Convergence of a discretization of the Maxwell-Klein-Gordon equation based on finite element methods and lattice gauge theory

Snorre H. Christiansen ${ }^{1}$ | Tore G. Halvorsen ${ }^{\mathbf{1}} \mid$ Claire Scheid $^{\mathbf{2}}{ }^{\text {© }}$

${ }^{1}$ Department of Mathematics, University of Oslo, Blindern, Oslo, Norway
${ }^{2}$ Université Côte d'Azur, CNRS, Inria, LJAD, France

Correspondence

Claire Scheid, Université Côte d'Azur, CNRS, Inria, LJAD, France.
Email: Claire.Scheid@univ-cotedazur.fr

Funding information

FP7 Ideas: European Research Council, FP7-IDEAS-ERC Starting Grant scheme, Grant/Award Number: 27801

Abstract

The Maxwell-Klein-Gordon equations are a set of coupled nonlinear time-dependent wave equations, used to model the interaction of an electromagnetic field with a particle. The solutions, expressed with a magnetic vector potential, are invariant under gauge transformations. This characteristic implies a constraint on the solution fields that might be broken at the discrete level. In this article, we propose and study a constraint preserving numerical scheme for this set of equations in dimension 2. At the semidiscrete level, we combine conforming Finite Element discretizations with the so-called Lattice Gauge Theory to design a compatible gauge invariant discretization, leading to preservation of a discrete constraint. Relying on energy techniques and compactness arguments, we establish the convergence of this semidiscrete scheme, without a priori knowledge of the solution. Finally, at the fully discrete level, we propose a compatible explicit time-integration strategy of leapfrog type. We implement the resulting fully discrete scheme and provide assessment on academic scenarios.

KEYWORDS

finite element, Maxwell-Klein-Gordon, numerical analysis

1 | INTRODUCTION

The Standard Model of physics and Einstein's theory of Gravitation, which describe the fundamental forces and particles in nature, involve nonlinear partial differential equations. In the Standard

[^0]Model the particles are either fermions or bosons. The fermions are described by spinors, and the forces between them by connections on vector bundles. The connections model bosons. In quantum electrodynamics (QED) these are photons. In particular, in scalar QED, one models spin zero bosons that interact with photons. The equations are derived through a variational principle from a Lagrangian function. The form of the Lagrangian is determined by the symmetry (gauge) group of the theory. If, in addition, one demands the theory to be renormalizable, the maximal order of derivatives in the Lagrangian is reduced to one, see [25]. Through Noether's theorem (see [24]) one can show that gauge symmetry implies preservation of constraints on the solutions of the Euler-Lagrange equations. The Maxwell-Klein-Gordon (MKG) equations are an example of such equations modelling the interaction of an electromagnetic wave with a particle. The corresponding Lagrangian is invariant under a gauge transformation and the resulting Euler-Lagrange equations are a set of coupled nonlinear time-dependent wave equations verifying a charge preservation constraint, consequence of gauge symmetry. We focus on this set of equations for our study.

Gauge symmetry makes the theory consistent, one should thus strive to preserve this symmetry when discretizing the model. However, standard discretization techniques can break this symmetry. As an example, for the related Yang-Mills equation it was shown in [10] that standard FE discretizations produce approximate solutions that strongly violate the constraints. The field of structure preserving discretization addresses this issue. It is now successfully applied in various area of numerical analysis and applied physics (see e.g., $[4,5,14,16,19,20,29]$ and references therein). The idea is that the preservation of the underlying geometric structure will reveal itself through both stability and good qualitative properties of the solutions.

Nonlinear wave equations such as, also, the sine-Gordon equations [1, 15], provide a particularly interesting test-bed for such approaches.

In the MKG equations, the coupling between the electromagnetic field and scalar complex field describing the evolution of the particle arises through covariant derivatives. Conventional discretization methods, such as standard finite difference methods (FDM) or finite element methods (FEM), approximate the gradient part and the part containing the electromagnetic field separately. Consequently, the resulting approximation of the covariant derivative has no local transformation law, and the gauge symmetry is broken at the discrete level. This implies a violation of the constraint. The key to preserve the gauge symmetry is to approximate the covariant derivative directly, and not as the sum of the gradient and the product of the gauge field with the scalar field/spinor. This was achieved by Kenneth Wilson [32] in 1974 in the field of high energy physics. He was doing calculations on quarks on a lattice, and the theory he developed is now known as lattice gauge theory (LGT). LGT approximates the covariant derivative in a consistent way and at the same time preserves the local gauge symmetry. The essence in the procedure is to localize the nonlocal terms arising in finite difference methods: the nonlocal terms which are to be compared, are parallel transported to a common reference point with the gauge potential. By doing this, the discrete theory becomes gauge invariant. In this context, one motivation of this work is to exploit this technique in a finite element framework to design gauge invariant schemes. As a result, we propose and analyze a numerical LGT scheme for the Maxwell-Klein-Gordon equations that satisfies the discrete constraint by preserving the gauge symmetry at the discrete level.

Some LGT schemes have already been proposed in the literature. In two other articles [6, 7], two of the authors already considered LGT discretization techniques for Maxwell-type equations. In [7], the convergence of the LGT scheme applied to pure Maxwell theory was studied. This was done by comparing the LGT scheme with the classical Yee scheme [33] which is known to converge. In [6], a LGT scheme and a standard Finite Difference discretization for the Maxwell-Klein-Gordon equations were compared. A discrete Noether theorem ensures that the constraint (charge) is preserved. However no
proof of convergence of the scheme was provided in that paper. With a more applicative perspective, in [29], lattice schemes are also used (with a Yee-type scheme for the electromagnetic part) to investigate some numerical simulations for the massive Maxwell-Klein-Gordon equation in the context of QED. Here again no numerical analysis is provided. LGT type discretizations have also been studied for other equations, in particular the Ginzburg-Landau equation [13].

Apart from LGT type discretizations, and regarding numerical analysis works in this context (MKG), in [8], two of the authors proposed a finite element semidiscrete energy preserving scheme in the temporal gauge where gauge symmetry is lost but the constraint preservation is recovered using a Lagrange multiplier. The complete semidiscrete numerical analysis is provided. Let us also mention the recent study [17] considering Maxwell-Klein-Gordon equations in the Coulomb gauge. There, a discretization framework is proposed, based on Finite Elements in space and a modified Crank-Nicolson scheme in time that is energy preserving but not constraint preserving. A complete convergence study and some academical test cases are provided. To the best knowledge of the authors, these are the only studies where a complete numerical analysis work is tackled in the precise context of Maxwell-Klein-Gordon equations.

In this article, we propose a discrete numerical framework for the massive and renormalizable MKG equations in the temporal gauge, based on conforming finite elements (FE) and LGT, aiming at preserving gauge symmetry at the discrete level. The Klein-Gordon (KG) part is discretized as in [6] with LGT techniques, while the Maxwell part is discretized using conforming Nédélec Finite Elements. The resulting semidiscrete scheme preserves a discrete constraint, namely the electric charge. We then prove the convergence of this semidiscrete scheme in two space dimensions. This is done with some inspiration from the methodology used in [8] using compactness arguments and energy principles. Discrete constraint preservation plays a central role in the proof to achieve the adequate bounds to obtain convergence. In a second step, we furthermore propose a fully discrete scheme based on a leapfrog time integration that also preserves the constraint at the discrete level. The fully discrete scheme is implemented and some academic numerical results are given for validation.

The paper is organized as follows: In Section 2, the continuous model is introduced from a variational point of view. In Section 3, we set the discretization in space using the lowest order Nédélec elements [23] on rectangles. The discrete gauge invariant Lagrangian is developed through both LGT and FE. Constraint and energy conservation are shown leading to the proof of the convergence of the scheme in Section 4. Finally, Section 5 numerically assess the fully discrete scheme.

2 | THE MAXWELL-KLEIN-GORDON EQUATION

We first set the equations in a quite general setting of differential forms. Let M be a compact Riemannian manifold without boundary. The space of real-valued k-forms will be denoted $\Omega^{k}(M)$. We will often identify one-forms and vector-fields. The real valued L^{2}-product on differential forms on M is denoted $\langle\cdot, \cdot\rangle$, and the associated L^{2}-norm $\|\cdot\|$. Similar notations will be used for complex valued forms. All adjoints, denoted $(\cdot)^{*}$, will be taken with respect to these L^{2} products.

2.1 | Formulation

2.1.1 | The Klein-Gordon action

The unknown of the Klein-Gordon theory is a complex scalar field, $t \mapsto \phi(t)$ (an element in $\Omega^{0}(M) \otimes$ \mathbb{C}), and the corresponding action functional is given by

$$
\begin{equation*}
S[\phi]=\frac{1}{2} \int_{0}^{T}\left(\|\dot{\phi}\|^{2}-\|d \phi\|^{2}-\mathfrak{m}^{2}\|\phi\|^{2}-\frac{\gamma}{2}\left\||\phi|^{2}\right\|^{2}\right) d t, \tag{1}
\end{equation*}
$$

where the dot represents time derivative and $d: \Omega^{k}(M) \otimes \mathbb{C} \rightarrow \Omega^{k+1}(M) \otimes \mathbb{C}$ is the exterior derivative acting on complex valued forms. The third term is the mass term ($\mathfrak{m} \geq 0$ is the mass) and the fourth term is the self-coupling term with $\gamma \geq 0$.

Remark 2.1 The case $\gamma<0$ will not be envisaged in this work and should deserve a specific study, since it leads to possible nonpositive energy.

2.1.2 | The Maxwell-Klein-Gordon action

In this section, we formally explain the classical physical steps to achieve the gauge invariant MKG action. The MKG-equation is obtained by imposing a local $U(1)$-symmetry, that is, by demanding the action (or more precisely the Lagrangian) to be invariant under the transformation

$$
\begin{equation*}
\phi \leadsto e^{i \beta} \phi, \tag{2}
\end{equation*}
$$

where β is a real valued function on $M, \beta \in \Omega^{0}(M)$. The Lagrangian given in Equation (1) is clearly not invariant under this transformation.

This is resolved by replacing the usual derivatives with covariant derivatives, that is, $\partial_{t} \rightsquigarrow D_{\alpha}:=$ $\partial_{t}+i q \alpha$ and $d \rightsquigarrow D_{A}:=d+i q A$, with q the coupling constant. Here $t \mapsto \alpha(t)$ is a real valued function on M, that is, $\alpha \in \Omega^{0}(M)$, and $t \mapsto A(t)$ is a real valued one-form on M, that is, $A \in \Omega^{1}(M)$.

The function α is usually called the electric potential while A is called the magnetic potential. They are related to the electric and magnetic fields by the following equations

$$
\mathbf{E}=-\dot{A}+d \alpha, \quad \mathbf{B}=d A
$$

and they transform as

$$
\begin{aligned}
& \alpha \rightsquigarrow \alpha-\dot{\beta}, \\
& A \rightsquigarrow A-d \beta,
\end{aligned}
$$

simultaneously with (2). This constitutes the gauge transformation of the field (ϕ, α, A) given as $(\phi, \alpha, A) \rightsquigarrow\left(e^{i \beta} \phi, \alpha-\dot{\beta}, A-d \beta\right)$.

It is then easy to check that the following action

$$
S_{K G}[\phi, \alpha, A]=\frac{1}{2} \int_{0}^{T}\left(\left\|D_{\alpha} \phi\right\|^{2}-\left\|D_{A} \phi\right\|^{2}-\mathfrak{m}^{2}\|\phi\|^{2}-\frac{\gamma}{2}\left\||\phi|^{2}\right\|^{2}\right) d t
$$

is locally $U(1)$-invariant.
To complete the action we add the $U(1)$-invariant Maxwell action given by

$$
S_{M}[\alpha, A]=\frac{1}{2} \int_{0}^{T}\left(\|\dot{A}-d \alpha\|^{2}-c^{2}\|d A\|^{2}\right) d t
$$

with c the speed of propagation. The full MKG-action is then given by (cf. [18, 25, 26, 28])

$$
S_{M K G}[\phi, \alpha, A]=S_{K G}[\phi, \alpha, A]+S_{M}[\alpha, A] .
$$

One can finally check that this action is invariant under the gauge transformation.

2.1.3 | Euler-Lagrange equations

The stationary points of this action with respect to the different fields are given by the following Euler-Lagrange equations

$$
\left.\left\langle D_{\alpha} D_{\alpha} \phi, \phi^{\prime}\right\rangle+\left\langle D_{A} \phi, D_{A} \phi^{\prime}\right\rangle+\mathfrak{m}^{2}\left\langle\phi, \phi^{\prime}\right\rangle+\left.\gamma\langle | \phi\right|^{2} \phi, \phi^{\prime}\right\rangle=0, \quad \forall \phi^{\prime} \in \Omega^{0}(M) \otimes \mathbb{C},
$$

$$
\begin{array}{rlrl}
\left\langle\dot{\mathbf{E}}, A^{\prime}\right\rangle-c^{2}\left\langle d A, d A^{\prime}\right\rangle+\left\langle i \phi^{*} D_{A} \phi, A^{\prime}\right\rangle & =0, & & \forall A^{\prime} \in \Omega^{1}(M), \\
\left\langle\mathbf{E}, d \alpha^{\prime}\right\rangle-\left\langle i \phi^{*} D_{\alpha} \phi, \alpha^{\prime}\right\rangle & =0, & \forall \alpha^{\prime} \in \Omega^{0}(M) . \tag{3}
\end{array}
$$

In a strong formulation, the Euler-Lagrange equations are also given by

$$
\begin{gather*}
D_{\alpha} D_{\alpha} \phi+D_{A}^{\star} D_{A} \phi+\mathfrak{m}^{2} \phi+\gamma|\phi|^{2} \phi=0, \tag{4}\\
\dot{\mathbf{E}}-c^{2} d^{\star} d A+i \frac{1}{2}\left(\phi^{*} D_{A} \phi-\phi\left(D_{A} \phi\right)^{*}\right)=0, \tag{5}\\
d^{\star} \mathbf{E}-i \frac{1}{2}\left(\phi^{*} D_{\alpha} \phi-\phi\left(D_{\alpha} \phi\right)^{*}\right)=0, \tag{6}
\end{gather*}
$$

where d^{\star} is the adjoint to d and $D_{A}^{\star}=d^{\star}-i q A$.
We see that the Euler-Lagrange-equations consist of two evolution equations given by (7)-(8) and a constraint equation given by Equation (6). Due to the local gauge invariance, Noether's second theorem can be applied to conclude that the constraint is preserved on the solution of the evolution equations (see [6]), which makes the equations consistent. See [24] for the continuous version(s) of Noether's theorem(s).

These equations together with the differential Bianchi identity (cf. [31])

$$
d \mathbf{B}=0, \quad \dot{\mathbf{B}}=-d \mathbf{E},
$$

which is satisfied by construction of the electromagnetic field from a gauge potential, constitute the complete set of the MKG-equations.

In the rest of the article, we consider unitary constants $q=1, c=1$. For the mass \mathfrak{m} and self-coupling constant γ, we will consider that they are either 1 or 0 in the mathematical proofs to allow for variations on the system of equations considered. All the proofs are of course valid for nonunitary cases.

2.2 | In the temporal gauge

We restrict the equations to the temporal gauge, $\alpha=0$, allowed by the gauge symmetry for the rest of the paper. We also now focus on domains in \mathbb{R}^{2}. From this section, we also leave the differential forms notation behind (namely d) and use rather the usual notation grad $=\nabla, \operatorname{curl}=\nabla \times, \operatorname{div}=\nabla \cdot$.

2.2.1 | Strong form of the equation

In the temporal gauge, the strong form of the equations is to find (A, ϕ) such that

$$
\begin{align*}
& \ddot{\phi}+D_{A}^{\star} D_{A} \phi+\mathfrak{m}^{2} \phi+\gamma|\phi|^{2} \phi=0, \tag{7}\\
& \ddot{A}+\operatorname{curl}(\operatorname{curl} A)-\mathfrak{J}\left(\phi^{*} D_{A} \phi\right)=0, \tag{8}
\end{align*}
$$

where $D_{A}^{\star} \cdot=-\operatorname{div} \cdot-i A \cdot$ and \mathfrak{F} is the imaginary part of a complex.
The constraint is

$$
\operatorname{div}(\dot{A})=\mathfrak{J}(\dot{\phi} \bar{\phi})
$$

2.2.2 | Notations and definition of weak solutions

We let S be a bounded contractible domain in \mathbb{R}^{2} with C^{1} boundary.

We use the classical notations for $L^{p}(S)$ spaces and Sobolev spaces $W^{1, s}(S), H^{1}(S), H_{0}^{1}(S)$ (with seminorm $\left.|\cdot|_{H^{1}(S)}\right)$, and $H\left(\right.$ curl, S) is the space of vector potentials in \mathbb{R}^{2} considered as vector fields or one forms, with square integrable curl; the analogue space for the divergence will be denoted $H(\operatorname{div}, S)$. We also denote

$$
H_{0}(\operatorname{curl}, S):=\left\{\mathbf{A} \in H(\operatorname{curl}, S) \mid \gamma_{\tau} \mathbf{A}=0 \text { on } \partial S\right\},
$$

where $\gamma_{\tau} \mathbf{A}$ is the tangential component of \mathbf{A} on ∂S, and

$$
V:=\left\{v \in H_{0}(\operatorname{curl}, S) \mid \operatorname{div} v=0 \text { in } \Omega\right\},
$$

Time dependent spaces are defined as follows.
For closed intervals $I \subseteq[0, T], \mathcal{C}(I ; X)$ is the space of continuous functions from I to X, and $\mathcal{C}(0, T ; X)$ will denote $\mathcal{C}([0, T] ; X)$.

We also define for $1 \leq p \leq+\infty$, the Bochner spaces $L^{p}(0, T ; X)$ for X a Banach space as in [30].
We now give a rigorous sense to a weak solution in the temporal gauge and use a similar notion as in [8].

Definition $1(E, A, \psi, \phi)$ is said to be a weak solution of (80) in the temporal gauge, if

- There exists $q<2$, such that
- $E \in L^{\infty}\left(0, T ; L^{2}(S)\right)$,
- $A \in \mathcal{C}\left(0, T ; L^{2}(S)\right) \cap L^{\infty}\left(0, T ; H_{0}(\operatorname{curl}, S) \cap W^{1, q}(S)^{2}\right)$,
- $\psi \in L^{\infty}\left(0, T ; L^{2}(S)\right)$,
- $\phi \in \mathcal{C}\left(0, T ; L^{2}(S)\right) \cap L^{\infty}\left(0, T ; H_{0}^{1}(S)\right)$.
- $\begin{cases}\dot{A}=-E, \\ \dot{\phi}= & =\psi .\end{cases}$
- For every $\left(E^{\prime}, \psi^{\prime}\right) \in \mathcal{C}_{c}^{\infty}(] 0, T[\times S)^{2} \times \mathcal{C}_{c}^{\infty}(] 0, T[\times S)$, there holds

$$
\begin{align*}
-\int_{0}^{T}\left\langle E, \dot{E}^{\prime}\right\rangle d t-\int_{0}^{T}\left\langle\psi, \dot{\psi^{\prime}}\right\rangle d t= & \int_{0}^{T}\left\langle\nabla \times A, \nabla \times E^{\prime}\right\rangle d t \\
& +\int_{0}^{T}\left\langle D_{A} \phi, i \phi E^{\prime}\right\rangle d t+\int_{0}^{T}\left\langle D_{A} \phi, D_{A} \psi^{\prime}\right\rangle d t \\
& \left.+\mathfrak{m}^{2} \int_{0}^{T}\left\langle\phi, \psi^{\prime}\right\rangle d t+\left.\gamma \int_{0}^{T}\langle | \phi\right|^{2} \phi, \psi^{\prime}\right\rangle d t \tag{9}
\end{align*}
$$

We now turn to the discretization of this equation.

3 | SEMIDISCRETE SETTING

3.1 | Finite Element discretization and gauge invariance

3.1.1 | Finite element discretization

We discretize the spatial part of the continuous action. Let $h>0$. We assume S to be a rectangular domain with a Cartesian mesh \mathcal{T}_{h}, and we will assume homogeneous boundary conditions. Furthermore, for $(k, l) \in \mathbb{N} \times \mathbb{N}, \mathcal{Q}_{k, l}(\mathbb{C})$ is defined as the space of polynomials with complex coefficients in two variables $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ with maximum degree k with respect to x_{1} and l with respect to x_{2}.

The discretization is based on three finite dimensional spaces Z_{h}^{0}, Z_{h}^{1}, and Z_{h}^{2} defined as (see [22, 23] for properties of these spaces)

$$
\left\{\begin{array}{l}
Z_{h}^{0}=\left\{u_{h} \in H_{0}^{1}(S)\left|\forall K \in \mathcal{T}_{h}, u_{h}\right|_{K} \in \mathcal{Q}_{1,1}(\mathbb{C})\right\} \tag{10}\\
\text { the space of piecewise } \mathcal{Q}_{1,1}(\mathbb{C}) \text { continuous scalar } \\
\text { functions on S. } \\
Z_{h}^{1}=\left\{v_{h} \in H_{0}(\operatorname{curl}, S)\left|\forall K \in \mathcal{T}_{h}, v_{h}\right|_{K} \in \mathcal{Q}_{0,1}(\mathbb{C}) \times \mathcal{Q}_{1,0}(\mathbb{C})\right\} \\
Z_{h}^{2}=\left\{v_{h} \in L^{2}(S)\left|\forall K \in \mathcal{T}_{h}, v_{h}\right|_{K} \in \mathcal{Q}_{0,0}(\mathbb{C})\right\}
\end{array}\right.
$$

We denote by $Y_{h}^{0}, Y_{h}^{1}, Y_{h}^{2}$ (respectively) the analogues of $Z_{h}^{0}, Z_{h}^{1}, Z_{h}^{2}$ constructed with real valued functions. These spaces are equipped with real basis functions $\left(w_{n}^{h}\right)$, $\left(w_{e}^{h}\right)$ and $\left(w_{f}^{h}\right)$ respectively, which we choose as the tensor product of the one dimensional Whitney forms [22, 23]. With these choices of basis functions, scalar fields ϕ_{h} have degrees of freedom at the nodes of the mesh, $\boldsymbol{\phi}_{n}^{h}$, edge-vector-fields/one-forms A_{h} have degrees of freedom at the edges of the mesh, \mathbf{A}_{e}^{h}, while face-vector-fields/two-forms B_{h} have degrees of freedom at the faces of the mesh.

Moreover, the grad and curl operators in 2D relate the finite dimensional spaces Z_{h}^{0}, Z_{h}^{1}, and Z_{h}^{2}, so that we have a complex:

$$
Z_{h}^{0} \xrightarrow{\nabla} Z_{h}^{1} \xrightarrow{\nabla \times} Z_{h}^{2}
$$

They also induce matrices $G=\left(G_{e n}\right)$ and $R=\left(R_{f e}\right)$ in the chosen bases, such that

$$
\mathbb{R}^{N} \xrightarrow{G} \mathbb{R}^{E} \xrightarrow{R} \mathbb{R}^{F},
$$

where N, E, and F are the sets of vertices, edges and faces respectively.
Remark 3.1 Since curlograd $=0$, we analogously have $R G=0$.
Thus, for a node element function ϕ_{h} and an edge element function A_{h} we can write

$$
\begin{array}{rlr}
\phi_{h}=\sum_{n} \boldsymbol{\phi}_{n}^{h} w_{n}^{h}, & \nabla \phi_{h}=\sum_{e}\left(G \boldsymbol{\phi}^{h}\right)_{e} w_{e}^{h}, & \boldsymbol{\phi}_{n}^{h},\left(G \boldsymbol{\phi}^{h}\right)_{e} \in \mathbb{C}, \\
A_{h}=\sum_{e} \mathbf{A}_{e}^{h} w_{e}^{h}, & \nabla \times A_{h}=\sum_{f}\left(R \mathbf{A}^{h}\right)_{f} w_{f}^{h}, & \mathbf{A}_{e}^{h},\left(R \mathbf{A}^{h}\right)_{f} \in \mathbb{R} .
\end{array}
$$

Here, $\boldsymbol{\phi}_{n}^{h}$ and $\left(G \boldsymbol{\phi}^{h}\right)_{e}$ are vertex and edge degrees of freedom, while \mathbf{A}_{e}^{h} and $\left(R \mathbf{A}^{h}\right)_{f}$ are edge and face degrees of freedom. The quantity $\left(G \boldsymbol{\phi}^{h}\right)_{e}$ represents the differential of the scalar field along the edge e, and has the form $\left(\boldsymbol{\phi}_{m}^{h}-\boldsymbol{\phi}_{n}^{h}\right.$), where the edge e goes from node m to node n. Since we are considering rectangles, a natural orthogonal coordinate system can be associated to the mesh, and in such a coordinate system the expression $\left(\boldsymbol{\phi}_{m}^{h}-\boldsymbol{\phi}_{n}^{h}\right)$ represents the differential in one of the two directions (see [6] for a more explicit formulation).

The notation $e=\{m, n\}$ will denote the edge e which goes from node m to node n.

3.1.2 | Scalar products and norms

The information about the shape and size of the rectangles is encoded in the mass matrices. For two edges e and e^{\prime}, we define

$$
\left(M_{1}^{h}\right)_{e e^{\prime}}=\int_{S} w_{e}^{h} \cdot w_{e^{\prime}}^{h}
$$

where \cdot denotes the scalar product in \mathbb{R}^{2}. We also define

$$
\left(M_{k}^{h}\right)_{s s^{\prime}}=\int_{S} w_{s}^{h} w_{s^{\prime}}^{h}
$$

in the cases $k=0$ and $k=2$, where s and s^{\prime} are respectively two nodes or two faces of the mesh.
We note that the matrices M_{k}^{h} are square, symmetric and positive definite. We also note that the nonzero entries in $M_{0}^{h}, M_{1}^{h}, M_{2}^{h}$ are of the order h^{2}, h^{0}, h^{-2}, where h denotes the maximum diameter of the elements in the mesh.

These matrices M_{k}^{h} are the representative matrices of the L^{2}-products in the corresponding bases w^{h}. Thus, for example, for two edge element fields u_{h} and v_{h} written as

$$
u_{h}=\sum_{e} \mathbf{u}_{e}^{h} w_{e}^{h}, \quad v_{h}=\sum_{e} \mathbf{v}_{e}^{h} w_{e}^{h},
$$

where \mathbf{u}_{e}^{h} and \mathbf{v}_{e}^{h} are the edge degrees of freedom (DoF), we have

$$
\begin{aligned}
\left\langle u_{h}, v_{h}\right\rangle & =\frac{1}{2} \sum_{e, e^{\prime} \in E}\left(\overline{\mathbf{u}_{e}^{h}} \mathbf{v}_{e^{\prime}}^{h}+\mathbf{u}_{e}^{h} \overline{\mathbf{v}_{e^{\prime}}^{h}}\right) \int_{S} w_{e}^{h} \cdot w_{e^{\prime}}^{h} \\
& =\Re\left({\overline{\mathbf{u}^{h}}}^{T} M_{1}^{h} \mathbf{v}^{h}\right)=\left(M_{1}^{h} \mathbf{u}^{h}, \mathbf{v}^{h}\right) .
\end{aligned}
$$

We use (\cdot, \cdot) to denote the real valued scalar product of vectors.

3.1.3 | Norm estimates

One can establish estimates between norms and degrees of freedom as in the following Lemmas

Lemma 3.2 If $u_{h} \in Y_{h}^{1}$, then

$$
\left|\mathbf{u}_{e}^{h}\right| \leq C\left\|u_{h}\right\|_{L^{2}(S)} .
$$

Furthermore, with $p>2, q>2$ and $\frac{1}{p}+\frac{1}{q}=\frac{1}{2}$, we have:

$$
\left|\mathbf{u}_{e}^{h}\right| \leq C h^{\frac{2}{a}}\left\|u_{h}\right\|_{L^{p}(S)} .
$$

Proof. Let $u_{h} \in Y_{h}^{1}$. There exists a constant C, independent of u and h such that

$$
\frac{1}{C}\left(\mathbf{u}^{h}\right)^{T} \mathbf{u}^{h} \leq\left\|u_{h}\right\|_{L^{2}}^{2}=\left(M_{1}^{h} \mathbf{u}^{h}, \mathbf{u}^{h}\right) \leq C\left(\mathbf{u}^{h}\right)^{T} \mathbf{u}^{h}, \quad\left(\mathbf{u}^{h}\right)^{T} \mathbf{u}^{h}=\sum_{e}\left(\mathbf{u}_{e}^{h}\right)^{2} .
$$

Thus

$$
\left|\mathbf{u}_{e}^{h}\right| \leq \sqrt{\sum_{e^{\prime} \in K}\left(\mathbf{u}_{e^{\prime}}^{h}\right)^{2}} \leq C\left\|u_{h}\right\|_{L^{2}(K)} \leq C\left\|u_{h}\right\|_{L^{2}(S)}
$$

This estimate together with Hölder's inequality gives

$$
\left|\mathbf{u}_{e}^{h}\right| \leq C h^{\frac{2}{a}}\left\|u_{h}\right\|_{L^{p}(S)} .
$$

3.1.4 | Gauge symmetry

We can redo the formal derivation of the gauge invariant action at the discrete level. This amounts to understand how the natural analogue of the action at the discrete level would transform under the gauge and correct the terms to obtain a gauge invariant action.

With the notation developed in the previous sections, we can express the discrete version of the Lagrangian from (1) as

$$
\left\langle\dot{\phi}_{h}, \dot{\phi}_{h}\right\rangle-\left\langle\nabla \phi_{h}, \nabla \phi_{h}\right\rangle=\left(M_{0}^{h} \dot{\boldsymbol{\phi}}^{h}, \dot{\boldsymbol{\phi}}^{h}\right)-\left(M_{1}^{h} G \boldsymbol{\phi}^{h}, G \boldsymbol{\phi}^{h}\right) .
$$

where $\dot{\boldsymbol{\phi}}^{h}$ and $\boldsymbol{\phi}^{h}$ are degrees-of-freedom vectors. As in the continuous model we want to impose a local $U(1)$ gauge symmetry. We would like the theory to be invariant under the set of transformations

$$
\begin{equation*}
\phi_{h} \rightsquigarrow e^{i \beta_{h}} \phi_{h}, \tag{11}
\end{equation*}
$$

where $t \mapsto \beta_{h}(t) \in Y_{h}^{0}$ is a real valued function, but with $\phi_{h} \in Z_{h}^{0}, e^{i \beta_{h}} \phi_{h} \notin Z_{h}^{0}$.
We thus modify $\left\langle\dot{\phi}_{h}, \dot{\phi}_{h}\right\rangle=\left(M_{0}^{h} \dot{\phi}^{h}, \dot{\phi}^{h}\right)$ in two steps.
(a) First, as in the continuous case, we replace the ordinary time derivative by the covariant time derivative, that is, $\partial_{0} \rightsquigarrow D_{\alpha_{h}}=\partial_{0}+i \alpha_{h}$, where α_{h} is a real valued function, $\alpha_{h} \in Y_{h}^{0}$. Furthermore, $\alpha_{h} \rightsquigarrow \alpha_{h}-\dot{\beta}_{h}$ under a gauge transformation, implying that $D_{\alpha_{h}} \phi_{h}$ transforms as

$$
D_{\alpha_{h}} \phi_{h} \rightsquigarrow e^{i \beta_{h}} D_{\alpha_{h}} \phi_{h} .
$$

(b) Next, we replace the mass matrix M_{0}^{h} with a mass lumped version H_{0}^{h}, which is both diagonal and positive definite. Its entries are given by

$$
\left(H_{0}^{h}\right)_{n m}= \begin{cases}\sum_{k}\left(M_{0}^{h}\right)_{n k}, & n=m, \\ 0, & n \neq m .\end{cases}
$$

Let u, v be continuous scalar functions, and \mathbf{u}, \mathbf{v} their vectors of nodal degrees-of-freedom. We define the associated bilinear form by $\langle., .\rangle_{0, h}$ (which gives the scalar product associated to the matrix H_{0}^{h} on Z_{h}^{0}) by

$$
\begin{align*}
\langle u, v\rangle_{0, h} & =\sum_{n \in N} \Re\left(u_{n}\left(H_{0}^{h}\right)_{n n} \bar{v}_{n}\right)=\left(H_{0}^{h} \mathbf{u}, \mathbf{v}\right) \\
& =\Re\left(\int_{S} \Pi_{0, h}(u \bar{v}) d S\right)=\sum_{K \in \mathcal{T}_{h}} \frac{|K|}{4} \sum_{x \in K} \Re(u(x) \bar{v}(x)), \tag{12}
\end{align*}
$$

where the points x appearing in the sum are the vertices of K and (\cdot, \cdot) denotes the real valued scalar product for nodal DoF vectors.

Consistency. H_{0}^{h} is consistent with M_{0}^{h}. More precisely, we have the following error estimate (see $[9,11]$).

For real $l>1$, and all $u \in H^{l}(S)$ and $v_{h} \in Z_{h}^{0}$, there exists a constant C depending on l such that

$$
\begin{equation*}
\left|\left\langle u, v_{h}\right\rangle_{0, h}-\left\langle u, v_{h}\right\rangle\right| \leq C h\|u\|_{H^{l}(S)}\left\|v_{h}\right\|_{L^{2}(S)} . \tag{13}
\end{equation*}
$$

Hölder type inequality. Furthermore, for p and p^{\prime} such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, for all u, v in Z_{h}^{0} (even u, v continuous scalar fields on S),

$$
\begin{equation*}
\left|\langle u, v\rangle_{0, h}\right| \leq\|u\|_{h, p}\|v\|_{h, p^{\prime}}, \tag{14}
\end{equation*}
$$

where for $p>1$, one defines

$$
\|u\|_{h, p}=\left(\int_{S} \Pi_{0, h}\left(|u|^{p}\right) d S\right)^{\frac{1}{p}}
$$

which is uniformly equivalent on Z_{h}^{0} to the true L^{p} norm [3], that is, there exists a constant C (independent of h) such that for all $u \in Z_{h}^{0}$,

$$
\frac{1}{C}\|u\|_{L^{p}(S)} \leq\|u\|_{h, p} \leq C\|u\|_{L^{p}(S)} .
$$

As a conclusion, we have modified the term $\left\langle\dot{\phi}_{h}, \dot{\phi}_{h}\right\rangle$ as $\left\langle D_{\alpha_{h}} \phi_{h}, D_{\alpha_{h}} \phi_{h}\right\rangle_{0, h}$.
As for the term $\left\langle\dot{\phi}_{h}, \dot{\phi}_{h}\right\rangle=\left(M_{0}^{h} \dot{\boldsymbol{\phi}}^{h}, \dot{\boldsymbol{\phi}}^{h}\right)$, we get a gauge invariant expression approximating $\left\langle\nabla \phi_{h}, \nabla \phi_{h}\right\rangle=\left(M_{1}^{h} G \boldsymbol{\phi}^{h}, G \boldsymbol{\phi}^{h}\right)$ in two steps.
(a) The mass matrix M_{1}^{h} defines the L^{2}-product for fields with edge degrees-of-freedom. We lump this matrix with the same numerical quadrature as we used for M_{0}^{h} in Equation (12), as follows.

Define the scalar product $\langle., .\rangle_{1, h}$ on $Z_{h}^{1} \times Z_{h}^{1}$ by a diagonal matrix H_{1}^{h} in the basis w_{e}^{h} indexed over the edges in the mesh. Let u, v be continuous vector fields/one-forms, and \mathbf{u}, \mathbf{v} their edge degrees-of-freedom. Then

$$
\begin{aligned}
\langle u, v\rangle_{1, h} & =\mathfrak{R}\left(\int_{S} \Pi_{0, h}(u \cdot \bar{v}) d S\right)=\sum_{K \in \mathcal{T}_{h}} \frac{|K|}{4} \sum_{x \in K} \Re(u(x) \bar{v}(x)) \\
& =\sum_{e \in E} \mathfrak{R}\left(u_{e} H_{1, e e}^{h} \bar{v}_{e}\right)=\left(H_{1}^{h} \mathbf{u}, \mathbf{v}\right) .
\end{aligned}
$$

Here (\cdot, \cdot) denotes the real valued scalar product for edge DoF vectors, $(\mathbf{u}, \mathbf{v})=\sum_{e \in E} \Re\left(\mathbf{u}_{\mathbf{e}} \overline{\mathbf{v}}_{\mathbf{e}}\right)$. We observe that H_{1}^{h} is both symmetric and positive-definite.

Consistency. We have the following error estimate (see [9, 11]). For real $l>1$, and all $u \in H^{l}(S)$ and $v_{h} \in Z_{h}^{1}$,

$$
\begin{equation*}
\left|\left\langle u, v_{h}\right\rangle-\left\langle u, v_{h}\right\rangle_{1, h}\right| \leq C(l) h\|u\|_{H^{l}(S)}\left\|v_{h}\right\|_{L^{2}(S)} . \tag{15}
\end{equation*}
$$

Henceforth, the mass matrix M_{1}^{h} is replaced with the above described mass lumped version H_{1}^{h} in the inner products.

However, we observe that

$$
\left(G \boldsymbol{\phi}^{h}\right)_{e=\{m, n\}}=\boldsymbol{\phi}_{n}^{h}-\boldsymbol{\phi}_{m}^{h} \rightsquigarrow e^{i \boldsymbol{\beta}_{n}^{h}} \boldsymbol{\phi}_{n}^{h}-e^{i \boldsymbol{\beta}_{\boldsymbol{m}}^{h}} \boldsymbol{\phi}_{m}^{h}
$$

under a gauge transformation, so the expression $\left(H_{1}^{h} G \boldsymbol{\phi}^{h}, G \boldsymbol{\phi}^{h}\right)$ is not gauge invariant.
(b) This can be resolved by inspiration from Lattice Gauge Theory (LGT) [12, 27, 32], that is, we make the replacement

$$
\left(G \boldsymbol{\phi}^{h}\right)_{e=\{m, n\}} \rightarrow\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)_{e=\{m, n\}}=\boldsymbol{\phi}_{n}^{h}-U^{h}(m, n) \boldsymbol{\phi}_{m}^{h}, \quad U^{h}(m, n)=e^{-i \int_{m}^{n} A_{h}},
$$

where $U^{h}(m, n)$ is called a link variable.
The vector-field $A_{h} \in Y_{h}^{1}$ transforms as

$$
A_{h} \leadsto A_{h}-\nabla \beta_{h},
$$

under a gauge transformation, implying that $\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)_{e=\{m, n\}} \rightsquigarrow e^{i \boldsymbol{\beta}_{n}^{h}}\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)_{e=\{m, n\}}$.
We will denote $G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}$ the vector of degrees of freedom $\left(\boldsymbol{\phi}_{n}^{h}-U^{h}(m, n) \boldsymbol{\phi}_{m}^{h}\right)_{e=\{m, n\}}$ and $G_{A_{h}} \boldsymbol{\phi}_{h}$ the corresponding element of Z_{h}^{1} (i.e., that has the vector $G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}$ of degrees of freedom). Furthermore, we define $U_{h} \in Z_{h}^{1}$ that has vector of degrees of freedom $\left(e^{-i A_{e}}\right)_{e=\{m, n\}}$.

In conclusion, we have thus replaced $\left\langle\nabla \phi_{h}, \nabla \phi_{h}\right\rangle$ with the expression $\left\langle G_{A_{h}} \phi_{h}, G_{A_{h}} \phi_{h}\right\rangle_{1, h}$.

3.2 | Discrete formulation of the Maxwell-Klein-Gordon equation

3.2.1 | Gauge invariant discrete Maxwell-Klein-Gordon action

The LGT inspired discretely gauge invariant Klein-Gordon action is therefore given by

$$
S_{h}^{K G}\left[\phi_{h}, \alpha_{h}, A_{h}\right]=\frac{1}{2} \int_{0}^{T}\left(\left\|D_{\alpha_{h}} \phi_{h}\right\|_{h, 2}^{2}-\left\|G_{A_{h}} \phi_{h}\right\|_{h, 2}^{2}-\mathfrak{m}^{2}\left\|\phi_{h}\right\|_{h, 2}^{2}-\frac{\gamma}{2}\left\|\left|\phi_{h}\right|^{2}\right\|_{h, 2}^{2}\right) d t .
$$

To complete the construction of the Maxwell-Klein-Gordon action, we add the Maxwell action

$$
\begin{equation*}
S^{M}\left[\alpha_{h}, A_{h}\right]=\frac{1}{2} \int_{0}^{T}\left(\left\|\dot{A}_{h}-\nabla \alpha_{h}\right\|_{L^{2}(S)}^{2}-\left\|\nabla \times A_{h}\right\|_{L^{2}(S)}^{2}\right) d t . \tag{16}
\end{equation*}
$$

The discretization of the Maxwell part of the action is well understood (see e.g., [2, 21-23]), so the gauge invariant action we are going to use is

$$
\begin{equation*}
S_{h}^{M K G}\left[\phi_{h}, \alpha_{h}, A_{h}\right]=S_{h}^{M}\left[\alpha_{h}, A_{h}\right]+S_{h}^{K G}\left[\phi_{h}, \alpha_{h}, A_{h}\right] . \tag{17}
\end{equation*}
$$

With the above considerations, $S_{h}^{M K G}$ is invariant under the discrete gauge transformation $\mathcal{G}_{\beta_{h}}$: $\left(\phi_{h}, \alpha_{h}, A_{h}\right) \mapsto\left(\Pi_{0, h}\left(e^{i \beta_{h}} \phi_{h}\right), \alpha_{h}-\dot{\beta}_{h}, A_{h}-\nabla \beta_{h}\right)$, with $t \mapsto \beta_{h}(t) \in Y_{h}^{0}$ and $\Pi_{0, h}$ the nodal interpolant onto Z_{h}^{0}.

3.2.2 | Weak formulation of the discretized equations

The variation of $S_{h}^{M K G}$ at $\left(\phi_{h}, \alpha_{h}, A_{h}\right)$ in the direction $\left(\phi_{h}^{\prime}, \alpha_{h}^{\prime}, A_{h}^{\prime}\right)$ is given by

$$
\begin{align*}
& D S_{h}^{M K G}\left[\phi_{h}, \alpha_{h}, A_{h}\right]\left(\phi_{h}^{\prime}, 0,0\right)= \int_{0}^{T}\left(\left\langle D_{\alpha} \phi_{h}, D_{\alpha} \phi_{h}^{\prime}\right\rangle_{0, h}-\left\langle G_{A_{h}} \phi_{h}, G_{A_{h}} \phi_{h}^{\prime}\right\rangle_{1, h}\right) d t \\
&\left.+\mathfrak{m}^{2} \int_{0}^{T}\left(\left\langle\phi_{h}, \phi_{h}^{\prime}\right\rangle_{0, h}+\left.\gamma\langle | \phi_{h}\right|^{2} \phi_{h}, \phi_{h}^{\prime}\right\rangle_{0, h}\right) d t \tag{18}\\
& D S_{h}^{M K G}\left[\phi_{h}, \alpha_{h}, A_{h}\right]\left(0, \alpha_{h}^{\prime}, 0\right)= \int_{0}^{T}\left(-\left\langle\dot{A}_{h}-\nabla \alpha_{h}, \nabla \alpha_{h}^{\prime}\right\rangle+\left\langle D_{\alpha} \phi_{h}, i \alpha_{h}^{\prime} \phi_{h}\right\rangle_{0, h}\right) d t, \tag{19}\\
& D S_{h}^{M K G}\left[\phi_{h}, \alpha_{h}, A_{h}\right]\left(0,0, A_{h}^{\prime}\right)= \\
& \quad \int_{0}^{T}\left(\left\langle\dot{A}_{h}-\nabla \alpha_{h}, \dot{A}_{h}^{\prime}\right\rangle-\left\langle\nabla \times A_{h}, \nabla \times A_{h}^{\prime}\right\rangle-\left\langle G_{A_{h}} \phi_{h}, i \mathcal{R}_{h}\left(U_{h}, \phi_{h}, A_{h}^{\prime}\right)\right\rangle_{1, h}\right) d t, \tag{20}
\end{align*}
$$

where $\mathcal{R}_{h}: Z_{h}^{1} \times Z_{h}^{0} \times Y_{h}^{1} \rightarrow Z_{h}^{1}$, and for all $(\tilde{U}, \tilde{\phi}, \tilde{A})$ in $Z_{h}^{1} \times Z_{h}^{0}, \mathcal{R}_{h}(\tilde{U}, \tilde{\phi}, \tilde{A})$ is the edge element uniquely defined by its edge degrees of freedom

$$
\left(\mathcal{R}_{h}(\tilde{U}, \tilde{\phi}, \tilde{A})\right)_{e}:=\tilde{U}_{e} \tilde{\phi}_{m} \tilde{A}_{e},
$$

for $e=\{m, n\}$.
The Euler-Lagrange equations are given by the stationarity of the action, that is,

$$
D S_{h}^{M K G}\left[\phi_{h}, \alpha_{h}, A\right]\left(\phi_{h}^{\prime}, \alpha_{h}^{\prime}, A_{h}^{\prime}\right)=0 .
$$

By defining the electric field E_{h} as

$$
\begin{equation*}
E_{h}=\nabla \alpha_{h}-\dot{A}_{h}, \tag{21}
\end{equation*}
$$

and by a partial integration in time, the Euler-Lagrange equations read

$$
\begin{align*}
\left.\left\langle D_{\alpha}^{2} \phi_{h}, \phi_{h}^{\prime}\right\rangle_{0, h}+\left\langle G_{A_{h}} \phi_{h}, G_{A_{h}} \phi_{h}^{\prime}\right\rangle_{1, h}+\mathfrak{m}^{2}\left\langle\phi_{h}, \phi_{h}^{\prime}\right\rangle_{0, h}+\left.\gamma\langle | \phi_{h}\right|^{2} \phi_{h}, \phi_{h}^{\prime}\right\rangle_{0, h}=0, & \forall \phi_{h}^{\prime} \in Z_{h}^{0}, \\
\left\langle\dot{E}_{h}, A_{h}^{\prime}\right\rangle-\left\langle\nabla \times A_{h}, \nabla \times A_{h}^{\prime}\right\rangle-\left\langle G_{A_{h}} \phi_{h}, i \mathcal{R}_{h}\left(U_{h}, \phi_{h}, A_{h}^{\prime}\right)\right\rangle_{1, h}=0, & \forall A_{h}^{\prime} \in Y_{h}^{1}, \tag{22}
\end{align*}
$$

and

$$
\begin{equation*}
\left\langle E_{h}, \nabla \alpha_{h}^{\prime}\right\rangle+\left\langle D_{\alpha} \phi_{h}, i \alpha_{h}^{\prime} \phi_{h}\right\rangle_{0, h}=0, \quad \forall \alpha_{h}^{\prime} \in Y_{h}^{1} . \tag{23}
\end{equation*}
$$

We see that these equations consist of two evolution equations, Equation (22), and one constraint equation, Equation (23) (corresponding to Equation (80)).

Remark 3.3 If one had considered a classical Finite Element discretization, the covariant derivative would have been discretized using $D \phi_{h}+\Pi_{1, h}\left(A_{h} \phi_{h}\right)$ which would break the gauge invariance.

We suppose that the following initial conditions, $A^{0} \in H^{1}(S), E^{0} \in L^{2}(S), \phi^{0} \in H_{0}^{1}(S), \psi^{0} \in L^{2}(S)$ are given.

Then we consider the following discrete initial conditions

$$
\begin{gather*}
A_{h}(0, .)=A_{h}^{0} \in Y_{h}^{1}, \\
E_{h}(0, .)=E_{h}^{0} \in Y_{h}^{1}, \\
\phi_{h}(0, .)=\phi_{h}^{0} \in Z_{h}^{0}, \\
\psi_{h}(0, .)=\psi_{h}^{0} \in Z_{h}^{0} . \tag{24}
\end{gather*}
$$

Furthermore, we suppose that they are chosen such that

$$
\begin{gather*}
A_{h}^{0} \underset{h \rightarrow 0}{\longrightarrow} A^{0} \text { in }\left(H_{0}(\operatorname{curl}, S)\right) \cap L^{q}, \quad E_{h}^{0} \xrightarrow[h \rightarrow 0]{\longrightarrow} E^{0} \text { in } L^{2}(S), \tag{25}\\
\phi_{h}^{0} \xrightarrow[h \rightarrow 0]{\longrightarrow} \phi^{0} \text { in } H_{0}^{1}(S), \quad \psi_{h}^{0} \xrightarrow[h \rightarrow 0]{\longrightarrow} \psi^{0} \text { in } L^{2}(S) . \tag{26}
\end{gather*}
$$

In the rest of Section 3.2, for simplicity of notations we drop the indices h, and consider the situation where h is fixed.

3.2.3 | Constraint preservation

One important feature of this scheme concerns the constraint equation (23). The discrete MKG action (17) is gauge invariant, since both terms are. One can therefore use a discrete Noether's theorem to prove constraint preservation, in a similar manner as in [6].

We can also show this by a direct calculation.
Theorem 1 Suppose ($\mathbf{E}, \mathbf{A}, \boldsymbol{\alpha}, \boldsymbol{\phi}$) solves Equation (22) on a time interval $[0, T]$. Suppose furthermore that the constraint (23) is satisfied at $t=0$. Then the constraint (23) is satisfied for all $t \in[0, T]$.

Proof. We start out by a differentiation in time of the left hand side of Equation (23), denoted κ. This gives

$$
\begin{equation*}
\dot{\kappa}=\left\langle\dot{E}, \nabla \alpha^{\prime}\right\rangle+\left\langle D_{\alpha} \dot{\phi}, i \alpha^{\prime} \phi\right\rangle_{0, h}+\left\langle D_{\alpha} \phi, i \alpha^{\prime} \dot{\phi}\right\rangle_{0, h}+\left\langle i \dot{\alpha} \phi, i \alpha^{\prime} \phi\right\rangle_{0, h} . \tag{27}
\end{equation*}
$$

By the evolution equation for the electric field, Equation (22), we have

$$
\begin{equation*}
\left\langle\dot{E}, \nabla \alpha^{\prime}\right\rangle=\left\langle G_{A} \phi, i \mathcal{R}\left(U, \phi, \nabla \alpha^{\prime}\right)\right\rangle_{1, h} . \tag{28}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
D_{\alpha}^{2} \phi=D_{\alpha} \dot{\phi}+i \alpha D_{\alpha} \phi+i \dot{\alpha} \phi, \tag{29}
\end{equation*}
$$

and we can apply the nodal interpolator to both sides of this equality. Then (27) can be rewritten

$$
\begin{equation*}
\dot{\kappa}=\left\langle G_{A} \phi, i \mathcal{R}\left(U, \phi, \nabla \alpha^{\prime}\right)\right\rangle_{1, h}+\left\langle D_{\alpha}^{2} \phi, i \alpha^{\prime} \phi\right\rangle_{0, h}+\left\langle D_{\alpha} \phi, i \alpha^{\prime} \dot{\phi}\right\rangle_{0, h}-\left\langle i \alpha D_{\alpha} \phi, i \alpha^{\prime} \phi\right\rangle_{0, h} . \tag{30}
\end{equation*}
$$

The evolution equation for the Klein-Gordon scalar field gives

$$
\begin{align*}
\dot{\kappa}= & \left\langle G_{A} \phi, i \mathcal{R}\left(U, \phi, \nabla \alpha^{\prime}\right)\right\rangle_{1, h}-\left\langle G_{A} \phi, G_{A}\left(i \Pi_{0, h}\left(\alpha^{\prime} \phi\right)\right)\right\rangle_{1, h} \\
& \left.+\mathfrak{m}^{2}\left\langle\phi, i \Pi_{0, h}\left(\alpha^{\prime} \phi\right)\right\rangle_{0, h}+\left.\gamma\langle | \phi\right|^{2} \phi, i \Pi_{0, h}\left(\alpha^{\prime} \phi\right)\right\rangle_{0, h} \\
& +\left\langle D_{\alpha} \phi, i \alpha^{\prime} \dot{\phi}\right\rangle_{0, h}-\left\langle i \alpha D_{\alpha} \phi, i \alpha^{\prime} \phi\right\rangle_{0, h} . \tag{31}
\end{align*}
$$

Since our scalar product is real valued, we obtain

$$
\begin{equation*}
\left\langle D_{\alpha} \phi, i \alpha^{\prime} \dot{\phi}\right\rangle_{0, h}-\left\langle i \alpha D_{\alpha} \phi, i \alpha^{\prime} \phi\right\rangle_{0, h}=\left\langle D_{\alpha} \phi, i \alpha^{\prime} D_{\alpha} \phi\right\rangle_{0, h}=0 \tag{32}
\end{equation*}
$$

In a same manner, since

$$
\begin{equation*}
\left.\left.\left.\langle | \phi\right|^{2} \phi, i \Pi_{0, h}\left(\alpha^{\prime} \phi\right)\right\rangle_{0, h}=\left.\langle | \phi\right|^{2} \phi, i \alpha^{\prime} \phi\right\rangle_{0, h}, \tag{33}
\end{equation*}
$$

one has

$$
\begin{equation*}
\left.\left.\langle | \phi\right|^{2} \phi, i \Pi_{0, h}\left(\alpha^{\prime} \phi\right)\right\rangle_{0, h}=0, \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\phi, i \Pi_{0, h}\left(\alpha^{\prime} \phi\right)\right\rangle_{0, h}=\left\langle\phi, i \alpha^{\prime} \phi\right\rangle_{0, h}=0 \tag{35}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\dot{\kappa}=\left\langle G_{A} \phi, i \mathcal{R}\left(U, \phi, \nabla \alpha^{\prime}\right)\right\rangle_{1, h}-\left\langle G_{A} \phi, G_{A}\left(i \Pi_{0, h}\left(\alpha^{\prime} \phi\right)\right)\right\rangle_{1, h} . \tag{36}
\end{equation*}
$$

where,

$$
\begin{align*}
\left(G_{A}\left(i \Pi_{0, h}\left(\alpha^{\prime} \phi\right)\right)\right)_{e} & =i \alpha_{n}^{\prime} \phi_{n}-i U_{e} \alpha_{m}^{\prime} \phi_{m}, \tag{37}\\
& =i \alpha_{n}^{\prime}\left(\phi_{n}-U_{e} \phi_{m}\right)-i U_{e}\left(G \alpha^{\prime}\right)_{e} \phi_{m}, \tag{38}\\
& =i \alpha_{n}^{\prime}\left(G_{A} \phi\right)_{e}-i U_{e}\left(G \alpha^{\prime}\right)_{e} \phi_{m} . \tag{39}
\end{align*}
$$

This gives that

$$
\begin{equation*}
\left\langle G_{A} \phi, G_{A}\left(i \Pi_{0, h}\left(\alpha^{\prime} \phi\right)\right)\right\rangle_{1, h}=\left\langle G_{A_{h}} \phi, i \mathcal{R}\left(U, \nabla \alpha^{\prime}, \phi\right)\right\rangle . \tag{40}
\end{equation*}
$$

Thus $\dot{\kappa}=0$.
This concludes the proof.

3.2.4 | Energy conservation

We define the energy of the system at any time with

$$
\mathcal{H}(t)=\frac{1}{2}\left(\left\|D_{\alpha} \phi\right\|_{0, h}^{2}+\left\|G_{A} \phi\right\|_{1, h}^{2}+\|E\|^{2}+\|\nabla \times A\|^{2}+\mathfrak{m}^{2}\|\phi\|_{0, h}^{2}+\frac{\gamma}{2}\left\||\phi|^{2}\right\|_{0, h}^{2}\right) .
$$

We will show through a direct formal calculation that this energy is preserved by the flow.

Proposition 3.4 Suppose (E, A, α, ϕ) solves the evolution equations (21, 22). Then the energy is conserved.

Proof. The proof is a mere calculation. We have

$$
\begin{align*}
\dot{\mathcal{H}}(t)= & \left\langle D_{\alpha} \dot{\phi}, D_{\alpha} \phi\right\rangle_{0, h}+\left\langle i \dot{\alpha} \phi, D_{\alpha} \phi\right\rangle_{0, h}+\left\langle G_{A} \phi, G_{A} \dot{\phi}\right\rangle_{1, h}+\left\langle G_{A} \phi, \mathcal{R}(i U, \phi, \dot{A})\right\rangle_{1, h} \\
& \left.+\langle\dot{E}, E\rangle+\langle\nabla \times A, \nabla \times \dot{A}\rangle+\mathfrak{m}^{2}\langle\phi, \dot{\phi}\rangle_{0, h}+\left.\gamma\langle | \phi\right|^{2} \phi, \dot{\phi}\right\rangle_{0, h} . \tag{41}
\end{align*}
$$

Using (29), we deduce that

$$
\begin{equation*}
\left\langle D_{\alpha}^{2} \phi, D_{\alpha} \phi\right\rangle_{0, h}=\left\langle D_{\alpha} \dot{\phi}, D_{\alpha} \phi\right\rangle_{0, h}+\left\langle i \dot{\alpha} \phi, D_{\alpha} \phi\right\rangle_{0, h} \tag{42}
\end{equation*}
$$

So that

$$
\begin{align*}
\dot{\mathcal{H}}(t)= & \left\langle D_{\alpha}^{2} \phi, D_{\alpha} \phi\right\rangle_{0, h}+\left\langle G_{A} \phi, G_{A} \dot{\phi}\right\rangle_{1, h}+\left\langle G_{A} \phi, \mathcal{R}(i U, \phi, \dot{A})\right\rangle_{1, h}+\langle\dot{E}, E\rangle+\langle\nabla \times A, \nabla \times \dot{A}\rangle \\
& \left.+\mathfrak{m}^{2}\langle\phi, \dot{\phi}\rangle_{0, h}+\left.\gamma\langle | \phi\right|^{2} \phi, \dot{\phi}\right\rangle_{0, h} . \tag{43}
\end{align*}
$$

Using (22), we find

$$
\begin{align*}
\dot{\mathcal{H}}(t)= & \left.-\left\langle G_{A} \phi, G_{A} \Pi_{0, h}\left(D_{\alpha} \phi\right)\right\rangle_{0, h}-\mathfrak{m}^{2}\left\langle\phi, D_{\alpha} \phi\right\rangle_{0, h}-\left.\gamma\langle | \phi\right|^{2} \phi, D_{\alpha} \phi\right\rangle_{0, h} \\
& +\left\langle G_{A} \phi, G_{A} \dot{\phi}\right\rangle_{1, h}+\left\langle G_{A} \phi, \mathcal{R}(i U, \phi, \dot{A})\right\rangle_{1, h} \\
& -\left\langle G_{A} \phi, i \mathcal{R}(U, \phi, \dot{A})\right\rangle_{1, h}+\left\langle G_{A} \phi, i \mathcal{R}(U, \phi, \nabla \alpha)\right\rangle_{1, h} \\
& \left.+\mathfrak{m}^{2}\langle\phi, \dot{\phi}\rangle_{0, h}+\left.\gamma\langle | \phi\right|^{2} \phi, \dot{\phi}\right\rangle_{0, h} . \tag{44}
\end{align*}
$$

Since the scalar product is real, one has that $\langle\phi, i \alpha \phi\rangle_{0, h}$ and $\left.\left.\langle | \phi\right|^{2} \phi, i \alpha \phi\right\rangle_{0, h}$ vanish. This gives

$$
\begin{equation*}
\dot{\mathcal{H}}(t)=-\left\langle G_{A} \phi, G_{A}(i \alpha \phi)\right\rangle_{0, h}+\left\langle G_{A} \phi, i \mathcal{R}(U, \phi, \nabla \alpha)\right\rangle_{1, h} \tag{45}
\end{equation*}
$$

Using the computation done in the proof of Theorem 1, we conclude that $\dot{\mathcal{H}} \equiv 0$, so that the energy is preserved in time.

3.2.5 | Choice of gauge and existence

We choose to work in the temporal gauge, that is, $\alpha \equiv 0$ (as in definition 1) and, for the discretization, $\alpha_{h} \equiv 0$. This implies

$$
\begin{aligned}
\dot{A}_{h} & =-E_{h} \\
D_{\alpha_{h}} \phi_{h} & =\dot{\phi}_{h} .
\end{aligned}
$$

Let $T>0$. Since we are working on a finite dimensional space, we have local existence of solutions of (22), (23), and (24). Conservation of energy assures that the local solution is a global one: the discrete solutions are defined on the whole interval $[0, T]$.

4 | CONVERGENCE OF THE SEMIDISCRETE SCHEME

In the rest of the paper, C will denote a generic constant (independent of t and h). In the proof of convergence, we will need some results concerning the convergence of approximations. We state them here and postpone their proofs to Appendix A.1.

4.1 | Preliminary results

Lemma 4.1 Let $\Pi_{1, h}$ be the edge interpolant. For $p>2$, the following inequalities hold.
There exists $C>0$ such that for all $\left(F_{h}, \zeta_{h}\right) \in Z_{h}^{1} \times Z_{h}^{0}$,
(i)

$$
\begin{equation*}
\left\|F_{h} \zeta_{h}-\Pi_{1, h}\left(F_{h} \zeta_{h}\right)\right\|_{L^{2}(S)} \leq C h^{1-\frac{2}{p}}\left\|F_{h}\right\|_{L^{p}(S)}\left|\zeta_{h}\right|_{H^{1}(S)} . \tag{46}
\end{equation*}
$$

Furthermore there exists $C>0$ such that for all $t \in[0, T]$,
(ii)

$$
\begin{equation*}
\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|A_{h}\right|_{H^{1}(K)}^{2}} \leq C\left(\left\|\nabla \times A_{h}\right\|_{L^{2}(S)}+\sup _{r_{h} \in Y_{h}^{0}} \frac{\left|\left\langle A_{h}, \nabla r_{h}\right\rangle\right|}{\left\|r_{h}\right\|_{L^{2}(S)}}\right), \tag{47}
\end{equation*}
$$

(iii)

$$
\begin{align*}
\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\Pi_{1, h}\left(A_{h} \phi_{h}\right)\right|_{H^{1}(K)}^{2}} \leq & C h^{-\frac{2}{p}}\left[\left(\left\|\nabla \times A_{h}\right\|_{L^{2}(S)}+\sup _{r_{h} \in Y_{h}^{0}} \frac{\left|\left\langle A_{h}, \nabla r_{h}\right\rangle\right|}{\left\|r_{h}\right\|_{L^{2}(S)}}\right)\left\|\phi_{h}\right\|_{L^{p}(S)}+\right. \\
& \left.+\left\|A_{h}\right\|_{L^{p}(S)}\left|\phi_{h}\right|_{H^{1}(S)}\right] \tag{48}
\end{align*}
$$

The following result allows, by the constraint (23), to control the weak divergence of A_{h} appearing in (47) and (48).

Lemma 4.2 Let $p>2$. There exists $C>0$ such that for all $t \in[0, T]$:

$$
\sup _{r_{h} \in Y_{h}^{0}} \frac{\left|\left\langle A_{h}, \nabla r_{h}\right\rangle\right|}{\left\|r_{h}\right\|_{L^{2}(S)}} \leq C h^{-\frac{2}{p}}\left\|\phi_{h}\right\|_{L^{\infty}\left(0, T, L^{p}(S)\right)}\left\|\dot{\phi}_{h}\right\|_{L^{\infty}\left(0, T, L^{2}(S)\right)}
$$

With these results at hand, we are ready to prove the convergence of the weak solution of (22).

4.2 | Study of convergence

4.2.1 | Boundedness in the energy norm

The initial energy is bounded uniformly in h, as can be seen from (25), (26), and since it is conserved in time, we can immediately conclude that E_{h} and $\nabla \times A_{h}$ are bounded in $L^{\infty}\left(0, T ; L^{2}(S)\right)$, that is,

$$
\begin{align*}
& \left\|E_{h}\right\|_{L^{\infty}\left(0, T, L^{2}(S)\right)} \leq C, \\
& \left\|\nabla \times A_{h}\right\|_{L^{\infty}\left(0, T, L^{2}(S)\right)} \leq C . \tag{49}
\end{align*}
$$

We can also conclude that $\phi_{h}, \dot{\phi}_{h}$ and $G_{A_{h}} \phi_{h}$ are bounded in time in the following sense.

$$
\begin{align*}
& \sup _{[0, T]}\left\|\dot{\phi}_{h}\right\|_{0, h} \leq C, \\
& \sup _{[0, T]}\left\|G_{A_{h}} \phi_{h}\right\|_{1, h} \leq C . \tag{50}
\end{align*}
$$

Furthermore if $\mathfrak{m} \neq 0$,

$$
\begin{equation*}
\sup _{[0, T]}\left\|\phi_{h}\right\|_{h, 2} \leq C, \tag{51}
\end{equation*}
$$

and if $\gamma>0$,

$$
\begin{equation*}
\sup _{[0, T]}\left\|\phi_{h}\right\|_{h, 4} \leq C, \tag{52}
\end{equation*}
$$

4.2.2 | Convergence of ϕ_{h}

This is obtained in three steps. First, one bounds the $H^{1}(S)$-norm of $\left|\phi_{h}\right|$, then one obtains a bound on the $L^{p}(S)(p>2)$ norm of the gauge potential A_{h}. In a third step, this is used to conclude that ϕ_{h} is bounded in H^{1}.

Boundedness of the H^{1}-norm of $\left|\phi_{h}\right|$.
We would like to deduce that

$$
\left\|G_{A_{h}} \phi_{h}\right\|_{1, h}^{2} \leq C \text { implies }\left\|\nabla\left|\phi_{h}\right|\right\|_{L^{2}}^{2} \leq C .
$$

One has

$$
\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)_{e=\{m, n\}}=\boldsymbol{\phi}_{m}^{h}-U^{h}(m, n) \boldsymbol{\phi}_{n}^{h},
$$

with

$$
U^{h}(m, n)=\exp \left(-i \int_{m}^{n} A_{h}\right)=\exp \left(-i \mathbf{A}_{e}^{h}\right),
$$

where \mathbf{A}_{e}^{h} is the degree of freedom relative to the edge e.
Since $i \mathbf{A}_{e}^{h}$ is purely imaginary, we have the following estimate

$$
\left\|\phi _ { m } \left|-\left|\phi_{n} \| \leq\left|\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)_{e=\{m, n\}}\right|,\right.\right.\right.
$$

so that by positivity of the diagonal matrix H_{1}^{h}, one can conclude that

$$
\left\|\nabla \Pi_{0, h}\left|\phi_{h}\right|\right\|_{1, h}^{2} \leq\left\|G_{A_{h}} \phi_{h}\right\|_{1, h}^{2} .
$$

We recall that $\nabla \Pi_{0, h}\left|\phi_{h}\right|$ is the edge element vector field whose degrees of freedom are given by the vector $G\left|\boldsymbol{\phi}^{h}\right|$. By previous estimates,

$$
\left\|\nabla \Pi_{0, h}\left|\phi_{h}\right|\right\|_{L^{2}(S)}^{2} \leq C\left\|\nabla \Pi_{0, h}\left|\phi_{h}\right|\right\|_{1, h}^{2} .
$$

This implies

$$
\left\|\nabla \Pi_{0, h}\left|\phi_{h}\right|\right\|_{L^{\infty}\left(0, T, L^{2}(S)\right)}^{2} \leq C,
$$

which gives that $\Pi_{0, h}\left|\phi_{h}\right|$ is bounded in $L^{\infty}\left(0, T, H_{0}^{1}(S)\right)$.
In order to extract estimates on the H^{1}-norm of ϕ_{h} rather than on the H^{1}-norm of its modulus $\left|\phi_{h}\right|$, one needs a control of the L^{p}-norm of A_{h}.

Boundedness of the gauge potential. Along the same lines as in [8], one can obtain a bound on A_{h} in the L^{p} norm. To this aim, we consider the discrete Helmholtz decomposition of A_{h}

$$
\begin{equation*}
A_{h}=\AA_{h}+\nabla p_{h} . \tag{53}
\end{equation*}
$$

We bound each part in L^{p}.
Bound on the discrete divergence-free part. The discrete divergence free part \AA_{h} is bounded in L^{p} by the L^{2}-norm of the curl of the gauge potential,

$$
\begin{equation*}
\left\|\AA_{h}\right\|_{L^{\infty}\left(0, T, L^{\prime}(S)\right)} \leq C\left\|\nabla \times A_{h}\right\|_{L^{\infty}\left(0, T, L^{2}(S)\right)} \tag{54}
\end{equation*}
$$

We won't give any details on this estimate as it can be extracted exactly as in proposition 2.5. of [8].
Bound on the gradient part. One has from the constraint Equation (23)

$$
\begin{equation*}
\left\langle\nabla p_{h}, \nabla v_{h}\right\rangle=\left\langle u_{h}, v_{h}\right\rangle_{0, h}, \tag{55}
\end{equation*}
$$

with

$$
u_{h}(t)=\int_{0}^{t} \dot{\phi}_{h} \bar{\phi}_{h} d t .
$$

We would like to bound p_{h} in $L^{\infty}\left(0, T ; W^{1, p}(S)\right)$ for $p>2$. By classical estimates that can be found in [3], we have

$$
\left\|p_{h}\right\|_{W^{1}, p(S)} \leq C \sup _{v_{h} \in Y_{h}^{0}} \frac{\left|\left\langle u_{h}, v_{h}\right\rangle_{0, h}\right|}{\left\|v_{h}\right\|_{W^{1}, p^{\prime}(S)}} \text { at any } t \in[0, T],
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, with $p>2$ and $p^{\prime}<2$.
Let us choose q^{\prime} such that $\frac{1}{q^{\prime}}=\frac{1}{p^{\prime}}-\frac{1}{2}$. For any q such that $\frac{1}{q}+\frac{1}{q^{\prime}}=1$, we have

$$
\left|\left\langle u_{h}, v_{h}\right\rangle_{0, h}\right| \leq\left\|u_{h}\right\|_{h, q}\left\|v_{h}\right\|_{h, q^{\prime}} .
$$

Furthermore,

$$
\left\|u_{h}\right\|_{h, q} \leq C \int_{0}^{t}\left\|\dot{\phi}_{h}\right\|_{h, 2}\left\|\bar{\phi}_{h}\right\|_{h, p} \leq C \int_{0}^{t}\left\|\dot{\phi}_{h}\right\|_{L^{2}(S)}\left\|\phi_{h}\right\|_{L^{p}(S)}
$$

Since $\frac{1}{2}+\frac{1}{p}=\frac{1}{q}$, from the energy bound (52), we deduce that $\left\|\dot{\phi}_{h}\right\|_{L^{2}(S)} \leq C$ and $\left\|\phi_{h}\right\|_{L^{p}(S)} \leq C$. This implies that

$$
\left|\left\langle u_{h}, v_{h}\right\rangle_{0, h}\right| \leq C\left\|v_{h}\right\|_{L^{q^{\prime}}(S)},
$$

independently of $t \in[0, T]$.
By the Sobolev embeddings $W^{1, p^{\prime}}(S) \hookrightarrow L^{q^{\prime}}(S)$, we deduce

$$
\left|\left\langle u_{h}, v_{h}\right\rangle_{0, h}\right| \leq C\left\|v_{h}\right\|_{W^{1} \cdot p^{\prime}(S)},
$$

which implies that p_{h} is bounded in $W^{1, p}(S)$, and

$$
\left\|A_{h}\right\|_{L^{\infty}\left(0, T, L^{p}(S)\right)} \leq C .
$$

Remark 4.3 If $\gamma>0$, we can also directly prove (without having to use the boundedness in the H^{1} norm of $\left.\left|\phi_{h}\right|\right)$ that A_{h} is bounded in $L^{\infty}\left(0, T, L^{4}(S)\right)$, using that in this case ϕ_{h} is bounded in $L^{\infty}\left(0, T, L^{4}(S)\right)$.

Convergence of ϕ_{h}. From this, we deduce that ϕ_{h} is bounded in $H^{1}(S)$. Indeed,

$$
\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)_{e}=\frac{1+\exp \left(-i \mathbf{A}_{e}^{h}\right)}{2}\left(G \boldsymbol{\phi}^{h}\right)_{e}+\frac{1-\exp \left(-i \mathbf{A}_{e}^{h}\right)}{2}\left(\boldsymbol{\phi}_{m}^{h}+\boldsymbol{\phi}_{n}^{h}\right),
$$

so that

$$
\left(G \phi^{h}\right)_{e}=\frac{2}{1+\exp \left(-i \mathbf{A}_{e}^{h}\right)}\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)_{e}-\frac{1-\exp \left(-i \mathbf{A}_{e}^{h}\right)}{1+\exp \left(-i \mathbf{A}_{e}^{h}\right)}\left(\boldsymbol{\phi}_{m}^{h}+\boldsymbol{\phi}_{n}^{h}\right),
$$

which implies

$$
\left|\left(G \phi^{h}\right)_{e}\right| \leq \frac{1}{\left|\cos \left(\left|\frac{\mathbf{A}_{e}^{h}}{2}\right|\right)\right|}\left|\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)_{e}\right|+\frac{\left|\sin \left(\left|\frac{\mathbf{A}_{e}^{h}}{2}\right|\right)\right|}{\left|\cos \left(\left|\frac{\mathbf{A}_{e}^{h}}{2}\right|\right)\right|}\left(\left|\boldsymbol{\phi}_{m}^{h}\right|+\left|\boldsymbol{\phi}_{n}^{h}\right|\right) .
$$

In the last section we obtained

$$
\left\|A_{h}\right\|_{L^{\infty}(0, T, L(S))} \leq C,
$$

which yields

$$
\begin{equation*}
\left|\mathbf{A}_{e}^{h}\right| \leq C h^{\frac{2}{q}} \tag{56}
\end{equation*}
$$

where $\frac{1}{q}+\frac{1}{p}=\frac{1}{2}$. This means that for h sufficiently small, $h \leq \varepsilon_{0}$ with $\varepsilon_{0}>0$ given,

$$
\left|\cos \left(\frac{\left|\mathbf{A}_{e}^{h}\right|}{2}\right)\right| \geq C>0 .
$$

We also make use of the following inequality

$$
\sin \left(\frac{\left|\mathbf{A}_{e}^{h}\right|}{2}\right) \leq \frac{\left|\mathbf{A}_{e}^{h}\right|}{2} .
$$

As a consequence

$$
\left|\left(G \boldsymbol{\phi}^{h}\right)_{e}\right| \leq C\left|\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)_{e}\right|+C\left|\mathbf{A}_{e}^{h}\right|\left(\left|\boldsymbol{\phi}_{m}^{h}\right|+\left|\boldsymbol{\phi}_{n}^{h}\right|\right) .
$$

Furthermore, $\mathbf{A}_{e}^{h}\left(\frac{\left|\boldsymbol{\phi}_{m}^{h}\right|+\left|\boldsymbol{\phi}_{n}^{h}\right|}{2}\right)$ are the degrees of freedom of the product $A_{h} \Pi_{0, h}\left(\left|\phi_{h}\right|\right)$, and one can then conclude that

$$
\left\|\nabla \phi_{h}\right\|_{h, 2}^{2} \leq C\left\|G_{A_{h}} \phi_{h}\right\|_{h, 2}^{2}+C\left\|\Pi_{1, h}\left(A_{h} \Pi_{0, h}\left(\left|\phi_{h}\right|\right)\right)\right\|_{h, 2}^{2} .
$$

Using Lemma 4.1 with $A_{h} \Pi_{0, h}\left(\left|\phi_{h}\right|\right)$ and bounds obtained on both A_{h} and $\left|\phi_{h}\right|$, we can conclude that

$$
\left\|\nabla \phi_{h}\right\|_{1, h}^{2} \leq C .
$$

Finally since $\left\|\nabla \phi_{h}\right\|_{L^{2}(S)} \leq C\left\|\nabla \phi_{h}\right\|_{1, h}$, it follows that

$$
\left\|\phi_{h}\right\|_{L^{\infty}\left(0, T, H_{0}^{1}(S)\right)} \leq C
$$

Remark 4.4 Following Remark 4.3, if $\gamma>0$, we can also directly obtain this result (without having to use the boundedness in the H^{1} norm of $\left|\phi_{h}\right|$) using the boundedness of A_{h} in $L^{\infty}\left(0, T, L^{4}(S)\right)$.

By following [8] and using the bound on the energy, we arrive the convergence of ϕ_{h} in $L^{\infty}\left(0, T ; L^{p}(S)\right)$ (up to a subsequence) using the compactness result from [30] and interpolation estimates on $L^{p}(S)$ spaces.

4.2.3 | Convergence of the gauge potential A_{h}

The convergence of the gauge potential is obtained by considering the discrete divergence free part and the gradient part of the discrete Helmholtz decomposition (53) separately.

Discrete divergence free part.
We follow again [8]. By a Kikuchi type result, one obtains the convergence of \AA_{h} in $L^{\infty}\left(0, T, L^{2}(S)\right)$. Interpolation estimates then give the convergence in $L^{\infty}\left(0, T, L^{p}(S)\right.$), since one has (54). Gradient part. The equation we are considering is (Equation(55))

$$
\left\langle\nabla p_{h}, \nabla v_{h}\right\rangle=\left\langle u_{h}, v_{h}\right\rangle_{0, h}=: l_{h}\left(v_{h}\right), \quad \forall v_{h} \in Y_{h}^{0} .
$$

We have $l_{h} \in\left(Y_{h}^{0}\right)^{*}$, and one can then find, by the Riesz representation theorem, $f_{h} \in Y_{h}^{0}$ such that $\forall v_{h} \in Y_{h}^{0}$,

$$
\left\langle f_{h}, v_{h}\right\rangle=l_{h}\left(v_{h}\right) .
$$

Let $q>2$ be given. We choose $r>0$ such that $\frac{1}{2}<\frac{1}{r}<\frac{1}{2}+\frac{1}{q}$. One has

$$
\left\|f_{h}\right\|_{L^{\prime}(S)}=\sup _{v \in L^{\prime}(S)} \frac{\left|\left\langle f_{h}, v\right\rangle\right|}{\|v\|_{L^{\prime}(S)}}=\sup _{v \in L^{\prime}(S)} \frac{\left|\left\langle f_{h}, v_{h}\right\rangle\right|}{\|v\|_{L^{\prime}(S)}}=\sup _{v \in L^{\prime}(S)} \frac{\left|l_{h}\left(v_{h}\right)\right|}{\|v\|_{L^{\prime}(S)}} \leq C\left\|u_{h}\right\|_{h, r},
$$

where $\frac{1}{r}+\frac{1}{r^{\prime}}=1$, and $v_{h}=P_{h}(v)$ is the L^{2} orthogonal projection on Y_{h}^{0} (which is stable in $L^{r \prime}(S)$). As already shown in a previous section, this implies

$$
\left\|f_{h}\right\|_{L^{\infty}\left(0, T ; L^{\prime}(S)\right)} \leq C\left\|\dot{\phi}_{h}\right\|_{L^{\infty}\left(0, T ; L^{2}(S)\right.}\| \|_{h} \|_{L^{\infty}\left(0, T ; L^{\prime}(S)\right)} .
$$

Furthermore, $\forall t \in[0, T]$,

$$
\left\langle\dot{f}_{h}, v_{h}\right\rangle=\left\langle\dot{u}_{h}, v_{h}\right\rangle_{0, h},
$$

which means that

$$
\left\|\dot{f}_{h}\right\|_{L^{\infty}\left(0, T, L^{r}(S)\right)} \leq C\left\|\dot{\phi}_{h}\right\|_{L^{\infty}\left(0, T ; L^{2}(S)\right)}\left\|\phi_{h}\right\|_{L^{\infty}\left(0, T ; L^{q}(S)\right)} .
$$

From this one concludes that there exists $w \in L^{\infty}\left(0, T ; W^{-1, q}(S)\right)$ such that

$$
f_{h} \xrightarrow[h \rightarrow 0]{ } w \text { in } L^{\infty}\left(0, T ; W^{-1, q}(S)\right),
$$

where we used the compact embedding from $L^{r}(S)$ into $W^{-1, q}(S)$, and the compactness result of [30].
Define $p \in W^{1, q}(S)$ as the unique solution of

$$
\langle\nabla p, \nabla v\rangle=\langle w, v\rangle=: l(v), \quad \forall v \in W^{1, q^{\prime}}(S), \quad \frac{1}{q}+\frac{1}{q^{\prime}}=1 .
$$

We would like to prove that

$$
\left\|p_{h}-p\right\|_{L^{\infty}\left(0, T ; W^{1, q}(S)\right)} \xrightarrow[h \rightarrow 0]{ } 0
$$

In order to prove this, we use a version of the Strang lemma, that is,

$$
\sup _{v_{h} \in Z_{h}^{0}} \frac{\left|l_{h}\left(v_{h}\right)-l\left(v_{h}\right)\right|}{\left\|v_{h}\right\|_{W^{1, q^{\prime}}(S)}} \xrightarrow[h \rightarrow 0]{\longrightarrow} 0
$$

which is verified by construction of l, and we can conclude that $p_{h} \rightarrow_{h \rightarrow 0} p$ in $L^{\infty}\left(0, T ; W^{1, q}(S)\right)$ for all $q>2$.

4.3 | The limit equation

4.3.1 I Summary of convergences obtained
(a) Convergence obtained for A_{h}. We have that

$$
A_{h} \xrightarrow[h \rightarrow 0]{ } A \text { in } L^{\infty}\left(0, T ; L^{p}(S)\right), \forall 2<p,
$$

and from energy bound we directly have

$$
\nabla \times A_{h} \underset{h \rightarrow 0}{\longrightarrow} \nabla \times A \text { in } L^{\infty}\left(0, T ; L^{2}(S)\right) \text { weak-* }
$$

and

$$
\dot{A}_{h} \underset{h \rightarrow 0}{\rightharpoonup} \dot{A} \text { in } L^{\infty}\left(0, T ; L^{2}(S)\right) \text { weak-*. }
$$

(b) Convergence of ϕ_{h}. We have that

$$
\phi_{h} \xrightarrow[h \rightarrow 0]{ } \phi \text { in } L^{\infty}\left(0, T ; L^{p}(S)\right), \forall p<+\infty,
$$

and from energy bound, we directly have

$$
\phi_{h} \underset{h \rightarrow 0}{ } \phi \text { in } L^{\infty}\left(0, T ; H_{0}^{1}(S)\right) \text { weak-*, }
$$

and

$$
\dot{\phi}_{h} \underset{h \rightarrow 0}{\longrightarrow} \dot{\phi} \text { in } L^{\infty}\left(0, T ; L^{2}(S)\right) \text { weak-*. }
$$

4.3.2 | Limit equations

Let $\phi^{\prime} \in \mathcal{C}_{c}^{\infty}(] 0, T[\times S)$ and $A^{\prime} \in\left(\mathcal{C}_{c}^{\infty}(] 0, T[\times S)\right)^{2}$. Define $\phi_{h}^{\prime}=\Pi_{0, h}\left(\phi^{\prime}\right) \in \mathcal{C}_{c}^{\infty}\left(0, T ; Z_{h}^{0}\right)$ and $A_{h}^{\prime}=$ $\Pi_{1, h}\left(A^{\prime}\right) \in \mathcal{C}_{c}^{\infty}\left(0, T ; Y_{h}^{1}\right)$. We denote by $\boldsymbol{\phi}^{\prime h}$ and $\mathbf{A}^{\prime h}$ the vectors of the degrees of freedom associated to ϕ_{h}^{\prime} and A_{h}^{\prime} respectively.

In the temporal gauge, the semidiscrete equations (22) read

$$
\begin{gather*}
\left.\int_{0}^{T}\left\langle\ddot{\phi}_{h}, \phi_{h}^{\prime}\right\rangle_{0, h}+\int_{0}^{T}\left\langle G_{A_{h}} \phi_{h}, G_{A_{h}} \phi_{h}^{\prime}\right\rangle_{1, h}+\mathfrak{m}^{2} \int_{0}^{T}\left\langle\phi_{h}, \phi_{h}^{\prime}\right\rangle_{0, h}+\left.\gamma \int_{0}^{T}\langle | \phi_{h}\right|^{2} \phi_{h}, \phi_{h}^{\prime}\right\rangle_{0, h}=0, \tag{57}\\
\int_{0}^{T}\left\langle\dot{E}_{h}, A_{h}^{\prime}\right\rangle-\int_{0}^{T}\left\langle\nabla \times A_{h}, \nabla \times A_{h}^{\prime}\right\rangle-\int_{0}^{T}\left\langle G_{A_{h}} \phi_{h}, i \mathcal{R}_{h}\left(U_{h}, \phi_{h}, A_{h}^{\prime}\right)\right\rangle_{1, h}=0 . \tag{58}
\end{gather*}
$$

Study of Equation (57). We have $\int_{0}^{T}\left\langle\ddot{\phi}_{h}, \phi_{h}^{\prime}\right\rangle_{0, h}=-\int_{0}^{T}\left\langle\dot{\phi}_{h}, \dot{\phi}_{h}^{\prime}\right\rangle_{0, h}=-\int_{0}^{T}\left\langle\dot{\phi}_{h}, \dot{\phi}^{\prime}\right\rangle_{0, h}$, and by weak-* convergence of $\dot{\phi}_{h}$,

$$
\int_{0}^{T}\left\langle\dot{\phi}_{h}, \dot{\phi}^{\prime}\right\rangle \underset{h \rightarrow 0}{\longrightarrow} \int_{0}^{T}\left\langle\dot{\phi}, \dot{\phi}^{\prime}\right\rangle .
$$

Furthermore from (13) and uniform L^{2} bound on $\dot{\phi}_{h}$

$$
\left|\int_{0}^{T}\left\langle\dot{\phi}_{h}, \dot{\phi}^{\prime}\right\rangle_{0, h}-\int_{0}^{T}\left\langle\dot{\phi}_{h}, \dot{\phi}^{\prime}\right\rangle\right| \leq \int_{0}^{T} C h\left\|\dot{\phi}_{h}\right\|_{L^{2}(S)}\left\|\dot{\phi}^{\prime}\right\|_{H^{\prime}(S)} \leq C h .
$$

The convergence of the terms $\int_{0}^{T}\left\langle\phi_{h}, \phi^{\prime}\right\rangle_{0, h}$ and $\left.\left.\int_{0}^{T}\langle | \phi_{h}\right|^{2} \phi_{h}, \phi^{\prime}\right\rangle_{0, h}$ directly follows from the convergence of ϕ_{h} in $L^{\infty}\left(0, T ; L^{p}(S)\right)$ and the convergence for the test functions. We now study the convergence of the term $\int_{0}^{T}\left\langle G_{A_{h}} \phi_{h}, G_{A_{h}} \phi_{h}^{\prime}\right\rangle_{1, h}$ to $\int_{0}^{T}\left\langle D_{A} \phi, D_{A} \phi^{\prime}\right\rangle$. It will be obtained in several steps.

First, we decompose the quantity of interest $\left\langle G_{A_{h}} \phi_{h}, G_{A_{h}} \phi_{h}^{\prime}\right\rangle_{1, h}-\left\langle D_{A} \phi, D_{A} \phi^{\prime}\right\rangle$ into three terms as

$$
\begin{align*}
\left\langle G_{A_{h}} \phi_{h}, G_{A_{h}} \phi_{h}^{\prime}\right\rangle_{1, h}-\left\langle D_{A} \phi, D_{A} \phi^{\prime}\right\rangle= & \underbrace{\left\langle G_{A_{h}} \phi_{h}, G_{A_{h}} \phi_{h}^{\prime}\right\rangle_{1, h}-\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), G_{A_{h}} \phi_{h}^{\prime}\right\rangle_{1, h}}_{I_{1}} \\
& +\underbrace{\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), G_{A_{h}} \phi_{h}^{\prime}\right\rangle_{1, h}-\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \Pi_{1, h}\left(D_{A_{h}} \phi_{h}^{\prime}\right)\right\rangle_{1, h}}_{I_{2}} \\
& +\underbrace{\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \Pi_{1, h}\left(D_{A_{h}} \phi_{h}^{\prime}\right)\right\rangle_{1, h}-\left\langle D_{A} \phi, D_{A} \phi^{\prime}\right\rangle}_{J} . \tag{59}
\end{align*}
$$

We first concentrate on I_{1} and I_{2}. We need the two following Lemma. Their proofs are postponed to Appendix B.1.

Lemma 4.5 There exist $\eta>0$ and $C>0$ such that if $h<\eta$,

$$
\sup _{[0, T]}\left\|G_{A_{h}} \phi_{h}-\Pi_{1, h} D_{A_{h}} \phi_{h}\right\|_{h, 2}^{2} \leq C h^{2-4 / p},
$$

so that

$$
\sup _{[0,7]}\left\|G_{A_{h}} \phi_{h}-\Pi_{1, h} D_{A_{h}} \phi_{h}\right\|_{h, 2} \xrightarrow[h \rightarrow 0]{ } 0 .
$$

Furthermore, from the bound on the energy we directly have the following.
Lemma 4.6 There exists $C>0$ such that

$$
\begin{equation*}
\sup _{[0, T]}\left\|G_{A_{h}} \phi_{h}\right\|_{h, 2} \leq C . \tag{60}
\end{equation*}
$$

We can in a same manner obtain the analogous Lemma with ϕ_{h} replaced by ϕ_{h}^{\prime}. Using Lemma 4.5,4.6, and 4.1 (and their analogous counter part for ϕ_{h}^{\prime}), one proves that I_{1} and I_{2} converges uniformly in time to 0 as $h \rightarrow 0$.

The estimation of J rely on the following decomposition

$$
\begin{align*}
& J=\underbrace{\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \nabla \phi_{h}^{\prime}\right\rangle_{1, h}-\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \nabla \phi^{\prime}\right\rangle}_{J_{1}} \tag{61}\\
&+\underbrace{\left\langle\nabla \phi_{h}, i A_{h} \phi_{h}^{\prime}\right\rangle_{1, h}-\left\langle\nabla \phi_{h}, i A_{h} \phi_{h}^{\prime}\right\rangle}_{J_{2}} \tag{62}\\
&+\underbrace{\left\langle\nabla \phi_{h}, \Pi_{1, h}\left(i A_{h} \phi_{h}^{\prime}\right)-i A_{h} \phi_{h}^{\prime}\right\rangle_{1, h}}_{J_{3}} \tag{63}\\
&+\underbrace{\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), i A_{h} \phi_{h}^{\prime}\right\rangle-\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), i A \phi^{\prime}\right\rangle}_{J_{5}} \tag{64}\\
&+\underbrace{\left\langle\Pi_{1, h}\left(i A_{h} \phi_{h}\right), \Pi_{1, h}\left(i A_{h} \phi_{h}^{\prime}\right)\right\rangle_{1, h}-\left\langle\Pi_{1, h}\left(i A_{h} \phi_{h}\right), \Pi_{1, h}\left(i A_{h} \phi_{h}^{\prime}\right\rangle\right)}_{J_{J_{7}}} \tag{65}\\
&+\underbrace{\left\langle\Pi_{1, h}\left(i A_{h} \phi_{h}\right), \Pi_{1, h}\left(i A_{h} \phi_{h}^{\prime}\right)\right\rangle-\left\langle\Pi_{1, h}\left(i A_{h} \phi_{h}\right), i A_{h} \phi_{h}^{\prime}\right\rangle}_{J_{J_{1}}} \tag{66}\\
&+\underbrace{\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \nabla \phi^{\prime}\right\rangle-\left\langle D_{A} \phi, D_{A} \phi^{\prime}\right\rangle+\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), i A \phi^{\prime}\right\rangle} . \tag{67}
\end{align*}
$$

To estimate these terms, one needs the four following Lemma. To ease the reading, we postponed their proofs to Appendix B.1.

Lemma 4.7

$$
\left\|\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \nabla \phi_{h}^{\prime}\right\rangle_{1, h}-\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \nabla \phi^{\prime}\right\rangle\right\|_{L^{\infty}(0, T)} \xrightarrow[h \rightarrow 0]{ } 0 .
$$

Lemma 4.8

$$
\left\|\left\langle\nabla \phi_{h}, A_{h} \phi_{h}^{\prime}\right\rangle_{1, h}-\left\langle\nabla \phi_{h}, A_{h} \phi_{h}^{\prime}\right\rangle\right\|_{L^{\infty}(0, T)} \xrightarrow[h \rightarrow 0]{ } 0 .
$$

Lemma 4.9

$$
\left\|\left\langle\Pi_{1, h}\left(A_{h} \phi_{h}\right), \Pi_{1, h}\left(A_{h} \phi_{h}^{\prime}\right)\right\rangle_{1, h}-\left\langle\Pi_{1, h}\left(A_{h} \phi_{h}\right), \Pi_{1, h}\left(A_{h} \phi_{h}^{\prime}\right)\right\rangle\right\|_{L^{\infty}(0, T)} \xrightarrow[h \rightarrow 0]{ } 0 .
$$

Lemma 4.10

$$
\int_{0}^{T}\left\langle\Pi_{1, h} D_{A_{h}} \phi_{h}, \Pi_{1, h} D_{A_{h}} \phi_{h}^{\prime}\right\rangle d t \underset{h \rightarrow 0}{\longrightarrow} \int_{0}^{T}\left\langle D_{A} \phi, D_{A} \phi^{\prime}\right\rangle d t .
$$

Let us briefly describe how the seven terms of the decomposition of J are treated. The first term J_{1} is estimated using Lemma 4.7. Lemma 4.8 gives an estimation of J_{2}. The terms J_{3}, J_{4}, and J_{6} are estimated using 4.1 and bounds on the discrete solution. Lemma 4.9 gives an estimation of J_{5}. Finally, since $J_{7}=\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), D_{A} \phi^{\prime}\right\rangle-\left\langle D_{A} \phi, D_{A} \phi^{\prime}\right\rangle$, we deduce that this terms converges to 0 as $h \rightarrow 0$ with the help of Lemma 4.1 and the convergences obtained and summarized at the beginning of Section 4.3.

Study of Equation (58). The two first terms in Equation (58) are classical and are treated in a same manner as for Equation (57). Thus, the only remaining term to estimate is the nonlinear term of Equation (58). We use the following lemma

Lemma 4.11

$$
\left\langle\mathcal{R}_{h}\left(U_{h}, \phi_{h}, A_{h}^{\prime}\right)-\Pi_{1, h}\left(A^{\prime} \phi\right), \mathcal{R}_{h}\left(U_{h}, \phi_{h}, A_{h}^{\prime}\right)-\Pi_{1, h}\left(A^{\prime} \phi\right)\right\rangle_{1, h} \xrightarrow[h \rightarrow 0]{ } 0 .
$$

The proof is postponed to Appendix B.1.
We write

$$
\begin{align*}
\left\langle G_{A_{h}} \phi_{h}, i \mathcal{R}_{h}\left(U_{h}, \phi_{h}, A_{h}^{\prime}\right)\right\rangle_{1, h}-\left\langle D_{A} \phi, i \phi A^{\prime}\right\rangle= & \underbrace{\left\langle G_{A_{h}} \phi_{h}, i \mathcal{R}_{h}\left(U_{h}, \phi_{h}, A_{h}\right)\right\rangle_{1, h}-\left\langle D_{A_{h}} \phi_{h}, i \Pi_{1, h}\left(\phi_{h} A_{h}^{\prime}\right)\right\rangle}_{I} \\
& +\left\langle D_{A_{h}} \phi_{h}, i \Pi_{1, h}\left(\phi_{h} A_{h}^{\prime}\right)\right\rangle-\left\langle D_{A} \phi, i \phi A^{\prime}\right\rangle \tag{68}
\end{align*}
$$

Using convergences summarized at the beginning of Section 4.3 and Lemma 4.1, we can prove that

$$
\int_{0}^{T}\left\langle D_{A_{h}} \phi_{h}, i \Pi_{1, h} \phi_{h} A_{h}^{\prime}\right\rangle \underset{h \rightarrow 0}{\longrightarrow} \int_{0}^{T}\left\langle D_{A} \phi, i \phi A^{\prime}\right\rangle
$$

Furthermore,

$$
\begin{aligned}
I= & \underbrace{\left\langle G_{A_{h}} \phi_{h}, i \mathcal{R}_{h}\left(U_{h}, \phi_{h}, A_{h}\right)-i \Pi_{1, h}\left(\phi_{h} A_{h}^{\prime}\right)\right\rangle_{1, h}}_{I_{1}} \\
& +\underbrace{\left\langle G_{A_{h}} \phi_{h}-\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), i \Pi_{1, h}\left(\phi_{h} A_{h}^{\prime}\right)\right\rangle_{1, h}}_{I_{3}} \\
& +\underbrace{\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), i \Pi_{1, h}\left(\phi_{h} A_{h}^{\prime}\right)-i \phi_{h} A_{h}^{\prime}\right\rangle_{1, h}}_{I_{4}} \\
& +\underbrace{\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), i \phi_{h}\left(A_{h}^{\prime}-A^{\prime}\right)\right\rangle_{1, h}}_{I_{5}} \\
& +\underbrace{\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), i\left(\phi_{h}-\phi\right) A^{\prime}\right\rangle_{1, h}}
\end{aligned}
$$

$$
\begin{align*}
& +\underbrace{\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), i \phi A^{\prime}\right\rangle_{1, h}-\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), i \phi A^{\prime}\right\rangle}_{I_{6}} \\
& +\underbrace{\left\langle\left(\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right)-D_{A_{h}} \phi_{h}\right), i \phi A^{\prime}\right\rangle}_{I_{7}} \\
& +\underbrace{\left\langle\left(D_{A_{h}} \phi_{h}-D_{A} \phi\right), i \phi A^{\prime}\right\rangle}_{I_{8}} . \tag{69}
\end{align*}
$$

Each of the terms converges to 0 as $h \rightarrow 0$. Indeed, for

- I_{1}, we use the energy norm estimate and Lemma 4.11,
- I_{2}, we use Lemma 4.7, Lemma 4.1 (i) and estimates on A_{h}^{\prime} and ϕ_{h},
- I_{3}, we use estimates on $A_{h}, \phi_{h}, A_{h}^{\prime}$, Lemma 4.1 and the fact that $\left\|\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right)\right\|_{1, h}$ is bounded (combination of Lemma 4.1 and bounds on the fields),
- I_{4}, we use the estimates on A_{h}, ϕ_{h}, the convergence properties of A_{h}^{\prime} and bound on $\left\|\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right)\right\|_{1, h}$,
- I_{5}, we use the estimates on A_{h}, ϕ_{h}, the convergence properties of ϕ_{h}^{\prime} and bound on $\left\|\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right)\right\|_{1, h}$,
- I_{6}, we use the consistency estimate (15),
- I_{7}, we use Lemma (4.1) and estimates on A_{h}, ϕ_{h},
- I_{8}, we use the convergence properties of A_{h} and ϕ_{h}.

Thus we can state that

$$
\int_{0}^{T}\left\langle G_{A_{h}} \phi_{h}, i \mathcal{R}_{h}\left(U_{h}, \phi_{h}, A_{h}^{\prime}\right)\right\rangle_{1, h} \xrightarrow[h \rightarrow 0]{ } \int_{0}^{T}\left\langle D_{A} \phi, i \phi A^{\prime}\right\rangle
$$

The limit equation. To conclude,

$$
\begin{array}{r}
-\int_{0}^{T}\left\langle\dot{\phi}, \dot{\phi}^{\prime}\right\rangle+\int_{0}^{T}\left\langle D_{A} \phi, D_{A} \phi^{\prime}\right\rangle=0 \\
-\int_{0}^{T}\left\langle E, \dot{A}^{\prime}\right\rangle-\int_{0}^{T}\left\langle d A, d A^{\prime}\right\rangle-\int_{0}^{T}\left\langle D_{A} \phi, i \phi A^{\prime}\right\rangle=0 \tag{70}
\end{array}
$$

which means that (A, ϕ) is a weak solution of the Maxwell-Klein-Gordon equation in the sense of Definition 1.

5 | NUMERICAL RESULTS

In this section, we provide some numerical results to assess the theory. To this end, we first propose a fully discrete scheme and then study two types of test cases in two dimensions.

5.1 | Fully discrete setting

We consider a time-discretization that consists of a uniform subdivision of $N_{T}+1\left(N_{T} \in \mathbb{N}^{*}\right)$ points of the interval $[0, T]$. The time step will be denoted $\Delta t:=\frac{T}{N_{T}}$. We propose the following simple time discretization of leap-frog type.

For all $k \in\left\{0, . ., N_{T}\right\}$, find $\left(\psi_{h}^{k}, \phi_{h}^{k}, E_{h}^{k}, A_{h}^{k}\right) \in Z_{h}^{0} \times Z_{h}^{0} \times Y_{h}^{1} \times Y_{h}^{1}$ such that for all $\left(\phi_{h}^{\prime}, A_{h}^{\prime}\right) \in Z_{h}^{0} \times Y_{h}^{0}$,

$$
\left\{\begin{array}{l}
\left.\left\langle d_{t} \psi_{0, h}^{k}, \psi_{h}^{\prime}\right\rangle_{0, h}-\left\langle G_{A_{h}^{k}} \phi_{h}^{k}, G_{A_{h}^{k}} \phi^{\prime}\right\rangle_{1, h}-\mathfrak{m}^{2}\left\langle\phi_{h}^{k}, \phi_{h}^{\prime}\right\rangle_{0, h}-\left.\gamma\langle | \phi_{h}^{k}\right|^{2} \phi_{h}^{k}, \phi_{h}^{\prime}\right\rangle_{0, h}=0 . \\
\left\langle d_{t} E_{h}^{k}, A_{h}^{\prime}\right\rangle-\left\langle\operatorname{curl} A_{h}^{k}, \operatorname{curl} A_{h}^{\prime}\right\rangle-\left\langle G_{A_{h}^{k}} \phi_{h}^{k}, U_{h}^{k} \phi_{h}^{k} A_{h}^{\prime}\right\rangle_{1, h}=0
\end{array}\right.
$$

with

- $E_{h}^{k+\frac{1}{2}}:=-\frac{A_{h}^{k+1}-A_{h}^{k}}{\Delta t}$ and $\psi_{h}^{k+\frac{1}{2}}:=-\frac{\phi_{h}^{k+1}-\phi_{h}^{k}}{\Delta t}$
- $d_{t} E_{h}^{k}:=\frac{E_{h}^{k+\frac{1}{2}}-E_{h}^{k-\frac{1}{2}}}{\Delta t}$ and $d_{t} \Psi_{h}^{k}:=\frac{\psi_{h}^{k+\frac{1}{2}}-\psi_{h}^{k-\frac{1}{2}}}{\Delta t}$
- $E_{h}^{k}:=\frac{E_{h}^{k+\frac{1}{2}}+E_{h}^{k-\frac{1}{2}}}{2}$ and $\psi_{h}^{k}:=\frac{\psi_{h}^{k+\frac{1}{2}}+\psi_{h}^{k-\frac{1}{2}}}{2}$

For a given sequence B^{k}, we will also use the following notations $d_{t} B^{k}=\frac{B^{k+1}-B^{k}}{\Delta t}$.
We initialize the algorithm with values $A_{h}^{0}, A_{h}^{1}, \psi_{h}^{0}, \psi_{h}^{1}$.
In this work, we focus on first numerical results and postpone a more thorough fully-discrete numerical analysis for a future work.

5.2 | Constraint preservation

One can straightforwardly check that the constraint is verified.
Proposition 5.1 If $\left\langle E_{h}^{\frac{1}{2}}, \nabla \beta^{\prime}\right\rangle=\left\langle\psi_{h}^{\frac{1}{2}}, \phi^{1} \beta^{\prime}\right\rangle_{0, h}$, the constraint is verified that is,

$$
\begin{equation*}
\left\langle E_{h}^{k-\frac{1}{2}}, \nabla \beta_{h}^{\prime}\right\rangle=\left\langle\psi_{h}^{k-\frac{1}{2}}, \phi_{h}^{k} \beta^{\prime}\right\rangle_{0, h}, \forall k \in\left\{0, . ., N_{T}\right\} \tag{71}
\end{equation*}
$$

Proof. If one expresses the discrete differential, one obtains

$$
\begin{align*}
& d_{t}\left(\left\langle E_{h}^{k-\frac{1}{2}}, \nabla \beta_{h}^{\prime}\right\rangle-\left\langle\psi_{h}^{k-\frac{1}{2}}, \phi_{h}^{k} \beta_{h}^{\prime}\right\rangle_{0, h}\right) \\
& \quad=\frac{1}{\Delta t}\left[\left\langle E_{h}^{k+\frac{1}{2}}, \nabla \beta_{h}^{\prime}\right\rangle-\left\langle E_{h}^{k-\frac{1}{2}}, \nabla \beta_{h}^{\prime}\right\rangle-\left\langle\psi_{h}^{k+\frac{1}{2}}, \phi_{h}^{k+1} \beta^{\prime}\right\rangle_{0, h}+\left\langle\psi_{h}^{k-\frac{1}{2}}, \phi_{h}^{k} \beta_{h}^{\prime}\right\rangle_{0, h}\right] \tag{72}
\end{align*}
$$

But from the definition $\psi_{h}^{k+\frac{1}{2}}$ and the scalar product,

$$
\begin{align*}
\frac{1}{\Delta t}\left[\left\langle\psi_{h}^{k+\frac{1}{2}}, \phi_{h}^{k+1} \beta_{h}^{\prime}\right\rangle_{0, h}-\left\langle\psi_{h}^{k-\frac{1}{2}}, \phi_{h}^{k} \beta_{h}^{\prime}\right\rangle_{0, h}\right] & =\left\langle\frac{\psi^{k+\frac{1}{2}}-\psi^{k-\frac{1}{2}}}{\Delta t}, \phi_{h}^{k} \beta_{h}^{\prime}\right\rangle_{0, h}+\left\langle\psi_{h}^{k+\frac{1}{2}}, \frac{\left(\phi_{h}^{k+1}-\phi_{h}^{k}\right)}{\Delta t} \beta_{h}^{\prime}\right\rangle_{0, h} \\
& =\left\langle d_{t} \psi_{h}^{k}, \phi_{h}^{k} \beta_{h}^{\prime}\right\rangle_{0, h} \tag{73}
\end{align*}
$$

So that

$$
\begin{equation*}
d_{t}\left(\left\langle E^{k-\frac{1}{2}}, \nabla \beta^{\prime}\right\rangle-\left\langle\psi^{k-\frac{1}{2}}, \phi^{k} \beta^{\prime}\right\rangle_{0, h}\right)=\left\langle d_{t} E^{k}, \nabla \beta^{\prime}\right\rangle-\left\langle d_{t} \psi^{k}, \phi^{k} \beta^{\prime}\right\rangle_{0, h} . \tag{74}
\end{equation*}
$$

Similar arguments as in Section 3.2.3 apply to prove that the constraint is preserved even in discrete time. This implies that

$$
\begin{equation*}
\left\langle E^{k-\frac{1}{2}}, \nabla \beta^{\prime}\right\rangle-\left\langle\psi^{k-\frac{1}{2}}, \phi^{k} \beta^{\prime}\right\rangle_{0, h}=0 \tag{75}
\end{equation*}
$$

if the constraint is verified at initial time, that is, for $k=1$.

5.3 | Numerical tests

We have implemented the proposed fully-discrete scheme using a dedicated module that we developed using the Finite Element library Firedrake. ${ }^{1}$ Let us point out that these results are preliminary and used as first assessments of the method. We consider a two dimensional domain given by a square $[0,1] \times[0,1]$. The scheme defined in the previous section is explicit. Thus, as expected in each of our test cases, we observe that the stability of the scheme is guaranteed by a CFL type condition $\Delta t \leq$ CFL h. The CFL constant has been empirically fixed according to our tests to 0.25 .

5.3.1 | Artificial test case and convergence order

One does not have access to an exact solution as such. In order to assess our implementation, we propose to design an artificial test case as explained in the following. We consider for all $(t, x, y) \in$ $[0, T] \times[0,1] \times[0,1]$,

$$
\begin{gather*}
\phi_{\text {art }}(t, x, y)=\sin (\omega t) \sin (\pi x) \sin (\pi y), \tag{76}\\
A_{\text {art }}(t, x, y)=(\cos (\sqrt{2} \pi t) \cos (\pi x) \sin (\pi y),-\cos (\sqrt{2} \pi t) \sin (\pi x) \cos (\pi y)), \tag{77}
\end{gather*}
$$

with $\omega=\sqrt{2 \pi^{2}+\mathfrak{m}^{2}}$. Then we define

$$
\begin{gather*}
J_{\phi_{a r t}}=\partial_{t t} \phi_{a r t}+\left(D_{A_{a r r}}\right)^{*} D_{A_{a r t}} \phi_{a r t}+\mathfrak{m}^{2} \phi_{a r t}+\gamma\left|\phi_{a r t}\right|^{2} \phi_{a r t} \tag{78}\\
J_{A_{a r t}}=\partial_{t t} A_{a r t}+d^{*} d A_{a r t}-i \phi_{a r t}^{*} D_{A_{a r t}} \phi_{a r t} \tag{79}
\end{gather*}
$$

In this way, $\left(A_{a r t}, \phi_{a r t}\right)$ is a solution of the following set of equations:

$$
\begin{align*}
\partial_{t t} \phi+\left(D_{A}\right)^{*} D_{A} \phi+\mathfrak{m}^{2} \phi+\gamma|\phi|^{2} \phi & =J_{\phi_{a r r}}, \\
\partial_{t t} A+d^{*} d A-i \phi^{*} D_{A} \phi & =J_{A_{a r t}} . \tag{80}
\end{align*}
$$

with initial conditions

$$
\begin{align*}
& \phi(0, \cdot)=\phi_{a r t}(0, \cdot), \tag{81}\\
& A(0, \cdot)=A_{a r t}(0, \cdot) . \tag{82}
\end{align*}
$$

We then use the discretization proposed above, add the external currents $\left(J_{A_{a r r}}, J_{\phi_{a r r}}\right)$ on the right hand side, and compute the corresponding solution $\left(A_{h}^{n}, \phi_{h}^{n}\right)_{n \in\left\{0, \ldots, N_{T}\right\}}$. Doing so, we are able to compute the $L^{\infty} L^{2}$ error as

$$
\begin{equation*}
e r r_{h}^{L^{2}}=\max _{n \in\left\{0, \ldots, N_{T}\right\}}\left(\left\|\phi_{h}^{n}-\Pi_{0, h}\left(\phi_{\text {art }}\left(t_{n}, \cdot\right)\right)\right\|_{L^{2}(S)}^{2}+\left\|A_{h}^{n}-\Pi_{1, h}\left(A_{\text {art }}\left(t_{n}, \cdot\right)\right)\right\|_{L^{2}(S)}^{2}\right)^{\frac{1}{2}} \tag{83}
\end{equation*}
$$

We computed the solution for 4 types of (m, γ) couples: $(0,0),(1,0),(0,1)$ and $(1,1)$. In Figure 1 , we plot for several values of the number of points, the values of the respective error defined in (83). The error analysis is performed using mesh parameters that fulfill $\Delta t=$ CFL h. Doing so, we compute the minimum order in time and space of the scheme.

In Figure 2, we plot the results in logarithmic scales. We infer an order of convergence of 1 (a linear regression would even give slopes of ≈ 1.5). Local orders are presented in Table 1.

[^1]

FIGURE 1 Maximum in time of L^{2} errors versus number of points.

FIGURE 2 Convergence order.

TABLE 1 Approximate numerical orders obtained for various values of the couples $(m, \gamma)((0,0),(0,1),(1,0),(1,1))$.

\boldsymbol{h}	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
0.2	-	-	-	-
0.1	1.64	1.57	1.33	1.23
0.05	1.68	1.71	1.82	1.75
0.033	1.65	1.47	1.54	1.43
0.025	1.96	1.33	1.07	1.30
0.02	1.62	1.25	1.11	2.01
0.0125	0.56	1.16	1.05	0.66
0.01	1.16	1.10	1.02	1.04

FIGURE 3 Evolution of the constraint in time for several couples ($\mathfrak{m}, \gamma):(0,0)$ upper left, $(0,1)$ upper right, $(1,0)$ bottom left, $(1,1)$ bottom right. The initial constraint is nonzero and is represented by the orange horizontal line.

Although this is out of the scope of this work to obtain a theoretical proof of the convergence orders, one can however try to find, through our analysis, some indication of first order convergence for this test case using regular fields. Indeed the approximation of the discrete covariant derivative $D_{A_{h}} \phi_{h}$ by the LGT gauge compatible discretization come at the price of the estimate such as (4.5) where we do not hope to obtain more than first order of approximation of the covariant derivative.

Regarding the constraint κ, in this case, one has instead of (23), the following equation.

$$
\begin{equation*}
\left\langle\kappa(t), \alpha^{\prime}\right\rangle=\left\langle\kappa(0), \alpha^{\prime}\right\rangle+\int_{0}^{t}\left(\left\langle J_{\phi_{a r}}, \Pi_{0, h}\left(-i \alpha^{\prime} \phi\right)\right\rangle+\left\langle J_{A_{a r t}}, \nabla \alpha^{\prime}\right\rangle\right) d s . \tag{84}
\end{equation*}
$$

Hence, except if currents are chosen such that the right hand side vanishes, we do not expect preservation of the constraint in this artificial case. We will not compute the constraint for this precise test case and postpone the tests to the next section.
5.3.2 | Second test case and preservation of the constraint

For this second test case, we propose to initialize the system with an electromagnetic plane wave for A and a 2D-Gaussian initial profile for ϕ centered at the center of the domain. In other words, we consider a focalized density profile for the modulus of the complex Klein-Gordon field. In Figure 3,

FIGURE 4 Evolution of the energy over time for several couples $(\mathfrak{m}, \gamma):(0,0)$ upper left, $(0,1)$ upper right, $(1,0)$ bottom left, $(1,1)$ bottom right. The initial energy is represented by the orange horizontal line.

FIGURE 5 Absolute variations of the energy with respect to its initial value over time for a space discretization made of 50 and 100 pts.
we observe that the constraint is preserved up to machine precision. This is in accordance with the theory developed in previous sections.

The energy is not preserved by the time-integration scheme, however relative variations of the energy from its initial value are relatively small (see Figure 4) and this variation gets consistently smaller as the discretization parameters decrease (see Figure 5).

To conclude, we represent in Figure 6 some ϕ modulus profiles and their evolution with time (the initial profile is represented in Figure 7). At this stage of our investigations, we cannot really interpret these profiles since we work on a toy academic model. This will be part of future works to improve the physical relevance of the setting considered here and the corresponding test cases. The way we use these profiles here is to show the effect of the introduction of mass and self-coupling term. Even if, again, the physical relevance of the values chosen are not discussed here, we propose to test the use of nonunitary values of the mass and self-coupling term.

FIGURE 6 Evolution of the profile of the modulus of the Klein-Gordon complex field with $(\mathfrak{m}, \gamma)=(0,0)$ (first row), $(\mathfrak{m}, \gamma)=(0,10)$ (second row), $(\mathfrak{m}, \gamma)=(10,0)$ (third row) and $(\mathfrak{m}, \gamma)=(10,10)$ (fourth row): $t=0.125$ left, $t=0.225$ middle, $t=0.985$ right, with $t=1$ being the end of simulation time.

FIGURE 7 Initial profile of the modulus of the Klein-Gordon complex field.

FIGURE 8 Evolution of the profile of the modulus of the Klein-Gordon complex field with $(\mathfrak{m}, \gamma)=(10,100): t=0.125$ left, $t=0.225$ center, $t=0.985$ right, with $t=1$ being the end of simulation time.

What we observe is that the effect of mass and/or self-coupling occurs after some elapsed time and that the effect of self-coupling seems to be weak. We therefore also tested a situation where self-coupling is ten times bigger than mass. In this case, we significantly see self-coupling effects over mass on the profiles patterns (see Figure 8).

6 | CONCLUSION

In this work, we studied the Maxwell-Klein-Gordon equation in dimension two and focused on the semidiscrete analysis of a discretization scheme based on lattice gauge theory (LGT) combined with Nédélec finite elements. The special feature of this scheme is that it ensures gauge invariance at the discrete level therefore respecting the geometrical structure of the original equation through the preservation of the constraint. Our analysis is not an a priori analysis, but concentrates on sequential compactness arguments without the a priori knowledge of a solution of the continuous equations. We use the discrete energy principle combined to constraint preservation to extract bounds in the appropriate spaces and extract convergent subsequences. At last, we implement a fully discrete numerical scheme based on a leap frog type time integration. We provide first academical test cases to extract convergence orders and assess the method. Future works include more relevant physical test cases and the fully discrete analysis of the proposed scheme.

ACKNOWLEDGMENT

This research was supported by the European Research Council through the FP7-IDEAS-ERC Starting Grant scheme, project 278011 STUCCOFIELDS.

DATA AVAILABILITY STATEMENT

The software used to generate the numerical results is not shared, but the parameters used and the results obtained are reported in Section 5.

ORCID

Claire Scheid (©) https://orcid.org/0000-0001-8293-9975

REFERENCES

[1] J. Argyris, M. Haase, and J. C. Heinrich, Finite element approximation to two-dimensional sine-Gordon solitons, Comput. Methods Appl. Mech. Eng. 86 (1991), no. 1, 1-26.
[2] A. Bossavit, Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, IEE Proce-A-Sci. Measure. Technol. 135 (1988), no. 8, 493-500.
[3] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, 2nd ed., Springer, New York, NY, 2002.
[4] T. J. Bridges and S. Reich, Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A 284 (2001), no. 4-5, 184-193.
[5] T. J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs, J. Phys. A Math. General 39 (2006), no. 19, 5287-5320.
[6] S. H. Christiansen and T. G. Halvorsen, Discretizing the Maxwell-Klein-Gordon equation by the lattice gauge theory formalism, IMA J. Numer. Anal. 31 (2011), no. 1, 1-24.
[7] S. H. Christiansen and T. G. Halvorsen, Convergence of lattice gauge theory for Maxwell's equation, BIT Numer. Math. 49 (2009), no. 4, 645-667.
[8] S. H. Christiansen and C. Scheid, Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation, Vol 45, EDP Sciences, ESAIM, M2AN, 2011, 739-760.
[9] S. H. Christiansen, "Foundations of finite element methods for wave equations of Maxwell type," Applied wave mathematics-Selected topics in solids, fluids, and mathematical methods, E. Quak and T. Soomere (eds.), Springer, Verlag, 2009, pp. 335-393.
[10] S. H. Christiansen and R. Winther, On constraint preservation in numerical simulations of Yang-Mills equations, SIAM J. Sci. Comput. 28 (2006), no. 1, 75-101.
[11] P. G. Ciarlet, "Basic errors estimates for elliptic problems," Handbook of numerical analysis, Vol II, P. G. Ciarlet and J. L. Lions (eds.), Elsevier, North Holland, 1991, pp. 17-351.
[12] M. Creutz, "Quarks, gluons and lattices," Cambridge monographs on mathematical physics, 1st ed., Cambridge University Press, 1986.
[13] Q. Du, Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model of superconductivity, Math. Comput. 67 (1998), no. 223, 965-986.
[14] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics, 2nd ed., Vol 31, Springer Berlin, Heidelberg, 2006.
[15] R. Jiwari, Barycentric rational interpolation and local radial basis functions based numerical algorithms for multidimensional sine-Gordon equation, Numer. Methods Partial. Differ. Equ. 37 (2021), no. 3, 1965-1992.
[16] B. Leimkuhler and S. Reich, Symplectic integration of constrained Hamiltonian-systems, Math. Comput. 63 (1994), no. 208, 589-605.
[17] C. Ma, L. Cao, and Y. Lin, Energy conserving Galerkin finite element method for the Maxwell-Klein-Gordon system, SIAM J. Numer. Anal. 58 (2020), no. 2, 1339-1366.
[18] F. Mandl and G. Shaw, Quantum field theory, Revised ed., Wiley \& Sons, 2002.
[19] J. E. Marsden, G. W. Patrick, and S. Shkoller, Multisymplectic geometry, Variational integrators, and nonlinear PDEs, Commun. Math. Phys. 199 (1998), no. 2, 351-395.
[20] J. E. Marsden and M. West, "Discrete mechanics and variational integrators," Acta Numerica, Cambridge University Press, 2001, pp. 357-514.
[21] P. Monk, An analysis of Nédélec method for the spatial discretization of Maxwell's equations, J. Comput. Appl. Math. 47 (1993), no. 1, 101-121.
[22] P. Monk, Finite element methods for Maxwell's equations, 1st ed., Oxford Science Publications, 2003.
[23] J. C. Nédélec, Mixed finite elements in $\mathbb{R}^{3} \mathrm{~mm}$, Numer. Math. 35 (1980), 315-341.
[24] P. J. Olver, Applications of lie groups to differential equations, 2nd ed., Springer-Verlag, New York, NY, 2000.
[25] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory, 1st ed., CRC Press, Boca Raton, 1995.
[26] C. Quigg, Gauge theories of the strong, weak, and electromagnetic interactions, Westview Press, 1997.
[27] H. J. Rothe, Lattice gauge theories, an introduction, 3rd ed., World Scientific, 2005.
[28] V. Rubakov, Classical theory of gauge fields, 1st ed., Princeton University Press, Princeton and Oxford, 2002.
[29] Y. Shi, J. Xiao, H. Qin, and N. J. Fisch, Simulation of relativistic quantum plasmas using real-time lattice scalar QED, Phys. Rev. E 97 (2018), 053206.
[30] J. Simon, Compact sets in the space $L^{p}(0, T ; B)$, Ann. Mat. Pura. Appl. 146 (1987), no. 4, 65-96.
[31] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Company, New York, 1973.
[32] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974), no. 8, 2445-2459.
[33] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag. 14 (1966), no. 3, 302-307.

How to cite this article: S. H. Christiansen, T. G. Halvorsen, and C. Scheid, Convergence of a discretization of the Maxwell-Klein-Gordon equation based on finite element methods and lattice gauge theory, Numer. Methods Partial Differ. Eq. 39 (2023), 3271-3308. https://doi. org/10.1002/num. 23008

APPENDIX A: PROOFS OF THE PRELIMINARY LEMMA 4.1 AND A.2.

Lemma A. 1 Let $\Pi_{1, h}$ be the edge interpolant. For $p>2$, the following inequalities hold. There exists $C>0$ such that for all $\left(F_{h}, \zeta_{h}\right) \in Y_{h}^{1} \times Z_{h}^{0}$

$$
\begin{equation*}
\left\|F_{h} \zeta_{h}-\Pi_{1, h}\left(F_{h} \zeta_{h}\right)\right\|_{L^{2}(S)} \leq C h^{1-\frac{2}{p}}\left\|F_{h}\right\|_{L^{p}(S)}\left|\zeta_{h}\right|_{H^{1}(S)} \tag{i}
\end{equation*}
$$

Furthermore there exists $C>0$ such that
(ii)

$$
\begin{equation*}
\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|A_{h}\right|_{H^{1}(K)}^{2}} \leq C\left(\left\|\nabla \times A_{h}\right\|_{L^{2}(S)}+\sup _{r_{h} \in Y_{h}^{0}} \frac{\left|\left\langle A_{h}, \nabla r_{h}\right\rangle\right|}{\left\|r_{h}\right\|_{L^{2}(S)}}\right), \tag{A2}
\end{equation*}
$$

(iii)

$$
\begin{align*}
\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\Pi_{1, h}\left(A_{h} \phi_{h}\right)\right|_{H^{1}(K)}^{2}} \leq & C h^{-\frac{2}{p}}\left[\left(\left\|\nabla \times A_{h}\right\|_{L^{2}(S)}+\sup _{r_{h} \in Y_{h}^{0}} \frac{\left|\left\langle A_{h}, \nabla r_{h}\right\rangle\right|}{\left\|r_{h}\right\|_{L^{2}(S)}}\right)\left\|\phi_{h}\right\|_{L^{p}(S)}+\right. \\
& \left.+\left\|A_{h}\right\|_{L^{p}(S)}|\phi|_{H^{1}(S)}\right] \tag{A3}
\end{align*}
$$

Proof. Let $\hat{\Pi}$ be the projector on the reference domain \hat{K} corresponding to $\Pi_{1, h}$ on Z_{h}^{1}, and $\hat{F}_{h}, \hat{\zeta}_{h}$ the corresponding functions classically defined on the reference element \hat{K}.

One has

$$
\left\|\hat{F}_{h} \hat{\zeta}_{h}-\hat{\Pi} \hat{F}_{h} \hat{\zeta}_{h}\right\|_{L^{2}(\hat{K})} \leq C \inf _{p \in Q}\left\|\hat{F}_{h} \hat{\zeta}_{h}-p\right\|_{H^{1}(\hat{K})}
$$

where $Q=\mathcal{Q}_{0,1}(\mathbb{C}) \times \mathcal{Q}_{1,0}(\mathbb{C})$ is the space of polynomials we will consider on \hat{K}. Furthermore

$$
\inf _{p \in Q}\left\|\hat{F}_{h} \hat{\zeta}_{h}-p\right\|_{H^{1}(\hat{K})} \leq \inf _{p \in \mathbb{P}_{0}}\left\|\hat{F}_{h}\left(\hat{\zeta}_{h}-p\right)\right\|_{H^{1}(\hat{K})}
$$

where \mathbb{P}_{0} are complex constant functions on \hat{K}. In addition,

$$
\begin{aligned}
& \inf _{p \in \mathbb{P}_{0}}\left\|\hat{F}_{h}\left(\hat{\zeta}_{h}-p\right)\right\|_{H^{1}(\hat{K})} \\
& \leq C\left[\left\|\hat{F}_{h}\right\|_{L^{p}(\hat{K}} \inf _{p \in \mathbb{P}_{0}}\left\|\hat{\zeta}_{h}-p\right\|_{H^{1}(\hat{K})}+\left|\hat{F}_{h}\right|_{H^{1}(\hat{K})}\right. \\
&\left.\quad \inf _{p \in \mathbb{P}_{0}}\left\|\hat{\zeta}_{h}-p\right\|_{H^{1}(\hat{K})}+\left|\hat{\zeta}_{h}\right|_{H^{1}(\hat{K})}\left\|\hat{F}_{h}\right\|_{\left.L^{p} \hat{K}\right)}\right],
\end{aligned}
$$

which gives

$$
\begin{aligned}
\inf _{p \in \mathbb{P}_{0}}\left\|\hat{F}_{h}\left(\hat{\zeta}_{h}-p\right)\right\|_{H^{1}(\hat{K})} & \leq C\left\|\hat{F}_{h}\right\|_{L^{p}(\hat{K})}\left|\hat{\zeta}_{h}\right|_{H^{1}(\hat{K})}+\left|\hat{F}_{h}\right|_{H^{1}(\hat{K})}\left|\hat{\zeta}_{h^{\prime}}\right|_{H^{1}(\hat{K})}+\left|\zeta_{h}\right|_{H^{1}(\hat{K})}\left\|\hat{F}_{h}\right\|_{L^{p}(\hat{K})} \\
& \leq C\left\|\hat{F}_{h}\right\|_{\left.L^{p} \hat{K}\right)}\left|\hat{\zeta}_{h}\right|_{H^{1}(\hat{K})} .
\end{aligned}
$$

So on any rectangle K, one deduces by scaling

$$
\left\|F_{h} \zeta_{h}-\Pi_{1, h}\left(F_{h} \zeta_{h}\right)\right\|_{L^{2}(K)} \leq C h^{1-\frac{2}{p}}\left\|F_{h}\right\|_{L^{p}(K)}\left|\zeta_{h}\right|_{H^{1}(K)} \leq C h^{1-\frac{2}{p}}\left\|F_{h}\right\|_{L^{p}(S)}\left|\zeta_{h}\right|_{H^{1}(K)}
$$

and by summing up the squares of each part of this inequality (i) is proved. By inverse inequality one also has

$$
\left\|F_{h} \zeta_{h}-\Pi_{1, h}\left(F_{h} \zeta_{h}\right)\right\|_{H^{1}(K)} \leq C h^{-\frac{2}{p}}\left\|F_{h}\right\|_{L^{p}(K)}\left|\zeta_{h}\right|_{H^{1}(K)} .
$$

Furthermore, on the reference square \hat{K},

$$
\left|\hat{F}_{h} \hat{\zeta}_{h}\right|_{H^{1}(\hat{K})} \leq C\left[\left|\hat{F}_{h}\right|_{H^{1}(\hat{K})}\left|\hat{\zeta}_{h}\left\|_{L^{p}(\hat{K})}+\left|\hat{\zeta}_{h}\right|_{H^{1}(\hat{K})}\right\| \hat{F}_{h} \|_{L^{p}(\hat{K})}\right],\right.
$$

which gives on any rectangle K,

$$
\left|F_{h} \zeta_{h}\right|_{H^{1}(K)} \leq C h^{-\frac{2}{p}}\left[\left|F_{h}\right|_{H^{1}(K)}\left\|\zeta_{h}\right\|_{L^{p}(K)}+\left|\zeta_{h}\right|_{H^{1}(K)}\left\|F_{h}\right\|_{L^{p}(K)}\right] .
$$

This implies

$$
\begin{equation*}
\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\Pi_{1, h}\left(F_{h} \zeta_{h}\right)\right|_{H^{1}(K)}^{2}} \leq C h^{-\frac{2}{p}}\left[\left(\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|F_{h}\right|_{H^{1}(K)}^{2}}\right)\left\|\zeta_{h}\right\|_{L^{p}(S)}+\left\|F_{h}\right\|_{L^{p}(S)}|\phi|_{H^{1}(S)}\right] . \tag{A4}
\end{equation*}
$$

Turning to the proof of (ii). The discrete Helmholtz decomposition of A_{h} is written (see 22)

$$
\begin{equation*}
A_{h}=\AA_{h}+\nabla p_{h}, \tag{A5}
\end{equation*}
$$

where

- \AA_{h} is discrete divergence free, that is, $\AA_{h} \in V_{h}:=\left\{u_{h} \in Y_{h}^{1} \mid\left\langle u_{h}, \nabla \beta_{h}\right\rangle=0, \forall \beta_{h} \in Y_{h}^{0}\right\}$,
- $p_{h} \in Y_{h}^{0}$.

First, we consider the term \AA_{h}. We would like to prove that

$$
\begin{equation*}
\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\AA_{h}\right|_{H^{1}(K)}^{2}} \leq C\left\|\nabla \times \AA_{h}\right\|_{L^{2}(S)} \tag{A6}
\end{equation*}
$$

Let us define P_{V} the L^{2} projection on the space of divergence free vectors fields. By inverse inequality

$$
\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\AA_{h}-P_{V} \AA_{h}\right|_{H^{1}(K)}^{2}} \leq C h^{-1}\left|\AA_{h}-P_{V} \AA_{h}\right|_{L^{2}(S)}
$$

and following 8 (the proof of Proposition 2.5.), one has

$$
\left|\AA_{h}-P_{V} \AA_{h}\right|_{L^{2}(S)} \leq C h\left\|\nabla \times \AA_{h}\right\|_{L^{2}(S)} .
$$

This yields

$$
\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\AA_{h}-P_{V} \AA_{h}\right|_{H^{1}(K)}^{2}} \leq C\left\|\nabla \times \AA_{h}\right\|_{L^{2}(S)}
$$

Furthermore $P_{V}\left(\AA_{h}\right) \in H^{1}(S)$ and one has

$$
\left|P_{V} \AA_{h}\right|_{H^{1}(S)} \leq C\left\|\nabla \times P_{V} \AA_{h}\right\|_{L^{2}(S)}=C\left\|\nabla \times \AA_{h}\right\|_{L^{2}(S)}
$$

and (A6) is proved. Let us study the gradient part. From the expression of the constraint (23), there exists, from Riesz representation theorem, $u_{h} \in Y_{h}^{0}$ such that

$$
\left\langle\nabla p_{h}, \nabla r_{h}\right\rangle=\left\langle u_{h}, r_{h}\right\rangle, \forall r_{h} \in Y_{h}^{0},
$$

and

$$
\left\|u_{h}\right\|_{L^{2}(S)}=\sup _{r_{h} \in Y_{h}^{0}} \frac{\left|\left\langle\nabla p_{h}, \nabla r_{h}\right\rangle\right|}{\left\|r_{h}\right\|_{L^{2}(S)}}
$$

Define $p \in H_{0}^{1}(S)$ as the unique solution of the following equation

$$
\langle\nabla p, \nabla r\rangle=\left\langle u_{h}, r\right\rangle, \forall r \in H_{0}^{1}(S) .
$$

Since $u_{h} \in L^{2}(S)$, then $p \in H^{2}(S) \cap H_{0}^{1}(S)$ and the following inequality holds

$$
|p|_{H^{2}(S)} \leq C\left\|u_{h}\right\|_{L^{2}(S)}
$$

Furthermore, by standard estimates

$$
\left|p_{h}-\Pi_{0, h} p\right|_{H^{1}(S)} \leq C h|p|_{H^{2}(S)}
$$

We would like to prove that

$$
\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\nabla p_{h}\right|_{H^{1}(K)}^{2}} \leq C\left\|u_{h}\right\|_{L^{2}(S)} .
$$

One has

$$
\begin{align*}
\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\nabla p_{h}\right|_{H^{1}(K)}^{2}} & \leq \sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\nabla p_{h}-\nabla \Pi_{0, h} p_{h}\right|_{H^{1}(K)}^{2}}+\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\nabla \Pi_{0, h} p\right|_{H^{1}(K)}^{2}} \tag{A7}\\
& \leq C h^{-1} \sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\nabla p_{h}-\nabla \Pi_{0, h} p\right|_{L^{2}(K)}^{2}}+\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|\nabla \Pi_{0, h} p\right|_{H^{1}(K)}^{2}} \tag{A8}\\
& \leq C|p|_{H^{2}(S)}+C|\nabla p|_{H^{1}(S)} \tag{A9}\\
& \leq C\left\|u_{h}\right\|_{L^{2}(S)}, \tag{A10}
\end{align*}
$$

where we used inverse inequalities and the continuity arguments.

Using the estimates established, one concludes that

$$
\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|A_{h}\right|_{H^{1}(K)}^{2}} \leq C\left(\left\|\nabla \times A_{h}\right\|_{L^{2}(S)}+\sup _{r_{h} \in Y_{h}^{0}} \frac{\left|\left\langle A_{h}, \nabla r_{h}\right\rangle\right|}{\left\|r_{h}\right\|_{L^{2}(S)}}\right),
$$

and (ii) is proved.
Inequality (iii) follows directly from (ii) and (A4).
The following result allows by the constraint (23) to control the weak divergence of A_{h} appearing in (47) and (48).

Lemma A. 2 For any $p>2$,

$$
\sup _{r_{h} \in Y_{h}^{0}} \frac{\left|\left\langle A_{h}, \nabla r_{h}\right\rangle\right|}{\left\|r_{h}\right\|_{L^{2}(S)}} \leq C h^{-\frac{2}{p}}\left\|\phi_{h}\right\|_{L^{\infty}\left(0, T, L^{p}(S)\right)}\left\|\dot{\phi}_{h}\right\|_{L^{\infty}\left(0, T, L^{2}(S)\right)} .
$$

Proof. One has from the constraint (23)

$$
\left|\left\langle A_{h}, \nabla r_{h}\right\rangle\right|=\left|\left\langle\int_{0}^{t} \dot{\phi}_{h} \bar{\phi}_{h}, r_{h}\right\rangle_{0, h}\right|, \forall r_{h} \in Y_{h}^{0},
$$

implying that

$$
\begin{aligned}
\sup _{r_{h} \in Y_{h}^{0}} \frac{\left|\left\langle A_{h}, \nabla r_{h}\right\rangle\right|}{\left\|r_{h}\right\|_{L^{2}(S)}} & =\sup _{r_{h} \in Y_{h}^{0}} \frac{\left|\left\langle\int_{0}^{t} \dot{\phi}_{h} \bar{\phi}_{h}, r_{h}\right\rangle_{0, h}\right|}{\left\|r_{h}\right\|_{L^{2}(S)}} \leq \sup _{r_{h} \in Y_{h}^{0}} \frac{\left\|\int_{0}^{t} \dot{\phi}_{h} \bar{\phi}_{h}\right\|_{0, h}\left\|r_{h}\right\|_{0, h}}{\left\|r_{h}\right\|_{L^{2}(S)}} \\
& \leq C\left\|\int_{0}^{t} \dot{\phi}_{h} \bar{\phi}_{h}\right\|_{0, h} \leq C \int_{0}^{t}\left\|\dot{\phi}_{h}\right\|_{L^{p}(S)}\left\|\phi_{h}\right\|_{L^{q}(S)} \\
& \leq C h^{-\frac{2}{p}}\left\|\phi_{h}\right\|_{L^{\infty}\left(0, T, L^{p}(S)\right)}\left\|\dot{\phi}_{h}\right\|_{L^{\infty}\left(0, T, L^{2}(S)\right)},
\end{aligned}
$$

with $1 / p+1 / q=1 / 2$.

APPENDIX B: PROOF OF LEMMA 4.5 TO LEMMA 4.11

We will use the following decomposition of $G_{A_{h}} \phi_{h}$ in terms of its gradient part and its nonlinear part, that upon requiring h to be sufficiently small, is close to $i A_{h} \phi_{h}$.

Let $e=\{m, n\}$ denote an oriented edge of the mesh. The following decomposition holds

$$
\begin{equation*}
\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)_{e}=\frac{1+\exp \left(-i \mathbf{A}_{e}^{h}\right)}{2}\left(\boldsymbol{\phi}_{n}^{h}-\boldsymbol{\phi}_{m}^{h}\right)+\frac{1-\exp \left(-i \mathbf{A}_{e}^{h}\right)}{2}\left(\boldsymbol{\phi}_{m}^{h}+\boldsymbol{\phi}_{n}^{h}\right) . \tag{B1}
\end{equation*}
$$

Let us denote

- $N_{h} \in Z_{h}^{1}$ the edge element such that its edge degrees of freedom are $\mathbf{N}_{e}^{h}=1-\exp \left(-i \mathbf{A}_{e}^{h}\right)$.
- $\mathbf{N} \boldsymbol{\phi}^{h}$ the vector of the degrees of freedom of the vector $N_{h} \phi_{h}$, that is, $\left(\mathbf{N} \boldsymbol{\phi}^{h}\right)_{e}=\mathbf{N}_{e}^{h}\left(\frac{\boldsymbol{\phi}_{m}^{h}+\boldsymbol{\phi}_{n}^{h}}{2}\right)$.
- \mathbf{P}^{h} the vector such that $\mathbf{P}_{e}^{h}:=-\frac{1}{2} \mathbf{N}_{e}^{h}\left(G \boldsymbol{\phi}^{h}\right)_{e}$, and $P_{h} \in Z_{h}^{1}$ its associated edge element vector field.

This gives

$$
\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)_{e}=\left(G \boldsymbol{\phi}^{h}\right)_{e}+\mathbf{P}_{e}^{h}+\left(\mathbf{N} \boldsymbol{\phi}^{h}\right)_{e} .
$$

We first prove the following
Lemma B. 1 There exist $\eta>0$ and $C>0$ such that if $h<\eta$,

$$
\sup _{[0, T]}\left\|G_{A_{h}} \phi_{h}-\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right)\right\|_{1, h}^{2} \leq C h^{2-4 / p},
$$

so that

$$
\sup _{[0, T]}\left\|G_{A_{h}} \phi_{h}-\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right)\right\|_{1, h} \xrightarrow[h \rightarrow 0]{ } 0 .
$$

Proof. Let $e=\{m, n\}$ be an oriented edge of the mesh, one has,

$$
\left(G_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}-\Pi_{1, h}\left(D_{\mathbf{A}^{h}} \boldsymbol{\phi}^{h}\right)\right)_{e}=\left(\mathbf{P}^{h}\right)_{e}+\left(\mathbf{N}_{e}^{h}-i \mathbf{A}_{e}^{h}\right) \frac{\boldsymbol{\phi}_{m}^{h}+\boldsymbol{\phi}_{n}^{h}}{2},
$$

and

$$
\left\|P_{h}+\left(N_{h}-i A_{h}\right) \phi_{h}\right\|_{1, h} \leq\left\|P_{h}\right\|_{1, h}+\left\|\left(N_{h}-i A_{h}\right) \phi_{h}\right\|_{1, h} .
$$

Furthermore,

$$
\begin{aligned}
\left\|P_{h}\right\|_{1, h}^{2} & =\sum_{e}\left(H_{1}^{h}\right)_{e e}\left|\frac{\exp \left(-i \mathbf{A}_{e}^{h}\right)-1}{2}\left(G \boldsymbol{\phi}^{h}\right)_{e}\right|^{2} \\
& \leq \sum_{e}\left(H_{1}^{h}\right)_{e e} \frac{\left|\mathbf{A}_{e}^{h}\right|^{2}}{4}\left|\left(G \boldsymbol{\phi}^{h}\right)_{e}\right|^{2} \\
& \leq C h^{2-\frac{4}{p}}\left\|A_{h}\right\|_{L^{\infty}\left(0, T, L^{p}(S)\right)}^{2} \sum_{e}\left(H_{1}^{h}\right)_{e e}\left|\left(G \boldsymbol{\phi}^{h}\right)_{e}\right|^{2} \\
& \leq C h^{2-\frac{4}{p}}\left\|\nabla \phi_{h}\right\|_{1, h}^{2} \leq C h^{2-\frac{4}{p}}\left\|\nabla \phi_{h}\right\|_{L^{\infty}\left(0, T ; L^{2}(S)\right)}^{2} \leq C h^{2-\frac{4}{p}},
\end{aligned}
$$

since $\nabla \phi_{h}$ is uniformly bounded in $L^{\infty}\left(0, T, L^{2}(S)\right)$. In addition,

$$
\left\|\left(N_{h}-i A_{h}\right) \phi_{h}\right\|_{1, h}^{2}=\sum_{e}\left(H_{1}^{h}\right)_{e e} \left\lvert\, \frac{1-\exp \left(-i \mathbf{A}_{e}^{h}\right)-i \mathbf{A}_{e}^{h}}{2}\left(\boldsymbol{\phi}_{m}^{h}+\left.\boldsymbol{\phi}_{n}^{h}\right|^{2}\right.\right.
$$

There exists $\eta>0$, such that $\left|\mathbf{A}_{e}^{h}\right|$ is sufficiently small (from (56)) so that the following inequalities hold for $h<\eta$

$$
\begin{aligned}
\left\|\left(N_{h}-i A_{h}\right) \phi_{h}\right\|_{1, h}^{2} & \leq C \sum_{e}\left(H_{1}^{h}\right)_{e e}\left|\mathbf{A}_{e}^{h}\right|^{2}\left|\frac{\mathbf{A}_{e}^{h}}{2}\left(\boldsymbol{\phi}_{m}^{h}+\boldsymbol{\phi}_{h}^{h}\right)\right|^{2} \\
& \leq C h^{2-\frac{4}{p}}\left\|A_{h}\right\|_{L^{\infty}\left(0, T, L^{p}(S)\right)}^{2} \sum_{e}\left(H_{1}^{h}\right)_{e e}\left|\frac{\mathbf{A}_{e}^{h}}{2}\left(\boldsymbol{\phi}_{m}^{h}+\boldsymbol{\phi}_{n}^{h}\right)\right|^{2} \\
& \leq C h^{2-\frac{4}{p}}\left\|A_{h}\right\|_{L^{\infty}\left(0, T, L^{p}(S)\right)}^{2}\left\|\Pi_{1, h}\left(A_{h} \phi_{h}\right)\right\|_{1, h}^{2} \\
& \leq C h^{2-\frac{4}{p}}\left\|A_{h}\right\|_{L^{\infty}\left(0, T, L^{p}(S)\right)}^{2}\left\|\Pi_{1, h}\left(A_{h} \phi_{h}\right)\right\|_{L^{\infty}\left(0, T, L^{2}(S)\right)}^{2} \\
& \leq C h^{2-\frac{4}{p}},
\end{aligned}
$$

where we used Lemma A.1, and uniform bounds on the L^{p}-norm of A_{h} and the H^{1}-norm on ϕ_{h}.

The following Lemma is a direct consequence of the estimate on the energy.

Lemma B. 2 There exists $C>0$ such that

$$
\begin{equation*}
\sup _{[0, T]}\left\|G_{A_{h}} \phi_{h}\right\|_{1, h} \leq C . \tag{B2}
\end{equation*}
$$

Lemma B. 3

$$
\left\|\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \nabla \phi_{h}^{\prime}\right\rangle_{1, h}-\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \nabla \phi^{\prime}\right\rangle\right\|_{L^{\infty}(0, T)} \underset{h \rightarrow 0}{\longrightarrow} 0 .
$$

Proof. From the consistency estimate, one has

$$
\left|\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \nabla \phi^{\prime}\right\rangle_{1, h}-\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \nabla \phi^{\prime}\right\rangle\right| \leq C h\left\|\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right)\right\|_{L^{2}(S)}\left\|\nabla \phi^{\prime}\right\|_{H^{l}(S)},
$$

for $l>1$, and from bounds established in Lemma A.1, one deduces for $p>2$ a bound on $\left\|\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right)\right\|_{L^{2}(S)}$ in terms of $\left\|A_{h}\right\|_{L^{\infty}\left(0, T ; L^{p}(S)\right)}$ and $\left\|\phi_{h}\right\|_{L^{\infty}\left(0, T ; H^{1}(S)\right)}$ which concludes the proof using the obtained bounds and convergence of discrete test functions.

Lemma B. 4

$$
\left\|\left\langle\nabla \phi_{h}, A_{h} \phi_{h}^{\prime}\right\rangle_{1, h}-\left\langle\nabla \phi_{h}, A_{h} \phi_{h}^{\prime}\right\rangle\right\|_{L^{\infty}(0, T)}^{\longrightarrow} \underset{h \rightarrow 0}{ } 0 .
$$

Proof. Mapping consistency estimates from the reference square to any rectangle K of the mesh (as is done in 9) gives

$$
\begin{aligned}
\mid\left\langle\nabla \phi_{h}, A_{h} \phi_{h}^{\prime}\right\rangle_{1, h} & \left\langle\nabla \phi_{h}, A_{h} \phi_{h}^{\prime}\right\rangle \mid \\
& \leq C\left(h \sqrt{\sum_{K \in \mathcal{T}_{h}}\left|A_{h} \phi_{h}^{\prime}\right|_{H^{1}(K)}^{2}}+h^{2} \sqrt{\sum_{K \in \mathcal{T}_{h}}\left|A_{h} \phi_{h}^{\prime}\right|_{H^{2}(K)}^{2}}\right)\left\|\nabla \phi_{h}\right\|_{L^{2}(S)} .
\end{aligned}
$$

The two terms $\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|A_{h} \phi_{h}^{\prime}\right|_{H^{1}(K)}^{2}}$ and $\sqrt{\sum_{K \in \mathcal{T}_{h}}\left|A_{h} \phi_{h}^{\prime}\right|_{H^{2}(K)}^{2}}$ can be estimated by standard techniques on the reference simplex as in Lemma A.1. It will not be detailed here since arguments are similar to those already used in previous proofs.

One obtains

$$
h \sqrt{\sum_{K \in \mathcal{T}_{h}}\left|A_{h} \phi_{h}^{\prime}\right|_{H^{1}(K)}^{2}}+h^{2} \sqrt{\sum_{K \in \mathcal{T}_{h}}\left|A_{h} \phi_{h}^{\prime}\right|_{H^{2}(K)}^{2}} \leq C h^{1-\frac{2}{p}} \sqrt{\sum_{K \in \mathcal{T}_{h}}\left|A_{h}\right|_{H^{1}(K)}^{2}}\left\|\phi_{h}^{\prime}\right\|_{H^{1}(S)} .
$$

Using Lemma A. 1 and A. 2 and previously obtained bounds, we obtain

$$
\left\|\left\langle\nabla \phi_{h}, A_{h} \phi_{h}^{\prime}\right\rangle_{1, h}-\left\langle\nabla \phi_{h}, A_{h} \phi_{h}^{\prime}\right\rangle\right\|_{L^{\infty}(0, T)} \leq C h^{1-\frac{4}{p}} .
$$

Choosing $p>4$ gives the result.

Lemma B. 5

$$
\left\|\left\langle\Pi_{1, h}\left(A_{h} \phi_{h}\right), \Pi_{1, h}\left(A_{h} \phi_{h}^{\prime}\right)\right\rangle_{1, h}-\left\langle\Pi_{1, h}\left(A_{h} \phi_{h}\right), \Pi_{1, h}\left(A_{h} \phi_{h}^{\prime}\right)\right\rangle\right\|_{L^{\infty}(0, T)} \xrightarrow[h \rightarrow 0]{ } 0
$$

Proof. From error estimates in 11, one deduces that

$$
\begin{aligned}
\mid\left\langle\Pi_{1, h}\left(A_{h} \phi_{h}\right), \Pi_{1, h}\left(A_{h} \phi_{h}^{\prime}\right)\right\rangle_{1, h} & -\left\langle\Pi_{1, h}\left(A_{h} \phi_{h}\right), \Pi_{1, h}\left(A_{h} \phi_{h}^{\prime}\right)\right\rangle \mid \\
& \leq C h \sum_{K \in \mathcal{T}_{h}}\left(\left\|\Pi_{1, h}\left(A_{h} \phi_{h}\right)\right\|_{L^{2}(K)}\left|\Pi_{1, h}\left(A_{h} \phi_{h}^{\prime}\right)\right|_{H^{1}(K)}\right. \\
& \left.+\left\|\Pi_{1, h}\left(A_{h} \phi_{h}^{\prime}\right)\right\|_{L^{2}(K)}\left|\Pi_{1, h}\left(A_{h} \phi_{h}\right)\right|_{H^{1}(K)}\right)
\end{aligned}
$$

So by Lemma A.1, Lemma A. 2 and the bounds on A_{h}, ϕ_{h} and ϕ_{h}^{\prime} the result follows.

Lemma B. 6

$$
\int_{0}^{T}\left\langle\Pi_{1, h}\left(D_{A_{h}} \phi_{h}\right), \Pi_{1, h}\left(D_{A_{h}} \phi_{h}^{\prime}\right)\right\rangle d t \underset{h \rightarrow 0}{\longrightarrow} \int_{0}^{T}\left\langle D_{A} \phi, D_{A} \phi^{\prime}\right\rangle d t .
$$

Proof. This follows from Lemma A.1, weak-* convergence of $\nabla \phi_{h}$ to $\nabla \phi$ in $L^{\infty}\left(0, T ; L^{2}(S)\right)$ and strong convergence of A_{h} and ϕ_{h} in $L^{\infty}\left(0, T ; L^{p}(S)\right)$.

Last

Lemma B. 7

$$
\left\|\mathcal{R}_{h}\left(U_{h}, \phi_{h}, A_{h}^{\prime}\right)-\Pi_{1, h}\left(A_{h}^{\prime} \phi_{h}\right)\right\|_{1, h} \xrightarrow[h \rightarrow 0]{ } 0
$$

Proof. For h sufficiently small

$$
\begin{aligned}
& \left\|\mathcal{R}_{h}\left(U_{h}, \phi_{h}, A_{h}^{\prime}\right)-\Pi_{1, h}\left(A_{h}^{\prime} \phi_{h}\right)\right\|_{1, h}^{2} \\
& =\sum_{e}\left(H_{1}^{h}\right)_{e e}\left|\mathbf{A}_{e}^{\prime h} \exp \left(-i \mathbf{A}_{e}^{h}\right) \boldsymbol{\phi}_{m}^{h}-\mathbf{A}_{e}^{\prime h} \frac{\boldsymbol{\phi}_{m}^{h}+\boldsymbol{\phi}_{n}^{h}}{2}\right|^{2} \\
& =\sum_{e}\left(H_{1}^{h}\right)_{e e}\left|\mathbf{A}_{e}^{\prime h} \exp \left(-i \mathbf{A}_{e}^{h}\right) \frac{\boldsymbol{\phi}_{n}^{h}+\boldsymbol{\phi}_{m}^{h}}{2}-\mathbf{A}_{e}^{\prime h} \exp \left(-i \mathbf{A}_{e}^{h}\right) \frac{\boldsymbol{\phi}_{n}^{h}-\boldsymbol{\phi}_{m}^{h}}{2}-\mathbf{A}_{e}^{\prime h} \frac{\boldsymbol{\phi}_{m}^{h}+\boldsymbol{\phi}_{n}^{h}}{2}\right|^{2} \\
& =\sum_{e}\left(H_{1}^{h}\right)_{e e}\left|\mathbf{A}_{e}^{\prime h}\left(1-\exp \left(-i \mathbf{A}_{e}^{h}\right)\right) \frac{\boldsymbol{\phi}_{n}^{h}+\boldsymbol{\phi}_{m}^{h}}{2}-\mathbf{A}_{e}^{\prime h} \exp \left(-i \mathbf{A}_{e}^{h}\right) \frac{\boldsymbol{\phi}_{n}^{h}-\boldsymbol{\phi}_{m}^{h}}{2}\right|^{2} \\
& \leq C \sum_{e}\left(H_{1}^{h}\right)_{e e}\left(\left|\mathbf{A}_{e}^{\prime h}\right|^{2}\left|\mathbf{A}_{e}^{h}\right|^{2}\left|\frac{\boldsymbol{\phi}_{n}^{h}+\boldsymbol{\phi}_{m}^{h}}{2}\right|^{2}+\left|\mathbf{A}_{e}^{\prime h}\right|^{2}\left|\frac{\boldsymbol{\phi}_{n}^{h}-\boldsymbol{\phi}_{m}^{h}}{2}\right|^{2}\right) \\
& \leq C h^{2-\frac{4}{p}} \sum_{e}\left(H_{1}^{h}\right)_{e e}\left(\left|\mathbf{A}_{e}^{h}\right|^{2}\left|\frac{\boldsymbol{\phi}_{n}^{h}+\boldsymbol{\phi}_{m}^{h}}{2}\right|^{2}+\left|\boldsymbol{\phi}_{n}^{h}-\boldsymbol{\phi}_{m}^{h}\right|^{2}\right) \\
& \leq C h^{2-\frac{4}{p}}\left(\left\|\Pi_{1, h}\left(A_{h} \boldsymbol{\phi}_{h}\right)\right\|_{L^{\infty}\left(0, T ; L^{2}(S)\right)}^{2}+\left\|\nabla \boldsymbol{\phi}_{h}\right\|_{\left.L^{\infty}\left(0, T ; L^{2}(S)\right)\right)}^{2}\right) .
\end{aligned}
$$

The same arguments as in Lemma 4.9 gives the result.

[^0]: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
 © 2023 The Authors. Numerical Methods for Partial Differential Equations published by Wiley Periodicals LLC

[^1]: ${ }^{1}$ https://www.firedrakeproject.org/.

