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We develop a multigrid solver for the second biharmonic problem in the context of Iso-
geometric Analysis (IgA), where we also allow a zero-order term. In a previous paper,

the authors have developed an analysis for the first biharmonic problem based on Hack-

busch’s framework. This analysis can only be extended to the second biharmonic problem
if one assumes uniform grids. In this paper, we prove a multigrid convergence estimate

using Bramble’s framework for multigrid analysis without regularity assumptions. We
show that the bound for the convergence rate is independent of the scaling of the zero-
order term and the spline degree. It only depends linearly on the number of levels, thus

logarithmically on the grid size. Numerical experiments are provided which illustrate the

convergence theory and the efficiency of the proposed multigrid approaches.
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1. Introduction

We consider multigrid methods for biharmonic problems discretized by Isogeometric

Analysis (IgA). In particular, we consider the following model problem: Given a

bounded domain Ω ⊂ Rd, d ∈ {2, 3}, with Lipschitz boundary ∂Ω, a parameter

β ≥ 0 and sufficiently smooth functions f , g1, and g2, find a function u such that

βu+ ∆2u = f in Ω,

u = g1 on ∂Ω,

∆u = g2 on ∂Ω

(1.1)
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holds in a variational sense. For β = 0, this problem is known as the second bihar-

monic problem, which is of interest for plate theory (cf. Ref. 7) and Stokes streamline

equations (cf. Ref. 10). Problems with β > 0 are of particular interest in the context

of optimal control problems, where the constraint is a second order elliptic operator.

The optimality systems associated to these optimal control problems can be precon-

ditioned robustly using preconditioners that rely on solving (1.1), see Refs. 21, 30,

1, 22. The problem (1.1) is obtained when considering the full observation; if one

considers an optimal control problem with limited observation, one would obtain

a similar problem, where the mass term βu is multiplied with the characteristic

function for the observation domain.

We derive a standard variational formulation of the model problem, which lives

in the Sobolev space H2(Ω). For the discretization, we use Isogeometric Analysis

(IgA) since it easily allows for H2-conforming discretizations. Particularly, we con-

sider a discretization based on tensor product B-splines of some degree p > 1 and

maximum smoothness, i.e., p− 1 times continuously differentiable. For the deriva-

tion of the multigrid solver, we set up a hierarchy of grids as obtained by uniform

refinement. Since we keep spline degree and spline smoothness fixed, we obtain

nested spaces.

Concerning the choice of the smoother, there are many possibilities. We are

interested in a smoother that yields a p-robust multigrid method. The first p-robust

multigrid solvers for isogeometric analysis were based on the boundary corrected

mass smoother (see Ref. 16) and the subspace corrected mass smoother (see Ref. 15).

Both have been formulated for the Poisson problem. Since the subspace corrected

mass smoother is more flexible and has proven itself more efficient in practice, we

restrict ourselves to that smoother. The multigrid solvers with subspace corrected

mass smoother have been extended to the first biharmonic problem in Ref. 29 and

to the second and third biharmonic problem in the thesis Ref. 28. The convergence

estimates are shown using the standard splitting of the analysis into approximation

property and smoothing property, as proposed by Hackbusch, cf. Ref. 13.

The theory in all of these papers requires that the grids are uniform since they

have been based on the p-robust approximation error estimates from Ref. 32, which

are valid only in this case. Since then, newer p-robust approximation error estimates,

see Refs. 26, 25, have been proposed, which do not require uniform grids. Using

these new estimates, it is straightforward to relax this assumption and to show

analogous results for the Poisson problem as well as the first biharmonic problem for

quasi uniform grids. However, this is not straightforward for the second biharmonic

problem, since the proof requires a certain commutativity property (cf. Lemma 9.2

in Ref. 28), which is only valid in case of uniform grids.

In this paper, we go another way. We base the analysis on the framework intro-

duced by Bramble et al., cf. Refs. 3, 2. This allows us to drop the requirement that

the grids are uniform. While this analysis could also be performed for other kinds

of boundary conditions, like the first biharmonic problem, we restrict ourselves to

the second biharmonic problem since it has previously turned out to be the more
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challenging one. For this setting, we prove a multigrid convergence estimate (Corol-

lary 5.1) which is robust with respect to the spline degree p and which only depends

logarithmically on the grid size h.

Moreover, that convergence result is robust in the parameter β ≥ 0. This analy-

sis is motivated by the mentioned optimal control problem. Such parameter-robust

multigrid solvers are also known for the Poisson problem, see Ref. 23 for an anal-

ysis based on Hackbusch’s framework. There, the authors also provide a regularity

result for the corresponding partial differential equation (PDE), which is based on

standard results for the Poisson problem. In our case, we do not need to do that

since Bramble’s analysis is not based on any regularity assumptions.

In the numerical experiments, one can observe that the convergence of a multi-

grid solver with subspace corrected mass smoother degrades if the geometry gets

distorted. While this is also true for the Poisson problem, this dependence is sig-

nificantly amplified for the biharmonic problem. The reason for the geometry de-

pendence of the convergence rates is that the subspace corrected mass smoother

is based on the tensor product structure of the spline space. This tensor product

structure is distorted by the geometry mapping. So, the contributions of the geom-

etry function are ignored when setting up the smoother. We aim to overcome this

problem by considering a hybrid smoother that combines the proposed smoother

with Gauss-Seidel sweeps, see also Refs. 29, 28.

Alternative smoothers based on overlapping multiplicative Schwarz techniques

have been considered in Refs. 8, 22. Both approaches give good numerical results

for the biharmonic problem. However, there is no rigorous, p-robust convergence

theory available for these methods. It is worth mentioning that, as an alternative

for solving biharmonic problems on the primal form, various kinds of mixed or

non-conforming formulations have been developed, cf. Refs. 4, 34, 14, 24, 6.

The remainder of the paper is organized as follows. We introduce IgA, the bi-

harmonic model problem in its variational form and its discretization in Section 2.

In Section 3, the multigrid method is introduced and we state sufficient conditions

for its convergence. We develop the approximation error estimates needed for the

convergence estimates in Section 4. The choice of the smoother, the smoothing prop-

erties and the resulting multigrid convergence results are addressed in Section 5.

Finally, we provide numerical results in Section 6.

2. Model problem and its discretization

2.1. The biharmonic model problem

Following the usual design principles of IgA, we assume that the computational

domain Ω ⊂ Rd has a Lipschitz boundary ∂Ω and that it is parameterized by a

bijective geometry function

G : Ω̂ = (0, 1)d → Ω = G(Ω̂),
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with first and second weak derivatives which are almost everywhere uniformly

bounded:

‖∇rG‖L∞(Ω̂) ≤ c1 and ‖∇r(G−1)‖L∞(Ω) ≤ c2, for r = 1, 2, (2.1)

for some constants c1 and c2. Note that this condition is satisfied if G is a C1-

continuous and bijective B-spline, where the inverse of the Jacobian is uniformly

bounded.

After homogenization, the variational formulation of the model problem (1.1)

reads as follows. Given f ∈ L2(Ω) and β ∈ R with β ≥ 0, find u ∈ V := H2(Ω) ∩
H1

0 (Ω) such that

β(u, v)L2(Ω) + (∆u,∆v)L2(Ω) = (f, v)L2(Ω) ∀ v ∈ V. (2.2)

Here and in what follows, L2(Ω) and Hr(Ω) denote the standard Lebesgue and

Sobolev spaces with standard inner products (·, ·)L2(Ω), (·, ·)Hr(Ω) and norms ‖ ·
‖L2(Ω), ‖·‖Hr(Ω). H

1
0 (Ω) is the standard subspace of H1(Ω) containing the functions

with vanishing trace. On V , we define the bilinear form (·, ·)B via

(u, v)B := (∆u,∆v)L2(Ω) ∀u, v ∈ V,

which is an inner product since we have the Poincaré like inequality

‖u‖H2(Ω) ≤ cΩ‖∆u‖L2(Ω) = cΩ‖u‖B ∀u ∈ V, (2.3)

where cΩ is a constant that depends only on the shape of Ω, cf. Ref. 22.

Using the substitution rule for integration and the chain rule for differentiation,

(2.2) can be expressed in terms of integrals on the parameter domain Ω̂. In IgA, this

is usually done in order to simplify the evaluation of the integrals using quadrature

rules. Besides these inner products, there are also standard inner products for the

parameter domain, like (·, ·)L2(Ω̂) and (·, ·)B̂, where the latter is given by

(û, v̂)B̂ := (∆û,∆v̂)L2(Ω̂) ∀ û, v̂ ∈ V̂ := H2(Ω̂) ∩H1
0 (Ω̂).

Also for the parameter domain Ω̂, the result (2.3) holds. So, we know

‖û‖H2(Ω̂) ≤ cΩ̂‖∆û‖L2(Ω̂) = cΩ̂‖û‖B̂ ∀ û ∈ V̂ .

Here and in what follows, differential operators applied to functions defined on the

parameter domain, like û, refer to the coordinates on the parameter domain. We

know (cf. Ref. 28) that there exist constants cM , cM , cB and cB only depending on

the constants c1, c2 and the shape of Ω such that

cM (u, u)L2(Ω) ≤ (û, û)L2(Ω̂) ≤ cM (u, u)L2(Ω) and

cB (u, u)B ≤ (û, û)B̂ ≤ cB (u, u)B
(2.4)

for all u ∈ V with û = u ◦G ∈ V̂ . We define a simplified bilinear form (·, ·)B̄ as the

inner product obtained by removing the cross terms from the inner product (·, ·)B̂,
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that is,

(û, v̂)B̄ :=

d∑
k=1

(
∂2
xk
û, ∂2

xk
v̂
)
L2(Ω̂)

∀ û, v̂ ∈ V̂ .

Here and in what follows, ∂x := ∂
∂x and ∂xy := ∂x∂y and ∂rx := ∂r

∂xr denote partial

derivatives. The original bilinear form and the simplified bilinear form are spectrally

equivalent, which implies that also the simplified bilinear form is an inner product.

Lemma 2.1. The inner products (·, ·)B̂ and (·, ·)B̄ are spectrally equivalent, that is,

(û, û)B̄ ≤ (û, û)B̂ ≤ d (û, û)B̄ ∀ û ∈ V̂ = H2(Ω̂) ∩H1
0 (Ω̂).

Proof. From the results of Refs. 11 and 12, it follows that ‖∆û‖L2(Ω̂) = ‖∇2v̂‖L2(Ω̂)

for û, v̂ ∈ V̂ , for a detailed proof, see, e.g., Lemma 3.3 in Ref. 30. Using this, we

obtain

‖û‖2B̂ = ‖∆û‖2
L2(Ω̂)

= ‖∇2û‖2
L2(Ω̂)

=

d∑
k=1

‖∂2
xk
û‖2

L2(Ω̂)︸ ︷︷ ︸
= ‖û‖2B̄

+

d∑
k=1

∑
l∈{1,...,d}\{k}

‖∂xkxl
û‖2

L2(Ω̂)︸ ︷︷ ︸
≥ 0

,

which shows the first side of the inequality. Using the Cauchy-Schwarz inequality

and ab ≤ 1
2 (a2 + b2), we obtain

‖û‖2B̂ =

d∑
k=1

d∑
l=1

(
∂2
xk
û, ∂2

xl
û
)
L2(Ω̂)

≤ 1

2

d∑
k=1

d∑
l=1

(∥∥∂2
xk
û
∥∥2

L2(Ω̂)
+
∥∥∂2

xl
û
∥∥2

L2(Ω̂)

)
= d‖û‖2B̄,

which shows second side of the inequality.

Remark 2.1. A analogous result holds for the domain Ω, which satisfies condition

(2.1). In this case, the constants also depend on the shape of Ω.

2.2. Discretization

We consider a discretization using tensor product B-splines in the context of IgA. We

start by defining these splines on the parameter domain Ω̂. Let Ck(0, 1) denote the

space of all continuous functions mapping (0, 1)→ R that are k times continuously

differentiable and let Pp be the space of polynomials of degree at most p. For any

sequence of grid points τ := (τ0, . . . , τN+1) with

0 = τ0 < τ1 < · · · < τN < τN+1 = 1,

we define the space Sp,τ of splines of degree p with maximum smoothness by

Sp,τ :=
{
v ∈ Cp−1(0, 1) : v|(τj ,τj+1) ∈ Pp, j = 0, 1, . . . , N

}
.
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The size of the largest and the smallest interval are denoted by

hτ := max
j=0,...,N

(τj+1 − τj) and hτ ,min := min
j=0,...,N

(τj+1 − τj),

respectively. For the parameter domain, we define a spline space by tensorization,

which we transfer to the physical domain using the pull-back principle, thus we

define for given sequences of grid points τ `,1, . . . , τ `,d the spaces

V̂` :=

(
d⊗
i=1

Sp,τ `,i

)
∩H1

0 (Ω̂) ⊂ V̂ and V` := {f ◦G−1 : f ∈ V̂`} ⊂ V.

Here and in what follows, the tensor product space
⊗d

i=1 Sp,τ `,i
is the space of all

linear combinations of functions of the form v(x1, . . . , xd) = v1(x1) · · · vd(xd) with

vi ∈ Sp,τ `,i
. The spline degree p could be different for each of the spacial directions.

For notational convenience, we restrict ourselves to a uniform choice of the degree.

The corresponding minimum and maximum grid size are denoted by

h` := max
i=1,...,d

hτ `,i
and h`,min := min

i=1,...,d
hτ `,i,min.

For the multigrid methods we, set up a sequence nested spline spaces

V0 ⊂ V1 ⊂ · · · ⊂ VL ⊂ V with h0 > h1 > · · · > hL > 0

based on a sequence of nested grids.

We assume that all grids are quasi uniform, that is, there is a constant cq such

that

h` ≤ cq h`,min for ` = 0, 1, . . . , L. (2.5)

We also assume that the ratio of the grid sizes of any two consecutive grids is

bounded, that is, there is a constant cr such that

h`−1 ≤ cr h` for ` = 1, . . . , L. (2.6)

If the grids are obtained by uniform refinements of the coarsest grid, then this

condition is naturally satisfied with cr = 2.

By applying a Galerkin discretization, we obtain the following discrete problem:

Find u` ∈ V` such that

β(u`, v`)L2(Ω) + (u`, v`)B = (f, v`)L2(Ω) ∀ v` ∈ V`. (2.7)

By fixing a basis for the space V`, we can rewrite (2.7) in matrix-vector notation as

(βM` + B`)u` = f
`
, (2.8)

where B` is the biharmonic stiffness matrix,M` is the mass matrix, u` is the vector

representation of the corresponding function u` with respect to the chosen basis

and the vector f
`

is obtained by testing the right-hand side functional (f, ·)L2(Ω)

with the basis functions.
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Notation 2.1. Throughout this paper, c is a generic positive constant that is inde-

pendent of h and p, but may depend on d, the constants c1, c2, cq, and cr and the

shape of Ω.

For any two square matrices A,B ∈ Rn×n, A ≤ B means that

xTAx ≤ xTBx ∀x ∈ Rn.

3. The multigrid solver

In this section, we present an abstract multigrid method and give a convergence

theorem that is based on the analysis by Bramble et al., see Theorem 1 in Ref. 3.

3.1. The multigrid framework

Let us assume that we have nested spaces V0 ⊂ V1 ⊂ · · · ⊂ VL ⊂ V . Let I``−1 be

the matrix representation of the canonical embedding from V`−1 into V` and let the

restriction matrix I`−1
` be its transpose, this is I`−1

` := (I``−1)T .

On each grid level, ` = 0, . . . , L, we have a linear system

A` u` = f
`
,

which is obtained by discretizing a symmetric, bounded and coercive bilinear form

a(·, ·) in the space V` using the Galerkin principle. The matrix induces a norm via

‖u`‖A`
:= (A`u`, u`)1/2 = ‖A1/2

` u`‖. Here and in what follows, (·, ·) and ‖ · ‖ are

the Euclidean scalar product and norm, respectively. In the continuous setting, the

matrix can be represented by an operator

A : V → V ′ with Au = a(u, ·).

We have ‖u`‖A = ‖u`‖A`
for all u` ∈ V` with coefficient representation u`.

For the analysis, we can additionally choose symmetric positive definite ma-

trices X` for all grid levels ` = 0, 1, . . . , L, which induce norms via ‖u`‖X`
=

(X`u`, u`)
1/2 = ‖X1/2

` u`‖. The norm ‖u`‖X`
of a function u` ∈ V` is interpreted as

‖u`‖X`
, where u` is the coefficient representation of u`.

For the abstract framework, we assume to have a symmetric and positive definite

matrix τ`L
−1
` for every grid level ` = 1, . . . , L, representing the smoother.

Later, for the model problem, the bilinear form a(·, ·), the matrices A`, ` =

0, . . . , L and our choice of X` will be

a(u, v) = β(u, v)L2(Ω) + (u, v)B, A` = βM` +B` and X` = (β + h−4
` )M` +B`.

As smoothers, we will choose a subspace corrected mass smoother, a symmetric

Gauss-Seidel smoother and a hybrid smoother in Section 5. Based on these choices,

the overall algorithm reads as follows.

Algorithm 3.1. One multigrid cycle, applied to some iterate u
(0)
` and a right-hand

side f
`

consists of the following steps:
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• Apply ν` pre-smoothing steps, i.e., compute

u
(i)
` = u

(i−1)
` + τ`L

−1
` (f

`
−A`u(i−1)

` ) for i = 1, . . . , ν`. (3.1)

• Apply recursive coarse-grid correction, i.e., apply the following steps. Com-

pute the residual and restrict it to the next coarser grid level:

r`−1 = I`−1
` (f

`
−A`u(ν`)

` ).

If ` − 1 = 0, compute the update q
0

:= A−1
0 r0 using a direct solver. Oth-

erwise, compute the update q
`−1

by applying the algorithm r (r ∈ N :=

{1, 2, . . .}) times recursively to the right-hand side r`−1 and a zero vector

as initial guess. Then set

u
(ν`+1)
` = u

(ν`)
` + I``−1q`−1

.

• Apply ν` post-smoothing steps, i.e., compute u
(i)
` using (3.1) for i = ν` +

2, . . . , 2ν` + 1 to obtain the next iterate u
(2ν`+1)
` .

This abstract algorithm coincides with the algorithm presented in Ref. 3. Since

each multigrid cycle is linear, its application can be expressed by the matrix Bs` ,

which is recursively given by Bs0 := A−1
0 and

Bs` :=
(
I−(I−τ`L−1

` A`)
ν`(I−I``−1B

s
`−1I

`−1
` A`)r(I−τ`L−1

` A`)
ν`
)
A−1
` , ` = 1, . . . , L.

The iteration matrix corresponding to one multigrid cycle is given by

I −Bs`A` = (I − τ`L−1
` A`)

ν`(I − I``−1B
s
`−1I

`−1
` A`)r(I − τ`L−1

` A`)
ν` , ` = 1, . . . , L.

Remark 3.1. The coarse-grid correction is realized by applying r iterations of the

algorithm on the next coarser grid level. Thus, r = 1 corresponds to the V -cycle

and r = 2 corresponds to the W -cycle.

3.2. Abstract convergence framework

The assumptions used to show convergence can be split into two groups: approxi-

mation properties and smoother properties.

Theorem 3.1. Let λ` be the largest eigenvalue of X−1
` A`. Assume that the follow-

ing estimates hold:

• Approximation properties. There are constants C1 and C2, independent of

`, and linear operators Q` : VL → V` for ` = 0, 1, . . . , L with QL = I such

that

‖(Q` −Q`−1)uL‖2X`
≤ C1λ

−1
` (uL, uL)A for ` = 1, . . . , L, (3.2)

(Q`uL, Q`uL)A ≤ C2(uL, uL)A for ` = 0, . . . , L− 1, (3.3)

for all uL ∈ VL.
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• Smother properties. We assume there exist a constant CS independent of `

such that

‖u`‖2X`

λ`
≤ CS(τ`L

−1
` X`u`, u`)X`

∀u` ∈ RdimV` (3.4)

and

(τ`L
−1
` A`u`, u`)A`

≤ (u`, u`)A`
∀u` ∈ RdimV` (3.5)

holds for ` = 1, . . . , L.

Then, the estimate

((I −BsLAL)uL, uL)AL
≤
(

1− 1

CL

)
(uL, uL)AL

,

holds for all uL ∈ RdimVL , where C = [1 + C
1/2
2 + (CSC1)1/2]2.

For a proof, see Theorem 1 in Ref. 3.

Remark 3.2. Condition (3.4) is only required for functions u` in the range of

Q` − Q`−1. However, since we do not exploit this, we have stated the stronger

condition.

Now, we provide conditions that guarantee (3.4) and (3.5), which fit our needs

better than the original conditions.

Lemma 3.1. If there exists a constant CS, independent of `, which satisfies

(A`u`, u`) ≤
1

τ`
(L`u`, u`) ≤ λ`CS(X`u`, u`) ∀u` ∈ RdimV` (3.6)

for each ` = 1, . . . , L. Then, the assumptions (3.4) and (3.5) hold true for the same

CS.

Proof. We start by showing that the first inequality implies (3.5), i.e., the smooth-

ing operator I − τ`L−1
` A` is nonnegative in the scalar product induced by A`, i.e.,

(A`(I − τ`L−1
` A`)u`, u`) ≥ 0. Let w` ∈ RdimV` be an arbitrary vector. Using the

Cauchy-Schwarz inequality and the first inequality in (3.6), we obtain

τ`(L
−1
` w`, w`) = τ`(A1/2

` L−1
` w`,A

−1/2
` w`)

≤ τ`(A`L−1
` w`, L

−1
` w`)

1/2(A−1
` w`, w`)

1/2

≤ τ1/2
` (L−1

` w`, w`)
1/2(A−1

` w`, w`)
1/2

It follows that

τ`(L
−1
` w`, w`) ≤ (A−1

` w`, w`) ∀w` ∈ RdimV` .
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By substituting w` with A`u`, we get (3.5). Next, we use the Cauchy-Schwarz

inequality and the second inequality in (3.6) to show (3.4). Let w` ∈ RdimV` , we

have

(X−1
` w`, w`) = (L

1/2
` X−1

` w`, L
−1/2
` w`) ≤ (L`X

−1
` w`, X

−1
` w`)

1/2(L−1
` w`, w`)

1/2

≤ τ1/2
` λ

1/2
` C

1/2
S (X−1

` w`, w`)
1/2(L−1

` w`, w`)
1/2.

By squaring the inequality, we get

(X−1
` w`, w`) = τ`λ`CS(L−1

` w`, w`) ∀w` ∈ RdimV` .

By substituting w` with X`u`, we get (3.4).

4. Approximation error estimates

In this section, we prove some approximation error estimates and provide a projector

which will be used to prove (3.2) and (3.3).

4.1. Error and stability estimates for the univariate case

We start by introducing a periodic spline space. For any given sequence of grid

points τ = (0, τ1, . . . , τN , 1), we define

τ per := (−1,−τN , · · · ,−τ1, 0, τ1, · · · , τN , 1).

For each p ∈ N, we define the periodic spline space

Sperp,τ :=
{
v ∈ Sp,τper : ∂lv (−1) = ∂lv (1) ∀ l ∈ N0 with l < p

}
and a spline space with vanishing even derivatives on the boundary

S0
p,τ :=

{
v ∈ Sp,τ : ∂2lv (0) = ∂2lv (1) = 0 ∀ l ∈ N0 with 2l < p

}
. (4.1)

We also define the periodic Sobolev space

Hq
per(−1, 1) :=

{
v ∈ Hq(−1, 1) : ∂lv (−1) = ∂lv (1) , ∀ l ∈ N0 with l < q

}
for each q ∈ N. Let Πper

p,τ : H2
per(−1, 1) → Sperp,τ be the H2-orthogonal projector

satisfying (
∂2Πper

p,τu, ∂
2v
)
L2(−1,1)

=
(
∂2u, ∂2v

)
L2(−1,1)

∀ v ∈ Sperp,τ ,(
Πper
p,τu, 1

)
L2(−1,1)

= (u, 1)L2(−1,1) .
(4.2)

We use the following approximation error estimate for spline spaces which does not

require uniform knot spans.

Theorem 4.1. For any p ≥ 3, we have

‖∂2(u−Πper
p,τu)‖L2(−1,1) ≤

h2
τ

π2
‖∂4u‖L2(−1,1) ∀u ∈ H4

per(−1, 1).

For a proof, see Theorem 4 in Ref. 25.
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Using the H2–H4 result above and an Aubin-Nitsche duality trick, we obtain

the following L2–H2 result.

Theorem 4.2. For any p ≥ 3, we have

‖u−Πper
p,τu‖L2(−1,1) ≤

h2
τ

π2
‖∂2u‖L2(−1,1) ∀u ∈ H2

per(−1, 1).

Proof. Let u ∈ H2
per(−1, 1) be arbitrary but fixed. Let w ∈ H4(−1, 1)∩H3

per(−1, 1)

be such that ∂4w = u − Πper
p,τu. Note that (4.2) gives 0 = (u − Πper

p,τu, 1)L2(−1,1) =

(∂4w, 1)L2(−1,1) = ∂3w(1)− ∂3w(−1). So, we know that w ∈ H4
per(−1, 1).

Using integration by parts (which does not introduce boundary terms since

u−Πper
p,τu ∈ H2

per(−1, 1) and w ∈ H4
per(−1, 1)) and using Theorem 4.1, we obtain

‖u−Πper
p,τu‖2L2 =

(u−Πper
p,τu, u−Πper

p,τu)L2

‖u−Πper
p,τu‖L2

=
(u−Πper

p,τu, ∂
4w)L2

‖∂4w‖L2

=
(∂2(u−Πper

p,τu), ∂2w)L2

‖∂4w‖L2

≤ h2
τ

π2

(∂2(u−Πper
p,τu), ∂2w)L2

‖∂2(w −Πper
p,τw)‖L2

.

From the definition of Πper
p,τ , see (4.2), we have (∂2(u − Πper

p,τu), ∂2Πper
p,τw)L2 = 0.

This, together with the Cauchy-Schwarz inequality and the H2-stability of Πper
p,τ ,

gives

‖u−Πper
p,τu‖2L2 ≤

h2
τ

π2

(∂2(u−Πper
p,τu), ∂2(w −Πper

p,τw))L2

‖∂2(w −Πper
p,τw)‖L2

≤ h2
τ

π2
‖∂2(u−Πper

p,τu)‖2L2 ≤
h2
τ

π2
‖∂2u‖2L2 ,

which completes the proof.

Let Π0
p,τ : H2(0, 1)∩H1

0 (0, 1)→ S0
p,τ be the H2-orthogonal projector satisfying(

∂2Π0
p,τu, ∂

2v
)
L2(0,1)

=
(
∂2u, ∂2v

)
L2(0,1)

∀ v ∈ S0
p,τ .

Theorem 4.3. For any p ≥ 3, we have

‖u−Π0
p,τu‖L2(0,1) ≤

h2
τ

π2
‖∂2u‖L2(0,1) ∀u ∈ H2(0, 1) ∩H1

0 (0, 1).

Proof. Let u ∈ H2(0, 1) ∩H1
0 (0, 1) be arbitrary but fixed. Define w on (−1, 1) to

be

w(x) := sign(x) u(|x|).

Observe that we obtain w ∈ H2
per(−1, 1). From Theorem 4.2, we have

‖(I −Πper
p,τ )w‖L2(−1,1) ≤

h2
τ

π2
‖∂2w‖L2(−1,1).

Observe that ‖∂2w‖L2(−1,1) = 21/2‖∂2u‖L2(0,1). Define wτ := Πper
p,τw and let uτ be

the restriction of wτ to (0, 1). Observe that wτ is anti-symmetric, which implies
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that uτ ∈ S0
p,τ . It follows that ‖w − wτ‖L2(−1,1) = 21/2‖u− uτ‖L2(0,1). Using this,

we obtain

‖u− uτ‖L2(0,1) ≤
h2
τ

π2
‖∂2u‖L2(0,1).

It remains to show that uτ coincides with Πper
p,τu, i.e., to show that u − uτ is H2-

orthogonal to S0
p,τ . By definition, this means that we have to show

(∂2(u− uτ ), ∂2ũτ )L2(0,1) = 0 ∀ ũτ ∈ S0
p,τ .

Let w̃τ ∈ Sperp,τ be w̃τ := sign(x) ũτ (|x|) and observe that 2(∂2(u −
uτ ), ∂2ũτ )L2(0,1) = (∂2(w − wτ ), ∂2w̃τ )L2(0,1), since u, uτ and ũτ are restrictions

of w, wτ and w̃τ , respectively. Furthermore, (∂2(w − wτ ), ∂2w̃τ )L2(−1,1) = 0 by

construction, since wτ := Πper
p,τw, which completes the proof.

Let Q0
p,τ : H2(0, 1) ∩H1

0 (0, 1)→ S0
p,τ be the L2-orthogonal projector satisfying(

Q0
p,τu, v

)
L2(0,1)

= (u, v)L2(0,1) ∀ v ∈ S0
p,τ .

Since the L2-orthogonal projector minimizes the error in the L2-norm, Theo-

rem 4.3 immediately implies the following statement.

Theorem 4.4. For any p ≥ 3, we have

‖u−Q0
p,τu‖L2(0,1) ≤

h2
τ

π2
‖∂2u‖L2(0,1) ∀u ∈ H2(0, 1) ∩H1

0 (0, 1).

Next, we show the stability of Q0
p,τ with respect to the H2-seminorm. Such a

proof is possible since the space S0
p,τ satisfies the following p-robust inverse inequal-

ity, while the space Sp,τ ∩ H1
0 (0, 1) does not satisfy such an inverse inequality, cf.

Ref. 32.

Theorem 4.5. Let p ∈ N with p ≥ 2. We have

‖∂2uτ‖L2(0,1) ≤ 12h−2
τ ,min‖uτ‖L2(0,1) ∀uτ ∈ S0

p,τ .

A proof can be found in Theorem 12 in Ref. 29. It is done be induction, starting

from p = 2. For the induction step, one uses integration by parts. The boundary

terms vanish due to the boundary conditions baked into the definition of S0
p,τ .

Theorem 4.6. Let p ∈ N with p ≥ 3. Then there exists a constant c > 0 such that

‖∂2(Q0
p,τu)‖2L2(0,1) ≤ c‖∂

2u‖2L2(0,1) ∀u ∈ H2(0, 1) ∩H1
0 (0, 1).

Proof. The proof is analogous to that of Theorem 14 in Ref. 29, however it is given

here for completeness. Using the triangle inequality and the inverse inequality in

Theorem 4.5, we obtain

‖∂2Q0
p,τu‖2L2 ≤ 2‖∂2Π0

p,τu‖2L2 + 2‖∂2(Q0
p,τu−Π0

p,τu)‖2L2

≤ 2‖∂2Π0
p,τu‖2L2 + ch−2

τ ,min‖Q
0
p,τu−Π0

p,τu‖2L2

≤ 2‖∂2Π0
p,τu‖2L2 + ch−2

τ ,min‖u−Π0
p,τu‖2L2 + ch−2

τ ,min‖u−Q
0
p,τu‖2L2 .

The Theorems 4.3 and 4.4 and assumption (2.5) give the desired result.
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4.2. Proof of the approximation properties

In this subsection, we consider the discretization framework from Section 2. We

choose

X` := B` + (β + h−4
` )M`,

which corresponds to the norm ‖ · ‖X`
that satisfies

‖u‖2X`
= ‖u‖2B + (β + h−4

` )‖u‖2L2(Ω) ∀u ∈ V.

Now, we give a bound for the eigenvalues of X−1
` A`.

Lemma 4.1. Let λ` with ` ≥ 1 be the largest eigenvalue of X−1
` A`. For p ≥ 3, we

have λ` ∈ ( 1
1+c , 1) for some positive constant c.

We give a proof of this Lemma below.

Next, we prove (3.2) and (3.3). This requires that we choose the projectors Q0
p,`,

which have to map into the space V`. We first define a projector that maps from V̂

into V̂` by tensorization of the univariate projectors:

Q̂0
p,` := Q0

p,τ `,1
⊗ · · · ⊗Q0

p,τ `,d
,

where the tensor product is to be understood as in Section 3.2 in Ref. 31. The next

two theorems follow from Theorems 4.4 and 4.6 by standard arguments.

Theorem 4.7. Let p ∈ N with p ≥ 3. Then there exists a constant c such that

‖(I − Q̂0
p,`)û‖L2(Ω̂) ≤ ch

2
`‖û‖B̄ ∀ û ∈ H2(Ω̂) ∩H1

0 (Ω̂).

Proof. The result follows from the definition of Q̂0
p,`, the L2-stability of the L2-

projectors, triangle inequality and Theorem 4.4.

Now, we can give a proof of Lemma 4.1.

Proof. (of Lemma 4.1). Since M` is symmetric positive definite and h−4
` > 0,

we have A` < X`, which implies λ` < 1.

For the lower bound, we use V`−1 $ V`, which implies that there is some nonzero

w` ∈ V` that is L2-orthogonal to V`−1, that is (w`, u`−1)L2(Ω) = 0 for all u`−1 ∈ V`−1.

By combining Theorem 4.7 and (2.4), we obtain

‖w`‖L2(Ω) = sup
u`−1∈V`−1

‖w` − u`−1‖L2(Ω) ≤ c h2
`−1‖w`‖B.

In matrix-vector notation, this reads as

wT`M`w` ≤ c h4
`−1 w

T
` B`w`.

Using (2.6), we know that there is a constant c > 0 such that

w>` X`w` = w>` A`w` + h−4
` w>`M`w` < (1 + c)w>` A`w`,
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which shows λ` > 1/(1 + c).

Theorem 4.8. Let p ∈ N with p ≥ 3. Then there exists a constant c > 0 such that

‖Q̂
0

p,`û‖2B̄ ≤ c‖û‖
2
B̄ ∀û ∈ H2(Ω̂) ∩H1

0 (Ω̂).

Proof. The proof is based on the definition that ‖w‖2B̄ =
∑d
k=1 ‖∂2

xk
w‖L2(Ω̂) and

the boundedness of the L2-orthogonal projectors Q0
p,τ `,k

in the L2-norm and in the

H2-norm (Theorem 4.6).

The projectors Q0
p,` are now defined via the pull-back principle, such that

Q0
p,`u := (Q̂0

p,`(u ◦G)) ◦G−1 ∀u ∈ V. (4.3)

Note that, by construction, Q0
p,` maps into a subspace of V`, where all even outer

normal derivatives on the boundary vanish.

Theorem 4.9. Let d ∈ N and p ∈ N with p ≥ 3. For each level ` = 0, 1, . . . , L−1, let

Q0
p,` : H2(Ω)∩H1

0 (Ω)→ V` be the projectors defined in (4.3). There exist constants

C1 and C2 such that

‖(Q0
p,` −Q0

p,`−1)uL‖2X`
≤ C1λ

−1
` (uL, uL)A for ` = 1, . . . , L, (4.4)

(Q0
p,` uL,Q

0
p,` uL)A ≤ C2(uL, uL)A for ` = 0, . . . , L− 1, (4.5)

for all uL ∈ VL.

Proof. Let uL ∈ VL be arbitrary but fixed and let ûL := uL ◦G ∈ V̂L. Using (2.4),

Lemma 2.1 and Theorem 4.8 and the L2-stability of Q̂0
p,`, we obtain

(Q0
p,` uL,Q

0
p,` uL)A ≤ c(Q̂0

p,` ûL, Q̂
0
p,` ûL)Â = cβ‖Q̂0

p,`ûL‖2L2(Ω̂)
+ c‖Q̂0

p,`ûL‖2B̂
≤ cβ‖ûL‖2L2(Ω̂)

+ c‖ûL‖2B̂ ≤ c(ûL, ûL)Â ≤ C2(uL, uL)A,

which shows (4.5). Next we prove the auxiliary result

‖(I −Q0
p,`−1)uL‖2X`

≤ cλ−1
` (uL, uL)A for ` = 1, . . . , L. (4.6)

Using (2.4), (2.1), Theorem 4.8, Theorem 4.7 and the L2-stability of Q0
p,`−1, we get

‖(I −Q0
p,`−1)uL‖2X`

= ‖(I −Q0
p,`−1)uL‖2B + (β + h−4

` )‖(I −Q0
p,`−1)uL‖2L2(Ω)

≤ c‖(I − Q̂0
p,`−1)ûL‖2B̄ + c(β + h−4

` )‖(I − Q̂0
p,`−1)ûL‖2L2(Ω̂)

≤ c‖ûL‖2B̄ + ch−4
` h4

`−1‖ûL‖2B̂ + cβ‖ûL‖2L2(Ω̂)

≤ c(1 + h−4
` h4

`−1)‖uL‖2B + cβ‖uL‖2L2(Ω).

We use assumption (2.6) and Lemma 4.1 to get (4.6). To complete the proof, we

use the fact that Q0
p,`−1Q

0
p,` = Q0

p,`−1, (4.6) and (4.5), to obtain

‖(Q0
p,` −Q0

p,`−1)uL‖2X`
= ‖(I −Q0

p,`−1)Q0
p,`uL‖2X`

≤ cλ−1
` (Q0

p,`uL,Q
0
p,`uL)A

≤ C1λ
−1
` (uL, uL)A.
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This shows (4.4) and finishes the proof.

Remark 4.1. In Lemma 9.2 in Ref. 28, a similar result to Theorem 4.7 is shown.

There, the B`-orthogonal projector is considered. That proof only holds true for

uniform grids. By using an L2-orthogonal projector, we avoid these difficulties.

Since the convergence theory by Hackbusch, cf. Ref. 13, requires the error estimates

for the B`-orthogonal projector, this motivated us to use the convergence theory by

Bramble, cf. Ref. 2, where this is not the case.

5. The smoothers and the overall convergence results

5.1. Subspace corrected mass smoother

We consider the subspace corrected mass smoother, which was originally proposed

in Ref. 15 for a second order problem and was one of the first smoothers to produce

a multigrid method for IgA which is robust in both the grid size and the spline

degree. In Refs. 29, 28, this smoother was extended to biharmonic problems. The

smoother is based on the inverse inequality in Theorem 4.5, which is independent

of the spline degree.

First, we introduce a splitting for the one-dimensional case as follows:

Sp,τ ∩H1
0 (0, 1) = S0

p,τ ⊕ S1
p,τ ,

where S0
p,τ is as defined in (4.1) and S1

p,τ is its L2-orthogonal complement in

Sp,τ ∩H1
0 (0, 1). For each of these spaces, we define the corresponding L2-orthogonal

projection

Q0
p,τ : H2(0, 1) ∩H1

0 (0, 1)→ S0
p,τ ,

Q1
p,τ : H2(0, 1) ∩H1

0 (0, 1)→ S1
p,τ .

The next step, is to extend the splitting to the multivariate case. Let α :=

(α1, . . . , αd) ∈ {0, 1}d be a multiindex. The tensor product B-spline space V̂` =

Sp,τ `
∩H1

0 (Ω̂) with τ ` = (τ `,1, . . . , τ `,d) is split into the direct sum of 2d subspaces

V̂` =
⊕

α∈{0,1}d
Sαp,τ `

where Sαp,τ `
= Sα1

p,τ `,1
⊗ · · · ⊗ Sαd

p,τ `,d
. (5.1)

Again, we define L2-orthogonal projectors

Q̂α
p,τ `

:= Qα1
p,τ `,1

⊗ · · · ⊗Qαd
p,τ `,d

: V̂ → Sαp,τ `
.

The projector Q̂0
p,τ `

from Section 4.2 is consistent with this definition, for the choice

α = 0. Since the splitting is L2-orthogonal, we obviously have the following result.

û` =
∑

α∈{0,1}d
Q̂α
p,τ `

û` and ‖û`‖2L2(Ω̂)
=

∑
α∈{0,1}d

‖Q̂α
p,τ `

û`‖2L2(Ω̂)
∀û` ∈ V̂`.

(5.2)

The next theorem shows that the splitting is also stable in H2.
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Theorem 5.1. Let p ∈ N with p ≥ 3. Then there exists a constant c > 0 such that

c−1‖û`‖2B̄ ≤
∑

α∈{0,1}d
‖Q̂α

p,τ `
û`‖2B̄ ≤ c‖û`‖

2
B̄ ∀û` ∈ V̂`.

Proof. Theorem 4.6 states the stability of Q0
p,τ `

in the H2-seminorm. The stability

of Q1
p,τ `

in the H2-seminorm follows using the triangle inequality. The stability of

these statements in the L2-norm is obvious. From these observations, the right

inequality follows by arguments that are completely analogous to those of the proof

of Theorem 4.8.

The left inequality follows from (5.2) and the triangle inequality.

For notational convenience, we restrict the setup of the smoother to the two-

dimensional case. We write the splitting (5.1) as

V̂` = S00
p,τ `
⊕ S01

p,τ `
⊕ S10

p,τ `
⊕ S11

p,τ `
, where Sα1,α2

p,τ `
= Sα1

p,τ `,1
⊗ Sα2

p,τ `,2
.

Following the ideas of Refs. 15, 29, we construct local smoothers Lα for any of the

spaces V`,α := Sαp,τ `
. These local contributions are chosen such that they satisfy the

corresponding local condition

B̄`,α + βM̂`,α ≤ L`,α ≤ c(B̄`,α + (β + h−4)M̂`,α),

where

B̄`,α := PT`,αB̄`P`,α and M̂`,α := PT`,αM̂`P`,α

and P`,α is the matrix representation of the canonical embedding V`,α → V`. The

canonical embedding has tensor product structure, i.e., P`,α1
⊗· · ·⊗P`,αd

, where the

P`,αi are the matrix representations of the corresponding univariate embeddings.

In the two-dimensional case, B̄` and M̂` have the representation

B̄` = B ⊗M +M ⊗B and M̂` = M ⊗M,

where B and M are the corresponding univariate stiffness and mass matrices (not

necessarily equal for both spacial directions). For notational convenience, we do not

indicate the spacial direction and the grid level for these matrices. Restricting B̄`
to the subspace V`,(α1,α2) gives

B̄`,(α1,α2) = Bα1
⊗Mα2

+Mα1
⊗Bα2

,

where Bαi = PT`,αi
BP`,αi and Mαi = PT`,αi

MP`,αi . We define

Ā` := B̄` + βM̂` and Āα1,α2 := B̄α1,α2 + βM̂α1,α2 .

The inverse inequality for S0
p,τ `,i

(Theorem 4.5), allows us to estimate

B0 ≤ σM0,
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where σ = σ0h
−4
`,min and σ0 = 144. Using this, we define the smoothers Lα1,α2

and

obtain estimates for them as follows:

Ā00 ≤ (2σ + β)M0 ⊗M0 =: L00 ≤ c(Ā00 + h−4M̂00),

Ā01 ≤M0 ⊗ ((σ + β)M1 +B1) =: L01 ≤ c(Ā01 + h−4M̂01),

Ā10 ≤ (B1 + (σ + β)M1)⊗M0 =: L10 ≤ c(Ā10 + h−4M̂10),

Ā11 = B1 ⊗M1 +M1 ⊗B1 + βM1 ⊗M1 =: L11 ≤ c(Ā11 + h−4M̂11).

The extension to three and more dimensions is completely straightforward (cf.

Ref. 15). For each of the subspaces V`,α, we have defined a symmetric and posi-

tive definite smoother Lα. The overall smoother is given by

L` :=
∑

α∈{0,1}d
(QD,α)TLαQ

D,α,

where QD,α = M̂−1
α PT`,αM̂` is the matrix representation of the L2-projection from

V` to V`,α. Completely analogous to Section 5.2 in Ref. 15, we obtain

L−1
` =

∑
α∈{0,1}d

P`,αL
−1
α PT`,α.

Theorem 5.2. Let d ∈ N and p ∈ N with p ≥ 3. The subspace corrected mass

smoother L`, satisfies (3.6), i.e.,

(A`u`, u`) ≤
1

τ`
(L`u`, u`) ≤ CS λ` ((A` + h−4M`)u`, u`) ∀u` ∈ RdimV`

for all τ ∈ (0, τ0), where τ0 > 0 is some constant.

Proof. The inequalities

(Ā`u`, u`) ≤ (L`u`, u`) ≤ c((Ā` + h−4M̂`)u`, u`)

were shown in Theorem 17 in Ref. 29 for β = 0. Note that no part of that proof

requires uniform grids. So, the proof can be used almost verbatim also in the context

of this paper. Using (5.2), the extension to β > 0 is straightforward. Using this and

Lemma 2.1, we get

(Â`u`, u`) ≤ d(Ā`u`, u`) ≤
d

τ`
(L`u`, u`) ≤ c((Â` + h−4M̂`)u`, u`)

for some constant c > 0. Using (2.4), we obtain

(A`u`, u`) ≤
c1
τ`

(L`u`, u`) ≤ c2((A` + h−4M`)u`, u`)

for some constants c1, c2 > 0, which finishes the proof since λ` is bounded from

below by a constant (Lemma 4.1).

Corollary 5.1. Suppose that we solve the linear system (2.8) using a multigrid

solver as outlined in Section 3 and using the subspace corrected mass smoother as
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outlined in Section 5, then the convergence of the multigrid solver is described by

the relation

((I −BsLAL)uL, uL)AL
≤
(

1− 1

CL

)
(uL, uL)AL

, (5.3)

where the constant C is independent of the grid sizes h`, the number of levels L,

the spline degree p and the choice of the scaling parameter β. It may depend on d,

the constants c1, c2, cq, and cr and the shape of Ω, cf. Notation 2.1.

Proof. We use Theorem 3.1, whose assumptions are shown by Theorem 4.9 and

the combination of Lemma 3.1 and Theorem 5.2.

Remark 5.1. The operator L−1
` can be applied efficiently because all of the local

contributions L00, L01 and L10 can be inverted efficiently because they are tensor

products. For example, we have L−1
00 = 1

2σ+β (M−1
0 ⊗ I)(I ⊗ M−1

0 ), where both

M−1
0 ⊗ I and I ⊗M−1

0 can be realized by applying direct solvers for the univariate

mass matrix to several right-hand sides. The operator L11 is the sum of two tensor

products. So, it has to be inverted as a whole. However, the dimension of the

corresponding space is so small that the corresponding computational costs are

negligible. More details on how to realize the smoother computationally efficient

are given in Section 5 in Ref. 15. There, it is outlined where an efficient realization

of the subspace corrected mass smoother is also possible in case of more than two

dimensions.

5.2. Symmetric Gauss-Seidel smoother and a hybrid smoother

The second smoother we consider is a symmetric Gauss-Seidel smoother consisting

of one forward sweep and one backward sweep. It can be shown that this smoother

satisfies Condition (3.6), where the constant CS depends on the spline degree, see

Ref. 29. This means that also the overall convergence result (5.3) holds true, where

again C depends on the spline degree. The symmetric Gauss-Seidel smoother works

well for domains with nontrivial geometry transformations, but degenerated for

large spline degrees (cf. Refs. 9, 17).

Since the symmetric Gauss-Seidel smoother works well for nontrivial geometry

transformations and the subspace corrected mass smoother is robust with respect to

the spline degree, we combine these smoothers into a hybrid smoother, which was

first introduced in Ref. 29. This hybrid smoother consists of one forward Gauss-

Seidel sweep, followed by one step of the subspace corrected mass smoother, finally

followed by one backward Gauss-Seidel sweep.

6. Numerical experiments

In this section, we present the results of numerical experiments performed with the

proposed algorithm. As computational domains, we first consider the unit square,
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then we consider the nontrivial geometries displayed in Figures 1 (two-dimensional

domain) and 2 (three-dimensional domain). We consider the problem

βu+ ∆2u = f in Ω,

u = g1 on ∂Ω,

∆u = g2 on ∂Ω,

where

f(x) = (β + d2π4)

d∏
k=1

sin(πxk), g1(x) =

d∏
k=1

sin(πxk), g2(x) = −dπ2
d∏
k=1

sin(πxk).

The discretization space on the parameter domain is the space of tensor-product

B-splines. On the coarsest level (` = 0), we choose

τ 0,i = (0, 1/3, 1/2, 4/5, 1), (6.1)

for all spatial directions i = 1, . . . , d. The discretization on level ` is obtained by

preforming ` uniform h-refinement steps. The spline spaces have maximum conti-

nuity and spline degree p. We solve the resulting system using the preconditioned

conjugate gradient (PCG) with a V-cycle multigrid method with 1 pre and 1 post

smoothing step, as preconditioner. A random initial guess is used and the stopping

criterion is

‖r(k)
L ‖ ≤ 10−8‖r(0)

L ‖,

where r
(k)
L := f

L
−ALx(k)

L is the residual at step k and ‖ · ‖ denotes the Euclidean

norm. All numerical experiments are implemented using the G+Smo library, see

Ref. 20.

6.1. Numerical experiments on parameter domain

We start with the unit square as the domain, that is, Ω = (0, 1)2. Note that

g1(x) = g2(x) = 0 for this domain. For now, we consider the symmetric Gauss-

Seidel smoother and the subspace corrected mass smoother. For both smoothers,

we choose τ = 1. The iteration counts are displayed in Table 1 for β = 1, and in

Table 2 for β = 107.

From the tables, we see that the symmetric Gauss-Seidel smoother preforms

well for small spline degrees, but degenerates for larger spline degrees. These results

are not surprising since it is known that standard smoothers do not work well for

large spline degrees (cf. Refs. 9, 17). Due to Corollary 5.1, the multigrid solver with

subspace corrected mass smoother is robust with respect to the spline degree. The

tables do reflex this. The rates slightly improve when the spline degree is increased.

This might be due to the fact that the constants for L2 − H1-approximation er-

rors estimate (like in Theorem 4.3) decrease if p is increased, cf. Ref. 5, while the

constant in the inverse estimate (Theorem 4.5) is uniformly bounded. The product

of these constants enters the convergence estimate. However, the iteration numbers
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` � p 3 4 5 6 7 8 9

Symmetric Gauss-Seidel

5 10 16 28 45 71 120 210

6 10 16 27 44 71 119 209

7 10 16 27 44 72 117 212

8 11 16 27 45 72 120 221

Subspace corrected mass smoother, σ−1
0 = 0.02

5 126 122 114 105 98 93 85

6 131 129 123 116 110 105 100

7 132 133 127 121 116 110 106

8 133 134 130 124 118 114 110

Table 1. Iteration counts for 2D parametric domain, β = 1

` � p 3 4 5 6 7 8 9

Symmetric Gauss-Seidel

5 10 16 28 45 71 119 211

6 10 16 27 44 71 118 208

7 10 16 27 44 72 117 212

8 11 16 27 45 72 119 221

Subspace corrected mass smoother, σ−1
0 = 0.02

5 124 121 113 104 96 92 85

6 131 129 123 116 110 105 99

7 132 133 127 120 116 110 106

8 133 134 130 124 116 118 114

Table 2. Iteration counts for 2D parametric domain, β = 107

are relatively high. Table 3 shows the iteration numbers when using an uniform grid

with spacing 1/4 on the coarsest level (` = 0), rather than the grid (6.1). The num-

bers in Table 3 are significantly smaller. This implies that the subspace corrected

mass smoother is sensitive to the quasi-uniformity constant cq.

6.2. Numerical experiments on physical domain

Now, we consider a domain with a nontrivial geometry transformation as displayed

in Figures 1 and 2. The convergence of the subspace corrected mass smoother de-

grades significantly due to the nontrivial geometry mapping. To mitigate this, we

consider the hybrid smoother described in Section 5.2. Table 4 and Table 5 display

the iteration numbers for the 2D and 3D physical domains, respectively. These it-

eration numbers are relatively small and seam to be robust with respect to both
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` � p 3 4 5 6 7 8 9

Subspace corrected mass smoother, σ−1
0 = 0.015

5 41 40 39 37 35 34 33

6 41 41 39 37 36 35 34

7 42 42 40 39 37 35 35

8 42 42 41 39 37 37 35

Table 3. Iteration counts for 2D parametric domain with uniform grid, β = 1

-0.2 0.2 0.4 0.6 0.8 1.0

-0.2

0.2

0.4

0.6

0.8

1.0

Fig. 1. The two-dimensional domain Fig. 2. The three-dimensional domain

grid size and spline degree. Although the hybrid smoother is more expensive, as one

smoothing step can be view as two smoothing steps, the reduction of iteration num-

bers outweigh this cost for larger spline degrees p > 4. For smaller spline degrees,

the symmetric Gauss-Seidel smoother is ideal choice.

` � p 3 4 5 6 7 8 9

Hybrid smoother, β = 1

5 28 23 23 24 26 27 27

6 28 23 22 25 24 26 26

7 29 23 22 23 24 24 24

8 28 22 21 21 22 22 22

Hybrid smoother, β = 107

5 27 23 23 24 26 27 28

6 28 23 22 25 25 26 26

7 29 23 22 23 24 24 24

8 28 22 21 21 22 22 22

Table 4. Iteration counts for 2D Physical domain, σ−1
0 = 0.015, τ = 0.1

Remark 6.1. All experiments presented so far, have also been performed for the
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` � p 3 4 5 6 7

Hybrid smoother, β = 1

1 16 18 21 27 30

2 31 28 26 29 32

3 46 37 33 33 35

4 50 41 34 34 mem

Hybrid smoother, β = 107

1 10 11 13 17 20

2 12 16 20 25 29

3 16 19 22 24 28

4 29 28 28 28 mem

Table 5. Iteration counts for 3D Physical domain, σ−1
0 = 0.020, τ = 0.1

choice β = 0. In this case, one obtains iteration numbers that are identical to those

obtained for β = 1. Therefore, we chose to only display the results for β = 1.

6.3. Numerical experiments with singular mass matrix

As mentioned in the introduction, for optimal control problems with limited obser-

vation, it is of interest to solve (1.1), where βu is multiplied with the characteristic

function for the observation domain O ( Ω. In this case, the variational prob-

lem (2.2) takes the form

β(u, v)L2(O) + (∆u,∆v)L2(Ω) = (f, v)L2(Ω) ∀ v ∈ V. (6.2)

Since O ( Ω, the resulting mass is singular. In general, it is not easy to apply

the subspace corrected mass smoother since the first term in (6.2) would have to

be approximated by the full mass matrix. As a consequence, we do not consider

the subspace corrected mass smoother or hybrid smoother and we only consider

the symmetric Gauss-Seidel smoother. Figure 3 displays the computational domain

-0.2 0.2 0.4 0.6 0.8 1.0

-0.2

0.2

0.4

0.6

0.8

1.0

Fig. 3. The two-dimensional domain with limited observation
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where the limited observation is marked in gray. Table 6 show the iteration numbers

` � β 100 103 105 107

Full observation O = Ω

5 28 28 28 28

6 29 29 29 29

7 29 29 29 29

8 28 28 28 28

Limited observation O ( Ω

5 28 28 28 36

6 29 29 29 33

7 29 29 29 32

8 28 28 28 30

Table 6. Iteration counts for 2D Physical domain with full and limited observation, p = 3.

for both full oberservation and limited observation. The iteration counts are similar

and has only a small increase for large values of β. We note that the theory does

not cover the case of limited observation.

Remark 6.2. The multigrid solvers presented in this paper only consider single-

patch discretizations. In many practical applications, the representation of the com-

putational domain is only viable using multiple patches. Multigrid solvers for multi-

patch discretizations of second order elliptic equations are considered in Ref. 31. For

fourth order problems, the setup of H2(Ω)-conforming discretizations is a challeng-

ing and active research topic, see, e.g., Refs. 19, 18, 33. Multigrid methods for

such discretizations might be considered. One viable alternative is to consider do-

main decomposition methods based on non-conforming coupling of the patches.

The multigrid solvers can then be used to efficiently approximate the action of the

inverse of the local stiffness matrices, see, e.g. Ref. 27 and references therein on

inexact domain decomposition methods in the context of IgA.
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