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Abstract

In reservoir simulation, the modeling and the representation of wells are critical
factors. The standard approach for well modeling is to couple the well to the reser-
voir through the use of a well index, which relates the well pressure and flow rate to
grid cell quantities. Well models for the recent mimetic finite difference methods
(FDMs) are an unexplored field, but are necessary in order to use these methods
for reservoir simulations.

In this thesis, we develop numerical well indices for mimetic FDMs by ex-
tending the well-known Peaceman radial-flow well model. The performance of the
new well indices is tested on both homogeneous and heterogeneous 2D reservoir
models with uniform Cartesian grids. The results are compared against a two-point
flux approximation using Peaceman’s well index and a reference solution obtained
on a near-well radial grid. The tests show that it is critical to use specially adapted
well indices for mimetic FDMs.

Furthermore, we consider improvements in the representation of wells in the
also recently developed multiscale mixed finite element method (MsMFEM). This
method uses a coarse partition of an underlying fine subgrid for simulations, while
subscale heterogeneities and wells are incorporated through the use of locally de-
fined basis functions. These basis functions are computed by solving a number of
local flow problems on the fine grid by a subgrid solver. Mimetic FDMs have been
shown to be particularly versatile as subgrid solvers.

In MsMFEM the wells are represented by well basis functions and the well
model in the subgrid solver. The modeling of the flow near the wells is of great
importance in order to produce an accurate global flow scenario. In this thesis, we
show that the accuracy of MsMFEM can be improved by an overlap technique that
extends the support of the well basis functions. Tests performed on both homoge-
neous and heterogeneous 2D reservoir models with uniform, square, coarse grids
show that the most efficient way of representing a well in MsMFEM is to make a
coarse grid partition that places the well in the center of the coarse well-block. In
cases where this is not possible, the overlap technique is shown to be a successful
remedy.
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Chapter 1

Introduction

In this thesis we are interested in improving the modeling and the representation of
wells in reservoir simulation.

During the past decades there has been a growing demand for more accurate
simulation of flow and transport in petroleum reservoirs. Even so, the industry is
conservative and the two-point flux approximation (TPFA) method [7] is, and has
been, the predominant method for reservoir simulation the last 30 years. TPFA is
the preferred method in commercial simulators despite the fact that it has several
known weaknesses. The main shortcoming of TPFA is lack of convergence on
general grids with general permeability tensors. There exists, however, alternative
methods that do converge in these cases. In this thesis, we focus on mimetic fi-
nite difference methods (FDMs) [9, 10], which are a new and promising class of
numerical methods for flow in porous media. The mimetic FDMs are convergent
on very general grids with general permeability tensors. Additionally, compared
to other alternative methods, mimetic FDMs possess the advantageous property of
easy implementation on general polyhedral grids. The polyhedral grid topology is
very well suited to describe reservoirs, which makes the class of mimetic FDMs an
attractive approach for reservoir simulation.

Accurate modeling of wells is critical in reservoir simulation. Well models
are necessary because the numerically calculated pressure in a well-block deviates
greatly from the pressure in the well. A well is seldom modeled explicitly, but in-
stead through a well index, which relates the well pressure and flow rate to grid cell
quantities. The first systematical study of well models was done by Peaceman [24]
for TPFA. Due to the position of TPFA in reservoir simulation, the majority of
later research on well models have been done for TPFA. Currently, there exists
many well models for TPFA derived under different assumptions, but Peaceman’s
well model is still used in the majority of commercial simulators.

Now that mimetic FDMs are becoming mature for reservoir simulation, the
need of well models for these methods is arising. In this thesis, we consider a nu-
merical extension of Peaceman’s well model for 2D single-phase flow to mimetic
FDMs. In particular we develop well models for the lowest order Raviart-Thomas
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4 CHAPTER 1. INTRODUCTION

(RTg) mixed finite element method (FEM) and for a mimetic FDM. The RTg-
mixed FEM is chosen because it is equal to a mimetic method on Cartesian grids.
Further, we perform tests of the new well models on both homogeneous and hetero-
geneous reservoir models. The heterogeneous permeability fields are from Dataset
2 from the 10th SPE Comparative Solution Project [14]. For simplicity, only Carte-
sian grids are considered. Finally, based on the results from the tests, we give
guidelines for the use of the new well models.

The development of new methods in reservoir simulation is also driven by the
development of technology that describes the geology of reservoirs. Todays de-
tailed geomodels have opened new possibilities for accurate simulation of reser-
voirs. However, reservoir simulators have not been able to keep pace with the
development within geomodeling, and the current situation is that geomodels de-
scribe the reservoir in more detail than what industry simulators are able to utilize.
The standard approach for reservoir simulation with direct methods like TPFA can-
not use detailed geomodels in an efficient way, nor are these methods designed to
handle the additional challenges, such as high aspect ratios, faults, degenerate cells
etc. that are posed by current high-end geomodels.

The traditional approach to overcome these challenges is upscaling techniques
[13, 14], which reduces the level of detail in the geomodel by a type of averaging
procedure in order to design a coarser grid model. These methods aim to capture
the large scale flow behavior and much of the fine-scale details are lost in the pro-
cess. In the later years, there has been increased focus on the impact of fine scale
details on the large scale flow-pattern. Researchers have therefore been searching
for a robust alternative to upscaling that can utilize the detailed geomodels in an
accurate and efficient way. One of the results is the multiscale mixed finite element
method (MSMFEM) [3,4,11,20]. This method attempts to bridge the gap between
the often conflicting demands of accuracy and efficiency in reservoir simulation,
by the use of a fine subgrid that utilizes the detailed geomodel, and a coarse parti-
tion of the subgrid for efficient simulations. The effects of subscale heterogeneities
and wells in MSMFEM are incorporated through the use of locally defined basis
functions. These basis functions are computed by solving a number of local flow
problems on the fine grid by a subgrid solver. In particular, the aforementioned
mimetic FDMs have been shown to be versatile as subgrid solvers.

The two-grid approach enables MsMFEM to compute fine scale flow fields in
fast and accurate simulations. The results for MsMFEM are so far very promising,
see e.g. [4], but since MsSMFEM is a relatively recent method, there are many possi-
bilities for further improvements. Some of these possibilities represent challenges
that must be overcome before MsMFEM can be used in industry simulators. One
of the challenges is accurate representation of wells, which depends on the well
basis functions and the accuracy of the well model in the subgrid solver.

In this thesis we present an improved approach for representing wells in Ms-
MFEM that increases the accuracy of the simulations. The technique we use is
called overlap because it extends the support of the well basis functions that control
the flow from the wells. Moreover, we test the overlap technique on the same cases
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as discussed above for the new well models. The focus of the tests done herein
is on the accuracy of the method, and issues concerning computational time and
memory use have not been emphasized.

1.1 Outline of the Thesis

This thesis is partitioned into four parts with a total of nine chapters. The outline
of the thesis is as follows:

Part I: Introduction
Chapter 1 gives an introduction to the workings of the thesis.

Chapter 2 provides a short introduction to reservoir simulation and the governing
equations for single-phase flow.

Part II: Well Models for Mimetic Finite Difference Methods

Chapter 3 presents the numerical methods used in Part II of the thesis. These
methods include the two-point flux approximation method, the mixed finite
element method, and the mimetic finite difference method. The chapter also
provides information on how wells are implemented in the numerical meth-
ods.

Chapter 4 contains an introduction to wells and well modeling. The Peaceman
well model is introduced and we discuss extensions and improvements.

Chapter 5 is where we extend Peaceman’s well model to the lowest order Raviart-
Thomas mixed FEM and mimetic FDMs.

Chapter 6 concerns testing of the new well models developed in Chapter 5. The
chapter includes results from simulations on both homogeneous and hetero-
geneous reservoir models. We discuss the results from the tests and develop
guidelines for the use of the new well models.

Part III: Improved Representation of Wells in the Multiscale Mixed
Finite Element Method

Chapter 7 is an introduction to the multiscale mixed finite element method. The
problems regarding the representation of wells in MsMFEM are discussed,
and the overlap technique is introduced as a possible solution to these prob-
lems.

Chapter 8 presents results from simulations with the use of overlap in MsMFEM.
The results are analyzed and we give recommendations for the use of overlap
in MsMFEM.
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Part IV: Conclusions and Further Work

Chapter 9 summarizes the conclusions made in the chapters of the thesis. We also
point out interesting directions for further development and investigations.

Appendix A concerns the notation used in the thesis. Readers unfamiliar with
standard notation are encouraged to review this appendix.



Chapter 2

Reservoir Modeling

This chapter gives an introduction to the theory behind reservoir simulation and
the equations used. First, a presentation of reservoir properties is given, and subse-
quently the simplified equations for flow and transport in porous media are derived.

2.1 Reservoir Properties

A reservoir rock must be able to both contain and transmit a fluid, in other words
the rock must have pores and the pores must be interconnected. The first property
concerns the porosity of the rock, where the fotal porosity is defined as the per-
centage of pore volume or void space in the rock. In connection with reservoirs,
isolated pores that cannot contribute to flow are not interesting. Therefore, we con-
sider the effective porosity, that is the percentage of interconnected pore volume of
the rock. We denote the effective porosity by ¢, and will hereafter drop the term
effective and refer to it as the porosity. If the rock is homogeneous, ¢ is a con-
stant, while in the case of heterogeneous rock ¢ = ¢(&), where Z is the position
in the medium. Moreover, if the rock is compressible, ¢ will also depend on time,
¢ = ¢(&, 1), but in this thesis incompressible rock is assumed.

As mentioned, the reservoir rock must also be able to transmit the fluid. The
rock’s ability to transmit a fluid is called the permeability. Rocks with many and
large well-connected pores are called permeable. Sandstones are examples of such
rocks. On the other hand, rocks with few, smaller or less interconnected pores
that are not able to transmit fluids are called impermeable. Such rocks include
shales and siltstones. Furthermore, the permeability can be isotropic: the same in
all directions, or anisotropic: vary with the direction of flow. Many reservoirs are
made of sedimentary rocks with great variation in the vertical layers, and will thus
have vertical to horizontal permeability anisotropy. In general, the permeability is
described by a 3 x 3 tensor K. An example of such a general permeability tensor
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8 CHAPTER 2. RESERVOIR MODELING

is
Kxx K:cy K:cz
K=|Ky Ky, Ki]|. 2.1
Kza: sz Kzz

Onsager’s principle [15] states that a pressure drop in the j-direction must give
equal flow in the ¢-direction as a pressure drop in the ¢-direction would give in the
j-direction. The elements K;; and K;; must therefore be equal. Thus, if K is
represented as a matrix in an orthogonal coordinate system, K will be symmetric
and positive definite. In the case of an isotropic reservoir, the permeability tensor
can be simplified to K = kI, where £ now describes the permeability in all di-
rections. Another simplification can be made if the layers of the rock are parallel
to the zy-plane. Given this property we may assume only vertical to horizontal
permeability anisotropy. Thus, the permeability tensor simplifies to a diagonal
tensor where K,, = K,, = K, describes the permeability in the horizontal di-
rection, and K., = K, describes the permeability in the vertical direction. In
addition, the permeability will typically vary with location in the formation, that is,
K = K(x,y, z). A formation with this property is said to be heterogeneous, while
the opposite case, i.e. K is constant, is a homogeneous formation.

2.2 The Governing Equations for Single-Phase Flow

The governing equations for modeling the filtration of a single-phase fluid through
a porous medium ) are given by conservation of mass and Darcy’s law.
Conservation of mass is ensured by the continuity equation,

% + V- (p¥) = —¢q, 2.2)
where p is the density of the fluid and ¥’ is the volumetric flow density. For simplic-
ity, ' will be referred to as the velocity throughout this thesis. The term ¢ models
sources and sinks, and the sign of ¢ is chosen to be consistent with the later use of
q as the well rate.

Darcy’s law is an empirical law that relates the flow velocity to the pressure p.
To formulate the law, we denote by z the depth and by g the gravity acceleration.
Darcy’s law states

K
U= —;(Vp + pgVz). (2.3)

Here, K is the permeability of the porous medium and y is the viscosity of the fluid.
In the following we assume stationary incompressible flow, meaning that ¢ and p
are constants, so that % = 0. Further, the fluid is assumed to be Newtonian, so
v is also constant. Lastly, if we look at horizontal flow in 2D, the gravitational term

in (2.3) vanishes. Thus, under the assumptions stated above, the resulting system
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of equations for ¢’ and p is

V-7=f, (2.4)
K
v=——Vp, (2.5)
0
where f = %q. This system is called the mixed formulation or the first order

formulation. The model can also be formulated as one equation for the pressure by
substituting (2.5) into (2.4),

v <Evp> = f. (2.6)
7

Finally, to close the system, boundary conditions are needed. The two types of
boundary conditions considered herein are:

flow (Neumann): ¥ -7 is specified at the boundaries.
pressure (Dirichlet): p is specified at the boundaries.

The Neumann no-flow boundary condition 7 - 7i| 5 = 0 is a very common bound-
ary condition in reservoir simulation. No-flow boundary conditions are used to
describe a reservoir as a closed system, where fluid cannot flow over the bound-
aries. In some cases, boundary conditions are given as a combination of Neumann
and Dirichlet boundary conditions. We will discuss boundary conditions further in
Chapters 3 and 5.
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Chapter 3

Conservative Numerical Methods

In this chapter we introduce the numerical methods considered in Part II of the
thesis. These methods include the two-point flux approximation method, the mixed
finite element method, and the mimetic finite difference method. For motivational
purposes, the two-point flux approximation method and the mixed finite element
method will be presented first. The mimetic finite difference method will then be
presented motivated from the derivation of the two-point flux approximation and
the mixed finite element method.

3.1 Introduction

Partial differential equations (PDEs) can be used to describe a vast number of phe-
nomena in nature. However, these PDEs are often hard or impossible to solve
analytically, and thus a number of numerical solution techniques for PDEs have
evolved. One of these methods is the finite element method (FEM), where a PDE
is solved numerically by approximating the real solution in finite dimensional sub-
spaces of the solution space. The main idea is to multiply the equations by test
functions and then do partial integration. This results in what is called the weak
Sformulation of the problem, which can be looked at as inner products over the ap-
proximation spaces. A more physical approach is the finite volume method (FVM),
where the solution to a PDE is approximated by demanding that the integrated PDE
holds over a control volume. Finite difference methods (FDMs), on the other hand,
is a direct approach on the differential operators of the problem. The main idea
in these methods is to approximate the continuous differential operators by dis-
crete operators in order to compute a numerical solution. Simple finite difference
approximations, such as forward difference

d \ o u(@in) —u()
dxu(xl) - At ’

3.1)

are well known. These simple FDMs are often intuitive, but numerical schemes
based on these approximations are not flexible with respect to geometrically com-

13



14 CHAPTER 3. CONSERVATIVE NUMERICAL METHODS

plicated domains. However, in the later years there has been focus on develop-
ing new high quality FDMs. In these methods, the discrete operators preserve or
“mime” certain critical properties of the original operators, and consequently they
are called mimetic FDMs, [9, 10]. The preserved properties include conservation
laws, solution symmetries, and the fundamental identities and theorems of vector
and tensor calculus.

3.2 Preliminaries

We first present some mathematical machinery for deriving the numerical meth-
ods. Let @ C R%, d € {2,3} be an open bounded set with Lipschitz continuous
boundary 02. In the derivations in this chapter we will use d = 2, but the results
easily extend to d = 3. Assume that the outward unit normal 77 on €2 is defined at
almost all boundary points as illustrated in Figure 3.1. Further, let 2, = {E'} be a
partition of the domain €2 into cells and let OF = UfE e; be the edges (faces in 3D)
of a cell E. We denote by 0€, the collection of edges e in §2. Moreover, let |E| be
the area (volume in 3D) of cell E, and let |e| be the length (area in 3D) of e. Lastly,
denote by 77, the unit outward normal on e. If the context is clear, the subscript of
the unit outward normal is dropped.

For the presentation of the numerical methods, we simplify the system (2.4)
and (2.5) and impose the Neumann no-flow boundary condition to obtain a proto-
type flow problem,

—KVp=v¢ inQ, (3.2)
V-v=f in{, (3.3)
-1 =0 onodf. (3.4

With this setup, the pressure is only determined up to a constant. The system can
be closed by demanding that, e.g. [, pdi = 0, or p(xg) = po.

A common assumption in reservoir simulation is that K is constant on each
cell, and we will employ this assumption throughout the thesis. In addition, many
numerical methods compute the flux over the edges instead of the velocity. There-
fore, define by

F, = /77. 7, ds (3.5)

the flux over edge e.

Sobolev spaces

Sobolev spaces are fundamental in PDE theory, and we therefore give a short intro-
duction to the concept here. For a more comprehensive introduction, the reader is
referred to [16, Chapter 5]. The connection between Sobolev spaces and PDEs is
that the solutions of PDEs naturally lie in Sobolev spaces. The theory of Sobolev
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n

o2

Figure 3.1: The domain €.

spaces is built on the introduction of weak derivatives, which extends the solution
space to include solutions that are not in the classical spaces of continuous func-
tions. Many of these solutions are interesting for applications, as we shall see in
the following. For the solution of the system (3.2)—(3.4) we define the following
Sobolev spaces:

H(E) ={# € L*(E)*: V-7 € L*(E)}, (3.6)
H(c)liv(Qh) _ {U c Hdw(UEGQhE) :v-1n=0o0n 89}, (3.7
HE®(Q) = {t € H"™(Q) : ¥- 7 = 0 on 00Q}. (3.8)

3.3 The Two-Point Flux Approximation Method

We start by presenting the two-point flux approximation (TPFA). The TPFA is a
finite volume method that can be used to solve the system (3.2)—(3.4).

3.3.1 Derivation of the TPFA

The main idea in the TPFA method is to approximate the flux over an edge by the
difference of the cell centered pressures in the neighboring cells sharing the edge.
The finite volume method is a physically motivated approach with the requirement
that the integrated conservation law, in this case the integral of (3.3), holds over a
control volume C'V'. This requirement ensures that mass is conserved in an average
sense. We let the control volume be denoted by C'V and its surface by SV. The
finite volume requirement gives

V.gdi= [ fdz. (3.9)
cv cv

Applying the divergence theorem results in

/U-ﬁds: £ dz. (3.10)
SV cv

Next, let each cell £ € €2 act as a control volume. Replacing C'V by F and SV
by OF gives

kg
/ ﬁ-ﬁds:Z/ﬁ-ﬁds:/fdf, VE € Q. (3.11)
OF =1 €] E
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ij
T
o o o
Z; Z;
E; E;

Figure 3.2: TPFA setup.

Using the definition of flux in (3.2) we get

kg
ZFel:/fdf, VE € Q. (3.12)
=1 E

Observe that Fe, = 0 for all boundary edges due to the boundary condition (3.4).
Hence, the boundary condition is naturally incorporated by summing over only
non-boundary edges. Further, we will assume that f is constant on each cell or a
point source, so f; := || B f d can easily be computed. By substituting (3.2) for ¢
in the definition of the flux over an edge, we get an equation including the pressure,

.= — /KVp'ﬁds. (3.13)

This equation can be used to express the flux in terms of a pressure difference. To
derive an expression for the flux, we look at a cell E; with neighbor E;, sharing
the edge e;; as shown in Figure 3.2. Let &; and &; be the cell centers (centroids)
and let p; and p; be the values of the pressure at the cell centers. Further, let T be
the midpoint on e;; and 71 be the unit normal from E; to ;. Assume now that K is
constant on each cell and that the cell edge e;; is a straight line. We denote by K;
and K the value of K on the cells £; and E;. Observe that the integrand in (3.13)
is the gradient of p in the direction of K. Thus, if K7 is parallel to the path from
#; to Z; through T, we can make a linear approximation to p and replace Vp by a
pressure difference between the pressures at the cell center and at Z. Since this can
be done for both E; and E;, we get

. R, -7
e :
Pi =) = 1 R
— Fez‘j ny _57”
leij| || K 7|

(3.14)

=

p(T (3.15)

) — pj

Now, Feij must be equal in (3.14) and (3.15) to obtain continuity in the flux over

an edge. Thus, we can add the equations with the result that p(x) is eliminated,

and obtain . i _’|| 17 _'”
€ij Ti—X Tj— z )
pi —pj = - + — . (3.16)
O eyl < (| K| |||
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Figure 3.3: Parallelogram cell with normal vectors.

The term two-point flux approximation stems from the approximation of the flux
over an edge by the use of the pressure in two points. Equation (3.16) is usually
written as

Foij = tei;(pi — pj), 3.17)
where 1
I =2 | 1% =21\

teyy = l€ij 3.18

€ij |€Z]| < HKZT_iH + ||K]T_i” ) ( )

is the transmissibility over e;;. Finally, the finite volume requirement was that
(3.12) was fulfilled. Hence we must sum (3.17) over all non-boundary edges
ei; € OF; corresponding to neighboring cells Fj,

Zteij(pi _pj) = / fdf (3.19)
J E;

Given a global numbering of the cells, we get a linear system for the pressure,
Ap = b given by A = [a;;] where

e ifi= g, )
aik, = 25t %Z ! bi:/ fdz = fi.

This system is symmetric, but the solution is only determined up to an arbitrary
constant and is hence not unique. By forcing e.g. p; = 0, see Section 3.2, unique-
ness is obtained and the system also becomes positive definite.

3.3.2 Properties of TPFA

The first-order approximation done in (3.16) is only valid if the points #;, T, and
Z; are connected by lines parallel to K7i. A grid satisfying this requirement is said
to be K-orthogonal.

We will give some examples of grids satisfying this requirement. As before,
assume that K is constant on each cell. An orthogonal grid will be K-orthogonal
if the directions in K are parallel to the grid lines. For an orthogonal grid with grid
lines aligned with the coordinate axes, this requirement means that the permeability
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tensor must be diagonal. Using the TPFA method on such a grid when K is a
full permeability tensor corresponds to neglecting the off-diagonal elements in K.
A grid with parallelogram cells, as shown in Figure 3.3, is K-orthogonal if the
following requirement is satisfied for all cells:

ity - Kity = 0. (3.20)

This requirement ensures that Ki7; mets edge e; in the midpoint Z for all 4, and
hence the approximation done in (3.16) is valid.

If the TPFA method is used on a non-K-orthogonal grid, the approximation
will not converge to the correct solution. Unfortunately, many grids in reservoir
simulations are not K-orthogonal. In spite of this major shortcoming, the TPFA is
still the predominant method in industry simulators because of its simplicity and
speed. We mention that the multi-point flux approximation (MPFA) is a general-
ization of TPFA that is constructed to amend the shortcomings of TPFA on non-
K-orthogonal grids. For further reading on MPFA, the reader is referred to [5].

3.4 The Mixed Finite Element Method

Another approach for solving numerically (3.2)—(3.4) is the mixed finite element
method (FEM). The term mixed stems from the fact that we solve for (%, p) simul-
taneously and approximate ' and p in different spaces. This solution strategy is
different from the approach in Section 3.3 and in standard finite element methods,
where the flux is computed from the pressure.

3.4.1 Derivation of the mixed FEMs

The formulation of the system in (3.2)—(3.4) is called the strong formulation and
is strict in the demands of continuity of the solution. In the mixed FEMs we in-
stead look at the weak formulation of the system. This formulation is motivated as
follows: let @ € C§°(€2)? be a test function. Observe that 1 satisfies the boundary
condition on 7, i|gq = U]gn. We multiply (3.2) by @ and integrate over €2 to obtain

/Q(a’- K 1%+ Vp-@)dz =0. (3.21)
The next step is to use Green’s theorem to do partial integration. This results in

/Q(J- K '¢—pV-@)di =0, (3.22)
where the boundary term has vanished due to the compact support of the test func-

tion. The same procedure can be applied to (3.3) for a test function ¢ € C§°(2),
resulting in

/ q(V -7 — f)di =0. (3.23)
Q
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Now, we make some observations. First, since the test functions were arbitrary,
(3.22) and (3.23) must hold for all @ € C§°(2)? and ¢ € C§°(Q2), respectively.
Second, if (3.22) and (3.23) should be valid, we must demand v € L?(Q2)? with
V-7 € L?(Q) and that p € L?(Q). Therefore, the right solution space for (¥, p) is
HE™(Q) x L?(). And third, the demand that the test functions should be smooth
is too strict. In fact, the test functions should be chosen from the solution space,
meaning that (i,q) € HZ"(Q) x L?(£). The resulting weak formulation of the
problem in (3.2)~(3.4) is: find (¥,p) € HJV(Q) x L?() so that

/(ﬁ- K '5—pV . -@)dZ =0, Vie HJ" ), (3.24)
Q
/ q(V-7— f)di =0, Yqe L*(Q). (3.25)
Q

Given a partition €2, of 2 we develop a discretization of (3.24) and (3.25). Follow-
ing the notation in [4], we define the bilinear forms

a(-,-) : HIV(Qp) x HE () — R,

ali, ) = Y / i K '7dz, (3.26)
EeQy, E
b(-,-) : HG™ () x L*(Q) — R,
b(T,p) = > / pV - 7dZ, (3.27)
EeQy E
(-,) : L*(Q) x L*(Q) — R,
(p,q) = /Q pqdz. (3.28)

Solving the system (3.24) and (3.25) is now equivalent to finding
(v,p) € HI(Q) x L3(Q) satisfying

a(@, ) — b(d,p) =0, Vi € HPY (),
b(@,q) = (f,9); Vg € L*(Q). (3.29)
However, in practice we cannot find (¢, p) € HZ" () x L?(f2) since these are
infinite dimensional spaces. Therefore, the solution to the system (3.29) must be
approximated using finite dimensional subspaces V. C Hd"(Q) and Q C L%(Q).
In this setting, the problem of solving system (3.29) is reformulated as: find
(Un,pr) € V x Q so that
a(ﬁhaﬁh) - b(ﬁhvph) = 07 Vﬁh € V7
b(Tn, qn) = (f,qn), Van € Q. (3.30)

An example of subspaces V and (), which will be frequently used in this thesis, is
given below.
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Ei eij Ej

Figure 3.4: Basis function in V for an edge e;;.

The lowest order Raviart-Thomas elements

We now present a classical pair of approximation subspaces V, () called the low-
est order Raviart-Thomas elements, (RTg) [27]. Following Aavatsmark [5], the
presentation of RT( is done for triangular and parallelogram cells. Define the
subspaces V, Q) by

V = {@ € L*®(Q)? : | is linear VE € Qy,, (3.31)
@ - fip|e is constant on e € OF,

and @ - 7l is continuous on 9}

Q:={q€ L>®(Q): q|gisconstant VE € Q} (3.32)

In 1D, V consists of the hat-functions that are common in finite element discretiza-
tions. A visualization of a velocity basis function in 2D is shown in Figure 3.4.

3.4.2 Formulation of the linear system

Let V, Q be the functlon space for the solution (vh, pr) of (3.30). We choose the
basis functions 1/16 € V and ¢ € @ so that we has support on the cells sharing
the edge e and ¢ € @ has support on E. Thus, the basis functions are nearly
orthogonal, which means that we can recover the values of ¢’ on each edge and the
values of p in each cell by defining

Up = Z Vethe, e €V,
eG@Qh

ph=Y_ pedE, ¢p€Q. (3.33)

EeQy,

Assume that the cells and edges are numbered globally, with [ the number of
edges and m the number of cells in €. The system (3.30) can now be written as a
linear system in the unknowns v = (v1, vs, ..., v;)T and p = (p1,p2,...,0m)",

(6 %)()-() 53

where A;; = f U Jf K‘lzzj dz. Unfortunately, this system will be indefinite,
g J
which is unwanted from a computational point of view because it is harder to solve
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than a positive definite system. The indefinite property can easily be seen if we
recognize the solution of (3.29) as a saddle point of the Lagrange functional

L | P "
L(’U,p) = 50’(1}7’0) - b(’l},p) + (pa f) (335)
A saddle point is recognized by
L(v,q) < L(V,p) < L(d,p), V(i,q) €V xQ. (3.36)

The linear system arising from a saddle point problem, such as (3.34), will have
both positive and negative eigenvalues and hence be indefinite. The reader is re-
ferred to [8, page 17] for the derivation of the system (3.2) and (3.3) as a saddle
point of (3.35). In the next section we present a solution to the problem of indefi-
niteness: a hybrid mixed discretization that leads to a positive definite system.

3.4.3 Hybrid mixed FEM

We want the linear system for the discrete solution to be positive definite because
this simplifies the solution process. A positive definite system can be obtained by a
hybrid mixed FEM discretization [8], where the pressure on the edges is introduced
as an extra variable. To do this, we define the bilinear form on 2,

c(-,-) : HA® () x Hz(09y,) — R,
(@A) =) / AT - fig ds. (3.37)
OF

EeQy,

Here, )\ corresponds to the pressure at the cell edges and H %(aﬂh) is spanned
by the traces on 99y, in H'(Qy). A trace is the Sobolev space equivalent of a
boundary, see [16] for more information on traces. The hybrid formulation of
(3.2)-(3.4) is

a(il, ) — b(id, p) + c(i@,\) = 0, Vi € HJ™ (), (3.38)
b(7,q) = (f,9), Vg € L*(), (3.39)
(@, 7) =0, Vi€ H2(09,\00).  (3.40)

This is discretized by seeking (T, pp, An) € V x Q x II, where V C HF®(Qp),
Q C L*(Q),and1I C H 3 (02,). The definition of py, in unchanged, while v}, and
Ay, are defined as

Up = Z Vethe, e €V,
eG@E,EGQh

M= Y AeYe, TYee€ll (3.41)
eG@Qh
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E; E;

Figure 3.5: Basis functions in V for an edge e;;.

Observe that we have departed from the constraint that V C H div (()) by introduc-
ing c(-, -) in (3.38), but that continuity in the velocity component is reintroduced
by (3.40). Therefore, (U, pn, Ap) is still a solution to (3.2)—(3.4). A proof of this
property and further details on hybrid discretization are found in [8, pages 177—
183]. The number of basis functions in V is equal to the number of cell-wise
numbered edges in 25, which means that all internal edges in the domain have two
velocity basis functions. This is illustrated in Figure 3.5 for the RT p-basis.

Let now v = (vy,va,...,v,)", where n is the number of cell-wise numbered
edges in . Further, let A = (A1, A2, ..., \;)T, where [ is the number of edges in
Q. The hybrid linear system arising from (3.38)—(3.40) is

A BT cT v 0
B 0 0 pl=1f]. (3.42)
C 0 o A 0

Note that A is block diagonal when the basis functions are numbered cell-wise.
We can therefore eliminate v at cell level by a Schur-complement reduction with
respect to A to obtain a positive definite system for (p, A),

D ~F7 £
<F —CA10T> <§> - <0) ' (343

Here, D = BA !'B” and F = CA~!'B”. The basis functions ¢ € Q are usu-
ally chosen as piecewise constants, as we saw for RT . Therefore we can choose

1 ifZeFE
T) = 3.44
¢5(%) {0 otherwise, ( )

meaning that D will be a diagonal matrix. We can then again perform an elimina-
tion at cell level, this time eliminating p to obtain the following positive definite
system for A

HX =b. (3.45)

Here, H= CA~'CT — FD!FT and b = FD!f. This system is solved for A,
and then p and v are computed by solving a diagonal and a block-diagonal system,
respectively.
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3.4.4 Properties of the mixed FEM

The major drawback of mixed FEM is difficult implementation on general polyg-
onal and polyhedral grids. This includes the important case of corner-point grids
[26], which is an industry standard in reservoir simulation. A corner-point grid
consists of a set of hexahedral cells that are aligned in a logical Cartesian fash-
ion. The cells are shaped according to the geology of the reservoir, which makes
this approach very suitable for describing the geological structures in a reservoir.
However, the flexibility of corner-point grid can results in deformed and degener-
ated hexahedral cells. If mixed FEM is to be implemented for such general cells,
mappings to reference elements would be required to enable assembly of the linear
system. This means that we would need a reference element for each possible cell
geometry, which would be impractical and in some cases not possible to achieve.

3.5 The Mimetic Finite Difference Method

One method that has been developed quite recently is the mimetic finite difference
method (FDM) [9]. The mimetic FDM can be seen as the finite difference coun-
terpart to mixed FEM. This method has many qualities superior to the mixed FEM
and TPFA, but it is not yet widely used. Two of the strengths of the mimetic FDM
are easy implementation on general polyhedral grids and good convergence proper-
ties [9]. Tetrahedral grids have long been dominant in engineering simulations, and
methods such as the mixed FEM are well suited for these types of grids. However,
in reservoir simulation, polyhedral grids are more interesting. An already men-
tioned example is the important case of corner-point grid that makes it possible to
model complex geological features of the reservoir.

3.5.1 Motivation

In the following we introduce the mimetic FDM motivated by the TPFA method
presented in Section 3.3. To simplify the notation we look at one grid cell F, as
displayed in Figure 3.6, and hence no subscript is needed to specify the cell. Let
F, be the flux over edge e as defined in (3.2), so that the vector of fluxes for F is

F=(F,F,...,F)". (3.46)
Accordingly, the pressure related to the edges of the cell is denoted by
A=A )T (3.47)

Further, let pg be the pressure in the center of the cell.

The main idea is to express the flux F by a transmissibility factor T and the
difference between the pressure in the center of the cell and the pressure at the
edges of the cell,

F=-T(\A—pg). (3.48)
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Figure 3.6: Example of a grid cell £/ with center zg and kg = 6.

Notice that if T is a diagonal tensor, we can eliminate the pressure at the edges of
the cell to obtain a TPFA as in Section 3.3.

In the following we derive an expression for T. As in the derivation of the
TPFA we begin with the assumption that the pressure is linear in each cell. Thus,
the pressure in a cell is given by

p(T)=a-Z+c foracR?ceR. (3.49)

This is equivalent to demanding that the method is exact for a linear pressure field.
From the mixed formulation of the PDE, (3.2)—(3.4), we have the relation between
the velocity and the pressure,

v =—-KVp. (3.50)

We insert the gradient of the pressure obtained from (3.49) and get

v = —Ka. (3.51)
Consider now all faces of E, and define for i = 1,...,k.: N(i,:) = |e;|iil, and

Cr(i,:) = (&., — Tg)T. If we now assume that K is constant on each edge e, the
resulting expression for the flux over e is given by

Fo=— /Ka ‘Meds = —|e|Ka - 7. (3.52)
e
Since this holds for all edges e, we obtain an expression for the vector of fluxes

F = —NKa. (3.53)

Furthermore, we can reformulate (3.48) by observing that the difference between
the pressure at the midpoint of an edge e and the center can be written as

Ae —pE = (Te — Tp) - a. (3.54)
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When (3.54) is inserted in (3.48), we get
F=-T(A—pg)=-TCr-a. (3.55)
Since (3.53) and (3.55) must be equal, we get a requirement on T given by
TCr = NK. (3.56)

Note that T = T depends on the cell, but that the subscript was dropped as we
only looked at one cell. From now on we use the subscript to avoid confusion when
considering all £ € €2;,. Many different matrices T g fulfill requirement (3.56), but
before we go into detail on how T g should be constructed, we give an introduction
to the theoretical basis of mimetic FDMs. In the next section we show that T g is
related to the inverse of an inner product matrix M ;. Readers that are interested
in the practical approach can skip directly to Section 3.5.3 where we give criteria
for constructing a valid Tg.

3.5.2 The theoretical basis of mimetic FDMs

The motivation for mimetic FDMs in the previous section does not explain how the
expression for the flux in (3.48) is obtained, meaning the theoretical foundation of
the method. We now give a short presentation of the theory behind mimetic FDMs.
This theoretical basis is taken from [10], but will be adapted for the use of flux as
an unknown instead of velocity.

Let €25, be a a non-overlapping conformal partition of {2 into simply-connected
polygonal (polyhedral in 3D) cells with flat edges (faces in 3D). The main idea is
to make discrete versions of the operators div and V (grad). We use the notation
div v = V - ¢. The model problem

=/ (3.57)
= —KVp, (3.58)

is in mimetic FDMs formulated as the discrete problem

DIV, vy, = £, (3.59)
Vi, = Gn Ph, (3.60)

where DIV}, and Gy, are discrete versions of div and —KV (Kgrad), and f,, is
the vector of mean values of the source function f. To define these operators, we
must first define the solution spaces and inner products over these spaces.

We start with considering the velocity ¥ and the pressure p as unknowns fol-
lowing [10], and we adapt the theory for flux subsequently. Let )y be the space
of discrete pressures that are constant on each cell . Denote by gg the value
of q € Qp on cell E. Let X}, be the space of discrete velocities that associates
each edge e in a cell E to a a velocity vZ. We use the notation v, to mean the
velocity over a specified edge e, while v is the velocity over e € F, and lastly
VE = (Veys Veys - - - Vey,,, ) s the vector of velocities in cell E.
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Inner products

The foundation of the mimetic FDM is the formulation of discrete inner products
over the approximation spaces (), and X},. These inner products are defined below.

Definition 3.1. The inner product in Qp, is defined to be

[p.dlg, = Y praslEl (3.61)
EeQy,

Definition 3.2. The inner product in X}, is defined to be

voulx, = ) [v,ulg, (3.62)

EeQy,
where [v,u] g is an inner product on cell E.

The inner product [v, u] g can be written as
[v,ulp = upMgve, (3.63)

where Mg is a symmetric and positive definite kg X kp matrix. Note that only
the velocities over the edges are used to calculate the inner product. Because many
different matrices can satisfy the requirements made on M g, the inner product in
(3.62) is not unique. I order to get a convergent method, M g must have some
properties that will be discussed in Section 3.5.3.

The next step is the construction of the discrete divergence operator as a dis-
crete version of the divergence theorem.

Definition 3.3. The discrete divergence operator DIV}, is defined for eachu € X},
as

kg
1
(DIVyu)g = G > ulleil. (3.64)
i=1
To find the discrete version of V, we use the Gauss-Green formula

/ﬁ(Vp)df%—/pdidefz/ pU - g ds. (3.65)
E E OF

If the boundary term vanishes due to boundary conditions, we see that —V is the
adjoint of div
-V =div*. (3.66)

It is therefore natural to demand that the discrete versions of —KV and div are
adjoint,
g, = DIV};, (3.67)

with respect to the inner products (3.61) and (3.62). We get the following definition
for the discrete gradient:
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Definition 3.4. The discrete gradient operator Gy, is defined as the adjoint to the
discrete divergence operator DIV, with respect to the scalar products (3.61) and
(3.62), so that

[v,Gnplx, = [P, DIVyV]g, VP € Qn and Vv € X, (3.68)

As aresult, G, completely depends on the definition of the inner product matrix
ME in (3.63). Thus, the particular discretization of (3.60) depends on how M g is
chosen, meaning that different inner products give different mimetic FDMs.

Implementation

We start by discretizing (3.59) by considering the discrete divergence DIV}, de-
fined in (3.64). Let vy = (vf,vy,...,vf )7, and let fp = |E|(f,)5. The
equation for each cell E'is

ke
> vElei| = £, (3.69)
=1

or equivalently for fluxes: F¥ = vFe,|:

kg
Y FP =ty (3.70)
=1

It is not as straight forward to discretize (3.60), since the discrete gradient Gy, is
only defined as the adjoint to DZV},. The trick is to exploit (3.68) to do a “discrete
partial integration”. First, observe that a weak formulation of (3.60) is given by

[Vi,ulx, = [GrPh, ulx,, Yué€ X (3.71)
We now use (3.68), resulting in
[Vh, u]Xh = [ph, DIth]Xh, Yu € Xh, (3.72)

which is used to discretize (3.60).
Let D be a diagonal matrix containing |e;| for e; € OF. After a hybridization,
see Section 3.4.3, (3.72) yields the following expression for the flux in a cell E.

Fp = -DM.'D(Ap — pg). (3.73)

Then we can do a Schur-complement reduction, as was done for the hybrid mixed
FEM in Section 3.4.3, with the result that only Wg := Mgl is needed for the
implementation. We therefore refer to W g as the mimetic inner product in the
following. Observe that (3.73) corresponds to (3.48) with

Ty =DWgD. (3.74)

In the next section we will give criteria on W g that gives stable, convergent meth-
ods on general polyhedral grids.
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3.5.3 Inner products for Mimetic FDMs

Different choices of the mimetic inner product W g give different mimetic FDMs.
In fact, both the TPFA method and the RTy-mixed FEM can be created by special
choices of W for Cartesian grids. The mimetic inner product for RTy-mixed
FEM is found in [4], while TPFA is created by T g equal to the transmissibility
matrix defined in (3.18). But as we have already seen, the TPFA is not convergent
on general grids, and the RTg-mixed FEM is hard to implement on general grids.
However, by demanding two conditions on W g to be satisfied [9], we can obtain
mimetic FDMs that are convergent on unstructured polygonal and polyhedral grids.
We list the conditions here, and refer the reader to [9] for the derivation of the
conditions and proofs of convergence. The two conditions concern consistency
and stability of the method. We present the consistency condition first, and discuss
the stability condition at the end of the section. Define the kr X d matrices R and
Ny as

R(i,:) = / (F 7). Nuwi) = (75" (3.75)

The consistency condition on W g stems from the discrete version of the Gauss-
Green formula and is given by

WEeR = Ny K. (3.76)

Observe that (3.76) is equivalent to the requirement derived for T g in (3.56). The
following theorem gives a family of matrices that satisfies the consistency condi-
tion.

Theorem 3.5 (A family of valid Wg). Let Z be a kg x (kg — d) matrix whose
image spans the null space of RT, span(Z) = ker(R™), and let U be an arbitrary
symmetric positive definite (kg — d) x (kg — d) matrix. Then the matrix

1
Wpg = ENWKN%; +ZUZ7, (3.77)

is symmetric and positive definite and satisfies W gR = Ny K.

We refer the reader to [10] for the proof of this theorem. The equivalent theo-
rem for T g is obtained by using T = DWEgD.

Theorem 3.6 (A family of valid T g). Let Z and U be as defined in Theorem 3.5.
Then the matrix

1
Tp = ENKNT +DZUZ'D, (3.78)

is symmetric and positive definite and satisfies the requirement made on T g in
(3.56), TeCr = NK.



3.5. THE MIMETIC FINITE DIFFERENCE METHOD 29

Proof. We have that Tp = DW gD and T'g is thus symmetric and positive defi-
nite by Theorem 3.5. Moreover, Theorem 3.5 gives W bR = Ny K. Furthermore,
observe that DC7 = R and DNy = N. Now

TrCr=DWgDCyr =DWgR = DNy K = NK, (3.79)
which completes the proof. U
We will give an example of a family of matrices satisfying Theorem 3.6.
Corollary 3.7 (The a-inner product). Let Z be a orthogonal basis for ker(R™),
then
_ 1
|E|
satisfies Theorem 3.6 with U = ﬁa tr(K)L

Ty (NKNT + atr(K)DZZTD) (3.80)

The stability condition on W g given in [9] implies that U should be con-
structed such that the extreme eigenvalues of U are within those of K. To improve
the material properties of M g, Brezzi et al. [10] recommends to multiply U by a
characteristic value of K such as the trace of K. This requirement is made with the
velocity v as the unknown flow variable. It is shown in [4] that the inner product
defined in (3.80) satisfies a similar stability condition for flux when K is isotropic
and a = 2. In this case, the resulting mimetic method is equivalent to RT ¢-mixed
FEM on Cartesian grids. The mimetic methods defined by (3.80) will be used for
simulations in Chapters 5 and 6.

3.5.4 Constructing the linear system

Now that Tg is defined, we can use (3.70) and (3.73) to construct a linear system
for determining the flux and the pressure. The continuity of the flux must be forced
by an extra set of equations since (3.73) is hybridized. Thus, if e is a shared edge
of cell By and E,, we must demand that FF1 = —FF2. Lastly, the boundary
conditions must be incorporated.

Consider now all cells &2 € 2}, where the cells and edges are numbered glob-
ally and locally in a logical Cartesian manner. Further, let m be the number of
cells, with [ the number of edges after a global numbering, and finally, let n be the
number of edges after a local (cell-wise) numbering. We define:

* F: vector of fluxes, indexed locally foreach cell, F = (Fg,,Fg,,...,Fg,),’
where Fg = (Fg , FeE2 R FeEE )T Observe that internal or non-boundary

edges will appear twice in the vector, so the vector is of size n.

* p : vector of pressures in center of each cell p = (p1,p2,...,Pm)’ indexed
as the cells.

+ X\ : pressure on the edges, A\ = (A1, \2,...,\;)T. This vector is indexed
globally so that all edges appear only once.
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o f : represents the source function, f = |E|fg.

The resulting linear system is given by,

A BT CT F 0
B 0 0 -p|=|(f], (3.81)
C 0 o0 A 0

where the matrix A has the following form

Ty 0 ... 0
0 Tz 0 0
A= ' (3.82)
o 0 . 0
0 ... 0 TgZ

Further, C” gives a relationship between the global indexing of the pressure at the
edges and the local index of the cell. The conservation of mass, (3.3), is ensured
through BF = f. Lastly, CF = 0 ensures continuity in the flux for internal edges
and incorporates the no-flow boundary condition (3.4) for boundary edges.

Notice that the linear system (3.81) is on the same form as the hybrid mixed
FEM system (3.42). The differences are that the unknown for flow is flux F instead
of the velocity ¢/, and that the mass matrix A is obtained differently. The mass
matrix in mixed FEM is also obtained from an inner product, but for mixed FEM
the inner product is continuous. As we have already mentioned, we can construct a
mimetic inner product that is equal to RTg-mixed MFEM on Cartesian grids. This
will be used in Chapters 5 and 6.

3.6 Implementation of Boundary Conditions and Wells

A general linear system from a hybrid discretization of (3.2)—(3.4) is given as

A BT CT F a
B 0 0 -pl=1|b], (3.83)
CcC o 0 A c

where b is the source vector previously called f. We have seen that the Neumann
no-flow boundary conditions used in the derivation of mixed FEM and mimetic
FDM results in a = 0 and ¢ = 0. Assume therefore a = 0 and ¢ = 0, when
we now explain how general boundary conditions and wells are incorporated in the
system. The number of boundary conditions needed in the hybrid discretization
presented here is equal to the number of boundary edges if we use Dirichlet or
a combination of Dirichlet and Neumann boundary conditions. If only Neumann
boundary conditions are applied, we must have an additional condition on the pres-
sure as discussed in the beginning of this chapter. It is important not to apply more
boundary conditions than what is needed, as too many boundary conditions can
result in an overdetermined system.



3.6. IMPLEMENTATION OF BOUNDARY CONDITIONS AND WELLS 31

3.6.1 Boundary conditions

Assume that e is a boundary edge with corresponding global index j and local
index k.

Flux boundary

Let F, = fy be the flux over edge e. We have

Clil) = 1 forl =k, (3.84)
P = 0 forl # k. '

To put the flux boundary condition on e into the system we set ¢(j) = fo. This
process is repeated for every boundary edge that is to be assigned flux boundary
conditions.

Pressure boundary

Let A = ppc be the pressure on edge e. To insert this boundary condition into the
linear system, we first move the contribution from . to the right hand side of the
system,

a(k) = —psc. (3.85)

Second, we reduce the system by removing A, from the unknowns in A. In the third
step, the matrix C and the vector ¢ must also be reduced accordingly. In Matlab
notation this yields
CG::) =1l eld) =1l

By reducing C and ¢ we remove the flux boundary condition on e, so that the edge
has only one boundary condition as required.

In a general case with pressure boundary conditions on a set of edges Apc, the
system before reduction can be displayed as

A BT CT Cl. F a
B 0 0 o0 -p b
- S =1 = 3.86
C o0 o0 o A ¢ |’ (3.86)
Cgc 0 O 0 ABC CBC

13

where the symbol “~” marks the reduced matrices and vectors. The reduction
is done by moving Cgc)\ e to the right hand side of the system, and removing
the vectors and the matrices associated with the boundary conditions to obtain the
reduced system:

A BT CT F a
B 0 0 P | = b|. (3.87)
C o0 0 A ¢

Here, a has bqen updated to a = —Cgc)\ BC. Moreover, observe that the entries

in the vector A no longer correspond to the global numbering of the edges since
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Q Well-boundary

<—Outer—boundary

Figure 3.7: Boundaries in the system.

the entries in Apc are removed. However, this has no practical consequences as
we can construct A when the system is solved from A pc and .

3.6.2 Wells as a boundary condition

We will later see in Chapter 4 that the following well index relation holds in a
well-block

q = WI(po — pwy)- (3.88)

Here, WI is the well index, g is the well rate, pg is the numerically calculated
pressure in the well-block, and p,, s is the well pressure (pressure at well radius).
We use this relation, and the fact that the well can be seen as a boundary edge of the
grid, to include the wells in the linear system (3.83). Figure 3.7 shows a gridded
domain containing a well with the outer boundary and the well boundary indicated.
If we view the well as an edge in the grid, then the pressure on the well-edge is p,, s
and the flux over the well-edge is g. Assume that the well is in cell . Equation
(3.88) then gives

WI; ' gi — pi + puyi = 0. (3.89)

We insert this equation into (3.83) and obtain a new linear system including the
well

A 0 BT cT o F a
0 A, BT o c7T Gi 0
B B, 0 0 O -p |=1|b|. (3.90)
C o0 0 0 O A c
o C, O 0 0 Dwf,i Cuw

Here A, = WI; ', BI'(j) = 1 for j = i and zero otherwise, and '], = 1. Even
though B,, is a vector, it is not printed in bold to emphasize that the contribution
is from one well only. This becomes clear when (3.90) is compared to the final
system for all wells which will be presented in (3.91).

The next step depends on which of p,r; and g; that is known. If p;; is
known, we move a,, = Cg Pwy,i to the right hand side of (3.90), and remove the
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last column and row of (3.90). This is equivalent to what was done above for
pressure boundary conditions. On the other hand, if ¢; is known, the only change
done to the system (3.90) is ¢, = ¢;. This process is repeated for all wells in the
domain to obtain the final system. Let m be the number of cells. Further let n be
the total number of wells, where n,, is the number of wells controlled by pressure
(pwy 1s known) and n, is the number of wells controlled by rate (¢ is known). The
resulting linear system is

A o BT c' o F a

0 A, B o CI q ay,

B B, 0 0 0 -p = b , (3.91)
C o0 0 0 0 A c

o C, O 0 0 Puwf Cuw

where A, is (n X n), By is (n x m), Cy, is (n X ng), a, is (n x 1), and p,, ¢ and
Cy is (ng x 1). Note that a,, only has n, non-zero entries.

The method shown above is restricted to 2D. In the following, only 2D wells
will be considered, but we show an example of how to implement a well in 3D.
Wells in 3D can penetrate several cells and (3.89) will then hold for each cell. If
a well for instance penetrates three cells (i, j, k) the contribution from this well is
given by

WLt 0 0 gi
Ay={ 0 W' 0 |, g=|g]. (3.92)
0 0 wr' ak

and BI is a 3 x m matrix with ones at the entries (1,1), (2, 5), (3, k) and zeroes
elsewhere, while C,, = (1, 1,1). For an injection well, the total rate ¢ = q1+¢2+¢3
is known, while for a production well the pressure p,,  is known.
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Chapter 4

Well Modeling

The purpose of this chapter is to introduce the reader to the theory behind well
modeling. To set the scene, note that a reservoir simulation results in one pressure
value in each grid block. For blocks away from the well, this pressure value is a
good approximation to the pressure in the entire block. However, in a well-block,
the large pressure variations within the block results in a great deviation between
the calculated pressure for the block and the pressure at well radius. The major
task in well modeling is to accurately compute the pressure at well radius when
the injection or production rate is known, or to accurately compute the rate when
the pressure at well radius is known. The corresponding challenges are the large
pressure variation within the well-block and that the radius of the well is small
compared to the horizontal dimensions of the grid blocks. Peaceman was one of
the first to address this problem in [24] and [25]. He introduced the equivalent
radius r( that relates the well block pressure to the pressure at well radius. Peace-
man’s results are presented in Section 4.2. Moreover, we discuss improvements
and extensions of Peaceman’s well model. We begin with a short introduction to
wells.

4.1 Wells

4.1.1 Introduction

The well has radius 7, and the pressure at this radius is denoted p,, ¢. In 3D, p,, s
is denoted the flowing bottom hole pressure, but we shall restrict the presentation
to 2D and therefore name it the well pressure. Furthermore, a grid block perforated
by a well is called a well-block, and the numerically calculated pressure in the
well-block is called the well-block pressure (WBP) and is denoted pg. The radius
of a well is typically between 1/100 to 1/1000 of the horizontal length of a grid
block [21]. Due to the fact that the greatest percentage of pressure drop occurs
close to the well, p,,y will deviate greatly from the well-block pressure po. This
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deviation is modeled by the well index relation, defined for single-phase flow as

q

Wl=—"-"——.
(pO _pwf)

(4.1)

The well index, W1, gives a relationship between the well pressure p,, ¢, the well
rate ¢, and the well-block pressure pg. The definition of WI is based on a straight
line inflow performance relation, which can be used to model undersaturated oils
[18]. In the following we define a well model to be a model used to determine the
well index.

The wells in an oil reservoir are used for either production or injection. The
production well produces fluids, normally a combination of oil, water, and gas. In
the injection well, fluids, normally water, are injected to maintain reservoir pressure
and push oil towards the production well. Wells can be constrained by pressure,
flow rate, or a combination of these. One typical situation is that p,, s is constrained
in production wells, and that ¢ is constrained in injection wells. In this case, if WI
is known, then (4.1) gives an expression for calculating either g or p,, s, depending
on whether the well is constrained by rate or pressure. In Section 4.2 we present
Peaceman’s WI, which is derived under certain assumptions that are presented be-
low.

4.1.2 Assumptions

In well modeling it is common to assume ideal wells. The following definition is
from [18]:

Definition 4.1. An ideal well is one that drains a rock with uniform permeability (in
all directions), completely penetrated and open to the producing interval through
a radial wellbore. Flow is only in the radial direction and the outer boundary is
circular.

The definition above refers to radial flow, another common assumption. Even if
several different flow geometries can be expected when fluids flow toward a vertical
wellbore, two-dimensional radial flow is considered to be the most representative
for the majority of producing vertical oil and gas wells [18]. Most literature on
wells concerns vertical wells since the technology for drilling wells has not allowed
horizontal wells before the last 10-20 years. The vertical wells are therefore often
called conventional wells. Now, non-conventional wells, which includes horizontal
and multilateral wells, are becoming increasingly common. The well index (4.1)
can also be used to model horizontal wells if we for instance have a well parallel
to the y-axis and assume radial flow in the xz-plane. However, there are usually
very high anisotropy ratios between the horizontal and vertical dimension of the
well-block, which complicates the well modeling. We shall therefore restrict the
discussion to conventional wells in this thesis. A radial flow model of a vertical
well is displayed in Figure 4.1.
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Figure 4.1: Radial flow

For the following derivation we assume steady-state, single-phase, horizontal
flow in two-dimensions in a homogeneous and isotropic reservoir. In addition, we
assume ideal wells, and that the flow is radial near the well. Under these assump-
tions, there exists an analytical flow model near the well given by

qu r
= 2m(=) . 42
Here, r is the distance from the well and h is the reservoir thickness. A derivation
of this equation can be found in for instance [23, pages 150-153]. Equation (4.2)
will be used to develop an expression for the well index in the following.

4.1.3 The repeated five-spot pattern problem

To derive analytical well models, we must also make simplifications and additional
assumptions on the reservoir. A typical real-life reservoir has complicated geome-
try and boundaries, and there exists no analytical solution for the flow and pressure
throughout the reservoir. However, there are some theoretical reservoir problems
where an analytical solution is known. These problems are practical for testing
and developing new models and can be used in our case of well modeling. One
such theoretical reservoir problem is the repeated five-spot pattern. This problem
is described as a thin, infinitely large, horizontal reservoir with a pattern of injec-
tion and production wells as shown in the section given in Figure 4.2. The name
comes from the fact that each injection well is surrounded by four production wells
and vice versa, hence creating a five spot. Moreover, due to the symmetry of the
problem, it is common to only consider the quarter five spot, marked by dashed
lines in the figure, when solving the problem. Among the analytical results for
this problem is Muskat’s equation [23] for the pressure drop between injection and
producing wells, given by

Ap=-I- (m(i) - B). 4.3)

T xkh\ \ry,
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Figure 4.2: Section of repeated five-spot pattern. The quarter five-spot is marked
by dashed lines

Here, d is the diagonal distance between the wells, and B is given by an expression
including an infinite series. Muskat [23] originally used B = 0.6190, but a more
accurate value,

B = 0.61738575, (4.4)

was derived by Peaceman in [25] and will be used in the following. Muskat’s
equation will be used in the next section to calculate Peaceman’s equivalent radius,
0.

4.2 The Peaceman Well Model

The first to derive an expression for the well index was Peaceman in [24]. The idea
is as follows. If the numerically calculated well-block pressure pg is equal to the
analytical pressure at a known radius ¢ and (4.2) holds near the well, we get the
following expression for the well index

2wkh
Wl=————. 4.5
pn(ro/rw) ()

The problem of finding the well index now consists of finding 7.

In [24], Peaceman showed that under the assumptions stated in the introduc-
tion, the numerically calculated well-block pressure from the TPFA method (see
Section 3.3), is equal to the actual flowing pressure at radius ry. Peaceman used
the five-spot pattern problem to derive both numerical and analytical expressions
for rg. For a grid with square grid blocks, Az = Ay, he showed that ry can be
calculated by

ro = 0.2Ax, (4.6)

where 0.2 is a rounded mean from the different derivations. The radius 7 is called
the equivalent radius, or the effective well-block radius. The former will be adapted
in this thesis. Note that the use of the equality sign in (4.6) is a slight abuse of
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notation since the constant (.2 is an approximated quantity. Nevertheless, we will
continue to use this notation, following tradition.

Grid blocks in reservoir simulation are seldom square, but to the contrary
they often have large horizontal dimensions compared to the vertical dimension.
Well models for non-square grid blocks, Ax # Ay, are therefore important.
In [25], Peaceman derived an expression for the equivalent radius for non-square
grid blocks given by

1
ro = 0.14(Az? + Ay?)2. (4.7)

Observe that (4.7) simplifies to (4.6) when Ax = Ay if we round to two significant
digits in the answer. We remark that the accuracy is improved in [25] compared
to [24], so we will use the results from the former in the the following. Moreover,
in [25] the results were also extended to hold for anisotropic permeability, in cases
where the principal axes of the permeability tensor are parallel to the x- and y-axes.
The expression for ¢ in this case is

((ky /k0)2 D22 4 (ky /ky)7 Ay?)
(ky k)3 + (ks /ky)

(NI

ro = 0.28 4.8)

This expression simplifies to (4.7) when &k, = k,.

We now show how rg can be derived numerically for isotropic permeability.
The reader is referred to [24,25] for details on the analytical derivation. Consider
now a quarter five-spot of size n x m cells, where Az and Ay denotes the grid
spacing in the x- and y-directions, respectively. Further, denote by Ap the nu-
merically calculated pressure drop between the injector and producer well-blocks,
Ap = pnm — po,o- Then r,, can be replaced by 7¢ in (4.3) to yield the following
formula for rq:

ro = V2nAz exp(—B _ mkh
q

T2 (m — 100) ). (49)
I

This formula will be used in Chapter 5 to generalize Peaceman’s well model to

mimetic FDMs.

4.3 Extensions of Peaceman’s Well Model

More than 20 years have gone by since Peaceman published the results presented
above, and much has happened in that time. The well drilling technology has de-
veloped to allow among other slanted and curved wells, and techniques for more
accurate reservoir simulation have also been developed. The need for more com-
plex well models has thus emerged. As a result, there are currently many methods
for computing well indices based on different assumptions and well configurations.
We will not make an attempt to list all these methods here, but mention some ex-
amples. An extension of Peaceman’s WI for deviated wells, hereafter called the
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projection method, was developed by Holmes [28] and is implemented in a pre-
processor for the Eclipse simulator. Further, a semi-numerical WI for slanted and
curved wells was developed by Klausen and Aavatsmark in [6]. Moreover, a gen-
eral semi-analytical WI for non-conventional wells was derived by Wolfsteiner et
al. [31], by the use of Green’s functions as a reference single-phase flow solution.

Shu performed a comparison study of the projection method and the semi-
analytical method against Peaceman’s method in [29]. The study included hori-
zontal, vertical 2D and 3D slanted wells in a homogeneous reservoir with uniform
Cartesian grids. Both isotropic and anisotropic reservoirs were tested. The results
revealed that Peaceman’s well model can lead to significant errors in the cases
of slanted wells, interference from other wells or boundaries, and spherical near-
well flow. In addition, the projection method was also shown to be vulnerable to
spherical flow and boundary effects. The semi-analytical W1, on the other hand,
computed accurate well indices for all the tested cases. From this we conclude
that Peaceman’s well model must be used with caution in the cases listed above.
However, despite the known weaknesses in Peaceman’s well model, it is still the
default well model in most commercial simulators [30].

One common feature of all the mentioned methods for computing well indices
is that they are developed for the TPFA or equivalent cell centered finite difference
schemes. The TPFA is the predominant method in reservoir simulation, despite the
fact that the method has several shortcomings, as shown in Section 3.3. Thus, in
some cases it is favorable to use other methods than TPFA for reservoir simulation,
such as mimetic FDMs. Different numerical methods give different well-block
pressures. Therefore, the use of other methods than TPFA creates a need for the de-
velopment of corresponding well indices. Some simple extensions of Peaceman’s
method have been done for FEM and mixed FEM, see for instance [12] or [17],
but to the best of the author’s knowledge there are no results for mimetic FDMs.
Another problem is that even though the majority of well indices are derived under
the assumption of homogeneous reservoirs, they are often used for heterogeneous
Ieservoirs.

In this thesis we will address both these issues. In Chapter 5 we extend the
Peaceman well model to mixed FEM and mimetic FDMs. Extension of Peaceman’s
well model to mimetic methods is a starting point and will create a foundation
for further work on more complex well models for mimetic FDMs. Second, in
Chapter 6 we test the performance of the new well indices on both homogeneous
and heterogeneous reservoirs to examine the validity of the extended well models
in different cases.

The extension of Peaceman’s well model is done by calculating the numerical
well index for mimetic FDMs. We remark that the results for TPFA in (4.6) and
(4.7) are derived both numerically and analytically, but for mimetic FDMs it is not
straight forward to obtain analytical results. However, the results from the different
derivations of (4.7) give the same result when rounded to the fourth significant digit
(0.140365 vs 0.1403649). Therefore, we conclude that it is sufficient to derive the
results in the extension numerically.



Chapter 5

Development of Well Models for
Mimetic Methods

In this chapter we reproduce Peaceman’s results for the equivalent radius presented
in (4.6) and (4.7). As mentioned in the previous chapter, Peaceman’s well model
was developed for the two-point flux approximation method, a method which does
not converge on general grids with general permeability tensors. Thus, it would
be beneficial to extend Peaceman’s results to more flexible numerical methods. In
particular, we consider the well-known lowest order Raviart-Thomas mixed FEM
and a mimetic FDM, and derive expressions for the equivalent radius for these
methods. Furthermore, we investigate the connection between the inner product
in mimetic FDMs and the equivalent radius by looking at one-parameter family of
mimetic FDMs. Finally, the chapter is completed by a verification of the obtained
results.

5.1 Setup for Numerical Simulations

In Chapter 4 we saw that the numerical equivalent radius for a given method is
found by solving the five-spot pattern problem and inserting the results for the
pressure drop Ap = (Pinjector — Pproducer) in the formula

wkh )

T0,c = V2nAz exp(—B — —Ap
qu

5.1

This formula stems from Muskat’s equation (4.3) for the pressure drop between
injection and producing wells in a repeated five-spot pattern. Solving the repeated
five-spot pattern problem means solving for an infinite reservoir. In computational
science, an infinite system is usually modeled by a finite simulation cell or grid
subject to periodic boundary conditions. Due to the symmetry of the repeated
five-spot pattern, we can employ this technique here. To be able to use periodic
boundary conditions, the simulation cell must be chosen as a five-spot where the
grid is staggered with half a cell in each direction compared to a grid used to
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m

Figure 5.1: The simulation cell (right) is a section of the infinite five-spot pattern
(left).

simulate a quarter five-spot. This setup is shown in Figure 5.1. Observe that the
simulation cell has twice the number of grid cells in each direction compared to
the quarter five-spot. For the notation to be consistent with the one used in [24,25],
where a quarter five-spot of size n x m was used, we use a simulation cell of size
2n x 2m grid cells. Moreover, the simulation cell is scaled to the unit cell for
simplicity.

We denoted the boundary edges by South, East, West, and North. In the con-
tinuous case, the periodic boundary conditions for the problem are

v(Ly) =v(0,y), Vye[0,1], (5.2)
v(z,1) =v(z,0), Vzel0,1]. (5.3)

In the discrete case, the flow is not measured as the velocity in each point, but
instead as the flux F over each edge e, as defined in (3.2). Thus, the boundary
conditions on a Cartesian grid become

F(eeast) = F(ewest), 5.4)
F(enorth) = F(esouth)a (5.5)

for all boundary edges. Here eqyst and eyese are opposite boundary edges with
equal y-coordinates, while enon and egoue, are opposite boundary edges with equal
x-coordinates.

The prototype flow problem (3.2)—(3.4) is solved by a mimetic simulator [4]
developed at the Dept. of Applied Mathematics in SINTEF ICT. This simulator
has support for different mimetic inner products. As explained in Chapter 3, both
TPFA and RTp-mixed FEM can be created by mimetic inner products. Thus, by
changing the inner product, the same code can be used to simulate TPFA, RT -
mixed FEM, and different mimetic FDMs.
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In the simulations we calculate the numerical equivalent radius, rg ., using
(5.1). The assumptions of a homogeneous and isotropic reservoir means that the
permeability is given by K = kI, where I is the identity matrix. For simplicity we
set k = and h = 1. Furthermore, to simplify the notation and the presentation of
the results, we define the aspect ratio of the grid cells

B = Az/Ay,

and the well constants
v =ro/Ax,
€ =ro/(Ax? + Ay?)3.
In the following we will refer to a grid with square cells, 3 = 1, as a square grid,
while a grid with non-square cells is referred to as a non-square grid. Observe that
¢ = ~/+/2 for square grids. As already mentioned, the grids in the simulations

will be of size 2n x 2m. For square grids, we specify n and let m = n, while for
non-square grids m is specified and n = Gm.

5.2 Reproduction of Peaceman’s Results

We did numerical simulations to reproduce the results in (4.6) and (4.7) using the
setup described in the previous section. For square grids, the smallest grid had
n = 1, and n was successively doubled up to n = 256. The results for square
grids are displayed in Table 5.1(a). As we can see in the table, 7y is converging
to the limit ~ 0.1985 which agrees with Peaceman’s result in [25] to the fourth
significant digit. The value of v for n = 1 and n = 2 deviates strongly from the
other values, which is not surprising since the simulation grids are very coarse in
these cases.

For non-square grids, the tested cases are m = {2, 8,32} and n = m, starting
with 8 = 2 and successively doubling 5 up to 3 = 128. The results displayed in
Table 5.1(b) show that £ converges to 0.140. Observe that the results for the finest
grid resolution for 5 = {32, 64,128} are equal, which means that the solution has
converged and there is no need to test for higher 3. The results in the table are in
good agreement with the results in [25], where Peaceman extrapolated values for
m = 16 and m = 32 to find £ = 0.140365. For each aspect ratio in the table, &
for the finest grid agrees with Peaceman’s extrapolated value down to the fourth
significant digit. The values of ¢ for the grids with m = 2 deviate strongly from
the finest grids, as we also saw for square grids, which is not surprising considering
the low resolution of the grids.

5.3 Equivalent Radius for MFEM and MFDM

Now that we have verified our setup for finding the equivalent radius, the results can
be extended to other numerical methods. In particular, we consider the RT g-mixed
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Table 5.1: Reproduction of Peaceman’s results for TPFA

(a) Square grids. (b) Non-square grids.
n vy Bl m §
1]0.158562 2| 2710.135598
2 | 0.187860 2| 81 0.140078
4 | 0.195908 2| 32 | 0.140347
810197858114 1 2 10136230
16 ) 0.198344 4| 81 0.140120
32| 0.198465 4|32 | 0.140350
64 | 0.198496
128 | 0.198503 8| 20136384
256 | 0.198505 8| 810.140131
8 | 32 | 0.140350
16| 21 0.136423
16| 8|0.140134
16 | 32 | 0.140350
32| 20136432
32| 80.140134
32| 32 | 0.140351
64 | 2| 0.136435
64 | 8 0.140134
64 | 32 | 0.140351
128 | 2] 0.136435
128 | 8|0.140135
128 | 32 | 0.140351
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Table 5.2: Results from simulations with MFEM and MFDM on square grids.
MFEM MFDM

n| 7 g
1| 0.451847 | 0.267668
2 | 0.434177 | 0.283467
4| 0.419246 | 0.284817
8 | 0.415182 | 0.284907
16 | 0.414169 | 0.284913
32 | 0.413915 | 0.284913

64 | 0.413852 | 0.284913
128 | 0.413836 | 0.284913
256 | 0.413832 | 0.284913

FEM and the mimetic FDM defined by the a-inner product (3.80) with o = 1.
These methods are hereafter referred to as MFEM and MFDM, respectively.

New numerical simulations were done by solving the flow and pressure system
with MFEM and MFDM instead of TPFA. For square grids, n was successively
doubled, while for non-square grids m = {2,8,32} and n = (Sm, starting with
8 = 2 and successively doubling 3 up to 3 = 64. The results from the simulations
are shown in Table 5.2 for square grids and in Table 5.3 for non-square grids. We
observe from the tables that the well constant of MFDM converges faster than the
well constant for MFEM. Moreover, the results for square grids suggest that the
equivalent radius for MFEM is given by

ro = 0.4138Ax, (5.6)
and that the equivalent radius for MFDM is given by
ro = 0.2849Ax. (5.7

These formulas are on the same form as Peaceman’s result for the TPFA method
for square grids shown in (4.6), and only differing in the value of the constant ~y.

Turning to non-square grids, Peaceman’s results do not generalize that easily.
Remembering Peaceman’s result for non-square grids in (4.7), we look for an ap-
proximation to ro for MFEM and MFDM on the form

ro = £(Az? + Ay?)s. (5.8)

The results from simulations using non-square grids are shown in Table 5.3. As
seen in the table, the constant £ changes for each aspect ratio 3 for both MFEM
and MFDM. These results are in contrast to the results obtained for TPFA, where
¢ is the same for all 3. A plot of the variation in ¢ for MFEM is shown in Figure
5.2, where the results for £ from the finest grid resolution for each ( is plotted
against 3. There is no apparent connection between ¢ and 3 to be drawn from the



46 CHAPTER 5. WELL MODELS FOR MIMETIC METHODS

Table 5.3: Results from simulations with MFEM and MFDM on non-square grids

MFEM MFDM
Blm| ¢ 3
2| 2 0.286178 | 0.195305
2| 8| 0.278546 | 0.195853
2| 32| 0.278015 | 0.195855
4| 210.257622 | 0.185081
4| 81 0.251998 | 0.185574
4| 32 | 0.251590 | 0.185576
8| 2] 0.236703 | 0.177135
8| 81 0.231819 | 0.177605
8 | 32| 0.231461 | 0.177607
16 | 2| 0.224514 | 0.172402
16 | 8] 0.219946 | 0.172859
16 | 32 | 0.219611 | 0.172861
32 | 2 0.218001 | 0.169848
32| 8| 0.213582 | 0.170298
32 | 32 | 0.213257 | 0.170300
64 | 2| 0.214644 | 0.168526
64 | 8| 0.210296 | 0.168972
64 | 32 | 0.209976 | 0.168974
MFEM
0.29
0.28 -
0.27r
o 0.26 -
Nf;‘\ 0.25-
> 0.23f
0.22r
021
0.2 ’
0 10 20 30 40 50 60 70

B=Ax/Ay

Figure 5.2: Variation in equivalent radius-factor ¢ for different aspect ratios for
MFEM.
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Table 5.4: Well constants for MFEM and MFDM. The odd numbered aspect ratios
are provided for the simulations in Chapter 6.
MFEM | MFDM

Bl ¢ §

1| 0.293 0.201
2| 0.278 0.196
3] 0.262 0.190
4| 0.252 0.186
51 0.244 0.183
8| 0.231 0.178

91 0.229 0.177
16 | 0.220 0.173
17 | 0.219 0.173
32| 0.213 0.170
33 | 0.213 0.170
64 | 0.210 0.169
65 | 0.210 0.169

figure, except that £ seems to be converging as 3 — oo. Polynomial and various
exponential fitting of the data were tried without success. There might still be a
relationship between ¢ and 3, but not in a simple form.

We sum up the results so far with the following rule for computing the equiva-
lent radius.

Rule 5.3.1. The approximate equivalent radius for a numerical method
M € {TPFA, MFEM, MFDM} on a grid with aspect ratio f = Ax/Ay is given
by
1
ro.c(M, B) = £(M, B)(Ax® + Ay?)2, (5.9)

where E(MFEM, (3) and (MFDM, 3) is given in Table 5.4, and {(TPFA, ) = 0.14.

We remark that the well constants in Table 5.4 are rounded to three significant
digits, because this corresponds to the accuracy from using ¢ = 0.140 = 0.14
for Peaceman’s equivalent radius. The results can easily be extended to hold for
anisotropic permeability through (4.8), but this extension will not be considered
here.

5.4 Equivalent Radius for a General Mimetic Method

The results so far show that the equivalent radius must be computed for each nu-
merical method. Mimetic FDMs is a large class of methods, and it would be practi-
cal to find a general connection between the inner product and the equivalent radius
of amethod. In an attempt to do so, we consider a one-parameter family of mimetic



48 CHAPTER 5. WELL MODELS FOR MIMETIC METHODS

107" 10° 10'
log(a)

Figure 5.3: Logarithmic plot of Ap against « for n = 1.

FDMs, named here the QR-MFDM, and try to find a relationship between the one
degree of freedom and the corresponding equivalent radius.

Assume we have an isotropic and homogeneous reservoir where K = I. Fur-
thermore, assume that the grid is Cartesian with square cells. Under these assump-
tions, the a-inner product in Corollary 3.7 simplifies to

1
Tp=—
E|

NNT + 30(1 - QQ7), (5.10)
where Q is an orthogonal basis for the matrix R. Thus, I—-QQ” = ZZ", where Z
is an orthogonal basis for ker(R”). The matrix Q can for instance be obtained by
a QR-factorization of R. The family of mimetic FDMs given by (5.10) is simple
and has one degree of freedom, which makes it suitable for testing purposes. When
a = 1, the QR-MFDM is equivalent to the MFDM used in the previous section for
Cartesian square grids. The equivalent radius for o = 1 is therefore given in (5.7).

We would like to investigate whether there is a relationship between r( and «.
Changing « results in a new linear system (3.81) because A ~! is a block diagonal
matrix where the blocks are T . One way to detect changes in a matrix is to look
at the eigenvalues of the matrix. We therefore look for a relationship between the
eigenvalues of A~!, denoted o(A~!), and . In fact, since A~ = {Tg}, we
have o (A1) = o(Tg). Furthermore, observe from the numerical formula for 7
in (5.1) that for a grid of constant size n X n the only variable is Ap. Thus,

ro = 1o(a) = ro(Ap(a)), (5.11)

so the variation in 7y only depends on the variation of Ap by «.
A logarithmic plot of Ap against « for n = 1 is shown in Figure 5.3. The
graph is a straight line, so

log,o(Ap) = alogg(a) + b. (5.12)
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A linear polynomial approximation gives a = —1 and b = — log((3). The result-
ing expression for 7 is

ro = V2Az exp(—B — —). (5.13)

3a

However, we recall from the results for MFEM and MFDM that the value forn = 1
deviated strongly from the limit when n — oo. Hence, simulations for larger n
must be done to get a general result. The results in Section 5.3 show that rg is
sufficiently converged for n = 10. We therefore use n = 10 in the following.
Figure 5.4(a) displays a logarithmic plot of Ap against « for n = 10. Observe
that there is no longer a linear relationship between the variables. The regular
plot in Figure 5.4(b) is more informative. Here we see that the graph changes
behavior around o = % This point corresponds to the breakpoints in the graphs
of the minimum and maximum eigenvalues of T g, as shown in Figure 5.4(c). In
fact, 0(Tg) = {3, 2}. This is shown in the eigenvalue decomposition of T g in
Appendix B. Hence, at o = 2, o(Tp) = {2}.

The graphs indicate a relationship between Ap and min (o) and max (o), where
the relationship between Ap and the minimum eigenvalue is most evident. Moti-
vated by this observation we perform a least-square fit, denoted LS-fit 1, to find the
coefficients of

Ap(a) =~ amin(o(a)) + b, (5.14)

and another least-square fit, denoted LS-fit 2, to find the coefficients of
Ap(a) = cmin(o(a)) + dmax (o) + e. (5.15)

The resulting lines are plotted against Ap in Figure 5.5(a). The figure shows that
LS-fit 1 is a bad approximation as « increases, but that LS-fit 2 is better. Figure
5.5(b) shows r( calculated from (5.1) when LS-fit 1 and LS-fit 2 are used to calcu-
late Ap(a). The errors we saw in the previous plot are amplified by the exponential
function in the formula for r(, and the result is not good. Even though Ap seems
to depend on the eigenvalues of T, it is clear from the figure that a linear least
square fit does not describe the relationship properly.

Conclusion

The results for QR-MFEM give no definite answer on how to calculate the equiv-
alent radius for a general mimetic FDM. We have seen that the equivalent radius
of a numerical method depends on how the method approximates the pressure in
the well-block. Finding a general expression for the equivalent radius for a one pa-
rameter family of inner products is therefore not a simple task, and would require
a more thorough study than done here. However, we have shown that there is a
connection between the eigenvalues of T g and the pressure drop calculated by the
method. This pressure drop is used in the numerical formula for calculating 7.
Hence, the results imply a connection between the eigenvalues of T g and 7g. The
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approximation methods used here are simple and do not describe this relationship
properly. However, we may conclude that ry depends on the inner product used,
and until an expression for this relationship is found, ¢ must be calculated by the
procedure in Section 5.3 for each inner product.

5.5 Verification of New Equivalent Radii

The equivalent radius can also be calculated by a simulation of an infinite reservoir
with one well and radial flow. To verify the accuracy of the new equivalent radii
for MFEM and MFDM given in (5.9), we calculate r( by this alternative procedure
and compare the results.

The radial flow simulation is done by forcing appropriate flux boundary con-
ditions. Consider a section of the reservoir containing a well as displayed in Fig-
ure 5.6. The flux over each boundary edge is calculated by

_ —q9;

F; )
2T

(5.16)

where 0 is the angle of the circle sector belonging to the boundary edge. We put
flux boundary conditions on the system according to (5.16), forcing radial flow
from the well. Thus, when the system is solved for pressure and flow, we can use
Muskat’s equation (4.3) to compute a numerical equivalent radius 7o, from the
pressure values in the well-block and on one edge.

For each of the methods M € {TPFA, MFEM, MFDM} we compute 7 , and
the numerical well constant

€a(M) =19 o(M)/(Az? + Ay?)z. (5.17)

Subsequently the values of £,(M ) are compared to the values of {.(M) given in
Table 5.4 for MFEM and MFDM and to £.(TPFA) = 0.14. The error is measured
by looking at |, — &.|. The simulations are done on a Cartesian grid of the unit
square, [0, 1] x [0, 1], with 2n x 2n cells for square grids and 2n x 2m cells for non-
square grids. Furthermore, homogeneous permeability is used for all simulations.
We use m = {5,10,25}, 5 = {2,4,8,16,32,64}, and n = Sm.

Table 5.5(a) shows the results for square grids, and Table 5.5(b) shows the
results for non-square grids. We see from the tables that |, — &.| is small for
all methods for both square and non-square grids. The well constants £.(TPFA),
¢.(MFEM), and {.(MFDM) are all rounded to the third significant digit, which
corresponds to an error of order 10~*. This error fits good with the errors reported
in the table. We see that the error is 103 for the lowest grid resolution for TPFA
and MFEM, because the grid is to coarse to give sufficient convergence of &,.
Convergence of the well constant on a coarse grid is not a problem for MFDM,
because the well constant here converges faster than for TPFA and MFEM, as we
also saw in Section 5.3.
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Table 5.5: Comparison of new well constants &, to numerical well constant &,,.

(a) Square grid cells.
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Figure 5.6: Section of infinite reservoir with well and radial flow.

The presented results verify that 7o .(MFEM, /) and 7o .(MFDM, (3) are good
approximations to the equivalent radius for MFEM and MFDM, respectively. We
therefore expect that the new well models for MFEM and MFDM have the same
performance as Peaceman’s well model for TPFA. This hypothesis will be tested
in Chapter 6.

5.6 Chapter Conclusions

We have developed expressions for the equivalent radius for MFEM and MFDM
based on Peaceman’s well model for TPFA. The accuracy of these equivalent radii
has been verified by a simulation of radial flow from a well in an infinite reservoir.
The attempts to develop a general expression for the equivalent radius for a family
of mimetic inner products did not succeed. The results, however, indicate that there
is a connection between the eigenvalues of mimetic inner product matrix T g and
the equivalent radius . Until an expression for this relationship is found, r¢ must
be calculated by the procedure in Section 5.3 for each inner product.



Chapter 6

Test of New Well Models

In this chapter we test the new well models developed in Chapter 5 on both homo-
geneous and heterogeneous reservoirs.

6.1 Presentation of New Well Models

We repeat the definition of the well index from (4.1),

wi=—9 6.1)
Po — Pwf

The well index for radial near-well flow was given in (4.5) as

2wkh
Wli=—" " (6.2)
pn(ro/ry)

where 7 is the equivalent radius of the well-block. In the following we will refer
to (6.2) as the radial-flow well model. In Chapter 4 we presented Peaceman’s
equivalent radius for TPFA that is given by

rop = 0.14(Az? + Ay?)z. (6.3)

Further, in Chapter 5 we showed that Peaceman’s approach for finding (6.3) could
be extended to other numerical methods, and that the resulting equivalent radii were
unique for the tested methods. The methods considered were the mixed FEM with
RTo-basis functions and the mimetic FDM defined by the inner product (3.80) with
a = 1. For easier notation, we will henceforth refer to these methods as MFEM
and MFDM, respectively. However, it is important to note that the equivalent radii
developed in Chapter 5 do not hold in general for the family of mixed FEMs or the
family of mimetic FDMs, despite the notation. This is because the equivalent radii
depend on the set of basis functions or inner product used, as shown in Section 5.4.
The key result from Chapter 5 was: the equivalent radius for a numerical method

55
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M e {TPFA, MFEM, MFDM} on a grid with aspect ratio § = Az /Ay is given
by
1
roo(M, B) = §(M, B)(Ax® + Ay?)z, (6.4)
where £(MFEM, ) and {(MFDM, [3) are given in Table 5.4, and {(TPFA, ) =
0.14. Thus, we have three different well indices:

orkh
Peaceman: WI-P = 7177 (6.5)
H ln(TO,p/Tw)
p
MFEM: WI-MFEM — mkh , (6.6)
pln(ro .(MFEM, 3) /14,)
MFDM: WI-MFDM — 2mkh 6.7)

pIn(ro..(MFDM, ) /1)

We will refer to these well indices as the correct well index for TPFA, MFEM, and
MFDM, respectively (meaning the correct WI under the assumptions stated for
near-well radial flow). The well index in (6.5) is developed for the TPFA, but the
lack of research on well indices for other numerical methods (see Section 4.3) can
lead people to believe that (6.5) can be used for other numerical methods. In this
chapter we will test MFEM and MFDM with Peaceman’s well index and with the
specially adapted well indices (6.6) and (6.7), to see how important the well index
is for the accuracy of the result. We also include a test of TPFA with Peaceman’s
well index for comparison. All tests will be done for both homogeneous and het-
erogeneous reservoirs. The different cases will be denoted MFEM,,, MFDM,,, and
TPFA,, for the methods with Peaceman’s well index, and MFEM . and MFDM.. for
the methods using the well indices in (6.6) and (6.7).

6.2 Setup for Numerical Simulations

6.2.1 Grid and reservoir data

The simulations are done by solving the prototype flow problem (3.2)—(3.4) on
a regular Cartesian grid with grid size 60 x 220 cells. The non-square grids are
made by stretching the grid in the z-direction: Az = 3, 5 € {1, 3,5,9, 17}, while
Ay = 1 for all grids. For all simulations we assume that the reservoir is isotropic.
In the homogeneous case, unit permeability is used, while in the heterogeneous
case we use an isotropic permeability field with 85 different layers. This perme-
ability field is Dataset 2 from the 10th SPE Comparative Solution Project [14], a
project whose purpose was to compare upgridding and upscaling approaches on a
million cell geological model. The model is described as a regular Cartesian grid
with grid size 60 x 220 x 85 cells. We will simulate in 2D, meaning that we have 85
different 2D isotropic permeability layers with 60 x 220 cells. The model consists
of part of a Brent sequence from the North Sea. The top 35 layers represent the
Tarbert formation and is a representation of a near shore environment, while the
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Table 6.1: Simulation data
Property | #Cells 8 Az | Ay | 7y | q(inj) | pys(prod)
Value 60 x 220 | {1,3,5,9,(17)} | G 1 ]0.01 -1 0

lower 50 layers represent the Upper Ness formation and is fluvial. We will look
at Layers 1-35 and 36-85 separately since they exhibit very different properties.
The latter is highly heterogeneous with channel structures, while the former has
more smooth variations in the permeability. An example from each group of layers
illustrating these properties can be seen in Figure 6.1. By using these 85 layers
for simulation, we can test the performance of the new well models under different
permeability conditions.

The reservoir will be equipped with one production- and one injection well.
We put ¢ = —1 for the injection well, and set the well pressure for the production
well to p,,; = 0. Note that ¢ is defined as the production rate of the well, and ¢
is therefore negative for the injection well. Moreover, these parameters are chosen
out of mathematical convenience and do not attempt to model a realistic reservoir.
However, the choice of parameter values is not important as we will only look at
the pressure drop in the reservoir and assume incompressible flow. Furthermore,
with p,, ¢ specified for one well, the pressure in the reservoir is also uniquely deter-
mined, as discussed in Section 3.2. Lastly, we specify the placement of the wells
according to two requirements. First of all, the wells must be placed a certain dis-
tance away from the boundaries to avoid boundary effects. Secondly, there must be
sufficient distance between the wells to allow the flow to develop and to avoid in-
terference between the wells. We saw in Chapter 4 that both these requirements are
important for the performance of the radial-flow well model (6.2). A well place-
ment that satisfies these requirements is to place the injection well in cell 2430 and
the production well in cell 10830. This placement will be used for all simulations.
Thus, for the heterogeneous case, this setup gives many different cases: one or both
wells might lie in a high permeable area for some layers, while for others layers
one or both wells lie in a low permeable area. Further, for the fluvial layers, we
will have high permeable channels connecting the wells for some layers and for
other layers there will be no such connections. The degree of heterogeneity around
the wells will also vary. The purpose of this setup is to generate a “random” set of
different cases for simulation that will give a picture of the overall performance of
the new well indices and identify problem cases. The resulting linear system for
the flow and pressure in the reservoir, (3.91), is solved by the mimetic simulator
described in Section 5.1, with the respective inner products of TPFA, MFEM and
MFDM. An overview of the simulation data is presented in Table 6.1.

6.2.2 Reference solution

To test the results obtained with different well indices, we compare the results to
a reference solution. The reference solution for grids with square cells is obtained
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Figure 6.1: Example of permeability for Layer 2 and Layer 40, shown with a log-
arithmic color scale.

by solving the system on a grid that has double resolution compared to the orig-
inal grid and is radial around the well, see Figure 6.2. This method allows us to
compute the pressure at well radius, p,,r, directly. The numerical method used is
the mimetic FDM defined by the inner product (3.80) with a = 2. The resulting
method is equal to mixed FEM with RTg-basis-functions on Cartesian grids and
is chosen because it converges on radial grids. We remark that this property is not
shared by all the methods discussed in this thesis. For instance, the TPFA method
will not converge on a radial grid unless it is specially implemented to handle this
type of grid.

The reference solution for grids with non-square cells is computed by first re-
fining the grid in the x-direction to obtain a grid with square grid cells. Then we use
the same technique as described above to make a radial grid around the well. The
result is a grid of approximate size 1203 x 440 cells. This setup causes memory
problems for 3 > 9 on heterogeneous permeability, thus limiting how high aspect
ratios we can obtain reference solutions for. Another remark is that the grid refine-
ment and the insertion of a radial grid requires the aspect ratio to be an odd number.
This is because the well-block is refined to a row of (3 cells in the x-direction. The
new well-block must be the middle cell of the row to maintain the coordinates of
the well, meaning that the row must have an odd number of cells. Normally we
would use 3 = {1,2,4,8, ... }, successively doubling Az, but here we instead use
B =1{1,3,5,9,... } due to the requirement of odd numbered ratios .
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Original grid. Refined grid with radial grid around wells.

i
i

Figure 6.2: Original grid with colored well-blocks (right), and refined near-well
radial grid (left).

6.2.3 Measurement of the error

Since the simulations are in 2D, the well indices (6.5)—(6.7) can be simplified by
letting h = 1. In order to evaluate the results from the simulations, we must con-
sider errors from the well index for both wells. Therefore we look at the pressure
drop between the wells, defined as

Ap = ’pwf,l - pwf,Q“ (6.8)

We now make a stepwise analysis of the linear system (3.91), focusing on the
pressure, to explain how the well index influences the pressure drop of the system.
Let ¢+ = 1 be the injection well and ¢ = 2 be the production well. We begin by
noticing that

WI-MFEM < WI-MFDM < WI-P. 6.9)

In Section 3.6 we saw that the wells are implemented as boundary conditions in
the linear system, and that the equation

WI g — posi + Pusi =0 (6.10)

is inserted in the linear system for each well . We start by identifying the known
quantities. As mentioned earlier gy = —1 and p,,r2 = 0. In addition, we know
that g0 = —¢q; = 1 since there are only two wells and the numerical methods are
conservative for flux. Further, the pressure in the production well-block is com-
puted from (6.10). Since p,, r2 = 0, we get that pg o is inverse proportional to WI,
meaning that a high WI gives a low pg 2 and vice versa. For MFEM and MFDM,
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Peaceman’s WI is too high compared to the correct value and will therefore com-
pute a too low pressure value for pgo. The global pressure field depends on the
value of pg 2, and pg 1 will therefore also depend on pgo. If pg 2 is too low, pg 1
will also be too low compared to the correct value. An important remark is that the
pressure drop between the well-blocks, Apg = po .1 — po 2, is constant for a numer-
ical method on a given grid regardless of the well index. The pressure p,, ¢ 1 in well
1 is computed from (6.10) using po 1 and g;. Again we see that a high WI gives a
low py, f,1. This means that MFEM and MFDM with Peaceman’s WI will compute
a too low p,,r 1 using the already too low value of pg 1, which magnifies the error.
Lastly, observe that the pressure drop Ap = p,,,1 since p,, 2 = 0. In conclusion,
we have seen that using a WI that is too high compared to the correct value gives
a pressure drop that is too low compared to the correct value. Consequently, using
Peaceman’s WI for MFEM and MFDM results in a too low pressure drop Ap.

It can be hard to isolate the error caused by the well index from the errors in
the numerical method. We therefore give an analytical expression for the absolute
error in Ap from using WI-P instead of the correct well index WI-C for a given
method. From the discussion above, we have that q1, g2, and p,, s 2 are known and
that Ap, is constant. First, observe that the error F(pg 2) in the computation of the
pressure pg o in well-block 2 is given by

E(po,2) = po,2,c — Po z,p 6.11)
q2

= — 6.12
= Pwf,2 + == ‘NI C — Pwf2 WI-P ( )

q2 T0,c
= 1 ’ 6.13
27‘(’]{32 D(T‘Qp) ( )

q2 gc

= 6.14
3y ) (6.14)

Second, we have that the pressure in well-block 1 is given by

P01 = Apo + po2. (6.15)

The absolute error in Ap from using using WI-P instead of the correct well index
WI-C is now given by

E(Ap) = [(pws1.ec — Pwf2.e) = (Pwfip = Puf2p)l

_ N _
= Pore — wie) — Porn — wip)
q1 T0,c

= o — ——1 :

|(p0,1, p0,1,p) ks n(r07p)|
— (Ao + Poe — Apo — Do) — =2 (%))

I s4,P 271']{51 gp

) 92 &e q1 &e
- |27Tk2 (é‘p) 27Tk1 (gp)|

1,1 &e
- _— (= In 1

ot )| n(g )l (6.16)



6.3. RESULTS FOR HOMOGENEOUS RESERVOIR 61

Table 6.2: Relative errors in Ap for different ratios, r,, = 0.01.
TPFA MFEM MFDM
6| WI-P | WI-MFEM | WI-P | WI-MFDM | WI-P

1 | 0.0037 0.0036 0.0553 0.0037 0.0290
3| 0.0050 0.0049 0.0645 0.0046 0.0337
5 | 0.0051 0.0050 0.0599 0.0047 0.0312
9 | 0.0051 0.0050 0.0540 0.0047 0.0281
17 | 0.0049 0.0051 0.0497 0.0047 0.0258

where we have used that g = —g2 = —1. Observe that the absolute error is
independent of the well radius.

The absolute error in Ap is constant for a given numerical method on a given
grid. Thus, it does not give us much information about how well the method and the
well index perform together. To test the performance we must therefore compare
the pressure drop from the simulations against the pressure drop of the reference
solution, Apy.r. We define the absolute error in Ap for a method B as

ea(B) = |Apret — ApB|. (6.17)

In the heterogeneous case, we can get great variations in Ap for the different layers,
and to be able to compare the errors in the different layers we must look at the
relative error in the pressure drop. The relative error in Ap for a method B is
defined as
. |Apref - APB|
Apref ‘
We will henceforth refer to e,.(B) as the relative error (in Ap) for method B. Note
that the relative error depends on the well radius. Small r,, results in that a large
amount of the pressure drop happens in the near-well areas where the assumption
of radial flow is correct. The radial-flow well model is therefore more correct for
a smaller r,,. We use r,, = 0.01 in the simulations, but we also show an example
with r,, = 0.1 for homogeneous grids.

e (B) (6.18)

6.3 Results for Homogeneous Reservoir

We start with simulations on homogeneous reservoirs. In this case, all the assump-
tions for the radial-flow well model are satisfied. We show results for r,, = 0.01
and also include results for r,, = 0.1 for comparison. The relative errors in Ap
for the different methods and the different ratios with r,, = 0.01 are shown in
Table 6.2. The results show that it is a big improvement to use the correct well
index for MFEM and MFDM instead of Peaceman’s well index. Another observa-
tion is that the relative errors do not increase notably as the ratio increases, which
means that we can expect results in the same range for higher ratios. However, we
could not make reference solutions for higher ratios than 17 due to lack of memory.
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Table 6.3: Relative errors in Ap for different ratios, r,, = 0.1.
TPFA MFEM MFDM
8| WI-P | WI-MFEM | WI-P | WI-MFDM | WI-P

0.0047 0.0047 0.0663 0.0047 0.0350
0.0069 0.0067 0.0831 0.0064 0.0436
0.0072 0.0070 0.0780 0.0067 0.0409
0.0072 0.0070 0.0706 0.0067 0.0370
17 | 0.0070 0.0072 0.0650 0.0066 0.0340

O N W =

Moreover, the table shows that the relative errors for the methods with correct well
index, in column 1, 2, and 4, are almost equal. This is not surprising as the correct
well indices have been developed by the same procedure, and since TPFA, MFEM,
and MFDM all converge to the same solution on a Cartesian K-orthogonal grid
with homogeneous permeability. The relative errors for the methods with correct
WI can come from errors in the well model and errors from using a coarser grid in
the simulations than in the reference solution.

The results for r,, = 0.1 in Table 6.3 give the same conclusions as stated
above: the specially adapted well indices have the best performance. Moreover,
we observe that the relative errors for r,, = 0.1 are smaller than the relative errors
for r,, = 0.01, as expected.

We conclude that the new well indices (6.6) and (6.7) for MFEM and MFDM
perform as well as Peaceman’s well index for TPFA for homogeneous permeability.

6.4 Results for Heterogeneous Reservoir

One of the main assumptions for the radial-flow well model given in (6.2) is that
the reservoir is homogeneous. We now consider heterogeneous reservoirs, but (6.2)
is still valid (to a certain extent) if the flow in the near-well area is radial and k
denotes the permeability of the well-block. A relevant factor in this assumption
is the size of the near-well area. One possible definition of the near-well area is
based on the reasoning that there must be radial flow within the equivalent radius if
(6.2) is to be correct. In this case, the near-well area must at least include the cells
within the equivalent radius. This definition is grid dependent since the equivalent
radius increases for increasing Az and Ay. Using a grid dependent definition
is problematic since the near-well area is a physical area. Due to this problem we
will not attempt to define the near-well area here. Instead we define the dependence
area as the area where the assumption of radial flow must be satisfied in order for
the well model in (6.2) to be correct. We remark that square cells are better suited
for modeling radial flow than non-square cells, so non-square grids will have a
larger dependence area than square grids.

We expect the relative error for a method with wrong WI to be larger if one or
both wells lie in a highly heterogeneous area. This is because the assumption of
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Table 6.4: Statistics for relative error for square grid cells.
(a) Layers 1-35 (Tarbert) (b) Layers 36-85 (Upper Ness)

Method | mean | max std Method | mean | max std
TPFA,, 0.019 | 0.045 | 0.012 TPFA,, 0.040 | 0.115 | 0.029

MFEM, | 0.005 | 0.013 | 0.004 || MFEM, | 0.014 | 0.038 | 0.009
MFEM,, | 0.080 | 0.150 | 0.038 || MFEM,, | 0.104 | 0.196 | 0.061

MFDM, | 0.013 | 0.029 | 0.008 || MFDM, | 0.028 | 0.080 | 0.020
MFDM,, | 0.034 | 0.091 | 0.024 | | MFDM,, | 0.060 | 0.129 | 0.033

Relative error in Ap for methods with correct WI.
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Figure 6.3: Relative error in Ap for the methods with “correct” well indices.

radial flow is less valid in such cases.

6.4.1 Results for square grids

Table 6.4 shows statistics of the relative error for square grids. The results for
TPFA,, are included for comparison. We see that the mean relative errors for
MFEM. and MFDM,. are much smaller than the mean relative errors for MFEM,,
and MFDM,,, for both Layers 1-35 and Layers 36-85. Moreover, MFDM,. and
MFDM,, are closer than MFEM,. and MFEM,,. This is because

r0,p < 70..(MFDM) < 7 .(MFEM).

The error from using Peaceman’s WI will therefore be smaller for MFDM than
for MFEM. Furthermore, the relative errors are smaller for Layers 1-35 than for
Layers 3685 for all methods. This is not surprising as the permeability variations
are higher in the fluvial layers. Therefore, the assumption of radial flow in the near-
well area is more correct in Layers 1-35 than in Layers 36—85, resulting in larger
errors in Layers 36-85. Figure 6.3 shows a plot of the relative error in Ap for the
methods with correct well indices. It is easy to see that MFEM has the smallest



64 CHAPTER 6. TEST OF NEW WELL MODELS

relative error and that TPFA has the largest relative error. This might be because
the numerical method used in the reference solution is equivalent to MFEM on
Cartesian grids and that it is closer to MFDM than to TPFA. We can also see in the
Figure 6.3 that the graphs for the different methods follow each other for almost all
layers. The exception is Layer 71 where the graphs for TPFA and MFDM do not
follow the graph for MFEM. This is a layer where radial near-well flow is prevented
because of large permeability variations in the near-well areas, which means that
the assumptions for the radial-flow well model are not satisfied. If we ignore Layer
71, it should suffice to consider one of the numerical methods when we investigate
why some layers give large relative errors while others give small relative errors.
To eliminate possible errors from the choice of method in the reference solution,
we chose MFEM for the analysis of the relative error for the different layers.

Analysis of results for MFEM

Figure 6.4(a) shows a scatter plot of Aps against Ap. and Ap,,. It is clear from
the plot that WI-MFEM is better than Peaceman’s WI-P for MFEM. Moreover,
the absolute error from using Peaceman’s well index increases with the pressure
drop. If the pressure drop in the reservoir is high, then this implies a high pressure
drop within the well-block. High pressure drop in the well-block in turn implies
large error from using wrong well index, as seen in the figure. It is however more
informative to look at the error relative to the pressure drop. Large relative errors
for methods with wrong well index are found in cases where a high percentage of
the pressure drop happens inside the well-block. Figure 6.4(b) shows a plot of the
relative error for MFEM with WI-MFEM and for MFEM with WI-P. As before
we see that it is a big improvement to use the specially adapted well index for
MFEM instead of Peaceman’s well index. The largest relative errors for MFEM,,
are found in Layers 40, 64, 72, and 73. The common feature of these layers is that
the permeability in one of the well-blocks is low. Consequently, a high percentage
of the pressure drop will happen in the well-block.

There are some outliers in the relative error for MFEM ., the most dominant
being Layers 38 and 39. It is hard to say whether the errors come from the differ-
ence in grid resolution between the simulation and the reference solution or from
the well model. This is because the relative errors for MFEM with the correct well
index are in overall small. We will consider this problem in the following section.

6.4.2 Results for square refined grid

To rule out errors from the reference solution, we computed a new reference solu-
tion on a grid of four times the resolution of the original simulation grid, thus twice
the resolution of the original reference solution grid. The relative error between
the two reference solutions is plotted in Figure 6.5. We see that the relative er-
ror between the reference solutions is of the same magnitude as the relative error in
MFEM_.. This means that the relative error for MFEM.. is mainly caused by the use
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Figure 6.4: Plots of relative error for MFEM.
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Table 6.5: Statistics for relative error between the refined simulation and the refined
reference solution.

(a) Layers 1-35 (Tarbert) (b) Layers 36-85 (Upper Ness)

Method | mean | max std Method | mean | max std
TPFA, 0.003 | 0.011 | 0.002 || TPFA, 0.009 | 0.026 | 0.007
MFEM. | 0.002 | 0.005 | 0.001 | | MFEM. | 0.003 | 0.007 | 0.002
MFEM,, | 0.085 | 0.143 | 0.035 | | MFEM,, | 0.107 | 0.179 | 0.057
MFDM, | 0.002 | 0.006 | 0.001 || MFDM, | 0.006 | 0.017 | 0.004
MFDM,, | 0.041 | 0.074 | 0.019 | | MFDM,, | 0.053 | 0.095 | 0.030
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of a coarser grid in the simulation than in the reference solution. From the figure
we may also conclude that the original reference solution is sufficiently converged.
However, we observe that the relative errors for the already mentioned Layers 38
and 39 are large compared to the mean, which means that a grid-refinement causes
large changes in the solution for these layers. This finding indicates that the large
relative errors for MFEM,. (and MFDM,. and TPFA,) for these layers stem from
using a coarser grid in the simulation than in the reference solution. It is therefore
interesting to examine the effect of refining the simulation grid as well. We re-
peated the simulation for square grids on a grid of three times the resolution of the
original simulation grid. The results for the relative error between the refined case
and the refined reference solution are shown in Figure 6.6 and in Table 6.5. We see
that the relative errors for the correct well indices are smaller than on the original
grid, and that the relative errors for the wrong well indices are roughly the same.
There are no longer any outliers in the relative error for the methods with correct
well indices. This is reflected in the large reduction of the standard deviations for
the correct well indices in Table 6.5 compared to the results for the original grid in
Table 6.4. The improved results are due to two factors. First, the part of the relative
error coming from the difference in grid resolution is almost eliminated. Secondly,
the assumption of near-well radial flow is more valid with higher resolution around
the well.

One relevant question here is: why not use the refined reference solution for
the tests in Section 6.4.1 instead of the original reference solution? The answer
is that a finer reference solution would only increase the part of the error coming
from the difference in grid resolution. Thus, it would be harder to recognize the
part of the error coming from the well model, which is the part of the error that
we want to measure. The results for the original simulations compared against the
refined reference solution show that the relative error for the correct well models
increases with approx. 0.005, while the relative error for the wrong well models
decreases with approx. 0.005. This is due to the fact that the pressure drop is lower
in the refined than in the original reference solution for all layers. Regardless of
which reference solution is used: all conclusions in Section 6.4.1 remain the same.

6.4.3 Results for non-square grids

Table 6.6 displays statistics for Layers 1-35. We see that the relative error increases
as (3 increases for all methods and well indices. Moreover, MFEM.. is better than
MFEM,, for all 3, while MFDM.. is worse than MFDM,, for 3 = 9. Table 6.7 dis-
plays statistics for Layers 36-85. Here we also see that the relative error increases
as (3 increases. The methods with correct well indices are better than MFEM,, and
MFDM,, for 3 = 3, but worse for 3 = 5,9. Both tables indicate that a higher well
index (remember WI-P > WI-MFDM > WI-MFEM) gives less mean relative er-
ror for high (3. This is also seen in the scatter plots of the pressure drop for MFEM
against the reference solution in Figure 6.7. We see that the results for WI-P is
under the line x = y for § = 3, closer to x = y for § = 5, and on both sides



68 CHAPTER 6. TEST OF NEW WELL MODELS

Table 6.6: Statistics for relative error for Layers 1-35, non-square grid cells.
(@) B=3. (b) 8 =5.

Method | mean | max std Method | mean | max std

TPFA, | 0.014 | 0.036 | 0.010 || TPFA, | 0.022 | 0.042 | 0.012

MFEM, | 0.012 | 0.040 | 0.009 || MFEM, | 0.025 | 0.084 | 0.019
MFEM,, | 0.066 | 0.112 | 0.027 | | MFEM,, | 0.055 | 0.113 | 0.030

MFDM., | 0.011 | 0.024 | 0.007 || MFDM, | 0.021 | 0.062 | 0.014
MFDM,, | 0.029 | 0.059 | 0.017 || MFDM,, | 0.026 | 0.073 | 0.021

(© =9
Method | mean | max std
TPFA,, 0.036 | 0.097 | 0.025

MFEM, | 0.044 | 0.142 | 0.033
MFEM,, | 0.050 | 0.131 | 0.036

MFDM, | 0.038 | 0.118 | 0.028
MFDM,, | 0.037 | 0.102 | 0.026

of z = y for B = 9. This means that WI-P consequently underestimates Ap for
8 = 3 and improves the estimation for 3 = 5 before it gets worse again for 5 = 9.

The plots of the relative error for MFEM,. and MFEM,, in Figure 6.7 show
that the relative error varies a lot for the different layers. Some of the maxima for
MFEM_. can be characterized as outliers in the data because they are far away from
the mean. Observe that the number of outliers and the magnitude of the outliers for
MFEM.. both increase with 3. These outliers increase the mean relative error for
MFEM_, greatly, and the result is that for 5 = 9:

mean (e, (MFEM,)) > mean (e, (MFEM,,)).

We also see that the relative error for MFEM,, has local minima for some layers
where MFEM.. has local maxima. That is, the wrong well index has significantly
better performance than the correct well index for some layers. This behavior is
found in layers where the near-well radial flow assumption is violated and will be
further explained below.

The relative error increases with (3 because the assumptions of radial flow in
the heterogeneous near-well area becomes less valid as § increases. Note that the
relative error is composed of two quantities:

er = lew + egl, (6.19)

where e, is the error in the well index and e is the error from the difference in
grid resolution. In the simulation grid, the dependence area will include more cells
as the aspect ratio of the well-block increases. For high aspect ratios, this means
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Figure 6.7: Scatter plot of Ap and plot of relative error for MFEM, 3 = 3,5,9.
The mean values in the figures are taken over all layers.
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Table 6.7: Statistics for relative error for Layers 36—85, non-square grid cells.
(@) =3 () B=05.

Method | mean | max std Method | mean | max std

TPFA, | 0.041 | 0.175 | 0.049 || TPFA, | 0.066 | 0.235 | 0.061

MFEM, | 0.037 | 0.077 | 0.022 || MFEM, | 0.066 | 0.154 | 0.044
MFEM,, | 0.067 | 0.120 | 0.028 || MFEM,, | 0.044 | 0.105 | 0.030

MFDM, | 0.038 | 0.130 | 0.033 || MFDM,. | 0.066 | 0.178 | 0.046
MFDM,, | 0.045 | 0.127 | 0.029 || MFDM,, | 0.046 | 0.176 | 0.046

(© =9
Method | mean | max std
TPFA,, 0.108 | 0.330 | 0.088

MFEM. | 0.112 | 0.259 | 0.074
MFEM,, | 0.072 | 0.166 | 0.041

MFDM, | 0.110 | 0.258 | 0.075
MFDM,, | 0.088 | 0.256 | 0.067

that we must assume radial flow not only in the well-block, but also in parts of the
neighboring cells. Therefore, the validity of the well model will depend greatly on
the permeability conditions in the increasing dependence area.

The grid in the reference solution, on the other hand, will not have an increas-
ing dependence area because the grid cells here are square. As a result, e, in (6.19)
increases with 3. When we compare the results for two different well indices for
one numerical method, we get that e, is the same in both. However, this does not
guarantee that the relative errors are comparable, since e,, might have different
signs for the two different well models that can contribute to either cancellation or
amplification of the relative error. Thus, we get that the wrong well index in some
cases performs better than the correct well index on layers with highly heteroge-
neous near-well areas.

This property is seen in Figure 6.8(a), which displays results for MFEM when
B = 9. The figure shows the permeability in the cells near the wells for Layers 40,
64, and 72. In these layers, the relative error of the correct WI has local maxima,
while the relative error for the wrong WI is small, so

diff(c,p) = e,(MFEM,.) — e,(MFEM,,)

is large. For all layers we see that the near-well area is highly heterogeneous for
one or both wells. Peaceman’s WI gives better results than WI-MFEM for these
layers because the error from using the wrong WI partially cancels the error from
violating the assumption of radial flow. Figure 6.8(b) shows Layers 31, 34, and 70,
where the situation is the opposite of the above. In these layers, the relative error
of the wrong WI has local maxima, while the relative error for the correct WI is
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small, so
diff(p, ¢) = e, (MFEM,,) — e,(MFEM,)

is large. We see that the near-well areas are more homogeneous in this case, so the
radial flow assumption will be satisfied. As a result, the correct well index performs
well. We notice that Layer 70 has some heterogeneity around well number 1, but
the relative error is still small. This indicates that some heterogeneity near the well
is tolerable as long as the neighboring cells of the well-block have little variation
in the permeability. The permeability variations in Layers 1-35 are more smooth
than in Layers 3685, and this explains why the mean relative error is smaller
for the former. When the near-well flow is not radially symmetric, MFEM . will
overestimate Ap, while MFEM,,, which usually underestimates Ap (see Figure
6.4(a)), might make a better estimate on Ap.

Summed up, we see that the results for 3 = 3 show a significant improve-
ment for using the specially adapted well indices for MFEM and MFDM instead
of Peaceman’s well index. The corresponding results for 5 = 5 show improve-
ment for Layers 1-35, where the near-well areas have less variation in the perme-
ability. However, we have seen that Peaceman’s well index performs better than
WI-MFEM and WI-MFDM for MFEM and MFDM, respectively, for the highly
heterogeneous permeability fields in Layer 36-85. For the highest aspect ratio
tested, 5 = 9, there are large errors for all methods and all well indices, but Peace-
man’s well index has best the overall performance for all the methods. It is worth
noticing that the relative error for all the correct well indices are approximately the
same.

Peaceman’s WI gives smaller mean relative errors than the specially adapted
well indices for MFEM and MFDM on grids with high aspect ratios. Despite
this, it would not be a good solution to use Peaceman’s well index for MFEM and
MFDM in these cases. This is because the mean relative errors for all methods are
large, thus indicating that the assumptions for the radial-flow well model are not
sufficiently satisfied for heterogeneous non-square grids with high aspect ratios. A
solution to this problem could be to refine the grid near the wells. We will try this
in the next section.

6.4.4 Results for non-square grids with refined well-block column

In the previous section, we saw that high aspect ratios and highly heterogeneous
permeability around the wells gave large errors for the radial-flow well model. We
will now test the well indices again on a grid that is refined around the well. The
new grid is made by refining the cells in the column of the grid containing the
well-blocks.

Local grid refinement is a common tool in well modeling and it is known to im-
prove the accuracy under certain conditions. We therefore expect that a refinement
will increase the performance of the new well indices for MFEM and MFDM. The
increased grid resolution improves the accuracy of the numerical methods near the
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Figure 6.8: Permeability in the near-well areas for layers where e,(MFEM,) is
large compared to e,(MFEM,,) (a), and where e,(MFEM,) is large compared to
e»(MFEM,) (b). The color of a cell indicates the permeability, and the well-block
is marked with white edges.
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Table 6.8: Mean value of the relative error for different grid refinements, § = 9.
(a) Layers 1-35.

Method | Unrefined | Refine; | Refineo

TPFA,, 0.036 0.083 0.015

MFEM, 0.044 0.038 0.006
MFEM,, 0.050 0.051 0.085

MFDM. 0.038 0.063 0.010
MFDM,, 0.037 0.022 0.036

(b) Layers 36-85.
Method | Unrefined | Refine; | Refineo
TPFA, 0.108 0.122 0.065

MFEM. 0.112 0.062 0.034
MFEM,, 0.072 0.087 0.115

MFDM, 0.110 0.095 0.051
MFDM,, 0.088 0.068 0.081

well. Additionally, by refining all cells in the column of the grid containing the
well-blocks, we increase the resolution of the grid between the wells, which also
improves the accuracy of the numerical methods. This is however not an important
factor, as the gain from refining is largest in the near-well area. The ideal setup
would be to only increase the resolution of the grid near the wells, because this
would improve the speed and separate the two sources of improved accuracy in the
numerical methods. However, this setup requires a more difficult implementation
than the one considered here and is beyond the scope of this thesis.

The tests are done for 3 = 9, because this is the first ratio where MFEM . and
MFDM_.. performed worse than MFEM,, and MFDM,, for both Layers 1-35 and
Layers 36-85. We will use two different grid refinements:

* Refine;: split all cells in the column containing the well-blocks into three
cells; two non-square cells of size 4 x 1 and one square cell in the middle of
size 1 x 1.

* Refine,: split all cells in the column of the grid containing the well-block
into nine square cells of size 1 x 1.

An illustration of the refinements are shown on a section of the grid in Figure 6.9.
Note that the permeability in a row of refined cells is the same as the permeability of
the original cell. We expect that Refine, gives the best results, but it is interesting to
have two cases for comparison. The new well-block will in both cases be square,
which corresponds to using the well constant for § = 1. We remark that the
radial-flow well model is derived under the assumption of a uniform grid. This
assumption is probably sufficiently satisfied if the cells in the near-well area are of
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uniform size. Refine; creates a non-uniform grid in the near-well area and might
therefore lead to inaccurate results.

The results from the simulations are shown in Table 6.8, and plots for MFEM
are shown in Figure 6.10. We see that Refine; increases the mean relative error
for TPFA,, for both groups of layers. Moreover, the results for MFDM,. show
increased relative error with Refine; for Layers 1-35, but the results are better than
the original for Layers 36—85. The results for MFEM . with Refine; are better than
the original for both groups of layers. Figure 6.10(a) displays the relative error
for MFEM_,. on both the original grid and the Refine;-grid. We see that almost all
outliers are removed with Refineq, but that the relative error is increased for some
layers. Furthermore, Figure 6.11(a) shows that Refine; increases the relative error
for TPFA,, in almost all layers, so the mean relative error is increased even though
the relative errors of a few large outliers are reduced.

The poor results are probably due to the fact that Refine; creates a non-uniform
grid in the near-well area and therefore violates one assumption in the radial-flow
well model. Overall, the performance of Refine; is far from satisfactory, even
though the results for some layers are good. We cannot apply a refinement that in
general gives worse performance than in the unrefined case. Thus, we conclude
that a non-uniform refinement of the near-well area should not be used together
with the radial-flow well model. In addition we remark that the results indicate
that TPFA is more sensitive to this requirement than MFEM.

The results for Refines, which is a uniform refinement, are much better. Here
we see big improvements for all the methods with correct well indices. The per-
formance of the correct well indices are improved for almost all layers, and nearly
all outliers in the relative error are removed, as seen for MFEM .. in Figure 6.10(b)
and TPFA,, in Figure 6.11(b). Moreover, the results for Layers 1-35 with Refineo
in Table 6.8(a) are as good as the results obtained for square grids in Table 6.4(a).
The mean relative errors for MFEM,. and MFDM_,. are less than half compared to
the original results, hence a major improvement. We notice that there are some
remaining outliers in Layers 36-85, but the results are overall very good.

We now analyze the layers that were outliers in the original simulation. The
question is whether there are common features within the layers where the results
are:

1. improved by Refine,,
2. not improved by Refine,.

The layers in question are the same for all methods with correct well indices, mean-
ing that these outliers exhibit the same behavior under the refinement for all of
TPFA,, MFEM,, and MFDM_..

We start with the outliers that are improved by the refinement. The most sig-
nificant improvements are found in Layers 40, 64, 72, 73, and 74. These layers are
recognized by a high pressure drop and that one of the well-blocks lie in a low per-
meable area. Consequently, a high percentage of the pressure drop happens near
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this well. It is in general hard for a numerical method to accurately approximate
large variation when the resolution of the grid is low. A high pressure drop there-
fore increases the error in the pressure approximation in the numerical methods.
When we increase the resolution around a well with Refiney, we also increase the
accuracy of the well-block pressure, which in turn reduces the relative error in Ap.
To illustrate the improvements of the refinement, we show figures of the pressure
and flux near the wells for Layer 64. The unrefined case is shown in Figure 6.12(a)
and the case with the Refines-grid is shown in Figure 6.12(b). We see that the
refined pressure solution in the near-well areas are notably different from the pres-
sure in the unrefined grid, and that Ap decreases from 12.3 in the unrefined case to
9.9 in the refined case.

The largest outliers with no or little improvement are Layers 38, 39, 51, 52,
and 85. Two common features of these layers are a low pressure drop and that
both well-blocks lie in high permeable cells. For all layers, except Layer 51, we
also find that one of the wells-blocks has one or several low permeable cells as
neighbors, mainly in the y-direction. These low permeable neighbors prevent radial
flow from the well, and so the assumption of radial flow in the well model is not
satisfied. Increased resolution in the well-block column does not solve the problem
because we only refine in the z-direction. Thus, there will still be a layer of fine low
permeable cells in the refined grid preventing radial flow. This is seen in Figures
6.12(c) and 6.12(d), which show the solution for Layer 38 on the unrefined grid
and the Refines-grid, respectively. We see that the pressure field hardly changes
from the unrefined to the refined solution. Radial flow from Well 1 is prevented
by a low-permeable block on the top of the well-block, as seen in the plot of the
permeability. The plot of flux intensity for Well 1 in the refined grid shows that the
flow is not radial but directed in the downward direction. The assumptions for the
radial-flow well model are therefore not satisfied.

We saw in Section 6.4.1 that Layers 38, 39, 51, 52, and 85 also gave large
relative errors for the methods with correct well index for square grids without
refinement, but that the results were improved by increased grid resolution. The
difference from the case considered here is that the refinement in Section 6.4.1
increased the resolution in both the z- and y- direction. The effect of a low perme-
able cell near the well will be greater for non-square cells than for square cells. The
main flow direction in the simulation is perpendicular to the prolongation direction
(z-direction), meaning that almost all flow will occur over the longest edge. When
this edge is blocked by a low permeable cell, the flow pattern will be more affected
than if the cell was square. We therefore see growth in the relative error for these
layers on grids with non-square cells.

We conclude that a uniform refinement of the grid in the near-well area im-
proves the performance of the radial-flow well model. Consequently, the perfor-
mance of the new well indices for MFEM and MFDM are improved. The results
indicate that the grid must be uniformly refined in order to get good results.
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Figure 6.12: Plot of the pressure fields for Layers 64 and 38 with zoom in on
pressure, flux, and permeability near the wells. The color scale for pressure varies
in the different plots, while the color scale for flux and permeability is constant.
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6.5 Chapter Conclusions

In the following we summarize the conclusions made in this chapter and propose
guidelines for using the radial-flow well model.

We have seen that the relative error for MFEM., MFDM,, and TPFA,, lie in
the same range for all the tested cases. This means that the new well indices for
MFEM and MFDM presented in (6.6) and (6.7) perform as well as Peaceman’s well
index for TPFA. Moreover, the choice of well index has great effect on the relative
error in cases where the assumptions for the radial-flow well model are sufficiently
satisfied. In these cases, we have seen that the specially adapted well indices for
MFEM and MFDM give better results than the same methods with Peaceman’s
well index. These cases include square and non-square grids with homogeneous
permeability, square grids with heterogeneous permeability, and non-square grids
with heterogeneous permeability and locally homogeneous near-well areas.

For non-square grids with aspect ratio 3 > 3 and heterogeneous permeability,
the performance was not satisfactory for any of the tested methods. The relative er-
ror for the specially adapted well indices were in some cases larger than the relative
error for the “wrong” well indices. This behavior was in particular found in layers
where one of the well-blocks was low-permeable and had a highly heterogeneous
near-well area. The choice of well index in these cases is not obvious. We con-
clude that the assumptions for the radial-flow well model weakens with increasing
aspect ratio of the grid cells when heterogeneous permeability is used. Therefore
one should try to avoid using the radial-flow well model alone in these cases. One
solution to this problem is to refine the grid around the wells. Simulations on a
grid where the cells in column of the grid containing the well-block was refined
to square cells gave good results for almost all cases. The exception were layers
with low pressure drop and violation of the near-well radial flow assumption. If a
refinement is to be used in the near-well area, it is important that the refinement is
uniform and includes enough cells to satisfy the assumption of a uniform near-well
area. Further work should be done to test the performance when only the cells in
the near-well areas are refined. Another possible solution to the problems could be
to develop a well index for grids with high aspect ratios that takes into account the
permeability in the near-well area.

The weaknesses found in the specially adapted well indices for MFEM and
MFDM are due to violation of the assumptions for the radial-flow well model.
In the identified problem cases, the use of the radial-flow well model should be
avoided if possible. However, as we mentioned in Chapter 4, there are currently
no alternatives to the radial-flow well model that are adapted for use with MFEM
and MFDM. One possible approach could be to use one of the more complex well
models (see Section 4.3) that are developed for TPFA. The effect of this approach
is uncertain, but it can possibly result in large errors as we have seen for MFEM
and MFDM with Peaceman’s well index in this chapter. The remaining alternative
is to use no well model at all, but this alternative would give even larger errors than
the radial-flow well model. In conclusion, the radial-flow well model is the only
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real alternative until more complex well models for MFEM and MFDM have been
developed.

If the radial-flow well model is to be used, it is important to know what cases
that might result in errors. Based on the tests in this chapter, we propose the fol-
lowing guidelines for the use of the model:

* The well model can be used for rectangular grids with homogeneous perme-
ability.

* The well model can be used for square grids with heterogeneous permeabil-
ity, but should be used with caution if the well-block has low permeable
neighbor cells that prevent near-well radial flow.

* The well model can give large errors for grids with high aspect ratios on
heterogeneous reservoirs if a large amount of the pressure drop happens near
the well. If the well model is to be used in these cases, the grid should be
uniformly refined in an area near the well.

* The well model can be used alone for non-square cells with high aspect
ratios if the permeability in the dependence area, which is the cells near
the well-block, is close to homogeneous. The dependence area in this case
includes at least the neighbor cells of the well-block and possibly also the
cells intersected by the equivalent radius.
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Chapter 7

Introduction to Multiscale
Methods

7.1 Background

When solving a PDE numerically, accuracy and efficiency are often in conflict.
New technology has made it possible to make very detailed, high-resolution geo-
models of reservoirs, but it is not straight forward to use these geomodels in reser-
voir simulation. A direct approach with one of the methods described in Chapter 3
is not applicable for simulating a large and complex grid model of a heterogeneous
reservoir repeatedly. The issues are the run time and the memory use of the sim-
ulation. As a consequence, a number of methods applying upscaling/downscaling
and multiscale techniques have been developed. A commonality of these methods
is the use of two different sets of grids: a fine subgrid that utilizes the detailed geo-
model, and a coarse grid that is used for simulation. In this thesis we focus on the
multiscale mixed FEM (MsMFEM) [4, 11]. This method is based on a multiscale
finite element method (MsFEM) [19] that uses special finite element basis func-
tions to account for the subscale variations in the differential operators. In [11] a
mixed formulation was introduced to the framework of MsFEM to obtain a MsM-
FEM that is conservative on a coarse grid and locally mass conservative for coarse
blocks not containing sources. The method presented here is a version of MsM-
FEM, developed by Aarnes et al. [4], that is conservative on the entire underlying
subgrid. This method has been tested with good results for two-phase simulations
on a typical geomodel arising from real-life reservoir engineering in [4].

7.2 The Multiscale Mixed Finite Element Method

In Section 3.4 we introduced the concept of basis functions for the mixed FEM.
In multiscale mixed FEMs, the basis functions are used to describe variation on a
subgrid scale when the pressure and flow system is solved on a coarse grid. For
one-phase flow simulations, the basis functions from the fine grid need only to be
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computed once as long as the underlying geomodel does not change. Furthermore,
the solution of the coarse grid system is fast, and hence repeated simulations of
a reservoir can be done efficiently. In a two-phase flow simulation, the pressure
equation (2.4)—(2.5) and a saturation equation are solved repeatedly. It has been
shown that the multiscale basis functions for two-phase flow simulation need only
to be computed once or updated infrequently [20]. A simulation of two-phase flow
can therefore be done very efficiently by a multiscale method. We will not go into
details of two-phase flow simulations here, but to motivate the application areas for
MsMFEM we sketch the steps of a two-phase flow simulation with MsMFEM:

1. Compute flux basis functions that incorporate subgrid variations for each
interface in the coarse grid. Consider also the wells as interfaces.

2. forn=1to N

* Solve for flow and pressure on the coarse grid based on the current
saturation by a mixed FEM with the basis functions for flux obtained
in Step 1.

» Use basis functions and coarse grid flux solution to compute fine scale
flux field.

* Advance fine-scale saturation by time step.
end

In the following, we will focus on step 1 of this process, and the reader is referred
to [2] for more details on two-phase flow simulation.

7.2.1 Basis functions

Let Q. = {B} be a coarse grid where each grid block is a connected union of grid
cells from a fine grid 2;,. We will refer to £ € ), as a cell in the fine grid and
B € () as ablock in the coarse grid. Further let I' = B; U B; be an interface in the
coarse grid, and denote by 0f2. the collection of interfaces in €2.. Moreover, define
U;j = B; UT';; U B;. For each interface I' in the coarse grid corresponding to a
pair of blocks B;, B; € ()., we define a basis function - as the discrete solution
to the following problem

—

Yr = —KVo,;, in €2,
V'JF:U}, in Uij7
U -iip = 0, on AU, (7.1)

where ¢;; has support in U;;. Notice that this implies that QEF is defined on the
entire set 2, but that it only has support on U;;. The source function for isotropic
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permeability K(¥) = k(Z)I w is given by

(@) = { K(@)/([p, k(x) dT), T € B;,
—K(#)/([p, k(x)dT), 7€ B;.

This formulation of the source functions provides unit flux across I, see [4] for
details. The system (7.1) is solved numerically on the underlying fine grid of U;;
by a subgrid solver. In principle, any conservative numerical method can be used
as a subgrid solver, but the mimetic FDM is a particular versatile approach because
of the easy implementation on general polyhedral grids. As before, we assume
K = k(&)1 to be constant on each cell, so the discrete version of w on each cell is

(7.2)

() = { klEl/(Cp,ep, kil Brl), E € B, -

_kE‘E’/(ZEkeB]- ke, |Ex|), E € Bj.

Notice that the system (7.1) is on the same form as the prototype flow problem
(3.2)—(3.4). The linear hybrid system arising from a discretization of (7.1) with
mixed FEM or mimetic FDM is therefore on the well-known form introduced in
(3.42) or (3.81), respectively. In the solution, the variable of interest is the basis
function 1. This is because the variations on a subscale are greater for a flux field
than for a pressure field. The coarse pressure field is a sufficient representation of
the pressure, but a fine scale flux field is needed to accurately represent the flow.
We solve (7.1) for every interface I' € (0€2. \ 0f2) to obtain a flux basis function
1 for each interface.

The method considered above includes all interfaces I' except the well edges.
Accurate modeling of the flow in the near-well area is critical in order to obtain a
correct global flow pattern. In the current version of MsMFEM, the near-well flow
is modeled by a well basis function. Assume now that there is a well in block <.
To integrate the well in the multiscale system we introduce the well basis function
Yy = (Y Ygw)?. Here, ¥, Tepresents the flux over the edges on the fine
subgrid, while v, ,, represents the flux over the well edge. The well basis function
is found by restricting the system (7.1) to B; and by adding the equation for the
well

WI Mg — Di + Pupi = 0, (7.4)

to the linear system as done in Section 3.6.2. Notice that MsMFEM utilizes the
well index from the subgrid solver. In addition, we set 14, = 1 to force unit flux
over the well edge. Unit flux in the basis function implies that for a well rate g,
Ygw - ¢ = q. The discrete version of w is now restricted to B;,

—kg|E|
w(Fk) = ,

The resulting linear system is on the same form as the linear system described in
Section 3.6.2. The solution of this system provides a well basis function 1), with

E e B;. (7.5)
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support on B;. Two examples of well basis functions are shown in Figure 7.1.
Notice that the well basis function depends on the placement of the well in the
coarse block. The well basis function fails to describe the flow from the well
accurately if the well lies in a corner of the coarse well-block. This is a major
source of error in the coarse system. A solution to this problem is discussed in
Section 7.3.

7.2.2 The Coarse System

The coarse system is a mixed FEM discretization of the prototype flow problem
(3.2)-(3.4) on the coarse grid with basis functions given by ¥ = (1,01T, 1,02T, cel ng)
The result is a linear system on the form given in (3.34), where the mass matrix A
is given by

A =TT Ag V. (7.6)

Here, Afpe is the corresponding mass matrix in the fine system. As explained
in Section 3.4.3, the linear system for mixed FEM can be hybridized to obtain
a hybrid system. The mass matrix Apypiq in the hybrid system will be block-
diagonal because the hybrid basis functions are block-wise orthogonal. We can
therefore employ two Schur-complement reductions to obtain a positive definite
system, see Section 3.4.3 for details.

The solution of the coarse system provides the coarse flux field . and the
coarse pressure fields p.. The fine scale flux field F f is obtained by

Fr=> F(i), (1.7)

while the coarse pressure field is used directly to account for the pressure variations
in the reservoir.

7.3 Improved Representation of Wells by Overlap

The setup described above can result in large errors for the flow and pressure solu-
tion if a well lies in a corner of the coarse well-block, since the well basis function
only has support on the cells inside the coarse well-block. When a well lies in the
corner of a coarse block, the well basis function will not contribute directly to the
flow over the interfaces making up the corner, as illustrated in Figure 7.1(b). This
setup fails to model radial near-well flow, and is therefore a source of inaccuracy.
To remedy this weakness we can use a technique with overlap in the well basis
functions, hereafter referred to as overlap. This approach is motivated by an over-
sampling technique introduced in [19]. Overlap means that we extend the support
area of the well basis functions to include cells outside the coarse well-block. The
procedure for finding 1, is still the same, but the system is solved on a larger do-
main. Assume again that a well is in block B;. The system (7.1) for finding %, is
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Figure 7.1: Examples of well basis functions for different placements of the well
in the coarse well block.

now solved on V; = B; U O, where O, is a union of the cells in the extended
support area. The discrete version of the function w on the extended domain is still

— —kslBEl FE e B;
w(B) = { Toren, FnilB | (7.8)
0, E ¢ B;,

and the no-flow boundary conditions now apply to V;,
Y -n=0 ondV;. (7.9)

We define overlap of degree 1, hereafter referred to as overlap 1, to be O, = Oy,
where
01 Z{EE (Qh\Bl)EﬁaBﬁé@}

Further, overlap 2 is defined as O., = O3, where
O :OlU{EE (Qh\(BiUOl):Eﬁé?Ol #@}

In other words, O; consists of the fine cells that are neighboring an interface of
the coarse well-block B;. Furthermore, O5 is a union of O; and the cells that
are neighboring O1, but that are not in B;. Higher degrees of overlap are defined
accordingly. Figure 7.2 shows a well-block with O; and O3 indicated.

As explained above, overlap increases the support of the well basis function
1,, to include non-neighboring blocks of the well-block. The results is that the
mass matrix A in the coarse hybrid system no longer is block-diagonal. The price
of the increased accuracy is thus a more complex linear system. There is no longer
any gain from using a hybrid mixed FEM formulation since the linear system can
not be reduced to a positive definite system. We must therefore consider the in-
creased accuracy relative to the increased complexity. We will test the effect of
using overlap on the accuracy of MsMFEM in Chapter 8.
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N Overlap 1

= Overlap 2

Figure 7.2: Coarse well-block where the well lies in a corner of the block. Overlap
of degrees 1 and 2 are indicated on the figure.



Chapter 8

Test of Overlap in Well Basis
Functions

The current representation of wells in MsMFEM, presented in the previous chap-
ter, can give inaccurate results for certain well placements. This is because the
well basis functions only have support within the coarse well-block. If a well lies
in a corner of the coarse well-block, the well basis function will only directly con-
tribute to flow inside the well-block. Thus, this setup fails to model the radial
near-well flow correctly and therefore causes errors in the fine scale flux solution
and in the coarse pressure solution. In this chapter, we test the effect of using the
overlap technique, which was introduced in the previous chapter, on the well basis
functions in MsMFEM. The tests are done by numerical simulations for different
degrees of overlap on different well positions within the coarse well-block.

8.1 Setup for Numerical Simulations

8.1.1 Grid and reservoir data

The fine grid and the reservoir data are described in Section 6.2.1. We construct
a coarse grid by partitioning the cells in the fine grid into coarse blocks of size
10 x 10 cells to obtain a uniform, square, coarse grid of size 6 x 22 blocks. For
the later discussion we define the diameter of a coarse grid block to be the length
of the longest edge. This definition applies to both 2D coarse blocks, which is
considered here, and 3D grid coarse blocks. Furthermore, to test the effect of
overlap in different situations, we use the following placements of the wells within
the coarse well-blocks:

Corner: both wells lie in a corner of the coarse well-blocks. This is the well
placement used in Chapter 6.

Edge: both wells lie next to an edge in the coarse well-blocks. This corresponds
to moving the corner wells 5 cells in z-direction.
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Center: both wells lie in the center of the coarse well-blocks. This corresponds to
moving the corner wells 5 cells in both z- and y-direction.

For the heterogeneous case, this setup gives differences in the near-well areas for
the different well-placements on a given permeability layer. To avoid effects from
different permeability distributions in the near-well areas, we move the grid instead
of moving the wells in the heterogeneous case. The resulting grid must then be
reduced to become uniform in the corner and edge cases. Hence, the grid for the
edge case is b x 22 coarse blocks, while the grid in the center case is 5 x 21 coarse
blocks.

In the numerical simulations, we solve the prototype flow problem with no-flow
boundary conditions (3.2)—(3.4). The numerical method used on the coarse grid is
the multiscale mixed FEM, which is hereafter referred to as the multiscale method.
The subgrid solver used in the multiscale method is the mimetic FDM defined by
the a-inner product (3.80) with o = 2. This method is also used to solve the system
on the fine grid. Moreover, we denote by w the degree of overlap used. Simulations
with the multiscale method are carried out using overlap w = {0, 1, 3,5, 10}.

8.1.2 Measurement of the error

The solution to the fine grid problem is used as a reference solution to measure the
error. Recall from Chapter 6 that the pressure drop Ap is defined as the pressure
difference between the injection and the production well. The error is measured by
looking at the relative error between the pressure drop in the reference solution and
the pressure drop in the multiscale solution. Let W be the placement of the wells
in the coarse well-blocks, and let w be the degree of overlap. We define the relative
error as
_ |Apref - ApI/V,uJ|
Apref ‘
Since we look at the relative error, it does not matter which well index is used
as long as we use the same well index for both the reference solution and the
multiscale solution. The relative error in a simulation can be split in two: the first
part is the error in the multiscale method, while the second part comes from the
representation of the wells, in this case whether we use overlap or not.

er(Vva)

(8.1)

8.2 Results for Homogeneous Reservoir

The results from the simulations with homogeneous permeability are shown in
Table 8.1. For the corner well we see that overlap gives a great increase in the per-
formance of the multiscale method. This is also the case for the edge well, though
the initial error without overlap is smaller in this case so the potential improvement
is also smaller. Despite the improvements, the results for overlap 10 for the corner
and edge wells are not as good as the results for the center well without overlap.
Thus, if possible, it is better to make a coarse grid partition that gives a center well
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Table 8.1: Relative errors for different overlap and well placements for a homoge-
neous reservoir.

Corner | Edge | Center

0.2926 | 0.0813 | 0.0080
0.1277 | 0.0287 | 0.0065
0.0520 | 0.0149 | 0.0061
0.0279 | 0.0123 | 0.0061
10 | 0.0095 | 0.0082 | 0.0061

wmlw|—~| o &

Table 8.2: Statistics for relative errors for Corner well placement.

(a) Layers 1-35 (Tarbert) (b) Layers 36-85 (Upper Ness)
w | mean | max std w | mean | max std
0 | 0.717 | 2400 | 0572 || 0 | 1.674 | 7.008 | 1.569
1 10.293 | 1.270 | 0.245 1 |10945 | 8.872 | 1.811
3 10.123 | 0.452 | 0.095 3 10515 |5.249 | 1.183
5 10.069 | 0.236 | 0.044 5 | 0313 | 3.681 | 0.734
10 | 0.035 | 0.102 | 0.023 10 | 0.121 | 0.913 | 0.175

placement than to use overlap 10 for corner or edge wells. For the corner place-
ment, there is significant difference between the relative error with overlap 5 and
10. Thus, for this case it pays off to use overlap 10. In the case of the edge well,
on the other hand, there are not much differences between the relative errors for
overlap 3, 5, and 10. In conclusion, there is not much to gain from using a higher
overlap than 3 for the edge case. Finally, for the center case, overlap does not give
much effect in terms of error reduction. The difference is small between the rel-
ative error for no overlap and overlap 1. Overlap 1 does give some improvement,
but higher overlap than 1 is clearly superfluous.

The effect of using overlap on the coarse pressure and fine flux field is shown
in Figure 8.1. The figure compares the multiscale solutions up to overlap 5 to the
reference solution. The conclusions stated above are confirmed in the figure. We
see that overlap gives great improvement in both the corner and edge cases, but not
in the center case.

8.3 Results for Heterogeneous Reservoir

The results from the simulations with heterogeneous permeability are shown in Ta-
bles 8.2, 8.3, and 8.4. The tables show that the relative errors are much larger for
the heterogeneous case than for the homogeneous case. Moreover, the relative er-
rors are larger for the fluvial Layers 36—85 than for the more smooth permeability
fields in Layers 1-35. This tendency was expected since the current implementa-
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Figure 8.1: Multiscale solution of pressure and flux for a homogeneous reservoir
model with different degrees of overlap. The color scales for both the pressure
plots and the flux plots are constant.
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Table 8.3: Statistics for relative error for Edge well placement.

(a) Layers 1-35 (Tarbert) (b) Layers 3685 (Upper Ness)
w | mean | max std w | mean | max std
0 | 0.194 [ 0596 | 0.126 || 0 | 0.590 | 3.888 | 0.776
1 10.073 | 0.235 | 0.038 1 |0.172 | 0.931 | 0.172
3 10.043 | 0.105 | 0.017 3 10127 | 1.128 | 0.173
5 | 0.037 | 0.100 | 0.017 5 | 0.107 | 0.717 | 0.122
10 | 0.029 | 0.065 | 0.015 10 | 0.082 | 0.402 | 0.081

Table 8.4: Statistics for relative error for Center well placement.

(a) Layers 1-35 (Tarbert) (b) Layers 36-85 (Upper Ness)
w | mean | max std w | mean | max std
0 | 0.030 | 0.055 | 0.012 0 | 0.073 | 0.338 | 0.078
1 10.026 | 0.054 | 0.011 1 | 0.076 | 0.403 | 0.090
3 10.024 | 0.054 | 0.011 3 | 0.069 | 0.330 | 0.080
5 10.023 | 0.054 | 0.012 5 |1 0.067 | 0.329 | 0.078
10 | 0.023 | 0.054 | 0.012 || 10 | 0.061 | 0.316 | 0.074

tion of MsMFEM is known to have limitations [3] on layers with high permeable
channels and low permeable barriers as in Layers 36—85. Furthermore, as in the
homogeneous case, we observe that overlap reduces the relative error significantly
in the corner and edge cases, while the effect of overlap is small in the center case.
The results without overlap in the center case are in the same range or better than
the results for overlap 10 in the corner and edge cases. In addition, the tables show
that overlap in some cases increases the relative error. The max relative error for
Layers 36-85 is smaller without overlap than with overlap 1 for the corner and
center cases. Small overlap can increase the relative error in cases where the mul-
tiscale solution without overlap is far from the correct flow pattern. Even though a
more correct flow pattern is achieved through the use of overlap, this may not be
reflected in the coarse pressure solution.

Plots of the relative error for the different cases are shown in Figure 8.2. The
y-axes in the plots for the corner and edge cases are scaled to ignore the largest
outliers. For the corner case, shown in Figure 8.2(a), there is little difference be-
tween overlap 3 and 5 for most layers, and the difference is even less between
overlap 5 and 10. The term little difference is here interpreted as little relative to
the initial error. Thus, in most cases it would be sufficient to use overlap 3 or 5, but
some problem cases, for instance Layer 66, requires overlap 10 to give good re-
sults. These problem cases are discussed later in this chapter. Further, we observe
that overlap 10 gives a robust method for Layers 1-35 with max relative error of
10%. For Layers 3685, on the other hand, the max relative error is over 90% even



Relative error

Relative error

Relative error

94 CHAPTER 8. TEST OF OVERLAP IN WELL BASIS FUNCTIONS

25

0.5

Layer

(a) Corner

1 \

o
™
I

o
3
T

o
o
I

o
o
I

o
~
T

o
w

o

)

i
3

01— 2 ! ’.\‘:‘ I~

Layer
(b) Edge

0.4 ‘

0.35—

o
w
I

o

)

a
I

o
[N}
I

o
o

0.1

0.05

10 20 30 40 50 60 70 80
Layer

(c) Center

Figure 8.2: Plots of relative error for different overlap. Note that the scaling of the
y-axis differs in the plots, and that the largest outliers are removed in the corner
and edge cases.
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when overlap 10 is applied. This is because some layers, such as Layer 55, have
large initial errors that are not sufficiently reduced by overlap. The problem here
is not directly the representation of the wells, but that the the current version of the
multiscale method fails to give an accurate representation of the flow pattern in the
reservoir. Possible solutions to this problem is discussed in the conclusion at the
end of the chapter. Another finding is that the relative errors for the Layers 38, 39,
51, 52, and 53 are not improved by overlap. We recall from Chapter 6 that these
layers gave problems with convergence even for the fine grid system, which partly
explains the lack of convergence on the coarse grid.

For the edge case, the differences between overlap 3, 5, and 10 are small for
most cases. Here it would suffice to use overlap 3 for Layers 1-35, but some layers
in Layers 36-85 still have large relative errors for overlap 5 or 10. The plot for the
center case confirms the conclusion that overlap does not improve the performance
significantly. With exception of Layer 39, using overlap gives approximately the
same or worse results than with no overlap. However, as argued above, the flow
pattern might be improved by the overlap even if the relative error in the pressure
increases.

We now take a closer look at the worst problem case in the corner simulation,
Layer 66. The relative error for no overlap in this case was 7.6, while overlap 5 and
10 gave 3.7 and 0.1 in relative error, respectively. Figure 8.3 shows the permeability
and the flux near the production well in the cases: reference solution, no overlap,
and overlap 10. This figure illustrates a worst case scenario with respect to corner
well placement. The permeability in the coarse well block is low, but there is a
thin, high permeable channel neighboring the well, going through the three coarse
blocks making up the corner. In addition, there is a small high permeable area in
the uppermost right corner of the coarse well block. The figure shows that the flux
field for the multiscale solution without overlap deviates greatly from the reference
solution. The solution for overlap 10 is better because much of the error coming
from the representation of the well is gone. Nevertheless, there is still a significant
difference between the flux field in the reference solution and the solution with
overlap 10. The remaining error is partly due to weaknesses in modeling flow in
high permeable channel structures in the current version of MSMFEM. Layer 66
also gave large relative error in the edge case, but not in the center case. The reason
is, in part, that the different well placements give different coarse partitions of the
grid. The characteristics of the well-blocks will therefore vary in the different
cases.

Equivalent simulations on the full coarse grid (6 x 22 coarse grid blocks) were
also done by moving the wells in the edge and center cases instead of moving the
grid. The resulting mean relative error for the different cases were in the same
range as the results in Tables 8.2, 8.3, and 8.4. This means that we did not lose any
accuracy when the simulation area was reduced in the edge and center cases. We
remark that the setup with moving the grid, as done herein, is more relevant as a
real-life reservoir simulation case because wells normally have specific placements
in a real-life case.
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Figure 8.3: Permeability and flux near the production well in Layer 66. The fine
well-block is marked with white edges. Note that the multiscale method fails to
model the flow correctly.
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Table 8.5: Refine5: Statistics for relative errors for Corner well.
(a) Layers 1-35 (Tarbert) (b) Layers 36-85 (Upper Ness)

mean | max std w | mean | max std

0.386 | 1.110 | 0.279 1.025 | 4.428 | 1.018
0.124 | 0.347 | 0.090 0.245 | 1.835 | 0.285
0.053 | 0.135 | 0.027 0.096 | 0.521 | 0.100
0.034 | 0.063 | 0.012 0.071 | 0.343 | 0.067
0.027 | 0.048 | 0.010 || 10 | 0.061 | 0.269 | 0.055

N W~ O
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8.4 Generalization of Results

In order to establish results for a general coarse partition of the grid, several coarse
grid partitions must be considered. To generalize the results, we introduce two
additional coarse grid partitions. The first, Refine5, is finer than the original, while
the second, Coarsel5, is coarser than the original. These grid partitions give square
coarse grid blocks of 5 x 5 and 15 x 15 fine cells, respectively.

New simulations were done for the corner well placement where we found the
largest errors in the original simulations. The results are displayed in Table 8.5 for
Refine5 and in Table 8.6 for Coarsel5. The results for Refine5 are better than for
the original case, which could be expected since the coarse grid is finer. Moreover,
overlap of degree equal to the diameter of the coarse well-block gives relative error
of less than 10% for all layers in Layers 1-35, as we also saw in the original case.
Furthermore, for Coarsel5 the relative errors are smaller than in the original case
for w = {0, 1}, but in the same range or larger for higher w. The smaller relative
errors might be due to that the well basis function without overlap covers a larger
part of the reservoir when the size of the well-block is increased.

Once again, we observe that overlap of degree equal to the diameter of the
coarse well-block gives relative error of less or equal to 10% for all layers in Layers
1-35. However, the results indicate that there is less to gain from increasing the
overlap from 10 to 15 in Coarsel5 than for an increase of overlap from 5 to 10
in the original case. One possible explanation is that the support of the well basis
function in the near-well area is the most critical for accurate well representation.
Thus, if the well basis function already has support in the critical near-well area,
the effect of additional overlap is small. This is precisely what we saw in the center
well case.

8.5 Chapter Conclusions
The representation of a well in MsMFEM without use of overlap is good when the

well is placed in the center of the coarse well-block. Adding overlap in this case
does not improve the results significantly. On the other hand, if a well lies in a
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Table 8.6: Coarsel5: Statistics for relative errors for Corner well.

(a) Layers 1-35 (Tarbert) (b) Layers 36-85 (Upper Ness)
w | mean | max std w | mean | max std
0 | 0579 | 2.453 | 0488 || 0 | 1.406 | 8.654 | 1.641
1 0289 | 1.045 | 0254 | [ 1 | 0.880 | 7.575 | 1.384
3 10.145 | 0.539 | 0.124 3 10576 | 5.178 | 1.056
5 10.092 | 0.360 | 0.075 5 10422 | 4.023 | 0.862
10 | 0.050 | 0.134 | 0.033 10 | 0.189 | 1.168 | 0.264
15 | 0.036 | 0.103 | 0.023 15 | 0.146 | 1.024 | 0.217

corner or close to an interface of the coarse well-block, a representation of the well
without overlap is poor. The representation in these cases is improved by increasing
overlap. Nevertheless, even if we use overlap equal to the diameter of the coarse
well-blocks, the results are still not as good as the center well case without overlap.
We therefore conclude that the best way to represent a well in MsMFEM, for the
cases tested here, is to make a coarse grid partition that places the well in the
center of the well-block. For a complex geomodel, this is not necessary straight
forward due to additional requirements [4] posed on the coarse grid partition to
avoid inaccuracy in the MsMFEM solution.

If center well placement is not possible, overlap is a good remedy for the prob-
lems. Let n denote the diameter of a coarse well-block in a uniform, square, coarse
grid partition. For most of the cases tested it is sufficient to use overlap equal to
n/2 in order to get good results. The gain from using overlap higher than n/2 is in
general small and a higher overlap is only necessary for difficult layers. However,
to obtain a method that is robust for different well placements and near-well per-
meabilities we recommend to use overlap n. For the majority of the tested cases,
overlap n gives a robust method with relative error less that 10% for all well place-
ments. These cases include Layers 1-35 and the majority of the layers in Layer
36-85. We remark that the results for Coarsel5 indicate that the effect of over-
lap is reduced after a certain limit, and that this limit is lower than the well-block
diameter for very coarse blocks. The results shown here are obtained on square
uniform grid partitions, but could also be applied to uniform non-square grid parti-
tions. In this case, the recommendation of using overlap of degree n might be too
strict for blocks with high aspect ratios. The results do not, however, immediately
extend to non-uniform grid partitions, even though n is defined to only depend on
the size of the coarse well-block. More testing is necessary in order to conclude
for non-uniform grids.

The current version of overlap extends the support area of the well basis func-
tion in all directions, but the effect is greatest near the well. If the well lies in a
corner, the gain from extending the support area over the opposite corner is small.
It would therefore be interesting to investigate a “local” overlap that only extends
the support over the interfaces that are close to the well. This might complicate the
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implementation, and the approach is only interesting if it reduces the simulation
time and/or the memory use compared to the original approach.

As already mentioned, the tests have shown that some layers give large relative
errors even with overlap n or center well placement. This behavior is found in
highly heterogeneous layers with channel structures in Layers 35-85. In the worst
case, the relative error was still over 100% when overlap n was applied. The re-
maining error is not directly caused by the representation of the wells, but is due to
weaknesses in the version of the multiscale method used. One approach that can
reduce this error is to use global boundary conditions [1] when computing the basis
functions. These boundary conditions are robust, but requires a computation of an
initial flux field F° on the fine grid. With this approach, the basis function for an
interface in the coarse grid is computed using the fine flux from F° as a boundary
condition on the interface. However, it is not always desirable to compute an initial
flux field. Another possible solution for reducing the error is to use the overlap
technique on all the basis functions, named here global overlap. Considering the
results obtained in this chapter, global overlap is an interesting direction for further
investigations.

In this study we have not considered the increased computational time and
memory consumption from using overlap. If the increase is relatively small com-
pared to the time and memory use of the original simulation, overlap could be
applied as a precaution in all cases. One of the downsides of using overlap is that a
hybrid discretization with Schur-complement reduction is not possible. The linear
system will thus be indefinite and therefore harder to solve. This can be consid-
ered as the initial cost of using overlap. If the initial cost turns out to be the main
problem with using overlap, it would not matter much whether we use overlap 1
or 10 if overlap is to be used anyway. Thus, under the hypothesis that the initial
cost is the largest, we would recommend to use high overlap if overlap is to be
used. Additionally, we remark that if this hypothesis is true, the gain from using
local overlap would be small. Further work is necessary in order to conclude on
this hypothesis.
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Chapter 9

Conclusions and Further Work

In this chapter we summarize the conclusions made in the previous chapters of the
thesis and recommend further work. Part IT and Part III of the thesis are treated
separately.

9.1 Well Models for Mimetic Finite Difference Methods

The principal objective of Part II of this thesis was to develop well models for
mimetic finite difference methods (FDMs).

9.1.1 Conclusions

The well models considered here relate the numerically calculated well-block pres-
sure to the well pressure and the well rate through a well index (WI). The well
index is distinct for a numerical method because different numerical methods cal-
culate different well-block pressures. In this thesis we have considered Peaceman’s
radial-flow well model, which calculates the well index by the use of an equivalent
radius 7.

A numerical extension of Peaceman’s well model to mimetic FDMs was treated
in Chapter 4. The results indicate that there is a connection between the eigenvalues
of the mimetic inner product matrix T g and the equivalent radius . Attempts on
finding a general expression for the well index for a family of mimetic FDMs based
on this relationship were not successful. Until this problem is investigated further,
ro must be calculated by the numerical procedure in Section 5.3 for each mimetic
inner product. We have used this numerical procedure to develop numerical well
indices, based on Peaceman’s radial-flow well model, for the RT g-mixed FEM and
a mimetic FDM. These new well indices have been shown to perform as well as
Peaceman’s WI for TPFA, when compared to a reference solution obtained on a
near-well radial grid. Moreover, the choice of well index has been shown to have
great effect on the accuracy in cases where the assumptions of the well model are
sufficiently satisfied. In these cases, over-prediction of the production rate is the

103



104 CHAPTER 9. CONCLUSIONS AND FURTHER WORK

result if Peaceman’s WI is used with either the RTg-mixed FEM or the mimetic
FDM.

Furthermore, we have discovered that violations in the assumptions of the
radial-flow well model, such as heterogeneous permeability and non-uniform grid
in the near-well areas, can give large relative errors in the pressure drop between
wells. However, there are few analytical well models, even for TPFA, that are de-
veloped to handle highly heterogeneous permeability in the near-well area. For
mimetic FDMs, there currently exist no alternative well models. Thus, the radial-
flow well model must be used until more complex well models for mimetic FDMs
have been developed. Therefore it is important to be aware of the weaknesses in the
model. The tests in Chapter 6 showed that the model has satisfactory performance
in the following cases:

* rectangular grids with homogeneous permeability,

* rectangular grids with heterogeneous permeability and locally low aspect
ratios near the wells.

We remark that these results were obtained following already known requirements,
discussed in Chapter 4, on distance between wells and well placement away from
boundaries.

This study has been restricted to 2D and to vertical wells placed in the center of
the well-block. The new well indices can be used in 3D if the flow is horizontal near
a vertical wellbore. Furthermore, it is possible to extend the approach to horizontal
wells, but grid cells in reservoir simulations usually have high horizontal to vertical
aspect ratios. Thus, satisfactory performance is not guaranteed for heterogeneous
permeability. Moreover, the extension to diagonal, anisotropic permeability tensors
follows directly from Peaceman’s derivation in [25], but the tests considered herein
have been limited to isotropic permeability.

9.1.2 Further work

There are many possibilities for further development of well models for mimetic
FDMs. The extension of Peaceman’s well model done in this thesis facilitates a
foundation upon which more complex well models can be built. The most inter-
esting directions of further investigation, considered by the author, are stated in the
following.

This study has only considered numerical extension of Peaceman’s radial-flow
well model. In order to find a general expression for the well index for a given
mimetic inner product, analytical results are probably necessary. It would therefore
be interesting to do a further investigation on the relationship between the inner
product in mimetic FDMs and the well index. Since mimetic FDMs are a relatively
recent class of methods, there is not much analytical machinery to rely on. To find
analytical connections might therefore be difficult.
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In many cases, the low performance of the radial-flow well model can be pre-
dicted from the permeability in the near-well area. We have in particular identified
two situations that can lead to errors: low-permeable near-well area inside larger
high-permeable area, and high-permeable well-block with low-permeable neigh-
bor cells that prevent near-well radial flow. If these observations were systematized
further, one could possibly develop a well index that takes into account the perme-
ability in the near-well area. Such a well index could potentially solve some of the
problems in the radial-flow well model.

However, given the weaknesses discovered in the radial-flow well model, the
perhaps most interesting direction for further work is to extend a more robust exist-
ing well model to mimetic FDMs. In particular, the semi-analytical well model [31]
is an interesting candidate for further extensions. While Peaceman’s well model is
only suitable for conventional wells, the semi-analytical well model is developed to
handle the challenges posed by todays increasingly complex well configurations.
The semi-analytical well model has been shown to be superior to Peaceman’s well
model for both conventional and non-conventional wells in [29].

9.2 Representation of Wells in Multiscale Methods

The principal objective of Part III of this thesis was to improve the representation
of wells in the multiscale mixed finite element method (MsMFEM).

9.2.1 Conclusions

The representation of wells in the version of MsMFEM [4] presented in Chapter 7
can result in large errors if a well lies in a corner or near an interface of the coarse
well-block. We therefore introduced the overlap technique as a possible solution to
the problems. Tests were done for MsSMFEM with the overlap technique on both
homogeneous and heterogeneous reservoirs and the results were compared to the
solution of the fine-grid problem. The results show that overlap can remedy the
problems in the original well representation. However, we have seen that overlap
of degree equal to the diameter of the coarse well-block could not match the per-
formance of a case with the well placed in the center of the coarse well-block. In
conclusion, the best way to represent a well in MsMFEM is to make a coarse grid
partition that places the well in the center of the coarse well-block.

If a center well placement is not possible, use of overlap is a good remedy
to the problems. Let n denote the diameter of a coarse well-block in a uniform,
square, coarse grid partition. For cases with relatively smooth near-well perme-
ability, overlap n gives a robust method for all well placements. However, the tests
have shown that highly heterogeneous permeability fields with channel structures
can result in large errors even with overlap n or center well placement. In order
to reduce this error, improvements in the current version of MsMFEM must be
considered.
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9.2.2 Further work

Future studies of overlap should include extensions and tests for non-square and
non-uniform coarse grid partitions. Moreover, a study should address optimization
aspects, such as time and memory consumption of using overlap relative to the
gain. In addition, the effect of center well placement should be studied further.
One possible setup is to adapt existing non-uniform coarse grid partitions to obtain
center wells, and compare results for the adapted grid and the original grid to a
reference solution. Moreover, use of overlap could also be included in the setup.
If such a study confirms the results obtained here, the guidelines for coarse grid
generation [4] could be updated to include center well placement and overlap.

The tests of MSMFEM with overlap have revealed weaknesses in the current
version of MSMFEM on highly heterogeneous permeability layers with channel
structures. These weaknesses have also previously been reported in e.g. [3]. Pos-
sible approaches for reducing these errors are the use of global boundary condi-
tions [1] and the use of overlap in the computation of all the basis functions. Both
of these approaches require increased computational effort. Future studies could
include a comparison of the two methods where accuracy, simulation time, and
memory use are considered.



Appendix A

Notation

* The symbol R is used to denote the real numbers.
 If a is a discrete set, then #a denotes the number of elements in a.
* A spatial vector, e.g. & € R?, is marked with an arrow.

» Tensors and matrices are denoted by uppercase letters, while vectors are de-
noted by lowercase letters with exception of the flux F'.

* Tensors, matrices, and discrete vectors, such as in the linear system Au = b,
are marked with bold font lock.

» We write A = [a;;] to mean that the (i, j)™ entry of A is a;;.
e tr A = trace of the matrix A.
¢ ker A = the kernel, or null-space, of the matrix A.

* The matrix I denotes the identity matrix of appropriate size.
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Appendix B

Eigenvalues of the QR-inner
product

In the following we show that the eigenvalues of the QR-inner product matrix T g
is {2,3a}. Consider a unit cell (|E| = 1) as displayed in Figure B.1. Using the
same notation as in Section 5.4, the QR-inner product is given by

1
Tp=—:
2]

Since T'g is a symmetric positive definite matrix it has an eigenvalue decomposi-
tion. Given the grid cell in Figure B.1, the normal vector matrix IN and the matrix
R is given by

NN + 30(I — QQ7). (B.1)

1 0
1 0 1

N=|, 5| R=3N (B.2)
0 1

Further, Q = %N is an orthogonal basis for R, and Z given by

10
1 110
Z = ﬁ 0 1] (B.3)
0 1
is an orthogonal basis for ker(R”). We have
I-QQT =zz". (B.4)
The eigenvalue decomposition of T g is given by
20 0 O
02 0 O QT
— T T _ T T _
Tg =NN"+3aZZ" =2QQ" +30ZZ —(Q Z) 00 3a 0 (ZT>'
0 0 0 3«
(B.5)
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Figure B.1: Square cell.

We conclude that T f; has the eigenvalues {2, 3a}.
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