
A

COMPUTATIONAL ENVIRONMENT

FOR HYPERNUCLEAR STRUCTURE

CALCULATIONS

by

GUSTAV R. JANSEN

THESIS

for the degree of

MASTER OF SCIENCE

(Master‘s degree in Computational Science)

Faculty of Mathematics and Natural Sciences

University of Oslo

May 2008

Det matematisk- naturvitenskapelige fakultet

Universitetet i Oslo

Acknowledgements

I would like to thank my wife, Ingunn, without whom this thesis would not have
been finished.

I would also like to thank my supervisor, Morten Hjorth-Jensen, for introducing
me to the world of nuclear physics and for all the help he has given me during
the past two years. I hope we can continue to work together.

In Barcelona, I would like to thank Artur Polls and Isaac Vidana for invaluable
help with the completion of my work.

Finally, I would like to thank my friends and family for all their support.

Etterstad, May 2008

Contents

Contents 5

List of Figures 8

List of Tables 10

1 Introduction 11

2 Hypernuclear physics 13

2.1 The strong interaction . 13
2.2 Meson exchange theory . 21
2.3 Nuclear shell structure . 23

3 The many-particle problem 25

3.1 Effective interactions . 26
3.2 Renormalization . 28
3.3 Mean-field potential and single-particle energies 32
3.4 Harmonic oscillator basis . 38

4 Software 43

4.1 Extending Python . 44
4.2 Modules . 45
4.3 Application . 52

5 Results 57

5.1 Setup . 57
5.2 Test cases . 64
5.3 Nucleon shells . 70
5.4 Baryon coupled channels . 76
5.5 Single particle energies . 80

6 Conclusion 89

A Special functions 91

A.1 Spherical Bessel functions . 91
A.2 Legendre polynomials . 91
A.3 Associated Laguerre polynomials 92

B Relativistic field theory 93

B.1 Notation . 93
B.2 Dirac Spinor field . 93
B.3 Meson-Baryon vertices and meson propagators 94
B.4 Momentum space interaction for a scalar meson exchange 95

C Angular momentum 96

C.1 Definition . 96
C.2 Isospin . 98

D Schrödinger equation 102

5

D.1 Two-body Schrödinger equation in the relative and center of
mass(CoM) frame . 102

D.2 Two-body Schrödinger equation in CoM coordinates in momen-
tum space . 104

D.3 Two-body Schrödinger equation in relative coordinates in mo-
mentum space . 104

D.4 Partial wave expansion in momentum-space of the relative
Schrödinger equation . 105

E The Harmonic oscillator 108

E.1 The three-dimensional isotropic harmonic oscillator 108
E.2 Kinetic energy operator in a three-dimensional harmonic oscilla-

tor basis . 108
E.3 Coulomb interaction operator in a three-dimensional harmonic

oscillator basis . 109

F Perturbation theory 111

G Api documentation 113

G.1 Module common . 113
G.2 Module debug . 116
G.3 Module gui . 116
G.4 Class gui.PlotButton . 117
G.5 Class gui.PrintButton . 118
G.6 Class gui.QuitButton . 120
G.7 Class gui.myFrame . 121
G.8 Module myexceptions . 123
G.9 Class myexceptions.ConfigError 123
G.10 Module configuration.particle . 124
G.11 Class configuration.particle.Particle 124
G.12 Package configuration.relative . 127
G.13 Module configuration.relative.relative 127
G.14 Class configuration.relative.relative.Channel2 128
G.15 Class configuration.relative.relative.SubChannel 134
G.16 Package interaction . 135
G.17 Module interaction.intmodel . 136
G.18 Class interaction.intmodel.IntModel 137
G.19 Package interaction.juelich . 138
G.20 Module interaction.juelich.juelich 138
G.21 Class interaction.juelich.juelich.Juelich 139
G.22 Package interaction.n3lo . 140
G.23 Module interaction.n3lo.n3lo . 141
G.24 Class interaction.n3lo.n3lo.N3lo 141
G.25 Package interaction.nijmegen . 142
G.26 Module interaction.nijmegen.nijmegen 143
G.27 Class interaction.nijmegen.nijmegen.NSC97BB 144
G.28 Class interaction.nijmegen.nijmegen.NSC97NN 145
G.29 Class interaction.nijmegen.nijmegen.NSC97YN 145
G.30 Class interaction.nijmegen.nijmegen.NSC97YY 146
G.31 Class interaction.nijmegen.nijmegen.NSC97 147

6

G.32 Class interaction.nijmegen.nijmegen.NSC97A 148
G.33 Class interaction.nijmegen.nijmegen.NSC97B 149
G.34 Class interaction.nijmegen.nijmegen.NSC97C 150
G.35 Class interaction.nijmegen.nijmegen.NSC97D 150
G.36 Class interaction.nijmegen.nijmegen.NSC97E 151
G.37 Class interaction.nijmegen.nijmegen.NSC97F 152
G.38 Package renormalization . 152
G.39 Module renormalization.renormalization 153
G.40 Class renormalization.renormalization.Renormalization 154
G.41 Package renormalization.vlowk 161
G.42 Module renormalization.vlowk.vlowk 161
G.43 Class renormalization.vlowk.vlowk.Vlowk 162
G.44 Package effective . 165
G.45 Module effective.bhf . 165
G.46 Module effective.effective . 167
G.47 Class effective.effective.Effective 168
G.48 Module visualization.plot . 170
G.49 Class visualization.plot.EigData 174
G.50 Class visualization.plot.PlotData 174

References 177

7

List of Figures

2.1 Octet of baryons coupled to spin 1/2 [10] 18
2.2 Decuplet of baryons coupled to spin 3/2 [10] 18
2.3 Nonet of mesons coupled to spin 0 [10] 18
2.4 Nonet of mesons coupled to spin 1 [10] 19
2.5 Feynman diagram representing a one-boson exhange contribution 22
3.1 Diagrams to second order in the interaction. 33
3.2 Algorithm for calculating the self-energy corrections 36
3.3 1. order diagram . 36
3.4 2. order diagram . 37
3.5 2. order exchange diagram . 37
4.1 Full view of application. 53
4.2 Selecting the interaction model. 53
4.3 Selecting the Baryon Baryon channel 53
4.4 Specifying grid information for the model space and the comple-

ment space. 54
4.5 Selecting the partial wave. 54
4.6 Specifying information for plotting the potential 54
4.7 Specifying information for plotting the eigenvalues. 55
4.8 Save a copy of the plot to file. 55
4.9 Save all data for entire coupled channel. 55
5.1 Lowest energy eigenvalue for the pn 3S1–

3D1 channel as a
function of the number of meshpoints. 59

5.2 Lowest energy eigenvalue for the Λp 3S1–
3D1 channel as

a function of the number of meshpoints. Note that the
implementation of the J04 interaction doesn’t support more than
70 meshpoints. 59

5.3 Lowest energy eigenvalue for the pn 3S1–
3D1 channel as a

function of the maximum momenta. 60
5.4 Lowest energy eigenvalue for the Λp 3S1–

3D1 channel as a
function of the maximum momenta. 60

5.5 Potential and eigenvalues for the Σ+p 1S0 channel. 62
5.6 Potential and eigenvalues for the Σ+p 3S1–

3D1 channel. The
potential is plotted for the 3S1 block matrix only. 62

5.7 Potential and eigenvalues for the Λp 1S0 channel. 63
5.8 Potential and eigenvalues for the Λp 3S1–

3D1 channel. The
potential is plotted for the Λp 3S1 block matrix only. 63

5.9 Energy eigenvalues for the deuteron in the tensor coupled 3S1–
3D1 for NSC97A, NSC97F and N3LO. 67

5.10 Diagonal elements of the 3S1 interaction for the deuteron. 68
5.11 Diagonal elements of the 3D1 interaction for the deuteron. 69
5.12 Diagonal elements of the 3S1–

3D1 interaction for the deuteron. . 69
5.13 Single particle energies for Λ in the 0s1/2 orbital in 17

ΛO. 71
5.14 Single particle energies for Λ in the 0s1/2 orbital in 41

ΛCa. 72
5.15 Single particle energies for Λ in the 0s1/2 orbital in 91

ΛZr. 73
5.16 Diagonal elements and energy eigenvalues in the Λp 3S1–

3D1

baryon and tensor coupled channel. 79
5.17 Single particle energies for a Λ in 0s1/2 for 17

ΛO. 82
5.18 Single particle energies for a Λ in 0s1/2 for 41

ΛCa. 83

8

5.19 Single particle energies for a Λ in 0s1/2 for 91
ΛZr. 84

5.20 Single particle energies for a Λ in 0s1/2 for 133
ΛSn. 85

5.21 Single particle energies for a Λ in 0s1/2 for 209
ΛPb. 86

5.22 Medium dependency of the Λ single-particle energy 87

9

List of Tables

2.1 Table of elementary matter particles 15
2.2 Table of elementary force mediating particles 15
2.3 Table of baryons with strangeness S ≥ −1. [7] 16
2.4 Table of selected strange and non-strange light mesons. [7] 17
3.1 Table of possible particle combinations for strangeness 0 39
3.2 Table of possible particle combinations for strangeness -1 39
3.3 Table of possible particle combinations for strangeness -2 39
5.1 Single particle energies for Λ in the 0s1/2 orbital for different

hypernuclei. 61
5.2 Eigenvalues for pn in 3S1–

3D1 . 65
5.3 Eigenvalues for Λp 1S0 . 66
5.4 Single particle energies for Λ in the 0s1/2 orbital outside a core

of 16O. 74
5.5 Single particle energies for Λ in the 0s1/2 orbital outside a core

of 40Ca. 74
5.6 Single particle energies for Λ in the 0s1/2 orbital outside a core

of 90Zr. 75
5.7 Differences between the single particle energies for the Λ in the

0s1/2 orbital in 17
ΛO with and without the baryon coupling in the

ΛN 3S1–
3D1 channel . 76

5.8 Contributions from different matrix elements to the single-
particle potential in equation 3.3.1 for the Λ in the 0s1/2 orbital
in 17

ΛO using the NSC97A model. 76
5.9 Contributions from different matrix elements to the single-

particle potential in equation 3.3.1 for the Λ in the 0s1/2 orbital
in 17

ΛO using the NSC97F model. 77
5.10 Contributions from different matrix elements to the single-

particle potential in equation 3.3.1 for the Λ in the 0s1/2 orbital
in 17

ΛO using the J04 model. 77

10

1 Introduction

In this thesis I present a computational environment for hypernuclear structure
calculations, consisting of an extensive library as well as several applications
and other tools to demonstrate the wide range of capabilities provided by this
library. The library has been developed using a combination of a dynamic high-
level programming language, Python [1], and compiled low-level programming
languages like Fortran77/90 and C/C++. Advantages of both types of
languages have been exploited, yielding a library that is both computationally
efficient and highly flexible at the same time. As it is implemented in a fully
object-oriented manner, individual pieces of the library can easily be substituted
and extended, without major revisions. This will prove very useful, when at a
later stage, the library is extended to include other interaction models and
renormalization procedures, capable of delivering data in a variety of basis sets.

The library is based on an existing program package [2] for nuclear structure
calculations. One of the main goals of this thesis, has been to extend this
package to include hypernoc degrees of freedom. This has been a long and
strenuous process and is by far complete. As of now, this hypernuclear library
is capable of the following� Calculating an effective two-particle interaction, using the Vlow−k [3]

renormalization technique.� Transform the two-particle interaction to a three-dimensional harmonic
oscillator basis.� Calculate a self-consistent single-particle potential for hypernuclei with
closed nucleon shells.

This paves the way for a more rigorous treatment of the many-particle problem
with many-particle effective interactions, shell-model calculations and coupled
cluster calculations of hypernuclear properties. But as we will see in this
thesis, the quality of the hyperon-nucleon interaction models leave rather large
uncertainties, resulting in widely different behaviours when used in many-
particle calculations.

When preparing this thesis I have:� Extended existing software for nuclear structure to be able to handle
hypernuclear structure.� Written several Python extension modules, supplying Python with
a library structure for hypernuclear structure calculations. This
includes baryon-baryon (BB) interactions, renormalization techniques,
transformations between basis sets and arbitrary coupling schemes.� Written a graphical application capable of creating plots of the bare and
renormalized interaction for a selected channel. Both diagonal and off-
diagonal plots are possible as well as plots of the energy eigenvalues.� Written a parallellized application to create a renormalized two-particle
interaction. The parallellization is at the variation level, where several
calculations can be run in parallell for different configurations.

11

� Written an application for calculating a self-consistent basis to second
order in the two-particle interaction. The Python framework is capable of
handling arbitrary baryons, but only nucleons, Λ and Σ are implemented
in the Fortran specific parts of the library.� Written scripts to extract and process data.� Written scripts to create visual representations of several types of data.� Calculated a self-consistent basis for five doubly magic nuclei with a Λ in
an s-shell orbital, using the developed application framework. Results for
single-particle energies are presented and the medium dependence of this
quantity is shown.

This thesis is divided into six sections, with this introduction being the first sec-
tion. In addition, an extensive appendix is supplied, containing definitions, some
derivations, background information and a complete application programming
interface (API) for the library created.

Section two presents an overview of hypernuclear physics, with a presentation
of the particles used as effective degrees of freedom. The underlying fundamental
interaction is discussed, as well as the effective theory used to model the two-
particle interactions. In addition, symmetries of the strong interaction are
discussed and how these can facilitate the numerical calculations.

Section three presents the many-particle problem, with a brief overview of
what kind of numerical methods are used to solve this problem. A general
theory for effective interaction is presented, as well as a detailed discussion of
the low-momentum two-particle effective interaction used in this thesis. This
section also contains a detailed discussion of the self-consistent procedure used
to calculate a new basis for a specified hypernucleus, as well as the numerical
expressions needed.

Section four contains a presentation of the program library written, as well
as an introduction to some of the applications that have been deveolped using
this library. A complete reference to the Python extension modules are referred
to the appendix.

Section five presents the single particle energies calculated for 17
ΛO, 41

ΛCa, 91
ΛZr,

133
ΛSn and 209

ΛPb.

Section six contains the concluding remarks.

12

2 Hypernuclear physics

Hypernuclear physics refers to the study of baryonic many-particle systems
containing not only nucleons, but also so-called strange baryons named
hyperons. As such, it is really an extension of nuclear physics. Although the
baryons and mesons are composite particles - in nuclear physics, the baryons
are viewed as the relevant degrees of freedom, with the mesons as the force
mediating particles.

To understand the structure of baryons and mesons, it is necessary to look at
the underlying fundamental interaction. We will do this in section 2.1.

In order to solve the hypernuclear many-particle problem, we will need a realistic
baryon-baryon (BB) interaction. Because of the repulsive properties of the
strong interaction, it cannot be used directly in calculating the BB interaction.
Instead we will use BB interactions derived from meson exhange theory. This
will be discussed in section 2.2.

We will be concerned with finite hypernuclear matter or hypernuclei, where we
are aiming for a fully microscopic, self-consistent calculation of properties of
hypernuclei. Since this problem is currently too large to handle numerically,
we will justify our approximations by the shell structure exhibited by nuclei.
The nuclear shell model has been very successful in calculating properties of
nuclei, using only interactions between valence nucleons and a closed core. We
will reduce the dimensionality of the hypernuclear problem in the same way,
defining a closed core that interacts with a hyperon. We will take a closer look
at the nuclear shell structure in section 2.3

When studying hypernuclear matter, we come across two distinct types. Infinite
hypernuclear matter can describe the high density core of neutron stars, yielding
a possibly charge neutral matter. This will not be the focus of this thesis, but
the interested reader is referred to [4] and references therein.

Finite hypernuclear matter or hypernuclei, which is our primary focus, consists
of an ordinary nucleus with additional hyperons bound to the nucleus. These
hypernuclei have been observed and produced with a range of different masses
and relatively long lifetimes compared to the timescale of the strong nuclear
interaction. They do decay, however, but only as a result of the weak nuclear
interaction. We will not treat the weak nuclear interaction in this thesis. We
will use a time-independent approach, where we study the hypernucleus at a
certain time after the hyperon has been bound to the nucleus, but before the
hyperon decays. At this time, the system is considered as a stable object and
our calculation will reflect this.

2.1 The strong interaction

There are four observed fundamental interactions in Nature.� Strong nuclear interaction� Weak nuclear interaction

13

� Electromagnetic interaction� Gravity

The standard model of particle physics combines the theories of the strong
nuclear, weak nuclear and electromagnetic interactions into a common
framework to describe interactions between subatomic particles. Much work
has been and is being done to incorporate gravity into a complete theory, but
currently this has not been entirely successful [5].

The theories of the standard model are quantum field theories, so they are
compatible with both quantum mechanincs and the special theory of relativity.
The components are the quantum theory of electroweak interactions, unifying
the electromagnetic and the weak nuclear interactions, and Quantum Chromo
Dynamics (QCD), describing the strong nuclear interaction.

The standard model, although its predictions are powerful and accurate, does
not give the complete picture, even for the fundamental interactions it describes.
Particle mass and coupling constants, describing the strength of the interactions,
are still needed as input to the theory. A fully fundamental theory should be
able to derive these parameters from first principle.

In short, the standard model claims that all matter is made up of quarks and
leptons which are fermions, while the forces are mediated by photons, W±, Z0

and gluons, which are bosons. In addition to these two particle groups, there is
also the Higgs boson, needed to give the particles mass. This boson has never
been observed, but this may change when the LHC (Large Hadron Collider)
comes online [6].

Table 2.1 and 2.2 list the properties of the matter particles and force mediating
particles respectively, limited to the properties that are essential to the work
presented in this thesis. For completeness their antiparticles are also listed.

The matter particles are devided into three generations, reflecting the
similarities between particles in different generations. For each particle in
a generation, there is a sibling particle in another generation with similar
properties.

The strong nuclear interaction is responsible for the interaction between baryons.
The fundamental matter constituents are quarks, the force is mediated by gluons
and the quantum field theory that describes their dynamics is QCD (Quantum
Chromo Dynamics).

The quarks come in six different flavours: up, down, strange, charm, top and
bottom. A convenient subdivision is into light quarks (up, down and strange)
and heavy quarks (charm, top and bottom). We will only be concerned with
baryons made up of light quarks. Selected properties of the quarks are listed in
table 2.1.

Each flavour quark has an additional degree of freedom called color, which was
introduced to tackle the apparent violation of the Pauli exclusion principle,

for the observed ∆++ state which consists of three up quarks in a JP = 3
2

+

configuration. This state has even angular momentum, so the space part of the
wavefunction is symmetric, the flavour part of the wavefunction is symmetric

14

Generation 1
Name Symbol Electric charge Strangeness Mass (MeV)1

Electron e− −1 0 0.510998918
Positron e+ +1 0 0.510998918

Electron neutrino νe 0 0 < 2 · 10−6

Up quark u 2
3 0 1.5 - 3.0

Up anti-quark ū − 2
3 0 1.5 - 3.0

Down quark d − 1
3 0 1.5 - 3.0

Down anti-quark d̄ 1
3 0 3 - 7

Generation 2
Name Symbol Electric charge Strangeness Mass (MeV)1

Muon µ− −1 0 105.6583692
Antimuon µ+ +1 0 105.6583692

Muon neutrino νµ 0 0 < 2 · 10−6

Charm quark c 2
3 0 1250± 90

Charm anti-quark c̄ − 2
3 0 1250± 90

Strange quark s − 1
3 -1 95± 25

Strange anti-quark s̄ 1
3 -1 95± 25

Generation 3
Name Symbol Electric charge Strangeness Mass (MeV)1

Tau lepton τ− −1 0 1776.99
Antitau lepton τ+ +1 0 1776.99
Tau neutrino ντ 0 0 < 2 · 10−6

Top quark t 2
3 0 1.742 · 105 ± 3.3 · 103

Top anti-quark t̄ − 2
3 0 1.742 · 105 ± 3.3 · 103

Bottom quark b − 1
3 0 4.2 · 103 ± 70

Bottom anti-quark b̄ 1
3 0 4.2 · 103 ± 70

1Particle masses from [7]

Table 2.1: Table of elementary matter particles

Name Symbol Force mediated Mass (MeV)1

Photon γ Electromagnetic 0
Gluon g Strong Nuclear 0

W boson W Weak nuclear 8.0403 · 104 ± 29
Z boson Z Weak nuclear 9.11876 · 104 ± 2.1

1Particle masses from [7]

Table 2.2: Table of elementary force mediating particles

15

with three quarks of the same flavour and the spin part of the wavefunction is
symmetric with three spins in the same direction. This gives a total symmetric
wavefunction with regard to the interchange of two quarks. By introducing the
colour wavefunction, with three different colours, the total wavefunction could
be made antisymmetric by making the color wavefunction antisymmetric.

QCD is a non-abelian gauge field theory, with SU(3) as the gauge group acting
on the color degree of freedom. This gives us eight non-commutating generators,
recognized as the gluons, mediating the strong interaction.

2.1.1 Hadrons

Although the quarks are the fundamental matter particles in QCD, a free quark
has never been observed. It is believed that the strong interaction has a property
named confinement, which means that only combinations of quarks can be
observed. These combinations, which will interact strongly, are named hadrons.

So far, only two types of hadrons have been observed. Baryons are made up
of three valence quarks, while mesons consist of a quark/antiquark pair. Other
combinations have been predicted, with the pentaquark beeing the most likely
candidate. But since it was proclaimed in 2003 [8], there have been many
conflicting reports. The existence of this particle is therefore still in question.
For details see [7] and references therein.

With three quarks, each being spin 1/2 particles, the baryons can couple to both
spin 1/2 and spin 3/2. When looking at baryons made up of only light quarks,
we have the famous baryon octet (spin 1/2) and decuplet (spin 3/2) depicted
in figure 2.1 and 2.2 respectively. The strangeness is read horizontally and the
charge is read diagonally downwards and to the right.

Our current implementation only include the spin 1/2 baryons with strangeness
S ≥ −1. This gives a total of six baryons, tabulated in table 2.3.

Name Symbol Electric charge Strangeness Isospin t(tz) Mass (MeV)

Proton p 1 0 1/2 (1/2) 938.272029
Neutron n 0 0 1/2 (−1/2) 939.565360

Λ Λ 0 −1 0 (0) 1115.683
Σ+ Σ+ 1 −1 1 (1) 1189.37
Σ0 Σ0 0 −1 1 (0) 1192.642
Σ− Σ− −1 −1 1 (−1) 1197.449

Table 2.3: Table of baryons with strangeness S ≥ −1. [7]

When using the isospin formalism, the nucleons make up an isospin doublet
with isospin T = 1/2, the Λ an isospin singlet with isospin T = 0 and the Σ an
isospin triplet with T = 1. When we set up the isospin part of the two-particle
wavefunction, it behaves like an angular momentum wavefunction (see appendix
C). We can couple the isospin of the two particles to a total isospin, using the
rules of angular momentum coupling (see appendix C.1.1). In appendix C.2
the coefficients coupling the two-particle wavefunctions to a total isospin are
presented for the different nucleon-nucleon and hyperon-nucleon wavefunctions.

16

Name Spin Parity Strangeness Isospin Mass (MeV)

π± 0 − 0 1 139.57018
π0 0 − 0 1 134.9766
η 0 − 0 0 547.51

ρ(770) 1 − 0 1 775.5
ω(782) 1 − 0 0 782.65
η′(958) 0 − 0 0 757.78
f0(980) 0 + 0 0 980
φ 1 − 0 0 1019.460
K± 0 − ±1 1/2 493.677
K0 0 − 1 1/2 497.648

K∗
0 (κ) 0 + 1 1/2 841

Table 2.4: Table of selected strange and non-strange light mesons. [7]

For the mesons, consisting of a quark/antiquark pair, the situation is similar.
Two quarks can couple to a total spin s = 0 or s = 1, giving rise to the two
nonets depicted in figures 2.3 and 2.4. As for the baryons, the strangeness is
read horizontally, while the charge is read diagonally.

The most relevant mesons used in the meson exhange models we employ are
tabulated in table 2.4. However, one look at the list of mesons in [7] will reveal
a multitude of different mesons, especially in the mass region above 1 GeV.
Modern interaction models incorporate many of these into their calculations,
but they have only minor effects. These models also incorporate other mesonic
degrees of freedom like the multi-meson exhange.

When discussing the spin and isospin of bosons, it is common to label the spin
s = 0 bosons for scalar particles, while the spin s = 1 bosons are labelled
vector particles. The same nomenclature applies to isospin, where the particles
are called isoscalar and isovector respectively. In addition, if the parity of the
particle is negative, the label ”pseudo” is prepended to the label. A meson
with spin 0, isospin 1 and negative parity will by this standard be labelled as
a pseudoscalar isovector meson. These labels will be used in setting up the
lagrangian densities when discussing meson exchange theories in section 2.2.

2.1.2 Symmetries

Symmetry under a transformation Û , means that the Hamiltonian is invariant
under the similarity transformation ÛĤÛ † = H̃ . This gives the commutation
relations

[

Ĥ, Û
]

= 0
[

Ĥ, Γ̂i

]

= 0 (2.1.1)

where Γ̂i are the generators of the group that Û belongs to. For a proper
introduction to the use of group theory in particle physics, see for example [9].

The commutation relations in equation 2.1.1 mean that Γ̂i is a constant of

17

Figure 2.1: Octet of baryons coupled to spin 1/2 [10]

Figure 2.2: Decuplet of baryons coupled to spin 3/2 [10]

Figure 2.3: Nonet of mesons coupled to spin 0 [10]

18

Figure 2.4: Nonet of mesons coupled to spin 1 [10]

motion and if |ω〉 is an energy eigenstate, so is Γ̂i|ω〉. All these state are
degenerate with the same energy.

The interaction between baryons and the underlying fundamental interaction,
exhibits invariance under rotation or rotational symmetry. This means that
the total angular momentum of a state cannot change as a result of the strong
interaction. In the case of the BB interaction, the total angular momentum ĵ,
is the sum of the intrinsic spin and orbital momentum of the two baryons.

ĵ = ĵ1 + ĵ2 = l̂ + ŝ = ŝ1 + ŝ2 + l̂1 + l̂2 (2.1.2)

See appendix C.1.1 for details on how to couple multiple angular momenta to a
total angular momenta and details on angular momentum operators in general.

We will use the total angular momenta j as a good quantum number so we can
solve the Schrödinger equation for different values of j separately. With j as a
good quantum number, we can also put constraints on the total intrinsic spin
ŝ = ŝ1 + ŝ2 and total orbital momentum l̂ = l̂1 + l̂2. We will solve the relative
Schrödinger equation in spherical coordinates in a partial wave basis, for specific
values of j, l and s separately. This will be discussed in detail in section 3.4.

In 1937, isospin was suggested as a symmetry of the strong interaction [9].
Experiments showed a strong interaction between protons, similar to that
between protons and neutrons. The symmetry group was established to be
SU(2), isomorphic to the three-dimensional rotation group. The generators T̂i

satisfied all the same relations as the angular momentum operators listed in
appendix C. With this new formalism, particles were represented by degenerate
multiplets with isospin t. This gives 2t + 1 components labelled by their
projections tz.

The nucleons make an isospin doublet with isospin t = 1/2.

Although it is customary in nuclear physics to label the proton with a negative
projection, in hypernuclear physics this is no longer productive. We therefore
adopt the particle physics convention, with tz = 1/2 for protons and tz = −1/2
for neutrons.

The Λ is an isospin singlet with t = 0, while Σ is an isospin triplet with t = 1,

19

where Σ+, Σ0 and Σ− have projections m = 1, 0,−1, respectively. The isospin
projection of a particle is closely related to its charge. If we define a new
quantum number B - Baryon number, where B = 1 for baryons and B = 0 for
mesons, this relation can be written as

q = tz + (B + S)/2, (2.1.3)

with S being the particle’s strangeness. Isospin invariance is also closely related
to charge conservation.

In this thesis we will use the isospin projection tz as a good quantum number.

In the early 1950’s, new tools for discovering particles like the bubble and spark
chambers, spurred the discovery of a host of new isospin multiplets of the baryon
and meson type. A new quantum number called strangeness was introduced by
Gell-Mann and others [11, 12, 13]. This quantum number was conserved in
the strong nuclear and electromagnetic interaction, but not in the weak nuclear
interaction and explained the long lifetimes of the newly discovered particles.

The strangeness quantum number is simply additive and needs no special
treatment when adding up to the total strangeness of a many-particle state.

We will treat strangeness as a good quantum number, reducing the Schrödinger
equation to even smaller dimensions.

Gell-Mann also proposed that the strong interaction was invariant under SU(3)
symmetry, that tied isospin and strangeness of hadrons into the baryon octet and
decuplet, as well as the meson nonets discussed in section 2.1.1. This eventually
led to the discovery of the quarks and the developement of QCD.

In addition, the strong interaction is invariant under space inversion or parity.
The parity of a state is expressed as (−1)l, where l is the orbital momentum.
A transition between states with different parity is not allowed, which is used
to reduce the dimension of the numerical calculations we have to perform. This
will be discussed in detail in section 3.4.

2.1.3 Numerical approximations

In many-particle physics, perturbation theory is commonly used to approximate
the many-particle interaction. The interaction is expanded in a power series in
terms of the coupling constant with more and more complicated terms. In QED,
the fundamental theory of the electromagnetic interaction, this procedure has
been very successful, in part due to the size of the coupling constant. The
perturbation expansion converges quickly into the relevant expectation values.

When dealing with the strong interaction, the picture becomes more compli-
cated. An important property of the strong interaction is asymptotic freedom.
This means that the coupling constant of the theory is not constant. For small
distances, up to about 1 fm, the coupling constant is small and in this region,
perturbation theory can be used to approximate the interaction. It is around
this distance that hadrons form, so a perturbative expansion in powers of the
coupling constant cannot be used to describe interactions between hadrons.
The region where this expansion does not converge, is therefore called the non-

20

perturbative region. Interested readers are referred to textbooks on quantum
field theory (see for example [14, 9]) for details.

A promising numerical model is Lattice QCD. It is based on Feynman’s path
integral method, where the functional integral is replaced by a discrete grid
or lattice (hence the name). Numerical calculations are done by Monte Carlo
Methods (see for example [15]), but the demands on the grid spacing, requires
a large number of grid points. The lattice calculations uses periodic boundary
conditions, resulting in a finite hypercube. The size of the hypercube needs to
be much larger than the Compton wavelength of the object studied and also, the
grid spacing has to be much smaller than the Compton wavelength. Since the
Compton wavelength is inversely proportional to the mass of the object studied,
the number of grid points depends on the mass of this object. The smaller the
mass, the more grid points are needed for a realistic calculation.

Recently Ishii et al [16] was able to demonstrate important features of the
nucelon-nucleon interation, using Lattice QCD. Limitations on computer power
did, however, force the authors to use slightly large quark masses, resulting
in a pion mass of 530 MeV. According to the authors, within the next five
years enough computing power will be available to use real quark masses in
the calculations. This will allow them to calulate partial wave contributions
to the nucleon-nucleon interaction, constraining the off-shell character from the
fundamental QCD Lagrangian. At present, the largest uncertainties in the
many-particle calculations, are in the derivations of the bare interactions.

2.2 Meson exchange theory

Due to the non-perturbative nature of QCD at the hadronic level and to our
current computational capacity, QCD is currently not a feasible model to use
in quantitative numerical calculations of nuclear structure. We need effective
theories, where the quark degrees of freedom are frozen, while nucleon and
hyperon degrees of freedom are fundamental. We find these in the framework
of meson exchange theory.

To justify the use of meson exhange as an approximation of the strong
interaction, we will look at the famous “Yukawa potential”.

The first efforts in deriving a model of the nuclear force based on the idea
of massive particle exchange, was done by Yukawa in 1935 [17] using only
classical field theory. The mesons satisfies the Klein-Gordon equation, which
is a relativistic version of the Schrödinger equation for a scalar(spin s = 0)
particle. In the approximation where the baryons are infinitely heavy we get

φ(r) =
g

4π

e−mr

r
, (2.2.1)

where g is the coupling constant, describing the strength of the interaction,
while m is the mass of the exhanged particle. This gives a mass dependence on
the range of the potential. An exchange of a heavier particle, gives a potential
with shorter range. Thus the exchange of massive particles, explains the short
range nature of the strong interaction.

21

When going from classical field theory to quantum field theory, the fields need to
be quantized. This was first developed for QED where perturbation theory was
applied to develop a converging series-expansion of the Schrödinger equation.
In QED this can be done because of the size of the coupling constant. But
in meson theory, which was orginally thought to be the field theory for strong
interactions, the coupling constants are large, so a perturbation expansion will
not necessarily converge.

However, it is customary to apply perturbation theory to meson exchange
theory, which can be justified by [18], where terms of higher order are of shorter
and shorter range, so the long and intermediate parts of the interaction can
be described by perturbation theory. At short range, the energies involved are
so high, that this low-energy approximation is not longer valid. But since the
interaction is strongly repulsive at short range, it can be approximated by a
repulsive wall.

Formally the interaction is derived in the framework of relativistic quantum field
theory, following the convention of appendix B.1.

E′,q′ E′,−q′

E,q E,−q

mα

(q′ − q)
Γ1 Γ2

Figure 2.5: Feynman diagram representing a one-boson exhange contribution to BB
scattering in the CoM frame. Solid line represents baryons, while dashed
line represents meson.

The Feynman diagram in figure 2.5 represents the one-boson exchange
contribution to the NN scattering in the CoM frame. According to the Feynman
rules defined in for example [19], this diagram corresponds to the amplitude

ū1(q
′Γiu1(q)Pαū2(−q′)Γ2u2(−q)

(q′ − q)2 −m2
α

, (2.2.2)

where Pα divided by the denominator is the meson propagator and the Γi are
the vertices representing the meson-baryon exchange. These are defined for the
different meson fields in appendix B.3. The ui are Dirac spinors representing
the baryon fields as defined in appendix B.2. For simplicity, the helicity indices
are suppressed. For isovector meson fields, the amplitude must be multiplied
by τ1 · τ2, τi being the usual Pauli matrices.

The task of evaluating these interactions is a lengthy process and can be found
in [20] and references therein.

The final potential is a sum over contributions from the different meson

22

fields. The contribution corresponding to a scalar meson exchange, is given
in momentum space in appendix B.4. For pseudoscalar, vector, pseudovector
and coordinate space interactions, see [20].

As the scattering phase shifts are only defined in partial waves, it is convenient to
express the amplitudes in this basis. The formal developement of the potential
in this basis, can be found in [21] and [22].

In addition, this potential can be used in a relativistic framework, as input to a
three-dimensional reduction of the Bethe-Salpeter equation. This, however, is
beyond the scope of this thesis and will not be discussed further.

We are going to use three different interaction models in this thesis all based
on meson exchange. For NN interactions, we will use the N3LO model [23].
This is based on chiral perturbation theory and has proven well when used
in nuclear structure calculations. For the YN interactions, we will use two
different models. The first model, which we will call J04, is developed by the
Jülich group [24] while the second is developed by the Nijmegen group [25] and
is named NSC97. This actually consists of six different models, labelled from A
to F, each with a different set of coupling constants, where all models reproduce
available scattering data.

2.3 Nuclear shell structure

A microscopic self-consistent calculation should reproduce both global and local
properties. In this thesis we are concerned with local properties like single-
particle wavefunctions and energies. We start with a realistic two-particle
interaction derived from meson theory, that reproduce available scattering data
in the energy region of 0–500 MeV. Due to the strong repulsion at short range,
we have to use an effective two-particle interaction in our calculations.

In order to describe hypernuclear properties at low energies, we choose a
restricted space of configurations to perform our calculations. The hypernucleus
at low energies, as the nucleus, is best described in spherical coordinates, where
the Schrödinger equation is separable in a radial part and an angular part.
Formally we write the spatial wavefunction

Ψ(r) = Rnl(r)Ylm(θ, φ), (2.3.1)

where we identify n as the radial quantum number, which can take non-negative
integer values, l is identified as the orbital momentum quantum number. This
can also take any non-negative integer value. m is called the magnetic quantum
number and is identified as the projection of the orbital momentum to a chosen
axis. It can take the values −l ≤ m ≤ l, 2l + 1 values in total.

We also identify Rnl(r) as the radial wavefunction, while for a spherically
symmetric potential, Ylm(θ, φ) are the spherical harmonics.

We will use the labels n and l to describe a single-particle orbit, together with
the total angular momentum j = l + s, where s is the particle’s intrinsic spin.
For the particles of interest in this thesis, s = 1/2 in units of ~.

With this nomenclature, the single-particle orbits are labelled n, l and j, where

23

the type of particle is implied and l is expressed in spectroscopic notation. A
state with identical n, l and j, will be called an orbital or an orbit in addition
to a state.

Due to the Pauli exclusion principle, the number of identical particles that can
occupy an orbital is 2j + 1. We will call a set of orbitals with similar energies a
shell, while a full shell will be called closed.

Already in the 1960’s [26], there were clear indications of shell structure in
the nucleus. The proton and neutron separation energies exhibited clear
discontinuities at certain so-called magic numbers. It took significantly more
energy to remove a nucleon from the nucleus when the number of nucleons
matched the magic numbers 2, 8, 20, 28, 50, 82 and 126.

An appearence of such a nuclear shell structure can indicate that the motion of
the nucleons can be described by an average one-body interaction analogous to
the electrons around the nucleus.

Furthermore, experiments showed[26] that many global properties of the nucleus
could be described by the interactions of a small number of nucleons outside a
closed shell.

We will utilize this picture when we calculate the single-particle energies. We
will look at doubly magic nuclei, where both proton and neutron shells are
closed, with a single Λ bound to this nucleus in the 0s1/2 orbital. We will find
an average potential the Λ will experience, as a result of the particles in the
nucleus.

24

3 The many-particle problem

In quantum mechanics, the many-particle problem may be defined as the study
of interactions between particles and its effects on many-particle systems, such
as hypernuclei. The number of degrees of freedom are typically too small to allow
for a statistical approach, while being too large too allow for a fully microscopic
approach.

There are only a few analytically solvable many-particle problems, with at
most three particles, whereas most of the microscopic world at the atomic
and molecular level, consists of many-particle systems that have no solutions
in a closed form. We need therefore reliable numerical methods in order to
approximate these problems.

Typical examples of popular many-particle methods are coupled-cluster
methods [27], various types of Monte Carlo methods [28, 29, 30, 31, 32, 33],
perturbative expansions [34] and large-scale diagonalization methods [35].

Of these, large-scale diagonalization methods try to tackle the problem head on,
diagonalizing the many-particle Hamiltonian directly, using a basis as large as
possible. The dimension of this diagonalization problem is

(

d
A

)

, where d is the
number of available single particle states and A is the number of particles. For
16O, using a small model space constraining all particles to move in the 0s, 0p
and 1s0d shells, the number of possible Slater determinants is of the order 1012.
The number of floating point operations required to solve the diagonalization
problem, is proportional to n3, with n the matrix dimension. Even if we could
store the full Hamiltonian matrix in volatile memory and have access to High
Performance Clusters(HPC) in the peta-FLOPS(Floating Point Operations Per
Second) range, this problem would take more than 1013 years to solve. It is
clear that this method is unfeasible for problems other than very light nuclei.

For coupled cluster methods, the number of floating point operations scales as
n2

on
4
u, where no is the number of occupied orbitals while nu is the number of

unoccupied orbitals. With this method it is possible to use ab-initio descriptions
of nuclei up to the medium and heavy mass region, starting with only two- and
three-particle interactions [35].

The problem is complicated further by the fact that the strong interaction
is strongly repulsive at short distances. This means that a perturbative
calculation, starting with the bare interaction, will converge very slowly, if it
converges at all, to the expectation values we are studying. To overcome this
problem, we need to define effective two-particle operators that incorporate the
short range repulsion, while keeping the matrix elements finite. This process is
called renormalization and is discussed in section 3.2.

The renormalized two-particle interaction is used to calculate an appropriate
self-consistent basis of single-particle orbitals. These can be used in a
perturbative calculation to obtain a many-particle effective interaction in the
chosen model space.

In this thesis, we obtain a set of single-particle orbitals, using a self-consistent
mean-field approach discussed in section 3.3. This will be done in several model

25

spaces, using different interaction models, where we will start from a harmonic
oscillator basis, treating the oscillator parameter as a variational parameter.
The final result will be the minima of the single-particle energy for Λ in the
0s1/2 orbital, when viewed as a function of the oscillator parameter. This will
be presented for several doubly magic nuclei for each model space and interaction
model, showing the medium dependence of this orbital.

The harmonic oscillator basis will be presented in section 3.4, together with
numerical expressions for selected operators. We will also present the different
transformation coefficients needed to transform between the basis sets in use.

3.1 Effective interactions

The many-body Hamiltonian for N particles can be written

ĤN =

N
∑

i

t̂i +

N
∑

i

ûi +

N
∑

i≤j

v̂ij +

N
∑

i≤j≤k

v̂ijk + . . . , (3.1.1)

where t̂i is the kinetic energy operator, ûi is a single particle potential, while
v̂ij is a two-particle operator. We may add three-particle (v̂ijk) interactions or
more complicated man-particle interactions.

The Hamiltonian acts on the N -particle wavefunction ΨN in the N -particle
Schrödinger equation

ĤN |ΨN〉 = E|ΨN 〉, (3.1.2)

where E denotes the total energy of the system.

In nuclear physics, the three-body interaction amounts to about ten percent of
the total interaction, but in this thesis we are going to truncate the N -particle
Hamiltonian so that we only include one- and two-particle interactions. Our
new Hamiltonian becomes

ĤN ≈ Ĥ(2)
N = Ĥ0

N + V̂
(2)
N , (3.1.3)

where we have defined

Ĥ0
N =

N
∑

i

t̂i + ûi, (3.1.4)

V̂
(2)
N =

N
∑

i≤j

v̂ij . (3.1.5)

However, our new Schrödinger equation

Ĥ
(2)
N |ΨN 〉 = Ẽ|ΨN〉, (3.1.6)

is as difficult to solve as the original.

The baryons are fermions, so the wavefunction |ΨN〉 needs to be fully
antisymmetric. The usual way of ensuring this, is to expand the wavefunction

26

in a basis of so-called Slater determinants (see for example [36]). The Slater
determinants |Φi〉, are fully antisymmetric wavefunctions, consisting of linear
combinations of products of single particle orbitals

|Φi〉 = C
∑

P̂

(−1)P P̂
A
∏

i=1

|φi〉, (3.1.7)

where C is a normalization constant, P̂ is a permutation operator, acting on
the product of single-particle wavefunctions

(

t̂i + ûi

)

|φi〉 = ǫi|φi〉. (3.1.8)

The single particle wavefunctions are typically known solutions of a single-
particle problem, like plane waves or harmonic oscillator wavefunctions. The
dimension of this basis is the number of Slater determinants we can construct
for a system. From combinatorics we know that this depends on the number
of particles and the number of states(including multiplicity) available. Since we
have six types of particles, we have a product of six different Slater determinants,
one for each particle. If we let di denote the number of states available for a
baryon of type i, and ni the number of baryons of type i, the dimension D of
the problem is

D =
6
∏

i=1

(

di

ni

)

, (3.1.9)

which quickly becomes very large.

We can now expand the wavefunction in a linear combination of these Slater
determinants

|ΨN〉 =
D
∑

i=1

αi|Φi〉. (3.1.10)

Formally, we need to limit the space in which we do our calculation, but we
still have to accomodate for the space left out. We define our model space and
complement space by the P̂ and Q̂ projection operators

P̂ =

D
∑

i=1

|Φi〉〈Φi|, (3.1.11)

Q̂ =

∞
∑

i=D+1

|Φi〉〈Φi|. (3.1.12)

As projection operators, they have the properties

P̂ + Q̂ = 1̂,

P̂ 2 = P̂ ,

Q̂2 = Q̂.

Due to the orthogonality of these operators, we can write the Schrödinger
equation as a block matrix equation

Ĥ
(2)
N |ΨN〉 =

[

P̂ Ĥ
(2)
N P̂ P̂ Ĥ

(2)
N Q̂

Q̂Ĥ
(2)
N P̂ Q̂Ĥ

(2)
N Q̂

]

[

P̂ |ΨN 〉
Q̂|ΨN〉

]

(3.1.13)

27

We want an effective interaction operating only in the model space, but still
reproducing D eigenvalues of the full Schrödinger equation. We need to
find a similarity transformation Ŝ, that decouples the model space from the
complement space by solving the so-called decoupling equation.

Q̂H̃
(2)
N P̂ = Q̂H̃

(2)
N P̂ = 0, (3.1.14)

with the definition

H̃
(2)
N = Ŝ−1Ĥ

(2)
N Ŝ. (3.1.15)

This gives us an N -particle effective interaction

Ĥeff
N = P̂ H̃

(2)
N P̂ . (3.1.16)

Solving the decoupling equation directly, can lead to a perturbative expansion
of the Brillioun-Wigner type (see section F). An alternative procedure, creates
an energy independent interaction using an iterative approach. Several methods
exists for solving this problem and the interested reader is referred to [34, 35]
for details related to nuclear physics. We will present a brief overview of one of
these methods in section 3.2.1.

3.2 Renormalization

The strong interaction is strongly repulsive at short distances. In order to gain
the full advantages of perturbation theory, we need to create an effective two-
particle interaction that account for this divergent behaviour. This effective
two-particle interaction is sometimes called the renormalized interaction and
the process of obtaining the effective interaction is called renormalization.

Although recent results by Hagen et al [37] shows that coupled-cluster
calculations can converge when using the bare two-particle interaction, an
effective interaction is still needed for other types of calculation.

There are several methods of creating a renormalized interaction. The G-
matrix method [34] is obtained by solving the Lippman-Schwinger equation
in a medium, yielding an energy-dependent interaction acting in a truncated
Hilbert space.

The no-core interaction [39] is based on diagonalizing the two-particle
Schrödinger equation in a large harmonic oscillator space, consisting of several
hundred shells. A projection to a smaller Hilbert space of only a few shells is
achieved by a similarity transformation.

We have chosen to implement a third renormalization option, based on a
similarity transformation to a smaller model space obtained by defining a cutoff
in relative momentum space. This method is called Vlow−k in the literature [3]
and is presented in section 3.2.1.

28

3.2.1 Similarity transformation in momentum-space

Although the formalism we describe below can be applied to an N -particle
problem, solving equation 3.1.16 for N particles in order to obtain an effective
N -particle interaction, is as difficult as solving the full N -particle problem.
Therefore we choose a strategy where we derive an effective two-particle
interaction, by solving the full two-particle Schrödinger equation. This two-
particle interaction is then used in an N -particle environment.

This method of renormalization, called Vlow−k, introduces a model space
limited by a cutoff in relative momentum space. It consists of two parts -
first a diagonalization of the two-particle Schrödinger equation in the domain
k ∈ [0,∞), then a similarity transformation to a smaller space defined by
k ∈ [0, λ], where λ typically is around 2.0 in units of fm−1.

We use a similarity transformation introduced by Suzuki, Okamoto and
collaborators [40, 41, 42, 43], which gives an energy independent effective
interaction.

Continuing from section 3.1 write up the Schrödinger equation equation in block
matrix form

(

P̂ H̃P̂ P̂ H̃Q̂

Q̂H̃P̂ Q̂H̃Q̂

)(

P̂ψ

Q̂ψ

)

= En

(

P̂ψ

Q̂ψ

)

, (3.2.1)

where we have simplified the notation by dropping the sub- and superscripts
and defined our new two-particle wavefunction

|ψ〉 = |Ψ2〉. (3.2.2)

The effective Hamiltonian is defined as

H̃ = Ŝ−1ĤŜ = e−ωĤeω, (3.2.3)

where ω is defined by ω = Q̂ωP̂ . Since the P and Q space do not not overlap, ω
has the properties ω2 = ω3 . . . = 0. By using a Taylor expansion of the operator
eω used in the similarity transformation, we get Ŝ = eω = P̂ + Q̂ + ω and
Ŝ−1 = e−ω = P̂ + Q̂− ω.

In order for the effective Hamiltonian to have the required properties, the
decoupling condition, PH̃Q = 0, must be satisfied. This leads to a non-linear
equation for ω

Q̂ĤP̂ + Q̂ĤQ̂ω − ωP̂ĤP̂ − ωP̂ ĤQ̂ω = 0, (3.2.4)

where ω is defined by [40, 41, 42, 43]

〈α̃Q|φi〉 =
∑

αP

〈α̃Q|ω|α̃P 〉〈α̃P |φi〉, (3.2.5)

where we have expanded the wavefunction in a chosen basis

|ψ〉 =
∑

i

αi|φi〉, (3.2.6)

29

and defined |α̃P 〉 as the states we wish to reproduce in the model space and
|α̃Q〉 as the states in the complement space. The Vlow−k interaction is called a
state dependent interaction, because it depends on the exact states reproduced.

We define the matrices A, B and ω by their elements

AQ,i = 〈α̃Q|φi〉, (3.2.7)

BP,i = 〈α̃P |φi〉, (3.2.8)

and
ωQ,P = 〈α̃Q|ω|α̃P 〉. (3.2.9)

The solution for ω can now be found by a matrix inversion and a matrix
multiplication.

ω = AB−1. (3.2.10)

When a solution for ω is found, the effective interaction is given by

R̂ = P̂ H̃P̂ − P̂ Ĥ0P̂ = P̂ V̂ P̂ + P̂ V̂ Q̂ω, (3.2.11)

where we have assumed that the projection operators commute with the
unperturbed Hamiltonian Ĥ0.

The effective interaction R̂ is generally non-hermitian. We can rewrite this as
a hermitian interaction via the orthogonal transformation

V̂eff = Û−1(Ĥ0 + V̂)Û − Ĥ0, (3.2.12)

where Û is defined by

Û =

(

P̂ (1 + ω†ω)−1/2P̂ −P̂ω†(1 + ωω†)−1/2Q̂

Q̂ω(1 + ω†ω)−1/2P̂ Q̂(1 + ωω†)−1/2Q̂

)

, (3.2.13)

and
ÛT Û = Û ÛT = 1, ÛT = Û−1. (3.2.14)

We can then define a Hermitian effective two-body interaction

V̂eff = (P̂ + ωTω)1/2(P̂ ĤP̂ + P̂ ĤQ̂ω)(P̂ + ωTω)−1/2 − Ĥ0. (3.2.15)

To determine V̂eff , one has to find the square root of the matrix C = (P̂ +ωTω).
In the case of C being real and positive definite, the method based on eigenvector
decomposition gives generally a stable solution. The final effective interaction
is energy independent. For details, see [44] and references therein.

For a two-particle problem, with a centrally symmetric interaction, this can
be solved as a one-particle problem in relative coordinates. In this basis we
can diagonalize the Hamiltonian directly, obtaining the exact eigenstates and
eigenvalues needed for solving the decoupling equation. For a more complex
problem, an iterative procedure is used, as outlined in [3].

We start by solving the Schrödinger equation in relative momentum space in a
partial wave expansion(see D.4 for the formalism used)

p2

2m
〈p|ψα〉+

2

π

∫ ∞

0

dkk2〈p|V |k〉〈k|ψα〉 = ǫ 〈p|ψα〉,

30

where m is the reduced mass of the two-particle state and α represents all other
quantum numbers. The last equation is used to obtain the eigenstates and
eigenvalues needed to solve the decoupling equation 3.2.4 for ω. We discretize
this equation using the following substitutions

k ∈ [0,∞) =⇒ ki ∈ [k1 . . . kn],

|k〉 ∈ [0,∞) =⇒ |ki〉 ∈ [|k1〉 . . . |kn〉],
〈k|ψα〉 =⇒ (ψ1 . . . ψn)T , ψi = 〈ki|ψα〉,
〈p|V |k〉 =⇒ Vi,j = 〈pi|V |kj〉,
∫

dkk2 =⇒
n
∑

i=1

k2
iwi,

ǫ =⇒ ǫi,

where ki and wi are the meshpoints and corresponding quadrature weights. This
give a system of n equations in n unknowns

(

k2
1

2m
+

2

π
k2
1w1V1,1

)

ψ1 +
2

π
k2
2w2V1,2ψ2 + . . .+

2

π
k2

nwnV1,nψn = ǫ1 ψ1

2

π
k2
1w1V2,1ψ1 +

(

k2
2

2m
+

2

π
k2
2w2V2,2

)

ψ2 + . . .+
2

π
k2

nwnV2,nψn = ǫ2 ψ2

... =
...

2

π
k2
1w1Vn,1ψ1 +

2

π
k2
2w2Vn,2ψ2 + . . .+

(

k2
n

2m
+

2

π
k2

nwnVn,n

)

ψn = ǫn ψn.

(3.2.16)

This can be written as an eigenvalue problem

Dψ = ǫψ,

where

D =













k2
1

2m + 2
πk

2
1w1V1,1

2
πk

2
2w2V1,2 . . . 2

πk
2
nwnV1,n

2
πk

2
1w1V2,1

k2
2

2m + 2
πk

2
2w2V2,2 . . . 2

πk
2
nwnV2,n

...
...

. . .
...

2
πk

2
1w1Vn,1

2
πk

2
2w2Vn,2 . . .

k2
n

2m + 2
πk

2
nwnVn,n













,

ψ = [ψ1, ψ2, . . . ψn]
T

are the eigenvectors of D and ǫ are the corresponding
eigenvalues.

Numerically, a hermitian matrix is more efficient to diagonalize, so we introduce
|k̄i〉 = ki

√
wi|ki〉 with the properties

n
∑

i=1

|k̄i〉〈k̄i| = I, 〈k̄i|k̄j〉 = δi,j .

The matrix elements of D, which becomes our Hamiltonian matrix, can now be
expressed in a plane wave basis

Hi,j = 〈k̄i|H |k̄j〉 =
k2

i

2m
δi,j +

√
wiwjkikjVi,j , (3.2.17)

31

where we for simplicity have incorporated the 2/π factor in the interaction
elements. We arrive at the hermitian matrix

H =













k2
1

2m + k2
1w1V1,1 k1k2

√
w1w2V1,2 . . . k1kn

√
w1wnV1,n

k2k1
√
w2w1V2,1

k2
2

2m + k2
2w2V2,2 . . . k2kn

√
w2wnV2,n

...
...

. . .
...

knk1
√
wnw1Vn,1 knk2

√
wnw2Vn,2 . . .

k2
n

2m + k2
nwnVn,n













.

We diagonalize this matrix to obtain the eigenvectors α̃i, which are linear
combinations of our free spherical waves α̃i =

∑

j βijφj . To decide which
eigenstates are in the model space and which are in the complement space,
we calculate the probability of finding each eigenstate in the model space. The
eigenstates with the highest probability of being in the model space are α̃P

while the rest are α̃Q. We can now find ω from equation 3.2.10 and V̂eff from
equation 3.2.15.

We find the effective interaction in the original basis

〈k|Veff |k′〉 =
〈k̄i|Veff |k̄j〉√
ωiωjkikj

, (3.2.18)

From now on, we will drop the subscript for V̂eff and call the effective interaction
for V̂ .

This method is selected because of its relatively easy implementation and
is therefore an ideal candidate for a test implementation. Because of the
momentum space cutoff, high-momentum intermediate states will not be
accounted for in the many-particle problem. This can be remedied by including
three or many-particle forces explicitly, but this has not been done in this thesis.

The Vlow−k method will introduce a strong dependence on the chosen
cutoff, which cannot be excluded by including more complicated two-particle
correlations. Therefore, the problem is typically solved for different cutoffs.
A completely realistic computation will have to include many-particle forces
generated by different cutoffs.

3.3 Mean-field potential and single-particle energies

In this thesis we will study how a single hyperon behaves in the presence of a
doubly magic nucleus. Specifically, we will look at the single-particle energy of a
Λ in the 0s1/2 orbital. Physically, this can be realized by low energy scattering
between a hyperon and a nucleus where the hyperon is momentarily trapped in
the potential set up by the nucleus.

We will approximate this problem by a single-particle potential or mean-field
potential, to second order in perturbation theory. This potential is sometimes
called the self-energy and represents the effective energy of a particle in a
medium.

We will describe the potential by a set of Goldstone diagrams, depicted to second
order in figure 3.1 a). We will adopt the particle/hole formalism. Single-particle

32

states with energy below the Fermi energy are called hole states, while states
with energy above are called particle states.

c

a

h

(a)

c

a

hp1 p2

(b)

c

a

ph1 h2

(c)

Figure 3.1: Diagrams to second order in the interaction. Diagram (a) is the first
order Hartree-Fock term, while diagrams (b) and (c) are the 2p–1h and
2h–1p corrections respectively. The labels a and c represent final and
initial states. The particle states are labelled as p, p1 and p2, while
the intermediate hole states are labelled h, h1 and h2. The dotted line
represents the interaction.

The first order diagram in figure 3.1 a), is the so-called Hartree-Fock diagram.
This represents a particle interacting with a nucleus, where none of the nucleons
are allowed in an exited state. The second order diagrams in figure 3.1 b)
and 3.1 c), represent so-called one- particle-two-hole and two-particle-one-hole
exitations. This means that a particle interacts with a nucleus, where only one
of the nucleons can be exited to a particle state. Higher order corrections can
also be implemented, but this is a topic for future work.

The expression for the diagrams in figure 3.1, can be expressed in the uncoupled
representation using standard diagram rules. We will use single-particle basis
states, coupled to a total angular momentum, so it is useful to adopt the angular
momentum coupled representation of the diagrams [45].

The expression for the first order diagram is

〈a|u|c〉 = 1

2ja + 1

∑

J,h

(2J + 1)〈ah|V |ch〉, (3.3.1)

where |ja − jh| ≤ J ≤ |ja + jh| and h is a hole state as defined for the specific
nucleus.

The second order diagrams are

〈a|u|c〉 = 1

4(2ja + 1)

∑

J,h,p1,p2

(2J + 1)
〈ah|V |p1p2〉〈p1p2|V |ch〉
ec + eh − ep1

− ep2

, (3.3.2)

33

where |ja − jh| ≤ J ≤ |ja + jh| and

〈a|u|c〉 = − 1

4(2ja + 1)

∑

J,p,h1,h2

(2J + 1)
〈ap|V |h1h2〉〈h1h2|V |cp〉
eh1

+ eh2
− ep − ea

, (3.3.3)

where |ja−jp| ≤ J ≤ |ja+jp|. In the above two expressions, pi and hi represents
particle states and hole states respectively, as defined for the specified nucleus.
eα are the single particle energies of the respective states and jα are their total
angular momenta.

When calculating the single-particle potential from these expressions, the
energies and wavefunctions depend on the basis set chosen for the calculation.
These will in general not be the same as the solutions to the Schrödinger
equation, when solved with this potential. We would like to make this
calculation self-consistent, meaning that the wavefunctions and energies used,
are solutions to the Schrödinger equation, when calculated with the single-
particle potential u. This will be achieved by using an iterative procedure
consisting of two steps.

1. Calculate the single particle potential u, using all diagrams up to the
specified order.

2. Solve the single particle Schrödinger equation using u as the potential,
acquiring new wavefunctions and energies as linear combinations of our
chosen basis states.

For each iteration the difference between the old and the new single particle
energies are calculated and the iteration continues until this difference is below
a threshold value. Formally, the algorithm is presented in figure 3.2.

φi Chosen basis of single particle wavefunctions

ψk
i New single particle wavefunction after k iterations.

ψk
i is a linear combination of the original basis states

ψk
i =

N
∑

j=0

Ck
ijφj . (3.3.4)

In order to keep track of the coefficients Ck
ij , we define the matrices Ck with

Ck
ij as its elements. We can now write











Ck
00 Ck

01 . . . Ck
0n

Ck
10 Ck

11 . . . Ck
1n

...
. . .

...
Ck

n0 Ck
n1 . . . Ck

nn





















φ0

φ1

...
φn











=











ψk
0

ψk
1
...
ψk

n











, (3.3.5)

shortened to
ψk = Ckφ, (3.3.6)

when φ = [φ0, φ1, . . . , φn]T and ψk = [ψk
0 , ψ

k
1 , . . . , ψ

k
n]T . The initial conditions

are
ψ0 = φ, (3.3.7)

34

giving C0 as the identity matrix.

The single-particle states used when calculating the diagrams in equations 3.3.1,
3.3.2 and 3.3.3 are now linear combinations of the chosen basis states. To express
these corrections using the basis states, they will have to be modified slightly.

The first order correction, which can also be derived from the Hartree-Fock
variational procedure, becomes

〈a|u|c〉 =
1

2ja + 1

∑

J,h,h′,h′′

(2J + 1)〈ah′|V |ch′′〉, (3.3.8)

where jα are defined as before, h is now the wavefunction of the new hole state,
which is a linear combination of basis states, represented by the primed letters

|h〉 =
∑

j

Chj |φj〉 =
∑

h′

|h′〉. (3.3.9)

The algorithm for calculating this diagram is presented in figure 3.3

The second order corrections, which would correspond to an extended Hartree-
Fock procedure, are modified similarily

〈a|u|c〉 = 1

4(2ja + 1)

∑

J
h,h′,h′′

p1,p′

1,p′′

1

p2,p′

2,p′

2

(2J + 1)
〈ah′|V |p′1p′2〉〈p′′1p′′2 |V |ch′′〉

ec + eh − ep1
− ep2

(3.3.10)

and

〈a|u|c〉 = − 1

4(2ja + 1)

∑

J
p,p′,p′′

h1,h′

1,h′′

1

h2,h′

2,h′′

2

(2J + 1)
〈ap′|V |h′1h′2〉〈h′′1h′′2 |V |cp′′〉

eh1
+ eh2

− ep − ea
, (3.3.11)

where the algorithms for calculating these diagrams are presented in figure 3.4
and 3.5 respectively. The particle and hole states are defined similar to h, as a
sum over the corresponding primed states as in equation 3.3.9.

We will be using a translationally invariant Hamiltonian, as is customary in
nuclear physics,

H =

A
∑

i=1

ki
2

2mi
− K2

2M
+

A
∑

i<j

V (i, j), (3.3.12)

where A is the number of particles, ki is the momentum of particle i, mi is its
mass, M is the total mass of the system while K is the center of mass momentum
defined by

K =
A
∑

i=1

ki. (3.3.13)

35

This can be organized as

H =

A
∑

i=1

[

ki
2

2mi
− ki

2

2M

]

+

A
∑

i<j

[

V (i, j)− ki · kj

M

]

(3.3.14)

=

A
∑

i=1

ki
2

[

1

2mi
− 1

2M

]

+

A
∑

i<j

[

V (i, j)− ki · kj

M

]

. (3.3.15)

To solve the Schrödinger equation in this form, we will need the single particle
elements 〈a|k2

i |c〉 and the two-particle elements 〈ab|V |cd〉 and 〈ab|ki · kj|cd〉 in
our chosen basis.

for a = 1, . . . , n
if a is outside modelspace; continue
for c = 1, . . . , n
if c is outside modelspace; continue
if symmetries are not preserved; continue
u← 0
for d in included diagrams
u← u+ d(a, c)

end for
k ← 〈a|t|c〉
H(a, c)← k + u

end for
end for

Figure 3.2: Algorithm for calculating the self-energy corrections

result← 0
for h = 1, . . . , n
if h is not hole; continue
jmin ← |ja − jh|
jmax ← |ja + jh|
for j = jmin, . . . , jmax

factor← 2j+1
2ja+1

result← result+ factor ∗ 〈ah|Vj |ch〉
end for

end for

Figure 3.3: 1. order diagram

36

result← 0
for h = 1, . . . , n
if h is not hole; continue
jmin ← |ja − jh|
jmax ← |ja + jh|
for p1 = 1, . . . , n
if p1 is not a particle state; continue
for p2 = 1, . . . , n
if p2 is not a particle state; continue
for j = jmin, . . . , jmax

factor ← 2j+1
4(2ja+1)

denom← ec + eh − ep1
− ep2

nom← 〈ah|Vj |p1p2〉〈p1p2|Vj |ch〉
result← result+ factor ∗ nom

denom
end for

end for
end for

end for

Figure 3.4: 2. order diagram

result← 0
for p = 1, . . . , n
if p is not a particle state; continue
jmin ← |ja − jp|
jmax ← |ja + jp|
for h1 = 1, . . . , n
if h1 is not a hole state; continue
for h2 = 1, . . . , n
if h2 is not a hole state; continue
for j = jmin, . . . , jmax

factor ← 2j+1
4(2ja+1)

denom← eh1
+ eh2

− ep − ea

nom← 〈ap|Vj |h1h2〉〈h1h2|Vj |cp〉
result← result− factor ∗ nom

denom
end for

end for
end for

end for

Figure 3.5: 2. order exchange diagram

37

3.4 Harmonic oscillator basis

Until now, the calculations have been independent of the chosen basis, except
for the calculation of the two-particle effective interaction using the Vlow−k

procedure, which was defined in momentum space.

The interaction models implemented, delivers matrix elements in a relative
partial wave decomposition in relative momentum space, see appendix D.3 and
D.4 for details. This is also the basis we will use for the Vlow−k procedure.

We will choose the three-dimensional spherical harmonic oscillator as our two-
particle basis for calculating the self-consistent single particle energies. This is
a suitable choice for the bound systems we will be studying.

In this section we will define the terms associated with this choice of basis, as
well as the basis sets used by the renormalization procedure and interaction
models. Also, the equations and operators will be expressed in the appropriate
basis sets and the transformations between the basis sets are presented.

3.4.1 Notations

In nuclear physics is is customary to work in a relative so-called partial wave
basis, where a spherical wave is expanded in a linear combination of spherical
Bessel functions (see appendix A.1) and Legendre polynomials (see appendix
A.2). The total orbital momentum l of the relative state is coupled to the total
intrinsic spin s, to give a total angular momentum j = l+s (See C.1.1 for details
on coupling angular momentum operators).

As part of the Vlow−k procedure, the momentum space Schrödinger equation
is solved for a discrete set of momenta as a matrix diagonalization problem.
As diagonalization algorithms scale the number of floating point operations as
n3[46], where n is the dimension of the matrix, we will split the matrix into as
many separately solvable parts as possible.

We will accomplish this by exploiting the symmetries of the strong interaction
presented in section 2.1.2.

The strong interaction conserves the total angular momentum j, strangeness
S, charge q and parity π. This means that no transitions can occur between
states with different j, S, q and π and the matrix elements in the Hamiltonian
representing these transitions are 0. The Hamiltonian is block diagonal in these
sets of quantum numbers.

We can further reduce the size of the block matrix by exploiting the constraints
on l and s given by the conservation of j and parity.

Since we are only including particles with si = 1/2 in units of ~, a two-particle
state can only couple to total intrinsic spin s = 0, 1. l can take any non-negative
integer value, so for a given j, the possible transitions are

〈s = 0, 1; l = j|V |s = 0, 1; l = j〉, (3.4.1)

〈s = 1; l = j ± 1|V |s = 1; l = j ± 1〉. (3.4.2)

38

The parity is given by π = −1l, so parity conservation forbids transitions
between l = j and l = j ± 1.

We can further reduce the size of the problem by considering conservation of
strangeness and charge. We will only consider possible strangeness values to be
S = 0,−1,−2.

Tables 3.1, 3.2 and 3.3 tabulate the possible particle combinations for different
charges, together with the BB label used to identify this channel for strangeness
channels S = 0, S = −1 and S = −2, respectively.

q Label # subchannels sub 1 sub 2 sub 3 sub 4

0 nn 1 nn
1 pn 1 pn
2 pp 1 pp

Table 3.1: Table of possible particle combinations for strangeness 0

q Label # subchannels sub 1 sub 2 sub 3 sub 4

−1 Σ−n 1 Σ−n
0 Λn 3 Λn Σ−p Σ0n
1 Λp 3 Λp Σ0p Σ+n
2 Σ+p 1 Σ+p

Table 3.2: Table of possible particle combinations for strangeness -1

q Label # subchannels sub 1 sub 2 sub 3 sub 4

−2 Σ−Σ− 1 Σ−Σ−

−1 ΛΣ− 2 ΛΣ− Σ0Σ−

0 ΛΣ0 4 ΛΣ0 ΛΛ Σ0Σ0 Σ+Σ−

1 ΛΣ+ 2 ΛΣ+ Σ0Σ+

2 Σ+Σ+ 1 Σ+Σ+

Table 3.3: Table of possible particle combinations for strangeness -2

We can now categorize the channels into the following categories, labelled in
spectroscopic notation, prepended by the appropriate baryon-baryon label.� tensor coupled channel – A channel where transitions between states with

different orbital momenta are allowed. Labelled as BB 2s+1lj–
2s+1l′j.� spin coupled channel – A channel where transitions between states with

different intrinsic spins are allowed. Labelled as BB 0−1lj .� baryon coupled channel – A channel where transitions between different
baryon-baryon configurations are allowed. Labelled as BB 2s+1lj .� uncoupled channel – A channel that is neither tensor coupled, spin coupled
nor baryon coupled. Labelled as BB 2s+1lj.

In spectroscopic notation, the orbital momentum label is given by a letter, where
the l = 0 state is labelled S, the l = 1, 2 states are labelled P and D, respectively,

39

while higher orbital momentum states are labelled alphabetically, starting at F.

The Hamiltonian matrices used in the Vlow−k procedure, are displayed in
appendix D.4.

A state in the relative and center of mass (CoM) partial wave basis in momentum
space can now be labelled

|(B1B2)klKLsSqTzjα〉, (3.4.3)

where K and L are the CoM momentum and orbital momentum, Tz is the
isospin projection, included only to simplify the merger of developed code and
existing code. For completeness, α represents all other quantum numbers. The
other labels are already defined.

3.4.2 Transformations

The two-particle matrix elements needed to calculate the single-particle energies
are given in a spherical harmonic oscillator basis in the laboratory frame,
labelled by

|(ab)JTzSα〉, (3.4.4)

where ab is a shorthand for (Banalajatza)(Bbnblbjbtzb), J = j1 + j2, Tz =
tza + tzb and S identifies the strangeness channel. ni, li are the radial and
orbital momentum quantum numbers for particle i, while ji and tzi denotes its
total angular momentum and isospin projection. Bi is the particle type. Since
all particles included have spin si = 1/2, this label is excluded, but still used in
the calculations.

The transformation from the relative and CoM frame to the laboratory frame
for a two-particle state can be written

|(ab)JTzSα〉 =
1√

1 + δab

×
∑

λsj

∑

nNlL

F × 〈ab|λsJ〉

× (−1)λ+j−L−s
√

2λ+ 1

{

L l λ
s J j

}

× 〈nlNLλ|nalalblbλ〉|(BaBb)nlNLsSqTzj〉, (3.4.5)

where 〈nlNLλ|nalanblbλ〉 is the Moshinsky bracket [47], |l − L| ≤ λ ≤ |l + L|
and also |la − lb| ≤ λ ≤ |la + lb|. We have defined

〈ab|λsJ〉 = ĵaĵbλ̂ŝ







la sa ja
lb sb jb
λ s J







, (3.4.6)

where x̂ =
√

2x+ 1. The factor F is defined as F = 1−(−1)l+s+T

√
2

if a and b

represents identical particles, F = 1 otherwise. J is the total angular momentum
of the two-particle state.

In addition we will need the transformation from the relative and CoM
momentum basis, to the relative and CoM harmonic oscillator basis.

40

|(B1B2)nlNLsSqTzJ〉 =
∫

k2K2dkdKRnl(k)RNL(K)|(B1B2)klKLsSqTzJ〉,
(3.4.7)

where Pnl and PNL are the radial harmonic oscillator functions for the relative
and CoM frame respectively, defined in appendix E.1.

3.4.3 Coulomb interaction operator

After the renormalization procedure, the Coulomb interaction is added to the
matrix elements of the interaction in the relative and CoM harmonic oscillator
basis. We will need the Coulomb operator in this basis. The Coulomb operator
is only dependent on the relative motion, so we only need the elements

〈nlm|Vc|n′l′m′〉 =
q1q2
4πǫ0

∫

drrRnl(r)
∗Rn′l(r), (3.4.8)

from appendix E.3. Here Rnl(r) are the radial harmonic oscillator wavefunction,
defined in appendix E.1.

We discretize this equation by making the following substitutions

R(n,l)(r) =⇒ (R
(n,l)
1 . . . R(n,l)

n)T , R
(n,l)
i = R(n,l)(ri), (3.4.9)

r ∈ [0,∞) =⇒ ri ∈ [r1 . . . rn], (3.4.10)
∫

drr =⇒
n
∑

i=1

riwi, (3.4.11)

where ri and wi are the meshpoints and corresponding quadrature weights given
by a Legendre polynomial. The mespoints and weights are mapped to the
appropriate domain by using a tangent mapping on the interval ri ∈ [−1, 1].

This give the following equation for the matrix elements of the coulomb
interaction

〈(B1B2)nlNLsSqTzJ |VC |(B1B2)n
′lNLsSqTzJ〉 =

q1q2
4πǫ0

n
∑

i=1

riwiR
nl
i R

n′l
i .

(3.4.12)

3.4.4 Kinetic energy operator

For the kinetic energy operator in the self-consistent calculation, we will need the
expression for the kinetic energy in a harmonic oscillator basis in the laboratory
frame. This is a single particle operator and diagonal in all quantum numbers,
except n.

From equation E.2.5 we have

〈a|̂t|c〉 =
1

2µ

∫ ∞

0

dp p4Pnala(p)Pnclc(p), (3.4.13)

41

where µ is the mass of the particle in question, Pnl(p) is the radial harmonic
oscillator wavefunction in momentum space from appendix E.1.

We discretize this equation by making the following substitutions

P(n,l)(k) =⇒ (P
(n,l)
1 . . . P (n,l)

n)T , P
(n,l)
i = P(n,l)(ki), (3.4.14)

k ∈ [0,∞) =⇒ ki ∈ [k1 . . . kn], (3.4.15)
∫

dkk4 =⇒
n
∑

i=1

k4
iwi, (3.4.16)

where ki and wi are the meshpoints and corresponding quadrature weights given
by a Legendre polynomial. The mespoints and weights are mapped to the
appropriate domain by using a tangent mapping on the interval ri ∈ [−1, 1].

This gives the following expression for the kinetic energy.

〈a|t|c〉 =
n
∑

i=1

k2
iwiP

(na,lc)
i P

(nc,lc)
i

k2
i ~

2

2µ
. (3.4.17)

3.4.5 Two-particle momentum operator ki · kj

In the calculation of the single particle energies, the two-particle matrix elements
〈ab|ki · kj |cd〉 are needed. The expressions for these are given by [44]

〈ab|ki · kj |cd〉 = −~
2(−1)jc+ja+J

{

ja jb J
jd jc 1

}

〈a||∇i||c〉〈b||∇j ||d〉, (3.4.18)

where the reduced matrix elements can be found in [38]. As usual the state a
denotes all quantum numbers of a single-particle state.

42

4 Software

The library and applications that make up the environment for hypernuclear
structure calculations presented in this thesis, are based on an existing program
package for nuclear structure, named CENS (Compuational Environment for
Nuclear Structure)[2]. This package contains code for renormalizing the
two-particle interaction in a variety of ways, creating effective many-particle
interactions and using these in shell-model calculations. It consists of several
different applications, each with its own library, written in Fortran 77/90 and
C/C++. A script, written in Python [1], combine the different applications into
a common user interface. The compiled Fortran and C/C++ parts will be called
the applications, while the Python user interface will be called the interface.

The major goals of this thesis, were to extend CENS to include hyperonic degrees
of freedom, redesign it to be a complete library for the Python programming
language and use this library to create specialized applications providing the
same capabilities as the original application.

The original application could be executed in one of two ways. Either the
application was executed directly from the command line, or it was executed
as a seperate process from within the Python interface. After the application
has been started, no communication is possible between the user(programmer)
and the application, other than what would be available when started from the
command line.

In the software developed for this thesis, we use a different approach. Instead
of running an entire application from within Python, the different Fortran
subroutines are made available to Python as extension modules or ordinary
library functions. This gives the user total control over what is being done
and, depending on the level of detail made available to Python, the applications
can be rapidly extended and modified without the need for recompilation. The
data is available to the user at every step of the process, making analysis of
intermediate data very easy, even for a user with no previous experience with
Fortran or C/C++.

Only a subset of the capabilities provided by the orginal application is
implemented for this thesis, specified in section 3. The numerical issues are
already presented, so this section will focus on the provided library.

The library was intended to be very general, and be used for many different
applications. Three distinct applications are presented here, giving an idea of
what types of calculation the library enables.

One of the major goals of this thesis, was to extend a high-level language with
this library. Since the existing software was written in a mix of Fortran77/90
and C/C++, Python [1] was chosen for this task. Section 4.1 discuss Python
and the process of creating extensiton modules for this language.

In section 4.2 the library modules are presented, while section 4.3 presents the
applications developed.

43

4.1 Extending Python

Python, with the Numerical Python (numpy) extension [48], is an open-
source, high-level object-oriented programming language, capable of handling
contiguous array allocation in both row-major and column-major order, used by
C/C++ and Fortran respectively. It can be extended with additional libraries
using both modules written in Python and externally compiled object files. The
internal workings of the Python interpreter will, however, dictate how these
external objects are written and compiled.

The common procedure is to write, or generate using a supplied tool, special
interface functions in C/C++, to access the structures of the original library.
When implementing a shared library written in Fortran, numpy supplies a tool
named f2py to generate the interface to Python that would make every public
variable, subroutine, module etc. available to Python. As Python is written
in C/C++, it is easier to make libraries written in these languages available to
Python, so we will rely on hand-written interfaces for these libraries.

In order to understand how extension modules are written, it is necessary
to understand how programs written in Python are executed. As Python is
an interpreted language, Python programs are not run as normally compiled
programs in Fortran or C/C++. An interpreter is executed, which reads the
Python source code in a linear fashion, parsing the statements one by one. When
started, the interpreter knows only about the built-in structures, representing
the core of the Python language. (For details on how the interpreter parses the
file, see the Python Reference manual [49]). When encoutering a name that is
not recognized as a built-in structure, the interpreter looks it up to see if the
name is defined. If not, the execution aborts with an exception.

Before an extension module can be used in a Python script, the interpreter needs
to be made aware of the module and the names it provide. This is done by the
import statement. When the interpreter finds this statement, it automatically
looks for an initialization function defined within the module, if the module
exists. There are several demands on this function, but the bottom line is
that the interpreter is made aware of what the module provides, especially any
callable objects or functions.

Later, when the interpreter encounters a call to one of the functions defined in
the module, the parameters are placed in a parameter structure and passed
to the function. All C/C++ functions that are callable by the Python
interpreter, must have this specific signature, taking the parameter structure
as its parameter. The Python implementation ships with a C/C++ header-
file where all the Python structures are defined. This is needed to extract the
parameters passed to the function.

In order to write an extension module for Python, the compiled object must
include the Python header-file, define an initialization function with a specific
name and format, providing a list of all functions available in the module. Each
of these functions must have a specific signature to be callable from the Python
interpreter.

Once this is compiled and linked, the extension module can be used as any other

44

Python module.

The process of creating a Python module from a Fortran library, is now the same
as gaining access to structures written in Fortran from C/C++. All features
of the Fortran language needs to be translated to C/C++ specific features, in
order for a completely seamless implementation. In most cases, only a small
subset of the features need to be implemented.

Creating interface functions for Fortran subroutines and datastructures proved
more complex than was originally intended, so major parts of the Fortran library
had to be rewritten.

One of the major issues, was that derived types in Fortran 90, was not supported
by f2py. The original Fortran library relies upon derived types to organize
the transformations between the different basis sets. This meant that a large
part of the program control needed to be implemented in Fortran and that the
transformations between basis sets was not available to Python.

Another issue, solved by creating hand-written interface code in Fortran 90, was
that f2py didn’t support allocatable objects. This meant that Python had to
know the size of all arrays in advance and more importantly, all data needed
to be allocated on the stack-segment in the Fortran code. This represented a
serious issue, as the size of the stack segment is limited by the operating system
to usually around 2 Mb. In addition, when full, the application isn’t necessarily
interupted by a segmentation fault. In the worst case, the application performs
completely as expected, exept that the data is corrupted.

When using allocatable arrays, this is no longer a problem. The operating
system handles the memory management and the application has access to the
entire memory space.

The solution to this problem was by no means elegant and involved a two step
process. First the size of the allocated array was made available to Python,
before the allocated data was copied to an new Python array. Care was taken
not to change the data in the Python applications developed, but no safeguards
was implemented to stop an unsuspecting user from doing just that.

A new version of f2py is now available and is supposed to handle the complete
set of Fortran 90 features. This means that the library can be rewritten with
the original design in mind.

4.2 Modules

There are four python extension modules that implement the interface to the
Fortran library. These were designed to be independent of any user interface,
so that the user can build both a streamlined version for high performance
computing or a graphical user interface when ease of use and presentation is
more important than fast results.

More often than not, it is not only the final results that are important. It
has therefore been a priority to facilitate the extraction of data at any point
in the process. In this case we can study the effects of interaction models and

45

renormalization techniques at each intermediate step, to explain what elements
are important to the final result.

The four modules are named configuration, interaction, renormalization and
effective and they are presented in sections 4.2.1, 4.2.2, 4.2.3 and 4.2.4
respectively. A fifth module, responsible for converting raw data into visual
representations, is named visualization and is presented in section 4.2.5.

We only give a brief introduction to each module, as a complete reference can
be found in appendix G.

4.2.1 configuration

The configuration module was designed to hold information about the basis sets
available. Currently the only configuration implemented is the relative partial
wave in the physical basis. This is the form in which most interaction models
deliver their matrix elements, so it is a natural place to start. In addition to the
physical basis, the isospin basis is also frequently used, but this has not been
implemented. Interaction models that come in this basis, are translated to the
physical basis inside the class specific for the interaction model.

The main component of the configuration model, is the Channel class. This class
holds all information about a specific channel, defined as the set of quantum
numbers that make up a separately diagonizable part of the full two-particle
Hamiltonian. In the physical basis, this class also holds a SubChannel object,
which contains information about the different baryon-baryon couplings that are
available in this specific channel. A SubChannel object consists of two Particle
objects, as well as convenience methods to extract information about a specific
particle combination, such as the effective mass, the total mass etc.

The configuration module also holds a list of Particle objects that are available
to the module. A Particle object typically holds all relevant information about a
specific particle. The particle information is imported from a separate datafile,
where the data has been taken from [7].

The module is designed to be completely general, it does not depend on the
specific particles included. This way, when we later want to include more general
interaction models and incorporate additional particles and perhaps resonances,
this module will need minimal changes.

There are two typical entrypoints to this module. A specific channel may be
requested by the methods get channel or get channel by charge. They each
take a set of quantum numbers as arguments, returning an appropriate Channel
object. The former method uses isospin projection to specify a channel, while
the latter uses the total charge to specify the channel.

The second entrypoint is the static method setup channels. It takes the
minimum and maximum relative angular momentum as arguments, returning
a list of all channels in the given range. Such a list is typically needed when
transforming from the relative and CoM frame, to the laboratory frame.

46

4.2.2 interaction

The interaction module is designed to give a unified interface to all interaction
models included. Although the possibilty to include transformation to and from
different basis sets are present, this is not implemented in a consistent manner.
For now, the module only gives matrix elements in a relative, physical partial
wave basis in momentum space. The elements are returned in units of MeV−2

while the input is a set of momenta in units of fm−1 as well as a Channel object.

The different interaction models are implemented in a hierarchical fashion. A
specific interaction model is implemented as a separate class, or set of classes,
which inherit all the properties of the parent class - IntModel. The parent
class is basically present to insure a common programming interface to all the
interaction models.

Presently there are three different models implemented - the N3LO [23] model,
the NSC97 [25] models and the J04 [24] model, as presented in section 2.2.
The N3LO model is purely a nucleon-nucleon(NN) potential and was originally
included only as a reference. However, as we will see in section 5.2.2, the NSC97
models do not reproduce the deuteron binding energy. We will therefore use only
the N3LO interaction model to create the NN interaction for the production
runs.

J04 is purely a hyperon-nucleon(YN) potential and originally comes in an isospin
basis. These elements are converted to the physical basis inside the core of the
model, before being returned.

The NSC97 model, which actually includes six different models fitting the
off-shell behaviour slightly different, provide both NN, YN and hyperon-
hyperon(YY) potential up to strangeness S = −4 and is the most versatile
of the included models.

All of the included interaction models are provided as a separate Fortran 77
file. In order to make the extraction of matrix elements as effecient as possible,
interface functions were created in Fortran 90, that collect matrix elements for
all momenta for a specific channel into a single two-dimensional array. These
interface functions were then compiled using f2py, from Numerical Python(see
[48]), in order to make them accessible to Python. As Python supports
contiguous arrays stored in both row-major and column-major order, no
manipulation is needed before handing the array to another function/subroutine
written in Fortran. If, however, the elements need to be manipulated by a
function written in a language that supports only row-major storage, the array
need to be transposed before passed to this function. Efficient methods for
converting to and from row-major and column-major order are provided with
numpy.

For the interaction models supporting YN or YY interactions, there is an
additional complication by the baryon coupled channels. The matrix elements
for the different particle combinations are placed in a specific order in the
resulting array, which is not necessarily the same order that the combinations
are presented in the Channel class. In addition, the interaction models may
give matrix elements for more particles in specific channels, than we wish to

47

include. We need a way to select only the appropriate elements. This is
especially important for the S ≤ −2 channels supported by the NSC97 models,
that include not only the Λ and Σ, but also the Cascade Ξ. To resolve this,
translation arrays are created inside each interaction class, to make sure that
the correct matrix elements are always indexed. For convenience, methods for
reordering the list of SubChannels in the Channel object to match the ordering
of the interaction models are also included.

4.2.3 renormalization

The renormalization module is the largest module of those included. In addition
to the actual renormalization procedure, this module also include the code to
transform the renormalized interaction from the relative and CoM frame to the
laboratory frame as presented in section 3.4.

In regards to the initial design, this module deviates the most. Largely, this is
beacuse of limitation with f2py as explained in section 4.1.

When extending the existing renormalization codes for the NN case, the decision
was made to keep the existing data structures in the transformation subroutines.
When trying to implement the design, we found out that these Fortran data
structures could not be made visible to python in any convenient way. Faced
with the alternative of rewriting the entire existing renomalization package, we
decided to keep the original structures and forego some design criterias in the
process.

The renormalization module consists of a parent renormalization class which
consists of all the properties and methods shared by the different renormalization
procedures. Each procedure is then implemented as a subclass of the
renormalization class.

The compiled Fortran library made available through this module, contain
not only the renormalization procedure, but also the transformation from
relative momentum space to the relative harmonic oscillator space and the
transformation from the relative and CoM frame to the laboratory frame in
a two-particle three-dimensional harmonic oscillator basis.

The renormalization module reflects this and contain methods both for
renormalizing a specific channel and for setting up a range of channels to
transform to the laboratory frame.

When a channel is set up in the Fortran specific part of the module, the
initialization procedure takes care of setting up the number of integration
points, allocating all appropriate array structures. If only renormalization of
a single channel is needed, the Hamiltonian for this channel is set up and
renormalized using the specified procedure. By design, it is possible to return the
renormalized interaction in the basis needed, but as only the Vlow−k interaction
is implemented, only the realtive momentum basis is implemented.

If the object is to do a transformation to the lab system, several channels are
needed, and the relative matrix elements needs to be transformed to a relative
harmonic oscillator basis. After acquiring a renormalized interaction for all

48

channels in the relative harmonic oscillator basis, the laboratory transformation
is set up using the final vlowk subroutine.

Depending on the model space selected, this procedure can take from minutes
to days and is by far the most computationally intensive part of the framework.
Since the full many-particle Hamiltonian also consists of the two-particle
operator pi · pj , these matrix elements are also calculated in the same basis.

When setting up the interaction in the laboratory frame, the end result is a
file of single particle orbits for the selected model space and a datafile of the
renormalized two-particle matrix elements.

When setting up an renormalized interaction for a specific channel, the following
parameters defines the behaviour.

Renormalization procedure What prodcedure to use to calculate the
renormalized interaction.

Channel Which channel should be calculated, meaning the set up quantum
numbers making up the channel, if it is a coupled channel and the properties of
the particles making up the channel.

Interaction model Which interaction model should be used to create the
bare interaction.

Grid Size of the modelspace and complement space. In case of the Vlow−k

procedure, this defines the number of integration points in each space and the
cutoffs in each space.

When setting up the renormalized interaction in laboratory space, additional
parameters are necessary. The following configuration parameters are
recognized. These can be read from file or specified directly as input to the
constructor of the renormalization class.

type of renormv Renormalization procedure to use. Only the low-
momentum type is available as the configuration value: vlowk

coulomb included Should the coulomb interaction be included in the final
effective interaction: (yes/no)

output run File where the application stores information about the run. The
file will be created or overwritten.

renorminteraction file The file where the matrix elements of the final
effective two-body interaction in the lab frame will be stored.

49

spdata file File where the single particle orbits in laboratory space will be
stored for the selected model space, defined by the four parameters lab lmax,
lab nmax, hyp lab lmax and hyp lab nmax to be specified below.

hbar omega The oscillator parameter to be used for the ho wavefunction.

jmin Start with partial waves with relative total angular momentum jmin.

jmax Include all partial waves with relative total angular momentum up to
jmax

type of nn pot Which interaction should be used for the NN interaction.

type of yn pot Which interaction should be used for the YN interaction.

type of yy pot Which interaction should be used for the YY interaction.

include yn Should channels with Strangeness S ≥ −1 be included.

include yy Should channels with Strangeness S ≥ −2 be included.

lab lmax Include single particle orbitals for nucleons with orbital momentum
up to lab lmax.

lab nmax Include single particle orbitals for nucleons with radial number
lab nmax, but only if 2*n + l is not larger than l.

hyp lab lmax Include single particle orbitals for hyperons with orbital
momentum up to lab lmax.

hyp lab nmax Include single particle orbitals for hyperons with radial
quantum number up to hyp lab nmax. Unlike the nucleon case we would like
to include all orbitals satisfying with n up to hyp lab nmax.

n k1 Number of integration points for the modelspace when using Vlow−k.

n k2 Number of integration points for the complement space when using
Vlow−k.

50

k cutoff Momentum cutoff for the modelspace when using Vlow−k.

k max Momentum cutoff for the complementspace when using Vlow−k.

4.2.4 effective

This module implements the procedure specified in section 3.3. The primary
purpose of the effective module is to create an effective many-particle interaction
using a perturbative approach. In this thesis however, we stop at creating a self-
consistent basis of three-dimensional harmonic oscillator wavefunctions at the
Hartree-Fock level.

For the moment, it is possible to calculate a core of filled orbitals, with a Λ or
Σ in an orbit around this core. Later we will look at the energies calculated for
these orbitals and derive their interaction model and parameter dependence.

As input, this module takes a single-particle data file as supplied by the
renormalization module. The orbitals in this file are modified to represent the
nucleus we wish to do calculations for. We supply also a tool for choosing the
nucleus, so this file does not have to be changed manually.

The following parameters are needed for a self-consistent calculation.

order of interaction To what order is the self-consistent potential to be
calculated: first, second

output run File where the application stores information about the run. The
file will be created or overwritten.

renorminteraction file File where the renormalized interaction elements are
stored.

spdata file File where the single-particle orbits are read.

HFrenorminteraction file File where the new interaction elements are
stored after the self-consistent calculation.

HFspdata file File where the new single-particle orbitals are stored after the
self-consistent procedure.

4.2.5 visualization

The visualization module consiste of methods to generate different types of plots.
Current capabilities include the plotting of the diagonal elements of a matrix,

51

off-diagonal elements constrained by a single momenta and an eigenvalue plot.
These functions can handle several datasets with separate legends.

The plots can be both displayed on screen and saved to file in postscript format.

4.3 Application

To show the flexibility of the python extension modules created, three
applications have been created. The first two are barely worth mentioning, as
the resulting Python scripts only consists of a couple of lines. The first script,
set up the renormalized matrix elements in the laboratory frame, by reading a
configuration file and passing the options to the renormalization class.

The entire python script is written

filename = ’renorm.ini’

r = selector(filename)

r.transform_lab()

The second application calculates the self-consistent basis and is similarily
simple

filename = ’bhf.ini’

eff = Effective(filename)

eff.setup_hf_orbits()

A third application was created to show how the data could be extracted at
intermediate steps in the calculation process. This is a graphical application to
study the bare and renormalized interaction in a relative partial wave basis.

Figure 4.1 shows a screenshow of the full application.

The interaction models to study are set by pressing the appropriate checkboxes
in figure 4.2. There is no limitations on the number of models to include in each
plot.

The baryon-baryon configuration to study is selected by pressing the appropriate
radiobutton in figure 4.3.

As the Vlow−k procedure is the only renormalization procedure implemented,
there is no option to select this. The size of the low momentum model space is,
however, specified in the entry fields in figure 4.4.

The partial wave to plot is chosen by pressing the appropriate radiobutton in
figure 4.5.

In figure 4.6 the plot boundaries are specified, together with the appropriate
row to plot if an off-diagonal plot is needed. The options also include plotting
a bare or renormalized potential or both in the same figure.

In figure 4.7 the eigenvalue plot is selected. The user must choose whether to
plot the energy eigenvalues using the bare or renormalized interaction when
setting up the Hamiltonian. Also, the number of eigenvalues to plot is specified.

In figure 4.8 and 4.9, the user may choose to save a copy of the plot to a file

52

Figure 4.1: Full view of application.

Figure 4.2: Selecting the interaction model.

Figure 4.3: Selecting the Baryon Baryon channel

53

Figure 4.4: Specifying grid information for the model space and the complement
space.

Figure 4.5: Selecting the partial wave.

Figure 4.6: Specifying information for plotting the potential

54

Figure 4.7: Specifying information for plotting the eigenvalues.

Figure 4.8: Save a copy of the plot to file.

Figure 4.9: Save all data for entire coupled channel.

55

and save the data used to generate the plot, respectively.

The graphical elements are programmed using the Tkinter module.

56

5 Results

5.1 Setup

Our goal in this thesis, is to study how the energy of the single-particle orbital
0s1/2 for a Λ hyperon behaves as a function of the oscillator parameter β = ~ω
and of the Vlow−k momentum cutoff λ. This will be studied for a range of
different hypernuclei, all with filled proton and neutron shells.

The momentum cutoff λ will range from 2.0 − 3.0, while β will range from
5.0 − 25.0. We will sample 5 times for β and 3 times for λ. This will generate
15 variations for each interaction model we wish to investigate.

There are a couple of parameters we wish to fix from the start. We want
the renormalized interaction to be independent of the number of meshpoints
selected, as well as the maximum momenta in the integral to infinity involved
in the Vlow−k procedure.

The NSC97 models come in six different version but we will, however, only
choose two of these versions in our production runs.

We will also have to select the proper cutoff for the harmonic oscillator space,
to decide how many matrix elements we wish to generate. We will look at how
the results vary as a function of the size of this model space, with samples from
N = 2n+ l ∈ 3, 5, 7, 9 for the nucleon shells.

Because there are differences in which orbitals are dominant for the nucleons
and hyperons, the harmonic oscillator space is chosen differently for the two
types of particles. As the hyperons are suspected to be loosely bound, we only
investigate the effects of low lying orbits with zero orbital momentum. We will
however let the radial quantum number n run from 0 through 3.

In the library, there is currently no option to include only a single type of
hyperon. Matrix elements for combinations of all 4 kinds of hyperons are always
generated. The number of elements and the time needed to calculate them,
increase rapidly with the number of available hyperon orbits. Limitations on
time and resources has been a factor when choosing such a small hyperon model
space.

5.1.1 Grid size

The Vlow−k renormalization procedure, as well as the transformation from
a basis in relative momentum wavefunctions, to relative harmonic oscillator
wavefunctions, both requires an integration over momentum k with k ∈ [0,∞].
Numerically, this would normally be accomplished by selecting the meshpoints
by a tangent mapping in the domain. When doing Vlow−k, we will be projecting
the problem to a smaller space defined by k ∈ [0, λ], where λ ranges from 2 fm−1

to 3 fm−1 and we will therefore need a certain amount of meshpoints inside this
model space. A tangent mapping will generate too few points in the model
space, with too many in the excluded space.

57

By exploiting that the interaction models are only valid on a limited domain,
we can introduce a cutoff kmax in the complement space and integrate over the
domain k ∈ [0, kmax] instead of k ∈ [0,∞). We would have to select kmax large
enough, so that the results converge and are independent of this choice of cutoff.

We can then choose a set of integration points inside the model space, and
another set of integration points in the complement space. The number of
meshpoints will be selected so that the results are independent of the number
of meshpoints.

Figure 5.1 and 5.2 shows the dependence of the lowest energy eigenvalue on the
number of meshpoints in the tensor coupled channel 3S1–

3D1, for the pn and
Λp cases respectively. Note that the number of meshpoints indicated is for an
uncoupled channel, so that the dimension of the problem in a tensor coupled
channel is twice the number of meshpoints. The latter channel is also a baryon
coupled channel with three subchannels, so the dimension of the Hamiltonian
is six times the number of meshpoints for this problem.

Both these figures show relatively rapid convergence with the number of
meshpoints. For the production runs, we will use 60 meshpoints, where 30
meshpoints are located in the model space and 30 are located in the complement
space.

This choice of meshpoints also ensures that the norm is one to six significant dig-
its when normalizing the overlap between the relative momentum wavefunction
and the harmonic oscillator wavefunction. This is more than acceptable.

Figure 5.3 and 5.4 shows the eigenvalues of the 3S1–
3D1 tensor coupled channel

in the pn case and the baryon coupled Λp case as a function of the momentum
cutoff of the complement space, kmax. It is clear that a reasonable cutoff can
be chosen to be kmax = 20 fm−1 to be sure that the results are independent on
the choice of cutoff.

58

-2.3

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

 10 20 30 40 50 60 70 80 90 100

E
ne

rg
y

[M
eV

]

Meshpoints

NSC97A
NSC97F

n3lo

Figure 5.1: Lowest energy eigenvalue for the pn 3S1–
3D1 channel as a function of

the number of meshpoints.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 10 20 30 40 50 60 70 80 90 100

E
ne

rg
y

[M
eV

]

Meshpoints

NSC97A
NSC97F

juelich

Figure 5.2: Lowest energy eigenvalue for the Λp 3S1–
3D1 channel as a function of

the number of meshpoints. Note that the implementation of the J04
interaction doesn’t support more than 70 meshpoints.

59

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 2 4 6 8 10 12 14 16 18 20

E
ne

rg
y

[M
eV

]

kmax [1/fm]

NSC97A
NSC97F

n3lo

Figure 5.3: Lowest energy eigenvalue for the pn 3S1–
3D1 channel as a function of

the maximum momenta.

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 2 4 6 8 10 12 14 16 18 20

E
ne

rg
y

[M
eV

]

kmax [1/fm]

NSC97A
NSC97F

juelich

Figure 5.4: Lowest energy eigenvalue for the Λp 3S1–
3D1 channel as a function of

the maximum momenta.

60

5.1.2 NSC97 models

We will calculate matrix elements for 15 variations for each interaction model
included in the calculation. Each variation will generate approximately 1Gb of
data, giving 15Gb of data for each interaction model. With limited time and
resources, we select to use only three different hyperon-nucleon models. Of these
three, one is the J04 model [24], while two are available for the NSC97 models
[25].

Figure 5.5 shows the diagonal elements for both the bare interaction and the
renormalized interaction for the Σ+p 1S0 channel, as well as the eigenvalues
obtained when diagonalizing the Hamiltonian. It is an uncoupled channel and
as suspected, there is not much difference between the different models.

For the coupled channels, we expect the results to differ more. Figure 5.6, 5.7
and 5.8 shows the same plots for a tensor coupled channel, a baryon coupled
channel and finally a tensor and baryon coupled channel. For the tensor coupled
channel, the interaction elements are different, but the energy eigenvalues are
the same for all models. In the baryon coupled case, even the eigenvalues are
different.

We will first focus on the NSC97F model. The plots show that the diagonal
elements generated using this model is in one end of the range for all three plots.
The same is true when we look at the single particle energies for the different
hypernuclei in table 5.1, where the NSC97F model gives the least amount of
binding for each hypernucleus.

As to the second model to include, the choice is not so obvious. There is no
clear candidate in the other end of the range, as we would have hoped, but
NSC97A seems to be a good representative. NSC97A, NSC97F and J04 will be
the interaction models studied.

A troubling aspect, is that the different models generate so widely different
results for the single particle energies. We will not discuss this yet, as the
results could depend on our choice of model space and oscillator parameter,
which in this case is β = 10.0 and λ = 2.5 with 60 meshpoints. Unfortunately it
turns out that this effect is independent of both the model space and variational
parameters.

Hypernuclei NSC97A NSC97B NSC97C NSC97D NSC97E NSC97F
17
ΛO -17.6048 -17.9954 -19.1783 -19.3929 -18.9891 -16.6459
41
ΛCa -33.0701 -33.1851 -34.6602 -34.0715 -32.7319 -27.7015
91
ΛZr -49.6889 -49.1103 -50.5352 -48.3865 -45.5555 -36.8208
133

ΛSn -54.0225 -53.2739 -54.6748 -52.1088 -48.8951 -39.2667
209

ΛPb -61.1422 -59.8580 -61.0152 -57.3759 -53.2460 -41.5609

Table 5.1: Single particle energies for Λ in the 0s1/2 orbital for different hypernuclei.

61

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16 18 20

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97A (bare)
NSC97B (bare)
NSC97C (bare)
NSC97D (bare)
NSC97E (bare)
NSC97F (bare)

(a) Diagonal elements of the bare po-
tential

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 0 0.5 1 1.5 2 2.5

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97A (vlowk)
NSC97B (vlowk)
NSC97C (vlowk)
NSC97D (vlowk)
NSC97E (vlowk)
NSC97F (vlowk)

(b) Diagonal elements of the renormal-
ized potential

 0

 2

 4

 6

 8

NSC97A (bare)
NSC97B (bare)
NSC97C (bare)
NSC97D (bare)
NSC97E (bare)
NSC97F (bare)

(c) Eigenvalues obtained with the bare
potential

 0

 2

 4

 6

 8

NSC97A (vlowk)
NSC97B (vlowk)
NSC97C (vlowk)
NSC97D (vlowk)
NSC97E (vlowk)
NSC97F (vlowk)

(d) Eigenvalues obtained with the
renormalized potential

Figure 5.5: Potential and eigenvalues for the Σ+p 1S0 channel.

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16 18 20

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97A (bare)
NSC97B (bare)
NSC97C (bare)
NSC97D (bare)
NSC97E (bare)
NSC97F (bare)

(a) Diagonal elements of the bare po-
tential

-30

-25

-20

-15

-10

-5

 0

 0 0.5 1 1.5 2 2.5

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97A (vlowk)
NSC97B (vlowk)
NSC97C (vlowk)
NSC97D (vlowk)
NSC97E (vlowk)
NSC97F (vlowk)

(b) Diagonal elements of the renormal-
ized potential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

NSC97A (bare)
NSC97B (bare)
NSC97C (bare)
NSC97D (bare)
NSC97E (bare)
NSC97F (bare)

(c) Eigenvalues obtained with the bare
potential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

NSC97A (vlowk)
NSC97B (vlowk)
NSC97C (vlowk)
NSC97D (vlowk)
NSC97E (vlowk)
NSC97F (vlowk)

(d) Eigenvalues obtained with the
renormalized potential

Figure 5.6: Potential and eigenvalues for the Σ+p 3S1–
3D1 channel. The potential

is plotted for the 3S1 block matrix only.

62

-10

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16 18 20

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97A (bare)
NSC97B (bare)
NSC97C (bare)
NSC97D (bare)
NSC97E (bare)
NSC97F (bare)

(a) Diagonal elements of the bare po-
tential

-30

-25

-20

-15

-10

-5

 0

 5

 0 0.5 1 1.5 2 2.5

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97A (vlowk)
NSC97B (vlowk)
NSC97C (vlowk)
NSC97D (vlowk)
NSC97E (vlowk)
NSC97F (vlowk)

(b) Diagonal elements of the renormal-
ized potential

-800

-700

-600

-500

-400

-300

-200

-100

 0

NSC97A (bare)
NSC97B (bare)
NSC97C (bare)
NSC97D (bare)
NSC97E (bare)
NSC97F (bare)

(c) Eigenvalues obtained with the bare
potential

 0

 0.05

 0.1

 0.15

 0.2

NSC97A (vlowk)
NSC97B (vlowk)
NSC97C (vlowk)
NSC97D (vlowk)
NSC97E (vlowk)
NSC97F (vlowk)

(d) Eigenvalues obtained with the
renormalized potential

Figure 5.7: Potential and eigenvalues for the Λp 1S0 channel.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16 18 20

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97A (bare)
NSC97B (bare)
NSC97C (bare)
NSC97D (bare)
NSC97E (bare)
NSC97F (bare)

(a) Diagonal elements of the bare po-
tential

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97A (vlowk)
NSC97B (vlowk)
NSC97C (vlowk)
NSC97D (vlowk)
NSC97E (vlowk)
NSC97F (vlowk)

(b) Diagonal elements of the renormal-
ized potential

-0.25

-0.2

-0.15

-0.1

-0.05

 0

NSC97A (bare)
NSC97B (bare)
NSC97C (bare)
NSC97D (bare)
NSC97E (bare)
NSC97F (bare)

(c) Eigenvalues obtained with the bare
potential

-0.25

-0.2

-0.15

-0.1

-0.05

 0

NSC97A (vlowk)
NSC97B (vlowk)
NSC97C (vlowk)
NSC97D (vlowk)
NSC97E (vlowk)
NSC97F (vlowk)

(d) Eigenvalues obtained with the
renormalized potential

Figure 5.8: Potential and eigenvalues for the Λp 3S1–
3D1 channel. The potential is

plotted for the Λp 3S1 block matrix only.

63

5.2 Test cases

5.2.1 Energy eigenvalues

A relatively easy test of the numerical implementation of Vlow−k, is to see if the
eigenvalues of the selected eigenstates are reproduced after the renormalization
procedure. We select the eigenstate with the largest components in the model
space, as discussed in section 3.2.1. We show this for two cases. The first one
is the pn case, which has a bound state in the 3S1–

3D1 tensor coupled channel.

Table 5.2 shows the original eigenvalues and the reproduced eigenvalues sorted
by the corresponding eigenvectors component in the model space. It shows quite
clearly that the correct eigenvalues are reproduced. It also show that the bound
state has a significant contribution from high momenta states. As this is not
relevant to this thesis, we will not discuss this further.

Table 5.3 shows the same results for the baryon coupled Λp 1S0 channel, but
here the bound state is excluded from the modelspace. We see that this bound
state has a large contribution from the complement space and only around 19%
from the model space. This is still a significant contribution, implying that the
model space is too small. Increasing λ will include this state in the model space.

An interesting point to consider is whether it is appropriate to use different
model space cutoffs for the nucleon channels and the hyperon channel. This
will be left for future work.

However, we see that the correct eigenvalues are reproduced after the
renormalization procedure and conclude that this is done correctly.

64

Eigenvalue Reproduced eigenvalue Component in modelspace
3.416601064070259e-02 3.41660106e-02 0.999999999992494

0.913903152314748 0.913903152 0.999999753686008
5.18630750445118 5.18630750 0.999974849789549

4.516991861981452e-02 4.51699186e-02 0.999958631124156
16.4629477952448 16.4629478 0.999758927293190
37.7695969033269 37.7695969 0.999108809044036
69.3632452801311 69.3632453 0.997653026322953
1.67204257152620 1.67204257 0.997582563473404
195.194304801923 195.194305 0.994676613576324
107.812877403660 107.812877 0.994535352050002
9.76155442131280 9.76155442 0.993109180996088
28.4094550039271 28.4094550 0.989205524579391
173.255007035140 173.255007 0.988438865803158
146.799723753018 146.799724 0.988372255392941
58.6794630832711 58.6794631 0.985687987040545
138.349146335824 138.349146 0.984494304532942
-2.19710759140494 -2.19710759 0.984457926217859
97.4994811462420 97.4994811 0.983668484782110
178.935732589212 178.935733 0.979172364286131
197.909623323750 197.909623 0.975195198852643

271.883233439369 7.102835286156098e-002
596.099991172277 4.854211803254944e-002
1492.54639803869 1.805410080982251e-002
247.718642318589 1.047373856972548e-002
3474.87162141087 6.363343100272794e-003
559.658434811425 5.088947011829431e-003
1564.65534547262 3.818912188671142e-003
6614.59502627771 1.185214809276037e-003
10401.2967031056 1.815889093970478e-004
7121.68371265130 7.510327242621864e-005
3735.20336991250 5.425637132750700e-005
13783.0881807160 3.469573388278385e-005
10970.2187921564 2.180550537412961e-005
20164.6648712114 1.052273828274194e-005
15931.5067321025 7.901703897141228e-006
14221.9419099527 5.285175464116271e-006
16166.6721877254 1.605607634895445e-006
21063.4672720451 1.326855932755532e-006
34727.7534440951 5.451528507677166e-007
35663.7515013417 1.675389847408723e-008

Table 5.2: Eigenvalues for pn in 3S1–
3D1

65

Eigenvalue Reproduced eigenvalue Component in modelspace
3.268651738859335e-02 3.26865174e-02 0.999999698416531
2.923637269837017e-02 2.92363727e-02 0.999998156522386
2.367334246202904e-02 2.36733425 0.999985258477301

0.942226667923387 0.942226668 0.999981379442691
0.731771165862715 0.731771166 0.999909601583194
5.53410662992936 5.53410663 0.999815158762751
0.534697917194415 0.534697917 0.999579427757253
4.11705074370058 4.11705074 0.999451113944257
17.4391960392881 17.4391960 0.999113356242823
3.23935374704335 3.23935375 0.998525218000787
13.4268335487878 13.4268335 0.998459859370169
11.6039468196882 11.6039468 0.997160991467505
39.2031242675101 39.2031243 0.997097568295071
31.8611897324750 31.8611897 0.996914621528358
29.2031930562889 29.2031931 0.995349116099256
60.3037585720680 60.3037586 0.994658865274222
57.1011197117443 57.1011197 0.992685677360692
70.3989437522830 70.3989438 0.992253881071362
95.8942702495549 95.8942702 0.991344972135024
92.3621046354053 92.3621046 0.988635948332279
132.571143429431 132.571143 0.986442851286620
128.708303112619 128.708303 0.982663006480691
106.761328765209 106.761329 0.981597878473652
163.011430480446 163.011430 0.978891471256576
176.445063550510 176.445064 0.975582557725821
158.741971793430 158.741972 0.975515622588271
181.135332038870 181.135332 0.963863220556515
141.514315796328 141.514316 0.960809840060427
167.959290986953 167.959291 0.938036674767626
185.443052743800 185.443053 0.720107156802245

318.876718966845 0.191577989416503
-755.418950911826 0.187529153367256
780.831303883140 5.035996804574255e-002
616.229915880355 3.116679806819013e-002
244.825262568516 3.010173830215701e-002
247.094266213475 2.649039023687568e-002
1725.56053398083 2.301748522367679e-002
585.895549337287 1.912477185283220e-002
1587.30022947448 1.356064536574410e-002
3893.91398477343 7.959289370681364e-003
3589.69723185945 6.100199796512800e-003
1849.61252135105 3.935172656286296e-003
6985.70016626551 1.664626177825600e-003

...
...

Table 5.3: Eigenvalues for Λp 1S0

66

5.2.2 The deuteron

The deuteron is a two-particle system consisting of a proton and a neutron.
This is the only experimentally observed bound two-particle state and presents
an ideal test case for the interaction models. The deuteron is a result of a bound
state in the 3S1–

3D1 tensor coupled channel with binding energy EB = 2.2246
MeV (withour relativistic corrections. Our NN interaction models should be
able to reproduce this bound state. Figure 5.9 shows the result of diagonalizing
the Hamiltonian in the tensor coupled 3S1–

3D1 channel for the interaction
models NSC97A, NSC97F and N3LO.

The most striking observation is that the NSC97 models do not reproduce the
energy of the deuteron bound state. This result is converged and does not
change when the number of meshpoints are increased or when the cutoff kmax is
increased. We will therefore not use the NSC97 models for the NN interaction,
only the N3LO model [23]. The NSC97A and NSC97F models will be used only
for the YN and YY interactions.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

E
ne

rg
y

(M
eV

 fm
^3

)

-2.189381e+00
-2.064125e+00

-2.224645e+00

NSC97A (bare)
NSC97F (bare)

n3lo (bare)

Figure 5.9: Energy eigenvalues for the deuteron in the tensor coupled 3S1–
3D1 for

NSC97A, NSC97F and N3LO.

Figures 5.10, 5.11 and 5.12 show the diagonal matrix elements of the 3S1 block,
the 3D1 block and the 3S1–

3D1 block respectively. The first point to notice,
is that the N3LO model is only valid for low momenta. Above k ≈ 4fm−1, all
elements are zero.

The NSC97 models show no such cutoff and are available for high momenta
as well. Although the two models are fitted to the same scattering data, their

67

treatment of the different transitions are very different. The N3LO model has
more attraction in the 3S1 and 3D1 diagonal elements, with more repulsion in
the off-diagonal 3S1–

3D1 elements.

These interaction models show completely different behaviours, also in the
uncoupled channels. But since they are fitted to the same scattering data,
the energy eigenvalues in these channels are still identical. For all other tensor
coupled channels, the results are also the same, but in the 3S1–

3D1 channel,
which is the most important for the deuteron, the NSC97 NN models are not
accurate enough.

-40

-30

-20

-10

0

10

20

30

0 2 4 6 8 10 12 14 16 18 20

E
n
er

g
y

(M
eV
f
m

3
)

Momentum (1/fm)

BB interaction for partial wave: 3S1, BB channel: pn

NSC97A (bare)
NSC97F (bare)

n3lo (bare)

Figure 5.10: Diagonal elements of the 3S1 interaction for the deuteron.

68

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20

E
n
er

g
y

(M
eV
f
m

3
)

Momentum (1/fm)

BB interaction for partial wave: 3D1, BB channel: pn

NSC97A (bare)
NSC97F (bare)

n3lo (bare)

Figure 5.11: Diagonal elements of the 3D1 interaction for the deuteron.

-12

-10

-8

-6

-4

-2

0

2

4

0 2 4 6 8 10 12 14 16 18 20

E
n
er

g
y

(M
eV
f
m

3
)

Momentum (1/fm)

BB interaction for partial wave: 3S1–
3D1, BB channel: pn

NSC97A (bare)
NSC97F (bare)

n3lo (bare)

Figure 5.12: Diagonal elements of the 3S1–
3D1 interaction for the deuteron.

69

5.3 Nucleon shells

We investigate how the energy of the Λ 0s1/2 single particle orbital behave
for different sized harmonic oscillator spaces for nucleons. The renormalized
interaction is set up in a basis of relative momenta k with k ∈ [0, λ]. When the
matrix elements are transformed to the relative harmonic oscillator basis and
later to the laboratory frame, we need to define the size of the harmonic oscillator
space we wish to use. This needs to be a compromise between calculational
speed and the need for exact results. In theory, we would need to include
harmonic oscillator shells to infinite order for the renomalized interaction to
be equivalent in both the momentum space and the harmonic oscillator space.
We will, however, only include nucleon harmonic oscillator orbitals where the
relation 2n+ l ≤ N for N ∈ 3, 5, 7, 9. For hyperons, the cutoff is defined sligthly
different. We will include all hyperon orbitals where n = 0, 1, 2, 3 and l = 0.
Since we are only looking at the Λ in the 0s1/2 orbital, we will not need elements
with higher orbital momentum.

For 17
ΛO we see in figure 5.13 that the minimum result is practically converged

for all models, when we include nucleon orbits up to N = 7. Not much is gained
by increasing the size of the modelspace to N = 9, which increases the runtime
of each variation eightfold.

For the larger nuclei in figure 5.14 and 5.15, showing results for 41
ΛCa and 91

ΛZr
respectively, we still see that at the minimum, the results converge for larger N .
The J04 interaction, however, seems to converge more slowly than the NSC97
models. This is especially clear in 5.15 c). A possible explanation is that the
relative partial waves with high total angular momentum contributes more to
the renormalized matrix elements for the J04 model than for the NSC97 models.
It can also mean that the matrix elements for transitions between higher orbits
are larger for the J04 model than for the NSC97 models. As these elements are
weighted with the factor 2j+1 in the calculation of the single particle potential,
small uncertainties in these elements will be magnified, making the final results
very sensitive to these matrix elements.

As the space is increased, we see also that the minima are moved to lower values
of the oscillator parameter β and that the results calculated with lower values
of β depend more on the size of the model space than results calculated with
higher values of β.

For nuclei larger than 41
ΛCa, we need at least N = 9 in order to fined converged

results.

The most important point, is again that the results are very different for the
different interaction models. This will be made even clearer in the next section,
when we discuss how the energy depends on the variational parameters.

Table 5.4, 5.5 and 5.6 tabulate the energies used in the previously discussed
plots.

70

-20

-18

-16

-14

-12

-10

-8

-6

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

N = 3
N = 5
N = 7
N = 9

~ω

(a) NSC97A

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

N = 3
N = 5
N = 7
N = 9

~ω

(b) NSC97F

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

N = 3
N = 5
N = 7
N = 9

~ω

(c) J04

Figure 5.13: Single particle energies for Λ in the 0s1/2 orbital in 17
ΛO as a function

of the oscillator parameter for different sized model space. N stands for
the maximum 2n + l in the modelspace for the nucleons.

71

-40

-35

-30

-25

-20

-15

-10

-5

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

N = 3
N = 5
N = 7
N = 9

~ω

(a) NSC97A

-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

-10

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

N = 3
N = 5
N = 7
N = 9

~ω

(b) NSC97F

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

N = 3
N = 5
N = 7
N = 9

~ω

(c) J04

Figure 5.14: Single particle energies for Λ in the 0s1/2 orbital in 41
ΛCa as a function

of the oscillator parameter for different sized modelspace. N stands for
the maximum 2n + l in the model space for the nucleons.

72

-60

-55

-50

-45

-40

-35

-30

-25

-20

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

N = 5
N = 7
N = 9

~ω

(a) NSC97A

-40

-35

-30

-25

-20

-15

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

N = 5
N = 7
N = 9

~ω

(b) NSC97F

-18

-16

-14

-12

-10

-8

-6

-4

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

N = 5
N = 7
N = 9

~ω

(c) J04

Figure 5.15: Single particle energies for Λ in the 0s1/2 orbital in 91
ΛZr as a function

of the oscillator parameter for different sized model spaces. N stands
for the maximum 2n + l in the model space for the nucleons.

73

~ω λ NSC97A NSC97F J04
5.0 2.0 -.142130E+02 -.146005E+02 -.236463E+01
5.0 2.5 -.100220E+02 -.105153E+02 -.145238E+01
5.0 3.0 -.580315E+01 -.621929E+01 -.585954E+00
10.0 2.0 -.283548E+02 -.264695E+02 -.508280E+01
10.0 2.5 -.176048E+02 -.166459E+02 -.228835E+01
10.0 3.0 -.765527E+01 -.718411E+01 0.269105E+00
15.0 2.0 -.343005E+02 -.301819E+02 -.522945E+01
15.0 2.5 -.182380E+02 -.159281E+02 -.570465E+00
15.0 3.0 -.573403E+01 -.417381E+01 0.280576E+01
20.0 2.0 -.353245E+02 -.294330E+02 -.371252E+01
20.0 2.5 -.164269E+02 -.126355E+02 0.202292E+01
20.0 3.0 -.284581E+01 0.692835E-01 0.572580E+01
25.0 2.0 -.341553E+02 -.265827E+02 -.149092E+01
25.0 2.5 -.135103E+02 -.812080E+01 0.498695E+01
25.0 3.0 0.490273E+00 0.497532E+01 0.879451E+01

Table 5.4: Single particle energies for Λ in the 0s1/2 orbital outside a core of 16O.

~ω λ NSC97A NSC97F J04
5.0 2.0 -.249132E+02 -.248547E+02 -.591739E+01
5.0 2.5 -.180783E+02 -.181185E+02 -.437293E+01
5.0 3.0 -.113244E+02 -.112121E+02 -.299530E+01
10.0 2.0 -.509021E+02 -.440472E+02 -.132682E+02
10.0 2.5 -.330701E+02 -.277015E+02 -.837402E+01
10.0 3.0 -.164776E+02 -.127420E+02 -.399717E+01
15.0 2.0 -.642515E+02 -.490546E+02 -.173640E+02
15.0 2.5 -.354149E+02 -.256347E+02 -.771858E+01
15.0 3.0 -.142093E+02 -.821421E+01 -.141636E+01
20.0 2.0 -.671886E+02 -.470663E+02 -.175821E+02
20.0 2.5 -.332148E+02 -.206469E+02 -.515134E+01
20.0 3.0 -.113397E+02 -.284464E+01 0.135490E+01
25.0 2.0 -.660513E+02 -.428834E+02 -.159834E+02
25.0 2.5 -.303610E+02 -.150148E+02 -.240329E+01
25.0 3.0 -.844995E+01 0.326465E+01 0.392458E+01

Table 5.5: Single particle energies for Λ in the 0s1/2 orbital outside a core of 40Ca.

74

~ω λ NSC97A NSC97F J04
5.0 2.0 -.358840E+02 -.347509E+02 -.977846E+01
5.0 2.5 -.265584E+02 -.254830E+02 -.761521E+01
5.0 3.0 -.172536E+02 -.159492E+02 -.573762E+01
10.0 2.0 -.750713E+02 -.603279E+02 -.229602E+02
10.0 2.5 -.496889E+02 -.368208E+02 -.155582E+02
10.0 3.0 -.251061E+02 -.162715E+02 -.854547E+01
15.0 2.0 -.986818E+02 -.654056E+02 -.337210E+02
15.0 2.5 -.546621E+02 -.319591E+02 -.169061E+02
15.0 3.0 -.221431E+02 -.102903E+02 -.572883E+01
20.0 2.0 -.105513E+03 -.618633E+02 -.378006E+02
20.0 2.5 -.518825E+02 -.250758E+02 -.144423E+02
20.0 3.0 -.197019E+02 -.289759E+01 -.363980E+01
25.0 2.0 -.104345E+03 -.568018E+02 -.370464E+02
25.0 2.5 -.493258E+02 -.173729E+02 -.124339E+02
25.0 3.0 -.171029E+02 0.701692E+01 -.213177E+01

Table 5.6: Single particle energies for Λ in the 0s1/2 orbital outside a core of 90Zr.

75

5.4 Baryon coupled channels

When we defined the channels in section 3.4, the conservation of charge limited
the transitions between different baryon combinations. Those channels where
these transitions were allowed, were called baryon coupled channels.

We will now investigate the effect of the baryon coupling on the single particle
energy for Λ in the 0s1/2 orbital, outside a core of 16O.

For most channels the baryon coupling has little effect, but for the tensor coupled
channel 3S1–

3D1, this is not the case. The 3S1–
3D1 channel with charge q = 0,

couples Λn, Σ0n and Σ−p, while the channel with q = 1 couples Λp, Σ0p and
Σ+n. We will investigate how the final results are affected when we turn off the
baryon coupling in these two channels. By turning off, we will mean setting the
matrix elements representing transitions between different particle combinations
in the same channel, to zero.

Type Coupled Uncoupled ∆E

NSC97A -17.6048 14.2381 31.8429
NSC97F -16.6459 16.9117 33.5576
Juelich -2.28835 -.531068 1.757282

Table 5.7: Differences between the single particle energies for the Λ in the 0s1/2

orbital in 17
ΛO with and without the baryon coupling in the ΛN 3S1–

3D1

channel

Table 5.7 shows the single particle energy when the renormalized matrix
elements have been calculated with and without baryon coupling. The difference
∆E between the coupled and uncoupled are also shown. It is obvious that this
coupling has a significant effect, more so for the NSC97 models, than for J04.
The difference for NSC97 is over 30 MeV, while for the J04 mode it is only
about 2 MeV.

a b c d j Coupled Uncoupled ∆E

Λ 0s1/2 p 0s1/2 Λ 0s1/2 p 0s1/2 0 -0.519790 -0.519790 0.000000
Λ 0s1/2 p 0s1/2 Λ 0s1/2 p 0s1/2 1 -3.157155 0.646005 3.803160
Λ 0s1/2 n 0s1/2 Λ 0s1/2 n 0s1/2 0 -0.556515 -0.556515 0.000000
Λ 0s1/2 n 0s1/2 Λ 0s1/2 n 0s1/2 1 -3.196860 0.709984 3.906844
Λ 0s1/2 p 0p3/2 Λ 0s1/2 p 0p3/2 1 -0.778716 -0.199606 0.579109
Λ 0s1/2 p 0p3/2 Λ 0s1/2 p 0p3/2 2 -2.623350 0.272197 2.895547
Λ 0s1/2 n 0p3/2 Λ 0s1/2 n 0p3/2 1 -0.814054 -0.218710 0.595344
Λ 0s1/2 n 0p3/2 Λ 0s1/2 n 0p3/2 2 -2.660325 0.316392 2.976717
Λ 0s1/2 p 0p1/2 Λ 0s1/2 p 0p1/2 0 -0.470052 0.109057 0.579109
Λ 0s1/2 p 0p1/2 Λ 0s1/2 p 0p1/2 1 -0.941512 0.216705 1.158217
Λ 0s1/2 n 0p1/2 Λ 0s1/2 n 0p1/2 0 -0.500150 0.095195 0.595345
Λ 0s1/2 n 0p1/2 Λ 0s1/2 n 0p1/2 1 -0.946399 0.244290 1.190689
Total -17.164880 1.115205 18.280085

Table 5.8: Contributions from different matrix elements to the single-particle
potential in equation 3.3.1 for the Λ in the 0s1/2 orbital in 17

ΛO using
the NSC97A model.

76

a b c d j Coupled Uncoupled ∆E

Λ 0s1/2 p 0s1/2 Λ 0s1/2 p 0s1/2 0 -1.47394000 -1.47394000 0.00000000
Λ 0s1/2 p 0s1/2 Λ 0s1/2 p 0s1/2 1 -2.55241500 1.39046850 3.94288350
Λ 0s1/2 n 0s1/2 Λ 0s1/2 n 0s1/2 0 -1.51145500 -1.51145500 0.00000000
Λ 0s1/2 n 0s1/2 Λ 0s1/2 n 0s1/2 1 -2.58103500 1.48748550 4.06852050
Λ 0s1/2 p 0p3/2 Λ 0s1/2 p 0p3/2 1 -1.35887550 -0.75849150 0.60038400
Λ 0s1/2 p 0p3/2 Λ 0s1/2 p 0p3/2 2 -1.97320250 1.02872250 3.00192500
Λ 0s1/2 n 0p3/2 Λ 0s1/2 n 0p3/2 1 -1.39523100 -0.77524950 0.61998150
Λ 0s1/2 n 0p3/2 Λ 0s1/2 n 0p3/2 2 -1.99994250 1.09995750 3.09990000
Λ 0s1/2 p 0p1/2 Λ 0s1/2 p 0p1/2 0 -0.29276500 0.30762000 0.60038500
Λ 0s1/2 p 0p1/2 Λ 0s1/2 p 0p1/2 1 -0.94644000 0.25432950 1.20076950
Λ 0s1/2 n 0p1/2 Λ 0s1/2 n 0p1/2 0 -0.31987950 0.30010050 0.61998000
Λ 0s1/2 n 0p1/2 Λ 0s1/2 n 0p1/2 1 -0.94965750 0.29030400 1.23996150
Total -17.354838 1.639852 18.99469000

Table 5.9: Contributions from different matrix elements to the single-particle
potential in equation 3.3.1 for the Λ in the 0s1/2 orbital in 17

ΛO using
the NSC97F model.

a b c d j Coupled Uncoupled ∆E

Λ 0s1/2 p 0s1/2 Λ 0s1/2 p 0s1/2 0 -1.09650500 -1.09650500 0.00000000
Λ 0s1/2 p 0s1/2 Λ 0s1/2 p 0s1/2 1 -0.22785300 -0.01824540 0.20960760
Λ 0s1/2 n 0s1/2 Λ 0s1/2 n 0s1/2 0 -1.09843000 -1.09843000 0.00000000
Λ 0s1/2 n 0s1/2 Λ 0s1/2 n 0s1/2 1 -0.26662500 -0.01828065 0.24834435
Λ 0s1/2 p 0p3/2 Λ 0s1/2 p 0p3/2 1 -1.11270000 -1.08078300 0.03191700
Λ 0s1/2 p 0p3/2 Λ 0s1/2 p 0p3/2 2 -0.17968350 -0.02009815 0.15958535
Λ 0s1/2 n 0p3/2 Λ 0s1/2 n 0p3/2 1 -1.12126650 -1.08342300 0.03784350
Λ 0s1/2 n 0p3/2 Λ 0s1/2 n 0p3/2 2 -0.20930450 -0.02008483 0.18921967
Λ 0s1/2 p 0p1/2 Λ 0s1/2 p 0p1/2 0 -0.03469530 -0.00277825 0.03191705
Λ 0s1/2 p 0p1/2 Λ 0s1/2 p 0p1/2 1 -0.46604400 -0.40220850 0.06383550
Λ 0s1/2 n 0p1/2 Λ 0s1/2 n 0p1/2 0 -0.04062960 -0.00278569 0.03784391
Λ 0s1/2 n 0p1/2 Λ 0s1/2 n 0p1/2 1 -0.47968350 -0.40399500 0.07568850
Total -6.333420 -5.247617 1.08580300

Table 5.10: Contributions from different matrix elements to the single-particle
potential in equation 3.3.1 for the Λ in the 0s1/2 orbital in 17

ΛO using the
J04 model.

77

In tables 5.8, 5.9 and 5.10 we see how the different matrix elements contribute
to this result. Matrix elements that sum up to the first iteration of the single
particle potential are tabulated for NSC97A, NSC97F and J04 respectiviely. We
see clearly that the matrix elements with the largest difference, are those that
couple to a nonzero total angular momentum. This is true for all three models,
but the results for the J04 model are an order of magnitude smaller than for
the NSC97 models.

Again, as in previous sections, we find ourselves discussing the large differences
between the various interaction models. We now touch upon one of the
major problems when doing hypernuclear structure calculations using current
interaction models. For NN models, direct scattering experiments have helped
constrain the NN interaction to a point where structure calculations are possible.
But partly because of the short lifetime of the hyperons, such scattering data
are scarce and the quality is not so good for the YN interaction. Although they
reproduce scattering data, they all produce different scattering lengths [25].

The authors of different interaction models have chosen different ways to
parameterize the unknown parts of the interaction, resulting in widely different
behaviours, especially for coupled channels. We see this very clearly in figure
5.16, where different results for the Λp 3S1–

3D1 channel are plotted (results for
Λn are similar).

In figure 5.16 g) and f), we see that the energy eigenvalues of this channel are
different. The NSC97F model has a loosely bound state in this channel that is
not present in the J04 model. The difference, however, is only about 0.25 MeV
between the two.

The largest discrepancy comes from the 3S1 block matrix, where the J04
elements are very small compared to the NSC97 elements. The renormalized
interaction for this block is plotted in 5.16 b), where it is evident that the
NSC97F model generates almost 15 MeV more binding for low-momentum states
than the J04 model in this channel.

78

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16 18 20

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97F (bare)
juelich (bare)

(a) Bare interaction in the 3S1 block ma-
trix.

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 0 0.5 1 1.5 2 2.5

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97F (vlowk)
juelich (vlowk)

(b) Renormalized interaction in the 3S1

block matrix.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16 18 20

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97F (bare)
juelich (bare)

(c) Bare interaction in the 3D1 block ma-
trix.

-60

-50

-40

-30

-20

-10

 0

 10

 0 0.5 1 1.5 2 2.5

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97F (vlowk)
juelich (vlowk)

(d) Renormalized interaction in the 3D1

block matrix.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12 14 16 18 20

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97F (bare)
juelich (bare)

(e) Bare interaction in the 3S1–3D1 block
matrix.

-50

-40

-30

-20

-10

 0

 10

 20

 0 0.5 1 1.5 2 2.5

E
ne

rg
y

(M
eV

 fm
^3

)

Momentum (1/fm)

NSC97F (vlowk)
juelich (vlowk)

(f) Renormalized interaction in the 3S1–
3D1 block matrix.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

-2.595399e-01

2.714449e-03

NSC97F (bare)
juelich (bare)

(g) Energy eigenvalues of the bare Hamilto-
nian.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

-2.595399e-01

2.714449e-03

NSC97F (vlowk)
juelich (vlowk)

(h) Energy eigenvalues of the renormalized
Hamiltonian.

Figure 5.16: Diagonal elements and energy eigenvalues in the Λp 3S1–
3D1 baryon

and tensor coupled channel.

79

5.5 Single particle energies

Our main results in this thesis is the calculation of self-consistent single particle
orbitals defining a new basis for further calculation of an effective many-particle
interaction using perturbative methods. We will present the single particle
energies for the 0s1/2 Λ orbital in this new basis, which is really a linear
combination of three-dimensional spherical harmonic oscillator wavefunctions.
We have kept the convenient nomenclature, while redefining the orbitals,
energies and matrix elements to compensate for these new basis states.

We will concentrate on five doubly magic nuclei, adding a Λ to these
configurations. The selected nuclei are 17

ΛO, 41
ΛCa, 91

ΛZr, 133
ΛSn and 209

ΛPb.

Results are calculated using 60 meshpoints for an uncoupled channel, with 30
in the low momentum model space and 30 in the complement space. The
integration limit used is 20.0 fm−1, as justified in section 5.1. The harmonic
oscillator space is limited to N = 2n + l = 7 for 17

ΛO, 41
ΛCa and 91

ΛZr, and to
N = 9 for 133

ΛSn and 209
ΛPb. All results in this section are for Λ in the 0s1/2

orbital for the selected nucleus, although the application is capable of calculating
the energies for different orbitals and other hyperons. This is done because we
do no get any kind of converged results, so we concentrate on showing how this
single particle energy behaves as we vary the the oscillator parameter β and
momentum cutoff λ for the selected hypernuclei.

Figures 5.17, 5.18, 5.19, 5.20 and 5.21 each consist of eight plots where a)-e)
plot the energy as a function of λ for different values of β, while f)-h) plot the
energy as a function of β for different values of λ. The figures relate to 17

ΛO,
41
ΛCa, 91

ΛZr, 133
ΛSn and 209

ΛPb respectively.

The most striking feature, present for all five nuclei, is the almost linear
behaviour of the energy as a function of λ for all β. That the amount of
binding would increase for smaller model space, was expected. The renormalized
two-particle matrix elements in a smaller model space would need to be more
attractive in order to sum up to the same amount of binding as the summation
in the full space. Although this would be correct for a two-particle problem, for
a many-particle problem, we would need many-particle forces to compensate.

The linear behaviour was, however, not expected and needs to be studied
further.

Another major feature, discussed also in previous sections, is the large difference
between the results from the different interaction models. Results for all nuclei
show this feature. This is the primary reason we cannot get converged results
from these calculations. The interaction models are not properly constrained
by scattering data, giving large uncertainties in the two-particle interaction. All
is not lost, however, since there are several experiments on the horizon aimed
at constraining the YN interaction and even the YY interaction, needed for
perturbative methods beyond first order and hypernuclei consisting of more
than one hyperon.

With the libraries developed for this thesis, we are ready to test new models as
soon as they are made available and obtain many-particle results immediately
using the new data.

80

A third common feature of these plots, are the minima of plots f)-h), showing
the single-particle energy as a function of β for different cutoffs λ. As the model
space is increased with higher cutoff, the energy minima is found for smaller
β, with considerable less energy. This tells us that the interaction is weaker
for higher cutoffs, generating less binding. This is also consistent with results
discussed earlier.

The major difference between the different nuclei, is how strongly the Λ is bound
to the nucleus. For a larger nucleus, the Λ is more deeply bound, which is to
be expected. In addition, the results for J04 and NSC97 seems to get closer for
larger nuclei. It would be interesting to study this difference more closely.

The energy range for a particular plot also increase as the nucleus grows.
Differences of up to 100 MeV are registred for the 209

ΛPb results, indicating
that the results are less reliable for larger nuclei. Since the results are already
plagued with large uncertainties, this point will not be stressed further.

It would be interesting to compare these results with the G-matrix method
to establish if there is a difference in the results achieved using different
renormalization techniques and if so, where these differences originates.

In figure 5.22 we have plotted the minima of the single-particle energy as a
function of the size of the nuclei. We can see that the single-particle energies
converge towards a limit for both the J04 model and the NSC97F model. For
the NSC97A model, this is not so clear, but this may be because we have not
hit the minima with our β samples. This limit is the situation where a Λ is in a
medium of infinite nuclear matter with kΛ

F = 0. It will be necessary to compare
these results with calculations done for infinite nuclear matter, but this has not
been done for this thesis, but is reserved for future work.

81

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(a) ~ω = 5

-30

-25

-20

-15

-10

-5

 0

 5

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(b) ~ω = 10

-35

-30

-25

-20

-15

-10

-5

 0

 5

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(c) ~ω = 15

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 10

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(d) ~ω = 20

-35

-30

-25

-20

-15

-10

-5

 0

 5

 10

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(e) ~ω = 25

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(f) λ = 2.0

-20

-15

-10

-5

 0

 5

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(g) λ = 2.5

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(h) λ = 3.0

Figure 5.17: Single particle energies for a Λ in 0s1/2 for 17
ΛO.

82

-25

-20

-15

-10

-5

 0

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(a) ~ω = 5

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(b) ~ω = 10

-70

-60

-50

-40

-30

-20

-10

 0

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(c) ~ω = 15

-70

-60

-50

-40

-30

-20

-10

 0

 10

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(d) ~ω = 20

-70

-60

-50

-40

-30

-20

-10

 0

 10

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(e) ~ω = 25

-70

-60

-50

-40

-30

-20

-10

 0

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(f) λ = 2.0

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(g) λ = 2.5

-20

-15

-10

-5

 0

 5

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(h) λ = 3.0

Figure 5.18: Single particle energies for a Λ in 0s1/2 for 41
ΛCa.

83

-40

-35

-30

-25

-20

-15

-10

-5

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(a) ~ω = 5

-80

-70

-60

-50

-40

-30

-20

-10

 0

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(b) ~ω = 10

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(c) ~ω = 15

-120

-100

-80

-60

-40

-20

 0

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(d) ~ω = 20

-120

-100

-80

-60

-40

-20

 0

 20

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(e) ~ω = 25

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(f) λ = 2.0

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(g) λ = 2.5

-30

-25

-20

-15

-10

-5

 0

 5

 10

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(h) λ = 3.0

Figure 5.19: Single particle energies for a Λ in 0s1/2 for 91
ΛZr.

84

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(a) ~ω = 5

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(b) ~ω = 10

-120

-100

-80

-60

-40

-20

 0

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(c) ~ω = 15

-140

-120

-100

-80

-60

-40

-20

 0

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(d) ~ω = 20

-140

-120

-100

-80

-60

-40

-20

 0

 20

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(e) ~ω = 25

-140

-120

-100

-80

-60

-40

-20

 0

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(f) λ = 2.0

-70

-60

-50

-40

-30

-20

-10

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(g) λ = 2.5

-30

-25

-20

-15

-10

-5

 0

 5

 10

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(h) λ = 3.0

Figure 5.20: Single particle energies for a Λ in 0s1/2 for 133
ΛSn.

85

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(a) ~ω = 5

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(b) ~ω = 10

-160

-140

-120

-100

-80

-60

-40

-20

 0

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(c) ~ω = 15

-160

-140

-120

-100

-80

-60

-40

-20

 0

 20

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(d) ~ω = 20

-160

-140

-120

-100

-80

-60

-40

-20

 0

 20

 2 2.2 2.4 2.6 2.8 3

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

Cutoff λ [fm−1]

(e) ~ω = 25

-160

-140

-120

-100

-80

-60

-40

-20

 0

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(f) λ = 2.0

-80

-70

-60

-50

-40

-30

-20

-10

 0

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(g) λ = 2.5

-35

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 5 10 15 20 25

E
ne

rg
y

[M
eV

]

NSC97A
NSC97F

juelich

~ω

(h) λ = 3.0

Figure 5.21: Single particle energies for a Λ in 0s1/2 for 209
ΛPb.

86

-160

-140

-120

-100

-80

-60

-40

-20

 0

 0 20 40 60 80 100 120 140 160 180 200 220

E
ne

rg
y

[M
eV

]

Size of nucleus

NSC97A
NSC97F

J04

(a)

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 20 40 60 80 100 120 140 160 180 200 220

E
ne

rg
y

[M
eV

]

Size of nucleus

NSC97A
NSC97F

J04

(b)

-35

-30

-25

-20

-15

-10

-5

 0

 0 20 40 60 80 100 120 140 160 180 200 220

E
ne

rg
y

[M
eV

]

Size of nucleus

NSC97A
NSC97F

J04

(c)

Figure 5.22: Medium dependency of the Λ single-particle energy in the 0s1/2 orbital.
Figure (a) shows the result for the model space defined by cutoff λ = 2.0
in units of fm−1, while (b) and (c) show the results for λ = 2.5 and
λ = 3.0, respectively.

87

88

6 Conclusion

The combination of Python with a low-level compiled language is powerful. We
have created a library that extends the Python language with capabilities to
do structure calculations and used this library to calculate effective two-particle
interactions, using realistic NN interaction models and currently available YN
interaction models.

Using these models in a many-particle calculation has,however, proven difficult,
as the results using the different models deviate substantially and to the point
where they cannot be used to give realistic results. We saw that the Λp and
Λn 3S1–

3D1 channels were especially important and that different treatment
of these channels could explain the major differences between the interaction
models. Additional analysis is needed to give a more quantitative description of
these differences and if other channels have similar effects. Our findings agree
with recent results from for example [50]. We will need to study the partial
wave contributions to specific matrix elements in the laboratory frame, but due
to limitations in the tools used in creating the library, this is currently not
possible. However, promising new tools are now available to help to alleviate
this situation.

We conclude that the currently available YN interaction models are not accurate
enough to be used in many-particle calculations. High quality scattering data
is needed to constrain the YN interaction, but because of the short lifetime of
the hyperons, the data currently available is plagued with large uncertainties.

Several experiments are on the horizon to produce higher quality data for YN
scattering and even for YY scattering, but there will be some time before this
result in revised interaction models. We will use this time wisely to expand and
improve our tools, in order to perform more comprehensive analyses as well as to
gain additional capabilities for including hyperons in many-particle calculations.

As our results indicated, a realistic many-particle calculation will also need to
incorporate three-body forces. A general framework for incorporating three-
body forces is already included in the original application, but will need
significant revisions to be able to include hyperons.

During the next decade, there is also the possibility that more general baryon-
baryon interactions can be derived directly from the fundamental interaction
between quarks and gluons, using Lattice QCD. This holds great promise for a
more fundamental understanding of the strong interaction, hopefully bringing
our knowledge of nuclear phenomena to a higher level.

89

90

A Special functions

A.1 Spherical Bessel functions

The spherical Bessel functions [51], are solutions of the radial differential
equation

x2 d
2y

dx2
+ 2x

dy

dx
+
(

x2 − l(l + 1)
)

y = 0 (A.1.1)

This equation has two linearly independent sets of solutions jl and yl called the
spherical Bessel functions of the first and second kind respectively. The latter
is also known as the spherical Neumann functions,

jl(x) =

√

π

2x
Jl+ 1

2
(x), (A.1.2)

yl(x) =

√

π

2x
Yl+ 1

2
(x) = (−1)l+1

√

π

2x
J−l− 1

2
(x), (A.1.3)

where Jn and Yn are the ordinary Bessel functions of the first and second kind.
The latter is also called the ordinary Neumann functions.

These are two independent solutions to a related differential equation

x2 d
2y

dx2
+ x

dy

dx
+
(

x2 − n2
)

y = 0, (A.1.4)

for integer n. For non-integer n, two independent solutions are

Jn(x), (A.1.5)

J−n(x). (A.1.6)

We will only need the spherical Bessel functions of the first kind. They can be
expressed as

jl(x) = (−x)l

(

1

x

d

dx

)l
sinx

x
, (A.1.7)

where the solutions for l = 0, 1, 2 are

j0(x) =
sinx

x
, (A.1.8)

j1(x) =
sinx

x2
− cosx

x
, (A.1.9)

j2(x) =

(

3

x2
− 1

)

sinx

x
− 3 cosx

x2
. (A.1.10)

A.2 Legendre polynomials

The Legendre polynomials or Legendre functions [51], are solutions of the
Legendre differential equation

d

dx

(

(1− x2)
d

dx
P (x)

)

+ l(l + 1)P (x) = 0. (A.2.1)

91

The solutions to this equation are called Legendre polynomial of order l - Pl(x)
and are polynomias of order l. They may be expressed using Rodrigues’ formula

Pl(x) =
1

2ll!

dl

dxl

(

x2 − 1
)l
. (A.2.2)

The polynomials have an orthogonality property on the interval −1 ≤ x ≤ 1.

∫ 1

−1

dxPm(x)Pn(x) =
2

2n+ 1
δmn. (A.2.3)

The Legendre polynomials for l = 0, 1, 2 are

P0(x) = 1, (A.2.4)

P1(x) = x, (A.2.5)

P2(x) =
1

2

(

3x2 − 1
)

. (A.2.6)

A.3 Associated Laguerre polynomials

The associated or generalized Laguerre polynomials [51] Lk
n(x) are related to

the simple Laguerre polynomials Ln(x) by the relation

Lk
n(x) = (−1)k dk

dxk
Ln+k(x). (A.3.1)

The simple Laguerre polynomials are power series solutions of the differential
equation

x
d2

dx2
L(x) + (1 − x) d

dx
L(x) + nL(x) = 0, (A.3.2)

and may be defined by the Rodrigues formula

Ln(x) =
1

n!
ex d

n

xn

(

xne−x
)

. (A.3.3)

The associated Laguerre polynomials satifies the differential equation

x
d2

dx2
L(x) + (k + 1− x) d

dx
L(x) + nL(x) = 0, (A.3.4)

and can be expressed on a form derived from the Rodrigues formula for the
simple Laguerre polynomials

Lk
m(x) =

x−kex

n!

dn

dxn

(

xn+ke−x
)

. (A.3.5)

The associated Laguerre polynomials satisfies an orthonormality relation on the
interval x ∈ [0,∞]

∫ ∞

0

dx xke−xLk
n(x)Lk

m(x) =
(n+ k)!

n!
δmn. (A.3.6)

92

B Relativistic field theory

B.1 Notation

We define the gamma matrices 1

γ0 =

[

1 0

0 −1

]

,

γk =

[

0 σk

−σk 0

]

,

γ5 = γ5 = iγ0γ1γ2γ‘3 =

[

0 1

1 0

]

,

where σk are the usual Pauli matrices

σ1 = σ1 =

[

0 1
1 0

]

,

σ2 = σ2 =

[

0 −i
i 0

]

,

σ3 = σ3 =

[

1 0
0 −1

]

,

and also the commutator and partial derivatives

σµν =
i

2
[γµ, γν],

i∂µ = i
∂

∂xµ
.

We will use Einstein’s summing conventions, where we sum over equal indices.
Greek indices range from 0 to 3, while latin indices range from 1 to 3.

ψ̄ = ψ†γ0 is the adjoint operator, mB is the nucleon mass, while ϕ(s), ϕ(ps) and

ϕ
(v)
µ are the scalar, pseudoscalar and vector meson fields respectively.

B.2 Dirac Spinor field

ψ = u(q)e−ip·x, (B.2.1)

where

u(q) =

√

E +mB

2mB

[

χ
σ·p

E+mB
χ

]

, (B.2.2)

(B.2.3)

and χ are the Pauli Spinors

χ− =

[

0
1

]

, χ+ =

[

1
0

]

, (B.2.4)

representing negative and positive spin respectively.

1The relativistic notatin used here follows [52].

93

B.3 Meson-Baryon vertices and meson propagators

The propagator and Lagrangian density depends on what kind of meson field
is evaluated. For low-energy NN systems there are only three relevant meson
fields [20]� Scalar (s)� Pseudoscalar (ps)� vector (v)

The commonly used Lagrangians to couple these meson fields to the baryon
fields are

Ls = gsψ̄ψϕ
(s), (B.3.1)

Lps = −gpsψ̄iγ5ψϕ
(ps), (B.3.2)

Lv = −gvψ̄γ
µψϕ(v)

µ − fv

4mB
ψ̄σµνψ

(

∂µϕ
(v)
ν − ∂νϕ

(v)
µ

)

, (B.3.3)

where ψ represents the baryon field as defined in appendix B.2, ψ̄ = ψ†γ0 is

the adjoint operator, mB is the nucleon mass, while ϕ(s), ϕ(ps) and ϕ
(v)
µ are the

scalar, pseudoscalar and vector meson fields respectivly.

Instead of the pseudoscalar field, we can alternatively use a pseudovector(pv)
field with Lagrangian

Lpv = − fps

mps
ψ̄γ5γµψδµϕ

(pv), (B.3.4)

where fps =
mps
2M gps.

For an isovector meson, the meson field ϕα must be exchanged with τ ·ϕα, where
τ are the familiar Pauli matrices.

The Meson-Baryon vertices are derived from the Lagrangian density of the
corresponding meson field and given by

Γs = gs1̂,

Γps = −gpsiγ
5,

Γpv = − fps

mps
γ5γµi(p− p′)ν ,

Γv = −gvγ
µ +

fv

2mB
σµν i(p− p′)ν .

The propagators for scalar and pseudo scalar exchanges are

i

(q′ − q)2 −mα
, (B.3.5)

and for vector exchanges

i
−gµν + (q′ − q)ν/m

2
v

−(q′ − q)2 −m2
v

. (B.3.6)

94

B.4 Momentum space interaction for a scalar meson
exchange

The contribution to the OBE interaction for a scalar meson exchange as given
in [20] is

〈q′λ′1λ
′
2|Vs|qλ1λ2〉 = −g2

s ū(q
′, λ′1)u(q, λ1)ū(−q′, λ′2)u(−q, λ2)×

[

(q′ − q)2 +m2
s

]−1,

where λi(λ
′
i) represents the helicity of an incoming(outgoing) baryon, u(ū) is

the incoming(outgoing) dirac spinor field as defined in appendix B.2.

95

C Angular momentum

C.1 Definition

A general angular momentum operator Ĵ , satisfies the following properties
[

Ĵi, Ĵj

]

= iǫijk~Ĵk, (C.1.1)
[

Ĵ2, Ĵi

]

= 0, (C.1.2)
[

Ĵ2, Ĵ±
]

= 0, (C.1.3)
[

Ĵz, Ĵ±
]

= ±~Ĵ±, (C.1.4)
[

Ĵ+, Ĵ−
]

= 2~Ĵz, (C.1.5)

where we define

Ĵ2 = ĴxĴx + ĴyĴy + ĴzĴz, (C.1.6)

since in general the angular momentum operators in different directions does
not commute. We have also defined the so-called ladder operators

Ĵ± = Ĵx + iĴy. (C.1.7)

We define the eigenvectors of the angular momentum operators |j;m〉 and set
up the eigenvalue equations

Ĵ2|j;m〉 = j(j + 1)~2|j;m〉, (C.1.8)

Ĵi|j;m〉 = m~|j;m〉, (C.1.9)

Ĵ±|j;m〉 = ~

√

(j ∓m)(j ±m+ 1)|j;m± 1〉. (C.1.10)

C.1.1 Coupling of angular momentum operators

When we couple two angular momentum, we can operate with two equivalent
basis sets.

We define two angular momentum operators Ĵ1 and Ĵ2 satisfying all relations
in appendix C.1. They operate in different subspaces, so they commute

[

Ĵ1i, Ĵ2j

]

= 0, (C.1.11)

where the subscripts i and j means the different directions of the operators.

These operator satisfies the eigenvalue equations

Ĵ2
1 |j1;m1〉 = j1(j1 + 1)~2|j1;m1〉, (C.1.12)

Ĵ1i|j1;m1〉 = m1~|j1;m1〉, (C.1.13)

Ĵ2
2 |j2;m2〉 = j2(j2 + 1)~2|j2;m2〉, (C.1.14)

Ĵ2i|j2;m2〉 = m2~|j2;m2〉. (C.1.15)

96

When we couple the subspaces spanned by the basis sets |j1;m1〉 and |j2;m2〉
we have the option to define a new operator

Ĵ = Ĵ1 ⊗ I2 + Ĵ2 ⊗ I1, (C.1.16)

where ⊗ is the operator for a tensor product, while Ii is the identity operator
in the subspace where Ĵi operates. This is commonly written as

Ĵ = Ĵ1 + Ĵ2, (C.1.17)

which is also the notation we’ll use here. The coupled basis set will in this
notation reads

|j1;m1〉 ⊗ |j2;m2〉 = |j1, j2;m1,m2〉, (C.1.18)

The operator Ĵ satisfies angular momentum algebra and the eigenvalue
equations

Ĵ2|j1, j2; jm〉 = j(j + 1)~2|j1, j2; jm〉, (C.1.19)

Ĵi|j1, j2; jm〉 = m~|j1, j2; jm〉, (C.1.20)

(C.1.21)

where

|j1 − j2| ≤ j ≤ j1 + j2, (C.1.22)

−j ≤ m ≤ j. (C.1.23)

The overlap between the two different basis sets is defined as

|j1, j2; jm〉 =
∑

m1,m2

|j1, j2;m1,m2〉〈j1, j2;m1,m2|j1, j2; jm〉, (C.1.24)

where we have used the completeness property of the eigenstates

∑

m1,m2

|j1, j2;m1,m2〉〈j1, j2;m1,m2| = I, (C.1.25)

and 〈j1, j2;m1,m2|j1, j2; jm〉 are the so-called Clebsch-Gordan (CG) coeffi-
cients.

The CG coefficients are related to the Wigner 3-j symbols by the transformation
[53]

〈j1, j2;m1,m2|j1, j2; jm〉 = (−1)j1−j2+m
√

2j + 1

(

j1 j2 j
m1 m2 −m

)

(C.1.26)

Extensive sets of tables for the Wigner 3-j symbols can be found in [54], while
expressions for calculating the symbols can be found in [55].

For couping three and four angular momenta, the Wigner 6-j and 9-j symbols
are used, see for example [56].

97

C.2 Isospin

Isospin is an SU(2) summetry, and as such, the operators T̂α satisfies all the
properties of an angular momentum operator defined in section C.1. We have

[

T̂i, T̂j

]

= iǫijk~T̂k, (C.2.1)
[

T̂ 2, T̂i

]

= 0, (C.2.2)
[

T̂ 2, T̂±
]

= 0, (C.2.3)
[

T̂z, T̂±
]

= ±~T̂±, (C.2.4)
[

T̂+, T̂−
]

= 2~T̂z, (C.2.5)

where we define

T̂ 2 = T̂xT̂x + T̂yT̂y + T̂zT̂z, (C.2.6)

and
T̂± = T̂x + iT̂y. (C.2.7)

We define the eigenvectors of the isospin operators |j;m〉 and set up the
eigenvalue equations

T̂ 2|t;m〉 = t(t+ 1)~2|t;m〉, (C.2.8)

T̂i|t;m〉 = m~|t;m〉, (C.2.9)

T̂±|t;m〉 = ~

√

(t∓m)(t±m+ 1)|t;m± 1〉. (C.2.10)

We will now see how the isospin part of the two-particle wavefunction behaves
when we couple the two particles individual isospin, to a total isospin.

From section C.1.1 we have the relation

|t1, t2;m1,m2〉 =
∑

tm

|t1, t2; tm〉〈t1, t2; tm|t1, t2;m1,m2〉, (C.2.11)

where 〈t1, t2; tm|t1, t2;m1,m2〉 are the Clebch-Gordan coefficients defined in
appendix C.1.1.

We will set up the Clebch-Gordan coefficients for the possible NN and YN
combinations.

For a Nucleon-Nucleon (NN) wavefunction we have

t1 = 1/2, (C.2.12)

t2 = 1/2, (C.2.13)

t = 0, 1. (C.2.14)

For a Lambda-Nucleon (ΛN) wavefunction we have

t1 = 1/2, (C.2.15)

t2 = 0, (C.2.16)

t = 1/2. (C.2.17)

98

For a Sigma-Nucleon (Σ N) wavefunction we have

t1 = 1/2, (C.2.18)

t2 = 1, (C.2.19)

t = 1/2, 3/2. (C.2.20)

C.2.1 Proton Proton case

For proton proton we have

m1 = 1/2, (C.2.21)

m2 = 1/2, (C.2.22)

m = m1 +m2 = 1. (C.2.23)

The wavefunction becomes

|12 , 1
2 ; 1

2 ,
1
2 〉 =

∑

t

| 12 , 1
2 ; t,m = 1〉〈12 , 1

2 ; t,m = 1| 12 , 1
2 ; 1

2 ,
1
2 〉 (C.2.24)

= |12 , 1
2 ; t = 0,m = 1〉〈12 , 1

2 ; t = 0,m = 1| 12 , 1
2 ; 1

2 ,
1
2 〉 (C.2.25)

+ |12 , 1
2 ; t = 1,m = 1〉〈12 , 1

2 ; t = 1,m = 1| 12 , 1
2 ; 1

2 ,
1
2 〉. (C.2.26)

C.2.2 Proton neutron case

For proton neutron we have

m1 = 1/2, (C.2.27)

m2 = −1/2, (C.2.28)

m = m1 +m2 = 0. (C.2.29)

The wavefunction becomes

|12 , 1
2 ; 1

2 ,− 1
2 〉 =

∑

t

| 12 , 1
2 ; t,m = 0〉〈12 , 1

2 ; t,m = 0| 12 , 1
2 ; 1

2 ,− 1
2 〉 (C.2.30)

= |12 , 1
2 ; t = 0,m = 0〉〈12 , 1

2 ; t = 0,m = 0| 12 , 1
2 ; 1

2 ,− 1
2 〉 (C.2.31)

+ |12 , 1
2 ; t = 1,m = 0〉〈12 , 1

2 ; t = 1,m = 0| 12 , 1
2 ; 1

2 ,− 1
2 〉. (C.2.32)

C.2.3 Neutron Neutron case

For neutron neutron we have

m1 = −1/2, (C.2.33)

m2 = −1/2, (C.2.34)

m = m1 +m2 = −1. (C.2.35)

99

The wavefunction becomes

|12 , 1
2 ;− 1

2 ,− 1
2 〉 =

∑

t

| 12 , 1
2 ; t,m = −1〉〈12 , 1

2 ; t,m = −1| 12 , 1
2 ;− 1

2 ,− 1
2 〉 (C.2.36)

= |12 , 1
2 ; t = 0,m = −1〉〈12 , 1

2 ; t = 0,m = −1| 12 , 1
2 ;− 1

2 ,− 1
2 〉
(C.2.37)

+ |12 , 1
2 ; t = 1,m = −1〉〈12 , 1

2 ; t = 1,m = −1| 12 , 1
2 ;− 1

2 ,− 1
2 〉.
(C.2.38)

C.2.4 Proton Lambda case

For proton lambda we have

m1 = 1/2, (C.2.39)

m2 = 0, (C.2.40)

m = m1 +m2 = 1/2. (C.2.41)

The wavefunction becomes

|12 , 0; 1
2 , 0〉 = | 12 , 0; t = 1

2 ,m = 1
2 〉〈12 , 0; t = 1

2 ,m = 1
2 | 12 , 0; 1

2 , 0〉 (C.2.42)

= | 12 , 0; t = 1
2 ,m = 1

2 〉〈12 , 0; t = 1
2 ,m = 1

2 | 12 , 0; 1
2 , 0〉. (C.2.43)

(C.2.44)

C.2.5 Neutron Lambda case

For neutron lambda we have

m1 = −1/2, (C.2.45)

m2 = 0, (C.2.46)

m = m1 +m2 = −1/2. (C.2.47)

The wavefunction becomes

| 12 , 0;− 1
2 , 0〉 = | 12 , 0; t = 1

2 ,m = − 1
2 〉〈12 , 0; t = 1

2 ,m = − 1
2 |12 , 0;− 1

2 , 0〉 (C.2.48)

= | 12 , 0; t = 1
2 ,m = − 1

2 〉〈12 , 0; t = 1
2 ,m = − 1

2 |12 , 0;− 1
2 , 0〉. (C.2.49)

(C.2.50)

C.2.6 Proton Σ+ case

For proton Sigma+ we have

m1 = 1/2, (C.2.51)

m2 = 1, (C.2.52)

m = m1 +m2 = 3/2, (C.2.53)

100

The wavefunction becomes

| 12 , 1; 1
2 , 1〉 =

∑

t

| 12 , 1; t,m = 3
2 〉〈12 , 1; t,m = 3

2 | 12 , 1; 1
2 , 1〉 (C.2.54)

= |12 , 1; t = 1
2 ,m = 3

2 〉〈12 , 1; t = 1
2 ,m = 3

2 | 12 , 1; 1
2 , 1〉 (C.2.55)

+ |12 , 1; t = 3
2 ,m = 3

2 〉〈12 , 1; t = 3
2 ,m = 3

2 | 12 , 1; 1
2 , 1〉. (C.2.56)

C.2.7 Neutron Σ+ case

For neutron Sigma+ we have

m1 = −1/2, (C.2.57)

m2 = 1, (C.2.58)

m = m1 +m2 = 1/2. (C.2.59)

The wavefunction becomes

| 12 , 1;− 1
2 , 1〉 =

∑

t

| 12 , 1; t,m = 1
2 〉〈12 , 1; t,m = 1

2 | 12 , 1;− 1
2 , 1〉 (C.2.60)

= |12 , 1; t = 1
2 ,m = 1

2 〉〈12 , 1; t = 1
2 ,m = 1

2 | 12 , 1;− 1
2 , 1〉 (C.2.61)

+ |12 , 1; t = 3
2 ,m = 1

2 〉〈12 , 1; t = 3
2 ,m = 1

2 | 12 , 1;− 1
2 , 1〉. (C.2.62)

C.2.8 Proton Σ0 case

For proton Σ0 we have

m1 = 1/2, (C.2.63)

m2 = 0, (C.2.64)

m = m1 +m2 = 1/2. (C.2.65)

The wavefunction becomes

| 12 , 1; 1
2 , 0〉 =

∑

t

| 12 , 1; t,m = 1
2 〉〈12 , 1; t,m = 1

2 | 12 , 1; 1
2 , 0〉 (C.2.66)

= |12 , 1; t = 1
2 ,m = 1

2 〉〈12 , 1; t = 1
2 ,m = 1

2 | 12 , 1; 1
2 , 0〉 (C.2.67)

+ |12 , 1; t = 3
2 ,m = 1

2 〉〈12 , 1; t = 3
2 ,m = 1

2 | 12 , 1; 1
2 , 0〉. (C.2.68)

C.2.9 Neutron Σ0 case

For neutron Σ0 we have

m1 = −1/2, (C.2.69)

m2 = 0, (C.2.70)

m = m1 +m2 = −1/2. (C.2.71)

101

The wavefunction becomes

| 12 , 1;− 1
2 , 0〉 =

∑

t

|12 , 1; t,m = − 1
2 〉〈12 , 1; t,m = − 1

2 |12 , 1;− 1
2 , 0〉 (C.2.72)

= | 12 , 1; t = 1
2 ,m = − 1

2 〉〈12 , 1; t = 1
2 ,m = − 1

2 |12 , 1;− 1
2 , 0〉 (C.2.73)

+ |12 , 1; t = 3
2 ,m = − 1

2 〉〈12 , 1; t = 3
2 ,m = − 1

2 |12 , 1;− 1
2 , 0〉. (C.2.74)

C.2.10 Proton Σ− case

For proton Sigma− we have

m1 = 1/2, (C.2.75)

m2 = −1, (C.2.76)

m = m1 +m2 = −1/2. (C.2.77)

The wavefunction becomes

| 12 , 1; 1
2 ,−1〉 =

∑

t

|12 , 1; t,m = − 1
2 〉〈12 , 1; t,m = − 1

2 |12 , 1; 1
2 ,−1〉 (C.2.78)

= | 12 , 1; t = 1
2 ,m = − 1

2 〉〈12 , 1; t = 1
2 ,m = − 1

2 |12 , 1; 1
2 ,−1〉 (C.2.79)

+ |12 , 1; t = 3
2 ,m = − 1

2 〉〈12 , 1; t = 3
2 ,m = − 1

2 |12 , 1; 1
2 ,−1〉. (C.2.80)

C.2.11 Neutron Σ− case

For neutron Σ− we have

m1 = −1/2, (C.2.81)

m2 = −1, (C.2.82)

m = m1 +m2 = −3/2. (C.2.83)

The wavefunction becomes

| 12 , 1;− 1
2 ,−1〉 =

∑

t

| 12 , 1; t,m = − 3
2 〉〈12 , 1; t,m = − 3

2 | 12 , 1;− 1
2 ,−1〉 (C.2.84)

= |12 , 1; t = 1
2 ,m = − 3

2 〉〈12 , 1; t = 1
2 ,m = − 3

2 | 12 , 1;− 1
2 ,−1〉

(C.2.85)

+ |12 , 1; t = 3
2 ,m = − 3

2 〉〈12 , 1; t = 3
2 ,m = − 3

2 | 12 , 1;− 1
2 ,−1〉.

(C.2.86)

D Schrödinger equation

D.1 Two-body Schrödinger equation in the relative and
center of mass(CoM) frame

We begin with the time-independent Schrödinger equation on operator form
(

p̂2
1

2m1
+

p̂2
2

2m2
+ V̂ (r̂1, r̂2)

)

|Ψ〉 = E |Ψ〉, (D.1.1)

102

where p̂i is the momentum operator for particle i, r̂i is the position operator and
mi is the mass. V̂ (r̂1, r̂2) is the two-body interaction operator which is a function
of the two position operators. |Ψ〉 is the two-body wavefunction and E is the
energy of the two-body state. To transform this equation to relative and CoM
coordinates, we will need the definition of the relative and CoM coordinates for
both position and momentum operators expressed as functions of their single-
particle analogues.

P̂ = p̂1 + p̂2,

p̂ = βp̂1 − αp̂2,

r̂ = r̂1 − r̂2,

R̂ = αr̂1 + βr̂2,

where α = m1

M , β = m2

M and M = m1 +m2 is the total mass. The single particle
momentum operators can now be written as

p̂1 = αP̂ + p̂, (D.1.2)

p̂2 = βP̂− p̂. (D.1.3)

We will also need the definition of the reduced mass of the two particles

m =
m1m2

M
.

If we assume a central symmetric potential, the interaction operator can be
written

V̂ (r̂1, r̂2) = V̂ (r̂) = V̂ (r̂), (D.1.4)

and the Schrödinger equation can be separated into two operator equations that
can be solved separately. Inserting D.1.2, D.1.3 and D.1.4 into D.1.1, we get

(

(αP̂ + p̂)2

2m1
+

(βP̂− p̂)2

2m2
+ V̂ (|̂r|)

)

|Ψ〉 = E |Ψ〉.

The momentum part can be rewritten as

(αP̂ + p̂)2

2m1
+

(βP̂− p̂)2

2m2
=

P̂2

2M
+

p̂2

2m
,

which gives the Schrödinger equation on operator form in the relative and CoM
frame

(

P̂2

2M
+

p̂2

2m
+ V̂ (r̂)

)

|Ψ〉 = E |Ψ〉. (D.1.5)

If we assume that the wavefunction is separable in relative and CoM coordinates
so that

|Ψ〉 = |ψ(r);φ(R)〉 = |ψ(r)〉|φ(R)〉,
we can rewrite the two-body Schrödinger equation D.1.5 as two separate
equations using standard separation of variables tecniques

P̂2

2M
|φ(R)〉 = ǫR |φ(R)〉, (D.1.6)

(

p̂2

2m
+ V̂ (r̂)

)

|ψ(r)〉 = ǫr |ψ(r)〉, (D.1.7)

where E = ǫr + ǫR.

103

D.2 Two-body Schrödinger equation in CoM coordinates
in momentum space

Using the Schrödinger equation on operator form in CoM coordinates (D.1.6)
and projecting it onto momentum space by multiplying from the left with a
plane wave state 〈P|, we get the Schrödinger equation in CoM coordinates in
momentum space

〈P| P̂
2

2M
|φ(R)〉 = ǫR 〈P|φ(R)〉,

P2

2M
〈P|φ(R)〉 = ǫR 〈P|φ(R)〉,

P2

2M
φ(P) = ǫR φ(P), (D.2.1)

where P is the solution to the eigenvalue equation

P̂|P〉 = P|P〉,

and we have introduced

φ(P) = 〈P|φ(R)〉.

D.3 Two-body Schrödinger equation in relative coordi-
nates in momentum space

Using the Schrödinger equation on operator form in relative coordinates (D.1.7)
and projecting it onto momentum space by multiplying from the left with a
plane wave state 〈p|, we get the Schrödinger equation in relative coordinates in
momentum space

〈p|
(

p̂2

2m
+ V̂ (r̂)

)

|ψ(r)〉 = ǫr 〈p|ψ(r)〉,

p2

2m
〈p|ψ(r)〉 + 〈p|V̂ (r̂)|ψ(r)〉 = ǫr 〈p|ψ(r)〉,

p2

2m
ψ(p) +

∫

d3p′〈p|V̂ (r̂)|p′〉ψ(p′) = ǫr ψ(p), (D.3.1)

where p is the solution to the eigenvalue equation

p̂|p〉 = p|p〉,

and we have introduced the momentum-space wavefunction

ψ(p) = 〈p|φ(r)〉.

We have also used the completness relation for the plane-wave states

∫

d3k〈k|k〉 = 1. (D.3.2)

104

D.4 Partial wave expansion in momentum-space of the
relative Schrödinger equation

We begin with the relative Schrödinger equation in operator form (D.1.7) and
multiply from the left with a momentum eigenstate 〈p|. As before ~ = c = 1,
p̂ is the relative momentum operator, m is the reduced mass of the two-body
state and V̂ (r̂) is the two-body interaction operator and a function of the relative
position operator alone. The interaction operator could be a non-local operator,
so we preserve the angular dependence of the position operator. We have

〈p|
(

p̂2

2m
+ V̂ (r̂)

)

|ψ〉 = ǫr 〈p|ψ〉,

p2

2m
〈p|ψ〉 + 〈p|V̂ (r̂)|ψ〉 = ǫr 〈p|ψ〉,

p2

2m
〈p|ψ〉+

∫

d3k 〈p|V̂ (r̂)|k〉〈k|ψ〉 = ǫr 〈p|ψ〉, (D.4.1)

where we have used the completeness relation for momentum eigenstates from
(D.3.2).

First we find the interaction in the relative partial wave basis for a local potential

〈p|V̂ (r̂)|k〉 =

∫

d3r

∫

d3r′ 〈p|r〉〈r|V̂(r̂)|r′〉〈r′|k〉

=
1

(2π)3

∫

d3r e−ip·rV (r)eik·r, (D.4.2)

where we have used the definitions of the transformation functions from the
position to momentum representation and vice-versa

〈p|r〉 =
1

(2π)
3
2

e−ip·r, (D.4.3)

〈r|p〉 =
1

(2π)
3
2

eip·r. (D.4.4)

Further, we expand the exponential function in the Bauer series where eip·r kan
be expressed as a sum of Legendre polynomials and spherical Bessel functions,

eip·r =

∞
∑

l=0

(2l + 1)iljl(pr)Pl(Ωp,r), (D.4.5)

where the spherical Bessel functions jl(pr) depends on the radial part of the
momentum and position vector and is defined in appendix A.1, while the
Legendre polynomials depends on Ωp,r = p·r

|p||r| , which is the cosine of the angle

between p and r. We have also introduced the orbital momentum l.

105

Inserting D.4.5 into D.4.2 we get

〈p|V̂(r̂)|k〉 =

1

(2π)3

∫

d3r

∞
∑

l=0

(2l+ 1)i−ljl(pr)Pl(Ωp,r)V (r)

∞
∑

l′=0

(2l′ + 1)i−l′jl′(kr)Pl′ (Ωk,r)

=
1

(2π)3

∞
∑

l,l′

(2l′ + 1)(2l + 1)il
′−l

∫ 2π

0

dφ

∫ π

0

dθ sin θPl′ (Ωk,r)Pl(Ωp,r)×

∫ ∞

0

drr2V (r)jl(pr)jl′ (kr)

=
1

(2π)2

∞
∑

l,l′

(2l′ + 1)(2l + 1)il
′−l

∫ 1

−1

d(cos θ)Pl′(Ωk,r)Pl(Ωp,r)〈pl|V̂ |kl′〉,(D.4.6)

where we have defined the partial wave decomposition of a two-body interaction
operator

〈pl|V̂ |kl′〉 =

∫ ∞

0

drr2V (r)jl(pr)jl′ (kr). (D.4.7)

We have the Legendre polynomial relation

∫ 1

−1

d(cos θ)Pl′ (Ωk,r)Pl(Ωp,r) =
2

2l + 1
Pl(Ωp,k)δl,l′ , (D.4.8)

which, for a centrally symmetric potential, gives us

〈p|V̂(r̂)|k〉 =
2

(2π)2

∞
∑

l=0

(2l + 1)Pl(Ωp,k)〈pl|V̂ |kl〉. (D.4.9)

Inserting this back into equation D.4.1 and transforming to spherical coordinates
we get [57]

p2

2m
〈pl|ψ〉+ 2

π

∫ ∞

0

dkk2〈pl|V̂ |kl〉〈kl|ψ〉 = ǫr 〈pl|ψ〉, (D.4.10)

where we have placed the coordinate system so that p coincides with the z-axis
and the fact that P0(x) = 1 which gives

∫ 1

−1

Pl(x)P0(x) =
2

2l + 1
δl,0 = 2.

For a tensor coupled channel, the equation becomes

∑

l

(

p2

2m
〈pl|ψ〉+

∑

l′

2

π

∫ ∞

0

dkk2〈pl|V̂ |kl′〉〈kl′|ψ〉
)

=
∑

l

ǫr 〈pl|ψ〉.

For a baryon coupled channel, the equation becomes

∑

B

(

p2

2mB
〈(B)pl|ψ〉+ 2

π

∑

B′

∫ ∞

0

dkk2〈(B)pl|V̂ |(B′)kl〉〈(B′)kl|ψ〉
)

=
∑

B

ǫr 〈(B)pl|ψ〉,

106

where the sum over B means a sum over the various baryon couplings we have
for a specific partial wave with definite ispospin projection.

For a channel with both tensor and baryon coupling, the equation becomes

∑

l,B





p2

2mB
〈(B)pl|ψ〉+ 2

π

∑

l′,B′

∫ ∞

0

dkk2〈(B)pl|V̂ |(B′)kl′〉〈(B′)kl′|ψ〉



 =
∑

l,B

ǫr 〈(B)pl|ψ〉.

Even though formally the sum over angular momenta goes to infinity - for the
strong interaction the total spin J is a conserved quantum number. In actual
calculations the sum is limited to l = J − 1, J + 1 for a specific value of J .

We can write these equations in block matrix notation, anticipating the
discretization of the equations. First we define

Ti =
p2

2mBi

, (D.4.11)

V k,l
i,j =

2

π

∫ ∞

0

dkk2〈(Bi)plk|V̂ |(Bj)kll〉, (D.4.12)

ψj
i = 〈(Bi)plj |ψ〉. (D.4.13)

For an uncoupled channel we have just
[

T1 + V 1,1
1,1

]

[

ψ1
1

]

= ǫr
[

ψ1
1

]

. (D.4.14)

For a tensor coupled channel we have
[

T1 + V 1,1
1,1 V 1,2

1,1

V 2,1
1,1 T1 + V 2,2

1,1

]

[

ψ1
1

ψ2
1

]

= ǫr

[

ψ1
1

ψ2
1

]

, (D.4.15)

and similary for the tensor coupled channel where s = 0 and s = 1 couples to
the orbital momentum to give the same total angular momentum.

For a baryon coupled channel with m possible couplings we have







T1 + V 1,1
1,1 . . . V 1,1

1,m
...

. . .
...

V 1,1
m,1 . . . Tm + V 1,1

m,m













ψ1
1
...
ψ1

m






= ǫr







ψ1
1
...
ψ1

m






, (D.4.16)

and finally for a tensor and baryon coupled channel we have






















T1 + V 1,1
1,1 . . . V 1,1

1,m V 1,2
1,1 . . . V 1,2

1,m
...

. . .
...

...
. . .

...

V 1,1
m,1 . . . Tm + V 1,1

m,m V 1,2
m,1 . . . V 1,2

m,m

T1 + V 2,1
1,1 . . . V 2,1

1,m T1 + V 2,2
1,1 . . . V 2,2

1,m
...

. . .
...

...
. . .

...

V 2,1
m,1 . . . V 2,1

m,m V 2,2
m,1 . . . Tm + V 2,2

m,m











































ψ1
1
...
ψ1

m

ψ2
1
...
ψ2

m





















= ǫr





















ψ1
1
...
ψ1

m

ψ2
1
...
ψ2

m





















.

(D.4.17)

107

E The Harmonic oscillator

E.1 The three-dimensional isotropic harmonic oscillator

This problem is best represented in spherical coordinates, where the eigenkets
of the Hamiltonian are labelled by the quantum numbers n, l and m.

The Schrödinger equation reads

Ĥho|nlm〉 = Enl|nlm〉, (E.1.1)

with the Hamiltonian

Ĥho =
p̂2

2µ
+ 1/2µω2r̂2, (E.1.2)

and energy

Enl = ~ω

(

2n+ l +
3

2

)

. (E.1.3)

Here µ is the mass of the oscillator, while ω is the oscillator parameter.

In coordinate space the eigenfunctions are given by [47]

〈r|nlm〉 = ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ),

Rnl(r) = Nnlr
le−νr2

L
(l+ 1

2
)

n (2νr2), (E.1.4)

Nnl =

√

√

2ν3

π

2n+2l+3n!rl

(2n+ 2l+ 1)!!
, (E.1.5)

and

ν =
µω

2~
, (E.1.6)

where L
(l+ 1

2
)

n (2νr2) are the generalized Laguerre polynomials from appendix
A.3.

In momentum space, the eigenfunctions are given by [47]

〈p|nlm〉 = Pnl(k)Ylm(θ, φ) = i−l(−1)nRnl(k)Ylm(θ, φ). (E.1.7)

E.2 Kinetic energy operator in a three-dimensional har-
monic oscillator basis

To calculate the kinetic energy operator, we need the following matrix elements

〈nlm|p̂2|n′l′m′〉 =

∫∫

d3p d3p′ 〈nlm|p〉〈p|p̂2|p′〉〈p′|n′l′m′〉

=

∫∫

d3p d3p′ p2δ(p− p′)〈nlm|p〉〈p′|n′l′m′〉

=

∫

d3p p2〈nlm|p〉〈p|n′l′m′〉. (E.2.1)

108

We introduce spherical coordinates and the harmonic oscillator wave-function
in momentum space

〈p|nlm〉 = Pnl(p)Ylm(θ, φ), (E.2.2)

where Pnl(p) is the radial wavefunction for a three-dimensional harmonic
oscillator in momentum space introduced in appendix E.1 and Ylm(θ, φ) are
the spherical harmonics. We have

〈nlm|p̂2|n′l′m′〉 =

∫∫

Ω

sin θ dθ dφY ∗
lm(θ, φ)Yl′m′(θ, φ)

∫ ∞

0

dp p4P ∗
nl(p)Pn′l′(p)

= δll′δmm′

∫ ∞

0

dp p4P ∗
nl(p)Pn′l′(p),

〈nlm|p̂2|n′l′m′〉 =

∫ ∞

0

dp p4P ∗
nl(p)Pn′l(p), (E.2.3)

where we have used the normalisation property of the spherical harmonics
∫∫

Ω

sin θ dθ dφY ∗
lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ . (E.2.4)

The kinetic energy operator T̂ = p̂2

2µ in a three-dimensional harmonic hoscillator
basis is now given by its matrix elements

〈nlm|T̂|n′lm〉 = 1

2µ

∫ ∞

0

dp p4Pnl(p)Pn′l(p). (E.2.5)

E.3 Coulomb interaction operator in a three-dimensional
harmonic oscillator basis

To calculate the Coulomb interaction operator, we need the following matrix
elements

〈nlm|̂r−1|n′l′m′〉 =

∫∫

d3rd3r′ 〈nlm|r〉〈r|̂r−1|r′〉〈r′|n′l′m′〉

=

∫∫

d3rd3r′ 〈nlm|r〉r−1δ(r − r′)〈r′|n′l′m′〉

=

∫

d3r r−1〈nlm|r〉〈r|n′l′m′〉.

We introduce spherical coordinates and the harmonic oscillator wave-function
in coordinate space

〈r|nlm〉 = Rnl(r)Ylm(θ, φ), (E.3.1)

where Rnl(r) is the radial wavefunction for a three-dimensional harmonic
oscillator in coordinate space introduced in appendix E.1 and Ylm(θ, φ) are the
sperical harmonics. We obtain

〈nlm|̂r−1|n′l′m′〉 =

∫∫

Ω

sin θ dθ dφY ∗
lm(θ, φ)Yl′m′(θ, φ)

∫ ∞

0

dr rR∗
nl(r)Rn′l′(r)

= δll′δmm′

∫ ∞

0

dr rR∗
nl(r)Rn′l′(r),

〈nlm|̂r−1|n′l′m′〉 =

∫ ∞

0

dr rRnl(r)Rn′l(r), (E.3.2)

109

where we have used the normalisation property of the spherical harmonics

∫∫

Ω

sin θ dθ dφY ∗
lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ . (E.3.3)

The Coulomb interaction operator V̂C = q1q2

4πǫ0r̂
in a 3D harmonic oscillator basis

is now given by it’s matrix elements

〈nlm|V̂C |n′lm〉 = q1q2
4πǫ0

∫ ∞

0

dr rRnl(r)Rn′l(r), (E.3.4)

where qi is the charge of the i’th particle in units of e and ǫ0 is the permitivity
in free space.

110

F Perturbation theory

We start with the Schrödinger equation

Ĥ |Ψ〉 = E|Ψ〉, (F.0.5)

where Ĥ is the many-body Hamiltonian or energy operator, E is the energy
eigenvalue of the Hamiltonian and |Ψ〉 is the many-body wavefunction expressed
in an arbitrary basis

|Ψ〉 =
∞
∑

i=1

αi|Φi〉. (F.0.6)

We now choose a so-called model space, defined by the projection operators

P̂ =

d
∑

i=1

|Φi〉〈Φi|, (F.0.7)

Q̂ =

∞
∑

i=d+1

|Φi〉〈Φi|, (F.0.8)

with the completeness property

P̂ + Q̂ = 1̂, (F.0.9)

and the usual properties of projection operators

P̂ 2 = P̂ , (F.0.10)

Q̂2 = Q̂, (F.0.11)

P̂ Q̂ = Q̂P̂ = 0. (F.0.12)

(F.0.13)

We can now write the wavefunction as

|Ψ〉 = |ΨD〉+ Q̂|Ψ〉, (F.0.14)

where
|ΨD〉 = P̂ |Ψ〉. (F.0.15)

We split the Hamiltonian into an unperturbed part Ĥ0, for which we have an
exact solution, and a perturbed part V̂ , which we assume is small compared to
the unperturbed part.

Ĥ = Ĥ0 + V̂ . (F.0.16)

We can derive a perturbation series by writing the Schrödinger equation as

(

ω − Ĥ0

)

|Ψ〉 =
(

ω − E + V̂
)

|Ψ〉, (F.0.17)

where ω is a scalar quantity. By assuming that the inverse exist

(

ω − Ĥ0

)−1

≡ 1

ω − Ĥ0

, (F.0.18)

111

we can write the Schrödinger equation as

|Ψ〉 = |ΨD〉+
Q̂

ω − Ĥ0

(

ω − E + V̂
)

|Ψ〉, (F.0.19)

where we have used equation (F.0.15) and the properties of the projection
operators. We obtain a perturbation expansion for the wavefunction

|Ψ〉 =
∞
∑

n=0

(

Q̂

ω − Ĥ0

(

ω − E + V̂
)

)n

|ΨD〉. (F.0.20)

By choosing ω = E we get what is called a Brillouin-Wigner type perturbation
series, where the expansion depends on the total energy of the system.

We can also choose ω = W , where W is defined as the energy eigenstate of the
unperturbed Hamiltonian on the model-space wavefunction,

Ĥ0|ΨD〉 = W |ΨD〉. (F.0.21)

We now get a Rayleigh-Schrödinger type perturbation series

|Ψ〉 =
∞
∑

n=0

(

Q̂

ω − Ĥ0

(

V̂ −∆E
)

)n

|ΨD〉, (F.0.22)

where we have defined ∆E = E −W as the difference between the exact and
unperturbed energy.

We obtain a perturbaton series for ∆E for the Brillouin-Wigner perturbation
theory

∆E =

∞
∑

n=0

〈ΨD|V̂
(

Q̂

E − Ĥ0

V̂

)n

|ΨD〉, (F.0.23)

while Rayleigh-Schrødinger perturbation theory gives

∆E =

∞
∑

n=0

〈ΨD|V̂
(

Q̂

W − Ĥ0

(

V̂ −∆E
)

)n

|ΨD〉. (F.0.24)

112

G Api documentation

G.1 Module common

G.1.1 Functions

check file(filename)

Check if file is safe to read.

Parameters

filename: Filename to check.
(type=String)

Return Value

True if file exists and is a file, False if not

debug(s1, s2, debug=False)

Print debugging information if DEBUG is True.
If multiline string, the preamble is printed before every line.
Typical usage:
>>> debug(’preamble’, ’message’, True|False)
preamble:: message

Parameters

s1: Name of the caller.
(type=string)

s2: Message to be printed.
(type=object that have a string representation)

debug: Should message be printed or not. If not supplied use
this modules DEBUG variable.
(type=Boolean)

dirname check(dirname)

Return the basename of a possible exact path.

113

generate configs(filename)

Generate multiple configurations in the format: key=value from a file where
multiple values are specified for each key: key=value1,value2, value3 where
each configuration contains only one value pr. file. Used for running
variations with different parameter sets. Returns a tuple containing a
dictionary of all common variables, and a list of all variations of the
remaining variables.

Parameters

filename: Original file with multiple values
(type=String)

Return Value

dictionary, list

generate variations(variations, key, items)

Generate permutations of an existing set of configurations, with a new key
and values for this key. Returns a list of variations that couples all the new
values to all the old configurations.

Parameters

variations: List of old configurations.
(type=List of dictionaries)

key: New key to be added to old configurations
(type=String)

items: list of values for this key to be coupled with all old
configurations.
(type=list of strings)

Return Value

A new list of configuration dictionaries

get dirserial(dirname)

Iterates over the files in the same directory as the parameter and find a new
serial for this filename. Returns the next available serial for this filename.

Parameters

dirname: Path to a filename to generate a serial for.
(type=String)

Return Value

The next available serial for this filename.

114

read config(filename)

Reads a configuration file in the format: key=value populates a Python
dictionary with the keys and corresponding values.

Parameters

filename: Filename of the config file.
(type=String)

Return Value

Dictionary with all elements in the configuration file.

stringify(s)

Convert a Fortran90 character array into a Python sring object.

Parameters

s: The fortran string to convert.
(type=Fortran character array)

Return Value

A python string object.

triag(i, j, k)

Return True if the to spin variables i and j can add up to k.

Parameters

i: spin variable
(type=int)

j: Spin variable
(type=int)

k: Sum of i and j
(type=int)

Return Value

True if valid combination. False otherwise.

G.1.2 Variables

Name Description

cname Value: ’common’ (type=str)
DEBUG Value: False (type=bool)

115

G.2 Module debug

G.2.1 Functions

debug(s1, s2, debug=False)

Print debugging information if DEBUG is True.
If multiline string, the preamble is printed before every line.
Typical usage:
>>> debug(’preamble’, ’message’)

preamble:: message

Parameters

s1: Name of the caller.
(type=string)

s2: Message to be printed.
(type=object that have a string representation)

G.2.2 Variables

Name Description

DEBUG Value: False (type=bool)

G.3 Module gui

This modules defines standard gui classes that are used often. The main
components are the myFrame class which all new Frames inherits and the three
Button classes - Quit, Plot and Print.

G.3.1 Classes� myFrame: All Tkinter frames inherit this class.
(Section G.7, p. 121)� PlotButton: Defines a Tkinter.Button with classname plotButton.
(Section G.4, p. 117)� PrintButton: Defines a Tkinter.Button with classname printButton.
(Section G.5, p. 118)� QuitButton: Defines a Tkinter.Button with classname quitButton.
(Section G.6, p. 120)

G.3.2 Variables

Name Description

cname Value: ’gui’ (type=str)
DEBUG Value: False (type=bool)

116

G.4 Class gui.PlotButton

Tkinter.Misc

Tkinter.BaseWidget

Tkinter.Grid

Tkinter.Pack

Tkinter.Place

Tkinter.Widget

Tkinter.Button

PlotButton

Defines a Tkinter.Button with classname plotButton. The appearence and text
is controlled by a resource file. Entries in the resource file may be specified as:

*Button*activebackground: Grey *Button*background: Grey *Button*highlightcolor:
Grey *Button*foreground: Black *Button*font: -Adobe-Helvetica-Bold-R-
Normal–*-120-*-*-*-*-*-* *Button*width: 8 *Button*height: 1 *plotBut-
ton*text: Plot

G.4.1 Methods

init (self, master, **kw)
Overrides: Tkinter.Button. init

Inherited from BaseWidget: destroy
Inherited from Button: flash, invoke, tkButtonDown, tkButtonEnter, tk-
ButtonInvoke, tkButtonLeave, tkButtonUp
Inherited from Grid: grid, grid configure, grid forget, grid info, grid remove
Inherited from Misc: getitem , setitem , str , nametowidget, af-
ter, after cancel, after idle, bbox, bell, bind, bind all, bind class, bind-
tags, cget, clipboard append, clipboard clear, colormodel, columnconfigure,
config, configure, deletecommand, event add, event delete, event generate,
event info, focus, focus displayof, focus force, focus get, focus lastfor, focus set,
getboolean, getvar, grab current, grab release, grab set, grab set global,
grab status, grid bbox, grid columnconfigure, grid location, grid propagate,
grid rowconfigure, grid size, grid slaves, image names, image types, keys, lift,
location, lower, mainloop, nametowidget, option add, option clear, option get,
option readfile, pack propagate, pack slaves, place slaves, propagate, quit, row-
configure, selection clear, selection get, selection handle, selection own, se-
lection own get, send, setvar, size, slaves, tk bisque, tk focusFollowsMouse,
tk focusNext, tk focusPrev, tk menuBar, tk setPalette, tk strictMotif, tkraise,
unbind, unbind all, unbind class, update, update idletasks, wait variable,
wait visibility, wait window, waitvar, winfo atom, winfo atomname, winfo cells,

117

winfo children, winfo class, winfo colormapfull, winfo containing, winfo depth,
winfo exists, winfo fpixels, winfo geometry, winfo height, winfo id, winfo interps,
winfo ismapped, winfo manager, winfo name, winfo parent, winfo pathname,
winfo pixels, winfo pointerx, winfo pointerxy, winfo pointery, winfo reqheight,
winfo reqwidth, winfo rgb, winfo rootx, winfo rooty, winfo screen, winfo screencells,
winfo screendepth, winfo screenheight, winfo screenmmheight, winfo screenmmwidth,
winfo screenvisual, winfo screenwidth, winfo server, winfo toplevel, winfo viewable,
winfo visual, winfo visualid, winfo visualsavailable, winfo vrootheight, winfo vrootwidth,
winfo vrootx, winfo vrooty, winfo width, winfo x, winfo y
Inherited from Pack: forget, info, pack, pack configure, pack forget,
pack info
Inherited from Place: place, place configure, place forget, place info

G.4.2 Class Variables

Name Description

Inherited from Misc: noarg ()

G.5 Class gui.PrintButton

Tkinter.Misc

Tkinter.BaseWidget

Tkinter.Grid

Tkinter.Pack

Tkinter.Place

Tkinter.Widget

Tkinter.Button

PrintButton

Defines a Tkinter.Button with classname printButton. The appearence and text
is controlled by a resource file. Entries in the resource file may be specified as:

*Button*activebackground: Grey *Button*background: Grey *Button*highlightcolor:
Grey *Button*foreground: Black *Button*font: -Adobe-Helvetica-Bold-R-
Normal–*-120-*-*-*-*-*-* *Button*width: 8 *Button*height: 1 *printBut-
ton*text: Print

G.5.1 Methods

init (self, master, **kw)
Overrides: Tkinter.Button. init

118

Inherited from BaseWidget: destroy
Inherited from Button: flash, invoke, tkButtonDown, tkButtonEnter, tk-
ButtonInvoke, tkButtonLeave, tkButtonUp
Inherited from Grid: grid, grid configure, grid forget, grid info, grid remove
Inherited from Misc: getitem , setitem , str , nametowidget, af-
ter, after cancel, after idle, bbox, bell, bind, bind all, bind class, bind-
tags, cget, clipboard append, clipboard clear, colormodel, columnconfigure,
config, configure, deletecommand, event add, event delete, event generate,
event info, focus, focus displayof, focus force, focus get, focus lastfor, focus set,
getboolean, getvar, grab current, grab release, grab set, grab set global,
grab status, grid bbox, grid columnconfigure, grid location, grid propagate,
grid rowconfigure, grid size, grid slaves, image names, image types, keys, lift,
location, lower, mainloop, nametowidget, option add, option clear, option get,
option readfile, pack propagate, pack slaves, place slaves, propagate, quit, row-
configure, selection clear, selection get, selection handle, selection own, se-
lection own get, send, setvar, size, slaves, tk bisque, tk focusFollowsMouse,
tk focusNext, tk focusPrev, tk menuBar, tk setPalette, tk strictMotif, tkraise,
unbind, unbind all, unbind class, update, update idletasks, wait variable,
wait visibility, wait window, waitvar, winfo atom, winfo atomname, winfo cells,
winfo children, winfo class, winfo colormapfull, winfo containing, winfo depth,
winfo exists, winfo fpixels, winfo geometry, winfo height, winfo id, winfo interps,
winfo ismapped, winfo manager, winfo name, winfo parent, winfo pathname,
winfo pixels, winfo pointerx, winfo pointerxy, winfo pointery, winfo reqheight,
winfo reqwidth, winfo rgb, winfo rootx, winfo rooty, winfo screen, winfo screencells,
winfo screendepth, winfo screenheight, winfo screenmmheight, winfo screenmmwidth,
winfo screenvisual, winfo screenwidth, winfo server, winfo toplevel, winfo viewable,
winfo visual, winfo visualid, winfo visualsavailable, winfo vrootheight, winfo vrootwidth,
winfo vrootx, winfo vrooty, winfo width, winfo x, winfo y
Inherited from Pack: forget, info, pack, pack configure, pack forget,
pack info
Inherited from Place: place, place configure, place forget, place info

G.5.2 Class Variables

Name Description

Inherited from Misc: noarg ()

119

G.6 Class gui.QuitButton

Tkinter.Misc

Tkinter.BaseWidget

Tkinter.Grid

Tkinter.Pack

Tkinter.Place

Tkinter.Widget

Tkinter.Button

QuitButton

Defines a Tkinter.Button with classname quitButton. The appearence and
text is controlled by a resource file. Entries in the resource file may be spec-
ified as: *Button*activebackground: Grey *Button*background: Grey *But-
ton*highlightcolor: Grey *Button*foreground: Black *Button*font: -Adobe-
Helvetica-Bold-R-Normal–*-120-*-*-*-*-*-* *Button*width: 8 *Button*height:
1 *quitButton*text: Quit

G.6.1 Methods

init (self, master, **kw)

Constructor.

Parameters

self: Reference to this instance of the class.
(type=Instance of QuitButton)

master: Parent frame
(type=Tkinter.Frame)

kw: Keyword arguments
(type=dictionary)

Overrides: Tkinter.Button. init

Inherited from BaseWidget: destroy
Inherited from Button: flash, invoke, tkButtonDown, tkButtonEnter, tk-
ButtonInvoke, tkButtonLeave, tkButtonUp
Inherited from Grid: grid, grid configure, grid forget, grid info, grid remove
Inherited from Misc: getitem , setitem , str , nametowidget, af-
ter, after cancel, after idle, bbox, bell, bind, bind all, bind class, bind-
tags, cget, clipboard append, clipboard clear, colormodel, columnconfigure,
config, configure, deletecommand, event add, event delete, event generate,
event info, focus, focus displayof, focus force, focus get, focus lastfor, focus set,
getboolean, getvar, grab current, grab release, grab set, grab set global,

120

grab status, grid bbox, grid columnconfigure, grid location, grid propagate,
grid rowconfigure, grid size, grid slaves, image names, image types, keys, lift,
location, lower, mainloop, nametowidget, option add, option clear, option get,
option readfile, pack propagate, pack slaves, place slaves, propagate, quit, row-
configure, selection clear, selection get, selection handle, selection own, se-
lection own get, send, setvar, size, slaves, tk bisque, tk focusFollowsMouse,
tk focusNext, tk focusPrev, tk menuBar, tk setPalette, tk strictMotif, tkraise,
unbind, unbind all, unbind class, update, update idletasks, wait variable,
wait visibility, wait window, waitvar, winfo atom, winfo atomname, winfo cells,
winfo children, winfo class, winfo colormapfull, winfo containing, winfo depth,
winfo exists, winfo fpixels, winfo geometry, winfo height, winfo id, winfo interps,
winfo ismapped, winfo manager, winfo name, winfo parent, winfo pathname,
winfo pixels, winfo pointerx, winfo pointerxy, winfo pointery, winfo reqheight,
winfo reqwidth, winfo rgb, winfo rootx, winfo rooty, winfo screen, winfo screencells,
winfo screendepth, winfo screenheight, winfo screenmmheight, winfo screenmmwidth,
winfo screenvisual, winfo screenwidth, winfo server, winfo toplevel, winfo viewable,
winfo visual, winfo visualid, winfo visualsavailable, winfo vrootheight, winfo vrootwidth,
winfo vrootx, winfo vrooty, winfo width, winfo x, winfo y
Inherited from Pack: forget, info, pack, pack configure, pack forget,
pack info
Inherited from Place: place, place configure, place forget, place info

G.6.2 Class Variables

Name Description

Inherited from Misc: noarg ()

G.7 Class gui.myFrame

Tkinter.Misc

Tkinter.BaseWidget

Tkinter.Grid

Tkinter.Pack

Tkinter.Place

Tkinter.Widget

Tkinter.Frame

myFrame

All Tkinter frames inherit this class. This gives the new frame attributes like
a control class, a master frame and a root frame. The control class handles all
application control. The master frame is the parent of this frame, while the root

121

frame is the application root.

G.7.1 Methods

init (self, master, **kw)
Overrides: Tkinter.Frame. init

Inherited from BaseWidget: destroy
Inherited from Grid: grid, grid configure, grid forget, grid info, grid remove
Inherited from Misc: getitem , setitem , str , nametowidget, af-
ter, after cancel, after idle, bbox, bell, bind, bind all, bind class, bind-
tags, cget, clipboard append, clipboard clear, colormodel, columnconfigure,
config, configure, deletecommand, event add, event delete, event generate,
event info, focus, focus displayof, focus force, focus get, focus lastfor, focus set,
getboolean, getvar, grab current, grab release, grab set, grab set global,
grab status, grid bbox, grid columnconfigure, grid location, grid propagate,
grid rowconfigure, grid size, grid slaves, image names, image types, keys, lift,
location, lower, mainloop, nametowidget, option add, option clear, option get,
option readfile, pack propagate, pack slaves, place slaves, propagate, quit, row-
configure, selection clear, selection get, selection handle, selection own, se-
lection own get, send, setvar, size, slaves, tk bisque, tk focusFollowsMouse,
tk focusNext, tk focusPrev, tk menuBar, tk setPalette, tk strictMotif, tkraise,
unbind, unbind all, unbind class, update, update idletasks, wait variable,
wait visibility, wait window, waitvar, winfo atom, winfo atomname, winfo cells,
winfo children, winfo class, winfo colormapfull, winfo containing, winfo depth,
winfo exists, winfo fpixels, winfo geometry, winfo height, winfo id, winfo interps,
winfo ismapped, winfo manager, winfo name, winfo parent, winfo pathname,
winfo pixels, winfo pointerx, winfo pointerxy, winfo pointery, winfo reqheight,
winfo reqwidth, winfo rgb, winfo rootx, winfo rooty, winfo screen, winfo screencells,
winfo screendepth, winfo screenheight, winfo screenmmheight, winfo screenmmwidth,
winfo screenvisual, winfo screenwidth, winfo server, winfo toplevel, winfo viewable,
winfo visual, winfo visualid, winfo visualsavailable, winfo vrootheight, winfo vrootwidth,
winfo vrootx, winfo vrooty, winfo width, winfo x, winfo y
Inherited from Pack: forget, info, pack, pack configure, pack forget,
pack info
Inherited from Place: place, place configure, place forget, place info

G.7.2 Instance Variables

Name Description

control Class controlling the application
(type=Instance of a userdefined class)

master Parent frame
(type=Tkinter.Frame)

root Application root
(type=Tkinter.Frame)

122

G.7.3 Class Variables

Name Description

Inherited from Misc: noarg ()

G.8 Module myexceptions

This module contains all userdefined exceptions for this package.

G.8.1 Classes� ConfigError: Exception class raised when errors are found in a
configuration file.
(Section G.9, p. 123)

G.9 Class myexceptions.ConfigError

exceptions.Exception

ConfigError

Exception class raised when errors are found in a configuration file.

G.9.1 Methods

init (self, message)

Constructor.

Parameters

self: An instance of this class.
(type=An instance of ConfigError.)

message: Exception message.
(type=String)

Overrides: exceptions.Exception. init

str (self)

Overrides builin method called when an instance of this object is printed.

Parameters

self: An instance of this class.
(type=An instance of ConfigError.)

Overrides: exceptions.Exception. str

Inherited from Exception: getitem

G.9.2 Instance Variables

123

Name Description

message Message to give when this exception is raised.
(type=String)

G.10 Module configuration.particle

This module contains the class Particle, which holds all particle information. It
contains a datafile of the properties of available baryons and contains a static
method for reading this datafile.

Typical usage:

>>> from particle import *

>>> particles = read particles(filename)

>>> for p in particles:

process Particle object

G.10.1 Classes� Particle: Identifies a baryon
(Section G.11, p. 124)

G.11 Class configuration.particle.Particle

Identifies a baryon

124

G.11.1 Methods

init (self, name, short, id , tz, s, m, q)

Constructor.
Initializes all instance variables to the correct values.

Parameters

self: Reference to this instance of the class.
(type=Particle)

name: Baryon name.
(type=string)

short: Baryon shortname.
(type=string)

id : Baryon id
(type=int)

tz: Twice isospin projection.
(type=int)

s: strange number.
(type=int)

m: mass.
(type=float)

q: charge.
(type=int)

eq (self, p2)

Compares to particles to see if they are equal.

Parameters

self: Reference to this instance of the class.
(type=Particle)

p2: The other particle to compare with.
(type=Particle)

Return Value

True if two particles are equal. False otherwise.
(type=Boolean)

str (self)

Parameters

self: Reference to this instance of the class.
(type=Particle)

Return Value

a string representation of this baryon.
(type=String)

125

get id(self)

Get the numerical id given to this particle.

Parameters

self: Reference to this instance of the class.
(type=Particle)

Return Value

The numerical id given to this baryon.
(type=int)

G.11.2 Static Methods

read particles(filename)

Return a list of particle objects whose string representations are stored in the
file with name filename.

Parameters

filename: Filename where baryon properties are stored.
(type=Valid filename as a string)

Return Value

A list of Particle objects read from file.
(type=list)

Raises

IOError When filename is not a valid file.
ValueError When file doesn’t have the correct format.

G.11.3 Instance Variables

Name Description

id Particle id
(type=int)

m mass.
(type=float)

name Name.
(type=string)

q charge.
(type=int)

s strange number.
(type=int)

short Shortname.
(type=string)

tz Twice isospin projection.
(type=int)

G.11.4 Class Variables

126

Name Description

particles Dictionary of all particles and their properties.
Value: {’sigma-’: <configuration.partic-
le.Particle instance at 0x2b40abb39d40>-
, ’sig... (type=dict of
Particles)

G.12 Package configuration.relative

G.12.1 Modules� relative (Section G.13, p. 127)

G.13 Module configuration.relative.relative

G.13.1 Classes� Channel: Identifies a channel with specific total angular momentum
(J), total isospin projection (Tz), max/min orbital momentum, spin and
strangenumber.
(Section G.14, p. 128)� Channel2: Identifies a channel with specific total angular momentum
(J), total isospin projection (Tz), max/min orbital momentum, spin and
strangenumber.
(Section G.14, p. 128)� SubChannel: Identifies a subchannel (baryon-baryon configuration) with
2 baryons and their collective properties.
(Section G.15, p. 134)

G.13.2 Variables

Name Description

charge to iso Value: {0: {0: -2, 1: 0, 2: 2}, -2: {0: -

0, 1: 2, 2: 4, -2: -4, -1: -2}, -1: {0:-
-1, ...

(type=dict)
charges Value:

{0: 0, 1: 2, 2: 4, -2: -4, -1: -2}
(type=dict)

DEBUG Value: False (type=bool)
hyp max j Value: 7 (type=int)
partial waves Value: [’s’, ’p’, ’d’, ’f’, ’g’, ’h’, ’-

i’, ’j’]

(type=list)

127

G.14 Class configuration.relative.relative.Channel2

builtin .object

Channel2

Identifies a channel with specific total angular momentum (J), total isospin
projection (Tz), max/min orbital momentum, spin and strangenumber. It also
includes the number of subchannels and enumerates the specific subchannels in
an array.

G.14.1 Methods

init (self, J, Tz, L min, L max, S min, S max, strange)

Constructor.
Initialize the channel instance variables.

Parameters

J: Total angular momentum.
(type=int)

Tz: Total isospin projection (actually twice to get an
integer).
(type=int)

L min: Minimum total orbital momentum.
(type=int)

L max: Maximum total orbital momentum.
(type=int)

S min: Minimum intrinsic spin.
(type=int)

S max: Maximum intrinsic spin.
(type=int)

strange: Total strange number.
(type=int)

Overrides: builtin .object. init

str (self)

Return Value

a string representation of this channel instance.
(type=String)

Overrides: builtin .object. str

128

find subs(self)

This method finds all unique subchannels for a given channel. If the
subchannel contains identical particles, the anti-symmetry requirement is
applied.
Updates the instance variables subs, nsub and charge.

Return Value

None

get ids(self)

Return a single list of all particles in the subchannels.

Return Value

a list of particle id’s (int)
(type=int)

get label(self)

Creates a string label for this channel.

Return Value

Label representing this channel.
(type=String)

get masses(self)

Return a list of reduced masses for the subchannels of this channel. If the
channel is coupled in l, the list is duplicated so the masses appear twice.

Return Value

a list of reduced masses (floats) for this channel
(type=list)

get number sub(self)

Return Value

Number of baryon-baryon configurations in this channel.
(type=int)

get reduced(self)

Return a list of reduced masses for the subchannels of this channel. If the
channel is coupled in l, the list is duplicated so the masses appear twice.

Return Value

a list of reduced masses (floats) for this channel
(type=float)

129

is coupled(self)

Return Value

True if this channel couples configurations with different orbital
momentum.
(type=Boolean)

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr

G.14.2 Static Methods

get channel(j, s, l, t, strange)

Return a Channel instance with the quantum numbers specified in the
parameters. If no such channel exists, return None.

Parameters

j: Total angular momentum.
(type=int)

s: Total intrinsic spin projection.
(type=int)

l: Orbital momentum.
(type=int)

t: Twice total isospin.
(type=int)

strange: Strange quantum number.
(type=int)

Return Value

A Channel instance if it exists. None Otherwise.
(type=Channel)

130

get channel by charge(j, s, l, q, strange)

Return a Channel instance with the quantum numbers specified in the
parameters. If no such channel exists, return None.

Parameters

j: Total angular momentum.
(type=int)

s: Total intrinsic spin projection.
(type=int)

l: Orbital momentum.
(type=int)

q: Total charge.
(type=int)

strange: Strange quantum number.
(type=int)

Return Value

A Channel instance if it exists. None Otherwise.
(type=Channel)

has subs(s, l, Tz, strange)

Checks if a Channel identified with the supplied quantum numbers has
subchannels. i.e, there are baryon-baryon configurations with these quantum
numbers. If there is such a configuration - antisymmetry is also required if
the baryons are identical.

Parameters

s: Total spin.
(type=int)

l: Total orbital momentum.
(type=int)

Tz: Twice total isospin projection.
(type=int)

strange: Total strange number.
(type=int)

Return Value

True if the channel has subchannels. False otherwise.
(type=boolean)

131

is lcoupled(l, j, strange, t)

Check if the channel represented by these quantum numbers couples different
orbital momenta.

Parameters

l: Total orbital momentum.
(type=int)

j: Total angular momentum.
(type=int)

strange: Total strange number.
(type=int)

t: Twice total isospin projection.
(type=int)

Return Value

True if these quantum numbers couples different orb. mom.
(type=boolean)

is scoupled(l, j, strange, t)

Check if the channel represented by these quantum numbers couples different
intrinsic spins.

Parameters

l: Total orbital momentum.
(type=int)

j: Total angular momentum.
(type=int)

strange: Total strange number.
(type=int)

t: Twice total isospin projection.
(type=int)

Return Value

True if these quantum numbers couples different spins.
(type=boolean)

setup channels(j min, j max)

This method creates a list of all channels. The parameters specify for which
total angular momenta to create channels.

Parameters

j min: Minimum total angular momentum.
(type=int)

j max: Maximum total angular momentum.
(type=int)

Return Value

List of all channel instances for the given range of total angular
momentum.
(type=list)

132

valid channel(l, j, strange, t)

Is the current configuration of quantum numbers a valid channel. Does it
have correct relation between total angular momentum, total orbital
momentum and total spin. If identical particles, the combination has to be
anti- symmetric with regards to s, l and t.

Parameters

l: Total orbital momentum.
(type=int)

j: Total angular momentum.
(type=int)

strange: Total strange number.
(type=int)

t: Twice total isospin projection.
(type=int)

Return Value

A list of channel objects satisfying this set of quantum numbers.
(type=list)

G.14.3 Instance Variables

Name Description

charge Total charge for channel.
(type=int)

J Total angular momentum.
(type=int)

l coupled Does this channel have a coupling between
different orbital momenta?
(type=boolean)

L max Maximum total orbital momentum.
(type=int)

L min Minimum total orbital momentum.
(type=int)

nsub Number of subchannels in this channel.
(type=int)

s coupled Does this channel have a coupling between
different isospin projections?
(type=boolean)

S max Maximum total isospin projection.
(type=int)

S min Minimum total isospin projection.
(type=int)

strange Total strange number.
(type=int)

subs List of SubChannel objects for this channel.
(type=list of SubChannel)

continued on next page

133

Name Description

t coupled Does this channel have a coupling between
different baryon baryon configuration.
(type=boolean)

Tz Total isospin projection (actually twice to get an
integer).
(type=int)

G.14.4 Class Variables

Name Description

strange min Minimum value of strange quatum number to
setup channels for.
Value: -1 (type=int)

t max Value: 4 (type=int)
valid particles A list of particles to include when setting up

valid channels.
For now: Exclude Cascade baryons and baryons
with strange number less than -2.
Value: [’proton’, ’neutron’, ’lambda’, -

’sigma+’, ’sigma0’, ’sigma-’]

(type=list)

G.15 Class configuration.relative.relative.SubChannel

Identifies a subchannel (baryon-baryon configuration) with 2 baryons and their
collective properties.

G.15.1 Methods

init (self, p1, p2)

Constructor.
Initializes all instance variables to the correct values.

Parameters

p1: Baryon 1 in this subchannel.
(type=Particle)

p2: Baryon 2 in this subchannel.
(type=Particle)

eq (self, s2)

Return Value

True if the two subchannels are equal. False otherwise.
(type=boolean)

134

str (self)

Return Value

a string representation of this subchannel.
(type=String)

get ids(self)

Creates a list of numerical particle id’s for the two particles in this
subchannel.

Return Value

List of numerical particle id’s.
(type=list)

G.15.2 Instance Variables

Name Description

charge Total charge of the two baryons.
(type=int)

mass Reduced mass of the baryons.
(type=float)

name Shortname to identify the subchannel.
(type=string)

p1 Baryon 1 in this subchannel.
(type=Particle)

p2 Baryon 2 in this subchannel.
(type=Particle)

t mass Total mass of the baryons.
(type=float)

G.16 Package interaction

This package contains the interface to all baryon-baryon interactions. Currently
the only supported are the nijmegen NSC97 potential, the Idaho n3lo NN
potential and the juelich YN potential.

typical usage:

>>> capabilities = get capabilities()

>>> for c in capabilities:

>>> model = selector(c)

>>> # Process model

G.16.1 Modules� intmodel: Toplevel class of all interaction models.
(Section G.17, p. 136)

135

� juelich (Section G.19, p. 138)
– juelich: This module implements the Juelich hyperon-nucleon

potential.
(Section G.20, p. 138)� n3lo (Section G.22, p. 140)

– n3lo: This module implements the Idaho n3lo nucleon-nucleon
potential.
(Section G.23, p. 141)� nijmegen (Section G.25, p. 142)

– nijmegen: This module implements the Nijmegen NSC97 potentials.
(Section G.26, p. 143)

G.16.2 Functions

get capabilities()

Create a list of the text representation of all interaction models currently
implemented.

Return Value

List of interaction models supported.
(type=list)

selector(pot)

Returns an instance of the interaction model identified by the parameter.

Parameters

pot: The name of the potential you want.
(type=String)

Return Value

IntModel instance of correct type.
(type=IntModel)

G.17 Module interaction.intmodel

Toplevel class of all interaction models. Implements a null potential to for
testing purposes.

G.17.1 Classes� IntModel: Top level class for the different interaction models.
(Section G.18, p. 137)

136

G.18 Class interaction.intmodel.IntModel

builtin .object

IntModel

Known Subclasses: Juelich, N3lo, NSC97

Top level class for the different interaction models.

G.18.1 Methods

init (self)

Constructor.

Overrides: builtin .object. init

str (self)

Creates a string representation of the object.

Return Value

String representation ob this object.
(type=String)

Overrides: builtin .object. str

get potential(self, channel, q)

This method returns the matrix elements of this interaction model for the
selected channels and meshpoints.

Parameters

channel: The channel to calculate matrix elements.
(type=Channel)

q: Momenta to calculate matrix elements for.
(type=list of floats.)

Return Value

A 2 dimensional array containing all marix elements for this
channel.
(type=2-dim numpy array)

137

sort subs(self, channel)

Default function for sorting the subchannels in a channel so as to match the
order of the interaction model. No sorting necessary for null potential

Parameters

channel: The channel to sort the subchannels in.
(type=Channel)

Return Value

A channel object with sorted subchannels.
(type=Channel)

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr

G.19 Package interaction.juelich

G.19.1 Modules� juelich: This module implements the Juelich hyperon-nucleon potential.
(Section G.20, p. 138)

G.19.2 Functions

get capabilities()

G.19.3 Variables

Name Description

orig Value: ’/home/grj/work/uio/master/code/-

packages/interaction’

(type=str)

G.20 Module interaction.juelich.juelich

This module implements the Juelich hyperon-nucleon potential. The matrix
elements originally com in a partial wave isospin basis, but are translated to the
physical basis on the fly.

The actual calculation of the matrix elements are done in the core module
implemented in fortran.

The module consist of the Juelich class, which is the interface to to the potential.
All calculations are done in the core module. The core module contain one
callable subroutine juelich front that collect the matrix elements for the specified
momenta.

This module is selfcontained. All libraries needed are included in the shared

138

object file.

G.20.1 Classes� Juelich: Class for the Juelich interaction model.
(Section G.21, p. 139)

G.20.2 Variables

Name Description

DEBUG Value: True (type=bool)
max q Value: 70 (type=int)

G.21 Class interaction.juelich.juelich.Juelich

builtin .object

interaction.intmodel.IntModel

Juelich

Class for the Juelich interaction model.

G.21.1 Methods

init (self)

Constructor.

Overrides: interaction.intmodel.IntModel. init

check channel(self, channel, q)

Check that the channel doesn’t overstep the possible properties of the model.

Parameters

channel: Channel object to calculate the matrix elements for.
(type=Channel)

Return Value

True if channel is valid, False otherwise.
(type=boolean)

create subs(self)

Creates the subchannel structure for the potential code. Identifies where data
for each of the subchannels are stored in the result array from the potential.

139

get potential(self, channel, q)

This method returns the matrix elements of this interaction model for the
selected channels and meshpoints.

Parameters

channel: The channel to calculate matrix elements.
(type=Channel)

q: Momenta to calculate matrix elements for.
(type=list of floats.)

Return Value

A 2 dimensional array containing all marix elements for this
channel.
(type=2-dim numpy array)

Overrides: interaction.intmodel.IntModel.get potential

translate subs(self, channel)

Creates a translation list between the subchannels in the channel and the
subchannels in the potential code.

Parameters

channel: Channel object to calculate matrix elements for.
(type=Channel)

Return Value

Translation array
(type=list)

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr

Inherited from IntModel: str , sort subs

G.21.2 Instance Variables

Name Description

function Function to call to calculate matrix elements.
max q Maximum number of momenta to calculate

matrix elements for.
subs Subchannel structure implemented in the

potential code.

G.22 Package interaction.n3lo

G.22.1 Modules� n3lo: This module implements the Idaho n3lo nucleon-nucleon potential.
(Section G.23, p. 141)

140

G.22.2 Functions

get capabilities()

G.23 Module interaction.n3lo.n3lo

This module implements the Idaho n3lo nucleon-nucleon potential. The matrix
elements come in a partial wave physical basis, with options for Charge
symmetry breaking and charge independence breaking. Bith are turned on
by default.

The actual calculation of the matrix elements are done in the core module
implemented in fortran.

The module consist of the N3lo class, which contains the interface to the
potential. The core module is precompiled and contains the subroutine
n3lo front that collects all matrix elements for the specied momenta into a
numpy array of rank 2. This module is selfcontained, so it does not need
any other libraries installed. All lapack routines used in the potential code
are included in the library.

G.23.1 Classes� N3lo: Class for the n3lo interaction model.
(Section G.24, p. 141)

G.23.2 Variables

Name Description

DEBUG Value: True (type=bool)

G.24 Class interaction.n3lo.n3lo.N3lo

builtin .object

interaction.intmodel.IntModel

N3lo

Class for the n3lo interaction model.

G.24.1 Methods

init (self)

Constructor.

Overrides: interaction.intmodel.IntModel. init

141

check channel(self, channel)

Check that the channel doesn’t overstep the possible properties of the model.

Parameters

channel: Channel object to calculate the matrix elements for.
(type=Channel)

Return Value

True if channel is valid, False otherwise.
(type=boolean)

get potential(self, channel, q)

This method returns the matrix elements of this interaction model for the
selected channels and meshpoints.

Parameters

channel: The channel to calculate matrix elements.
(type=Channel)

q: Momenta to calculate matrix elements for.
(type=list of floats.)

Return Value

A 2 dimensional array containing all marix elements for this
channel.
(type=2-dim numpy array)

Overrides: interaction.intmodel.IntModel.get potential

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr

Inherited from IntModel: str , sort subs

G.24.2 Instance Variables

Name Description

function Interface function to call for the matrix elements.

G.25 Package interaction.nijmegen

G.25.1 Modules� nijmegen: This module implements the Nijmegen NSC97 potentials.
(Section G.26, p. 143)

G.25.2 Functions

get capabilities()

142

G.26 Module interaction.nijmegen.nijmegen

This module implements the Nijmegen NSC97 potentials. There are 6
of them in total each support strangeness channels $S \geq -4$. Only
nucleon-nucleon, hyperon-nucleon and hyperon-hyperon are implemented in this
interface however. These strangeness channels require different treatment in the
potential code, so a class hierarchy has been created to be able to handle these
difference seamlessly.

The first structure is the NSC97BB class and it’s children. There is one child
pr. strangeness channel supported, since each have different baryon-baryon
configurations, different interface functions and so on.

The secon structure is the NSC97 class and it’s children. There are 6 children
in total, one for each different model within the NSC97 group. The children
defines different parameters needed for the different models to be calculated.

The actual calculations are performed in the potential code written in fortran.
The core module contains 3 callable subroutines, one for each strangeness
channel supported. These subroutines are responsible for extracting the correct
matrix elements.

This module is comletely selcontained. All library functions are included in the
shared object.

G.26.1 Classes� NSC97: Parent class for all potential interfaces.
(Section G.31, p. 147)� NSC97A: Class for the NSC97a interaction model
(Section G.32, p. 148)� NSC97B: Class for the NSC97b interaction model
(Section G.33, p. 149)� NSC97BB: Parent class of classes implmenting the different strangeness
channels.
(Section G.27, p. 144)� NSC97C: Class for the NSC97c interaction model
(Section G.34, p. 150)� NSC97D: Class for the NSC97d interaction model
(Section G.35, p. 150)� NSC97E: Class for the NSC97e interaction model
(Section G.36, p. 151)� NSC97F: Class for the NSC97f interaction model
(Section G.37, p. 152)� NSC97NN: Interface to the Nucleon-Nucleon potential.
(Section G.28, p. 145)� NSC97YN: Interface to the Nucleon-Hyperon potential from the stoks
nijmegen code.
(Section G.29, p. 145)� NSC97YY: Interface to the Hyperon-Hyperon potential.
(Section G.30, p. 146)

143

G.26.2 Variables

Name Description

DEBUG Value: False (type=bool)

G.27 Class interaction.nijmegen.nijmegen.NSC97BB

builtin .object

NSC97BB

Known Subclasses: NSC97NN, NSC97YN, NSC97YY

Parent class of classes implmenting the different strangeness channels. Contains
methods and variables common to all children.

G.27.1 Methods

init (self)

Constructor for potential interface base class.
All instance variables that are common between the subclasses are set here.

Overrides: builtin .object. init

translate subs(self, channel)

Creates a translation list between the subchannels in the channel and the
subchannels in the potential code.

Parameters

channel: The channel to calculate matrix elements for.
(type=Channel)

Return Value

Translation array
(type=list)

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr , str

G.27.2 Instance Variables

Name Description

core function Function to call when calculating the matrix
elements.

subs Structure containing the baryon-baryon
configurations for the different strangeness
channels.

144

G.28 Class interaction.nijmegen.nijmegen.NSC97NN

builtin .object

interaction.nijmegen.nijmegen.NSC97BB

NSC97NN

Interface to the Nucleon-Nucleon potential. Strangeness 0.

G.28.1 Methods

init (self)

Constructor for Nucleon-Nucleon potential interface sub class. Strange
number = 0

Overrides: interaction.nijmegen.nijmegen.NSC97BB. init

create subs(self)

Creates the subchannel structure for the potential code. Identifies where data
for each of the subchannels are stored in the result array from the potential.

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr , str

Inherited from NSC97BB: translate subs

G.28.2 Instance Variables

Name Description

Inherited from NSC97BB: core function (p. 144), subs (p. 144)

G.29 Class interaction.nijmegen.nijmegen.NSC97YN

builtin .object

interaction.nijmegen.nijmegen.NSC97BB

NSC97YN

Interface to the Nucleon-Hyperon potential from the stoks nijmegen code.
Strangeness -1.

145

G.29.1 Methods

init (self)

Constructor for Nucleon-Hyperon potential interface sub class. Strange
number = -1.

Overrides: interaction.nijmegen.nijmegen.NSC97BB. init

create subs(self)

Creates the subchannel structure for the potential code. Identifies where data
for each of the subchannels are stored in the result array from the potential.

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr , str

Inherited from NSC97BB: translate subs

G.29.2 Instance Variables

Name Description

Inherited from NSC97BB: core function (p. 144), subs (p. 144)

G.30 Class interaction.nijmegen.nijmegen.NSC97YY

builtin .object

interaction.nijmegen.nijmegen.NSC97BB

NSC97YY

Interface to the Hyperon-Hyperon potential. Strangeness -2.

G.30.1 Methods

init (self)

Constructor for Hyperon-Hyperon potential interface sub class for the
nijmegen potential. Strange number = -2

Overrides: interaction.nijmegen.nijmegen.NSC97BB. init

create subs(self)

Creates the subchannel structure for the potential code. Identifies where data
for each of the subchannels are stored in the result array from the potential.

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr , str

Inherited from NSC97BB: translate subs

146

G.30.2 Instance Variables

Name Description

Inherited from NSC97BB: core function (p. 144), subs (p. 144)

G.31 Class interaction.nijmegen.nijmegen.NSC97

builtin .object

interaction.intmodel.IntModel

NSC97

Known Subclasses: NSC97A, NSC97B, NSC97C, NSC97D, NSC97E,
NSC97F

Parent class for all potential interfaces. All methods and variables shared
between the subclasses has been placed here.

G.31.1 Methods

init (self)

Constructor.

Overrides: interaction.intmodel.IntModel. init

get potential(self, channel, q)

This method returns the matrix elements of this interaction model for the
selected channels and meshpoints.

Parameters

channel: The channel to calculate matrix elements.
(type=Channel)

q: Momenta to calculate matrix elements for.
(type=list of floats.)

Return Value

A 2 dimensional array containing all marix elements for this
channel.
(type=2-dim numpy array)

Overrides: interaction.intmodel.IntModel.get potential

147

sort subs(self, channel)

Sort the subchannels of the given channel in accordance with the subchannel
structure in the potential code.

Parameters

channel: Channel to sort.
(type=Channel)

Return Value

Channel object with sorted subchannels.
(type=Channel)

Overrides: interaction.intmodel.IntModel.sort subs

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr

Inherited from IntModel: str

G.31.2 Class Variables

Name Description

nn structure Structure object for the NN interaction
Value: <interaction.nijmegen.nijmegen.N-
SC97NN object at 0x2aae6199ebd0>
(type=NSC97BB)

ns Identifies how much debugging information
should be written in the potential code.
Value: 0 (type=int)

nymod Identifies which NSC97 potential should be used.
(type=int)

yn structure Structure object for the YN interaction
Value: <interaction.nijmegen.nijmegen.N-
SC97YN object at 0x2aae6199ec90>
(type=NSC97BB)

yy structure Structure object for the YY interaction
Value: <interaction.nijmegen.nijmegen.N-
SC97YY object at 0x2aae6199ecd0>
(type=NSC97BB

G.32 Class interaction.nijmegen.nijmegen.NSC97A

builtin .object

interaction.intmodel.IntModel

interaction.nijmegen.nijmegen.NSC97

NSC97A

Class for the NSC97a interaction model

148

G.32.1 Methods

init (self)

Constructor.

Overrides: interaction.nijmegen.nijmegen.NSC97. init

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr

Inherited from IntModel: str
Inherited from NSC97: get potential, sort subs

G.32.2 Class Variables

Name Description

Inherited from NSC97: nn structure (p. 147), ns (p. 147), nymod (p. 147),
yn structure (p. 147), yy structure (p. 147)

G.33 Class interaction.nijmegen.nijmegen.NSC97B

builtin .object

interaction.intmodel.IntModel

interaction.nijmegen.nijmegen.NSC97

NSC97B

Class for the NSC97b interaction model

G.33.1 Methods

init (self)

Constructor.

Overrides: interaction.nijmegen.nijmegen.NSC97. init

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr

Inherited from IntModel: str
Inherited from NSC97: get potential, sort subs

G.33.2 Class Variables

Name Description

Inherited from NSC97: nn structure (p. 147), ns (p. 147), nymod (p. 147),
yn structure (p. 147), yy structure (p. 147)

149

G.34 Class interaction.nijmegen.nijmegen.NSC97C

builtin .object

interaction.intmodel.IntModel

interaction.nijmegen.nijmegen.NSC97

NSC97C

Class for the NSC97c interaction model

G.34.1 Methods

init (self)

Constructor.

Overrides: interaction.nijmegen.nijmegen.NSC97. init

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr

Inherited from IntModel: str
Inherited from NSC97: get potential, sort subs

G.34.2 Class Variables

Name Description

Inherited from NSC97: nn structure (p. 147), ns (p. 147), nymod (p. 147),
yn structure (p. 147), yy structure (p. 147)

G.35 Class interaction.nijmegen.nijmegen.NSC97D

builtin .object

interaction.intmodel.IntModel

interaction.nijmegen.nijmegen.NSC97

NSC97D

Class for the NSC97d interaction model

150

G.35.1 Methods

init (self)

Constructor.

Overrides: interaction.nijmegen.nijmegen.NSC97. init

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr

Inherited from IntModel: str
Inherited from NSC97: get potential, sort subs

G.35.2 Class Variables

Name Description

Inherited from NSC97: nn structure (p. 147), ns (p. 147), nymod (p. 147),
yn structure (p. 147), yy structure (p. 147)

G.36 Class interaction.nijmegen.nijmegen.NSC97E

builtin .object

interaction.intmodel.IntModel

interaction.nijmegen.nijmegen.NSC97

NSC97E

Class for the NSC97e interaction model

G.36.1 Methods

init (self)

Constructor.

Overrides: interaction.nijmegen.nijmegen.NSC97. init

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr

Inherited from IntModel: str
Inherited from NSC97: get potential, sort subs

G.36.2 Class Variables

Name Description

Inherited from NSC97: nn structure (p. 147), ns (p. 147), nymod (p. 147),
yn structure (p. 147), yy structure (p. 147)

151

G.37 Class interaction.nijmegen.nijmegen.NSC97F

builtin .object

interaction.intmodel.IntModel

interaction.nijmegen.nijmegen.NSC97

NSC97F

Class for the NSC97f interaction model

G.37.1 Methods

init (self)

Constructor.

Overrides: interaction.nijmegen.nijmegen.NSC97. init

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr

Inherited from IntModel: str
Inherited from NSC97: get potential, sort subs

G.37.2 Class Variables

Name Description

Inherited from NSC97: nn structure (p. 147), ns (p. 147), nymod (p. 147),
yn structure (p. 147), yy structure (p. 147)

G.38 Package renormalization

This package implements the different kinds of renormalization procedures used
for creating an effective two-body baryon-baryon interaction. The end result can
be presented in the relative/com frame with a partial wave momentum basis,
or the elements can be presented in a 3-d spherical harmonic oscillator basis in
the lab frame coupled to a specific total angular momentum.

G.38.1 Modules� renormalization: This module contains the parent class of all renormal-
ization classes.
(Section G.39, p. 153)� vlowk (Section G.41, p. 161)

– vlowk: This module contains the class Vlowk, implementing the low
momentum interaction described in section ef{sec:vlowk}.
(Section G.42, p. 161)

152

G.38.2 Functions

selector(filename)

The function reads a configuration file and determines which type of
calculation should be done. The correct class is called for this calculation.

Parameters

filename: Name of configuration file.
(type=String)

Return Value

Specific renormalization object for the selected configuration.
(type=Renromalization)

G.38.3 Variables

Name Description

all Value: [’renormalization’, ’vlowk’, ’se-

lector’]

(type=list)
config log file Value:

’/home/grj/work/uio/master/code/package-

s/renormalization/data/config.log’

(type=str)
serial file Value:

’/home/grj/work/uio/master/code/package-

s/renormalization/data/last serial.dat’

(type=str)

G.39 Module renormalization.renormalization

This module contains the parent class of all renormalization classes. Most of
the functionality is placed in here, while only parameters and methods specific
to a renormalization procedure is in the derived classes.

This module also contains methods to solve the \SE for a given channel with
matrix elements from a specified interaction model.

Typical usage:

>>> r = Renormalization()

>>> # Get the bare interaction elements for a single channel

>>> q, v = r.get exact potential(channel, model)

>>> # Get the energy eigenvalues for a specific channel

>>> e = r.get exact eigenvalues(channel, model)

G.39.1 Classes� Renormalization: Top level class for the renormalization types.

153

(Section G.40, p. 154)

G.39.2 Variables

Name Description

DEBUG Value: True (type=bool)

G.40 Class renormalization.renormalization.Renormalization

builtin .object

Renormalization

Known Subclasses: Vlowk

Top level class for the renormalization types.

G.40.1 Methods

init (self)

Constructor

Overrides: builtin .object. init

check channels(self, channels)

Check that all channels about to be initialized satisfies the configuration and
optionally any other constraint the user wish to impose on the channels
selected.

Parameters

channels: List of all channels currently selected for
initialization.
(type=list)

Return Value

List of all channels satisfying the specified constraints.
(type=list)

check config(self)

Check if a configuration dict contains all required key,value pairs.

Return Value

True if the configuration is valid for this calculation.
(type=boolean)

154

get(self, key)

Return a configuration value with a specified key. None if the key does not
exist.

Parameters

key: Key to find in the configuration array.
(type=String)

Return Value

Value of the specified key.
(type=String)

get exact eigenvalues(self, channel, model)

Return eigenvalues of the Hamiltonian in the selected channel where the
interaction elements are created using the specified model.

Parameters

channel: The channel to diagonalize.
(type=Channel)

model: The interaction model to use.
(type=IntModel)

Return Value

The energy eigenavlues of the specified channel, where the matrix
elements for the interaction has been created with the specified
model.
(type=numpy array of rank 1)

get exact potential data(self, channel, model)

Initialize the core module and then get the interaction matrix elements for
the specified channel, using the specified model to generate them.

Parameters

channel: The channel to diagonalize.
(type=Channel)

model: The interaction model to use.
(type=IntModel)

Return Value

The meshpoints and the generated matrix elements for the
interaction.
(type=tuple containing a rank1 and rank 2 numpy array)

155

get interaction data(self, channel, model)

Get the interaction matrix elements for the specified channel, using the
specified model to generate them.

Parameters

channel: The channel to diagonalize.
(type=Channel)

model: The interaction model to use.
(type=IntModel)

Return Value

The meshpoints and the generated matrix elements for the
interaction.
(type=tuple containing a rank1 and rank 2 numpy array)

get nn models(self)

Create a list of available nn interaction models.

Return Value

A list of available nn interaction models.
(type=list)

get renorm potential data(self, channel, model)

Get the matrix elements after renormalization for a specific channel using a
specified model. All classes derived from this should overload this one.

get yn models(self)

Create a list of available yn interaction models.

Return Value

A list of available yn interaction models.
(type=list)

get yy models(self)

Create a list of available yy interaction models.

Return Value

A list of available yy interaction models.
(type=list)

include nn(self)

Should the current run generate nucleon-nucleon matrix elements.

Return Value

True if nn elemenst should be generated.
(type=boolean)

156

include yn(self)

Should the current run generate hyperon-nucleon matrix elements.

Return Value

True if yn elemenst should be generated.
(type=boolean)

include yy(self)

Should the current run generate hyperon-hyperon matrix elements.

Return Value

True if y elemenst should be generated.
(type=boolean)

init config(self)

Initialize the compiled core module. The core module is written in fortran
and compiled as a shared object. This initialization is needed so the
datastructures are allocated correctly and necessary variables set.

Return Value

True if the initialization went ok. False otherwise.
(type=boolean)

init post channel(self)

Do all initialization that needs to be done after the core module has been
initialized with channel information.

Return Value

None

list channels(self)

Tell the core module to list all channels currently configured.

Return Value

None

list config(self)

List current configuration to screen.

Return Value

None

157

prepare single(self, channel, model)

Prepare to renormalize a single channel in momentum basis. All necessary
configuration options are set and the specified channel is initialized in the
core module.

Parameters

channel: Channel to generate renormalized matrix elements for.
(type=Channel)

model: Interaction model used to create the matrix elements.
(type=IntModel)

Return Value

None

Raises

ValueError If not properly initialized, or an invalid channel or
model an exception is raised.

setup all channels(self)

Create all channels from the given configuration and initialize the core
modules partial wave structure with correct channel data for each channel.
After the core module has been initialized, all remaining initializations
requiring the partial waves allready set, are run.

Return Value

None

setup all potentials(self)

Loop through all initialized channels and get the matrix elements for this
channel. Any constraints of which model should be used for a specific
channel is done in this function. The matrix elements are passed to an
interface function for updating the core module.

Return Value

None

setup channel(self, i, c)

Initialize the core module with a single channel with the specified index
number.
For a single run, the index will allways be 1, while for a lab transformation,
it will run through the number of channels needed.

Parameters

i: Index of the channel beeing initialized. This refers to the core
module’s internal storage of channels.
(type=int)

c: Channel to initialize.
(type=Channel)

Return Value

None

158

setup one channel(self, j, s, q, strange)

Create a channel object from the given parameters and initialize the core
module with the correct partial wave structure. Run remaining
initializations after the core module has been set.
This method is typically called when the end result should be a renormalized
interaction for a single channel, in the relative momentum basis.

Parameters

j: Total angular momentum.
(type=int)

s: Intrinsic spin.
(type=int)

q: Total charge.
(type=int)

strange: Strangeness flavour.
(type=int)

Return Value

None

setup potential(self, i, c, pot, q)

Update the core module with the matrix elements for a specific channel. The
core module renormalizes the selected interaction with the selected
renormalization procedure and transforms them to a relative harmonic
oscillator basis for use in the transformation to the lab system.

Parameters

i: index referring to the channels storage in the core module.
(type=int)

c: Channel to renormalize.
(type=Channel)

pot: Name of the interaction model to use for this channel.
(type=String)

q: Meshpoints to calculate the matrix elements for.
(type=Numpy array of rank 1.)

Return Value

None

159

transform lab(self)

This method is the only method needed to call after the renormalization has
been created. The different derived classes implement their own tecniques
and the matrix elements are transformed to the lab frame in an harmonic
oscillator basis. All derived classes should overload this method to create the
proper renormalized matrix elements.

Return Value

None

Raises

ValueError This exceptions is raised if the current configuration
is not valid for a lab transformation.

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr , str

G.40.2 Static Methods

read config(filename)

Reads a configuration file in the format: key=value populates a Python
dictionary with the keys and corresponding values.

Parameters

filename: Filename of the config file.
(type=String)

Return Value

Dictionary with all elements in the configuration file.

G.40.3 Instance Variables

Name Description

options Dictionary of options passed to the constructor.
Value: {} (type=dict)

singular True if result should be presented in momentum
relative partial wave basis.
(type=boolean)

G.40.4 Class Variables

continued on next page

160

Name Description

Name Description

required A list of option keys that are required for
initialization.
Value:

[’type of renormv’, ’coulomb included’, -

’output run’, ’include yn’, ’include ...

(type=list)

G.41 Package renormalization.vlowk

G.41.1 Modules� vlowk: This module contains the class Vlowk, implementing the low
momentum interaction described in section ef{sec:vlowk}.
(Section G.42, p. 161)

G.42 Module renormalization.vlowk.vlowk

This module contains the class Vlowk, implementing the low momentum
interaction described in section ef{sec:vlowk}.
Typical usage:

>>> vlowk = Vlowk(options)

>>> # Get the renormalized matrix elements of a single channel

>>> q, v = vlowk.get renorm eigenvalues(channel, model)

>>> # Get the renormalized eigenvalues of a single channel

>>> e = vlowk.get renorm eigenvalues(channel, model)

>>> # Transform to the lab frame

>>> vlowk.transform lab()

G.42.1 Classes� Vlowk: Vlowk renormalization type.
(Section G.43, p. 162)

G.42.2 Variables

Name Description

DEBUG Value: True (type=bool)

161

G.43 Class renormalization.vlowk.vlowk.Vlowk

builtin .object

renormalization.renormalization.Renormalization

Vlowk

Vlowk renormalization type. core is the vlowk front module of the fortran
package

G.43.1 Methods

init (self, options=None)

Constructor.

Parameters

options: Optional dictionary of options to initialize.
(type=dict)

Overrides: renormalization.renormalization.Renormalization. init

get renorm eigenvalues(self, channel, model)

Return eigenvalues of the Hamiltonian in the selected channel where the
interaction elements are created using the specified model, after the
interaction has been renormalized using this procedure.

Parameters

channel: The channel to diagonalize.
(type=Channel)

model: The interaction model to use.
(type=IntModel)

Return Value

The energy eigenavlues of the specified channel, where the matrix
elements for the interaction has been created with the specified
model.
(type=numpy array of rank 1)

162

get renorm potential data(self, channel, model)

Return the matrix elements of the renormalized interaction, where the
interaction elements are created using the specified model, after the
interaction has been renormalized using this procedure.

Parameters

channel: The channel to generate elements for.
(type=Channel)

model: The interaction model to use.
(type=IntModel)

Return Value

The meshpoints used and the renormalized matrix elements.
(type=numpy array of rank 1 and rank 2)

Overrides:
renormalization.renormalization.Renormalization.get renorm potential data

init config(self)

Initialize the core module with specific vlowk options. Basically the mesh.

Return Value

True if initialization was completed.
(type=boolean)

Overrides: renormalization.renormalization.Renormalization.init config

init post channel(self)

Do all initialization that needs to be done after the core module has been
initialized with channel information.

Return Value

None

Overrides:
renormalization.renormalization.Renormalization.init post channel

list config(self)

List current configuration to screen.

Return Value

None

Overrides: renormalization.renormalization.Renormalization.list config

163

set mesh(self, n m, c m, n q, c q)

Update core module with new mesh for the renormalization. The core
module creates the new meshpoints using a Gauss- Legendre polynomial.

Parameters

n m: Number of mehpoints in the modelspace.
(type=int)

c m: Cutoff in the modelspace.
(type=int)

n q: Number of meshpoints in the q-space.
(type=int)

c q: Cutoff in the q-space
(type=int)

Return Value

None

test mesh(self)

Check if the meshpoints are set to valid values.

Return Value

True if the meshpoints are set, False otherwise.
(type=boolean)

transform lab(self)

This method is the only method needed to call after the renormalization has
been created. The different derived classes implement their own tecniques
and the matrix elements are transformed to the lab frame in an harmonic
oscillator basis. All derived classes should overload this method to create the
proper renormalized matrix elements.

Return Value

None

Raises

ValueError This exceptions is raised if the current configuration
is not valid for a lab transformation.

Overrides: renormalization.renormalization.Renormalization.transform lab

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr , str

Inherited from Renormalization: check channels, check config, get,
get exact eigenvalues, get exact potential data, get interaction data, get nn models,
get yn models, get yy models, include nn, include yn, include yy, list channels,
prepare single, setup all channels, setup all potentials, setup channel, setup one channel,
setup potential

G.43.2 Static Methods

Inherited from Renormalization: read config

164

G.43.3 Instance Variables

Name Description

mesh Meshpoints and cutoffs for the modelspace and
q-space.
Value: [None, None, None, None] (type=list)

options Dictionary of configuration options.
(type=dict)

Inherited from Renormalization: singular (p. 154)

G.43.4 Class Variables

Name Description

additional Additional recuired key,value pairs in the
configuration .
Value:

[’n k1’, ’n k2’, ’k cutoff’, ’k max’]

(type=list)
name Value: ’vlowk’ (type=str)
Inherited from Renormalization: required (p. 154)

G.44 Package effective

(section) Effectice manybody interaction

This module implements the creation of an effective many-body interaction,
created from two-body interaction in a harmonic oscillator basis.

If the hartree fock option is set, a self consistent set of basis states are calculated
in first order, redfining the states and matrix elements, so as to not operate with
linear combinations of harmonic oscillator states. The new states and matrix
elements are written to file.

G.44.1 Modules� bhf : This module ’bhf’ is auto-generated with f2py (version:2 3979).
(Section G.45, p. 165)� effective: This module contains the class Effective, which is the interface
to the compiled module bhf.
(Section G.46, p. 167)

G.45 Module effective.bhf

This module ’bhf’ is auto-generated with f2py (version:2 3979).

Functions:

set outputfiles(outputfile)

set inputfiles(renormfile,spdatafile)

165

set interaction(interaction,order)

set hf iterations(hf)

set hffiles(hf renorm,hf spdata)

setup()

set energies(num,energy)

set hyperons(l,sp,s0,sm)

do hartree fock()

do onebody()

Fortran 90/95 modules:

constants --- nmax,cutoff,nlmax,n sigmap,total mass,n cm mom,

n sigmam,pauli operator,oscli,hf iterations,hb2ip,

type of yn pot,pi 2,pi 4,type of yy pot,itzmax,pi,

coulomb channel,sp mass,n startenergy g,n body int,

n sigma0,neutron mass,n total,itzmin,coulomb included,dp,

n lambda,cib,lab nmax,n rel,lmax,dpc,sigma0 mass,lab lmax,

type of renormv,strange min,proton mass,sp charge,

keep originalenergies,n startenergy veff,include yn,

number homega exct,sigmam mass,e start g,jmin,include yy,

starting energy,theta rot,lambda mass,order of interaction,

csb,sigmap mass,jmax,wcn,j lab min,p mass,j lab max,

strange max,hbarc,square calculation,oscl,nlmax model,

type of interaction,type of nn pot,hbar omega,mass nucleus,lambda.

G.45.1 Variables

Name Description

version Value: ’$Revision: $’ (type=str)
constants Value:

<fortran object at 0x2b67aade92b0>
(type=fortran)

do hartree fock Value:

<fortran object at 0x2b67aade9260>
(type=fortran)

do onebody Value:

<fortran object at 0x2b67aade9288>
(type=fortran)

set energies Value:

<fortran object at 0x2b67aade9210>
(type=fortran)

set hf iterations Value:

<fortran object at 0x2b67aade9198>
(type=fortran)

set hffiles Value:

<fortran object at 0x2b67aade91c0>
(type=fortran)

set hyperons Value:

<fortran object at 0x2b67aade9238>
(type=fortran)

continued on next page

166

Name Description

set inputfiles Value:

<fortran object at 0x2b67aade9148>
(type=fortran)

set interaction Value:

<fortran object at 0x2b67aade9170>
(type=fortran)

set outputfiles Value:

<fortran object at 0x2b67aade9120>
(type=fortran)

setup Value:

<fortran object at 0x2b67aade91e8>
(type=fortran)

G.46 Module effective.effective

(section) Effective

This module contains the class Effective, which is the interface to the compiled
module bhf. This module does all the actual calculation of diagrams and
diagonalization, while the interface lets the user choose what operation is
wanted.

For now only the setup hf orbits is implemented, which creates a self- consistent
single particle basis for the given problem defined in the single particle data file
and the configuration file.

In the single particle data file you specify a set of hole states for the selected
nuclei and which states are to be part pf the modelspace and not. You must
also specify which hyperon states to be included in the calculation.

In the configuration file, you specify the mass of the system, by specifying how
many of the different hyperons are included. The total mass is calculated from
this number and what hole states are defined.

Typical usage:

>>> e = Effective(filename)

>>> e.init config()

>>> e.setup hf orbits()

G.46.1 Classes� Effective: This class is the interface to the many-body module bhf.
(Section G.47, p. 168)

G.46.2 Variables

Name Description

DEBUG Value: True (type=bool)

167

G.47 Class effective.effective.Effective

builtin .object

Effective

This class is the interface to the many-body module bhf. Currently the only
option is to do a self consistent calculation of a new basis set.

G.47.1 Methods

init (self, filename)

Constructor

Parameters

filename: Name of the configuration file.
(type=String)

Overrides: builtin .object. init

check config(self)

Check if the given configuration is valid.

Return Value

True if the current config is valid. False otherwise.
(type=boolean)

init config(self)

Initialize the compiled core module. The core module is written in fortran
and compiled as a shared object. This initialization is needed so the
datastructures are allocated correctly and necessary variables set.

Return Value

True if the initialization went ok. False otherwise.
(type=boolean)

list config(self)

Print the current configuration to screen.

Return Value

None

168

read config(self, filename)

Reads a configuration file in the format: key=value populates a Python
dictionary with the keys and corresponding values.

Parameters

filename: Filename of the config file.
(type=String)

Return Value

Dictionary with all elements in the configuration file.

setup hf orbits(self)

Interface function to the subroutine that does the actual calculations.

Return Value

None

Inherited from object: delattr , getattribute , hash , new ,
reduce , reduce ex , repr , setattr , str

G.47.2 Instance Variables

Name Description

options Internal representation of the options set in the
config- file

G.47.3 Class Variables

Name Description

required Required options for a run.
(type=list)

169

G.48 Module visualization.plot

G.48.1 Classes� EigData: Class containing an eigenvalue dataset to plot.
(Section G.49, p. 174)� PlotData: Class containing a dataset to plot.
(Section G.50, p. 174)

G.48.2 Functions

find closest(q, k)

Return the index of the element of q, closest to k

Parameters

q: List of floats to compare.
(type=List of floats.)

k: Value to compare.
(type=float)

Return Value

The index of the element in q, closest to k.

get diagonal(vkk)

Return the diaogonal of a matrix.

Parameters

vkk: 2-dim dataset.
(type=numpy array of rank 2 containing floats.)

Return Value

A list of floats containg the diagonal elements of vkk.

get offdiag(q, data, k)

Return row of data with index i matching the closest q[i] to k.

Parameters

q: vector of floats to match with k.
(type=List of floats.)

data: 2 dim dataset.
(type=numpy array of rank 2 containing floats.)

k: Matching point.
(type=float)

Return Value

List of floats containing a row of the dataset.

170

plot diagonal(q, data, options=None)

Plot the diagonal elements of a 2-dim dataset against a set of meshpoints.
Optional dictionary is passed along.

Parameters

q: Meshpoints.
(type=List of floats.)

data: 2-dim dataset.
(type=numpy array of rank 2 containing floats.)

options: options to passed along.
(type=dict of parameters.)

plot eig multiple(data, num, options=None)

Plot multiple datasets as eigenvalue plots

Parameters

data: The dataset to be plotted.
(type=An instance of the EigData class)

options: Optional dict of key-value pairs. The function
currently support the followin keys:� title: The title of the plot.� copydir: The directory where a copy of the plot

should be placed. If not specified, no plot is stored
to file.

Return Value

None

171

plot multiple(data, options=None)

Plot multiple datasets as traditional x,y plots.

Parameters

data: The dataset to be plotted.
(type=An instance of the PlotData class)

options: Optional dict of key-value pairs. The function
currently support the followin keys:� offdiag: If an offdiagonal plot of the dataset is

needed, this option specifies which row/coloumn
to plot.� title: The title of the plot.� xbound: The range on the x axis that should be
plotted. Specified as a tuple (xmin,xmax).� ybound The range on the x axis that should be
plotted. Specified as a tuple (ymin, ymax).� xlabel: The label on the x-axis.� ylabel: The label on the y-axis.� copydir: The directory where a copy of the plot
should be placed. If not specified, no plot is stored
to file.

Return Value

None

plot offdiag(q, data, k, options=None)

Selects the row of a 2 dimensional dataset closest to a given k plots this row
againt the meshpoints in q. Optional options are passed along.

Parameters

q: Meshpoints.
(type=List of floats)

data: 2 dim dataset.
(type=numpy array of rank 2 containing floats.)

options: options to passed along.
(type=dict of parameters.)

172

plot single(q, f, options=None)

This method plots a single dataset f, against a mesh q. An optional options
dictionary can contain additional parameters to the plot. Supported options
are: legend: A legend for the dataset title: Plot title xlabel: Label for the x
axis ylabel: Label for the y axis xbound: Boundaries for the plot along the x
axis ybound: Boundaries for the plot along the y axis Additional options are
ignored.

Parameters

q: Points along the x axis
(type=List if floats)

f: Points for the y-axis
(type=List of floats)

options: Dictionary of additional parameters.
(type=Dictionary of parameters.)

G.48.3 Variables

Name Description

cname Value: ’plot’ (type=str)
DEBUG Value: True (type=bool)

173

G.49 Class visualization.plot.EigData

Class containing an eigenvalue dataset to plot.

G.49.1 Methods

init (self, data, legend)

Constructor.

Parameters

self: An instance of this class.
data: Eigenvalues to plot.

(type=List of floats.)
legend: A legend for this dataset.

(type=String)

cut data(self, n)

Return only the n first elements of an array. If n is less than the length of
the array, return the complete array.

G.49.2 Instance Variables

Name Description

data Eigenvalues to plot.
(type=List of floats.)

legend A legend for this dataset.
(type=String)

G.50 Class visualization.plot.PlotData

Class containing a dataset to plot.

174

G.50.1 Methods

init (self, x, data, legend)

Constructor.

Parameters

self: An instance of this class.
x: Points along the x axis.

(type=List of floats.)
data: Values corresponding to the points in x.

(type=List of floats.)
legend: A legend for this dataset.

(type=String)

G.50.2 Instance Variables

Name Description

data Values corresponding to the points in x.
(type=List of floats.)

legend A legend for this dataset.
(type=String)

x Points along the x axis.
(type=List of floats.)

175

176

References

[1] Python Programming Language – Official Website.
http://www.python.org/

[2] T. Engeland, M. Hjorth-Jensen and G.R. Jansen. In preparation, 2008.

[3] S.K. Bogner, T.T.S. Kuo and A. Schwenk. Phys. Rep., 386(1):1, 2003.

[4] J. Schaffner-Bielich. Nucl. Phys. A, 804(1-4):309, 2008.

[5] C. Kiefer, B. Sandöefer. arXiv:gr-qc/0804.0672v2, 2008.

[6] Y. Okada. arXiv: hep-ph/0708.2016v1, 2007.

[7] Review of Particle Physics. J. Phys. G, 33, 2006.

[8] T. Nakano et al. Phys. Rev. Lett., 91(1):012002, 2003.

[9] S. Weinberg. The quantum theory of fields, Paperback ed., Cambridge
University Press, New York, 2005.

[10] Quark model. http://en.wikipedia.org/wiki/Quark model/

[11] M. Gell-Mann. Phys. Rev., 92:833, 1953.

[12] T. Nakano and K. Nishijima. Prog. Theor. Phys., 10:581, 1953.

[13] A. Pais. Phys. Rev., 86:663, 1952.

[14] I.J.R Aitchinson and A.J.G Hey. Gauge theories in particle physics, Third
ed., Taylor and Francis Group, Abingdon, 2003.

[15] M. Hjorth-Jensen. Lecture notes in computational physics, unpublished,
Oslo, 2007.

[16] N . Ishii, S. Aoki, and T. Hatsuda. arXiv:nucl-th/0611096, 2006.

[17] H. Yukawa. Proc. Phys. Math. Soc. Jpn., 17:48, 1935.

[18] M. Taketani, S. Nakamura and M. Sasaki. Proc. Theor. Phys, 6:581, 1951.

[19] J.D. Bjorken and S.D. Drell. Relativistic Quantum Mechanics, Cust. ed.,
McGraw Hill, Dubuque, 1998.

[20] R. Machleidt. Adv. Nucl. Phys., 19:189, 1989.

[21] R. Machleidt, K. Holinde and C. Elster. Phys. Rep., 149(1):1, 1987.

[22] R. Machleidt. in Relativistic Dynamics and Quark-Nuclear Physics,
edited by M. B. Johnson and A. Picklesimer, John Wiley & Sons, New
York, 1986.

[23] D.R. Entem and R. Machleidt. Phys. Lett. B, 524(1-2):93, 2002.

[24] J. Haidenbauer and Ulf-G. Meißner. Phys. Rev. C, 72:044005, 2005.

[25] T.A. Rijken, V.G.J Stoks and Y. Yamamoto. Phys. Rev. C, 59(1):21,
1999.

[26] K Heyde. Basic ideas and concepts in nuclear physics, 3. ed., IOP

177

Publishing, Bristol, 2004.

[27] D. J. Dean and M. Hjorth-Jensen. Phys. Rev. C, 69:54320, 2004.

[28] B. S. Pudliner, V. R. Pandharipande, J. Carlson, Steven C. Pieper and
R. B. Wiringa. Phys. Rev. C, 56(4):1720, 1997.

[29] S.E. Koonin, D.J. Dean and K. Langanke. Phys. Rep., 278:1, 1997.

[30] D. M. Ceperley. Rev. Mod. Phys., 67(2):279, 1995.

[31] Takahiro Mizusaki, Michio Honma and Takaharu Otsuka. Phys. Rev. C,
53(6):2786, 1996.

[32] Michio Honma, Takahiro Mizusaki and Takaharu Otsuka. Phys. Rev.
Letters, 77(16):3315, 1996.

[33] Yutaka Utsuno, Takaharu Otsuka, Takahiro Mizusaki and Michio Honma.
Phys. Rev. C, 60(5):054315, 1999.

[34] M. Hjorth-Jensen, T. T. S. Kuo and E. Osnes. Phys. Rep., 261:125, 1995.

[35] D.J. Dean, T. Engeland, M. Hjorth-Jensen, M.P. Kartamyshev and
E. Osnes. Prog. Part. Nucl. Phys., 53:419, 2004.

[36] A. L. Fetter and J. D. Walecka. Quantum theory of many-particle systems,
Dover publications, New York, 2003.

[37] G. Hagen, T. PapenBrock, D.J. Dean and M. Hjorth-Jensen. In
preparation, and private communications, 2008.

[38] R. D. Lawson. Theory of the Nuclear Shell Model, Clarendon Press, New
York, 1980.

[39] P. Navrátil, J. P. Vary and B. R. Barrett. Phys. Rev. C, 62:054311, 2000.

[40] K. Suzuki and S. Y. Lee. Prog. Theor. Phys., 64:2091, 1980.

[41] K. Suzuki. Progr.Theor.Phys., 68:246, 1982.

[42] K Suzuki and R. Okamoto. Prog. Theor. Phys., 92:1045, 1994.

[43] K. Suzuki and R. Okamoto. Progr.Theor.Phys., 93:905, 1995.

[44] G. Hagen, M. Hjorth-Jensen and N. Michel. Phys. Rev. C, 73:064307,
2006.

[45] T.T.S Kuo, J.Shurpin, K.C. Tan, E. Osnes and P.J. Ellis. Ann. Phys.,
132(2):237, 1981.

[46] G.H. Golub and C.F Van Loan. Matrix Computations, 3. ed., The Johns
Hopkins University Press, Baltimore, 1996.

[47] M. Moshinsky and Y.F. Smirnov. The harmonic oscillator in modern
physics, Harwood academic publishers, Amsterdam, 1996.

[48] SciPy http://www.scipy.org/

[49] Python Reference Manual. http://docs.python.org/ref/ref.html.

[50] H. Djapo, B. Schaefer and J. Wambach. arXiv:nucl-th/0802.2646v2, 2008.

178

[51] M.L. Boas. Mathematical methods in the physical sciences, 3. ed., John
Wiley & Sons, 2006.

[52] F. Madl, G. Shaw. Quantum Field Theory, rev. ed., John Wiley & Sons,
Chichester, 1993.

[53] J.J. Sakurai. Modern Quantum Mechanics, rev. ed., Addison Wesley,
Reading, 1994.

[54] M. Rotenberg et al. The 3-j and 6-j symbols, Mit Pr., 1960.

[55] A. de Shalit and I. Talmi. Nuclear Shell Theory, Academic Press, 1963.

[56] B.A. Brown. Lecture Notes in Nuclear Structure Physics,
http://www.nscl.msu.edu/ brown/Jina-workshop/BAB-lecture-notes.pdf,
unpublished, Michigan, 2005.

[57] G.E. Brown and A.D. Jackson. The nucleon-nucleon interaction, North
Holland publishing company, 1976.

[58] P.J. Ellis and E. Osnes. Rev. Mod. Phys., 49(4):777, 1977.

179

