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                                             Abstract 

Objective: We investigated the causal link between childhood weight status and academic 

achievement across genders and different school subjects in Norway.  

Study design and setting: We used data from the Norwegian Mother, Father and Child Cohort 

Study, which includes genetic data (N=13,648, 8-year-old children). We employed within-family 

mendelian randomization, using a BMI polygenic risk score as an instrument to address 

unobserved heterogeneity.  

Results: Contrary to most previous findings, we observed that overweight status (including 

obesity) has more detrimental effects on reading achievement in boys than in girls; the test scores 

of overweight boys were about a standard deviation lower than those of normal weight boys, and 

the negative effects on reading achievement became stronger in the later grade. 

Conclusion: Previous obesity prevention studies have mainly targeted girls, based on the 

assumption that the obesity penalty is greater for girls. Our findings highlight that particular 

attention to boys with overweight may help to reduce the existing gender gap in academic 

achievement. 

Keywords: childhood obesity; academic achievement; polygenic risk scores; instrumental 

variable analysis; Mendelian Randomization; MoBa 

Word count: 2,986 

 

 

 



3 

1. Introduction 

Obesity has reached epidemic proportions globally, with childhood obesity becoming one 

of the most pressing issues in public health, clinical practice and research [1]. Childhood obesity 

is closely associated with adult obesity, morbidity and mortality [2] and also linked to important 

academic outcomes [3]. Previous studies have for example reported associations between 

childhood obesity and academic performance [4], negative teacher evaluation [5], and poor 

mental health [6]. Despite the suggestive findings, however, robust empirical evidence remains 

lacking [4, 7]. Child weight status is a function of parenting styles, eating habit/preferences, peer 

effects, and genetic factors [8], which are difficult to fully measure and control for in 

observational studies. Furthermore, the available evidence is mainly limited to North American 

and British contexts [4]. In this study, we present empirical evidence from Norway by exploiting 

the random segregation of genetic variants from parents to offspring to improve our current 

understanding of the relationship between childhood obesity and academic achievement.  

Unobserved confounding is an enduring source of bias in observational studies [9]. Even 

if known, measuring them can be prohibitively time-consuming and costly in terms of data 

collection. Several previous studies on obesity and academic achievement have thus employed 

an instrumental variable (IV) analysis to make causal inference [10-13]. IV analyses rely on two 

key identifying requirements in seeking to make casual inferences [14] (for details on other IV 

assumptions see analytic strategy): first, the instrumental variable should be highly correlated 

with the key explanatory variable of interest; second, the instrumental variable should be 

uncorrelated with the error term of the dependent variable. Since it is challenging to identify 

appropriate IVs in observational studies, several social scientists have attempted to utilize 
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genetic markers to instrument for child weight status, an approach known as Mendelian 

randomization.  

In particular, a polygenic risk score (PRS) is an individual-level sum-score of many 

single nucleotide polymorphisms (SNPs) (i.e., genetic variants of individual DNA letters), 

weighted by their association with a specific phenotype (trait or characteristic) from available 

genome-wide association studies (GWAS) [15]. It can be computed for any phenotype such as 

obesity, educational attainment, or well-being. Because of the small effect sizes of single genetic 

variants, the PRS generated by weighted multiple genetic variants is preferred. The underlying 

rationale of using a PRS as IV is that as the PRS is generated from available SNPs targeting a 

specific phenotype, it is likely to have a relatively strong predictive power. Moreover, since 

genes are randomly assigned within families, within-family PRS (i.e., child PRS adjusted for 

parental PRS) may not affect dependent variables via other channels [16]. While those IV studies 

using single or multiple SNPs tend to report small or null effects of weight status on academic 

performance [17-20], a recent IV study using PRS showed that childhood BMI may in fact have 

nontrivial effects on test scores [21].  

Overall, although the previous IV studies suggest a negative association between child 

weight status and academic performance, the available evidence is mainly limited to US and UK 

contexts. Given the importance of considering social/cultural differences in obesity prevention 

[22], the relative paucity of research in other social contexts is striking. Related to this study, 

Hughes et al. [21] investigated the link between childhood BMI and educational attainment in 

the UK using BMI PRS. Although this study provides a comprehensive overview of the 

relationships between common health conditions and educational outcomes, it does not consider 

gender and subject differences or non-linear effects of BMI (e.g., overweight/obesity status). 
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More importantly, the study did not use within-family BMI PRS, meaning that its findings could 

still be explained by confounding factors such as parental effects.  

This study fills the gap by exploiting the advantages of the rich Norwegian Mother, 

Father and Child Cohort Study. We instrument the endogenous weight status with within-family 

child BMI PRS. Since genes are randomly assigned at conception, our within-family approach 

conditioning on parental genotype will provide robust estimates against familial effects [16, 23].  

The weight of a biological relative has been extensively employed as IV in econometric studies 

[10-12]; we add results obtained from the IV-BMI specification for comparison. Previous studies 

report the heterogenous effects of weight status across subjects [12], grade [4], and gender [11]. 

We thus carefully examine the link across reading, math, and English subjects measured at 5th 

and 8th grade between boys and girls, respectively. In many developed nations, boys have 

underperformed relative to girls, particularly in reading [24]. Our genetically informed methods 

may provide further insight into the gender gap in academic performance.  

Norway has been considered an egalitarian and culturally/racially homogenous society 

compared to the US and UK, which previous IV studies have primarily focused on. In Norway, 

gender and sexual equality and redistributive policies have been core values of national identity 

[25]. As the “obesity penalty” tends to be more pronounced for female or minority groups [26], 

the detrimental effects of childhood obesity may be more salient in societies where systems of 

universal social welfare are not the norm and gender discriminations prevail. The prevalence of 

overweight (including obesity) in Norway is about 25% among boys and 23% among girls, 

which is similar to that of Eastern European countries, but much lower than in Southern Europe 

[27]. This study provides a unique opportunity to study how childhood weight status may 



6 

generate negative effects on academic outcomes even in such favorable and homogenous social 

contexts.  

 

2.  Methods 

2.1 Data and sample  

The Norwegian Mother, Father and Child Cohort Study (MoBa) is a prospective cohort 

study conducted by the Norwegian Institute of Public Health [28]. It includes mothers, fathers, 

and children related to 112,789 pregnancies sampled between 1999 and 2008. Parents reported 

on their own and their children’s behaviors and health during early years at regular intervals. 

This study focused on the latest data from eight-year-old children (grade 2 or 3), which also 

provides baseline covariates information on children and families. From the data’s total sample 

of 43,616, 13,648 children (excluding twins) linked to the genome-wide genetic data were 

selected. The analytic genetic data has similar characteristics to those of the original analytic 

sample (see Appendix A). We used version 12 of the quality-assured data. 

2.2 Measures 

2.2.1 Child academic development 

We used national test scores obtained through linkage to Norway’s National Education 

Database. These are reading, math, and English scores measured at 5th and 8th grade. 

Compulsory national assessments for children have been administered every fall in Norway since 

2007 (about 96% of all students in Norway), in the subjects reading (Norwegian), math, and 

English. Test data are available only through 2017. As not all children had passed through the 

8th grade tests at that time due to their age, valid test score observations vary across the two 
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grades. We standardized the test scores within year to capture cohort effects (raw scores ranged 

from 19 to 81 and the values of skewness and kurtosis ranged from –.50 to –.03 and 2.11 to 2.61, 

respectively).   

2.2.2 Child weight status 

We generated childhood BMI based on mother reports of child weight and height 

measured at eight years old. Additionally, to account for a nonlinear relationship between BMI 

and academic performance, we generated age- and sex-specific overweight status (=1) according 

to International Obesity Task Force definitions [29]. Due to the small number of obese children 

(1.72%) in our sample (BMI-for-age ≥ 2SD), we created the overweight status including obese 

children (ref=normal weight).   

2.2.3 Instrumental variable  

We instrumented child weight status with BMI PRS and maternal BMI, respectively. 

First, the PRS for BMI was constructed from the most recent and largest genome-wide 

association study [30]. The PRS was obtained for the 93,582 individuals (European ancestry) 

who passed quality control using PRSice software [31]. We used information from all available 

SNPs calculating scores (i.e., p-value threshold = 1.00). To remove potential parental 

confounding effects, we utilized residuals of child PRS after regressing out mother and father 

PRS (for the data generation process see Cheesman et al. [16]). PRS was standardized to zero 

mean and unit variance. Second, maternal BMI was measured using the Norwegian medical birth 

register data on BMI prior to pregnancy from 46,004 parents who have quality-control genotype 

and phenotype data on BMI.  

2.2.4 Confounders 



8 

We selected basic demographic variables from MoBa [16, 32]. Gender was coded one for 

boys and zero for girls, and school grade and child age (by months) were also included. Parental 

educational level and annual household income were obtained from the Norwegian 

administrative register data at the baseline year. Given the sample size of each category, we 

created categorized father and mother education (0=middle school, 1=high school, 3=BA, 

4=MA/PhD, as dummy variables). We also included parent non-native Norwegian speaker (=1), 

single (separated) mother (=1), cohort dummies, and number of children at home as baseline 

controls.  

2.3 Analytic strategy  

To investigate the causal effects of childhood weight status on academic performance, we 

employed IV and OLS estimators. There are four assumptions for an IV analysis which must be 

met. First, the instrument should be highly correlated with the variable of interest (i.e., 

instrument relevance). Second, there are no unmeasured confounders between the instrument and 

outcome variable (i.e., independence assumption). Third, the instrumental variable should affect 

the dependent variable only through the predictor (i.e., exclusion restriction). Lastly, it is 

assumed that individuals’ response to the instrument is monotonic (i.e., monotonicity) [33, 34]. 

Figure 1 illustrates our IV research framework and related assumptions (dashed lines represent 

opened “backdoor paths” that should be closed). In Appendix B we discuss the rationale of our 

instrumental variable approach in detail. For comparison, we present results from the IV-PRS as 

well as IV-BMI specifications. Yet, due to the random nature of genetic inheritance within 

families, our preferred specification is the IV-PRS. The 10 genetic ancestry principal 

components (five based on maternal data and five based on paternal data) were included to 

account for potential population stratification [16]. We also included child sex and age to 
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account for the different sex- and age-specific distributions of BMI. We used the two-stage least 

squares (2SLS) estimator. Analyses were carried out in line with the ivreg2 module, using the 

cluster option in Stata to adjust standard errors for the MoBa sampling design.   

  
 

Fig 1. Diagram of instrumental variable assumptions 

 

 

3. Results  

3.1 Effects of childhood overweight on academic performance   

 The estimated coefficients and confidence intervals of overweight status on girls and 

boys are illustrated in Figures 2–4. Here we present results from IV models with a dichotomized 

weight variable (results obtained from the linear specification also showed similar patterns, see 

Appendix D-F including results for total sample). There were significant negative associations 

between BMI and reading and math achievements without controls (–.01 to –.03), yet we did not 

find clear evidence that child weight status has significant net effects on test scores, regardless of 

gender from OLS regression with controls [35, 36]. However, since unblocked backdoor paths 

from child weight status may offset the total effects of child weight status (see similar examples 

in Pearl [37]), we do not put much emphasis on the findings from the OLS estimator. We 

primarily focus on findings from the IV analyses.  
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Fig 2. The effects of overweight on reading 

 

 

 

 
 

Fig 3. The effects of overweight on math 

 

Returning to Figure 2, both the IV-BMI and IV-PRS specifications consistently report 

significant relationships of overweight status with boys’ reading scores at 5th and 8th grades; 

The test scores of overweight boys were likely to be more than an SD lower than those of normal 
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weight boys. The observed patterns for boys were also evident in the 5th grade math scores in 

Figure 3. For girls, however, we only observed significant effects of overweight status on 5th 

grade reading and math scores from the IV-BMI specification. Overall, the observed coefficients 

were larger for boys, and the negative influences on reading became stronger in the later grade; 

the overlapping CIs suggest that the largest gender difference was found in 8th grade reading. 

However, we did not find any significant relationships of weight status with English in any of the 

specifications (see Figure 4). 

 

 

 
 

Fig 4. The effects of overweight on English 

 

3.2 Robustness checks 

We checked the robustness of our findings as follows. First, given the possibility that our 

continuous IVs may not serve as a good instrument for the dichotomized overweight status, we 

estimated the fitted value in the first stage using a probit model (E(Di|Zi, Xi)) instead, and then 

used the fitted value as IV [38]. The results, illustrated in Appendix G, showed very similar 
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patterns, particularly for boys. Further, we controlled for the Big Five personality traits (i.e., 

extraversion, benevolence, conscientiousness, neuroticism, and imagination) in the IV equation. 

Since individual personalities are significantly associated with educational outcomes [39], 

controlling for these traits may contribute to block opened backdoor paths in Figure 1. This 

might be a conservative approach since these personality items may partially mediate total 

effects of weight status. Although some of the observed significant effects of BMI became 

marginally significant at p<.10, the results showed similar patterns (see Appendix I). 

Additionally, we reassessed our findings using a recently developed sensitivity test [40] (for 

details see Appendix C). The results also showed that the observed significant effects of 

childhood weight status on test scores are robust to unobserved confounding. We interpret this 

relative consistency in the impacts of child weight status as evidence for the robustness of our 

results. 

 

4. Discussion 

Contrary to most previous findings, we showed that boys’ overweight status has more 

detrimental effects on reading than that of girls. The observed effects were not negligible: the test 

scores of overweight boys were about an SD lower than those of normal weight boys (or .70 of 

an SD with the continuous BMI predictor), and the negative effects on reading became stronger 

in the later grade. More specifically, the results obtained from 2SLS with IV-BMI tended to be 

more significant and yielded similar effect sizes to those found in previous studies [11, 12]. Yet 

we still observed the significant effects from the IV-PRS specification particularly for reading, 

which were also robust to the violation of independence and exclusion restriction assumptions. 
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Nevertheless, we did not find any evidence that childhood weight status is linked to English 

achievement. 

What might explain the underperformance of boys with overweight in Norway? It is 

often hypothesized that the obesity penalty is larger for girls due in part to greater gender 

discrimination based on body image [17, 41]. Yet, Black et al. [11] found that weight status is 

negatively related to academic performance for Australian boys but not girls. One explanation is 

that since gender and sexual equality has been a core value of Norwegian identity [25], the 

negative effects of social mechanisms related to stigma and discrimination around obesity may 

be less than in other societies. In addition, since boys tend to be associated with poorer academic 

performance and attitudes than girls [24], boys with overweight may experience “double 

jeopardy” due to their stigmatized identities and academic difficulties at school. It is also 

possible that the obesity penalty for girls may present later in adolescence, as children move to 

higher grades and participate in wider social interactions [11]. Further, obesity effects 

accumulate over time [4], and young children are generally less concerned about obesity than 

older children [42]. This may explain the observed stronger effects of overweight for boys in the 

later grade.   

We also observed heterogeneous effects of childhood weight status across school 

subjects. A previous study reports similar correlations between BMI and test scores across 

different subjects [7]. In our study, we observed the significant relationships for reading and 

math but not English, regardless of gender and grade. Research suggests that the early stage is 

crucial in the development of foreign language skills [43]. Compared to other subjects, English 

skills developed early on may not be substantially affected by negative social interactions or 

handicaps in elementary schooling. However, we acknowledge that our findings may be specific 
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to Norwegian contexts, and further research is needed to explore the actual mechanisms of these 

observed findings.   

4.1 Strengths and limitations 

The key strength of our study is the use of a polygenic score for BMI as an IV. In 

particular, the rich MoBa data allowed us to employ a within-family genetic approach that 

shields against endogeneity due to family environmental effects, population stratification, and 

assortative mating. The MoBa is a national, population-based cohort study, and maternal BMI, 

test scores, basic demographic/SES characteristics were obtained from the Norwegian 

administrative registers. Further, we paid careful attention to potential heterogeneous effects of 

child weight status across different subjects as well as genders and grades. However, there are a 

few limitations that deserve mention. The MoBa may represent families that are above average 

in SES [32], and our analyses relied on a subsample of MoBa participants with European 

ancestries. A previous study also reports that the negative relationship between BMI and 

academic achievement is larger for American and European samples than Asian samples [7]. 

Therefore, our findings need to be carefully considered given the sample and national 

characteristics. Additionally, the potential mediating mechanisms of childhood obesity remain 

untested; further research is needed to explore the key pathways to develop more efficient 

intervention strategies.  

4.2 Conclusion and implications 

Evidence suggests that boys lag behind girls in school in terms of both academic 

performance and motivation [44]. Yet previous school-based obesity prevention strategies have 

mainly targeted girls [45, 46], based on the assumption that the obesity penalty is more severe for 
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girls. Our findings, however, indicate that boys’ early-onset overweight may have profound 

impact on academic performance, which may in turn affect their long-term health and human 

capital outcomes. Childhood obesity is preventable and treatable, and interventions at different 

levels, including individual, school-based, and structural, have been shown to be effective (for a 

systematic review see Brown et al. [47]). Particular attention to boys with overweight may help 

to reduce the existing gender gap in academic achievement. 
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Supplemental Appendix A. Descriptive Statistics  

  Full analytic sample   Genetic sample   

 N Mean SD Min Max N Mean SD Min Max 

Dependent variables           

English score 5th 38,278 .00 1.00 -2.80 2.14 12,745 .01 .99 -2.64 2.14 

English score 8th 19,379 .00 1.00 -2.47 2.20 6,832 .00 1.00 -2.47 2.11 

Math score 5th 38,518 .00 1.00 -3.19 2.13 12,827 .04 1.00 -3.19 2.13 

Math score 8th 19,469 .00 1.00 -2.79 2.25 6,871 .03 1.00 -2.59 2.25 

Reading score 5th  38,083 .00 1.00 -3.46 1.90 12,670 .02 1.00 -3.46 1.88 

Reading score 8th  19,427 .00 1.00 -3.35 2.10 6,861 .01 1.00 -3.23 2.07 

Independent variables           

BMI 35,162 16.25 2.08 6.63 33.77 11,741 16.24 2.04 7.34 32.65 

Overweight/obesity   33,828 .13 .33 0 1 11,431 .13 .33 0 1 

Instrumental variables           

Maternal BMI 39,977 23.88 4.10 13.21 59.16 13,382 23.94 4.09 13.21 54.08 

BMI PRS  15,941 .00 1 -3.77 3.79 11,848 .00 1.00 -3.79 3.80 

Confounders           

Maternal education  40,907 1.82 .76 0 3 13,589 1.83 .75 0 3 

Paternal education  40,635 1.60 .89 0 3 13,543 1.64 .87 0 3 

Family Income 41,074 719,953 297,729 0 9,452,458 13,631 724,524 285,468 0 7,363,115 

Mother age 41,112 31.10 4.31 20 40 13,639 30.89 4.21 20 40 

Father age  40,947 33.50 5.03 23 46 13,621 33.27 4.89 23 46 

Number of children 40,749 2.40 .75 0 6 13,522 2.41 .73 0 6 

Parent non-native speaker 41,113 .13 .33 0 1 13,639 .11 .32 0 1 

Single mother 40,682 .13 .34 0 1 13,500 .12 .32 0 1 

Gender (boy=1) 39,461 .51 .50 0 1 13,259 .52 .50 0 1 

School grade    40,654 .60 .49 0 1 13,486 .59 .49 0 1 

Child age (months) 41,145 97.55 1.51 91 104 13,648 97.55 1.46 92 103 

Cohort (year) 41,145 2005.48 1.87 2002 2009 13,648 2005.42 1.87 2002 2009 
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Supplemental Appendix B. Instrumental variable analyses (Mendelian randomization in the 

context of this study) 

To investigate the causal effects of childhood weight status on academic performance 

measured at 5th and 8th grade, we employed IV estimators. There are four assumptions for an 

instrumental variable analysis which must be met: First, the instrument should be highly 

correlated with the variable of interest (i.e., instrument relevance). Second, there are no 

unmeasured confounders between the instrument and outcome variable (i.e., independence 

assumption). Third, the instrumental variable should affect the dependent variable only through 

the predictor (i.e., exclusion restriction). The violation of the second and third assumptions 

implies that there are “backdoor paths” (dashed lines in Figure 1) from the instrument to the 

dependent variable. Lastly, it is assumed that individuals’ response to the instrument is 

monotonic (i.e., monotonicity) (Von Hinke et al., 2016). In the following we discuss the rationale 

of our instrument variable approach in detail.  

Instrument relevance. Our instrumental variables are PRS of BMI and mother’s pre-

pregnancy BMI. The weight of a biological relative (Averett & Stifel, 2010; Biener et al., 2020; 

Sabia & Rees, 2015; Scholder et al., 2012; Shi & Li, 2018) and BMI PRS or genetic risk score 

(Ding et al., 2009; Fletcher & Lehrer, 2011; Scholder et al., 2012; Von Hinke et al., 2016) have 

been widely employed as an instrument of child BMI related to educational outcomes. Those IV 

studies highlight the substantial genetic component in determining body weight. Indeed, our IVs 

have a strong explanatory power of childhood BMI and overweight, far exceeding the 

conventional norm of F=10 (Stock et al., 2002) (see also F-stat on 1st stage in Appendix D-F).  
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Independence and exclusion restriction assumptions. Previous studies using parents’ BMI 

as IV have argued that a shared household environment has no detectable impacts on body 

weight (Black et al., 2018; Cawley & Meyerhoefer, 2012; Haberstick et al., 2010; Sabia & Rees, 

2015; Shi & Li, 2018). Unobserved heterogeneity, however, may still be correlated with both a 

child’s BMI and their relative’s BMI (Böckerman et al., 2019). To strengthen the argument, 

those IV studies have employed various econometric techniques to account for potential 

unobserved confounding. That is, the previous IV studies rely on the conditional independence 

assumption that there are no unmeasured confounders after isolating the effects of key 

demographic and family factors. Yet, recent evidence from twin studies suggests that although 

shared environmental effects on BMI are no longer evident in late adolescence, environmental 

factors play certain roles in early childhood (e.g., Silventoinen et al., 2016). This implies that IV-

BMI studies targeting infancy and early childhood may be more susceptible to the violation of 

independence and exclusion restriction assumptions.   

 More recently, PRS has been extensively employed as IV in investigating the 

relationship between various phenotypes and outcomes variables, which is called as Mendelian 

randomization in epidemiology (Raffington et al., 2020). The fact that PRS is a measure of an 

individuals’ genetic predisposition to develop a certain phenotype (i.e., instrument relevance) 

and that genes are randomly assigned to offspring at conception (i.e., independence assumption) 

is compelling to many applied researchers who wish to find suitable IVs. Yet the effects of child 

PRS may capture non-genetic effects stemming from their parents. In our research framework, 

parents with obesity alleles may be more discriminated in the labor market or might be prone to 

unhealthy nutritional environment at home, which may in turn affect child educational 

opportunities (Milliken-Smith & Potter, 2021). To address this concern, we take the advantage of 
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MoBa data including parental genotype. Since genes are randomly assigned given parental 

genes, within-family approaches conditioning on parental genotype may provide robust estimates 

against such familial effects. Although the benefits of family-based study designs have been 

highlighted, it has been rarely exploited in IV studies (Davies et al., 2019). Here we utilized the 

residuals after the effects of parental PRS are regressed out from child PRS to account for 

potential unobserved confounding resulting from the correlation between child PRS and parental 

genotype (see similar approach in Cheesman et al. 2022).   

Still, as most genetic loci tend also to be associated with other genetic traits (known as 

pleitropy e.g., BMI PRS may affect academic achievement via other genes), it is difficult to rule 

out the possibility of the violation of independence and exclusion restriction assumptions 

(Koellinger & De Vlaming, 2019). Thus, IV-PRS studies also have partially relied on the 

conditional independence assumption that after conditioning on child and family characteristics, 

PRS per se may not affect child academic performance via other channels. Unfortunately, in 

observational studies the violation of exclusion restriction or no unmeasured confounding 

assumption cannot be directly tested. To address the likely influences of unobserved 

confounding, we applied a recently developed sensitivity analysis to examine the robustness of 

our findings against potential unobserved confounding (see Appendix C).   

 Monotonicity. Lastly, in our research framework monotonicity means that individuals 

with more BMI related genes should have a higher (or lower) BMI compared to their 

counterparts (i.e., no defiers assumption). Although the monotonicity assumption is usually 

untestable, since genes are randomly assigned and individuals are not aware of their genotype, it 

is plausible to predict that they may not act to violate the assumption based on the knowledge of 
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their genes (Amin et al., 2020). There is, however, a possibility that visible genetic markers such 

as parents’ BMI may not meet such assumption. For example, although children from obese 

families tend to prefer fatty foods and sedentary activities, they may desire to be thin to avoid 

obesity stigma and discrimination. Further, when gene-environment interactions are present, this 

assumption may be violated (Burgess & Thompson, 2015). Yet previous studies show that there 

is no strong or consistent evidence on gene-environmental interaction effects for BMI (Von 

Hinke et al., 2016; Yılmaz & Karadağ, 2021). As a supplemental analysis, following Von Hinke 

et al. (2016), we explored whether the associations between our IVs and child BMI significantly 

differ across demographic characteristics (see Appendix H). The results showed that although 

there are some variations, the observed overall patterns are similar thus providing little evidence 

on gene-environment interactions.1  

In sum, we have a degree of confidence in the assumptions of instrumental relevance and 

monotonicity for our BMI PRS. Regarding maternal BMI, we are somewhat skeptical about the 

satisfaction of monotonicity assumption, due to its visible characteristics that may cause social 

interactions. As such, the estimates obtained from IV-BMI specification may be different from 

the local average treatment effects in IV analysis, and also be biased depending on the difference 

 
1 When the monotonicity assumption is met, an estimate in IV analysis is a local average treatment effect 

(LATE); that is, the average treatment effect for the compliers whose BMI are only affected by IVs. As 

such, our estimates may not be informative, since the LATE is instrument-specific, and it is difficult to 

identify the compliers. Yet, Dixon et al. (2020) argued that since BMI is continuous, the LATE may 

reflect the effects of the SNPs across the whole distribution of BMI. The estimates obtained from our 

models with BMI predictor may also be considered as the average treatment effect for the population. We 

also found sizeable effects of BMI predictor for boys’ reading achievement. For example, the effect of 

boys’ BMI on standardized reading achievement at grade 8 is –.17 (.08) (from 2SLS with IV-PRS in 

Appendix F), and in MoBa the mean and SD of BMI for boys are 16.21 and 2.05, respectively. Thus, the 

reading achievement gap between boys with obesity at 2 SD of BMI (20.31) and average boys is 

about .70 of a SD (4.1*–.17).  
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between the complier and defier average treatment effects (Huntington-Klein, 2020). The BMI 

PRS is thus the preferred instrument in our study, due to the random nature of genetic inheritance 

within families. 
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Supplemental Appendix C. Sensitivity test  

Even if our IVs have a strong instrumental relevance, we cannot rule out the possibility of 

unobserved confounding or pleitropy. To test the robustness of our findings, we conducted 

sensitivity analyses in IV models suggested by Kang et al. (2020): 

    Xi = γ0 + δγ1Zi + ηi 

    Yi = β0 + β1X′
i + εi, 

where Yi represents the national test scores (reading, math, and English) of a child i; Xi 

represents the variable of interest (here child weight status); εi is the error term in the equation; 

Zi represents the instrumental variables; and ηi is the error term in that equation. Based on the 

proposition, we assume that Zi is independent of εi and ηi. Yet, under certain conditions, this 

assumption may be violated. δ captures such possibility that our instruments are invalid in the 

range of δ. It shows how much a unit change in the invalid instrument will affect Yi, either 

through a direct effect of Zi on  Yi  or through correlation of Zi with omitted determinants of Yi. 

In testing the sensitivity of our IV specification, we begin with a correlation of .05 which is a 

similar size of the correlation between PRS and single family or maternal age among potential 

confounders.  

We present the results for the sensitivity analyses in each table in Appendix D-F. The 

sensitivity analysis tests the null hypothesis of no effect due to unmeasured confounder that is 

correlated both with the IV and test scores at around δ in the IV equation. The estimated 

coefficients with p <.05 from the sensitivity analysis suggest that BMI and overweight effects 

are robust to unobserved confounding, which has a direct causal effect through IV to test scores 
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or through correlation of IV with omitted determinants of test scores. The results showed that the 

observed significant effects of childhood weight status on test scores are in general robust to 

unobserved confounders. Further, we increased the range of δ in the IV equation to examine the 

degree of robustness of our findings against unobserved confounding. In the sense that 

unobserved confounding presents as strongly as parental education effects, the significant effects 

observed were no longer evident in many cases. We think this is likely to be an uncommon 

situation in elementary schooling: unobserved confounding effects comparable to parental 

education above and beyond the controlled child and family characteristics as well as parental 

PRS are very unlikely to occur.   
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Supplemental Appendix D. Results for Total Sample  

Total Outcomes 

            Reading             Math            English 

Predictor OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

   

5th grade             

BMI .00 

(.00) 

–.07** 

(.02) 

–.09* 

(.03) 

–.00 

(.00) 

–.08*** 

(.02) 

–.07* 

(.03) 

.00 

(.00) 

–.03 

(.02) 

 .01 

(.03) 

   

F-stat on 1st stage  414.97 194.46  440.27 186.79  424.59 185.86    

Sensitivity test  

(p-value) 

 .02 .01  .00 .05  .40 .84    

N 10,291 10,116 8,974 10,406 10,229 9,062 10,342 10,166 9,014    

Overweight –.03  

(.03) 

–.59*** 

(.17) 

–.72** 

(.26) 

–.06* 

(.03) 

–.72*** 

(.17) 

–.50 

(.26) 

–.05 

(.03) 

–.31 

(.16) 

–.02 

(.26) 

   

F-stat on 1st stage  222.34 115.11  222.72 109.03  220.51 110.28    

Sensitivity test  

(p-value) 

 .01 .01  .00 .07  .23 .99    

N 9,089 8,934 7,903 9,182 9,025 7,971 9,132 8,976 7,935    

8th grade             

BMI –.01  

(.01) 

–.10*** 

(.02) 

–.07 

(.05) 

–.00 

(.01) 

–.07** 

(.02) 

–.07 

(.05) 

.00 

(.01) 

–.04 

(.02) 

 .03 

(.05) 

   

F-stat on 1st stage  248.32 83.94  256.25 84.76  253.20 84.84    

Sensitivity test  

(p-value) 

 .00 .13  .02 .18  .21 .49    

N 5,609 5,497 4,659 5,623 5,512 4,675 5,591 5,478 4,644    

Overweight –.07 

(.04) 

–.84*** 

(.22) 

–.50 

(.38) 

–.06 

(.04) 

–.61** 

(.21) 

–.47 

(.38) 

–.03 

(.04) 

–.40 

(.21) 

 .35 

(.38) 

   

F-stat on 1st stage  120.97 50.06  127.41 49.36  125.79 50.74    

Sensitivity test  

(p-value) 

 .00 .20  .01 .22  .14 .37    

N 4,973 4,875 4,114 4,984 4,886 4,126 4,957 4,858 4,100    

* p<.05, ** p<.01, ***<.001 Note: Robust standard errors are in parentheses.  
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Supplemental Appendix E. Results for Girls 

Total Outcomes 

            Reading             Math            English 

Predictor OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

   

5th grade             

BMI .00 

(.01) 

–.06* 

(.02) 

–.08 

(.04) 

.00 

(.01) 

–.07** 

(.02) 

–.03 

(.04) 

.00 

(.01) 

–.03 

(.02) 

 .01 

(.04) 

   

F-stat on 1st stage  206.88 102.51  218.55 100.48  210.76 99.69    

Sensitivity test  

(p-value) 

 .04 .09  .01 .60  .33 .57    

N 5,008 4,938 4,411 5,053 4,981 4,450 5,036 4,965 4,436    

Overweight –.06 

(.04) 

–.48* 

(.20) 

–.38 

(.33) 

–.06 

(.04) 

–.54** 

(.20) 

–.13 

(.32) 

–.08*  

(.04) 

–.27 

(.20) 

.10 

(.34) 

   

F-stat on 1st stage  127.54 58.88  125.28 55.24  126.63 56.39    

Sensitivity test  

(p-value) 

 .04 .28  .03 .81  .32 .63    

N 4,428 4,366 3,894 4,465 4,401 3,923 4,448 4,385 3,911    

8th grade             

BMI .00 

(.01) 

–.06* 

(.03) 

.02 

(.06) 

.01 

(.01) 

–.04 

(.03) 

–.00 

(.06) 

.02 

(.01) 

–.04 

(.03) 

.08 

(.07) 

   

F-stat on 1st stage  135.74 46.77  136.46 46.27  136.53 44.55    

Sensitivity test  

(p-value) 

 .06 .76  .22 .94  .25 .19    

N 2,722 2,676 2,303 2,730 2,684 2,315 2,722 2,676 2,302    

Overweight –.04 

(.05) 

–.43 

(.25) 

.57 

(.50) 

–.03 

(.05) 

–.26 

(.25) 

.13 

(.52) 

.01 

(.05) 

–.35 

(.26) 

.92 

(.56) 

   

F-stat on 1st stage  76.04 25.77  79.47 24.05  78.43 24.45    

Sensitivity test  

(p-value) 

 .13 .25  .35 .80  .26 .08    

N 2,409 2,369 2,033 2,416 2,376 2,044 2,410 2,370 2,033    

* p<.05, ** p<.01, ***<.001 Note: Robust standard errors are in parentheses. 
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Supplemental Appendix F. Results for Boys   

Total Outcomes 

            Reading             Math            English 

Predictor OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

   

5th grade             

BMI .00 

(.01) 

–.07* 

(.03) 

–.10 

(.05) 

–.00 

(.01) 

–.10** 

(.03) 

–.11* 

(.05) 

–.00 

(.01) 

–.02 

(.03) 

–.01 

(.05) 

   

F-stat on 1st stage  211.28 93.84  225.05 88.76  217.04 88.29    

Sensitivity test  

(p-value) 

 .06 .06  .01 .03  .61 .80    

N 5,283 5,178 4,563 5,353 5,248 4,612 5,306 5,201 4,578    

Overweight .01 

(.04) 

–.72* 

(.28) 

–1.12** 

(.42) 

–.06  

(.05) 

–.92** 

(.28) 

–.89* 

(.41) 

–.02 

(.05) 

–.34 

(.27) 

–.20 

(.39) 

   

F-stat on 1st stage  94.57 55.68  97.20 53.79  93.47 53.64    

Sensitivity test  

(p-value) 

 .03 .00  .00 .02  .34 .60    

N 4,661 4,568 4,009 4,717 4,624 4,048 4,684 4,591 4,024    

8th grade             

BMI –.02 

(.01) 

–.15*** 

(.04) 

–.17* 

(.08) 

–.01 

(.01) 

–.11** 

(.04) 

–.13 

(.08) 

–.01 

(.01) 

–.05 

(.04) 

–.02 

(.07) 

   

F-stat on 1st stage  115.60 37.03  122.72 38.19  118.64 39.83    

Sensitivity test  

(p-value) 

 .00 .03  .01 .10  .35 .80    

N 2,887 2,821 2,356 2,893 2,828 2,360 2,869 2,802 2,342    

Overweight –.09 

(.06) 

–1.36** 

(.40) 

–1.71* 

(.68) 

–.09 

(.06) 

–1.07** 

(.37) 

–1.08 

(.60) 

–.07 

(.06) 

–.52 

(.35) 

–.27 

(.55) 

   

F-stat on 1st stage  47.51 22.67  50.75 23.60  49.62 24.71    

Sensitivity test  

(p-value) 

 .00 .01  .01 .06  .23 .66    

N 2,564 2,506 2,081 2,568 2,510 2,082 2,547 2,488 2,067    

* p<.05, ** p<.01, ***<.001 Note: Robust standard errors are in parentheses.  
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Supplemental Appendix G.  Results for Girls and Boys (fitted value in the first stage as IV) 

  Outcomes 

             Reading             Math            English 

 Predictor OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

OLS 2SLS  

(BMI) 

2SLS 

(PRS) 

   

5th grade             

Girls Overweight –.06 

(.04) 

–.54** 

(.21) 

–.44 

(.35) 

–.06 

(.04) 

–.47* 

(.20) 

.07 

(.34) 

–.08*  

(.04) 

–.30 

(.21) 

.08 

(.35) 

   

 F-stat on 1st stage  112.10 48.75  110.55 45.75  111.62 47.16    

 N 4,428 4,366 3,894 4,465 4,401 3,923 4,448 4,385 3,911    

 Overweight .02 

(.04) 

–.60* 

(.30) 

–.75* 

(.37) 

–.06  

(.05) 

–.82** 

(.31) 

–.78* 

(.39) 

–.02 

(.05) 

–.35 

(.29) 

–.04 

(.37) 

   

Boys F-stat on 1st stage  67.77 53.97  68.65 51.76  66.37 50.97    

 N 4,661 4,568 4,009 4,717 4,624 4,048 4,684 4,591 4,024    

8th grade             

Girls Overweight –.05 

(.05) 

–.49 

(.26) 

.55 

(.54) 

–.03 

(.05) 

–.20 

(.26) 

.19 

(.56) 

.01 

(.05) 

–.41 

(.27) 

.77 

(.59) 

   

 F-stat on 1st stage  66.49 19.49  69.67 17.50  68.95 18.27    

 N 2,409 2,369 2,033 2,416 2,376 2,044 2,410 2,370 2,033    

 Overweight –.09 

(.06) 

–1.54** 

(.46) 

–1.39* 

(.63) 

–.09 

(.06) 

–1.16** 

(.43) 

–.78 

(.56) 

–.07 

(.06) 

–.81 

(.42) 

–.04 

(.51) 

   

Boys F-stat on 1st stage  31.26 21.08  33.74 22.39  33.49 23.89    

 N 2,564 2,506 2,081 2,568 2,510 2,082 2,547 2,488 2,067    

* p<.05, ** p<.01, ***<.001 Note: Robust standard errors are in parentheses 
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Supplemental Appendix H. Gene and Environment Interactions  

Note: The estimates in each column are obtained from one regression with the ancestry principal components. It shows whether the association 

between instrument (BMI PRS and maternal BMI) and childhood BMI significantly differs by categorical covariates. A group in each row    

represents subgroups of each covariate. The “p-value testing equality” is the p-value of a chi-squared testing whether the coefficient on the  

different groups are significantly different from each other. 

 

 

Instruments (1) 

Gender 

Boys (=1) 

Girls (=2) 

(2) 

Grade 

G2 (=1) 

G3 (=2) 

(3) 

Father’s 

education 

Middle (=1) 

High (=2) 

BA (=3) 

MA/PhD (=4) 

(4) 

Mother’s 

education 

Middle (=1) 

High (=2) 

BA (=3) 

MA/PhD (=4) 

(5) 

Immigrant 

background 

Non (=1) 

Immigrant (=2) 

(6) 

Single family 

Non (=1) 

Single (=2) 

BMI PRS, group 1 .28*** .32*** .39*** .40** .32*** .32*** 

 (.03) (.03) (.08) (.12) (.02) (.02) 

BMI PRS, group 2 .34*** .31*** .30*** .33*** .22*** .24** 

 (.03) (.03) (.03) (.05) (.06) (.07) 

BMI PRS, group 3   .30*** .29***   

   (.03) (.03)   

BMI PRS, group 4   .28*** .28***   

   (.04) (.04)   

       

p-value testing equality  .15 .67 .63 .63 .10 .26 

Maternal BMI, group 1 .48*** .51*** .52*** .46*** .51*** .52*** 

 (.02) (.03) (.06) (.09) (.02) (.02) 

Maternal BMI, group 2 .56*** .51*** .47*** .44*** .50*** .42*** 

 (.03) (.02) (.03) (.04) (.06) (.06) 

Maternal BMI, group 3   .54*** .54***   

   (.03) (.03)   

Maternal BMI, group 4   .53*** .49***   

   (.05) (.05)   

       

p-value testing equality  .11 .99 .58 .27 .92 .14 
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Supplemental Appendix I.  Results for Girls and Boys controlled for Personality (i.e., Big Five  

traits) 

 

 

 

Predictor 

      Reading           Math        English    

2SLS  

(BMI) 

2SLS 

(PRS) 

2SLS  

(BMI) 

2SLS 

(PRS) 

2SLS  

(BMI) 

2SLS 

(PRS) 
   

5th grade          

Girls BMI –.06* 

(.02) 

–.08  

(.04) 

–.06** 

(.02) 

–.03  

(.04) 

–.03 

(.02) 

 .01  

(.04) 
   

 F-stat on 1st stage 207.52 102.78 219.28 100.24 211.18 99.39    

 N 4,936 4,409 4,979 4,448 4,963 4,434    

 Overweight –.48* 

(.20) 

–.41 

(.33) 

–.48* 

(.20) 

–.11 

(.32) 

–.26 

(.20) 

.08 

(.33) 
   

 F-stat on 1st stage 127.61 58.75 125.32 55.05 126.50 55.98    

 N 4,365 3,893 4,400 3,922 4,384 3,910    

Boys BMI –.07 

(.03) 

–.09  

(.05) 

–.09** 

(.03) 

–.09 

 (.05) 

–.02 

(.03) 

–.01  

(05) 
   

F-stat on 1st stage 211.25 92.74 225.78 87.52 218.25 87.29    

N 5,174 4,560 5,244 4,609 5,197 4,575    

Overweight –.66* 

(.28) 

–1.09** 

 (.41) 

–.81** 

(.28) 

–.82* 

(.40) 

–.35 

(.27) 

–.20 

(.39) 
   

F-stat on 1st stage 93.68 54.84 96.67 53.02 92.95 52.91    

N 4,566 4,008 4,622 4,047 4,589 4,023    

8th grade          

Girls BMI –.05 

(.03) 

.02 

(.06) 

–.03 

(.03) 

–.01 

(.06) 

–.03 

(.03) 

.08 

(.06) 
   

 F-stat on 1st stage 133.39 46.84 133.74 46.09 134.14 44.66    

 N 2,675 2,302 2,683 2,314 2,675 2,301    

 Overweight –.37 

(.24) 

.52 

(.48) 

–.20 

(.25) 

.05 

(.50) 

–.33 

(.26) 

.80 

(.54) 
   

 F-stat on 1st stage 76.53 25.95 80.06 24.27 78.96 24.64    

 N 2.369 2,033 2,376 2,044 2,370 2,033    

Boys BMI –.15*** 

(.04) 

–.15 

(.08) 

–.11** 

(.04) 

–.09 

(.07) 

–.06 

(.04) 

–.00  

(.07) 
   

F-stat on 1st stage 115.56 37.76 123.20 38.64 118.89 40.16    

N 2,819 2,354 2,827 2,359 2,801 2,341    

Overweight –1.35** 

(.39) 

–1.51* 

(.64) 

–1.03** 

(.36) 

–.90 

(.57) 

–.55 

(.34) 

–.19 

(.53) 
   

F-stat on 1st stage 47.96 23.23 51.35 23.88 50.14 25.19    

N 2,505 2,080 2,510 2,082 2,488 2,067    
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* p<.05, ** p<.01, ***<.001 Note: Robust standard errors are in parentheses. Short Norwegian 

Hierarchical Personality Inventory for the Assessment of Personality in Children are used. These are 

extraversion (e.g., “talk to people easily.”), benevolence (e.g., “takes himself/herself into consideration 

first.”), conscientiousness (e.g., “carries out work to the last detail.”), neuroticism (e.g., “doubt 

himself/herself.”), and imagination (“has a broad range of interests.”) that are measured by six items  

respectively asking “how well do these statements apply to your child’s behaviors over the past year?. 
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