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Abstract
Multiplex immunofluorescence (mIF) imaging can provide comprehensive quantitative and spatial information
for multiple immune markers for tumour immunoprofiling. However, application at scale to clinical trial samples
sourced from multiple institutions is challenging due to pre-analytical heterogeneity. This study reports an
analytical approach to the largest multi-parameter immunoprofiling study of clinical trial samples to date. We
analysed 12,592 tissue microarray (TMA) spots from 3,545 colorectal cancers sourced from more than 240 insti-
tutions in two clinical trials (QUASAR 2 and SCOT) stained for CD4, CD8, CD20, CD68, FoxP3, pan-cytokeratin,
and DAPI by mIF. TMA slides were multi-spectrally imaged and analysed by cell-based and pixel-based marker
analysis. We developed an adaptive thresholding method to account for inter- and intra-slide intensity variation
in TMA analysis. Applying this method effectively ameliorated inter- and intra-slide intensity variation improving
the image analysis results compared with methods using a single global threshold. Correlation of CD8 data
derived by our mIF analysis approach with single-plex chromogenic immunohistochemistry CD8 data derived
from subsequent sections indicates the validity of our method (Spearman’s rank correlation coefficients
ρ between 0.63 and 0.66, p � 0.01) as compared with the current gold standard analysis approach. Evaluation
of correlation between cell-based and pixel-based analysis results confirms equivalency (ρ > 0.8, p � 0.01,
except for CD20 in the epithelial region) of both analytical approaches. These data suggest that our adaptive
thresholding approach can enable analysis of mIF-stained clinical trial TMA datasets by digital pathology at scale
for precision immunoprofiling.
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Introduction

Immunoprofiling, the assessment of the density,
state, and spatial distribution of immune cells, is a
crucial part of the examination of a tumour and its
microenvironment [1]. Immunoprofiling can help to
identify predictive markers for better assignment of
patients to treatment with immune modulators such as
immune checkpoint inhibitors [2,3]. Considering the
potential for severe adverse effects of these therapies,
improved patient stratification is an urgent need [4].
At a more fundamental level, immunoprofiling can also
provide new insights into cancer biology and contribute
towards a better understanding of tumour progression.
Multiplex immunofluorescence (mIF) imaging is a pow-
erful method for spatially visualising multiple bio-
markers at a cell-level resolution on a single slide [5,6],
enabling comprehensive cell phenotyping in the cancer
microenvironment as compared with standard single-
plex immunohistochemistry (IHC) staining. However,
immunofluorescence (IF) imaging is prone to imaging
artefacts when applied to clinical samples [7]. These
artefacts can be caused by pre-analytical variation intro-
duced by samples from multiple institutions, differences
in fixation, embedding, or by the imaging process [8].
During imaging, different types of fluorophores, expo-
sure time, illumination intensity, and bleaching effects
can lead to variations in the resulting images [9].
Additionally, tissue-intrinsic fluorescence can distort the
signal. In mIF imaging, channel crosstalk can add fur-
ther complexity due to spectral overlap, which can be
exacerbated when large panels are used due to the prox-
imity of the different channels in the wave spectrum.
Additionally, mIF staining and imaging technologies
are cutting-edge technologies and, while single plat-
forms themselves are standardised, no overarching stan-
dards across platforms exist. Therefore, considerable
pre-analytical heterogeneity due to both staining and
imaging of the histological slides can be frequently
observed and the expected range of variation
observed increases with the size and sample heteroge-
neity of the clinical cohorts under study. Tissue
microarrays (TMAs) are a key tool for efficient analysis
of large clinical trial cohorts [10] and allow simulta-
neous analysis of hundreds of patient samples on a
single slide. TMA design including multiple punches
from the same sample helps to capture intra-patient

heterogeneity [11], making the downstream analysis
more robust. Combining TMA technology with digital
image analysis is an excellent approach to extract infor-
mation from digitised TMA slides in a semi-automated
manner [12]. Nevertheless, image analysis often relies
on the assumption of relative homogeneity across the
entire cohort which may not hold true for large
multiplexed cohorts with samples from multi-centric
clinical studies. Consensus approaches for quantitative
image analysis in clinical cohorts are therefore of
increasing importance as recognised by the consensus
statement of the Society for Immunotherapy of Cancer
(SITC) on best practices for multiplex IHC and IF
staining and validation [13]. One method to handle sig-
nal variation by digital image analysis is pre-processing
with the aim to normalise signal intensity and reduce
signal variation within the dataset [14,15]. Ideally,
normalisation reduces the impact of confounding pre-
analytical factors while preserving biologically relevant
heterogeneity. In the context of image analyses relying
on thresholds, adaptive thresholding [16] can be
applied to handle variation within a dataset instead of
normalising the data beforehand. Adaptive thresholding
denotes methods not using a single threshold for an
entire dataset (global threshold) but choosing different
thresholds (local thresholds) for different regions of
analysis based on certain properties in the region to be
analysed and its environment, thereby better reflecting
intra-sample (e.g. at the pixel level in a single image)
and inter-sample variation (e.g. at the image level in a
cohort with multiple images) introduced by staining and
imaging heterogeneity.
In this study, we develop a spatially resolved protocol

for the detection and quantification of immune cells
and systematically address different issues in the appli-
cation of image analysis to multiplexed staining and
imaging in application to the currently largest mIF
clinical trial dataset reported in the literature. We
report strategies for adaptive thresholding in the TMA
setting when staining intensity varies substantially
between and within images and systematically com-
pare different strategies for cell-level quantification
using both traditional cell segmentation techniques as
well as pixel-based quantification metrics for individ-
ual channels. Last, we test the consistency and meth-
odological robustness of our approach by comparison
of the multiplexed data to the current gold standard of
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single-plex chromogenic IHC staining. The current
study thus provides valuable data on the challenges
and possible solutions for the quantitative image anal-
ysis of mIF data from clinical trials carried out in a
series of institutions and multiple countries.

Materials and methods

Cohorts
The cohorts under study consist of high-risk stage II
and stage III colorectal cancer (CRC) cases from two
clinical trials: QUASAR 2 (Q2) [17] and SCOT [18].
Q2 investigated whether the addition of bevacizumab
to capecitabine improves the 3-year disease-free sur-
vival after surgery of histologically proven stage III or
high-risk stage II CRC and included 1,952 patients
from 170 hospitals in seven countries. The SCOT trial
investigated whether 3 months of oxaliplatin-
containing adjuvant chemotherapy is non-inferior to
6 months of the same treatment for high-risk stage II
and stage III CRC. The SCOT trial included 6,088
patients from 244 centres in six countries: UK
(England, Scotland, Wales, and Northern Ireland),
Denmark, Spain, Sweden, Australia, and New Zealand.
The CRC tissues from both trials were arranged into
79 TMA slides, containing 15,121 spots from 3,545
patients (between 2 and 8 spots per patient; spot diame-
ter 1.0 mm for Q2 and 0.6 mm for SCOT), see Table 1.
SCOT tissue samples were processed at the NHS
Greater Glasgow and Clyde. All TMA slides were
stained with a Vectra Polaris Opal™ (Akoya
Biosciences, Marlborough, MA, USA) 7-plex IF panel
(see Table 2) at the Translational Histopathology
Laboratory, Department of Oncology, University of
Oxford, UK. The multi-IF slides were processed by
multi-spectral imaging on the Vectra Polaris (Akoya
Biosciences) quantitative pathology imaging system at
20� magnification, spectrally unmixed using inForm
(Akoya Biosciences) and stitched together using the

HALO Image Analysis Platform (Indica Labs, Inc.,
Albuquerque, NM, USA), resulting in multi-channel
IF whole-slide images (WSIs) with a resolution of
0.4976 μm/pixel. See Figure 1 for an example of a
mIF image from the dataset and see Figure 2 for
visualisations of the variation observed in the image
dataset.

Image analysis
The scanned TMA slides were analysed using HALO
v3.4 (Indica Labs, Inc.). First, we segmented the TMA
WSIs into square images of individual spots. Empty
spots, spots with low amounts of tissue, and spots with
large staining artefacts (e.g. due to dust or air bubbles),
blurry regions, tissue artefacts, tissue floaters, or folds
were excluded from the analysis. After exclusions,
12,592 valid spots remained in total for further analy-
sis (for a detailed flow diagram according to
REMARK guidelines [19] see Figure 3). We trained a
deep learning algorithm for classification of the images
into different regions, namely Tumour, Stroma,
Muscle, Necrosis, Folds, and Background using
pathologist-validated tissue regions. For this purpose,
we annotated a representative selection of each class
and then trained the algorithm (HALO AI DenseNet V2)
with these annotations. While the tissue classes
Tumour and Stroma represent the classes of interest
for spatially resolving marker expression analysis, the
classes Necrosis, Folds, Muscle, and Background were
used for the exclusion of non-informative regions. The
marker analysis was performed using marker-specific
binary thresholds to classify cells or pixels as positive
or negative, depending on whether the marker
signal intensity was above or below the threshold.
Pan-cytokeratin was used for tissue classification only
and was not quantitatively evaluated on the cell level or
pixel level. CD4 (Opal™ 520) was excluded from
marker analysis due to a low signal-to-noise ratio, espe-
cially in the epithelium area, where strong
autofluorescence in the 500–550 nm range was

Table 1. Dataset characteristics
Q2 SCOT Total

Number of TMA slides 29 50 79
Spot diameter 1.0 mm 0.6 mm –

Number of spots 3,465 11,656 15,121
Number of valid spots 2,650 9,942 12,592
Number of cases 1,195 2,350 3,545
Number of cases with valid spots 1,120 2,350 3,470
Number of spots per case 2 (120 cases) or 3 (1,075 cases) 4 (1,786 cases) or 8 (564 cases) –

Amount of analysed area 2,624.66 mm2 3,310.78 mm2 5,935.44 mm2

Number of classified cells 17,886,688 – –
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Table 2. Marker panel
Fluorophore Excitation Emission Marker Cell compartment Target of interest

Spectral DAPI 368 nm 461 nm DNA Nuclear Nuclei
Opal™ 520 494 nm 525 nm CD4 Membranous Helper T cells, regulatory T cells
Opal™ 540 523 nm 536 nm CD20 Membranous B lymphocytes
Opal™ 570 550 nm 570 nm CD8 Membranous Cytotoxic T cells
Opal™ 620 588 nm 616 nm FoxP3 Nuclear Regulatory T cells
Opal™ 650 627 nm 650 nm Pan-cytokeratin Cytoplasmic Epithelial cells
Opal™ 690 676 nm 694 nm CD68 Membranous Macrophages

Figure 1. Example of 7-plex colorectal cancer TMA spot image from Q2 cohort. (A) All channels combined. (B–H) Individual marker
channels (pCK, pan-cytokeratin). (I) Autofluorescence.
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Figure 2. Legend on next page.
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observed. In a subset of slides in the SCOT cohort, we
observed an increased bleed-through of the pan-
cytokeratin channel (Opal™ 650) into the CD68
(Opal™ 690) channel. For these samples, intraepithelial
CD68 data were excluded from further study.

Cell-based marker analysis
In the cell-based marker analysis approach, the marker
expression is evaluated per cell based on the segmen-
tation of individual nuclei using a pre-trained nuclei
segmentation network from the HALO AI platform
within the HALO HighPlex FL v4.0.3 analysis module.
The baseline cell segmentation was refined by setting
cell morphometry parameter constraints, such as nuclear
size and roundness. The cytoplasm of each cell was
defined as the region around the nucleus within a radius
of 1 μm (or half the distance to the neighbouring cell
nuclei, if the distance between two cells was lower than
1 μm). The marker expression was evaluated separately
for each cell compartment (nucleus and cytoplasm). We
applied the cell-based marker analysis approach to the
Q2 cohort for CD8, CD20, and FoxP3 with adaptive
thresholding using slide-specific marker thresholds. We
tested cell-based analysis for CD68, but based on the
irregular shape and large cell size of macrophage infil-
trates gave preference to pixel-based analysis for CD68
from cell-based analysis in consistency with prior
work [20].

Pixel-based marker analysis
In the pixel-based marker analysis, the marker expression
is not evaluated per cell or cell compartment but per
pixel. A pixel was classified as marker positive or
marker negative using the HALO AreaQuantification
FL v2.1.10 analysis module. We applied the pixel-
based marker analysis to the Q2 cohort and the
SCOT cohort for CD8, CD20, CD68, and FoxP3 with
adaptive thresholding using spot-specific marker
thresholds.

Statistical analysis
The image analysis results were exported from HALO as
.csv files and analysed in RStudio with R (version 4.1.2).

The correlation between cell-based and pixel-based anal-
ysis results and the correlation between mIF-derived
CD8 data and IHC-derived CD8 data was assessed using
Spearman’s rank correlation test and expressed by
Spearman’s correlation coefficient.

Results

Development of adaptive thresholding methods for
TMA cohorts
For developing an adaptive thresholding approach
for application on large TMA cohorts, we extracted,
separately for each marker, the average marker sig-
nal intensity for each slide in the cohort and
the average marker intensity of each TMA spot.
The slide-level average marker signal intensities
were used to calculate the slide-specific marker
thresholds. The spot-level average marker intensities
were used for developing a method for calculating spot-
specific marker thresholds. Due to their relatively
small size, we considered individual TMA spots as
sufficiently homogeneous to apply a single threshold
on the entire spot. Based on the observation that
global staining intensity gradients run smoothly
across an entire slide, while spots with high intensity
due to biological variation are distributed sparsely
across the slide, we implemented a comparison with
neighbouring spots to get a good estimation of the
local background intensity while preserving the bio-
logically relevant outliers. We tested different
methods to aggregate the spot-level marker intensi-
ties into local marker threshold values for each sin-
gle TMA spot including variation in the size of the
neighbourhood that is taken into account for the cal-
culation of the threshold of a single spot, and
weighting of the influence of each spot during the
calculation. The different methods were evaluated
based on a systematic comparison with the ground
truth defined by pathologist visual review identify-
ing a combination of slide-specific and spot-specific
thresholds as the optimal approach for TMA marker
analysis to account for intra- and inter-slide intensity
variation as described below. Visual assessment of

Figure 2. Intensity variation across the dataset. (A) Average intensities per slide and marker across the dataset. (B) Examples of CD8
staining (Opal™ 570) of different slides from the Q2 cohort illustrating inter-slide variation of single marker channels. Both images
were taken with the same view settings. (C) Example of CD20 staining (Opal™ 540) of a slide from the SCOT cohort illustrating
intra-slide variation of single marker channels. (D) Spot with distortion of nuclear signal (bottom row) compared with spot without
distortion of nuclear signal (top row). Left: all channels except DAPI; right: DAPI channel. All images were taken with the same view
settings.
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the image analysis results with and without adaptive
thresholding by pathologist experts showed that
the analysis using adaptive thresholding achieved

more accurate marker analysis and delineation of
positive versus negative pixels/cells (see Figure 4
for visualisations).

Figure 3. Schematic analysis workflow. Schematic visualisation of the analysis workflow and corresponding numbers of included/
excluded spots and cases based on manual quality control (QC).
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Figure 4. Legend on next page.
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Accounting for inter-slide variation: calculating
slide-specific thresholds
For calculating slide-specific marker thresholds, we
first extracted the mean marker signal intensity (mean
intensity of all cells) for each slide in the cohort, sepa-
rately for each marker. We defined a slide without
noticeable artefacts that served as a reference and
set the intensity thresholds TR

m for this reference slide
based on pathology review, separately for each
marker m. After that, the marker thresholds Ts

m for the
other slides were calculated based on the average
intensity Ism of the slide s compared with the average

intensity IRm of the reference slide: Ts
m¼ TR

m � I
s
m

IRm
.

Accounting for intra-slide variation: calculating
spot-specific thresholds
For calculating marker thresholds for each TMA spot
individually, we first extracted the average marker
intensities (average intensity of all pixels) for each
channel and TMA spot location. The threshold for
each spot was calculated individually based on the
marker intensity of the spot itself and that of its
neighbouring spots. For the final analysis, the marker
threshold Ts,i,j

m for the spot with position i, j in the
TMA grid of slide s and marker m, was calculated as a
weighted median of the intensity Is,i,jm (with the amount
of valid tissue ws,i,j

m serving as corresponding weight)
of the spot itself and the intensities of all spots which
lie within a square of side length 7 centred on the
spot, multiplied with a marker-specific factor Fm:

Ts,i,j
m ¼Fm �weighted_median Is,k,lm ,ws,k,l

m

� �
i�3 ≤ k ≤ iþ3,j�3 ≤ l ≤ jþ3

� �
.

The median function was chosen due to its property to
be not affected by single outliers (in contrast to the
mean function, which is heavily influenced by strong
outliers). In our case, when spots with very high inten-
sity compared with neighbouring spots are observed
due to biological reasons, this property was extremely
helpful, since we aimed to control for the background
intensity and not to smooth the overall intensity

values. The amount of valid tissue in each spot served
as a weight for the calculation of the weighted median.
Thus, spots with greater amounts of valid tissue, which
are more informative, get more weight in the calcula-
tion, and empty or invalid spots were ignored for the
threshold calculation.
The marker-specific factors were set by visual

assessment. The following values were set:
FCD20¼ 10, FCD8 ¼ 6, FFoxP3 ¼ 8, FCD68¼ 2:5. For the
threshold calculation for CD68, whose analysis results
are more sensitive to the choice of threshold, we added
two additional features: (1) We noticed that for spots
with high marker intensity, higher thresholds are more
appropriate. Therefore, the weight of the centre spot
(the spot for which the threshold is calculated) was
multiplied by the number of neighbouring spots to
give it equal weight as all the other spots together.
(2) Since the spots at the boundary of the slides miss a
balanced neighbourhood, we added a virtual comple-
ment for these spots, to achieve a balanced
neighbourhood for all spots. For all positions where a
spot is missing, we determined the marker intensity of
the spot on the opposite side in the direction of the
centre spot, subtracted the mean value of all present
spots, and replaced the missing value with the result.

Validation of pixel-based analysis
To check the robustness of the pixel-based marker
analysis, we compared the distribution of the marker
densities derived from pixel-based analysis (percentage
of positive area per spot) between the Q2 cohort and
the SCOT cohorts (see Figure 5A). This comparison
showed a similar distribution of the marker densities
for both datasets, indicating consistency of the analysis
results across both cohorts. For cross-validation of the
pixel-based analysis against the cell-based analysis, we
checked the correlation between the results of both
analysis types. This comparison was performed on the
2,650 TMA cores of the Q2 cohort. The correlation
was calculated separately for the epithelium and the
stroma tissue due to their different characteristics

Figure 4. Visual comparison of image analysis with and without adaptive thresholding. (A) Example from the Q2 cohort for cell-based
marker analysis (CD8) with and without slide-specific thresholding. The two spots are sourced from different slides. Left: original image
(blue, DAPI channel; orange, CD8 channel; magenta, pan-cytokeratin channel); middle: cell-level markup using suggested slide-specific
threshold; right: cell-level analysis markup using slide-specific threshold suggested for the other spot, simulating global thresholding.
Cells marked as marker positive are indicated by orange cytoplasm in the analysis markup. (B) Example from the SCOT cohort for pixel-
based marker analysis (CD68) with and without spot-specific thresholding. Both spots are from the same slide. Left: original image
(turquoise, CD68 channel; magenta, pan-cytokeratin channel); middle: pixel-level markup using suggested spot-specific threshold; right:
pixel-level analysis markup using spot-specific threshold suggested for the other spot, simulating global thresholding. Pixels marked as
CD68 positive are indicated by turquoise colour in the analysis markup.
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Figure 5. Pixel-based analysis: density distribution and comparison with cell-based analysis. (A) Comparison of the density distribution
across the Q2 and the SCOT cohort. (B) Comparison of absolute measurements: number of positive cells versus the amount of positive
area, separated per marker and stromal/epithelial compartment, in the Q2 cohort. (C) Comparison of density measurements: number of
positive cells per area versus the amount of positive area in relation to the total area, separated per marker and stromal/epithelial
compartment, in the Q2 cohort.
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regarding bleed-through and marker expression. The
correlation between the number of positive cells and
the size of the positive area (in μm2) was calculated by
Spearman’s rank test (Spearman’s correlation coeffi-
cient ρ, see Figure 5B). For CD8 and FoxP3, we deter-
mined a very strong correlation both in the stroma and
the epithelium tissue (ρ ≥ 0.9). For CD20, a very
strong correlation in the stroma (ρ > 0.9) and a moder-
ate correlation in the epithelium (ρ = 0.59) were
observed. In concordance with the clinical importance
of the densities of positive cells per area and the per-
centage of positive area per total area, we also calcu-
lated the correlation between the densities of positive
cells (cells/mm2) and the percentage of the positive
area from the total area (see Figure 5C). We found a
very strong correlation in both tissue compartments
(ρ > 0.9) for CD8. For FoxP3 and CD20, a very strong
correlation in the stroma (ρ > 0.9) was seen, whereas a
strong correlation for FoxP3 in the epithelium
(ρ = 0.84) and a moderate correlation for CD20 in the
epithelium (ρ = 0.57) were observed. For all groups,
the p value is close to 0 (p � 0.01). For the exact
Spearman’s correlation coefficient, we refer to
Figure 5B,C.

Validation of multiplex analysis
For CD8, we compared the pixel-based analysis results
in the Q2 cohort against IHC measurements from the
same cohort provided by Glaire et al [21]. In consis-
tency with the IHC data, we aggregated the spot-level
data into case-level data by adding up spot-level cell
numbers and area counts and calculated density
measurements on a case level. We then compared the
mIF-derived number of CD8+ cells and amount of
CD8+ area across the whole tissue area with the
IHC-derived number of CD8+ cells per spot and
the corresponding fraction of CD8+ cells by IHC of
the total number of cells or per total area, respectively.
For all comparisons we see a moderate correlation
(ρ between 0.63 and 0.65, with p � 0.01), see Figure 6.

Discussion

Digital pathology and multiplexed staining are impor-
tant tools for efficient analysis of clinical trial datasets.
This is recognised by the recent consensus statement
of the SITC on best practices for multiplex IHC and
IF staining and validation [13]. However, the evalua-
tion of large cohorts with high-content image data is
often compounded by a notable signal variation
between as well as within images introduced by

pre-analytical and analytical variables. The need for
the development of standardised approaches for multi-
plexed IHC and IF output is equally recognised by
the SITC but has not yet been addressed in guideline
format. To address the unique challenges of multi-
plexed imaging datasets on clinical trial samples
sourced from multiple institutions, we developed an
adaptive thresholding method to account for both
inter-slide and intra-slide variation in TMAs by digital
pathology, improving the image analysis results com-
pared with methods using a single global threshold.
By comparing the results of cell-based marker analysis
and pixel-based marker analysis, we show that a
pixel-based marker analysis is a valid alternative to
cell-based marker analysis, both when comparing
the absolute number as well as density calculations
of marker-positive cells. Further, by comparing the
mIF image analysis results against the orthogonal
IHC image analysis results, we show that the results
of our image analysis are in line with established
gold-standard methods and promise to confer the
same prognostic impact.
This study demonstrates the value of pixel-based

marker analysis in application to two large clinical trial
datasets. Since a pixel-based analysis approach does
not require cell segmentation, this approach enables
quantitative analysis also for cell types with irregular
shapes and sectioning artefacts as well as on images
with insufficient nuclear signal, either intentionally left
out or corrupted by error. Malesci et al applied a
pixel-based analysis approach for quantification of
macrophage density and showed that a high density of
macrophages in the tumour microenvironment was sig-
nificantly associated with better prognosis in patients
treated with 5-fluorouracil adjuvant therapy [20]. We
show that there is a strong rank correlation between
the results of the pixel-based analysis and the cell-
based analysis, both with respect to absolute measure-
ments as well as density measurements. The moderate
correlation of CD20 in the epithelium might be
affected by the very low CD20+ values in this tissue
compartment where even small deviations between
both measurements lead to numerically stronger effects
in the correlation measurement. Taken together, these
results indicate that pixel-based analysis is a valid
approach for mIF-stained slides even in the setting of
moderate to large pre-analytical variation. Thus, we
provide a solid reason for applying pixel-based analy-
sis for marker analysis and provide evidence that these
results can be directly compared with studies based on
cell-based analysis.
Normalisation and adaptive thresholding are two

closely related concepts, i.e. global thresholding on a
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normalised dataset can be also carried out as adaptive
thresholding on non-normalised dataset. In the present
study, we introduce and validate different approaches
for adaptive thresholding. To account for inter-slide
variation in cohorts stained by multiplexed IF imaging,
different approaches are previously described. Ahmed
Raza et al [22] presented a method for pre-processing
normalisation of multiplexed fluorescence images

using linear min–max-normalisation after noise
filtering. Chang et al [23] proposed a method
accounting for inter-slide variation in multiplexed IF
images, which is based on the definition of mutually
exclusive markers. Thereby, they derived a set of
cells which are assumed to be negative and serve as
the basis to derive the background intensity level.
Harris et al [24] tested different data transformation

Figure 6. Comparison of multiplex analysis with orthogonal method in Q2 cohort. Comparison of mIF-derived with IHC-derived data for
CD8 positivity. Top row: comparison of absolute measurements. Bottom row: comparison of density measurements. Left column:
comparison with cell-level mIF data. Right column: comparison with pixel-level mIF data.
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and normalisation methods for accounting for
inter-slide variation in multiplexed IF images. They
found that for inter-slide variation, a division by the
mean of the slide is the most accurate normalisation
method while maintaining biological signals. This is in
line with our method for accounting for inter-slide
variation. However, none of these methods account for
intra-slide variation in large cohorts, which not only con-
sists of marker intensity variation between different
images but also notable intensity variation within each
slide. In this setting, it is not sufficient to compensate for
inter-slide variation, but additional consideration of intra-
slide variation is required.
To the best of our knowledge, no adaptive

thresholding approach exists to address the consider-
able intra-slide variation in mIF TMA datasets includ-
ing samples from a multitude of patients, institutions,
and regions. In the present work, we consider the image
of each spot as a single image and develop an approach
which accounts for inter-image variation specifically for
the TMA spot images. Previously reported local
thresholding methods mostly work on pixel level and
take into account the mean, median, minimal, maximal,
and/or standard deviation value of a local neighbour-
hood of pixels for deciding whether a given pixel is
considered as negative or positive [25]. Due to the
nature of TMA slides, pixel-level adaptive thresholding
methods are not suitable for application in this use
case: If the chosen neighbourhood size is too small
(smaller than the spot diameter), the background
intensity gradient running across the whole slide is
not captured. If the chosen neighbourhood size is
larger than the spot diameter, the resulting data can be
skewed by the large background area typical for
TMA slides. Our proposed method accounts for
inter- and intra-slide variation and solves the draw-
back of pixel-level adaptive thresholding methods
by only taking into account tissue regions for the
calculation of the spot-level thresholds. The method
could be considered as an adapted median local
thresholding approach applied to the TMA spots by
considering each TMA spot as a single data point.
Previous reports present analyses of retrospective

population-based mIF CRC TMA cohorts with
927 and 746 included patients, respectively [26,27].
We are not aware of any other multiplex CRC clinical
trial cohorts of comparable size or complexity in terms
of the number of patients included, participating insti-
tutions, or regional variation as in the present study.
The analysis approach using digital pathology methods
in combination with automated marker quantifi-
cation allowed immunoprofiling in a high-throughput
manner. Further, the availability of orthogonal data by

the current gold-standard single marker IHC allowed
direct cross-validation of our proposed image analysis
approach, which is an additional strength of our study.
As quantitative cell-based image analysis allows link-
age of cellular identity (e.g. lineage marker expression)
to a defined x–y location on the slide, future efforts
could focus on determining the precise spatial relation-
ship of specific immune cells to cancer cells in their
immediate proximity (e.g. by nearest neighbour
analysis) in the context of clinical outcomes.
However, our study has also some limitations. The

applicability of our adaptive thresholding methods to
other multiplex cohorts will have to be further tested
and validated for other markers with different expres-
sion patterns. The intra-slide adaptive thresholding
method is based on individual spot images and therefore
not a priori applicable to non-TMA WSIs. While the
cell-based analysis approach allows capturing concurrent
marker-positivity for each cell individually, the pixel-
based analysis approach did not allow us to capture
multi-positive pixels, thus limiting the applicability to
settings where the accurate quantification of well-defined
lineage or functional markers is of central interest.
Further technical optimisation of staining and imaging
protocols may be addressed in the future to increase
signal-to-noise ratio and reduce observed bleed-through
artefacts, thereby enabling extended marker analysis.
In conclusion, pixel-based analysis and adaptive

thresholding methods enable a reliable analysis of mul-
tiplex image cohorts showing large pre-analytical
heterogeneity. Since this allows extraction of valuable
information from images with pre-analytical signal het-
erogeneity and out-of-distribution properties, this prom-
ises a broader application of digital image analysis in
clinical trial datasets and facilitates the integration with
clinical data. Our proposed adaptive thresholding
approach accounts for variation within TMA slides and
offers a method for analysing TMA images across large
cohorts with considerable signal intensity variation
between and within slides. Further, we provide evi-
dence that pixel-based approaches have increased
robustness for the quantification of challenging marker
sets or technical settings while the quantitative results
remain robustly comparable to the current gold-standard
approach of cell-level segmentation and quantification.
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