps             [m]
% Average velocity of oil:                          v_oil           [m/s]
% Molecular viscosity of oil:                       my_oil          [kg/sm]
% Molecular viscosity of water:                     my_water        [kg/sm]
% Molecular viscosity of the wall:                  my_wall         [kg/sm]
% Heat capacity of oil:                             Cp_oil          [J/kgK]
% Heat capacity of water:                           Cp_water        [J/kgK]
% Thermal conductivity of steel:                    k_steel         [J/smK] 
% Thermal conductivity of oil:                      k_oil           [J/smK]
% Thermal conductivity of water:                    k_water         [J/smK]
% Thermal conductivity of deposit:                  k_wax           [J/smK]
% Reynolds number (oil):                            Re_oil          [1]
% Reynolds number (water):                          Re_water        [1]
% Prandtl number (oil):                             Pr_oil          [1]
% Prandtl number (water):                           Pr_water        [1]
% Heat transfer coefficient of oil:                 h_oil           [J/sm²K]
% Heat transfer coefficient of water:               h_water         [J/sm²K]
% Heat transfer coefficient of the wall:            U_w             [J/sm²K]
% Calculated heat transfer coefficient of deposit   U_i             [J/sm²K] 
% Overall heat transfer coefficient:                U_tot           [J/sm²K]
% Pethukov friction factor:                         f_p             [1]
% Darcy friction factor:                            f_d             [1]
% Friction factor found from best fit analysis:     f               [1]
% Pethukov Nusselt correlation                      Nu              [1]
    

% Calling on the xls file and declaring the parameters:
% Max_row = 1193
data = xlsread('Vale_20_10_21.xls',1,'a6:p1193');
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Q_oil = data(:,3)/3600;
dp = data(:,6);
T_oil_in = data(:,7);
T_oil_out = data(:,8);
% The average oil temperature
T_oil = (T_oil_in+T_oil_out)/2;
T_water_in = data(:,10);
T_water_out = data(:,11);
% The average water temperature
T_water = (T_water_in+T_water_out)/2;
% The condensate has a WAT in the interval [45,48], we therefore define :
T_WAT = (45+48)/2;
Temp_difference = -data(:,9); 
rho_oil = data(:,13);
dL = 5.55;
r_oil = 0.0526/2;
Steel_thickness = 0.0039;
r_water_i = r_oil + Steel_thickness;

% Declaring further variables 
r_i = zeros(1,length(Q_oil+1));
% Initial value of the inner radius
r_i(1) = r_oil;
h_oil = r_i;
T_iw = r_i;
Wax_thickness = r_i;
% Initial value of wax thickness
Wax_thickness(1) = 0;
eps = 0; 
v_oil = Q_oil/(pi*r_oil^2);
% The molecular viscosity of oil is determined from a StatoilHydro function
my_oil = eta_vale(T_oil);
my_wall = r_i;

Cp_oil = 1950;
k_steel = 22.5;
k_oil = 0.1344;
Re_oil = my_wall;
Re_oil(1) = v_oil(1)*2*r_oil*rho_oil(1)/my_oil(1);
Pr_oil = Cp_oil*my_oil/k_oil;
f_p = (0.790*log(Re_oil(1))-1.64)^(-2);
Nu = ((f_p/8)*Re_oil(1)*Pr_oil(1))/(1.07+12.7*(f_p/8)^(1/2)*(Pr_oil(1)^(2/3)-
1)); 
h_turb = k_oil*Nu/(2*r_oil);
% The heat transfer coefficient of steel wall
U_w = k_steel/(r_oil*log(r_water_i/r_oil));
% The overall heat transfer coefficientbased on oil and steel wall
U_turb_w = (1/h_turb + 1/U_w)^(-1);
T_iw(1) = T_oil(1) - U_turb_w/h_turb*(T_oil(1)-T_water(1));
% Initialising the viscosity of the fluid at the wall
my_wall(1) = eta_vale(T_iw(1));

% Declaring lower and upper boundary
t_min = 2;
t_max = length(Q_oil) + 1; 
% Declaring the time variable (hours) used in most calculations
T = zeros(1,t_max);
T(1) = 0;
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% Declaring the best fit function found from log-log analysis in Chapter 4
h = T;
% Initialising
h(1) = 0;
% Declaring the correlation vector for the averaged exponential alpha-value
% given in Chapter 5
Correlation = T;
% Declaring the correlation vector based on dimensional analysis in Chapter 5  
H_c = T;

%tid = zeros(1,t_max-1);
f = T;
% Defining the vector for the corrected Pethukov friction factor
f_p_corrected = T;
U_tot = T;
k_wax = T;
% Assuming no initial deposit on the wall 
k_wax(1) = k_oil;
% Declaring a relative thermal conductivity of steel and wax (Chapter 4)
k_steel_wax = T;
k_steel_wax(1) = k_steel;

% Declaring the vectors used in the log-log analysis 
Time = zeros(t_max-120,1);
W = zeros(t_max-120,1);
Wax = W;

%The difference-vector between h and correlation
Diff = T;

for t = t_min:t_max
    
        T(1,t) = 5/60*t - 5/60;
     
     
        Re_oil(t-1) = v_oil(t-1)*2*r_i(t-1)*rho_oil(t-1)/my_oil(t-1);
        f(t-1) = ((1.8*log10(6.9/Re_oil(t-1)+(eps/… 
   (3.7*2*r_i(t-1)))^1.11))^(-2))*(my_wall(t-1)/my_oil(t-1))^(0.05);  
    
        h(t) = 10^(-3.73)*T(t)^(0.271);
        Correlation(t) = 10^(-3.87)*T(t)^(0.347);
        H_c(t) = (2*r_oil*(my_oil(1)/…      
        (3600*rho_oil(1)*(2*r_oil)^2))^0.347)*(Re_oil(1)^(-0.4))*…
        (((((T_WAT-T_oil_in(t-1))*T_oil_in(t-1))^(0.5))/…
        T_water_in(t-1))^(4.2))*T(t)^(0.347);
       
       
    if (T_water_in < T_oil_in)
        Wax_thickness(t) = r_oil - (rho_oil(t-1)*… 
        Q_oil(t-1)^2*f(t-1)/(4*pi^2*dp(t-1)/dL))^(1/5);
        r_i(t) = r_oil - Wax_thickness(t);
        % The Pethukov friction factor corrected for non-isothermal flow
        f_p_corrected(t-1) = ((0.790*log(Re_oil(t-1))-1.64)^(-2))*…
        (my_wall(t-1)/my_oil(t-1))^(0.05); 
        Nu(t-1) = ((f_p_corrected(t-1)/8)*Re_oil(t-1)*…
        Pr_oil(t-1))/(1.07+12.7*(f_p_corrected(t-1)/8)^(1/2)*…
        (Pr_oil(t-1)^(2/3)-1));
        h_oil(t-1) = k_oil*Nu(t-1)/(2*r_i(t-1));
        U_tot(t-1) = rho_oil(t-1)*v_oil(t-1)*Cp_oil*…
        (r_oil-Wax_thickness(t-1))./(2*(T_oil(t-1)-…
        T_water(t-1))).*(Temp_difference(t-1))/dL;
        T_iw(t) = T_oil(t-1) - U_tot(t-1)/h_oil(t-1)*(T_oil(t-1)-T_water(t-1));
        my_wall(t) = eta_vale(T_iw(t));
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        k_wax(t) = r_oil*log(r_oil/r_i(t))/(1/U_tot(t-1) - 1/U_w - 1/h_turb);
        k_steel_wax(t) = r_oil*log(r_water_i/r_i(t))/(1/U_tot(t-1) - 1/h_turb);
       
    else
        Wax_thickness(t) = Wax_thickness(t-1);
        r_i(t) = r_i(t-1);
        h_oil(t-1) = k_oil*Nu(t-1)/(2*r_i(t-1));
        U_tot(t-1) = rho_oil(t-1)*v_oil(t-1)*Cp_oil*…
        (r_oil-Wax_thickness(t-1))./(2*(T_oil(t-1)-…
        T_water(t-1))).*(Temp_difference(t-1))/dL;
        T_iw(t) = T_oil(t-1) - U_tot(t-1)/h_oil(t-1)*(T_oil(t-1)-T_water(t-1));
        my_wall(t) = eta_vale(T_iw(t));
    end

end

                for t = 1:t_max-120
                    % Defining the "Log-vectors"
                    Time(t) = log10(T(t+120));    
                    W(t) = log10(Wax_thickness(t+120));
                    % The log vectors are implemented in Minitab, a statistical
                    % program deriving the linear relation given as:
                    Wax(t) = -3.73 + 0.271*Time(t);    
                end



116 Program Codes

%hold on
%plot(Time,Del_Temp,'r');
%plot(Time,Wax,'b')
%hold off

%hold on
%subplot(3,1,2);
%plot(T,dp,'b');
%plot(T,1000*Wax_thickness,'c');
%plot(T,1000*Wax_thickness,'b',T,1000*h,'r');
%plot(T,1000*Wax_thickness,'b',T,1000*H_c,'r');
%plot(Time,W,'c');
%plot(Time,Wax,'r');
%plot(T,k_wax/k_oil,'r');
%plot(T,h,'r');
%xlabel('Time [h]');
%ylabel('Wax Thickness [mm]');
%title('Best fit of calculated wax thickness: - During the first five hours of 
the experiment.');
%legend('T_{oil} = 20 , T_{water} = 10 , Q_{oil} = 21','Best Fit');
%hold off

%hold on
%subplot(3,2,6);
%plot(T,T_iw,'r');
%xlabel('Time [h]');
%ylabel('T_{iw} [^oC]');
%title('Inner wall temperature');
%legend('T_{oil} = 20 , T_{water} = 10 , Q_oil = 21');
%hold off

% From Dimensional Analysis
%2*r_oil*(my_oil(1)/(3600*rho_oil(1)*(2*r_oil)^2))^0.347
%Re_oil(1)
%40/T_oil_in(1)
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Nomenclature

   u : Laminar flow velocity m

s
 
  

   V : Area-averaged velocity m

s
 
  

    : Molecular viscosity kg

sm
 
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    : Kinematic viscosity
2m

s

 
 
 

   k : Thermal conductivity J

smK
 
  

   : Density
3

kg

m
 
  

  pC : Heat capacity J

kgK

 
 
 

   : Thermal diffusivity
2m

s

 
 
 

  q : Heat flux
2

J

sm
 
  

  h : Heat transfer coefficient of fluid
2

J

sm K
 
  

  U : Heat transfer coefficient
2

J

sm K
 
  



LIST OF TABLES 121

  x : Axial position along pipe  m

  r : Radius  m

  T : Temperature  K

  P : Pressure  Pa

   : Shear stress  Pa

  Q : Mass flux kg

s
 
  

  H : Wax thickness  m
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