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Abstract
The Maxwell–Klein–Gordon equations are a set of coupled

nonlinear time-dependent wave equations, used to model

the interaction of an electromagnetic field with a particle.

The solutions, expressed with a magnetic vector potential,

are invariant under gauge transformations. This character-

istic implies a constraint on the solution fields that might be

broken at the discrete level. In this article, we propose and

study a constraint preserving numerical scheme for this set

of equations in dimension 2. At the semidiscrete level, we

combine conforming Finite Element discretizations with

the so-called Lattice Gauge Theory to design a compati-

ble gauge invariant discretization, leading to preservation

of a discrete constraint. Relying on energy techniques and

compactness arguments, we establish the convergence of

this semidiscrete scheme, without a priori knowledge of

the solution. Finally, at the fully discrete level, we propose

a compatible explicit time-integration strategy of leapfrog

type. We implement the resulting fully discrete scheme and

provide assessment on academic scenarios.
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1 INTRODUCTION

The Standard Model of physics and Einstein’s theory of Gravitation, which describe the fundamen-

tal forces and particles in nature, involve nonlinear partial differential equations. In the Standard
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Model the particles are either fermions or bosons. The fermions are described by spinors, and the

forces between them by connections on vector bundles. The connections model bosons. In quan-

tum electrodynamics (QED) these are photons. In particular, in scalar QED, one models spin zero

bosons that interact with photons. The equations are derived through a variational principle from a

Lagrangian function. The form of the Lagrangian is determined by the symmetry (gauge) group of

the theory. If, in addition, one demands the theory to be renormalizable, the maximal order of deriva-

tives in the Lagrangian is reduced to one, see [25]. Through Noether’s theorem (see [24]) one can

show that gauge symmetry implies preservation of constraints on the solutions of the Euler–Lagrange

equations. The Maxwell–Klein–Gordon (MKG) equations are an example of such equations modelling

the interaction of an electromagnetic wave with a particle. The corresponding Lagrangian is invariant

under a gauge transformation and the resulting Euler–Lagrange equations are a set of coupled nonlin-

ear time-dependent wave equations verifying a charge preservation constraint, consequence of gauge

symmetry. We focus on this set of equations for our study.

Gauge symmetry makes the theory consistent, one should thus strive to preserve this symmetry

when discretizing the model. However, standard discretization techniques can break this symmetry. As

an example, for the related Yang–Mills equation it was shown in [10] that standard FE discretizations

produce approximate solutions that strongly violate the constraints. The field of structure preserving

discretization addresses this issue. It is now successfully applied in various area of numerical analysis

and applied physics (see e.g., [4, 5, 14, 16, 19, 20, 29] and references therein). The idea is that the

preservation of the underlying geometric structure will reveal itself through both stability and good

qualitative properties of the solutions.

Nonlinear wave equations such as, also, the sine-Gordon equations [1, 15], provide a particularly

interesting test-bed for such approaches.

In the MKG equations, the coupling between the electromagnetic field and scalar complex field

describing the evolution of the particle arises through covariant derivatives. Conventional discretiza-

tion methods, such as standard finite difference methods (FDM) or finite element methods (FEM),

approximate the gradient part and the part containing the electromagnetic field separately. Conse-

quently, the resulting approximation of the covariant derivative has no local transformation law, and

the gauge symmetry is broken at the discrete level. This implies a violation of the constraint. The key

to preserve the gauge symmetry is to approximate the covariant derivative directly, and not as the sum

of the gradient and the product of the gauge field with the scalar field/spinor. This was achieved by

Kenneth Wilson [32] in 1974 in the field of high energy physics. He was doing calculations on quarks

on a lattice, and the theory he developed is now known as lattice gauge theory (LGT). LGT approx-

imates the covariant derivative in a consistent way and at the same time preserves the local gauge

symmetry. The essence in the procedure is to localize the nonlocal terms arising in finite difference

methods: the nonlocal terms which are to be compared, are parallel transported to a common refer-

ence point with the gauge potential. By doing this, the discrete theory becomes gauge invariant. In

this context, one motivation of this work is to exploit this technique in a finite element framework to

design gauge invariant schemes. As a result, we propose and analyze a numerical LGT scheme for

the Maxwell–Klein–Gordon equations that satisfies the discrete constraint by preserving the gauge

symmetry at the discrete level.

Some LGT schemes have already been proposed in the literature. In two other articles [6, 7], two of

the authors already considered LGT discretization techniques for Maxwell-type equations. In [7], the

convergence of the LGT scheme applied to pure Maxwell theory was studied. This was done by com-

paring the LGT scheme with the classical Yee scheme [33] which is known to converge. In [6], a LGT

scheme and a standard Finite Difference discretization for the Maxwell–Klein–Gordon equations were

compared. A discrete Noether theorem ensures that the constraint (charge) is preserved. However no
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CHRISTIANSEN ET AL. 3273

proof of convergence of the scheme was provided in that paper. With a more applicative perspective,

in [29], lattice schemes are also used (with a Yee-type scheme for the electromagnetic part) to inves-

tigate some numerical simulations for the massive Maxwell–Klein–Gordon equation in the context of

QED. Here again no numerical analysis is provided. LGT type discretizations have also been studied

for other equations, in particular the Ginzburg–Landau equation [13].

Apart from LGT type discretizations, and regarding numerical analysis works in this context

(MKG), in [8], two of the authors proposed a finite element semidiscrete energy preserving scheme

in the temporal gauge where gauge symmetry is lost but the constraint preservation is recovered

using a Lagrange multiplier. The complete semidiscrete numerical analysis is provided. Let us also

mention the recent study [17] considering Maxwell–Klein–Gordon equations in the Coulomb gauge.

There, a discretization framework is proposed, based on Finite Elements in space and a modified

Crank–Nicolson scheme in time that is energy preserving but not constraint preserving. A complete

convergence study and some academical test cases are provided. To the best knowledge of the authors,

these are the only studies where a complete numerical analysis work is tackled in the precise context

of Maxwell–Klein–Gordon equations.

In this article, we propose a discrete numerical framework for the massive and renormalizable

MKG equations in the temporal gauge, based on conforming finite elements (FE) and LGT, aiming at

preserving gauge symmetry at the discrete level. The Klein–Gordon (KG) part is discretized as in [6]

with LGT techniques, while the Maxwell part is discretized using conforming Nédélec Finite Elements.

The resulting semidiscrete scheme preserves a discrete constraint, namely the electric charge. We then

prove the convergence of this semidiscrete scheme in two space dimensions. This is done with some

inspiration from the methodology used in [8] using compactness arguments and energy principles.

Discrete constraint preservation plays a central role in the proof to achieve the adequate bounds to

obtain convergence. In a second step, we furthermore propose a fully discrete scheme based on a

leapfrog time integration that also preserves the constraint at the discrete level. The fully discrete

scheme is implemented and some academic numerical results are given for validation.

The paper is organized as follows: In Section 2, the continuous model is introduced from a vari-

ational point of view. In Section 3, we set the discretization in space using the lowest order Nédélec

elements [23] on rectangles. The discrete gauge invariant Lagrangian is developed through both LGT

and FE. Constraint and energy conservation are shown leading to the proof of the convergence of the

scheme in Section 4. Finally, Section 5 numerically assess the fully discrete scheme.

2 THE MAXWELL–KLEIN–GORDON EQUATION

We first set the equations in a quite general setting of differential forms. Let M be a compact Rieman-

nian manifold without boundary. The space of real-valued k-forms will be denoted Ωk(M). We will

often identify one-forms and vector-fields. The real valued L
2
-product on differential forms on M is

denoted ⟨⋅, ⋅⟩, and the associated L
2
-norm || ⋅ ||. Similar notations will be used for complex valued

forms. All adjoints, denoted (⋅)∗, will be taken with respect to these L
2

products.

2.1 Formulation

2.1.1 The Klein–Gordon action

The unknown of the Klein–Gordon theory is a complex scalar field, t → 𝜙(t) (an element in Ω0(M)⊗
C), and the corresponding action functional is given by

S[𝜙] = 1

2∫
T

0

(
|| ̇𝜙||2 − ||𝑑𝜙||2 −𝔪2||𝜙||2 − 𝛾

2
|| |𝜙|2||2

)
𝑑t, (1)
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3274 CHRISTIANSEN ET AL.

where the dot represents time derivative and 𝑑 ∶ Ωk(M)⊗C → Ωk+1(M)⊗C is the exterior derivative

acting on complex valued forms. The third term is the mass term (𝔪 ≥ 0 is the mass) and the fourth

term is the self-coupling term with 𝛾 ≥ 0.

Remark 2.1 The case 𝛾 < 0 will not be envisaged in this work and should deserve a

specific study, since it leads to possible nonpositive energy.

2.1.2 The Maxwell–Klein–Gordon action

In this section, we formally explain the classical physical steps to achieve the gauge invariant MKG

action. The MKG-equation is obtained by imposing a local U(1)-symmetry, that is, by demanding the

action (or more precisely the Lagrangian) to be invariant under the transformation

𝜙⇝ ei𝛽
𝜙, (2)

where 𝛽 is a real valued function on M, 𝛽 ∈ Ω0(M). The Lagrangian given in Equation (1) is clearly

not invariant under this transformation.

This is resolved by replacing the usual derivatives with covariant derivatives, that is, 𝜕t ⇝ D
𝛼
∶=

𝜕t + iq𝛼 and 𝑑 ⇝ DA ∶= 𝑑 + iqA, with q the coupling constant. Here t → 𝛼(t) is a real valued function

on M, that is, 𝛼 ∈ Ω0(M), and t → A(t) is a real valued one-form on M, that is, A ∈ Ω1(M).
The function 𝛼 is usually called the electric potential while A is called the magnetic potential. They

are related to the electric and magnetic fields by the following equations

E = − ̇A + 𝑑𝛼, B = 𝑑A,

and they transform as

𝛼 ⇝ 𝛼 − ̇
𝛽,

A ⇝ A − 𝑑𝛽,

simultaneously with (2). This constitutes the gauge transformation of the field (𝜙, 𝛼,A) given as

(𝜙, 𝛼,A)⇝ (ei𝛽
𝜙, 𝛼 − ̇

𝛽,A − 𝑑𝛽).
It is then easy to check that the following action

SKG[𝜙, 𝛼,A] =
1

2∫
T

0

(
||D

𝛼
𝜙||2 − ||DA𝜙||

2 −𝔪2||𝜙||2 − 𝛾

2
|| |𝜙|2||2

)
𝑑t,

is locally U(1)-invariant.

To complete the action we add the U(1)-invariant Maxwell action given by

SM[𝛼,A] =
1

2∫
T

0

(|| ̇A − 𝑑𝛼||2 − c2||𝑑A||2)𝑑t,

with c the speed of propagation. The full MKG-action is then given by (cf. [18, 25, 26, 28])

SMKG[𝜙, 𝛼,A] = SKG[𝜙, 𝛼,A] + SM[𝛼,A].

One can finally check that this action is invariant under the gauge transformation.

2.1.3 Euler–Lagrange equations

The stationary points of this action with respect to the different fields are given by the following

Euler–Lagrange equations

⟨D
𝛼
D
𝛼
𝜙, 𝜙

′⟩ + ⟨DA𝜙,DA𝜙
′⟩ +𝔪2⟨𝜙, 𝜙′⟩ + 𝛾⟨|𝜙|2𝜙, 𝜙′⟩ = 0, ∀𝜙′ ∈ Ω0(M)⊗C,
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CHRISTIANSEN ET AL. 3275

⟨ ̇E,A′⟩ − c2⟨𝑑A, 𝑑A′⟩ + ⟨i𝜙∗DA𝜙,A′⟩ = 0, ∀A′ ∈ Ω1(M),
⟨E, 𝑑𝛼′⟩ − ⟨i𝜙∗D

𝛼
𝜙, 𝛼

′⟩ = 0, ∀𝛼′ ∈ Ω0(M). (3)

In a strong formulation, the Euler–Lagrange equations are also given by

D
𝛼
D
𝛼
𝜙 + D⋆

A DA𝜙 +𝔪2
𝜙 + 𝛾|𝜙|2𝜙 = 0, (4)

̇E − c2
𝑑

⋆

𝑑A + i1

2
(𝜙∗DA𝜙 − 𝜙(DA𝜙)∗) = 0, (5)

𝑑

⋆E − i1

2
(𝜙∗D

𝛼
𝜙 − 𝜙(D

𝛼
𝜙)∗) = 0, (6)

where 𝑑
⋆

is the adjoint to 𝑑 and D⋆

A = 𝑑⋆ − iqA.

We see that the Euler–Lagrange-equations consist of two evolution equations given by (7)–(8)

and a constraint equation given by Equation (6). Due to the local gauge invariance, Noether’s second

theorem can be applied to conclude that the constraint is preserved on the solution of the evolution

equations (see [6]), which makes the equations consistent. See [24] for the continuous version(s) of

Noether’s theorem(s).

These equations together with the differential Bianchi identity (cf. [31])

𝑑 B = 0, ̇B = −𝑑 E,

which is satisfied by construction of the electromagnetic field from a gauge potential, constitute the

complete set of the MKG-equations.

In the rest of the article, we consider unitary constants q = 1, c = 1. For the mass 𝔪 and

self-coupling constant 𝛾 , we will consider that they are either 1 or 0 in the mathematical proofs to allow

for variations on the system of equations considered. All the proofs are of course valid for nonunitary

cases.

2.2 In the temporal gauge

We restrict the equations to the temporal gauge, 𝛼 = 0, allowed by the gauge symmetry for the rest of

the paper. We also now focus on domains in R2
. From this section, we also leave the differential forms

notation behind (namely 𝑑) and use rather the usual notation grad = ∇, curl = ∇×, div = ∇⋅.

2.2.1 Strong form of the equation

In the temporal gauge, the strong form of the equations is to find (A, 𝜙) such that

̈
𝜙 + D⋆

A DA𝜙 +𝔪2
𝜙 + 𝛾|𝜙|2𝜙 = 0, (7)

Ä + curl(curl A) −ℑ(𝜙∗DA𝜙) = 0, (8)

where D⋆

A ⋅ = −div ⋅ −iA⋅ and ℑ is the imaginary part of a complex.

The constraint is

div( ̇A) = ℑ( ̇𝜙𝜙).

2.2.2 Notations and definition of weak solutions

We let S be a bounded contractible domain in R2
with 1

boundary.
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3276 CHRISTIANSEN ET AL.

We use the classical notations for Lp(S) spaces and Sobolev spaces W1,s(S), H1(S), H1

0
(S) (with

seminorm | ⋅ |H1(S)), and H(curl, S) is the space of vector potentials in R2
considered as vector fields or

one forms, with square integrable curl; the analogue space for the divergence will be denoted H(div, S).
We also denote

H0(curl, S) ∶= {A ∈ H(curl, S)|𝛾
𝜏
A = 0 on 𝜕S} ,

where 𝛾
𝜏
A is the tangential component of A on 𝜕S, and

V ∶= {v ∈ H0(curl, S)| div v = 0 in Ω} ,

Time dependent spaces are defined as follows.

For closed intervals I ⊆ [0,T], (I;X) is the space of continuous functions from I to X, and

(0,T;X) will denote ([0,T];X).
We also define for 1 ≤ p ≤ +∞, the Bochner spaces Lp(0,T;X) for X a Banach space as in [30].

We now give a rigorous sense to a weak solution in the temporal gauge and use a similar notion as

in [8].

Definition 1 (E,A, 𝜓, 𝜙) is said to be a weak solution of (80) in the temporal gauge, if

• There exists q < 2, such that

- E ∈ L∞(0,T;L2(S)),
- A ∈ (0,T;L2(S)) ∩ L∞(0,T;H0(curl, S) ∩W1,q(S)2),
- 𝜓 ∈ L∞(0,T;L2(S)),
- 𝜙 ∈ (0,T;L2(S)) ∩ L∞(0,T;H1

0
(S)).

•
{
̇A = −E,
̇
𝜙 = −𝜓.

• For every (E′, 𝜓 ′) ∈ ∞c (]0,T[×S) 2 × ∞c (]0,T[×S), there holds

−∫
T

0

⟨E, ̇E′⟩𝑑t − ∫
T

0

⟨𝜓, ̇𝜓 ′⟩𝑑t = ∫
T

0

⟨∇ × A,∇ × E′⟩𝑑t

+ ∫
T

0

⟨DA𝜙, i𝜙E′⟩𝑑t + ∫
T

0

⟨DA𝜙,DA𝜓
′⟩𝑑t

+𝔪2∫
T

0

⟨𝜙, 𝜓 ′⟩𝑑t + 𝛾∫
T

0

⟨|𝜙|2𝜙, 𝜓 ′⟩𝑑t. (9)

We now turn to the discretization of this equation.

3 SEMIDISCRETE SETTING

3.1 Finite Element discretization and gauge invariance

3.1.1 Finite element discretization

We discretize the spatial part of the continuous action. Let h > 0. We assume S to be a rectangular

domain with a Cartesian mesh h, and we will assume homogeneous boundary conditions. Further-

more, for (k, l) ∈ N × N, k,l(C) is defined as the space of polynomials with complex coefficients in

two variables (x1, x2) ∈ R2
with maximum degree k with respect to x1 and l with respect to x2.
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CHRISTIANSEN ET AL. 3277

The discretization is based on three finite dimensional spaces Z0

h , Z1

h , and Z2

h defined as (see [22,

23] for properties of these spaces)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Z0

h = {uh ∈ H1

0
(S) | ∀K ∈ h, uh|K ∈ 1,1(C)}

the space of piecewise 1,1(C) continuous scalar

functions on S.

Z1

h = {vh ∈ H0(curl, S) | ∀K ∈ h, vh|K ∈ 0,1(C) ×1,0(C)},
Z2

h = {vh ∈ L2(S) | ∀K ∈ h, vh|K ∈ 0,0(C)}.

(10)

We denote by Y0

h , Y1

h , Y2

h (respectively) the analogues of Z0

h , Z1

h , Z2

h constructed with real valued

functions. These spaces are equipped with real basis functions (wh
n), (wh

e) and (wh
f ) respectively,

which we choose as the tensor product of the one dimensional Whitney forms [22, 23]. With these

choices of basis functions, scalar fields 𝜙h have degrees of freedom at the nodes of the mesh,

𝝓h
n, edge-vector-fields/one-forms Ah have degrees of freedom at the edges of the mesh, Ah

e , while

face-vector-fields/two-forms Bh have degrees of freedom at the faces of the mesh.

Moreover, the gra𝑑 and curl operators in 2D relate the finite dimensional spaces Z0

h , Z1

h , and Z2

h ,

so that we have a complex:

Z0

h
∇
−−→Z1

h
∇×
−−−→Z2

h .

They also induce matrices G = (Gen) and R = (Rfe) in the chosen bases, such that

R
N G
−−→R

E R
−−→R

F
,

where N,E, and F are the sets of vertices, edges and faces respectively.

Remark 3.1 Since curl◦grad = 0, we analogously have RG = 0.

Thus, for a node element function 𝜙h and an edge element function Ah we can write

𝜙h =
∑

n
𝝓h

nwh
n, ∇𝜙h =

∑

e
(G𝝓h)ewh

e , 𝝓h
n, (G𝝓h)e ∈ C,

Ah =
∑

e
Ah

ewh
e , ∇ × Ah =

∑

f
(RAh)f wh

f , Ah
e , (RAh)f ∈ R.

Here, 𝝓h
n and (G𝝓h)e are vertex and edge degrees of freedom, while Ah

e and (RAh)f are edge and

face degrees of freedom. The quantity (G𝝓h)e represents the differential of the scalar field along the

edge e, and has the form (𝝓h
m − 𝝓h

n), where the edge e goes from node m to node n. Since we are

considering rectangles, a natural orthogonal coordinate system can be associated to the mesh, and in

such a coordinate system the expression (𝝓h
m−𝝓h

n) represents the differential in one of the two directions

(see [6] for a more explicit formulation).

The notation e = {m, n} will denote the edge e which goes from node m to node n.

3.1.2 Scalar products and norms

The information about the shape and size of the rectangles is encoded in the mass matrices. For two

edges e and e′, we define

(Mh
1
)ee′ = ∫S

wh
e ⋅ wh

e′ ,
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3278 CHRISTIANSEN ET AL.

where ⋅ denotes the scalar product in R2
. We also define

(Mh
k )ss′ = ∫S

wh
s wh

s′ ,

in the cases k = 0 and k = 2, where s and s′ are respectively two nodes or two faces of the mesh.

We note that the matrices Mh
k are square, symmetric and positive definite. We also note that the

nonzero entries in Mh
0
,Mh

1
,Mh

2
are of the order h2

, h0
, h−2

, where h denotes the maximum diameter of

the elements in the mesh.

These matrices Mh
k are the representative matrices of the L

2
-products in the corresponding bases

wh
. Thus, for example, for two edge element fields uh and vh written as

uh =
∑

e
uh

ewh
e , vh =

∑

e
vh

ewh
e ,

where uh
e and vh

e are the edge degrees of freedom (DoF), we have

⟨uh, vh⟩ =
1

2

∑

e,e′∈E
(uh

evh
e′ + uh

evh
e′ )∫S

wh
e ⋅ wh

e′

= ℜ(uhT
Mh

1
vh) = (Mh

1
uh
, vh).

We use (⋅, ⋅) to denote the real valued scalar product of vectors.

3.1.3 Norm estimates

One can establish estimates between norms and degrees of freedom as in the following Lemmas

Lemma 3.2 If uh ∈ Y1

h , then

|uh
e| ≤ C||uh||L2(S).

Furthermore, with p > 2, q > 2 and 1

p
+ 1

q
= 1

2
, we have:

|uh
e| ≤ Ch

2

q ||uh||Lp(S).

Proof. Let uh ∈ Y1

h . There exists a constant C, independent of u and h such that

1

C
(uh)Tuh ≤ ||uh||

2

L2 = (Mh
1
uh
,uh) ≤ C(uh)Tuh

, (uh)Tuh =
∑

e
(uh

e)2.

Thus

|uh
e| ≤

√∑

e′∈K
(uh

e′ )2 ≤ C||uh||L2(K) ≤ C||uh||L2(S).

This estimate together with Hölder’s inequality gives

|uh
e| ≤ Ch

2

q ||uh||Lp(S). ▪

3.1.4 Gauge symmetry

We can redo the formal derivation of the gauge invariant action at the discrete level. This amounts

to understand how the natural analogue of the action at the discrete level would transform under the

gauge and correct the terms to obtain a gauge invariant action.
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CHRISTIANSEN ET AL. 3279

With the notation developed in the previous sections, we can express the discrete version of the

Lagrangian from (1) as

⟨ ̇𝜙h, ̇𝜙h⟩ − ⟨∇𝜙h,∇𝜙h⟩ = (Mh
0
̇𝝓

h
,
̇𝝓

h) − (Mh
1
G𝝓h

,G𝝓h).

where ̇𝝓
h

and 𝝓h
are degrees-of-freedom vectors. As in the continuous model we want to impose a

local U(1) gauge symmetry. We would like the theory to be invariant under the set of transformations

𝜙h ⇝ ei𝛽h
𝜙h, (11)

where t → 𝛽h(t) ∈ Y0

h is a real valued function, but with 𝜙h ∈ Z0

h , ei𝛽h
𝜙h ∉ Z0

h .

We thus modify ⟨ ̇𝜙h, ̇𝜙h⟩ = (Mh
0
̇𝝓

h
,
̇𝝓

h) in two steps.

(a) First, as in the continuous case, we replace the ordinary time derivative by the covariant time

derivative, that is, 𝜕0 ⇝ D
𝛼h = 𝜕0 + i𝛼h, where 𝛼h is a real valued function, 𝛼h ∈ Y0

h .

Furthermore, 𝛼h ⇝ 𝛼h − ̇
𝛽h under a gauge transformation, implying that D

𝛼h𝜙h transforms as

D
𝛼h𝜙h ⇝ ei𝛽h D

𝛼h𝜙h.

(b) Next, we replace the mass matrix Mh
0

with a mass lumped version Hh
0
, which is both diagonal

and positive definite. Its entries are given by

(Hh
0
)nm =

⎧
⎪
⎨
⎪
⎩

∑

k
(Mh

0
)nk, n = m,

0, n ≠ m.

Let u, v be continuous scalar functions, and u,v their vectors of nodal degrees-of-freedom.

We define the associated bilinear form by ⟨., .⟩0,h (which gives the scalar product associated to

the matrix Hh
0

on Z0

h ) by

⟨u, v⟩0,h =
∑

n∈N
ℜ(un(Hh

0
)nnvn) = (Hh

0
u, v)

= ℜ
(

∫S
Π0,h(uv)𝑑S

)

=
∑

K∈h

|K|

4

∑

x∈K
ℜ(u(x)v(x)), (12)

where the points x appearing in the sum are the vertices of K and (⋅, ⋅) denotes the real valued

scalar product for nodal DoF vectors.

Consistency. Hh
0

is consistent with Mh
0
. More precisely, we have the following error estimate

(see [9, 11]).

For real l > 1, and all u ∈ Hl(S) and vh ∈ Z0

h , there exists a constant C depending on l
such that

|⟨u, vh⟩0,h − ⟨u, vh⟩| ≤ Ch||u||Hl(S)||vh||L2(S). (13)

Hölder type inequality. Furthermore, for p and p′ such that
1

p
+ 1

p′
= 1, for all u, v in Z0

h (even u, v
continuous scalar fields on S),

|⟨u, v⟩0,h| ≤ ||u||h,p||v||h,p′ , (14)

where for p > 1, one defines

||u||h,p =
(

∫S
Π0,h(|u|p)𝑑S

) 1

p

,
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3280 CHRISTIANSEN ET AL.

which is uniformly equivalent on Z0

h to the true L
p

norm [3], that is, there exists a constant C
(independent of h) such that for all u ∈ Z0

h ,

1

C
||u||Lp(S) ≤ ||u||h,p ≤ C||u||Lp(S).

As a conclusion, we have modified the term ⟨ ̇𝜙h, ̇𝜙h⟩ as ⟨D
𝛼h𝜙h,D𝛼h𝜙h⟩0,h.

As for the term ⟨ ̇𝜙h, ̇𝜙h⟩ = (Mh
0
̇𝝓

h
,
̇𝝓

h), we get a gauge invariant expression approximating

⟨∇𝜙h,∇𝜙h⟩ = (Mh
1
G𝝓h

,G𝝓h) in two steps.

(a) The mass matrix Mh
1

defines the L
2
-product for fields with edge degrees-of-freedom. We

lump this matrix with the same numerical quadrature as we used for Mh
0

in Equation (12),

as follows.

Define the scalar product ⟨., .⟩1,h on Z1

h×Z1

h by a diagonal matrix Hh
1

in the basis wh
e indexed

over the edges in the mesh. Let u, v be continuous vector fields/one-forms, and u,v their edge

degrees-of-freedom. Then

⟨u, v⟩1,h = ℜ
(

∫S
Π0,h(u ⋅ v)𝑑S

)

=
∑

K∈h

|K|

4

∑

x∈K
ℜ(u(x)v(x))

=
∑

e∈E
ℜ(ueHh

1,eeve) = (Hh
1
u, v).

Here (⋅, ⋅) denotes the real valued scalar product for edge DoF vectors, (u,v) =
∑

e∈Eℜ(ueve).
We observe that Hh

1
is both symmetric and positive-definite.

Consistency. We have the following error estimate (see [9, 11]). For real l > 1, and all

u ∈ Hl(S) and vh ∈ Z1

h ,

|⟨u, vh⟩ − ⟨u, vh⟩1,h| ≤ C(l)h||u||Hl(S)||vh||L2(S). (15)

Henceforth, the mass matrix Mh
1

is replaced with the above described mass lumped version

Hh
1

in the inner products.

However, we observe that

(G𝝓h)e={m,n} = 𝝓h
n − 𝝓h

m ⇝ ei𝜷h
n𝝓h

n − ei𝜷h
m𝝓h

m

under a gauge transformation, so the expression (Hh
1
G𝝓h

,G𝝓h) is not gauge invariant.

(b) This can be resolved by inspiration from Lattice Gauge Theory (LGT) [12, 27, 32], that is, we

make the replacement

(G𝝓h)e={m,n} → (GAh𝝓h)e={m,n} = 𝝓h
n − Uh(m, n)𝝓h

m, Uh(m, n) = e−i∫ n
m Ah
,

where Uh(m, n) is called a link variable.

The vector-field Ah ∈ Y1

h transforms as

Ah ⇝ Ah − ∇𝛽h,

under a gauge transformation, implying that (GAh𝝓h)e={m,n} ⇝ ei𝜷h
n(GAh𝝓h)e={m,n}.

We will denote GAh𝝓h
the vector of degrees of freedom (𝝓h

n − Uh(m, n)𝝓h
m)e={m,n} and GAh𝜙h the

corresponding element of Z1

h (i.e., that has the vector GAh𝝓h
of degrees of freedom). Furthermore, we

define Uh ∈ Z1

h that has vector of degrees of freedom (e−iAe )e={m,n}.
In conclusion, we have thus replaced ⟨∇𝜙h,∇𝜙h⟩ with the expression ⟨GAh𝜙h,GAh𝜙h⟩1,h.

 10982426, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23008 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [29/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHRISTIANSEN ET AL. 3281

3.2 Discrete formulation of the Maxwell–Klein–Gordon equation

3.2.1 Gauge invariant discrete Maxwell–Klein–Gordon action

The LGT inspired discretely gauge invariant Klein–Gordon action is therefore given by

SKG
h [𝜙h, 𝛼h,Ah] =

1

2∫
T

0

(
||D

𝛼h𝜙h||
2

h,2 − ||GAh𝜙h||
2

h,2 −𝔪2||𝜙h||
2

h,2 −
𝛾

2
|| |𝜙h|

2||2h,2

)
𝑑t.

To complete the construction of the Maxwell–Klein–Gordon action, we add the Maxwell action

SM[𝛼h,Ah] =
1

2∫
T

0

(
|| ̇Ah − ∇𝛼h||

2

L2(S) − ||∇ × Ah||
2

L2(S)
)
𝑑t. (16)

The discretization of the Maxwell part of the action is well understood (see e.g., [2, 21–23]), so the

gauge invariant action we are going to use is

SMKG
h [𝜙h, 𝛼h,Ah] = SM

h [𝛼h,Ah] + SKG
h [𝜙h, 𝛼h,Ah]. (17)

With the above considerations, SMKG
h is invariant under the discrete gauge transformation 

𝛽h ∶
(𝜙h, 𝛼h,Ah) → (Π0,h(ei𝛽h

𝜙h), 𝛼h − ̇
𝛽h,Ah − ∇𝛽h), with t → 𝛽h(t) ∈ Y0

h and Π0,h the nodal interpolant

onto Z0

h .

3.2.2 Weak formulation of the discretized equations

The variation of SMKG
h at (𝜙h, 𝛼h,Ah) in the direction (𝜙

′
h, 𝛼

′
h,A′h) is given by

DSMKG
h [𝜙h, 𝛼h,Ah](𝜙′h, 0, 0) = ∫

T

0

(
⟨D

𝛼
𝜙h,D𝛼

𝜙

′
h⟩0,h − ⟨GAh𝜙h,GAh𝜙

′
h⟩1,h

)
𝑑t

+𝔪2∫
T

0

(
⟨𝜙h, 𝜙

′
h⟩0,h + 𝛾⟨|𝜙h|

2
𝜙h, 𝜙

′
h⟩0,h

)
𝑑t (18)

DSMKG
h [𝜙h, 𝛼h,Ah](0, 𝛼′h, 0) = ∫

T

0

(
−⟨ ̇Ah − ∇𝛼h,∇𝛼′h⟩ + ⟨D

𝛼
𝜙h, i𝛼′h𝜙h⟩0,h

)
𝑑t, (19)

DSMKG
h [𝜙h, 𝛼h,Ah](0, 0,A′h) =

∫
T

0

(
⟨ ̇Ah − ∇𝛼h, ̇A

′
h⟩ − ⟨∇ × Ah,∇ × A′h⟩ − ⟨GAh𝜙h, ih(Uh, 𝜙h,A′h)⟩1,h

)
𝑑t, (20)

where h ∶ Z1

h × Z0

h × Y1

h → Z1

h , and for all ( ̃U, ̃𝜙,Ã) in Z1

h × Z0

h , h( ̃U, ̃𝜙,Ã) is the edge element

uniquely defined by its edge degrees of freedom

(h( ̃U, ̃𝜙,Ã))e ∶= ̃Ue ̃𝜙mÃe,

for e = {m, n}.
The Euler–Lagrange equations are given by the stationarity of the action, that is,

DSMKG
h [𝜙h, 𝛼h,A](𝜙′h, 𝛼′h,A′h) = 0.

By defining the electric field Eh as

Eh = ∇𝛼h − ̇Ah, (21)
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3282 CHRISTIANSEN ET AL.

and by a partial integration in time, the Euler–Lagrange equations read

⟨D2
𝛼
𝜙h, 𝜙

′
h⟩0,h + ⟨GAh𝜙h,GAh𝜙

′
h⟩1,h +𝔪2⟨𝜙h, 𝜙

′
h⟩0,h + 𝛾⟨|𝜙h|

2
𝜙h, 𝜙

′
h⟩0,h = 0, ∀ 𝜙′h ∈ Z0

h ,

⟨ ̇Eh,A′h⟩ − ⟨∇ × Ah,∇ × A′h⟩ − ⟨GAh𝜙h, ih(Uh, 𝜙h,A′h)⟩1,h = 0, ∀ A′h ∈ Y1

h , (22)

and

⟨Eh,∇𝛼′h⟩ + ⟨D
𝛼
𝜙h, i𝛼′h𝜙h⟩0,h = 0, ∀ 𝛼′h ∈ Y1

h . (23)

We see that these equations consist of two evolution equations, Equation (22), and one constraint

equation, Equation (23) (corresponding to Equation (80)).

Remark 3.3 If one had considered a classical Finite Element discretization, the covari-

ant derivative would have been discretized using D𝜙h + Π1,h(Ah𝜙h) which would break

the gauge invariance.

We suppose that the following initial conditions, A0 ∈ H1(S), E0 ∈ L2(S), 𝜙0 ∈ H1

0
(S), 𝜓0 ∈ L2(S)

are given.

Then we consider the following discrete initial conditions

Ah(0, .) = A0

h ∈ Y1

h ,

Eh(0, .) = E0

h ∈ Y1

h ,

𝜙h(0, .) = 𝜙0

h ∈ Z0

h ,

𝜓h(0, .) = 𝜓0

h ∈ Z0

h . (24)

Furthermore, we suppose that they are chosen such that

A0

h −−−−→h→0

A0
in(H0(curl, S)) ∩ Lq

, E0

h −−−−→h→0

E0
in L2(S), (25)

𝜙

0

h −−−−→h→0

𝜙

0
in H1

0
(S), 𝜓

0

h −−−−→h→0

𝜓

0
in L2(S). (26)

In the rest of Section 3.2, for simplicity of notations we drop the indices h, and consider the situation
where h is fixed.

3.2.3 Constraint preservation

One important feature of this scheme concerns the constraint equation (23). The discrete MKG action

(17) is gauge invariant, since both terms are. One can therefore use a discrete Noether’s theorem to

prove constraint preservation, in a similar manner as in [6].

We can also show this by a direct calculation.

Theorem 1 Suppose (E,A, 𝛼,𝝓) solves Equation (22) on a time interval [0,T]. Suppose
furthermore that the constraint (23) is satisfied at t = 0. Then the constraint (23) is
satisfied for all t ∈ [0,T].

Proof. We start out by a differentiation in time of the left hand side of Equation (23),

denoted 𝜅. This gives

𝜅̇ = ⟨ ̇E,∇𝛼′⟩ + ⟨D
𝛼

̇
𝜙, i𝛼′𝜙⟩0,h + ⟨D

𝛼
𝜙, i𝛼′ ̇𝜙⟩0,h + ⟨i𝛼̇𝜙, i𝛼′𝜙⟩0,h. (27)

By the evolution equation for the electric field, Equation (22), we have

⟨ ̇E,∇𝛼′⟩ = ⟨GA𝜙, i(U, 𝜙,∇𝛼′)⟩1,h. (28)

 10982426, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23008 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [29/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHRISTIANSEN ET AL. 3283

Furthermore,

D2
𝛼
𝜙 = D

𝛼

̇
𝜙 + i𝛼D

𝛼
𝜙 + i𝛼̇𝜙, (29)

and we can apply the nodal interpolator to both sides of this equality. Then (27) can be

rewritten

𝜅̇ = ⟨GA𝜙, i(U, 𝜙,∇𝛼′)⟩1,h + ⟨D2
𝛼
𝜙, i𝛼′𝜙⟩0,h + ⟨D

𝛼
𝜙, i𝛼′ ̇𝜙⟩0,h − ⟨i𝛼D

𝛼
𝜙, i𝛼′𝜙⟩0,h. (30)

The evolution equation for the Klein–Gordon scalar field gives

𝜅̇ = ⟨GA𝜙, i(U, 𝜙,∇𝛼′)⟩1,h − ⟨GA𝜙,GA(iΠ0,h(𝛼′𝜙))⟩1,h

+𝔪2⟨𝜙, iΠ0,h(𝛼′𝜙)⟩0,h + 𝛾⟨|𝜙|2𝜙, iΠ0,h(𝛼′𝜙)⟩0,h

+ ⟨D
𝛼
𝜙, i𝛼′ ̇𝜙⟩0,h − ⟨i𝛼D

𝛼
𝜙, i𝛼′𝜙⟩0,h. (31)

Since our scalar product is real valued, we obtain

⟨D
𝛼
𝜙, i𝛼′ ̇𝜙⟩0,h − ⟨i𝛼D

𝛼
𝜙, i𝛼′𝜙⟩0,h = ⟨D

𝛼
𝜙, i𝛼′D

𝛼
𝜙⟩0,h = 0 (32)

In a same manner, since

⟨|𝜙|2𝜙, iΠ0,h(𝛼′𝜙)⟩0,h = ⟨|𝜙|2𝜙, i𝛼′𝜙⟩0,h, (33)

one has

⟨|𝜙|2𝜙, iΠ0,h(𝛼′𝜙)⟩0,h = 0, (34)

and

⟨𝜙, iΠ0,h(𝛼′𝜙)⟩0,h = ⟨𝜙, i𝛼′𝜙⟩0,h = 0 (35)

This gives

𝜅̇ = ⟨GA𝜙, i(U, 𝜙,∇𝛼′)⟩1,h − ⟨GA𝜙,GA(iΠ0,h(𝛼′𝜙))⟩1,h. (36)

where,

(GA(iΠ0,h(𝛼′𝜙)))e = i𝛼′n𝜙n − iUe𝛼
′
m𝜙m, (37)

= i𝛼′n(𝜙n − Ue𝜙m) − iUe(G𝛼′)e𝜙m, (38)

= i𝛼′n(GA𝜙)e − iUe(G𝛼′)e𝜙m. (39)

This gives that

⟨GA𝜙,GA(iΠ0,h(𝛼′𝜙))⟩1,h = ⟨GAh𝜙, i(U,∇𝛼′, 𝜙)⟩. (40)

Thus 𝜅̇ = 0.

This concludes the proof. ▪

3.2.4 Energy conservation

We define the energy of the system at any time with

(t) = 1

2

(
||D

𝛼
𝜙||2

0,h + ||GA𝜙||
2

1,h + ||E||2 + ||∇ × A||2 +𝔪2||𝜙||2
0,h +

𝛾

2
|| |𝜙|2||2

0,h

)
.

We will show through a direct formal calculation that this energy is preserved by the flow.
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3284 CHRISTIANSEN ET AL.

Proposition 3.4 Suppose (E,A, 𝛼, 𝜙) solves the evolution equations (21, 22). Then the
energy is conserved.

Proof. The proof is a mere calculation. We have

̇(t) = ⟨D
𝛼

̇
𝜙,D

𝛼
𝜙⟩0,h + ⟨i𝛼̇𝜙,D

𝛼
𝜙⟩0,h + ⟨GA𝜙,GA ̇

𝜙⟩1,h + ⟨GA𝜙,(iU, 𝜙, ̇A)⟩1,h

+ ⟨ ̇E,E⟩ + ⟨∇ × A,∇ × ̇A⟩ +𝔪2⟨𝜙, ̇𝜙⟩0,h + 𝛾⟨|𝜙|2𝜙, ̇𝜙⟩0,h. (41)

Using (29), we deduce that

⟨D2
𝛼
𝜙,D

𝛼
𝜙⟩0,h = ⟨D

𝛼

̇
𝜙,D

𝛼
𝜙⟩0,h + ⟨i𝛼̇𝜙,D

𝛼
𝜙⟩0,h. (42)

So that

̇(t) = ⟨D2
𝛼
𝜙,D

𝛼
𝜙⟩0,h + ⟨GA𝜙,GA ̇

𝜙⟩1,h + ⟨GA𝜙,(iU, 𝜙, ̇A)⟩1,h + ⟨ ̇E,E⟩ + ⟨∇ × A,∇ × ̇A⟩

+𝔪2⟨𝜙, ̇𝜙⟩0,h + 𝛾⟨|𝜙|2𝜙, ̇𝜙⟩0,h. (43)

Using (22), we find

̇(t) = −⟨GA𝜙,GAΠ0,h(D𝛼
𝜙)⟩0,h −𝔪2⟨𝜙,D

𝛼
𝜙⟩0,h − 𝛾⟨|𝜙|2𝜙,D𝛼

𝜙⟩0,h

+ ⟨GA𝜙,GA ̇
𝜙⟩1,h + ⟨GA𝜙,(iU, 𝜙, ̇A)⟩1,h

− ⟨GA𝜙, i(U, 𝜙, ̇A)⟩1,h + ⟨GA𝜙, i(U, 𝜙,∇𝛼)⟩1,h

+𝔪2⟨𝜙, ̇𝜙⟩0,h + 𝛾⟨|𝜙|2𝜙, ̇𝜙⟩0,h. (44)

Since the scalar product is real, one has that ⟨𝜙, i𝛼𝜙⟩0,h and ⟨|𝜙|2𝜙, i𝛼𝜙⟩0,h vanish. This

gives

̇(t) = −⟨GA𝜙,GA(i𝛼𝜙)⟩0,h + ⟨GA𝜙, i(U, 𝜙,∇𝛼)⟩1,h (45)

Using the computation done in the proof of Theorem 1, we conclude that ̇ ≡ 0, so that

the energy is preserved in time. ▪

3.2.5 Choice of gauge and existence

We choose to work in the temporal gauge, that is, 𝛼 ≡ 0 (as in definition 1) and, for the discretization,

𝛼h ≡ 0. This implies

̇Ah = −Eh,

D
𝛼h𝜙h = ̇

𝜙h.

Let T > 0. Since we are working on a finite dimensional space, we have local existence of solutions of

(22), (23), and (24). Conservation of energy assures that the local solution is a global one: the discrete

solutions are defined on the whole interval [0,T].

4 CONVERGENCE OF THE SEMIDISCRETE SCHEME

In the rest of the paper, C will denote a generic constant (independent of t and h). In the proof of

convergence, we will need some results concerning the convergence of approximations. We state them

here and postpone their proofs to Appendix A.1.
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CHRISTIANSEN ET AL. 3285

4.1 Preliminary results

Lemma 4.1 LetΠ1,h be the edge interpolant. For p > 2, the following inequalities hold.
There exists C > 0 such that for all (Fh, 𝜁h) ∈ Z1

h × Z0

h ,

(i)
||Fh𝜁h − Π1,h(Fh𝜁h)||L2(S) ≤ Ch1− 2

p ||Fh||Lp(S)|𝜁h|H1(S). (46)

Furthermore there exists C > 0 such that for all t ∈ [0,T],
(ii)

√∑

K∈h

|Ah|
2

H1(K) ≤ C

(

||∇ × Ah||L2(S) + sup

rh∈Y0

h

|⟨Ah,∇ rh⟩|

||rh||L2(S)

)

, (47)

(iii)
√∑

K∈h

|Π1,h(Ah𝜙h)|2H1(K) ≤ Ch−
2

p

[(

||∇ × Ah||L2(S) + sup

rh∈Y0

h

|⟨Ah,∇ rh⟩|

||rh||L2(S)

)

||𝜙h||Lp(S)+

+ ||Ah||Lp(S)|𝜙h|H1(S)

]

. (48)

The following result allows, by the constraint (23), to control the weak divergence of Ah appearing

in (47) and (48).

Lemma 4.2 Let p > 2. There exists C > 0 such that for all t ∈ [0,T]:

sup

rh∈Y0

h

|⟨Ah,∇ rh⟩|

||rh||L2(S)
≤ Ch−

2

p ||𝜙h||L∞(0,T ,Lp(S))|| ̇𝜙h||L∞(0,T ,L2(S)).

With these results at hand, we are ready to prove the convergence of the weak solution of (22).

4.2 Study of convergence

4.2.1 Boundedness in the energy norm

The initial energy is bounded uniformly in h, as can be seen from (25), (26), and since it is conserved

in time, we can immediately conclude that Eh and ∇ × Ah are bounded in L∞(0,T;L2(S)), that is,

||Eh||L∞(0,T ,L2(S)) ≤ C,
||∇ × Ah||L∞(0,T ,L2(S)) ≤ C. (49)

We can also conclude that 𝜙h, ̇
𝜙h and GAh𝜙h are bounded in time in the following sense.

sup

[0,T]
|| ̇𝜙h||0,h ≤ C,

sup

[0,T]
||GAh𝜙h||1,h ≤ C. (50)

Furthermore if𝔪 ≠ 0,

sup

[0,T]
||𝜙h||h,2 ≤ C, (51)

and if 𝛾 > 0,

sup

[0,T]
||𝜙h||h,4 ≤ C, (52)
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3286 CHRISTIANSEN ET AL.

4.2.2 Convergence of 𝜙h

This is obtained in three steps. First, one bounds the H1(S)-norm of |𝜙h|, then one obtains a bound on

the Lp(S) (p > 2) norm of the gauge potential Ah. In a third step, this is used to conclude that 𝜙h is

bounded in H1
.

Boundedness of the H1
-norm of |𝜙h|.

We would like to deduce that

||GAh𝜙h||
2

1,h ≤ C implies ||∇|𝜙h| ||
2

L2 ≤ C.

One has

(GAh𝝓h)e={m,n} = 𝝓h
m − Uh(m, n)𝝓h

n,

with

Uh(m, n) = exp(−i∫
n

m
Ah) = exp(−iAh

e),

where Ah
e is the degree of freedom relative to the edge e.

Since iAh
e is purely imaginary, we have the following estimate

||𝜙m| − |𝜙n|| ≤ |(GAh𝝓h)e={m,n}|,

so that by positivity of the diagonal matrix Hh
1
, one can conclude that

||∇Π0,h|𝜙h| ||
2

1,h ≤ ||GAh𝜙h||
2

1,h.

We recall that ∇Π0,h|𝜙h| is the edge element vector field whose degrees of freedom are given by the

vector G|𝝓h|. By previous estimates,

||∇Π0,h|𝜙h| ||
2

L2(S) ≤ C||∇Π0,h|𝜙h|||
2

1,h.

This implies

||∇Π0,h|𝜙h| ||
2

L∞(0,T ,L2(S)) ≤ C,

which gives that Π0,h|𝜙h| is bounded in L∞(0,T ,H1

0
(S)).

In order to extract estimates on the H1
-norm of 𝜙h rather than on the H1

-norm of its modulus |𝜙h|,

one needs a control of the Lp
-norm of Ah.

Boundedness of the gauge potential. Along the same lines as in [8], one can obtain a bound on Ah
in the Lp

norm. To this aim, we consider the discrete Helmholtz decomposition of Ah

Ah = Åh + ∇ ph. (53)

We bound each part in Lp
.

Bound on the discrete divergence-free part. The discrete divergence free part Åh is bounded in Lp

by the L2
-norm of the curl of the gauge potential,

||Åh||L∞(0,T ,Lp(S)) ≤ C||∇ × Ah||L∞(0,T ,L2(S)). (54)

We won’t give any details on this estimate as it can be extracted exactly as in proposition 2.5. of [8].

Bound on the gradient part. One has from the constraint Equation (23)

⟨∇ ph,∇ vh⟩ = ⟨uh, vh⟩0,h, (55)

with

uh(t) = ∫
t

0

̇
𝜙h𝜙h𝑑t.
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CHRISTIANSEN ET AL. 3287

We would like to bound ph in L∞(0,T;W1,p(S)) for p > 2. By classical estimates that can be found in

[3], we have

||ph||W1,p(S) ≤ C sup

vh∈Y0

h

|⟨uh, vh⟩0,h|

||vh||W1,p′ (S)
at any t ∈ [0,T],

where
1

p
+ 1

p′
= 1, with p > 2 and p′ < 2.

Let us choose q′ such that
1

q′
= 1

p′
− 1

2
. For any q such that

1

q
+ 1

q′
= 1, we have

|⟨uh, vh⟩0,h| ≤ ||uh||h,q||vh||h,q′ .

Furthermore,

||uh||h,q ≤ C∫
t

0

|| ̇𝜙h||h,2||𝜙h||h,p ≤ C∫
t

0

|| ̇𝜙h||L2(S)||𝜙h||Lp(S).

Since
1

2
+ 1

p
= 1

q
, from the energy bound (52), we deduce that || ̇𝜙h||L2(S) ≤ C and ||𝜙h||Lp(S) ≤ C. This

implies that

|⟨uh, vh⟩0,h| ≤ C||vh||Lq′(S),

independently of t ∈ [0,T].
By the Sobolev embeddings W1,p′(S) → Lq′(S), we deduce

|⟨uh, vh⟩0,h| ≤ C||vh||W1,p′(S),

which implies that ph is bounded in W1,p(S), and

||Ah||L∞(0,T ,Lp(S)) ≤ C.

Remark 4.3 If 𝛾 > 0, we can also directly prove (without having to use the boundedness

in the H1
norm of |𝜙h|) that Ah is bounded in L∞(0,T ,L4(S)), using that in this case 𝜙h

is bounded in L∞(0,T ,L4(S)).

Convergence of 𝜙h. From this, we deduce that 𝜙h is bounded in H1(S). Indeed,

(GAh𝝓h)e =
1 + exp(−iAh

e)
2

(G𝝓h)e +
1 − exp(−iAh

e)
2

(𝝓h
m + 𝝓h

n),

so that

(G𝜙h)e =
2

1 + exp(−iAh
e)
(GAh𝝓h)e −

1 − exp(−iAh
e)

1 + exp(−iAh
e)
(𝝓h

m + 𝝓h
n),

which implies

|
|
|
(G𝜙h)e

|
|
|
≤ 1

|
|
|
|
cos(|Ah

e
2
|)
|
|
|
|

|
|
|
(GAh𝝓h)e

|
|
|
+

|
|
|
|
sin(|Ah

e
2
|)
|
|
|
|

|
|
|
|
cos(|Ah

e
2
|)
|
|
|
|

(
|
|
|
𝝓h

m
|
|
|
+ |

|
|
𝝓h

n
|
|
|

)
.

In the last section we obtained

||Ah||L∞(0,T ,Lp(S)) ≤ C,

which yields

|Ah
e| ≤ Ch

2

q
, (56)
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3288 CHRISTIANSEN ET AL.

where
1

q
+ 1

p
= 1

2
. This means that for h sufficiently small, h ≤ 𝜀0 with 𝜀0 > 0 given,

|
|
|
|
|
cos

(
|Ah

e|

2

)|
|
|
|
|
≥ C > 0.

We also make use of the following inequality

sin

(
|Ah

e|

2

)

≤ |Ah
e|

2
.

As a consequence

|(G𝝓h)e| ≤ C|(GAh𝝓h)e| + C|Ah
e|(|𝝓h

m| + |𝝓h
n|).

Furthermore, Ah
e(

|𝝓h
m|+|𝝓

h
n|

2
) are the degrees of freedom of the product AhΠ0,h(|𝜙h|), and one can then

conclude that

||∇𝜙h||
2

h,2 ≤ C||GAh𝜙h||
2

h,2 + C||Π1,h(AhΠ0,h(|𝜙h|))||2h,2.

Using Lemma 4.1 with AhΠ0,h(|𝜙h|) and bounds obtained on both Ah and |𝜙h|, we can conclude that

||∇𝜙h||
2

1,h ≤ C.

Finally since ||∇𝜙h||L2(S) ≤ C||∇𝜙h||1,h, it follows that

||𝜙h||L∞(0,T ,H1

0
(S)) ≤ C.

Remark 4.4 Following Remark 4.3, if 𝛾 > 0, we can also directly obtain this result

(without having to use the boundedness in the H1
norm of |𝜙h|) using the boundedness

of Ah in L∞(0,T ,L4(S)).

By following [8] and using the bound on the energy, we arrive the convergence of 𝜙h in

L∞(0,T;Lp(S)) (up to a subsequence) using the compactness result from [30] and interpolation

estimates on Lp(S) spaces.

4.2.3 Convergence of the gauge potential Ah

The convergence of the gauge potential is obtained by considering the discrete divergence free part

and the gradient part of the discrete Helmholtz decomposition (53) separately.

Discrete divergence free part.
We follow again [8]. By a Kikuchi type result, one obtains the convergence of Åh in L∞(0,T ,L2(S)).

Interpolation estimates then give the convergence in L∞(0,T ,Lp(S)), since one has (54). Gradient part.
The equation we are considering is (Equation(55))

⟨∇ph,∇vh⟩ = ⟨uh, vh⟩0,h =∶ lh(vh), ∀vh ∈ Y0

h .

We have lh ∈ (Y0

h )∗, and one can then find, by the Riesz representation theorem, fh ∈ Y0

h such that

∀vh ∈ Y0

h ,

⟨fh, vh⟩ = lh(vh).

Let q > 2 be given. We choose r > 0 such that
1

2
<

1

r
<

1

2
+ 1

q
. One has

||fh||Lr(S) = sup

v∈Lr′ (S)

|⟨fh, v⟩|
||v||Lr′ (S)

= sup

v∈Lr′ (S)

|⟨fh, vh⟩|

||v||Lr′ (S)
= sup

v∈Lr′ (S)

|lh(vh)|
||v||Lr′ (S)

≤ C||uh||h,r,
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CHRISTIANSEN ET AL. 3289

where
1

r
+ 1

r′
= 1, and vh = Ph(v) is the L2

orthogonal projection on Y0

h (which is stable in Lr′(S)). As

already shown in a previous section, this implies

||fh||L∞(0,T;Lr(S)) ≤ C|| ̇𝜙h||L∞(0,T;L2(S))||𝜙h||L∞(0,T;Lq(S)).

Furthermore, ∀t ∈ [0,T],

⟨ ̇f h, vh⟩ = ⟨u̇h, vh⟩0,h,

which means that

|| ̇f h||L∞(0,T ,Lr(S)) ≤ C|| ̇𝜙h||L∞(0,T;L2(S))||𝜙h||L∞(0,T;Lq(S)).

From this one concludes that there exists w ∈ L∞(0,T;W−1,q(S)) such that

fh −−−−→
h→0

w in L∞(0,T;W−1,q(S)),

where we used the compact embedding from Lr(S) into W−1,q(S), and the compactness result of [30].

Define p ∈ W1,q(S) as the unique solution of

⟨∇p,∇v⟩ = ⟨w, v⟩ =∶ l(v), ∀v ∈ W1,q′(S), 1

q
+ 1

q′
= 1.

We would like to prove that

||ph − p||L∞(0,T;W1,q(S)) −−−−→h→0

0.

In order to prove this, we use a version of the Strang lemma, that is,

sup

vh∈Z0

h

|lh(vh) − l(vh)|
||vh||W1,q′ (S)

−−−−→
h→0

0,

which is verified by construction of l, and we can conclude that ph →h→0 p in L∞(0,T;W1,q(S)) for

all q > 2.

4.3 The limit equation

4.3.1 Summary of convergences obtained

(a) Convergence obtained for Ah. We have that

Ah −−−−→
h→0

A in L∞(0,T;Lp(S)), ∀2 < p,

and from energy bound we directly have

∇ × Ah ⇀
h→0

∇ × A in L∞(0,T;L2(S)) weak-*,

and

̇Ah ⇀
h→0

̇A in L∞(0,T;L2(S)) weak-*.

(b) Convergence of 𝜙h. We have that

𝜙h −−−−→
h→0

𝜙 in L∞(0,T;Lp(S)), ∀p < +∞,

and from energy bound, we directly have

𝜙h ⇀
h→0

𝜙 in L∞(0,T;H1

0
(S)) weak-*,
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3290 CHRISTIANSEN ET AL.

and

̇
𝜙h ⇀

h→0

̇
𝜙 in L∞(0,T;L2(S)) weak-*.

4.3.2 Limit equations

Let 𝜙
′ ∈ ∞c (]0,T[×S) and A′ ∈ (∞c (]0,T[×S)) 2

. Define 𝜙
′
h = Π0,h(𝜙′) ∈ ∞c (0,T;Z0

h) and A′h =
Π1,h(A′) ∈ ∞c (0,T;Y1

h ). We denote by 𝝓′h and A′h
the vectors of the degrees of freedom associated

to 𝜙
′
h and A′h respectively.

In the temporal gauge, the semidiscrete equations (22) read

∫
T

0

⟨ ̈𝜙h, 𝜙
′
h⟩0,h + ∫

T

0

⟨GAh𝜙h,GAh𝜙
′
h⟩1,h +𝔪2∫

T

0

⟨𝜙h, 𝜙
′
h⟩0,h + 𝛾∫

T

0

⟨|𝜙h|
2
𝜙h, 𝜙

′
h⟩0,h = 0, (57)

∫
T

0

⟨ ̇Eh,A′h⟩ − ∫
T

0

⟨∇ × Ah,∇ × A′h⟩ − ∫
T

0

⟨GAh𝜙h, ih(Uh, 𝜙h,A′h)⟩1,h = 0. (58)

Study of Equation (57). We have ∫ T
0
⟨ ̈𝜙h, 𝜙

′
h⟩0,h = −∫ T

0
⟨ ̇𝜙h, ̇𝜙

′
h⟩0,h = −∫ T

0
⟨ ̇𝜙h, ̇𝜙

′
⟩0,h, and by

weak-* convergence of ̇
𝜙h,

∫
T

0

⟨ ̇𝜙h, ̇𝜙
′
⟩−−−−→

h→0 ∫
T

0

⟨ ̇𝜙, ̇𝜙
′
⟩.

Furthermore from (13) and uniform L2
bound on ̇

𝜙h

|
|
|
|
|
∫

T

0

⟨ ̇𝜙h, ̇𝜙
′
⟩0,h − ∫

T

0

⟨ ̇𝜙h, ̇𝜙
′
⟩
|
|
|
|
|
≤ ∫

T

0

Ch|| ̇𝜙h||L2(S)||
̇

𝜙

′||Hl(S) ≤ Ch.

The convergence of the terms ∫ T
0
⟨𝜙h, 𝜙

′⟩0,h and ∫ T
0
⟨|𝜙h|

2
𝜙h, 𝜙

′⟩0,h directly follows from the con-

vergence of 𝜙h in L∞(0,T;Lp(S)) and the convergence for the test functions. We now study the

convergence of the term ∫ T
0
⟨GAh𝜙h,GAh𝜙

′
h⟩1,h to ∫ T

0
⟨DA𝜙,DA𝜙

′⟩. It will be obtained in several steps.

First, we decompose the quantity of interest ⟨GAh𝜙h,GAh𝜙
′
h⟩1,h − ⟨DA𝜙,DA𝜙

′⟩ into three terms as

⟨GAh𝜙h,GAh𝜙
′
h⟩1,h − ⟨DA𝜙,DA𝜙

′⟩ = ⟨GAh𝜙h,GAh𝜙
′
h⟩1,h − ⟨Π1,h(DAh𝜙h),GAh𝜙

′
h⟩1,h

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I
1

+ ⟨Π1,h(DAh𝜙h),GAh𝜙
′
h⟩1,h − ⟨Π1,h(DAh𝜙h),Π1,h(DAh𝜙

′
h)⟩1,h

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I
2

+ ⟨Π1,h(DAh𝜙h),Π1,h(DAh𝜙
′
h)⟩1,h − ⟨DA𝜙,DA𝜙

′⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

J

. (59)

We first concentrate on I1 and I2. We need the two following Lemma. Their proofs are postponed to

Appendix B.1.

Lemma 4.5 There exist 𝜂 > 0 and C > 0 such that if h < 𝜂,

sup

[0,T]
‖
‖GAh𝜙h − Π1,hDAh𝜙h‖‖

2

h,2 ≤ Ch2−4∕p
,

so that

sup

[0,T]
‖
‖GAh𝜙h − Π1,hDAh𝜙h‖‖h,2 −−−−→h→0

0.
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CHRISTIANSEN ET AL. 3291

Furthermore, from the bound on the energy we directly have the following.

Lemma 4.6 There exists C > 0 such that

sup

[0,T]
‖
‖GAh𝜙h‖‖h,2 ≤ C. (60)

We can in a same manner obtain the analogous Lemma with 𝜙h replaced by 𝜙

′
h. Using

Lemma 4.5,4.6, and 4.1 (and their analogous counter part for 𝜙
′
h), one proves that I1 and I2 converges

uniformly in time to 0 as h → 0.

The estimation of J rely on the following decomposition

J = ⟨Π1,h(DAh𝜙h),∇𝜙′h⟩1,h − ⟨Π1,h(DAh𝜙h),∇𝜙′⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

J
1

(61)

+ ⟨∇𝜙h, iAh𝜙
′
h⟩1,h − ⟨∇𝜙h, iAh𝜙

′
h⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

J
2

(62)

+ ⟨∇𝜙h,Π1,h(iAh𝜙
′
h) − iAh𝜙

′
h⟩1,h

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

J
3

(63)

+ ⟨Π1,h(DAh𝜙h), iAh𝜙
′
h⟩ − ⟨Π1,h(DAh𝜙h), iA𝜙′⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

J
4

(64)

+ ⟨Π1,h(iAh𝜙h),Π1,h(iAh𝜙
′
h)⟩1,h − ⟨Π1,h(iAh𝜙h),Π1,h(iAh𝜙

′
h⟩)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

J
5

(65)

+ ⟨Π1,h(iAh𝜙h),Π1,h(iAh𝜙
′
h)⟩ − ⟨Π1,h(iAh𝜙h), iAh𝜙

′
h⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

J
6

(66)

+ ⟨Π1,h(DAh𝜙h),∇𝜙′⟩ − ⟨DA𝜙,DA𝜙
′⟩ + ⟨Π1,h(DAh𝜙h), iA𝜙′⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

J
7

. (67)

To estimate these terms, one needs the four following Lemma. To ease the reading, we postponed their

proofs to Appendix B.1.

Lemma 4.7

||⟨Π1,h(DAh𝜙h),∇𝜙′h⟩1,h − ⟨Π1,h(DAh𝜙h),∇𝜙′⟩||L∞(0,T) −−−−→
h→0

0.

Lemma 4.8

||⟨∇𝜙h,Ah𝜙
′
h⟩1,h − ⟨∇𝜙h,Ah𝜙

′
h⟩||L∞(0,T) −−−−→h→0

0.
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3292 CHRISTIANSEN ET AL.

Lemma 4.9

||⟨Π1,h(Ah𝜙h),Π1,h(Ah𝜙
′
h)⟩1,h − ⟨Π1,h(Ah𝜙h),Π1,h(Ah𝜙

′
h)⟩||L∞(0,T) −−−−→h→0

0.

Lemma 4.10

∫
T

0

⟨Π1,hDAh𝜙h,Π1,hDAh𝜙
′
h⟩𝑑t−−−−→

h→0 ∫
T

0

⟨DA𝜙,DA𝜙
′⟩𝑑t.

Let us briefly describe how the seven terms of the decomposition of J are treated. The first term

J1 is estimated using Lemma 4.7. Lemma 4.8 gives an estimation of J2. The terms J3, J4, and J6 are

estimated using 4.1 and bounds on the discrete solution. Lemma 4.9 gives an estimation of J5. Finally,

since J7 = ⟨Π1,h(DAh𝜙h),DA𝜙
′⟩−⟨DA𝜙,DA𝜙

′⟩, we deduce that this terms converges to 0 as h → 0 with

the help of Lemma 4.1 and the convergences obtained and summarized at the beginning of Section 4.3.

Study of Equation (58). The two first terms in Equation (58) are classical and are treated in a

same manner as for Equation (57). Thus, the only remaining term to estimate is the nonlinear term of

Equation (58). We use the following lemma

Lemma 4.11

⟨h(Uh, 𝜙h,A′h) − Π1,h(A′𝜙),h(Uh, 𝜙h,A′h) − Π1,h(A′𝜙)⟩1,h −−−−→
h→0

0.

The proof is postponed to Appendix B.1.

We write

⟨GAh𝜙h, ih(Uh, 𝜙h,A′h)⟩1,h − ⟨DA𝜙, i𝜙A′⟩ = ⟨GAh𝜙h, ih(Uh, 𝜙h,Ah)⟩1,h − ⟨DAh𝜙h, iΠ1,h(𝜙hA′h)⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I

+ ⟨DAh𝜙h, iΠ1,h(𝜙hA′h)⟩ − ⟨DA𝜙, i𝜙A′⟩ (68)

Using convergences summarized at the beginning of Section 4.3 and Lemma 4.1, we can prove that

∫
T

0

⟨DAh𝜙h, iΠ1,h𝜙hA′h⟩−−−−→h→0 ∫
T

0

⟨DA𝜙, i𝜙A′⟩,

Furthermore,

I = ⟨GAh𝜙h, ih(Uh, 𝜙h,Ah) − iΠ1,h(𝜙hA′h)⟩1,h
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I
1

+ ⟨GAh𝜙h − Π1,h(DAh𝜙h), iΠ1,h(𝜙hA′h)⟩1,h
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I
2

+ ⟨Π1,h(DAh𝜙h), iΠ1,h(𝜙hA′h) − i𝜙hA′h⟩1,h
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I
3

+ ⟨Π1,h(DAh𝜙h), i𝜙h(A′h − A′)⟩1,h
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I
4

+ ⟨Π1,h(DAh𝜙h), i(𝜙h − 𝜙)A′⟩1,h
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I
5

 10982426, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23008 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [29/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHRISTIANSEN ET AL. 3293

+ ⟨Π1,h(DAh𝜙h), i𝜙A′⟩1,h − ⟨Π1,h(DAh𝜙h), i𝜙A′⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I
6

+ ⟨(Π1,h(DAh𝜙h) − DAh𝜙h), i𝜙A′⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I
7

+ ⟨(DAh𝜙h − DA𝜙), i𝜙A′⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I
8

. (69)

Each of the terms converges to 0 as h → 0. Indeed, for

• I1, we use the energy norm estimate and Lemma 4.11,

• I2, we use Lemma 4.7, Lemma 4.1 (i) and estimates on A′h and 𝜙h,

• I3, we use estimates on Ah, 𝜙h, A′h, Lemma 4.1 and the fact that ||Π1,h(DAh𝜙h)||1,h is bounded

(combination of Lemma 4.1 and bounds on the fields),

• I4, we use the estimates on Ah, 𝜙h, the convergence properties of A′h and bound on

||Π1,h(DAh𝜙h)||1,h,

• I5, we use the estimates on Ah, 𝜙h, the convergence properties of 𝜙

′
h and bound on

||Π1,h(DAh𝜙h)||1,h,

• I6, we use the consistency estimate (15),

• I7, we use Lemma (4.1) and estimates on Ah, 𝜙h,

• I8, we use the convergence properties of Ah and 𝜙h.

Thus we can state that

∫
T

0

⟨GAh𝜙h, ih(Uh, 𝜙h,A′h)⟩1,h −−−−→
h→0 ∫

T

0

⟨DA𝜙, i𝜙A′⟩.

The limit equation. To conclude,

−∫
T

0

⟨ ̇𝜙, ̇𝜙
′
⟩ + ∫

T

0

⟨DA𝜙,DA𝜙
′⟩ = 0,

−∫
T

0

⟨E, ̇A′⟩ − ∫
T

0

⟨𝑑A, 𝑑A′⟩ − ∫
T

0

⟨DA𝜙, i𝜙A′⟩ = 0, (70)

which means that (A, 𝜙) is a weak solution of the Maxwell–Klein–Gordon equation in the sense of

Definition 1.

5 NUMERICAL RESULTS

In this section, we provide some numerical results to assess the theory. To this end, we first propose a

fully discrete scheme and then study two types of test cases in two dimensions.

5.1 Fully discrete setting

We consider a time-discretization that consists of a uniform subdivision of NT + 1 (NT ∈ N∗
) points

of the interval [0,T]. The time step will be denoted Δt ∶= T
NT

. We propose the following simple time

discretization of leap-frog type.
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For all k ∈ {0, ..,NT}, find (𝜓k
h , 𝜙

k
h,Ek

h,Ak
h) ∈ Z0

h ×Z0

h ×Y1

h ×Y1

h such that for all (𝜙′h,A′h) ∈ Z0

h ×Y0

h ,

{
⟨𝑑t𝜓

k
0,h, 𝜓

′
h⟩0,h − ⟨GAk

h
𝜙

k
h,GAk

h
𝜙

′⟩1,h −𝔪2⟨𝜙k
h, 𝜙

′
h⟩0,h − 𝛾⟨|𝜙k

h|
2
𝜙

k
h, 𝜙

′
h⟩0,h = 0.

⟨𝑑tEk
h,A′h⟩ − ⟨curl Ak

h, curl A′h⟩ − ⟨GAk
h
𝜙

k
h,Uk

h𝜙
k
hA′h⟩1,h = 0

with

• E
k+ 1

2

h ∶= −Ak+1

h −Ak
h

Δt
and 𝜓

k+ 1

2

h ∶= −𝜙

k+1

h −𝜙k
h

Δt

• 𝑑tEk
h ∶=

E
k+ 1

2

h −E
k− 1

2

h
Δt

and 𝑑t𝜓
k
h ∶=

𝜓

k+ 1

2

h −𝜓
k− 1

2

h
Δt

• Ek
h ∶=

E
k+ 1

2

h +E
k− 1

2

h
2

and 𝜓
k
h ∶=

𝜓

k+ 1

2

h +𝜓
k− 1

2

h
2

For a given sequence Bk
, we will also use the following notations 𝑑tBk = Bk+1−Bk

Δt
.

We initialize the algorithm with values A0

h, A1

h, 𝜓
0

h , 𝜓
1

h .

In this work, we focus on first numerical results and postpone a more thorough fully-discrete

numerical analysis for a future work.

5.2 Constraint preservation

One can straightforwardly check that the constraint is verified.

Proposition 5.1 If ⟨E
1

2

h ,∇𝛽′⟩ = ⟨𝜓
1

2

h , 𝜙
1
𝛽

′⟩0,h, the constraint is verified that is,

⟨E
k− 1

2

h ,∇𝛽′h⟩ = ⟨𝜓
k− 1

2

h , 𝜙

k
h𝛽
′⟩0,h, ∀k ∈ {0, ..,NT} (71)

Proof. If one expresses the discrete differential, one obtains

𝑑t

(

⟨E
k− 1

2

h ,∇𝛽′h⟩ − ⟨𝜓
k− 1

2

h , 𝜙

k
h𝛽
′
h⟩0,h

)

= 1

Δt

[

⟨E
k+ 1

2

h ,∇𝛽′h⟩ − ⟨E
k− 1

2

h ,∇𝛽′h⟩ − ⟨𝜓
k+ 1

2

h , 𝜙

k+1

h 𝛽

′⟩0,h + ⟨𝜓
k− 1

2

h , 𝜙

k
h𝛽
′
h⟩0,h

]

(72)

But from the definition 𝜓
k+ 1

2

h and the scalar product,

1

Δt

[

⟨𝜓
k+ 1

2

h , 𝜙

k+1

h 𝛽

′
h⟩0,h − ⟨𝜓

k− 1

2

h , 𝜙

k
h𝛽
′
h⟩0,h

]

= ⟨
𝜓

k+ 1

2 − 𝜓k− 1

2

Δt
, 𝜙

k
h𝛽
′
h⟩0,h + ⟨𝜓

k+ 1

2

h ,

(𝜙k+1

h − 𝜙k
h)

Δt
𝛽

′
h⟩0,h,

= ⟨𝑑t𝜓
k
h , 𝜙

k
h𝛽
′
h⟩0,h (73)

So that

𝑑t(⟨Ek− 1

2 ,∇𝛽′⟩ − ⟨𝜓k− 1

2 , 𝜙
k
𝛽

′⟩0,h) = ⟨𝑑tEk
,∇𝛽′⟩ − ⟨𝑑t𝜓

k
, 𝜙

k
𝛽

′⟩0,h. (74)

Similar arguments as in Section 3.2.3 apply to prove that the constraint is preserved even

in discrete time. This implies that

⟨Ek− 1

2 ,∇𝛽′⟩ − ⟨𝜓k− 1

2 , 𝜙
k
𝛽

′⟩0,h = 0 (75)

if the constraint is verified at initial time, that is, for k = 1. ▪
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CHRISTIANSEN ET AL. 3295

5.3 Numerical tests

We have implemented the proposed fully-discrete scheme using a dedicated module that we devel-

oped using the Finite Element library Firedrake.
1

Let us point out that these results are preliminary

and used as first assessments of the method. We consider a two dimensional domain given by a

square [0, 1] × [0, 1]. The scheme defined in the previous section is explicit. Thus, as expected

in each of our test cases, we observe that the stability of the scheme is guaranteed by a CFL

type condition Δt ≤ CFL h. The CFL constant has been empirically fixed according to our tests

to 0.25.

5.3.1 Artificial test case and convergence order

One does not have access to an exact solution as such. In order to assess our implementation, we

propose to design an artificial test case as explained in the following. We consider for all (t, x, y) ∈
[0,T] × [0, 1] × [0, 1],

𝜙art(t, x, y) = sin(𝜔t) sin(𝜋x) sin(𝜋y), (76)

Aart(t, x, y) = (cos(
√

2𝜋t) cos(𝜋x) sin(𝜋y),−cos(
√

2𝜋t) sin(𝜋x) cos(𝜋y)), (77)

with 𝜔 =
√

2𝜋2 +𝔪2. Then we define

J
𝜙art = 𝜕tt𝜙art + (DAart )

∗DAart𝜙art +𝔪2
𝜙art + 𝛾|𝜙art|

2
𝜙art (78)

JAart = 𝜕ttAart + 𝑑∗𝑑Aart − i𝜙∗artDAart𝜙art (79)

In this way, (Aart, 𝜙art) is a solution of the following set of equations:

𝜕tt𝜙 + (DA)∗DA𝜙 +𝔪2
𝜙 + 𝛾|𝜙|2𝜙 = J

𝜙art ,

𝜕ttA + 𝑑∗𝑑A − i𝜙∗DA𝜙 = JAart . (80)

with initial conditions

𝜙(0, ⋅) = 𝜙art(0, ⋅), (81)

A(0, ⋅) = Aart(0, ⋅). (82)

We then use the discretization proposed above, add the external currents (JAart , J𝜙art ) on the right hand

side, and compute the corresponding solution (An
h, 𝜙

n
h)n∈{0,… ,NT}. Doing so, we are able to compute the

L∞L2
error as

errL2

h = max
n∈{0,… ,NT}

(
||𝜙n

h − Π0,h(𝜙art(tn, ⋅))||2L2(S) + ||An
h − Π1,h(Aart(tn, ⋅))||2L2(S)

) 1

2 (83)

We computed the solution for 4 types of (m, 𝛾) couples: (0, 0), (1, 0), (0, 1) and (1, 1). In Figure 1, we

plot for several values of the number of points, the values of the respective error defined in (83). The

error analysis is performed using mesh parameters that fulfill Δt = CFLh. Doing so, we compute the

minimum order in time and space of the scheme.

In Figure 2, we plot the results in logarithmic scales. We infer an order of convergence of 1 (a linear

regression would even give slopes of ≈ 1.5). Local orders are presented in Table 1.

1
https://www.firedrakeproject.org/.
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3296 CHRISTIANSEN ET AL.

FIGURE 1 Maximum in time of L2
errors versus number of points.

FIGURE 2 Convergence order.

TABLE 1 Approximate numerical orders obtained for various values of the couples (m, 𝛾) ((0, 0), (0, 1), (1, 0), (1, 1)).

h (0, 0) (0, 1) (1, 0) (1, 1)

0.2 − − − −
0.1 1.64 1.57 1.33 1.23

0.05 1.68 1.71 1.82 1.75

0.033 1.65 1.47 1.54 1.43

0.025 1.96 1.33 1.07 1.30

0.02 1.62 1.25 1.11 2.01

0.0125 0.56 1.16 1.05 0.66

0.01 1.16 1.10 1.02 1.04
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CHRISTIANSEN ET AL. 3297

FIGURE 3 Evolution of the constraint in time for several couples (𝔪, 𝛾): (0, 0) upper left, (0, 1) upper right, (1, 0) bottom

left, (1, 1) bottom right. The initial constraint is nonzero and is represented by the orange horizontal line.

Although this is out of the scope of this work to obtain a theoretical proof of the convergence orders,

one can however try to find, through our analysis, some indication of first order convergence for this

test case using regular fields. Indeed the approximation of the discrete covariant derivative DAh𝜙h by

the LGT gauge compatible discretization come at the price of the estimate such as (4.5) where we do

not hope to obtain more than first order of approximation of the covariant derivative.

Regarding the constraint 𝜅, in this case, one has instead of (23), the following equation.

⟨𝜅(t), 𝛼′⟩ = ⟨𝜅(0), 𝛼′⟩ + ∫
t

0

(
⟨J
𝜙art ,Π0,h(−i𝛼′𝜙)⟩ + ⟨JAart ,∇𝛼

′⟩
)
𝑑s. (84)

Hence, except if currents are chosen such that the right hand side vanishes, we do not expect preser-

vation of the constraint in this artificial case. We will not compute the constraint for this precise test

case and postpone the tests to the next section.

5.3.2 Second test case and preservation of the constraint

For this second test case, we propose to initialize the system with an electromagnetic plane wave for

A and a 2D-Gaussian initial profile for 𝜙 centered at the center of the domain. In other words, we

consider a focalized density profile for the modulus of the complex Klein–Gordon field. In Figure 3,
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3298 CHRISTIANSEN ET AL.

FIGURE 4 Evolution of the energy over time for several couples (𝔪, 𝛾): (0, 0) upper left, (0, 1) upper right, (1, 0) bottom left,

(1, 1) bottom right. The initial energy is represented by the orange horizontal line.

FIGURE 5 Absolute variations of the energy with respect to its initial value over time for a space discretization made of 50

and 100 pts.
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CHRISTIANSEN ET AL. 3299

we observe that the constraint is preserved up to machine precision. This is in accordance with the

theory developed in previous sections.

The energy is not preserved by the time-integration scheme, however relative variations of the

energy from its initial value are relatively small (see Figure 4) and this variation gets consistently

smaller as the discretization parameters decrease (see Figure 5).

To conclude, we represent in Figure 6 some 𝜙 modulus profiles and their evolution with time (the

initial profile is represented in Figure 7). At this stage of our investigations, we cannot really interpret

these profiles since we work on a toy academic model. This will be part of future works to improve

the physical relevance of the setting considered here and the corresponding test cases. The way we use

these profiles here is to show the effect of the introduction of mass and self-coupling term. Even if,

again, the physical relevance of the values chosen are not discussed here, we propose to test the use of

nonunitary values of the mass and self-coupling term.

FIGURE 6 Evolution of the profile of the modulus of the Klein–Gordon complex field with (𝔪, 𝛾) = (0, 0) (first row),

(𝔪, 𝛾) = (0, 10) (second row), (𝔪, 𝛾) = (10, 0) (third row) and (𝔪, 𝛾) = (10, 10) (fourth row): t = 0.125 left, t = 0.225 middle,

t = 0.985 right, with t = 1 being the end of simulation time.
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3300 CHRISTIANSEN ET AL.

FIGURE 7 Initial profile of the modulus of the Klein–Gordon complex field.

FIGURE 8 Evolution of the profile of the modulus of the Klein–Gordon complex field with (𝔪, 𝛾) = (10, 100): t = 0.125

left, t = 0.225 center, t = 0.985 right, with t = 1 being the end of simulation time.

What we observe is that the effect of mass and/or self-coupling occurs after some elapsed time

and that the effect of self-coupling seems to be weak. We therefore also tested a situation where

self-coupling is ten times bigger than mass. In this case, we significantly see self-coupling effects over

mass on the profiles patterns (see Figure 8).

6 CONCLUSION

In this work, we studied the Maxwell–Klein–Gordon equation in dimension two and focused on the

semidiscrete analysis of a discretization scheme based on lattice gauge theory (LGT) combined with

Nédélec finite elements. The special feature of this scheme is that it ensures gauge invariance at

the discrete level therefore respecting the geometrical structure of the original equation through the

preservation of the constraint. Our analysis is not an a priori analysis, but concentrates on sequential

compactness arguments without the a priori knowledge of a solution of the continuous equations. We

use the discrete energy principle combined to constraint preservation to extract bounds in the appro-

priate spaces and extract convergent subsequences. At last, we implement a fully discrete numerical

scheme based on a leap frog type time integration. We provide first academical test cases to extract

convergence orders and assess the method. Future works include more relevant physical test cases and

the fully discrete analysis of the proposed scheme.
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APPENDIX A: PROOFS OF THE PRELIMINARY LEMMA 4.1 AND A.2.

Lemma A.1 Let Π1,h be the edge interpolant. For p > 2, the following inequalities
hold. There exists C > 0 such that for all (Fh, 𝜁h) ∈ Y1

h × Z0

h

(i)
||Fh𝜁h − Π1,h(Fh𝜁h)||L2(S) ≤ Ch1− 2

p ||Fh||Lp(S)|𝜁h|H1(S), (A1)

Furthermore there exists C > 0 such that
(ii)

√∑

K∈h

|Ah|
2

H1(K) ≤ C

(

||∇ × Ah||L2(S) + sup

rh∈Y0

h

|⟨Ah,∇ rh⟩|

||rh||L2(S)

)

, (A2)

(iii)
√∑

K∈h

|Π1,h(Ah𝜙h)|2H1(K) ≤ Ch−
2

p

[(

||∇ × Ah||L2(S) + sup

rh∈Y0

h

|⟨Ah,∇ rh⟩|

||rh||L2(S)

)

||𝜙h||Lp(S)+

+||Ah||Lp(S)|𝜙|H1(S)
]
. (A3)

Proof. Let ̂Π be the projector on the reference domain ̂K corresponding to Π1,h on Z1

h ,

and ̂Fh, ̂𝜁h the corresponding functions classically defined on the reference element ̂K.

One has

|| ̂Fh ̂𝜁h − ̂Π ̂Fh ̂𝜁h||L2( ̂K) ≤ C inf
p∈Q

|| ̂Fh ̂𝜁h − p||H1( ̂K),

where Q = 0,1(C) × 1,0(C) is the space of polynomials we will consider on ̂K.

Furthermore

inf
p∈Q

|| ̂Fh ̂𝜁h − p||H1( ̂K) ≤ inf
p∈P

0

|| ̂Fh( ̂𝜁h − p)||H1( ̂K),
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CHRISTIANSEN ET AL. 3303

where P0 are complex constant functions on ̂K. In addition,

inf
p∈P

0

|| ̂Fh( ̂𝜁h − p)||H1( ̂K)

≤ C
[

|| ̂Fh||Lp( ̂K) inf
p∈P

0

|| ̂𝜁h − p||H1( ̂K) + | ̂Fh|H1( ̂K)

inf
p∈P

0

|| ̂𝜁h − p||H1( ̂K) + | ̂𝜁h|H1( ̂K)||
̂Fh||Lp( ̂K)

]

,

which gives

inf
p∈P

0

|| ̂Fh( ̂𝜁h − p)||H1( ̂K) ≤ C|| ̂Fh||Lp( ̂K)|
̂
𝜁h|H1( ̂K) + | ̂Fh|H1( ̂K)|

̂
𝜁h|H1( ̂K) + |𝜁h|H1( ̂K)||

̂Fh||Lp( ̂K)

≤ C|| ̂Fh||Lp( ̂K)|
̂
𝜁h|H1( ̂K).

So on any rectangle K, one deduces by scaling

||Fh𝜁h − Π1,h(Fh𝜁h)||L2(K) ≤ Ch1− 2

p ||Fh||Lp(K)|𝜁h|H1(K) ≤ Ch1− 2

p ||Fh||Lp(S)|𝜁h|H1(K),

and by summing up the squares of each part of this inequality (i) is proved. By inverse

inequality one also has

||Fh𝜁h − Π1,h(Fh𝜁h)||H1(K) ≤ Ch−
2

p ||Fh||Lp(K)|𝜁h|H1(K).

Furthermore, on the reference square ̂K,

| ̂Fh ̂𝜁h|H1( ̂K) ≤ C
[
| ̂Fh|H1( ̂K)||

̂
𝜁h||Lp( ̂K) + | ̂𝜁h|H1( ̂K)||

̂Fh||Lp( ̂K)
]
,

which gives on any rectangle K,

|Fh𝜁h|H1(K) ≤ Ch−
2

p
[
|Fh|H1(K)||𝜁h||Lp(K) + |𝜁h|H1(K)||Fh||Lp(K)

]
.

This implies

√∑

K∈h

|Π1,h(Fh𝜁h)|2H1(K) ≤ Ch−
2

p

⎡
⎢
⎢
⎣

⎛
⎜
⎜
⎝

√∑

K∈h

|Fh|
2

H1(K)

⎞
⎟
⎟
⎠

||𝜁h||Lp(S) + ||Fh||Lp(S)|𝜙|H1(S)

⎤
⎥
⎥
⎦

. (A4)

Turning to the proof of (ii). The discrete Helmholtz decomposition of Ah is written (see

22)

Ah = Åh + ∇ ph, (A5)

where

• Åh is discrete divergence free, that is, Åh ∈ Vh ∶=
{

uh ∈ Y1

h |⟨uh,∇𝛽h⟩ = 0, ∀𝛽h ∈ Y0

h
}

,

• ph ∈ Y0

h .

First, we consider the term Åh. We would like to prove that

√∑

K∈h

|Åh|
2

H1(K) ≤ C||∇ × Åh||L2(S). (A6)

Let us define PV the L2
projection on the space of divergence free vectors fields. By

inverse inequality

√∑

K∈h

|Åh − PV Åh|
2

H1(K) ≤ Ch−1|Åh − PV Åh|L2(S),
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3304 CHRISTIANSEN ET AL.

and following 8 (the proof of Proposition 2.5.), one has

|Åh − PV Åh|L2(S) ≤ Ch||∇ × Åh||L2(S).

This yields

√∑

K∈h

|Åh − PV Åh|
2

H1(K) ≤ C||∇ × Åh||L2(S).

Furthermore PV (Åh) ∈ H1(S) and one has

|PV Åh|H1(S) ≤ C||∇ × PV Åh||L2(S) = C||∇ × Åh||L2(S),

and (A6) is proved. Let us study the gradient part. From the expression of the constraint

(23), there exists, from Riesz representation theorem, uh ∈ Y0

h such that

⟨∇ ph,∇ rh⟩ = ⟨uh, rh⟩, ∀rh ∈ Y0

h ,

and

||uh||L2(S) = sup

rh∈Y0

h

|⟨∇ ph,∇ rh⟩|

||rh||L2(S)
.

Define p ∈ H1

0
(S) as the unique solution of the following equation

⟨∇ p,∇ r⟩ = ⟨uh, r⟩, ∀r ∈ H1

0
(S).

Since uh ∈ L2(S), then p ∈ H2(S) ∩ H1

0
(S) and the following inequality holds

|p|H2(S) ≤ C||uh||L2(S).

Furthermore, by standard estimates

|ph − Π0,hp|H1(S) ≤ Ch|p|H2(S).

We would like to prove that

√∑

K∈h

|∇ ph|
2

H1(K) ≤ C||uh||L2(S).

One has

√∑

K∈h

|∇ ph|
2

H1(K) ≤
√∑

K∈h

|∇ ph − ∇ Π0,hph|
2

H1(K) +
√∑

K∈h

|∇ Π0,hp|2H1(K) (A7)

≤ Ch−1

√∑

K∈h

|∇ ph − ∇ Π0,hp|2L2(K) +
√∑

K∈h

|∇ Π0,hp|2H1(K) (A8)

≤ C|p|H2(S) + C|∇ p|H1(S) (A9)

≤ C||uh||L2(S), (A10)

where we used inverse inequalities and the continuity arguments.
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CHRISTIANSEN ET AL. 3305

Using the estimates established, one concludes that

√∑

K∈h

|Ah|
2

H1(K) ≤ C

(

||∇ × Ah||L2(S) + sup

rh∈Y0

h

|⟨Ah,∇ rh⟩|

||rh||L2(S)

)

,

and (ii) is proved.

Inequality (iii) follows directly from (ii) and (A4). ▪

The following result allows by the constraint (23) to control the weak divergence of Ah appearing

in (47) and (48).

Lemma A.2 For any p > 2,

sup

rh∈Y0

h

|⟨Ah,∇ rh⟩|

||rh||L2(S)
≤ Ch−

2

p ||𝜙h||L∞(0,T ,Lp(S))|| ̇𝜙h||L∞(0,T ,L2(S)).

Proof. One has from the constraint (23)

|⟨Ah,∇ rh⟩| =
|
|
|
|
|
⟨∫

t

0

̇
𝜙h𝜙h, rh⟩0,h

|
|
|
|
|
, ∀rh ∈ Y0

h ,

implying that

sup

rh∈Y0

h

|⟨Ah,∇ rh⟩|

||rh||L2(S)
= sup

rh∈Y0

h

|⟨∫ t
0
̇
𝜙h𝜙h, rh⟩0,h|

||rh||L2(S)
≤ sup

rh∈Y0

h

||∫ t
0
̇
𝜙h𝜙h||0,h||rh||0,h

||rh||L2(S)

≤ C
‖
‖
‖
‖
‖
∫

t

0

̇
𝜙h𝜙h

‖
‖
‖
‖
‖0,h
≤ C∫

t

0

|| ̇𝜙h||Lp(S)||𝜙h||Lq(S)

≤ Ch−
2

p ||𝜙h||L∞(0,T ,Lp(S))|| ̇𝜙h||L∞(0,T ,L2(S)),

with 1∕p + 1∕q = 1∕2. ▪

APPENDIX B: PROOF OF LEMMA 4.5 TO LEMMA 4.11

We will use the following decomposition of GAh𝜙h in terms of its gradient part and its nonlinear part,

that upon requiring h to be sufficiently small, is close to iAh𝜙h.

Let e = {m, n} denote an oriented edge of the mesh. The following decomposition holds

(GAh𝝓h)e =
1 + exp(−iAh

e)
2

(𝝓h
n − 𝝓h

m) +
1 − exp(−iAh

e)
2

(𝝓h
m + 𝝓h

n). (B1)

Let us denote

• Nh ∈ Z1

h the edge element such that its edge degrees of freedom are Nh
e = 1 − exp(−iAh

e).
• N𝝓h

the vector of the degrees of freedom of the vector Nh𝜙h, that is, (N𝝓h)e = Nh
e(
𝝓h

m+𝝓
h
n

2
).

• Ph
the vector such that Ph

e ∶= − 1

2
Nh

e(G𝝓h)e, and Ph ∈ Z1

h its associated edge element vector

field.

This gives

(GAh𝝓h)e = (G𝝓h)e + Ph
e + (N𝝓h)e.
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3306 CHRISTIANSEN ET AL.

We first prove the following

Lemma B.1 There exist 𝜂 > 0 and C > 0 such that if h < 𝜂,

sup

[0,T]
‖
‖GAh𝜙h − Π1,h(DAh𝜙h)‖‖

2

1,h ≤ Ch2−4∕p
,

so that

sup

[0,T]
‖
‖GAh𝜙h − Π1,h(DAh𝜙h)‖‖1,h −−−−→h→0

0.

Proof. Let e = {m, n} be an oriented edge of the mesh, one has,

(GAh𝝓h − Π1,h(DAh𝝓h))e = (Ph)e + (Nh
e − iAh

e)
𝝓h

m + 𝝓h
n

2
,

and

‖Ph + (Nh − iAh)𝜙h‖1,h ≤ ‖Ph‖1,h + ‖(Nh − iAh)𝜙h‖1,h .

Furthermore,

||Ph||
2

1,h =
∑

e
(Hh

1
)ee

|
|
|
|
|

exp(−iAh
e) − 1

2
(G𝝓h)e

|
|
|
|
|

2

≤∑

e
(Hh

1
)ee

|Ah
e|

2

4

|
|
|
(G𝝓h)e

|
|
|

2

≤ Ch2− 4

p ||Ah||
2

L∞(0,T ,Lp(S))
∑

e
(Hh

1
)ee

|
|
|
(G𝝓h)e

|
|
|

2

≤ Ch2− 4

p ||∇𝜙h||
2

1,h ≤ Ch2− 4

p ||∇𝜙h||
2

L∞(0,T;L2(S)) ≤ Ch2− 4

p
,

since ∇𝜙h is uniformly bounded in L∞(0,T ,L2(S)). In addition,

||(Nh − iAh)𝜙h||
2

1,h =
∑

e
(Hh

1
)ee

|
|
|
|
|

1 − exp(−iAh
e) − iAh

e

2
(𝝓h

m + 𝝓h
n)
|
|
|
|
|

2

There exists 𝜂 > 0, such that |Ah
e| is sufficiently small (from (56)) so that the following

inequalities hold for h < 𝜂

||(Nh − iAh)𝜙h||
2

1,h ≤ C
∑

e
(Hh

1
)ee|Ah

e|
2

|
|
|
|
|

Ah
e

2
(𝝓h

m + 𝝓h
n)
|
|
|
|
|

2

≤ Ch2− 4

p ||Ah||
2

L∞(0,T ,Lp(S))
∑

e
(Hh

1
)ee

|
|
|
|
|

Ah
e

2
(𝝓h

m + 𝝓h
n)
|
|
|
|
|

2

≤ Ch2− 4

p ||Ah||
2

L∞(0,T ,Lp(S))||Π1,h(Ah𝜙h)||21,h

≤ Ch2− 4

p ||Ah||
2

L∞(0,T ,Lp(S))||Π1,h(Ah𝜙h)||2L∞(0,T ,L2(S))

≤ Ch2− 4

p
,

where we used Lemma A.1, and uniform bounds on the Lp
-norm of Ah and the H1

-norm

on 𝜙h. ▪

The following Lemma is a direct consequence of the estimate on the energy.

 10982426, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23008 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [29/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHRISTIANSEN ET AL. 3307

Lemma B.2 There exists C > 0 such that

sup

[0,T]
‖
‖GAh𝜙h‖‖1,h ≤ C. (B2)

Lemma B.3

||⟨Π1,h(DAh𝜙h),∇𝜙′h⟩1,h − ⟨Π1,h(DAh𝜙h),∇𝜙′⟩||L∞(0,T) −−−−→
h→0

0.

Proof. From the consistency estimate, one has

|⟨Π1,h(DAh𝜙h),∇𝜙′⟩1,h − ⟨Π1,h(DAh𝜙h),∇𝜙′⟩| ≤ Ch||Π1,h(DAh𝜙h)||L2(S)||∇𝜙′||Hl(S),

for l > 1, and from bounds established in Lemma A.1, one deduces for p > 2 a bound on

||Π1,h(DAh𝜙h)||L2(S) in terms of ||Ah||L∞(0,T;Lp(S)) and ||𝜙h||L∞(0,T;H1(S)) which concludes the

proof using the obtained bounds and convergence of discrete test functions. ▪

Lemma B.4

||⟨∇𝜙h,Ah𝜙
′
h⟩1,h − ⟨∇𝜙h,Ah𝜙

′
h⟩||L∞(0,T) −−−−→h→0

0.

Proof. Mapping consistency estimates from the reference square to any rectangle K of

the mesh (as is done in 9) gives

|⟨∇𝜙h,Ah𝜙
′
h⟩1,h−⟨∇𝜙h,Ah𝜙

′
h⟩|

≤ C
⎛
⎜
⎜
⎝

h
√∑

K∈h

|Ah𝜙
′
h|

2

H1(K) + h2

√∑

K∈h

|Ah𝜙
′
h|

2

H2(K)

⎞
⎟
⎟
⎠

||∇𝜙h||L2(S).

The two terms

√∑
K∈h

|Ah𝜙
′
h|

2

H1(K) and

√∑
K∈h

|Ah𝜙
′
h|

2

H2(K) can be estimated by stan-

dard techniques on the reference simplex as in Lemma A.1. It will not be detailed here

since arguments are similar to those already used in previous proofs.

One obtains

h
√∑

K∈h

|Ah𝜙
′
h|

2

H1(K) + h2

√∑

K∈h

|Ah𝜙
′
h|

2

H2(K) ≤ Ch1− 2

p

√∑

K∈h

|Ah|
2

H1(K)||𝜙
′
h||H1(S).

Using Lemma A.1 and A.2 and previously obtained bounds, we obtain

||⟨∇𝜙h,Ah𝜙
′
h⟩1,h − ⟨∇𝜙h,Ah𝜙

′
h⟩||L∞(0,T) ≤ Ch1− 4

p
.

Choosing p > 4 gives the result. ▪

Lemma B.5

||⟨Π1,h(Ah𝜙h),Π1,h(Ah𝜙
′
h)⟩1,h − ⟨Π1,h(Ah𝜙h),Π1,h(Ah𝜙

′
h)⟩||L∞(0,T) −−−−→h→0

0.

Proof. From error estimates in 11, one deduces that

|⟨Π1,h(Ah𝜙h),Π1,h(Ah𝜙
′
h)⟩1,h − ⟨Π1,h(Ah𝜙h),Π1,h(Ah𝜙

′
h)⟩|

≤ Ch
∑

K∈h

(
||Π1,h(Ah𝜙h)||L2(K)|Π1,h(Ah𝜙

′
h)|H1(K)

+||Π1,h(Ah𝜙
′
h)||L2(K)|Π1,h(Ah𝜙h)|H1(K)

)
.
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3308 CHRISTIANSEN ET AL.

So by Lemma A.1, Lemma A.2 and the bounds on Ah, 𝜙h and 𝜙
′
h the result follows. ▪

Lemma B.6

∫
T

0

⟨Π1,h(DAh𝜙h),Π1,h(DAh𝜙
′
h)⟩𝑑t−−−−→

h→0 ∫
T

0

⟨DA𝜙,DA𝜙
′⟩𝑑t.

Proof. This follows from Lemma A.1, weak-* convergence of ∇𝜙h to ∇𝜙 in

L∞(0,T;L2(S)) and strong convergence of Ah and 𝜙h in L∞(0,T;Lp(S)). ▪

Last

Lemma B.7

||h(Uh, 𝜙h,A′h) − Π1,h(A′h𝜙h)||1,h −−−−→
h→0

0.

Proof. For h sufficiently small

||h(Uh, 𝜙h,A′h) − Π1,h(A′h𝜙h)||21,h

=
∑

e
(Hh

1
)ee

|
|
|
|
|
A′h

e exp(−iAh
e)𝝓h

m − A′h
e
𝝓h

m + 𝝓h
n

2

|
|
|
|
|

2

=
∑

e
(Hh

1
)ee

|
|
|
|
|
A′h

e exp(−iAh
e)
𝝓h

n + 𝝓h
m

2
− A′h

e exp(−iAh
e)
𝝓h

n − 𝝓h
m

2
− A′h

e
𝝓h

m + 𝝓h
n

2

|
|
|
|
|

2

=
∑

e
(Hh

1
)ee

|
|
|
|
|
A′h

e (1 − exp(−iAh
e))
𝝓h

n + 𝝓h
m

2
− A′h

e exp(−iAh
e)
𝝓h

n − 𝝓h
m

2

|
|
|
|
|

2

≤ C
∑

e
(Hh

1
)ee

(

|
|
|
A′h

e
|
|
|

2|
|
|
Ah

e
|
|
|

2
|
|
|
|
|

𝝓h
n + 𝝓h

m
2

|
|
|
|
|

2

+ |
|
|
A′h
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The same arguments as in Lemma 4.9 gives the result. ▪
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