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a b s t r a c t

Remote sensing satellites provide a vast amount of data to monitor and observe Earth’s surface
and events on it. To use these data efficiently in subsequent analysis and decision-making, highly
automated easy-to-use tools are needed. Here, we present Earth Observation Data Information
Extractor (EODIE). EODIE is a toolkit to extract object-level time-series information from several
multispectral satellite remote sensing platforms and to produce analysis-ready products for subsequent
data analysis. EODIE has a modular design that makes it adjustable for end-user requirements. Users
have a possibility to exchange and add modules in EODIE for flexible processing in different computing
environments. With EODIE, remote sensing data can be processed to object level array, geotiff or
statistics information of different (vegetation) indices or plain wavelength intervals.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Code metadata

Current code version 2.0.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00147
Code Ocean compute capsule –
Legal Code License GNU GPL v3.0
Code versioning system used git
Software code languages, tools, and services used Python 3
Compilation requirements, operating environments & dependencies https://raw.githubusercontent.com/samumantha/EODIE/main/environment.yml
If available Link to developer documentation/manual https://eodie.readthedocs.io/en/latest/
Support email for questions samantha.wittke@nls.fi

Software metadata

Current software version 2.0.0
Permanent link to executables of this version https://doi.org/10.5281/zenodo.7467514
Legal Software License GNU GPL v3.0
Computing platforms/Operating Systems Unix-like, Windows
Installation requirements & dependencies https://raw.githubusercontent.com/samumantha/EODIE/main/environment.yml
If available, link to user manual - if formally published include a reference to
the publication in the reference list

https://eodie.readthedocs.io/en/latest/index.html

Support email for questions samantha.wittke@nls.fi
∗ Correspondence to: Vuorimiehentie 5, 02150 Espoo, Finland.
E-mail address: samantha.wittke@nls.fi (Samantha Wittke).
ttps://doi.org/10.1016/j.softx.2023.101421
352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101421
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101421&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00147
https://raw.githubusercontent.com/samumantha/EODIE/main/environment.yml
https://eodie.readthedocs.io/en/latest/
mailto:samantha.wittke@nls.fi
https://doi.org/10.5281/zenodo.7467514
https://raw.githubusercontent.com/samumantha/EODIE/main/environment.yml
https://eodie.readthedocs.io/en/latest/index.html
mailto:samantha.wittke@nls.fi
mailto:samantha.wittke@nls.fi
https://doi.org/10.1016/j.softx.2023.101421
http://creativecommons.org/licenses/by/4.0/


Samantha Wittke, Anne Fouilloux, Petteri Lehti et al. SoftwareX 23 (2023) 101421

1

1

o
o
t
a
h
a
w
t
g
o

t
T
m
[

a
u
a
[
t
i
e
t

1

m
f
s
t
p
p
s
s
a
d

m
s
r
d
[

1

d
a
F
m
S
p
o
p
p
P

u

. Motivation and significance

.1. Spaceborne remote sensing

In remote sensing, natural or anthropogenic phenomena are
bserved from a distance by a sensor mounted on a platform
n the ground, in the air or in space without interfering with
he phenomenon in question. With spaceborne platforms, large
reas on the Earth can be observed over a long time period with
igh spatial resolution. Multiple Earth Observation (EO) satellites
re orbiting the Earth at different heights, measuring in different
avelengths and producing a large amount of data in different
ime intervals. The produced time series of objects, areas, or re-
ions help scientists to better understand and monitor processes
n Earth’s surface [1].
Some EO missions, such as Landsat [2] and Copernicus Sen-

inel [3] provide their data free of charge for everyone to use.
hese open EO data are often distributed in tiles to improve data
anagement by allowing focused spatial and temporal queries

4,5].
These data are actively used in many different disciplines such

s land use and land cover classification of both natural and
rban areas [6–11], precision agriculture [12,13], classification
nd nitrogen status [12], crop yield estimation and forecasting
14–16], forest fires [17] and vegetation phenology [18,19], es-
imation of crop growing stages [20], forest composition and
ts biophysical drivers [21], discriminating plant species [22],
stimation of gross primary productivity (GPP) [23], drought de-
ection [24] and impact of mining on vegetation phenology [25].

.2. Initial motivation

The Earth Observation Data Information Extractor (EODIE) is
eant to be a starting point for multidisciplinary researchers

rom different disciplines wanting to use remote sensing time
eries data in their studies. The time and resources spent on
he actual research question are often limited by time spent on
reparing data for research, which is a non-trivial and laborious
rocess. EODIE is designed to help with the EO data preparation
tep by providing one tool to find the needed data and produce
tandard form object level output. Thus, EODIE can be integrated
s a part of a full data analysis workflow. In addition, it is
esigned to be flexible in terms of processing environments.
EODIE provides tools to extract object level time series infor-

ation from multispectral remote sensing datasets. These time
eries can be on a spectral band (wavelength interval that is
ecorded by the sensor) level or in the form of (vegetation) in-
ices, such as the Normalized Difference Vegetation Index (NDVI)
26,27] (see appendix Table A.4 for more).

.3. Other tools

Other software and frameworks for satellite remote sensing
ata pre-processing, processing and post-processing include, but
re not limited to Sentinel Application Platform (SNAP) [28],
ramework for Operational Radiometric Correction for Environ-
ental Monitoring (FORCE) [29], Orfeo Toolbox (OTB) [30], QGIS
emi-Automatic Classification Plugin (SCP) [31] as well as the R
ackage Sen2R [32] and sentinelhub for Python [33]. A summary
f these tools in comparison to EODIE is shown in Table 1. Other
latforms, that include tools for satellite remote sensing data
rocessing include Googles’ Earth Engine [34] and Microsofts’
lanetary computer.1

1 https://planetarycomputer.microsoft.com/
 c

2

The goal of EODIE is to provide the user with one tool that
combines relevant processing steps from an automated data
query to user-defined and analysis-ready end products on object
level. EODIE’s command line interface (CLI) allows object-level
extraction based on vector features and can be executed in one
command. EODIE’s modular design gives users the freedom to add
their own additional processing or analysis modules e.g. to import
data from yet unsupported satellite platforms and to compute
and export intermediate results, like vegetation indices. Other
tools often provide more functionalities that still need to be put
together to form a full workflow, as well as limitations towards
the computing environment (e.g. graphical interfaces).

1.4. Limitations

EODIE currently supports Sentinel-2 and Landsat 8 platforms
as well as generic geotiff files. However, only a subset of EODIE
functionalities is available for generic geotiff input data. Support
for other platforms that provide the data and metadata in a
similar way to Sentinel-2 or Landsat 8 can be added by providing
a platform specific configuration file2.

EODIE supports the calculation of 17 indices (see Table A.4),
which were chosen based on their usage in literature (see for
example [19,35–39]) and in the authors’ projects. Further indices
can be supported with additional functions implemented by the
user.

Each raster tile in EODIE is considered spatially and temporally
independent, i.e their spatio-temporal calibration is not checked
for by default. However, when considering time series over a
geographically large areas that are covered with multiple tiles,
data from different times and location can only be compared to
each other after spatial and temporal calibration. Therefore, the
user needs to take the calibration into account before feature
extraction. Cloudcover in the area of interest at the time of acqui-
sition is one example for gaps in optical time series data. Filling
these gaps with other multispectral, RADAR (Radio Detection
and Ranging) or LiDAR (Light Detection and Ranging) data from
spaceborne, airborne, or terrestrial remote sensing platforms is
an interesting topic for the future.

2. Software description

2.1. Software architecture

EODIE is written in Python [40] and it builds on top of several
standard Python packages for efficient numerical and geographic
data processing (see Table 2).

Python was chosen due to its popularity in data science and
EO. It is efficient for scientific analysis and one of the easiest
languages to learn [49]. It also provides a large amount of avail-
able packages for functionality extension [49,50] and is reader-
friendly, which improves understanding and makes possible code
modifications easier for the scientific community.

2.2. Main components

The main components of EODIE are shown in Fig. 1 as purple
arrow shapes. As EODIE has modular design, some components
can be replaced with data products from other external tools for
further customization. An example alteration would be to replace
the cloud mask provided by the satellite remote sensing product
with cloud masks generated by e.g. Maccs-Atcor Joint Algorithm
(MAJA) [51] or FORCE [29] for possibly enhanced cloud-masking,
depending on application [52–54].

2 More information on configuration files can be found in EODIE doc-
mentation: https://eodie.readthedocs.io/en/latest/More.html#platform-specific-
onfiguration-files

https://planetarycomputer.microsoft.com/
https://eodie.readthedocs.io/en/latest/More.html#platform-specific-configuration-files
https://eodie.readthedocs.io/en/latest/More.html#platform-specific-configuration-files
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Table 1
Comparison of EODIE with other tools; Vector overlay: the tool provides the capacity to also read vector files and extract object level
information, S2: Sentinel-2, LS: Landsat, CLI: Command Line Interface, GUI: Graphical User Interface.
Tool Platform Interfaces Vector overlay Indices Output Citation

EODIE S2, LS8, TIF,
others with
config. files

CLI, GUI Yes Many pre-defined
(see appendix A.4)

csv, geotiff,
array, SQLITE database

–

SCP ASTER, GOES
LS1-8, S1-3
+ others

GUI in QGIS NDVI, EVI
others require
own functions

geotiff [31]

FORCE LS4-8, S1–2 CLI No Many pre-defined geotiff, envi [29]

SNAP S1-S3, RapidEye,
SPOT, MODIS,
Landsat + others

CLI, GUI Yes Many pre-defined geotiff, csv [28]

Sen2r S2 CLI, RStudio No Many pre-defined geotiff, envi [32]

OTB Ikonos, S1,
Spot 5-7,
Worldview 2
+ others

CLI, GUI Yes Many pre-defined vector
xml, raster

[30]

sentinelhub Sentinel, Landsat,
Modis + others

Python package Yes Multiple scripts for
calculating indices
on Github

JSON, Pandas dataframe [33]
Table 2
Main dependencies of EODIE (version 2.0.0).
Package Version Purpose Citation

numpy 1.22.4 Efficient numerical array processing [41]
shapely 1.8.2 Generating geometries from coordinates [42]
rasterstats 0.17.0 Extraction of pixel values and statistics from raster data [43]
rasterio 1.2.10 Numpy array extraction from raster input [44]
gdal 3.5.0 Vector related properties and reprojection [45]
geopandas 0.11.1 Vector data related pre-processing [46]
dask 2022.9.0 Process parallelization [47]
sqlite3 3.39.3 Database handling [48]
2.2.1. User interface
EODIE is primarily intended to be used via the Command

ine Interface (CLI). It is also provided with a graphical web
nterface on the Galaxy platform (see Section 2.4) and as a Python
ackage.3

2.2.2. Workflow
The basic internal workflow of EODIE (for three example tiles)

s summarized in Fig. 1. EODIE returns by default object-level
utputs and possible intermediate products as defined by the
ser. It enables the calculation of several vegetation indices and
tatistics per input polygon from the vectordata file. The EODIE
LI has both obligatory and optional command line arguments,
s well as configuration flags. For example, flags can define the
utput formats and whether to include border pixels in statistics
alculations. A configuration file in yaml format can be used to
urther customize the processing.

The main inputs to the tool for processing of Sentinel-2 and
andsat 8 data are:

(1) One or multiple (vegetation) index names (chosen from
Table A.4) to be calculated. Here, also raw bands (as avail-
able from satellite remote sensing product) can be chosen.

(2) The timeframe defines the time window of interest that
will be processed for the available EO data in the source
location.

(3) The objects of interest as valid georeferenced polygons
provided in supported vector data format. Each polygon
should have a unique ID which will be used as the iden-
tifier for the polygon. The correct geographic reprojection
between vector and raster data is handled by EODIE.

3 https://anaconda.org/conda-forge/eodie
3

Table 3
Example EODIE output default statistics with differently sized polygons; id is
the unique identifier of each polygon, count represents the number of valid (i.e.
non-masked) pixels and the rest of the columns represent the mean, standard
deviation and median values of a given index of all valid pixels within the
polygon.
id count mean std median

1 735 0.882 0.017 0.885
2 131 0.696 0.148 0.745
3 225 0.451 0.239 0.385
4 439 0.492 0.224 0.493
5 36 0.563 0.066 0.549

(4) The input raster data can be a single or multiple raster data
products from any of the supported platforms.

The input raster data to be processed are validated and filtered
based on the user-defined time frame and geographic location
of the polygons of interest. From the filtered dataset, the raster
bands and cloud mask are generated, or extracted from the prod-
uct. The raster bands are used to calculate the indices (Table A.4)
requested by the user. Then, the cloud mask is used to mask out
invalid pixels (e.g. under cloud, cloud shadow or snow). Finally,
the unmasked (i.e. cloud-free) pixels within each polygon are
extracted and stored in the user requested format.

EODIE has several different output options: Statistics over each
polygon (Table 3) can be extracted directly into a single SQLite
database [48] file or multiple comma-separated value (CSV) files
split by date and tile, which can be combined with provided
auxiliary scripts. All pixel values per polygon can also be exported
into arrays and stored as pickle [55] or geotiff [56].

https://anaconda.org/conda-forge/eodie
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Fig. 1. EODIE workflow, main components are in purple arrow shaped boxes. Rectangular boxes define the input; results formatting are dependent on users choice.
Fig. 2. Screenshot of the EODIE Graphical User Interface (GUI) on Galaxy platform.
.2.3. Scalability
EODIE uses dask [47], an open-source Python library, for in-

ernal parallelization of the process. The three internal EODIE
rocesses parallelized with dask.delayed are presented in Fig. 1
n purple colored arrows. The available resources are reported to
ask and the computations are distributed automatically to make
he best use of the resources given. This means that EODIE can
4

be run on different computing infrastructures, from a personal
computer to cloud computing systems and computing clusters.
The resource usage depends on the amount of raster data that
needs to be processed, which is defined by the total area of
interest, the requested time frame, and the number of object
polygons in the vector data.
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Fig. 3. 63 Sentinel-2 tiles in red covering those parts of Finland, where crops were grown in 2020. All – about one million – agricultural field parcels are shown in
rey. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
.3. Software packaging

To facilitate the usage of EODIE on different infrastructures,
ODIE4 has been packaged using Conda [57] and made available

on the conda-forge channel [58].

2.4. EODIE graphical user interface

EODIE’s Graphical User Interface (GUI) is provided on the
Galaxy platform5 to promote findable, accessible, interoperable
nd reusable (FAIR) research software practices [59]. Galaxy is
n open-source workflow management system with both a com-
and line and web-based interface that allows accessible, re-
roducible, and transparent computational research. The Galaxy
ool for EODIE (available on the European Galaxy instance,6; a

registered European Open Science Cloud service) offers a GUI to
end-users to increase its FAIRness. It makes use of the EODIE
Conda package7, which is provided in a container – available for
Docker and Singularity – that can be deployed on any Galaxy
instance or used as a standalone fully reproducible tool.

The EODIE Galaxy tool wrapper hides the complexity and
command line look of the tool and guides users in the usage. Fig. 2
shows the current EODIE GUI with two sections:

1. The first section concerns mandatory EODIE software in-
put parameters such as platform (Sentinel-2, Landsat 8 or
generic geotiff ), location of input data and the area and
polygons of interest as well as the name of unique polygon
identifiers;

4 EODIE on conda-forge: https://anaconda.org/conda-forge/eodie
5 https://usegalaxy.eu/
6 https://usegalaxy.eu/root?tool_id=toolshed.g2.bx.psu.edu/repos/climate/
odie/eodie/1.0.2
7 https://anaconda.org/conda-forge/eodie
5

2. The second section provides ‘‘advanced options’’ such as
time range, selection of statistics (mean, minimum, max-
imum, etc.) and further (vegetation) indices to compute.

EODIE documentation also provides a tutorial8 on the use of
the Galaxy platform tool.

3. Illustrative example

A typical use case for EODIE is the provision of different
vegetation index time series of agricultural field parcels over the
growing season from Sentinel-2 data. In this example, we utilized
the freely available Finnish field parcel information of 2020 [60]
provided by the Finnish Food Authority as a GeoPackage. The
vector dataset includes all – about one million – field parcels
in Finland that cover in total an area of 2.3 million hectares all
over Finland (see also Fig. 3). The dataset is annually updated
and contains information on the crop species and location, shape
and size of the field parcels. The crop species field provides
information if a field is planted with a single species or a mixture
of several species, is fallow, or in special use.

The input raster data for this example is Sentinel-2 Bottom-
of-Atmosphere (L2A) product over Finland covering the growing
seasons of 2019, 2020 and 2021 (see Fig. 3).

To start the process, EODIE is set up to run with the following
inputs:

• –rasterdir /location/of/Sentinel-2data the path to the di-
rectory where the Sentinel-2 data are stored

• –platform s2 the platform is set to Sentinel-2
• –vector /location/of/vectordatafile.gpkg the path to the

vectorfile to process

8 https://eodie.readthedocs.io/en/latest/Galaxy.html

https://anaconda.org/conda-forge/eodie
https://usegalaxy.eu/
https://usegalaxy.eu/root?tool_id=toolshed.g2.bx.psu.edu/repos/climate/eodie/eodie/1.0.2
https://usegalaxy.eu/root?tool_id=toolshed.g2.bx.psu.edu/repos/climate/eodie/eodie/1.0.2
https://anaconda.org/conda-forge/eodie
https://eodie.readthedocs.io/en/latest/Galaxy.html
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Fig. 4. Example time series plots for EVI (orange field parcel, upper three plots growing grass, barley, rapeseed in the years 2019, 2020 and 2021 respectively from
left to right) and NDVI (purple field parcel, bottom three plots growing oats, spring wheat, rapeseed in the years 2019, 2020 and 2021 respectively from left to
right) extracted from field parcels each growing different crop type in South-Western Finland. Field parcel boundaries of the area are marked with grey outlines and
overlaid on the Sentinel-2 true color image from 18 July 2020 in the background. Exact location of the field plots cannot be disclosed due to privacy agreement.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
• –out /location/of/outputdirectory the location of the direc-
tory where output files shall be stored

• –id uID the name of the vector file field containing a unique
identifier for the polygons, in this case it is a separately
created field called ‘‘uID’’

• –database_out flag setting the output format to database
• –statistics mean median std statistics to be calculated for

each polygon
• –index ndvi evi ndmi kndvi B08 B04 indices and bands to

be calculated and/or extracted for illustration purposes.

Within the process, dask.delayed will distribute the workload
n the available processing resources.
After all index calculation and extraction processes are com-

leted, the results can be found in the database file. The results
an be visualized for example as time series graph which can be
een in Fig. 4.
The total area in the example for Finland is covered by 63

entinel-2 tiles for each of the three years. Thanks to dask, EODIE
an make use of however many computing resources are avail-
ble on a single laptop or computing cluster. The example pre-
ented here was run on supercomputer Puhti at CSC - IT Center
or Science.9

9 https://research.csc.fi/-/puhti
6

4. Impact

Based on the authors’ experience in multidisciplinary research
projects (see B), the process of information extraction from satel-
lite remote sensing time series data is among the most time
consuming parts of work. EODIE has been designed to help sci-
entists without extensive remote sensing expertise to preprocess
their EO data into analysis-ready format. The tool provides au-
tomated information extraction with the possibility for flexible
processing workflow adjustments.

EODIE has already been used in multiple agricultural stud-
ies [61,62] and its earlier version in one forest study [63] and
for crop yield prediction [16]. When these studies were initi-
ated in 2017–2018, the other available tools did not provide
the processing steps and flexibility needed to accomplish the
tasks in a single step. In addition, EODIE and experiences in
developing it have enabled the authors to participate in several
national and international research and development projects
(see Appendix B).

In the example use case we demonstrated how EODIE can be
applied over a large geographical area to extract information for
an agricultural case study. EODIE can also be used in a similar
fashion in other disciplines, such as forestry, water area mon-
itoring, and urban applications. While the earlier studies using
EODIE have focused in Finland, it can be directly used with all
globally collected Sentinel-2 and Landsat 8 data without source
code modifications.

https://research.csc.fi/-/puhti
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Table A.4
(Vegetation) indices available in EODIE.
Index name Abbreviation Formula Reference

Normalized Difference
Vegetation Index

NDVI (NIR - RED)/(NIR + RED) [26]

Ratio Vegetation Index RVI NIR/RED [64]

Soil-Adjusted
Vegetation Index

SAVI (1.5 * (NIR - RED))/(NIR + RED + 0.5) [65]

Normalized Burn Ratio NBR (NIR - SWIR2)/(NIR + SWIR2) [66]

Kernel
Normalized Difference
Vegetation Index

kNDVI (1 − ( − (NIR − RED)2/(2 ∗ (0.5 ∗ (NIR+
RED)2)))

2
)/(1 + ( − (NIR−

RED)2/(2 ∗ (0.5 ∗ (NIR + RED)2)))
2
)

[67]

Normalized Difference
Moisture Index

NDMI (NIR - SWIR1)/(NIR + SWIR1) [68]

Normalized Difference
Water Index

NDWI (GREEN - NIR)/(GREEN + NIR) [69]

Modified
Normalized Difference
Water Index

MNDWI (GREEN - SWIR1)/(GREEN + SWIR1) [70]

Enhanced Vegetation Index EVI 2.5 * ((NIR - RED)/(NIR +
6 * RED - 7.5 * BLUE + 1))

[71]

Enhanced Vegetation Index 2 EVI2 2.5 * ((NIR - RED)/
(2.4 * RED + NIR + 1))

[72]

Difference Vegetation Index DVI NIR - RED [73]

Chlorophyll
Vegetation Index

CVI (NIR * RED)/(GREEN * GREEN) [74]

Modified
Chlorophyll Absorption in
Reflectance Index

MCARI (R_EDGE - RED - 0.2 * (R_EDGE
- GREEN) * (R_EDGE/RED)

[75]

Normalized Difference Index 45 NDI45 (R_EDGE - RED)/(R_EDGE + RED) [76]

Tasseled Cap
(for Sentinel-2)

TCT Coefficients * [BLUE, GREEN,
RED, NIR, SWIR1, SWIR2]

[77]
5. Conclusions

EODIE is a toolkit that automates statistical time series data
xtraction process from remote sensing data from user-defined
reas of interest. At the time of development, no other tool
rovided the full time series extraction process and other tools
ould not easily be integrated in the full data analysis workflow
n Python.

Our contribution with EODIE is to benefit research and de-
elopment in many different disciplines by enabling faster pro-
otyping and testing of new concepts with remote sensing time
eries. With this, we are positive in that EODIE has the potential
o foster scientific discoveries and benefit applications in various
isciplines to increase the understanding of processes on Earth’s
urface over time.
While EODIE is fully functional in its current state presented

ere, there is always room for improvements. Ideas for future
ork can be found in the EODIE Gitlab Repository issues.10 EODIE

s publicly available with an open license and its functionality
xtensions and bug fixes can be contributed by everyone.
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ppendix A. Vegetation indices

See Table A.4.

ppendix B. Projects

EODIE or its derivates have enabled or have been used in
ollowing projects:

• A project related to deforestation monitoring with Sentinel-
1 funded by the European Space Agency.11

• Two projects related to crop and crop yield monitoring
funded by Eurostat: CROPYIELD.12 and BIGDATA&EO13

• A Business Finland co-creation project, working with Finnish
companies in EO-business to find business opportunities
(EODIE: 5332/31/2018),

• Project AICropPro14 investigating machine learning meth-
ods combined with crop simulation models funded by the
Academy of Finland.

• Multiple larger national agriculture related projects such as
DIGITALIS,15 Peltopiste16 and Ikivihreä.17

References

[1] Lillesand T, Kiefer R, Chipman J. Remote sensing and image interpretation.
Wiley; 2015.

[2] Wulder MA, Loveland TR, Roy DP, Crawford CJ, Masek JG, Woodcock CE,
et al. Current status of Landsat program, science, and applications. Re-
mote Sens Environ 2019;225:127–47. http://dx.doi.org/10.1016/j.rse.2019.
02.015.

[3] European Space Agency. Sentinel-2 user handbook. 2015, URL
https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-
2_User_Handbook.pdf.

[4] USGS. Landsat WRS 2 scene boundaries KML file. 2022, URL https://www.
usgs.gov/media/files/landsat-wrs-2-scene-boundaries-kml-file.

[5] ESA. Data products. 2022, URL https://sentinels.copernicus.eu/web/
sentinel/missions/sentinel-2/data-products.

[6] E. D. Chaves M, C. A. Picoli M, D. Sanches I. Recent applications of
Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A
systematic review. Remote Sens 2020;12(18). URL https://www.mdpi.com/
2072-4292/12/18/3062.

[7] Mohajane M, Essahlaoui A, Oudija F, Hafyani ME, Hmaidi AE, Ouali AE, et
al. Land use/land cover (LULC) using landsat data series (MSS, TM, ETM and
OLI) in Azrou forest, in the Central Middle Atlas of Morocco. Environments
2018;5(12):131. http://dx.doi.org/10.3390/environments5120131.

[8] Mahdianpari M, Salehi B, Rezaee M, Mohammadimanesh F, Zhang Y. Very
deep convolutional neural networks for complex land cover mapping
using multispectral remote sensing imagery. Remote Sens 2018;10(7).
http://dx.doi.org/10.3390/rs10071119.

[9] Tong X-Y, Xia G-S, Lu Q, Shen H, Li S, You S, et al. Land-cover clas-
sification with high-resolution remote sensing images using transferable
deep models. Remote Sens Environ 2020;237. http://dx.doi.org/10.1016/j.
rse.2019.111322.

[10] Hu B, Xu Y, Huang X, Cheng Q, Ding Q, Bai L, et al. Improving urban
land cover classification with combined use of Sentinel-2 and Sentinel-
1 imagery. ISPRS Int J Geo-Inf 2021;10(8). http://dx.doi.org/10.3390/
ijgi10080533.

11 http://project.gisat.cz/s14scienceAmazonas/
12 https://www.luke.fi/en/projects/cropyield
13 https://www.luke.fi/en/projects/bigdataeo
14 https://www.luke.fi/en/projects/aicroppro
15 https://www.luke.fi/en/projects/digitalis-01
16 https://www.luke.fi/en/projects/peltopist
17 https://www.luke.fi/en/projects/ikivihrea
8

[11] Zhang T, Su J, Xu Z, Luo Y, Li J. Sentinel-2 satellite imagery for ur-
ban land cover classification by optimized random forest classifier. Appl
Sci 2021;11(2). http://dx.doi.org/10.3390/app11020543, URL https://www.
mdpi.com/2076-3417/11/2/543.

[12] Segarra J, Buchaillot ML, Araus JL, Kefauver SC. Remote sensing for preci-
sion agriculture: Sentinel-2 improved features and applications. Agronomy
2020;10(5). URL https://www.mdpi.com/2073-4395/10/5/641.

[13] Duarte L, Teodoro AC, Sousa JJ, Pádua L. QVigourMap: A GIS open
source application for the creation of canopy vigour maps. Agron-
omy 2021;11(5). http://dx.doi.org/10.3390/agronomy11050952, URL https:
//www.mdpi.com/2073-4395/11/5/952.

[14] Bolton DK, Friedl MA. Forecasting crop yield using remotely sensed
vegetation indices and crop phenology metrics. Agricult Forest Meteorol
2013;173:74–84. http://dx.doi.org/10.1016/j.agrformet.2013.01.007.

[15] Nazir A, Ullah S, Saqib ZA, Abbas A, Ali A, Iqbal MS, et al. Estimation and
forecasting of rice yield using phenology-based algorithm and linear re-
gression model on Sentinel-II satellite data. Agriculture-Basel 2021;11(10).
http://dx.doi.org/10.3390/agriculture11101026.

[16] Yli-Heikkila M, Wittke S, Luotamo M, Puttonen E, Sulkava M, Pellikka P, et
al. Scalable crop yield prediction with Sentinel-2 time series and temporal
convolutional network. Remote Sens 2022;14(17). http://dx.doi.org/10.
3390/rs14174193, URL https://www.mdpi.com/2072-4292/14/17/4193.

[17] Sandamali KUJ, Chathuranga KAM. Quantification of burned severity of the
forest fire using Sentinel-2 remote sensing images: A case study in the Ella
Sri Lanka. Res Rev: J Environ Sci 2021;3(2):1–12.

[18] Duarte L, Teodoro AC, Gonçalves H. Deriving phenological metrics from
NDVI through an open source tool developed in QGIS. In: Michel U,
Schulz K, editors. Earth resources and environmental remote sensing/GIS
applications V, vol. 9245. SPIE, International Society for Optics and
Photonics; 2014, 924511. http://dx.doi.org/10.1117/12.2066136.

[19] Misra G, Cawkwell F, Wingler A. Status of phenological research using
Sentinel-2 data: A review. Remote Sens 2020;12(17). URL https://www.
mdpi.com/2072-4292/12/17/2760.

[20] Diao C. Remote sensing phenological monitoring framework to characterize
corn and soybean physiological growing stages. Remote Sens Environ
2020;248. http://dx.doi.org/10.1016/j.rse.2020.111960.

[21] Bajocco S, Ferrara C, Alivernini A, Bascietto M, Ricotta C. Remotely-sensed
phenology of Italian forests: Going beyond the species. Int J Appl Earth
Obs Geoinf 2019;74:314–21. http://dx.doi.org/10.1016/j.jag.2018.10.003.

[22] Madonsela S, Cho MA, Mathieu R, Mutanga O, Ramoelo A, Kaszta Z,
et al. Multi-phenology WorldView-2 imagery improves remote sensing
of savannah tree species. Int J Appl Earth Obs Geoinf 2017;58:65–73.
http://dx.doi.org/10.1016/j.jag.2017.01.018.

[23] Junttila S, Kljun N, Eklundh L. Comparison of light use efficiency, plant
phenology index, and light response function-based GPP models in the
northern forest landscape. In: IEEE international geoscience and remote
sensing symposium IGARSS. 2021, p. 6917–20. http://dx.doi.org/10.1109/
IGARSS47720.2021.9554177.

[24] Li L, Qiu B, Guo W, Zhang Y, Song Q, Chen J. Phenological and physiological
responses of the terrestrial ecosystem to the 2019 drought event in
Southwest China: Insights from satellite measurements and the SSiB2
model. Int J Appl Earth Obs Geoinf 2022;111. http://dx.doi.org/10.1016/
j.jag.2022.102832.

[25] Sun X, Yuan L, Liu M, Liang S, Li D, Liu L. Quantitative estimation for the
impact of mining activities on vegetation phenology and identifying its
controlling factors from Sentinel-2 time series. Int J Appl Earth Obs Geoinf
2022;111. http://dx.doi.org/10.1016/j.jag.2022.102814.

[26] Rouse JJ, Haas R, Schell J, Deering D. Monitoring vegetation systems in
the Great Plains with ERTS. In: Proceedings of the third earth resources
technology satellite-1 symposium, Washington, DC, USA. 1973.

[27] Tucker C, Miller L, Pearson R. Measurement of the combined effect of green
biomass, chlorophyll, and leaf water on canopy spectroreflectance of the
shortgrass prairie. Remote Sens Earth Resour 1973.

[28] SNAP - ESA Sentinel Application Platform, version 8.0.0. 2020, URL http:
//step.esa.int.

[29] Frantz D. FORCE - Landsat + Sentinel-2 analysis ready data and beyond.
Remote Sens 2019;11(9). http://dx.doi.org/10.3390/rs11091124, URL https:
//www.mdpi.com/2072-4292/11/9/1124.

[30] Grizonnet M, Michel J, Poughon V, Inglada J, Savinaud M, Cresson R.
Orfeo ToolBox: Open source processing of remote sensing images. Open
Geospatial Data, Softw Stand 2017;2(15):1–8. http://dx.doi.org/10.1186/
s40965-017-0031-6.

[31] Congedo L. Semi-Automatic Classification Plugin: A Python tool for the
download and processing of remote sensing images in QGIS. J Open Sour
Softw 2021;6(64):3172. http://dx.doi.org/10.21105/joss.03172.

[32] Ranghetti L, Boschetti M, Nutini F, Busetto L. ‘‘sen2r’’: An R toolbox for au-
tomatically downloading and preprocessing Sentinel-2 satellite data. Com-
put Geosci 2020;139. http://dx.doi.org/10.1016/j.cageo.2020.104473, URL
https://www.sciencedirect.com/science/article/pii/S0098300419304893.

[33] Sentinelhub for Python, Sinergise Ltd. 2022, URL https://sentinelhub-py.
readthedocs.io/en/latest/.

http://refhub.elsevier.com/S2352-7110(23)00117-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb1
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb1
http://dx.doi.org/10.1016/j.rse.2019.02.015
http://dx.doi.org/10.1016/j.rse.2019.02.015
http://dx.doi.org/10.1016/j.rse.2019.02.015
https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook.pdf
https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook.pdf
https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook.pdf
https://www.usgs.gov/media/files/landsat-wrs-2-scene-boundaries-kml-file
https://www.usgs.gov/media/files/landsat-wrs-2-scene-boundaries-kml-file
https://www.usgs.gov/media/files/landsat-wrs-2-scene-boundaries-kml-file
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/data-products
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/data-products
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/data-products
https://www.mdpi.com/2072-4292/12/18/3062
https://www.mdpi.com/2072-4292/12/18/3062
https://www.mdpi.com/2072-4292/12/18/3062
http://dx.doi.org/10.3390/environments5120131
http://dx.doi.org/10.3390/rs10071119
http://dx.doi.org/10.1016/j.rse.2019.111322
http://dx.doi.org/10.1016/j.rse.2019.111322
http://dx.doi.org/10.1016/j.rse.2019.111322
http://dx.doi.org/10.3390/ijgi10080533
http://dx.doi.org/10.3390/ijgi10080533
http://dx.doi.org/10.3390/ijgi10080533
http://project.gisat.cz/s14scienceAmazonas/
https://www.luke.fi/en/projects/cropyield
https://www.luke.fi/en/projects/bigdataeo
https://www.luke.fi/en/projects/aicroppro
https://www.luke.fi/en/projects/digitalis-01
https://www.luke.fi/en/projects/peltopist
https://www.luke.fi/en/projects/ikivihrea
http://dx.doi.org/10.3390/app11020543
https://www.mdpi.com/2076-3417/11/2/543
https://www.mdpi.com/2076-3417/11/2/543
https://www.mdpi.com/2076-3417/11/2/543
https://www.mdpi.com/2073-4395/10/5/641
http://dx.doi.org/10.3390/agronomy11050952
https://www.mdpi.com/2073-4395/11/5/952
https://www.mdpi.com/2073-4395/11/5/952
https://www.mdpi.com/2073-4395/11/5/952
http://dx.doi.org/10.1016/j.agrformet.2013.01.007
http://dx.doi.org/10.3390/agriculture11101026
http://dx.doi.org/10.3390/rs14174193
http://dx.doi.org/10.3390/rs14174193
http://dx.doi.org/10.3390/rs14174193
https://www.mdpi.com/2072-4292/14/17/4193
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb17
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb17
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb17
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb17
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb17
http://dx.doi.org/10.1117/12.2066136
https://www.mdpi.com/2072-4292/12/17/2760
https://www.mdpi.com/2072-4292/12/17/2760
https://www.mdpi.com/2072-4292/12/17/2760
http://dx.doi.org/10.1016/j.rse.2020.111960
http://dx.doi.org/10.1016/j.jag.2018.10.003
http://dx.doi.org/10.1016/j.jag.2017.01.018
http://dx.doi.org/10.1109/IGARSS47720.2021.9554177
http://dx.doi.org/10.1109/IGARSS47720.2021.9554177
http://dx.doi.org/10.1109/IGARSS47720.2021.9554177
http://dx.doi.org/10.1016/j.jag.2022.102832
http://dx.doi.org/10.1016/j.jag.2022.102832
http://dx.doi.org/10.1016/j.jag.2022.102832
http://dx.doi.org/10.1016/j.jag.2022.102814
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb26
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb26
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb26
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb26
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb26
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb27
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb27
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb27
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb27
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb27
http://step.esa.int
http://step.esa.int
http://step.esa.int
http://dx.doi.org/10.3390/rs11091124
https://www.mdpi.com/2072-4292/11/9/1124
https://www.mdpi.com/2072-4292/11/9/1124
https://www.mdpi.com/2072-4292/11/9/1124
http://dx.doi.org/10.1186/s40965-017-0031-6
http://dx.doi.org/10.1186/s40965-017-0031-6
http://dx.doi.org/10.1186/s40965-017-0031-6
http://dx.doi.org/10.21105/joss.03172
http://dx.doi.org/10.1016/j.cageo.2020.104473
https://www.sciencedirect.com/science/article/pii/S0098300419304893
https://sentinelhub-py.readthedocs.io/en/latest/
https://sentinelhub-py.readthedocs.io/en/latest/
https://sentinelhub-py.readthedocs.io/en/latest/


Samantha Wittke, Anne Fouilloux, Petteri Lehti et al. SoftwareX 23 (2023) 101421
[34] Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. Google
Earth Engine: Planetary-scale geospatial analysis for everyone. Remote
Sens Environ 2017;202:18–27. http://dx.doi.org/10.1016/j.rse.2017.06.031.

[35] Xue J, Su B. Significant remote sensing vegetation indices: A review of de-
velopments and applications. In: Li C, editor. J Sensors 2017;2017:1353691.
http://dx.doi.org/10.1155/2017/1353691, Publisher: Hindawi.

[36] Zeng Y, Hao D, Huete A, Dechant B, Berry J, Chen JM, et al. Optical vegeta-
tion indices for monitoring terrestrial ecosystems globally. Nat Rev Earth
Environ 2022;3(7):477–93. http://dx.doi.org/10.1038/s43017-022-00298-5.

[37] Bolton DK, Gray JM, Melaas EK, Moon M, Eklundh L, Friedl MA.
Continental-scale land surface phenology from harmonized Landsat 8 and
Sentinel-2 imagery. Remote Sens Environ 2020;240:111685. http://dx.doi.
org/10.1016/j.rse.2020.111685.

[38] Al-Gaadi KA, Hassaballa AA, Tola E, Kayad AG, Madugundu R, Alblewi B,
et al. Prediction of potato crop yield using precision agriculture tech-
niques. PLoS One 2016;11(9):e0162219. http://dx.doi.org/10.1371/journal.
pone.0162219.

[39] Mutanga O, Adam E, Cho MA. High density biomass estimation for wetland
vegetation using WorldView-2 imagery and random forest regression
algorithm. Int J Appl Earth Obs Geoinf 2012;18:399–406. http://dx.doi.org/
10.1016/j.jag.2012.03.012.

[40] Van Rossum G, Drake FL. Python 3 reference manual. Scotts Valley, CA:
CreateSpace; 2009.

[41] Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P,
Cournapeau D, et al. Array programming with NumPy. Nature
2020;585(7825):357–62. http://dx.doi.org/10.1038/s41586-020-2649-2.

[42] Gillies S, et al. Shapely: Manipulation and analysis of geometric objects.
2007, toblerity.org, URL https://github.com/Toblerity/Shapely.

[43] Perry MT. Rasterstats documentation. 2015, URL https://pythonhosted.org/
rasterstats/, [Accessed on 18 October 2021].

[44] Gillies S, et al. Rasterio: Geospatial raster I/O for Python programmers.
2013, Mapbox, URL https://github.com/mapbox/rasterio, [Accessed on 18
October 2021.

[45] GDAL/OGR contributors. GDAL/OGR geospatial data abstraction software
library. 2021, Open Source Geospatial Foundation, URL https://gdal.org.

[46] Jordahl K, den Bossche JV, Fleischmann M, Wasserman J, McBride J,
Gerard J, et al. Geopandas/geopandas: v0.11.1. 2022, http://dx.doi.org/10.
5281/zenodo.6894736, Zenodo.

[47] Dask Development Team. Dask: Library for dynamic task scheduling. 2016,
URL https://dask.org.

[48] Python Software Foundation. sqlite3 - DB-API 2.0 interface for SQLite
databases. 2022, URL https://docs.python.org/3/library/sqlite3.html.

[49] Ayer VM, Miguez S, Toby BH. Why scientists should learn to program
in Python. Powder Diffr 2014;29(S2):S48–64. http://dx.doi.org/10.1017/
S0885715614000931.

[50] Peng Y, Zhang Y, Hu M. An empirical study for common language features
used in Python projects. In: 2021 IEEE international conference on software
analysis, evolution and reengineering. SANER, 2021, p. 24–35. http://dx.doi.
org/10.1109/SANER50967.2021.00012.

[51] Hagolle O, Huc M, Desjardins C, Auer S, Richter R. MAJA Algorithm The-
oretical Basis Document. Zenodo; 2017, http://dx.doi.org/10.5281/zenodo.
1209633.

[52] Foga S, Scaramuzza PL, Guo S, Zhu Z, Dilley RD, Beckmann T, et al. Cloud
detection algorithm comparison and validation for operational Landsat
data products. Remote Sens Environ 2017;194:379–90. http://dx.doi.org/
10.1016/j.rse.2017.03.026, URL https://linkinghub.elsevier.com/retrieve/pii/
S0034425717301293.

[53] Tarrio K, Tang X, Masek JG, Claverie M, Ju J, Qiu S, et al. Comparison
of cloud detection algorithms for Sentinel-2 imagery. Sci Remote Sens
2020;2:100010. http://dx.doi.org/10.1016/j.srs.2020.100010, URL https://
www.sciencedirect.com/science/article/pii/S2666017220300092.

[54] Zekoll V, Main-Knorn M, Alonso K, Louis J, Frantz D, Richter R, et al.
Comparison of masking algorithms for Sentinel-2 imagery. Remote Sens
2021;13(1):137. http://dx.doi.org/10.3390/rs13010137, URL https://www.
mdpi.com/2072-4292/13/1/137.

[55] Python Software Foundation. pickle - Python object serialization. 2022, URL
https://docs.python.org/3/library/pickle.html.

[56] Ritter N, Ruth M. The GeoTiff data interchange standard for raster geo-
graphic images. Int J Remote Sens 1997;18(7):1637–47. http://dx.doi.org/
10.1080/014311697218340.
9

[57] Conda license. 2017, Continuum Analytics, Inc., URL https://docs.conda.io/
projects/conda/en/latest/.

[58] The conda-forge Project: Community-based software distribution built on
the conda package format and ecosystem. conda-forge community; 2015,
URL https://zenodo.org/record/4774217.

[59] Hong NPC, Katz DS, Barker M, Lamprecht A-L, Martinez C, Psomopoulos FE,
et al. FAIR principles for research software (FAIR4RS principles). Research
Data Alliance; 2021, http://dx.doi.org/10.15497/RDA00065.

[60] Agency for rural affairs in Finland. Agricultural parcels 2020, 1:5 000.
2022, CSC – IT Center for Science, http://urn.fi/urn:nbn:fi:att:819a0a28-
c603-4403-af88-0ca32d5188aa.

[61] Peltonen-Sainio P, Jauhiainen L, Laurila H, Sorvali J, Honkavaara E, Wit-
tke S, Karjalainen M, et al. Land use optimization tool for sustainable
intensification of high-latitude agricultural systems. Land Use Policy
2019;88:104104. http://dx.doi.org/10.1016/j.landusepol.2019.104104, URL
https://www.sciencedirect.com/science/article/pii/S0264837718319781.

[62] Peltonen-Sainio P, Jauhiainen L, Honkavaara E, Wittke S, Karjalainen M,
Puttonen E. Pre-crop values from satellite images for various previous
and subsequent crop combinations. Front Plant Sci 2019;10:462. http://dx.
doi.org/10.3389/fpls.2019.00462, URL https://www.frontiersin.org/article/
10.3389/fpls.2019.00462.

[63] Wittke S, Yu X, Karjalainen M, Hyyppä J, Puttonen E. Comparison of
two-dimensional multitemporal Sentinel-2 data with three-dimensional
remote sensing data sources for forest inventory parameter estimation
over a boreal forest. Int J Appl Earth Obs Geoinf 2019;76:167–78. http:
//dx.doi.org/10.1016/j.jag.2018.11.009, URL https://www.sciencedirect.com/
science/article/pii/S0303243418309462.

[64] Jordan CF. Derivation of leaf-area index from quality of light on the forest
floor. Ecology 1969;50(4):663–6. http://dx.doi.org/10.2307/1936256.

[65] Huete A. A soil-adjusted vegetation index (SAVI). Remote Sens Environ
1988;25(3):295–309. http://dx.doi.org/10.1016/0034-4257(88)90106-x.

[66] García ML, Caselles V. Mapping burns and natural reforestation using
thematic Mapper data. Geocarto Int 1991;6(1):31–7. http://dx.doi.org/10.
1080/10106049109354290.

[67] Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, Walther S, Du-
veiller G, Cescatti A, et al. A unified vegetation index for quantifying the
terrestrial biosphere. Sci Adv 2021;7(9). http://dx.doi.org/10.1126/sciadv.
abc7447.

[68] Gao B. NDWI–A normalized difference water index for remote sens-
ing of vegetation liquid water from space. Remote Sens Environ
1996;58(3):257–66. http://dx.doi.org/10.1016/s0034-4257(96)00067-3.

[69] McFeeters SK. The use of the Normalized Difference Water Index
(NDWI) in the delineation of open water features. Int J Remote Sens
1996;17(7):1425–32. http://dx.doi.org/10.1080/01431169608948714.

[70] Xu H. Modification of Normalised Difference Water Index (NDWI) to en-
hance open water features in remotely sensed imagery. Int J Remote Sens
2006;27(14):3025–33. http://dx.doi.org/10.1080/01431160600589179.

[71] Liu HQ, Huete A. A feedback based modification of the NDVI to minimize
canopy background and atmospheric noise. IEEE Trans Geosci Remote Sens
1995;33(2):457–65. http://dx.doi.org/10.1109/TGRS.1995.8746027.

[72] Jiang Z, Huete A, Didan K, Miura T. Development of a two-band en-
hanced vegetation index without a blue band. Remote Sens Environ
2008;112(10):3833–45. http://dx.doi.org/10.1016/j.rse.2008.06.006.

[73] Tucker CJ. Red and photographic infrared linear combinations for monitor-
ing vegetation. Remote Sens Environ 1979;8(2):127–50. http://dx.doi.org/
10.1016/0034-4257(79)90013-0.

[74] Vincini M, Frazzi E, D’Alessio P. A broad-band leaf chlorophyll vegetation
index at the canopy scale. Precis Agric 2008;9(5):303–19. http://dx.doi.org/
10.1007/s11119-008-9075-z.

[75] Daughtry C, Walthall C, Kim M, de Colstoun EB, McMurtrey J. Estimating
corn leaf chlorophyll concentration from leaf and canopy reflectance.
Remote Sens Environ 2000;74(2):229–39. http://dx.doi.org/10.1016/s0034-
4257(00)00113-9.

[76] Delegido J, Verrelst J, Alonso L, Moreno J. Evaluation of Sentinel-2 red-
edge bands for empirical estimation of green LAI and chlorophyll content.
Sensors 2011;11(7):7063–81. http://dx.doi.org/10.3390/s110707063.

[77] Shi T, Xu H. Derivation of Tasseled cap transformation coefficients for
Sentinel-2 MSI at-sensor reflectance data. IEEE J Sel Top Appl Earth Observ
Remote Sens 2019;12(10):4038–48. http://dx.doi.org/10.1109/jstars.2019.
2938388.

http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1155/2017/1353691
http://dx.doi.org/10.1038/s43017-022-00298-5
http://dx.doi.org/10.1016/j.rse.2020.111685
http://dx.doi.org/10.1016/j.rse.2020.111685
http://dx.doi.org/10.1016/j.rse.2020.111685
http://dx.doi.org/10.1371/journal.pone.0162219
http://dx.doi.org/10.1371/journal.pone.0162219
http://dx.doi.org/10.1371/journal.pone.0162219
http://dx.doi.org/10.1016/j.jag.2012.03.012
http://dx.doi.org/10.1016/j.jag.2012.03.012
http://dx.doi.org/10.1016/j.jag.2012.03.012
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb40
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb40
http://refhub.elsevier.com/S2352-7110(23)00117-6/sb40
http://dx.doi.org/10.1038/s41586-020-2649-2
https://github.com/Toblerity/Shapely
https://pythonhosted.org/rasterstats/
https://pythonhosted.org/rasterstats/
https://pythonhosted.org/rasterstats/
https://github.com/mapbox/rasterio
https://gdal.org
http://dx.doi.org/10.5281/zenodo.6894736
http://dx.doi.org/10.5281/zenodo.6894736
http://dx.doi.org/10.5281/zenodo.6894736
https://dask.org
https://docs.python.org/3/library/sqlite3.html
http://dx.doi.org/10.1017/S0885715614000931
http://dx.doi.org/10.1017/S0885715614000931
http://dx.doi.org/10.1017/S0885715614000931
http://dx.doi.org/10.1109/SANER50967.2021.00012
http://dx.doi.org/10.1109/SANER50967.2021.00012
http://dx.doi.org/10.1109/SANER50967.2021.00012
http://dx.doi.org/10.5281/zenodo.1209633
http://dx.doi.org/10.5281/zenodo.1209633
http://dx.doi.org/10.5281/zenodo.1209633
http://dx.doi.org/10.1016/j.rse.2017.03.026
http://dx.doi.org/10.1016/j.rse.2017.03.026
http://dx.doi.org/10.1016/j.rse.2017.03.026
https://linkinghub.elsevier.com/retrieve/pii/S0034425717301293
https://linkinghub.elsevier.com/retrieve/pii/S0034425717301293
https://linkinghub.elsevier.com/retrieve/pii/S0034425717301293
http://dx.doi.org/10.1016/j.srs.2020.100010
https://www.sciencedirect.com/science/article/pii/S2666017220300092
https://www.sciencedirect.com/science/article/pii/S2666017220300092
https://www.sciencedirect.com/science/article/pii/S2666017220300092
http://dx.doi.org/10.3390/rs13010137
https://www.mdpi.com/2072-4292/13/1/137
https://www.mdpi.com/2072-4292/13/1/137
https://www.mdpi.com/2072-4292/13/1/137
https://docs.python.org/3/library/pickle.html
http://dx.doi.org/10.1080/014311697218340
http://dx.doi.org/10.1080/014311697218340
http://dx.doi.org/10.1080/014311697218340
https://docs.conda.io/projects/conda/en/latest/
https://docs.conda.io/projects/conda/en/latest/
https://docs.conda.io/projects/conda/en/latest/
https://zenodo.org/record/4774217
http://dx.doi.org/10.15497/RDA00065
http://urn.fi/urn:nbn:fi:att:819a0a28-c603-4403-af88-0ca32d5188aa
http://urn.fi/urn:nbn:fi:att:819a0a28-c603-4403-af88-0ca32d5188aa
http://urn.fi/urn:nbn:fi:att:819a0a28-c603-4403-af88-0ca32d5188aa
http://dx.doi.org/10.1016/j.landusepol.2019.104104
https://www.sciencedirect.com/science/article/pii/S0264837718319781
http://dx.doi.org/10.3389/fpls.2019.00462
http://dx.doi.org/10.3389/fpls.2019.00462
http://dx.doi.org/10.3389/fpls.2019.00462
https://www.frontiersin.org/article/10.3389/fpls.2019.00462
https://www.frontiersin.org/article/10.3389/fpls.2019.00462
https://www.frontiersin.org/article/10.3389/fpls.2019.00462
http://dx.doi.org/10.1016/j.jag.2018.11.009
http://dx.doi.org/10.1016/j.jag.2018.11.009
http://dx.doi.org/10.1016/j.jag.2018.11.009
https://www.sciencedirect.com/science/article/pii/S0303243418309462
https://www.sciencedirect.com/science/article/pii/S0303243418309462
https://www.sciencedirect.com/science/article/pii/S0303243418309462
http://dx.doi.org/10.2307/1936256
http://dx.doi.org/10.1016/0034-4257(88)90106-x
http://dx.doi.org/10.1080/10106049109354290
http://dx.doi.org/10.1080/10106049109354290
http://dx.doi.org/10.1080/10106049109354290
http://dx.doi.org/10.1126/sciadv.abc7447
http://dx.doi.org/10.1126/sciadv.abc7447
http://dx.doi.org/10.1126/sciadv.abc7447
http://dx.doi.org/10.1016/s0034-4257(96)00067-3
http://dx.doi.org/10.1080/01431169608948714
http://dx.doi.org/10.1080/01431160600589179
http://dx.doi.org/10.1109/TGRS.1995.8746027
http://dx.doi.org/10.1016/j.rse.2008.06.006
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1007/s11119-008-9075-z
http://dx.doi.org/10.1007/s11119-008-9075-z
http://dx.doi.org/10.1007/s11119-008-9075-z
http://dx.doi.org/10.1016/s0034-4257(00)00113-9
http://dx.doi.org/10.1016/s0034-4257(00)00113-9
http://dx.doi.org/10.1016/s0034-4257(00)00113-9
http://dx.doi.org/10.3390/s110707063
http://dx.doi.org/10.1109/jstars.2019.2938388
http://dx.doi.org/10.1109/jstars.2019.2938388
http://dx.doi.org/10.1109/jstars.2019.2938388

	EODIE — Earth Observation Data Information Extractor
	Motivation and significance
	Spaceborne remote sensing
	Initial motivation
	Other tools
	Limitations

	Software description
	Software architecture
	Main components
	User interface
	Workflow
	Scalability

	Software packaging
	EODIE Graphical User Interface

	Illustrative Example
	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Vegetation indices
	Appendix B. Projects
	References


