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STABLE DISCRETIZATIONS AND IETI-DP SOLVERS FOR THE STOKES
SYSTEM IN MULTI-PATCH IGA

Jarle Sogn1 and Stefan Takacs2,*

Abstract. We are interested in a fast solver for the Stokes equations, discretized with multi-patch
Isogeometric Analysis. In the last years, several inf-sup stable discretizations for the Stokes problem
have been proposed, often the analysis was restricted to single-patch domains. We focus on one of
the simplest approaches, the isogeometric Taylor–Hood element. We show how stability results for
single-patch domains can be carried over to multi-patch domains. While this is possible, the stability
strongly depends on the shape of the geometry. We construct a Dual-Primal Isogeometric Tearing and
Interconnecting (IETI-DP) solver that does not suffer from that effect. We give a convergence analysis
and provide numerical tests.
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1. Introduction

Isogeometric Analysis (IgA) was introduced in [14] as a technique for discretizing partial differential equations
(PDEs); see also [8] and references therein. The original idea is to improve the integration of simulation and
computer aided design (CAD), compared to the classical finite element (FEM) simulation. This is achieved by
representing both the computational domain and the solution of the PDE as linear combination of tensor-product
B-splines or non-uniform rational B-splines (NURBS). Simple computational domains can be parameterized
using a single geometry mapping. More complicated domains are usually composed of multiple patches, each
parameterized with its own geometry mapping. Such domains are called multi-patch domains. We are interested
in fast solvers for the Stokes system, discretized using IgA on multi-patch domains.

For the discretization of the Stokes equations, we need inf-sup stable discretizations. Several inf-sup stable
elements from the FEM world have been generalized for the IgA framework, like Nédélec, Raviart–Thomas
and Taylor–Hood elements, cf. [4, 6, 9]. These methods have in common that the same grid is used both for
the velocity and the pressure; an alternative approach based on different grids for velocity and pressure is
the subgrid approach, cf. [4]. In this paper, we focus on the generalized Taylor–Hood element. A stability
estimate was proven in [4] for tensor-product B-splines and it was later extended to hierarchical splines in [3].
The analysis provides lower bounds for the inf-sup constant that is independent of the grid size. Numerical
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experiments suggest that the inf-sup constant is also independent of the spline degree; an analysis confirming
this, is not known to the authors. These papers restrict themselves to the single-patch case. In this paper, we
use these estimates for single-patch domains to show a corresponding stability estimate for multi-patch domains
(see Thm. 3.10).

Usually, the inf-sup constant for the discretized problem depends on the inf-sup constant for the continuous
problem, which in turn depends on the domain. Similarly, the inf-sup constant provided by our results depends
on the patch-local inf-sup constants for the chosen discretization and, additionally, on the global inf-sup constant
for the continuous problem. The inf-sup constant can be computed explicitly for simple domains: For a rectangle,
the inf-sup constant behaves like the length of the shorter side, divided by the length of the larger side, this
means that the stability degrades if the domain gets longer and thinner, cf. [7]. We consider a multi-patch
computational domain which suffers from this effect (see Sect. 3.5). A common strategy for preconditioning the
Stokes problem is to use a block diagonal preconditioner with a stiffness matrix for the velocity and a mass
matrix for the pressure. The efficiency of this approach depends on the inf-sup constant. Thus, it is inefficient
for the domains we consider.

To remedy this, we are interested in a solver whose convergence behavior does not depend on the inf-sup
constant for the global problem. We consider FETI-DP methods, which were originally introduced in [10].
We decompose the original problem into patch-local problems, where we know that the inf-sup constant is
reasonably large. For multi-patch IgA domains, FETI-DP methods are a natural choice as the patches can serve
as substructures. FETI-DP was first adapted to IgA in [16] and named the Dual-Primal Isogeometric Tearing
and Interconnecting (IETI-DP) method. For second-order elliptic boundary value problems, IETI-DP methods
have been extensively explored, see, e.g., [12, 13, 22, 23] and, e.g., [1] for the similar BDDC method. In [22], a
convergence analysis is given for the Poisson equation, which is, besides grid sizes and the patch diameters, also
robust in the spline degree and spline smoothness.

The extension of these results to the Stokes equations poses several challenges. FETI-DP solvers for the Stokes
problem have also been considered in the context of finite element (FEM) discretizations, see, e.g., [15,17,26] and
references therein for the case of two dimensions and [27] for the case of three dimensions. In the context of IgA, a
FETI-DP like solver has been applied in a single-patch setting to a generalized Taylor-Hood element in [20]. The
substructures used for the solver are non-overlapping parts of the patch. Isogeometric discretizations distinguish
themselves by the smoothness of the functions. The solver from [20] preserves this smoothness also between the
substructures. Moreover, the authors have proposed a solver for the elasticity problem for incompressible and
almost incompressible materials. These results have recently been extended in [28].

We follow the philosophy of IETI-DP solvers, this means that we consider multi-patch domains and use the
patches as substructures for the solver. We realize the coupling between the patches based on the minimum
smoothness requirements that guarantee a conforming discretization. Since the velocity lives in the Sobolev
space 𝐻1, we impose continuity across the patches. For the pressure, which is an 𝐿2 function, we do not realize
any coupling between the patches. As for any IETI-DP method, we have to choose primal degrees of freedom.
Recently, we have made a numerical study of IETI-DP solvers for the Stokes equations, testing several choices
of primal degrees of freedom and perconditioners, see [25]. The goal of this paper is to give corresponding
convergence analysis. As primal degrees of freedom we use the corner values of each velocity component, the
integral of the normal component of the velocity on each of the edges and patchwise averages of the pressure.
This choice was motivated by Li [17], which instead of using the velocity normal component, uses the integral
of the velocity on each of the edges. Both choices ensure that local system is non-singular. The numerical
results from [17,25] indicate that these edge integrals greatly improve the convergence rate, particularly if these
domains have curved boundaries. Although the Stokes system is indefinite, we can reduce the system by a Schur
complement approach to a symmetric positive definite system formulation. The system is preconditioned with
a scaled Dirichlet preconditioner. The standard approach, cf. also [17], is based on solving patch-local Stokes
equations. However our numerical studies, cf. [25], have shown that better convergence rates are archived if the
Dirichlet preconditioner is based on solving patch-local vector valued Poisson problems. Since that variant is
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obviously cheaper to construct and to evaluate, we propose and analyze it in this paper. To the knowledge of
the authors, this preconditioner has not been proposed before.

We give a condition number bound for the Schur complement formulation of the IETI-DP solver, precon-
ditioned with the scaled Dirichlet preconditioner (see Thm. 5.12). This analysis uses many results that have
been developed in [22] for the Poisson problem. The analysis is explicit with respect to grid sizes, the patch
diameters, the spline degree, and the inf-sup constants for the local problems. Also this seems to be novel, com-
pared to previous results, like [17], which depended on the inf-sup constant for the global problem. Numerical
experiments for the proposed method are provided, but we also refer to [25], where alternative choices of the
primal degrees of freedom and alternative setups of the scaled Dirichlet preconditioner are numerically tested.

The remainder of this paper is organized as follows. We present the model problem in Section 2. In Section 3,
we introduce an inf-sup stable discretization for multi-patch domains and prove the stability. A IETI-DP solver
is proposed in Section 4, which is analyzed in the subsequent Section 5. We conclude the main part of the paper
with Section 6, where the results from numerical experiments are presented and analyzed. In Section 7, we give
some conclusions and give some outlook on further challenges. The Appendix A contains some of the proofs.

2. The model problem

As model problem, we consider the Stokes equations with homogeneous Dirichlet boundary conditions in
two dimensions. In detail, the model problem is as follows. Let Ω ⊂ R2 be an open and bounded domain with
Lipschitz boundary 𝜕Ω. 𝐿2(Ω) and 𝐻𝑠(Ω) denote the standard Lebesgue and Sobolev spaces on Ω. Moreover,
𝐿2

0(Ω) is the subspace of functions with a mean value of zero, i.e., 𝐿2
0(Ω) := {𝑞 ∈ 𝐿2(Ω) : (𝑞, 1)𝐿2(Ω) = 0}, and

𝐻1
0 (Ω) is the subspace of 𝐻1(Ω) of functions with vanishing trace. For a given right-hand side f ∈

[︀
𝐿2(Ω)

]︀2,
find (u, 𝑝) ∈

[︀
𝐻1

0 (Ω)
]︀2 × 𝐿2

0(Ω) such that

(∇u,∇v)𝐿2(Ω) + (𝑝,∇ · v)𝐿2(Ω) = (f ,v)𝐿2(Ω) ∀v ∈
[︀
𝐻1

0 (Ω)
]︀2
,

(∇ · u, 𝑞)𝐿2(Ω) = 0 ∀𝑞 ∈ 𝐿2
0(Ω). (1)

The existence and uniqueness of a solution to problem (1) is known for any domain Ω with Lipschitz boundary;
for a proof, see, e.g., [2], for further information also [11, 19] and references therein. The analysis is based on
Brezzi’s theorem [5], where one shows that there are constants 0 < 𝛼 ≤ 𝛾 and 0 < 𝛽 ≤ 𝛿 such that one has
coercivity

(∇u,∇u)𝐿2(Ω) ≥ 𝛼‖u‖2𝐻1(Ω) ∀u ∈
[︀
𝐻1

0 (Ω)
]︀2
, (2)

inf-sup stability

sup
u∈[𝐻1

0 (Ω)]2

(∇ · u, 𝑝)𝐿2(Ω)

‖u‖𝐻1(Ω)
≥ 𝛽‖𝑝‖𝐿2(Ω) ∀𝑝 ∈ 𝐿2

0(Ω) (3)

and boundedness

(∇u,∇v)𝐿2(Ω) ≤ 𝛾‖u‖𝐻1(Ω)‖v‖𝐻1(Ω) ∀u,v ∈
[︀
𝐻1(Ω)

]︀2
,

(∇ · u, 𝑝)𝐿2(Ω) ≤ 𝛿‖u‖𝐻1(Ω)‖𝑝‖𝐿2(Ω) ∀u ∈
[︀
𝐻1

0 (Ω)
]︀2
, 𝑝 ∈ 𝐿2

0(Ω). (4)

In (3), we do not explicitly mention that u ̸= 0. Also formulas with suprema that follow are to be understood
in that way.

The only non-trivial condition is the inf-sup stability (3). Coercivity (2) is a direct consequence of Friedrichs’
inequality (cf., e.g., [21], Lem. 1.31) and boundedness (4) (with 𝛾 = 1 and 𝛿 =

√
𝑑 =

√
2) follows directly from

the Cauchy–Schwarz inequality.
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3. Stable discretizations

In the following, we introduce a conforming discretization of the Stokes equations which again satisfies the
conditions of Brezzi’s theorem. Certainly, equations (2) and (4) carry directly over to conforming discretizations.
The story is different for the inf-sup condition, which has to be verified for the discretized problem as well. For
single-patch Isogeometric Analysis, such stable discretizations have been introduced previously. After introduc-
ing the representation of the computational domain in Section 3.1 and the standard concepts of isogeometric
functions in Section 3.2, we replicate the details of the isogeometric Taylor–Hood element, which we use in our
further considerations, in Section 3.3. In Section 3.4, we discuss the extension of these results to multi-patch
Isogeometric Analysis and the dependence of the inf-sup constant on the shape of the computational domain.
In Section 3.5, we present and discuss numerical results that illustrate the dependence of the stability on the
shape of the geometry.

3.1. Representation of the geometry

We assume that the computational domain Ω ⊂ R2 is composed of 𝐾 non-overlapping patches Ω(𝑘), i.e., the
domains Ω(𝑘) are open and bounded domains with Lipschitz boundary such that

Ω =
𝐾⋃︁

𝑘=1

Ω(𝑘) and Ω(𝑘) ∩ Ω(ℓ) = ∅ for all 𝑘 ̸= ℓ,

where 𝑇 denotes the closure of the set 𝑇 . We need that that the patches form an admissible decomposition, i.e.,
that there are no T-junctions.

Assumption 3.1. For any two patch indices 𝑘 ̸= ℓ, the set 𝜕Ω(𝑘) ∩ 𝜕Ω(ℓ) is either a common edge Γ(𝑘,ℓ) :=
𝜕Ω(𝑘) ∩ 𝜕Ω(ℓ), a common vertex or empty.

This assumption is necessary to allow a fully matching discretization, which is a prerequisite for an 𝐻1-
conforming discretization. Recently, a IETI solver for the Poisson equation was proposed that allows a decom-
position including T-junctions, cf. [23]. That approach uses a discontinuous Galerkin method in order to couple
the patches. Since we focus on conforming discretizations, we cannot use an analogous approach.

For any patch index 𝑘, the set 𝒩Γ(𝑘) contains the indices ℓ of patches Ω(ℓ) that share an edge with Ω(𝑘). The
common vertices of two or more patches – that are not located on the (Dirichlet) boundary – are denoted by
𝑥1, . . . , 𝑥𝐽 . For each 𝑗 = 1, . . . , 𝐽 , the set 𝒩𝑥(𝑗) contains the indices of all patches Ω(𝑘) such that 𝑥𝑗 ∈ 𝜕Ω(𝑘).
We assume that the number of patches sharing one vertex is uniformly bounded.

Assumption 3.2. There is a constant 𝐶2 > 0 such that

|𝒩𝑥(𝑗)| ≤ 𝐶2 ∀𝑗 = 1, . . . , 𝐽.

Each patch Ω(𝑘) is parameterized by a geometry mapping

G𝑘 : ̂︀Ω := (0, 1)2 → Ω(𝑘) := G𝑘

(︁
̂︀Ω
)︁
⊂ R2,

which can be continuously extended to the closure of the parameter domain ̂︀Ω. In IgA, the geometry mapping
is typically represented using B-splines or NURBS. As usual, the computational methods do not depend on
such a representation. We only assume that the geometry mappings are not too much distorted, i.e., that the
following assumption holds.

Assumption 3.3. There is a constant 𝐶3 > 0 such that

‖∇G𝑘‖𝐿∞(̂︀Ω) ≤ 𝐶3𝐻𝑘 and
⃦⃦
⃦(∇G𝑘)−1

⃦⃦
⃦

𝐿∞(̂︀Ω)
≤ 𝐶3

1
𝐻𝑘

,

where 𝐻𝑘 is the diameter of the patch Ω(𝑘), holds for all 𝑘 = 1, . . . ,𝐾.
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We need one more assumption in order to analyze the inf-sup stability of the global problem. This is a
condition that is specific for the analysis of the Stokes equations. The assumption guarantees that the interfaces
are bent by uniformly less than 180 degrees. If Assumption 3.3 holds, each subdivision of Ω into patches that
does not satisfy Assumption 3.4 can be converted into a subdivision satisfying this condition by (uniformly)
subdividing the patches sufficiently often.

Assumption 3.4. We assume that there is a constant 𝐶4 > 0 such that, on each interface Γ(𝑘,ℓ) = Γ(ℓ,𝑘), there
is some point 𝑥(𝑘,ℓ) = 𝑥(ℓ,𝑘) ∈ Γ(𝑘,ℓ) with

n(𝑘)
(︁
𝑥(𝑘,ℓ)

)︁
· n(𝑘)(𝑥) ≥ 𝐶4 ∀𝑥 ∈ Γ(𝑘,ℓ),

where n(𝑘) is the outer normal vector on Ω(𝑘).

3.2. Isogeometric functions

On the parameter domain ̂︀Ω = (0, 1)2, we choose a B-spline space, which depends on a freely chosen vector
of breakpoints

𝑍(𝑘,𝛿) :=
(︁
𝜁
(𝑘,𝛿)
0 , . . . , 𝜁

(𝑘,𝛿)

𝑁(𝑘,𝛿)

)︁
with 0 = 𝜁

(𝑘,𝛿)
0 < . . . < 𝜁

(𝑘,𝛿)

𝑁(𝑘,𝛿) = 1

for each patch 𝑘 and each spacial direction 𝛿 ∈ {1, 2}, a freely chosen degree parameter p ∈ N := {1, 2, 3, . . .} and
a freely chosen smoothness parameter s ∈ {0, 1, . . . , p− 1}. Based on these vectors of breakpoints, we introduce
spline spaces of degree p and smoothness s :

𝑆(𝑘,𝛿,p,s) :=
{︂
𝑢 ∈ 𝐶 s (0, 1) : 𝑢|(︁

𝜁
(𝑘,𝛿)
𝑖−1 ,𝜁

(𝑘,𝛿)
𝑖

)︁ ∈ Pp for all 𝑖 = 1, . . . , 𝑁 (𝑘,𝛿)

}︂
,

where Pp is the space of polynomials of degree p. For each such set, we choose the basis that is obtained by the
Cox-de Boor formula (cf. [8], Eqs. (2.1) and (2.2)); for the application of the Cox-de Boor formula, one uses a
knot vector obtained from the vector of breakpoints by repeating the first and the last breakpoint p + 1 times
and by repeating all other breakpoints p − s times.

Based on these univariate splines, we introduce the corresponding tensor-product spline space

𝑆(𝑘,p,s) := 𝑆(𝑘,1,p,s) ⊗ 𝑆(𝑘,2,p,s) =

{︃
𝑢 : 𝑢(𝑥, 𝑦) =

𝑁∑︁

𝑛=1

𝑣(1)
𝑛 (𝑥)𝑣(2)

𝑛 (𝑦) with 𝑣(𝛿)
𝑛 ∈ 𝑆(𝑘,𝛿,p,s) for 𝑁 ∈ N

}︃

as discretization space on the parameter domain ̂︀Ω, and equip it with the standard tensor-product basis.
The function spaces on the physical patches Ω(𝑘) are defined via the pull-back principle, so we define a space

of functions Ω(𝑘) → R via
𝑉 (𝑘,p,s) :=

{︁
𝑣 : 𝑣 ∘G𝑘 ∈ 𝑆(𝑘,p,s)

}︁
.

The grid size ̂︀ℎ𝑘 on the parameter domain and the grid size ℎ𝑘 on the physical patch are defined by

̂︀ℎ𝑘 := max
{︁
𝜁
(𝑘,𝛿)
𝑖 − 𝜁

(𝑘,𝛿)
𝑖−1 : 𝑖 = 1, . . . , 𝑁 (𝑘,𝛿), 𝛿 = 1, 2

}︁
and ℎ𝑘 := 𝐻𝑘

̂︀ℎ𝑘,

where the definition of the latter is motivated by Assumption 3.3. We assume that the grids are quasi-uniform.

Assumption 3.5. There is a constant 𝐶5 > 0 such that for 𝑘 = 1, . . . ,𝐾

𝐶5
̂︀ℎ𝑘 ≤ ̂︀ℎ𝑘,min := min

{︁
𝜁
(𝑘,𝛿)
𝑖 − 𝜁

(𝑘,𝛿)
𝑖−1 : 𝑖 = 1, . . . , 𝑁 (𝑘,𝛿), 𝛿 = 1, 2

}︁
.
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Note that Assumption 3.3 allows us to relate the norm of the function on the physical patch and the corre-
sponding function on the parameter domain. There is a constant 𝑐𝐺 > 0, only depending on the constant from
Assumption 3.3, such that

𝑐−1
𝐺 |𝑣 ∘G𝑘|2𝐻1(̂︀Ω) ≤ |𝑣|2

𝐻1(Ω(𝑘)) ≤ 𝑐𝐺|𝑣 ∘G𝑘|2𝐻1(̂︀Ω) ∀𝑣 ∈ 𝐻1
(︁

Ω(𝑘)
)︁
,

𝑐−1
𝐺 𝐻2

𝑘‖𝑣 ∘G𝑘‖2𝐿2(̂︀Ω) ≤ ‖𝑣‖2
𝐿2(Ω(𝑘)) ≤ 𝑐𝐺𝐻

2
𝑘‖𝑣 ∘G𝑘‖2𝐿2(̂︀Ω) ∀𝑣 ∈ 𝐿2

(︁
Ω(𝑘)

)︁
. (5)

Using a standard Poincaré inequality (cf., e.g., [21], Lem. 1.27), we obtain

inf
𝑐∈R

‖𝑢− 𝑐‖𝐿2(Ω(𝑘)) ≤ 𝑐
1/2
𝐺 𝐻𝑘 inf

𝑐∈R
‖𝑢 ∘G𝑘 − 𝑐‖𝐿2(̂︀Ω) ≤ 𝑐

1/2
𝐺 ̂︀𝑐𝑃𝐻𝑘|𝑢 ∘G𝑘|𝐻1(̂︀Ω)

≤ 𝑐𝐺̂︀𝑐𝑃𝐻𝑘|𝑢|𝐻1(Ω(𝑘)) ∀𝑢 ∈ 𝐻1
0 (Ω),

(6)

where ̂︀𝑐𝑃 is the Poincaré constant for the parameter domain ̂︀Ω = (0, 1)2. This means that the Poincaré constant
for Ω(𝑘) only depends on 𝑐𝐺 and 𝐻𝑘. A completely analogous result for the Friedrichs’ inequality is straight
forward: For all patches Ω(𝑘), where at least one edge is located on the (Dirichlet) boundary, we have using a
standard Friedrichs’ inequality (cf., e.g., [21], Lem. 1.31)

‖𝑢‖𝐿2(Ω(𝑘)) ≤ 𝑐𝐺̂︀𝑐F𝐻𝑘|𝑢|𝐻1(Ω(𝑘)) ∀𝑢 ∈ 𝐻1
0 (Ω), (7)

where ̂︀𝑐F is the Friedrichs’ constant for the parameter domain ̂︀Ω.

3.3. Stable discretizations for the single-patch case

As discretization space for the single-patch case, we use the isogeometric Taylor–Hood element, as proposed
in [4]. It uses the same grid for all velocity components and for the pressure and can be defined based on any
underlying spline degree parameter p ∈ N and any underlying smoothness s ∈ {0, . . . , p − 1}.

The idea of the isogeometric Taylor–Hood element is to use splines of degree p + 1 and smoothness s , which
vanish on the (Dirichlet) boundary, for the velocity and splines of degree p and smoothness s with vanishing
mean value for the pressure. Our approach is to use these spaces for each of the patches Ω(𝑘), however we have
to modify the spaces accordingly. So, Dirichlet boundary conditions are not to be imposed on 𝜕Ω(𝑘), but only
on Γ(𝑘)

D := 𝜕Ω(𝑘) ∩ 𝜕Ω. Analogously, the condition on the mean value of the pressure only holds for the whole
domain Ω.

So, we define as follows. The function spaces for the parameter domain ̂︀Ω are

̂︀V(𝑘) :=
{︂
v ∈

[︁
𝑆(𝑘,p+1,s)

]︁2
: v|̂︀Γ(𝑘)

D
= 0
}︂

and ̂︀𝑄(𝑘) = 𝑆(𝑘,p,s),

where u|̂︀Γ(𝑘)
D

is the restriction of u to ̂︀Γ(𝑘)
D := G−1

𝑘 (Γ(𝑘)
D ), the pre-image of the Dirichlet boundary portion Γ(𝑘)

D .

On the physical patch Ω(𝑘), the spaces are defined through the pull back principle:

V(𝑘) = ̂︀V(𝑘) ∘G−1
𝑘 and 𝑄(𝑘) = ̂︀𝑄(𝑘) ∘G−1

𝑘 .

As basis for the space ̂︀V(𝑘), we choose the basis functions of the standard tensor-product B-spline basis that
vanish on ̂︀Γ(𝑘)

D . Their images under the geometry function G𝑘 form the basis for the space V(𝑘). The bases for
̂︀𝑄(𝑘) and 𝑄(𝑘) are defined analogously.

In [4], it was shown that the isogeometric Taylor–Hood element is inf-sup stable if the grid is sufficiently fine.
Certainly, this only holds if we have boundary conditions on all of 𝜕Ω(𝑘) and the averaging condition locally,
i.e., we have

sup
u∈V(𝑘)∩[𝐻1

0(Ω(𝑘))]2

(∇ · u, 𝑝)𝐿2(Ω(𝑘))
|u|𝐻1(Ω(𝑘))

≥ 𝛽𝑘‖𝑝‖𝐿2(Ω(𝑘)) ∀𝑝 ∈ 𝑄(𝑘) ∩ 𝐿2
0

(︁
Ω(𝑘)

)︁
, (8)
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where the inf-sup constant 𝛽𝑘 is independent of the grid size ℎ𝑘, but it depends on G𝑘 and the constant from
Assumption 3.5. Since the discretization is conforming, coercivity (2) and boundedness (4) are also satisfied for
the discretion problem.

Remark 3.6. Extensive numerical experiments indicate that the constant 𝛽𝑘 is independent of the spline degree
p if at least one inner knot is used in each parametric direction. However, at the time of writing, no such proof
is known to the authors.

3.4. Stable discretization in the multi-patch case

In this section, we introduce the global function spaces V ⊂ [𝐻1
0 (Ω)]2 and 𝑄 ⊂ 𝐿2

0(Ω). Since we set up a
conforming discretization, we need that the space V is continuous. To be able to set up a continuous global
function space, we need that the discretization is fully matching, i.e., that the following assumption holds.

Assumption 3.7. For every interface Γ(𝑘,ℓ) between two patches, the following statement holds true. For any
basis function in the basis for V(𝑘) having support on Γ(𝑘,ℓ), there is exactly one basis function in the basis for
V(ℓ) such that they agree on the interface Γ(𝑘,ℓ).

This assumption holds if the spline degree, the vector of breakpoints and the geometry mapping agree on
all common interfaces. For each of the matching basis functions in Assumption 3.7, we set the corresponding
coefficients to have the same value. In this way, we obtain an 𝐻1-conforming discretization space. Note, this
is not done for the pressure space since it only needs to be 𝐿2-conforming. We can now state the overall
discretization space. For the velocity, we use

V =
{︁
v ∈ [𝐻1

0 (Ω)]2 : v|Ω(𝑘) ∈ V(𝑘) for 𝑘 = 1, . . . ,𝐾
}︁

and for the pressure, we use

𝑄 =
{︁
𝑞 ∈ 𝐿2

0(Ω) : 𝑞|Ω(𝑘) ∈ 𝑄(𝑘) for 𝑘 = 1, . . . ,𝐾
}︁
.

The discretized Stokes problem reads as follows. Find (u, 𝑝) ∈ V ×𝑄 such that

(∇u,∇v)𝐿2(Ω) + (𝑝,∇ · v)𝐿2(Ω) = (f ,v)𝐿2(Ω) ∀v ∈ V,

(∇ · u, 𝑞)𝐿2(Ω) = 0 ∀𝑞 ∈ 𝑄. (9)

Now, we prove an inf-sup stability result for the multi-patch case, which uses the inf-sup stability of the
continuous problem, i.e., (3), and the inf-sup stability result for the single-patch case, i.e., (8).

Before we can prove the main inf-sup result, we need some auxiliary results. Note that 𝑄 is the direct sum of

𝑄0 :=
{︁
𝑞0 ∈ 𝑄 : 𝑞0|Ω(𝑘) ∈ 𝑄(𝑘) ∩ 𝐿2

0

(︁
Ω(𝑘)

)︁
for 𝑘 = 1, . . . ,𝐾

}︁
,

the space of function with zero average on each patch, and

𝑄1 :=
{︀
𝑞1 ∈ 𝐿2

0(Ω) : 𝑞1|Ω(𝑘) is constant for 𝑘 = 1, . . . ,𝐾
}︀
,

the space of patchwise constant functions. First, we state the existence of a Fortin operator.

Lemma 3.8. There exists an operator ΠF :
[︀
𝐻1

0 (Ω)
]︀2 → V such that

|ΠFu|𝐻1(Ω) ≤ 𝑐F|u|𝐻1(Ω) ∀u ∈
[︀
𝐻1

0 (Ω)
]︀2

(10)

and
(∇ · (𝐼 −ΠF)u, 𝑝1)𝐿2(Ω) = 0 ∀(u, 𝑝1) ∈

[︀
𝐻1

0 (Ω)
]︀2 ×𝑄1, (11)

where 𝑐F ≥ 1 is a constant that only depends on the constants from the Assumptions 3.2–3.4.
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The proof of this lemma is given in the Appendix A. We now show an inf-sup estimate for the pressure space
of patchwise constants.

Lemma 3.9. We have the inf-sup estimate

sup
u∈V

(∇ · u, 𝑝1)𝐿2(Ω)

|u|𝐻1(Ω)
≥ 𝛽

𝑐F
‖𝑝1‖𝐿2(Ω) ∀𝑝1 ∈ 𝑄1, (12)

where 𝛽 is as in (3) and 𝑐F is as in Lemma 3.8.

Proof. Let 𝑝1 ∈ 𝑄1 be arbitrary but fixed. From the continuous inf-sup condition (3), it follows that there exists
a v ∈ [𝐻1

0 (Ω)]2 such that
(∇ · v, 𝑝1)𝐿2(Ω)

|v|𝐻1(Ω)
≥ 𝛽‖𝑝1‖𝐿2(Ω). (13)

By setting u := ΠFv and using Lemma 3.8 and (13), we get

sup
u∈V

(∇ · u, 𝑝1)𝐿2(Ω)

|u|𝐻1(Ω)
≥ (∇ ·ΠFv, 𝑝1)𝐿2(Ω)

|ΠFv|𝐻1(Ω)
≥ 1
𝑐F

(∇ · v, 𝑝1)𝐿2(Ω)

|v|𝐻1(Ω)
≥ 𝛽

𝑐F
‖𝑝1‖𝐿2(Ω),

which finishes the proof. �

Using this inf-sup result and the patchwise inf-sup result (8), we can show a global discrete inf-sup result.

Theorem 3.10. Let V×𝑄 be the generalized Taylor–Hood space as defined in this Section. We have the inf-sup
result

sup
u∈V

(∇ · u, 𝑝)𝐿2(Ω)

|u|𝐻1(Ω)
≥ 𝛽 min𝑘 𝛽𝑘

3𝑐F𝛿⏟  ⏞  
𝛽ℎ :=

‖𝑝‖𝐿2(Ω) ∀𝑝 ∈ 𝑄, (14)

where 𝛽 is as in (3), 𝛽𝑘 as in (8), 𝛿 as in (4) and 𝑐F as in Lemma 3.8.

Before we prove this theorem, we give some remarks.

Remark 3.11. 𝛽ℎ is independent of the grid sizes ℎ𝑘 since the local inf-sup constants 𝛽𝑘 and the Fortin constant
𝑐F are independent of ℎ𝑘 and the inf-sup constant 𝛽 for the continuous problem is inherently independent of
the discretization. Robustness in the spline degree is obtained if the local inf-sup constants 𝛽𝑘 are robust in the
spline degree, which is an unproven conjecture for the isogeometric Taylor–Hood element, see Remark 3.6.

Remark 3.12. We observe that the local inf-sup constants 𝛽𝑘 and the Fortin constant 𝑐F are independent of
the shape of the overall domain Ω (both only depend on the parameterization and thus also of the shape of
the individual patches and the maximum number of patches meeting in one vertex), so any shape-dependence
observed in numerical results is due to the shape-dependence of 𝛽, the inf-sup constant of the continuous problem
and thus inherent to the Stokes equations themselves.

Remark 3.13. Moreover, we observe that Theorem 3.10 is not restricted to the isogeometric Taylor–Hood
element. So, the proofs can be applied to any conforming, locally inf-sup stable pair of discretization space,
where the velocity space is fully matching at the interfaces and where all the bi-quadratic functions are in the
underlying space ̂︀V(𝑘).

Remark 3.14. Finally, we want to mention that the presented results can be extended to the case of mixed
boundary conditions, say with Dirichlet conditions on ΓD and Neumann conditions on ΓN = 𝜕Ω∖ΓD if both ΓD

and ΓN have positive measure and consist of whole edges (G𝑘({0} × (0, 1)), G𝑘({1} × (0, 1)), G𝑘((0, 1)× {0}),
G𝑘((0, 1)×{1})). In this case, the space 𝐻1

0 (Ω) has to be replaced by space of 𝐻1-functions that vanish on ΓD.
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The space 𝐿2
0(Ω) has to be replaced by the space 𝐿2(Ω) since the pressure can be uniquely determined in this

framework. Also for this setting, the existence of a Fortin operator (Lem. 3.8) can be shown. The construction of
the operator (as presented in the Appendix A) is the same as for pure Dirichlet conditions with the sole difference
that also correction functions 𝜓(𝑘,ℓ) associated to the edges that are located on the Neumann boundary have to
be taken into account. Having Lemma 3.8, all other results follow naturally.

Proof of Theorem 3.10. Let 𝑝 ∈ 𝑄 be arbitrary but fixed and let 𝑝 = 𝑝0 + 𝑝1 with 𝑝0 ∈ 𝑄0 and 𝑝1 ∈ 𝑄1.
From (8), we know that there are non-zero functions u(𝑘) ∈ V(𝑘) ∩ [𝐻1

0

(︀
Ω(𝑘)

)︀
]2 such that

(︁
∇ · u(𝑘), 𝑝0

)︁
𝐿2(Ω(𝑘))

≥ ̂︀𝛽
⃒⃒
⃒u(𝑘)

⃒⃒
⃒
𝐻1(Ω(𝑘))

‖𝑝0‖𝐿2(Ω(𝑘)), where ̂︀𝛽 := min
𝑘
𝛽𝑘.

The suprema in the inf-sup conditions are scaling invariant, so we can restrict ourselves to |u(𝑘)|𝐻1(Ω(𝑘)) =

‖𝑝0‖𝐿2(Ω(𝑘)). We define u ∈ V such that u|Ω(𝑘) := u(𝑘). Note that u vanishes on the interfaces between the
patches. Summing up, we obtain

(∇ · u, 𝑝0)𝐿2(Ω) =
𝐾∑︁

𝑘=1

(︁
∇ · u(𝑘), 𝑝0

)︁
𝐿2(Ω(𝑘))

≥ ̂︀𝛽
𝐾∑︁

𝑘=1

|u(𝑘)|𝐻1(Ω(𝑘))‖𝑝0‖𝐿2(Ω(𝑘))

= ̂︀𝛽
𝐾∑︁

𝑘=1

‖𝑝0‖2𝐿2(Ω(𝑘)) = ̂︀𝛽
(︃

𝐾∑︁

𝑘=1

|u(𝑘)|2
𝐻1(Ω(𝑘))

)︃1/2(︃ 𝐾∑︁

𝑘=1

‖𝑝0‖2𝐿2(Ω(𝑘))

)︃1/2

= ̂︀𝛽|u|𝐻1(Ω)‖𝑝0‖𝐿2(Ω).

(15)

By applying integration-by-parts patchwise and using ∇𝑝1 = 0 and u|𝜕Ω(𝑘) = 0, we obtain that

(∇ · u, 𝑝1)𝐿2(Ω) = −
𝐾∑︁

𝑘=1

(u,∇𝑝1)𝐿2(Ω(𝑘)) +
𝐾∑︁

𝑘=1

(u · n, 𝑝1)𝐿2(𝜕Ω(𝑘)) = 0.

By combining this with (15), we obtain

sup
u∈V

(∇ · u, 𝑝)𝐿2(Ω)

|u|𝐻1(Ω)
≥ ̂︀𝛽‖𝑝0‖𝐿2(Ω). (16)

Lemma 3.9 gives together with boundedness (4)

sup
u∈V

(∇ · u, 𝑝)𝐿2(Ω)

|u|𝐻1(Ω)
= sup

u∈V

(∇ · u, 𝑝1)𝐿2(Ω) + (∇ · u, 𝑝0)𝐿2(Ω)

|u|𝐻1(Ω)
≥ sup

u∈V

(∇ · u, 𝑝1)𝐿2(Ω) − 𝛿|u|𝐻1(Ω)‖𝑝0‖𝐿2(Ω)

|u|𝐻1(Ω)

≥ 𝛽

𝑐F
‖𝑝1‖𝐿2(Ω) − 𝛿‖𝑝0‖𝐿2(Ω).

Using the triangle inequality, we have further

sup
u∈V

(∇ · u, 𝑝)𝐿2(Ω)

|u|𝐻1(Ω)
≥ 𝛽

𝑐F
‖𝑝‖𝐿2(Ω) −

(︂
𝛿 +

𝛽

𝑐F

)︂
‖𝑝0‖𝐿2(Ω). (17)

By adding (𝛿 + 𝑐−1
F 𝛽) times inequality (16) and ̂︀𝛽 times inequality (17), we finally get

sup
u∈V

(∇ · u, 𝑝)𝐿2(Ω)

|u|𝐻1(Ω)
≥ 𝛽 ̂︀𝛽
𝑐F(𝛿 + 𝑐−1

F 𝛽 + ̂︀𝛽)
‖𝑝‖𝐿2(Ω) ≥

𝛽 ̂︀𝛽
3𝑐F𝛿

‖𝑝‖𝐿2(Ω),

where we make use of 𝑐F ≥ 1 and 𝛽, ̂︀𝛽 ≤ 𝛿. �
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Figure 1. Multi-patch domain of a Yeti-footprint.

Table 1. Condition numbers for Ω(1) (left) and the whole Yeti-footprint (right).

p p
ℓ 1 2 3 4 5 ℓ 1 2 3 4 5

0 17.1 17.5 17.6 17.6 17.7 0 243 244 243 243 243
1 17.6 17.6 17.7 17.7 17.7 1 244 244 243 243 243
2 17.7 17.7 17.7 17.7 17.7 2 244 244 243 243 243
3 17.7 17.7 17.7 17.7 17.7 3 − − − − −

3.5. Numerical exploration of the inf-sup constant

In this subsection, we present numerical experiments that illustrate the dependence of the discrete inf-sup
constant 𝛽ℎ on the grid size, the spline degree and the shape of the geometry. This is done by deriving the
condition number 𝜅 of the (negative) Schur complement, preconditioned with the inverse of the mass matrix
for the pressure. The relation between this condition number and the inf-sup constant is

𝜅 =
√
𝛿ℎ√
𝛽ℎ

≈ 1√
𝛽ℎ

,

where 𝛿ℎ ≈ 1 is the discrete version of the boundedness constant 𝛿 from (4). As computational domain, we
consider the Yeti-footprint, consisting of 21 patches, and domains obtained by combining a few of the patches.
The Yeti-footprint is depicted in Figure 1; the patches are represented by different colors. The lines within
each patch represent the coarsest (ℓ = 0) grid on each patch. We obtain finer grids by performing ℓ uniform
refinement steps (ℓ = 0, 1, 2, 3) and test for various choices of the spline degree parameters p (p = 1, 2, . . . , 5).
The computed condition numbers are displayed in Table 1. The left table shows the results for the single-patch
domain Ω(1) and the right table shows the results for the full Yeti-footprint Ω(1) ∪ · · · ∪ Ω(21). Due to the size
the full Yeti-footprint, we could not calculate the condition numbers for ℓ = 3, so these are left out. As we see
from the tables, the constants depend neither on the grid size (this is predicted by the theory), nor on the spline
degree (cf. Rem. 3.6). We notice that the condition numbers are significantly larger for the full domain, which
is a property of the geometry (cf. Rem. 3.12).

To explore the dependence on the shape of the domain further, we calculate condition numbers for partial
Yeti-footprints Ω(1) ∪ · · · ∪ Ω(𝐾) with 𝐾 = 1, 2, 3, 4, 5, 21. The corresponding condition numbers are computed
for ℓ = 2 and p = 2 and presented in Table 2. We observe that the condition numbers increase steadily from
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Table 2. Condition numbers for partial Yeti-footprints.

Number of patches 𝐾 1 2 3 4 5 21

Condition number 𝜅 17.7 31.1 79.5 148 184 244

𝐾 = 1 to 𝐾 = 5, which is expected as the domains are similar to elongating rectangles. Note that the condition
number does not increase too significantly from 𝐾 = 5 to 𝐾 = 21.

4. A IETI-DP solver for the Stokes system

In this section, we outline the setup of the proposed IETI-DP method for solving the discretized Stokes prob-
lem (9). For the IETI-DP method, we have to assemble the variational problem locally. So, the still uncoupled
problem is to find (u(𝑘), 𝑝(𝑘)) ∈ V(𝑘)×𝑄(𝑘) such that

(︁
∇u(𝑘),∇v(𝑘)

)︁
𝐿2(Ω(𝑘))

+
(︁
𝑝(𝑘),∇ · v(𝑘)

)︁
𝐿2(Ω(𝑘))

!=
(︁
f ,v(𝑘)

)︁
𝐿2(Ω(𝑘))

∀v(𝑘) ∈ V(𝑘),

(︁
∇ · u(𝑘), 𝑞(𝑘)

)︁
𝐿2(Ω(𝑘))

!= 0 ∀𝑞(𝑘) ∈ 𝑄(𝑘).

Here, we use the notation != to remind ourselves that the coupling is still missing. By discretizing these bilinear
forms using the tensor-product bases, we obtain linear systems

𝐴(𝑘)x(𝑘) :=

(︃
𝐾(𝑘) 𝐷(𝑘)⊤

𝐷(𝑘) 0

)︃(︃
u(𝑘)

𝑝(𝑘)

)︃
!=
(︂
f (𝑘)

0

)︂
=: b(𝑘).

Here and in what follows, underlined quantities refer to the coefficient representations of the corresponding
functions. We first represent the spaces V(𝑘) as a direct sum

V(𝑘) = V(𝑘)
Γ ⊕V(𝑘)

I , (18)

where V(𝑘)
I is spanned by the basis functions which vanish on the interfaces and V(𝑘)

Γ is spanned by the remaining
functions, i.e., the functions that are active on the interfaces (which includes the primal degrees of freedom).
Assuming a corresponding ordering of the basis functions, we have

𝐴(𝑘)x(𝑘) =

⎛
⎜⎜⎝

𝐾
(𝑘)
ΓΓ 𝐾

(𝑘)
ΓI 𝐷

(𝑘)
Γ

⊤

𝐾
(𝑘)
IΓ 𝐾

(𝑘)
II 𝐷

(𝑘)
I

⊤

𝐷
(𝑘)
Γ 𝐷

(𝑘)
I 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u(𝑘)
Γ

u(𝑘)
I

𝑝(𝑘)

⎞
⎟⎟⎠

!=

⎛
⎜⎜⎝

f (𝑘)
Γ

f (𝑘)
I

0

⎞
⎟⎟⎠ = b(𝑘). (19)

Analogous to the case of the Poisson problem, the local systems correspond to pure Neumann problems, unless
the corresponding patch contributes to the Dirichlet boundary. These systems are not uniquely solvable since
the constant velocities are in the null space of 𝐴(𝑘). To ensure that the system matrices of the patch-local
problems are non-singular, we introduce primal degrees of freedom, whose continuity across the patches is
enforced strongly (continuity conditions):

– the function values of the velocity at each of the corners of the patch, i.e.,

u(𝑘)(𝑥𝑗) = u(ℓ)(𝑥𝑗) ∀𝑗 = 1, . . . , 𝐽 and ℓ, 𝑘 ∈ 𝒩𝑥(𝑗), and (20)
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– the integrals of the normal components of the velocity, i.e.,

∫︁

Γ(𝑘,ℓ)
u(𝑘) · n(𝑘)d𝑠 = −

∫︁

Γ(𝑘,ℓ)
u(ℓ) · n(ℓ)d𝑠 ∀𝑘 = 1, . . . ,𝐾 and ℓ ∈ 𝒩Γ(𝑘).

Since the constraint (20) is vector-valued, there are actually 2 primal degrees of freedom for each corner.
Overall, for patches that do not contribute to the Dirichlet boundary, there are 12 primal degrees of freedom
related to the continuity conditions. The matrix 𝐶(𝑘)

C evaluates the primal degrees of freedom associated to the
patch Ω(𝑘); thus the relation 𝐶

(𝑘)
C u(𝑘)

Γ = 0 guarantees that the primal degrees of freedom vanish.
Additionally, we introduce primal degrees of freedom for the pressure in order to be able to realize the

condition that the average pressure vanishes (averaging conditions). This is done by fixing the average pressure
on each patch individually to zero and by allowing patchwise constant pressure functions in the primal problem.
The matrix 𝐶(𝑘)

A evaluates the average pressure on the patch, i.e.,

𝐶
(𝑘)
A 𝑝(𝑘) =

⃒⃒
⃒Ω(𝑘)

⃒⃒
⃒
−1
∫︁

Ω(𝑘)
𝑝(𝑘)(𝑥) d𝑥. (21)

Thus, the relation 𝐶
(𝑘)
A 𝑝(𝑘) = 0 guarantees that the average pressure vanishes.

The corresponding Lagrangian multipliers are denoted by 𝜇(𝑘)
C and 𝜇

(𝑘)
A . So, we obtain

𝐴(𝑘)x̄(𝑘) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐾
(𝑘)
ΓΓ 𝐾

(𝑘)
ΓI 𝐷

(𝑘)
Γ

⊤ 0 𝐶
(𝑘)
C

⊤

𝐾
(𝑘)
IΓ 𝐾

(𝑘)
II 𝐷

(𝑘)
I

⊤ 0 0

𝐷
(𝑘)
Γ 𝐷

(𝑘)
I 0 𝐶

(𝑘)
A

⊤ 0

0 0 𝐶
(𝑘)
A 0 0

𝐶
(𝑘)
C 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(𝑘)
Γ

u(𝑘)
I

𝑝(𝑘)

𝜇
(𝑘)
A

𝜇
(𝑘)
C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

!=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f (𝑘)
Γ

f (𝑘)
I

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=: b̄(𝑘)
.

The continuity of the velocity between the patches is enforced by the matrices 𝐵(𝑘). The term

𝐾∑︁

𝑘=1

𝐵(𝑘)u(𝑘)
Γ

evaluates to a vector containing the differences of the coefficients of any two matching (cf. Assumption 3.7)
basis functions. Here, we do not include the vertex values (see Fig. 2) since these are primal degrees of freedom
anyway. Note that the constraint matrices 𝐵(𝑘) are redundant to the condition on the integrals of the normal
components of the velocity over the edges. The relation

𝐾∑︁

𝑘=1

𝐵(𝑘)u(𝑘)
Γ = 0 or

𝐾∑︁

𝑘=1

𝐵̄(𝑘)x̄(𝑘) = 0 using 𝐵̄(𝑘) :=
(︀
𝐵(𝑘) 0 0 0 0

)︀

guarantees the continuity of the velocity function across the patches.
Moreover, we introduce the primal problem, i.e., the global problem for the primal degrees of freedom. We

use a 𝐴(𝑘)-orthogonal basis for the primal degrees of freedom. This basis is represented in terms of the basis
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Figure 2. Enforcing continuity of the velocity space. The corners are excluded.

functions of the basis for V(𝑘)
Γ ×V(𝑘)

I ×𝑄(𝑘) using the matrix Ψ(𝑘), which are the solution of the system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐾
(𝑘)
ΓΓ 𝐾

(𝑘)
ΓI 𝐷

(𝑘)
Γ

⊤ 0 𝐶
(𝑘)
C

⊤

𝐾
(𝑘)
IΓ 𝐾

(𝑘)
II 𝐷

(𝑘)
I

⊤ 0 0

𝐷
(𝑘)
Γ 𝐷

(𝑘)
I 0 𝐶

(𝑘)
A

⊤ 0

0 0 𝐶
(𝑘)
A 0 0

𝐶
(𝑘)
C 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ(𝑘)
ΓA Ψ(𝑘)

ΓC

Ψ(𝑘)
IA Ψ(𝑘)

IC

Ψ(𝑘)
𝑝A Ψ(𝑘)

𝑝C

Φ(𝑘)
CA Φ(𝑘)

CC

Φ(𝑘)
AA Φ(𝑘)

AC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⏟  ⏞  (︃
Ψ(𝑘)

Φ(𝑘)

)︃
:=

(︃
Ψ(𝑘)

A Ψ(𝑘)
C

Φ(𝑘)
A Φ(𝑘)

C

)︃
:=

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0

𝑅
(𝑘)
A 0

0 𝑅
(𝑘)
C

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (22)

where 𝑅(𝑘)
A and 𝑅

(𝑘)
C are boolean matrices that select the primal degrees of freedom which are active on the

patch Ω(𝑘). We have 𝑅(𝑘)
A ∈ R1×𝐾 and 𝑅(𝑘)

C ∈ R𝑁
(𝑘)
Π ×𝑁Π , where 𝑁 (𝑘)

Π is the number of primal degrees of freedom
corresponding to the continuity condition (thus 𝑁 (𝑘)

Π = 12 if the patch does not contribute to the Dirichlet
boundary) and 𝑁Π is the overall number of primal degrees of freedom associated to the continuity condition.

We define the system matrix, right-hand side and jump matrix for the primal problem as

𝐴Π :=
𝐾∑︁

𝑘=1

Ψ(𝑘)⊤𝐴(𝑘)Ψ(𝑘), bΠ :=
𝐾∑︁

𝑘=1

Ψ(𝑘)⊤b(𝑘) and 𝐵Π :=
𝐾∑︁

𝑘=1

𝐵(𝑘)Ψ(𝑘).

So far, we have a pressure averaging condition for the patch-local problems and the primal problem allows for
patchwise constant pressure modes. So, in order to obtain unique solvability of the problem, we need to add
a global condition that guarantees that the average pressure vanishes. So, we augment the primal system and
obtain the following primal system

𝐴Πx̄Π :=

(︃
𝐴Π 𝐶⊤Π
𝐶Π 0

)︃(︃
xΠ

𝜇
Π

)︃
!=
(︂
bΠ

0

)︂
=: b̄Π,
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where 𝐶Π ∈ R1×(𝑁Π+𝐾) is such that the relation 𝐶Π xΠ = 0 guarantees that the average of the pressure vanishes.
Correspondingly, we define 𝐵̄Π :=

(︀
𝐵Π 0

)︀
. So, we are finally able to write down the overall IETI-DP system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴(1) 𝐵̄(1)⊤

. . .
...

𝐴(𝐾) 𝐵̄(𝐾)⊤

𝐴Π 𝐵̄⊤Π

𝐵̄(1) . . . 𝐵̄(𝐾) 𝐵̄Π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x̄(1)

...

x̄(𝐾)

x̄Π

𝜆

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̄(1)

...

b̄(𝐾)

b̄Π

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For solving this linear system, we take the Schur complement with respect to the Lagrange multipliers 𝜆. This
means that we solve

𝐹𝜆 = 𝑔, (23)

where

𝐹 := 𝐹Π +
𝐾∑︁

𝑘=1

𝐹 (𝑘), 𝐹Π := 𝐵̄Π𝐴
−1
Π 𝐵̄⊤Π , 𝐹 (𝑘) := 𝐵̄(𝑘)𝐴(𝑘)−1

𝐵̄(𝑘)⊤

and

𝑔 := 𝐵̄Π𝐴
−1
Π b̄Π +

𝐾∑︁

𝑘=1

𝐵̄(𝑘)𝐴(𝑘)−1b̄(𝑘)
.

The patch-local solutions are then recovered by

x̄Π = 𝐴−1
Π

(︀
b̄Π − 𝐵̄⊤Π𝜆

)︀
and x̄(𝑘) = 𝐴(𝑘)−1

(︁
b̄(𝑘) − 𝐵̄(𝑘)⊤𝜆

)︁
.

The final solution is then obtained by distributing x̄Π to the patches using the matrices Ψ(𝑘).
We solve the system (23) with a conjugate gradient solver. (We will show in Sect. 5 that 𝐹 is indeed positive

semidefinite.) The conjugate gradient solver is preconditioned with the scaled Dirichlet preconditioner. Usually,
the scaled Dirichlet preconditioner refers to the local solution of Dirichlet problems of the corresponding differ-
ential equation, which would mean that we should consider the Stokes equations. However, this is not necessary.
Indeed, the local Dirichlet problems are solved to realize the 𝐻1/2-norm. For this purpose, it is sufficient to
only consider local Dirichlet problems of the Poisson equation. A recent numerical study, cf. [25], has shown
that this approach is not only simpler, but also leads to better convergence behavior. Thus, we define the local
Schur complements via

𝑆
(𝑘)
𝐾 := 𝐾

(𝑘)
ΓΓ −𝐾

(𝑘)
ΓI 𝐾

(𝑘)
II

−1
𝐾

(𝑘)
IΓ . (24)

Then, the scaled Dirichlet preconditioner is given by

𝑀sD :=
𝐾∑︁

𝑘=1

𝐵(𝑘)𝒟−1
𝑘 𝑆

(𝑘)
𝐾 𝒟−1

𝑘 𝐵(𝑘)⊤, (25)

where 𝒟𝑘 := 2𝐼 is set up based on the principle of multiplicity scaling.

5. Condition number analysis for the IETI solver

The convergence rates of the conjugate gradient solver are estimated based on the condition number of
the preconditioned system 𝑀sD𝐹 . Following the framework introduced in [18], we rewrite the whole problem
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equivalently as a formulation only living to the skeleton. First, we define the skeleton formulation associated to
the main saddle point matrix 𝐴(𝑘) via

𝑆
(𝑘)
𝐴 := 𝐾

(𝑘)
ΓΓ −

(︁
𝐾

(𝑘)
ΓI 𝐷

(𝑘)
Γ

⊤ 0
)︁
⎛
⎜⎜⎝

𝐾
(𝑘)
II 𝐷

(𝑘)
I

⊤ 0

𝐷
(𝑘)
I 0 𝐶

(𝑘)
A

⊤

0 𝐶
(𝑘)
A 0

⎞
⎟⎟⎠

−1⎛
⎜⎜⎝

𝐾
(𝑘)
IΓ

𝐷
(𝑘)
Γ

0

⎞
⎟⎟⎠. (26)

Note that the inverse is well-defined due the constraint on the average pressure.
Next, we define corresponding function spaces. Let W := W(1) × · · · ×W(𝐾) with

W(𝑘) :=
{︁
v|𝜕Ω(𝑘) : v ∈ V(𝑘)

}︁

be the skeleton space and ℋ𝑘 : W(𝑘) → V(𝑘) be the discrete harmonic extension, i.e., ℋ𝑘w(𝑘) ∈ V(𝑘) such
that it minimizes |ℋ𝑘w(𝑘)|𝐻1(Ω(𝑘)) under the constraint

(︀
ℋ𝑘w(𝑘)

)︀
|𝜕Ω(𝑘) = w(𝑘). The function space ̃︁WΔ :=

̃︁W(1)
Δ × · · · × ̃︁W(𝐾)

Δ , where

̃︁W(𝑘)
Δ :=

{︃
w(𝑘) ∈ W(𝑘) :

w(𝑘)(𝑥𝑗) = 0 ∀𝑗 ∈ {1, . . . , 𝐽} with 𝑘 ∈ 𝒩𝑥(𝑗)
∫︀
Γ(𝑘,ℓ) w(𝑘) · n(𝑘) d𝑠 = 0 ∀ℓ ∈ 𝒩Γ(𝑘)

}︃
,

represents the functions that satisfy the primal degrees of freedom homogeneously. The space ̃︁W, in which all
the approximate solutions live in, is given by

̃︁W :=

⎧
⎪⎨
⎪⎩

w ∈ W :

w(𝑘)(𝑥𝑗) = w(ℓ)(𝑥𝑗) ∀𝑘, ℓ ∈ 𝒩𝑥(𝑗) with 𝑗 ∈ {1, . . . , 𝐽},
∫︀
Γ(𝑘,ℓ)(w(𝑘) −w(ℓ)) · n(𝑘) d𝑠 = 0 ∀𝑘 and ℓ ∈ 𝒩Γ(𝑘),
∫︀

𝜕Ω(𝑘) w(𝑘) · n(𝑘) d𝑠 = 0 ∀𝑘 ∈ {1, . . . ,𝐾}

⎫
⎪⎬
⎪⎭
,

where w = (w(1), · · · ,w(𝐾)). The first two lines in definition of this space refer to continuity constraints on the
velocity, both on the corner values of the velocities and the integrals of the normal components of the velocity
on all of the edges. Since the original formulation of the discretized Stokes problem (9) uses a continuous
discretization space for the velocity, these continuity conditions are obviously satisfied by the solution. However,
the definition also introduces a third class of constraints of the form∫︁

𝜕Ω(𝑘)
w(𝑘) · n(𝑘) d𝑠 = 0 ∀𝑘 = 1, . . . ,𝐾, (27)

i.e., that the inflow equals the outflow on each patch. Let u = (u(1), . . .u(𝐾)) be the exact solution with skeleton
representation w(𝑘) := u(𝑘)|𝜕Ω(𝑘) and let

𝜒Ω(𝑘)(𝑥) :=

{︃
1 if 𝑥 ∈ Ω(𝑘),

0 otherwise.

Be the characteristic functions. By integration by parts and since the functions 𝜒̃Ω(𝑘)(𝑥) := 𝜒Ω(𝑘)(𝑥)−
⃒⃒
Ω(𝑘)

⃒⃒
/|Ω|

are contained in 𝑄, we know from (9) that
∫︁

𝜕Ω(𝑘)
w(𝑘) · n(𝑘) d𝑠 =

∫︁

Ω(𝑘)
∇ · u(𝑘) d𝑥 =

⃒⃒
Ω(𝑘)

⃒⃒

|Ω|

∫︁

Ω

∇ · u d𝑥 =

⃒⃒
Ω(𝑘)

⃒⃒

|Ω|

∫︁

𝜕Ω

u · n d𝑠,

which vanishes due to the Dirichlet boundary conditions. This shows that (27) holds for the solution. The space
̃︁WΠ is the orthogonal complement to ̃︁WΔ in ̃︁W, i.e., we define

̃︁WΠ :=

{︃
w ∈ ̃︁W :

𝐾∑︁

𝑘=1

(︁
w(𝑘),v(𝑘)

)︁
𝑆

(𝑘)
𝐴

= 0 for all v ∈ ̃︁WΔ

}︃
.
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Here and in what follows, for any function, say w(𝑘) in W(𝑘), ̃︁W(𝑘), ̃︁W(𝑘)
Δ or ̃︁W(𝑘)

Π , the corresponding underlined
symbol, here w(𝑘), denotes the representation of the corresponding function with respect to the basis for the
space W(𝑘). So, functions in the all of these spaces are represented with respect to the same basis.

For the analysis, we introduce the following lemma that allows to write expressions involving inverses of
matrices as suprema.

Lemma 5.1. Let 𝐴 ∈ R𝑛×𝑛 be a symmetric positive definite matrix and let 𝐵 ∈ R𝑚1×𝑛, 𝐶 ∈ R𝑚2×𝑛 and
𝐷 ∈ R𝑚3×𝑚2 . Then, we have

‖𝜆‖𝑀0
= sup

𝑤∈𝑊0

(𝐵𝑤, 𝜆)ℓ2

‖𝑤‖𝐴

, where 𝑀0 := 𝐵𝐴−1𝐵⊤ (28)

and 𝑊0 := R𝑛,

‖𝜆‖𝑀1
= sup

𝑤∈𝑊1

(𝐵𝑤, 𝜆)ℓ2

‖𝑤‖𝐴

, where 𝑀1 :=
(︀
𝐵 0

)︀
(︃
𝐴 𝐶⊤

𝐶 0

)︃−1(︃
𝐵⊤

0

)︃
(29)

and 𝑊1 := {𝑤 ∈ R𝑛 : 𝐶𝑤 = 0}, and

‖𝜆‖𝑀2
= sup

𝑤∈𝑊2

(𝐵𝑤, 𝜆)ℓ2

‖𝑤‖𝐴

, where 𝑀2 :=
(︀
𝐵 0 0

)︀
⎛
⎜⎝
𝐴 𝐶⊤ 0

𝐶 0 𝐷⊤

0 𝐷 0

⎞
⎟⎠

−1⎛
⎜⎝
𝐵⊤

0
0

⎞
⎟⎠ (30)

and 𝑊2 := {𝑤 ∈ R𝑛 : 𝐷𝜇 = 0 ⇒ 𝜇⊤𝐶𝑤 = 0 for all 𝜇 ∈ R𝑚2}.
The statements (28) and (29) are standard, cf. Chapter II, S 1.1 of [11]. For completeness, we give a proof

of (30) in the Appendix A.
First we note the equivalence of 𝑆(𝑘)

𝐴 and 𝑆
(𝑘)
𝐾 .

Lemma 5.2. We have

w(𝑘)⊤𝑆
(𝑘)
𝐾 w(𝑘) ≤ w(𝑘)⊤𝑆

(𝑘)
𝐴 w(𝑘) ≤ 3

𝛿2

𝛽2
𝑘

w(𝑘)⊤𝑆
(𝑘)
𝐾 w(𝑘)

for all skeleton functions w(𝑘) ∈ W(𝑘), where 𝑆(𝑘)
𝐾 is as defined in (24) and 𝑆(𝑘)

𝐴 is as defined in (26).

Proof. Recalling (21), we have that

𝐶
(𝑘)
A =

⃒⃒
⃒Ω(𝑘)

⃒⃒
⃒
−1

1⊤𝑀 (𝑘)
𝑝 ,

where 𝑀 (𝑘)
𝑝 is the mass matrix that is obtained from discretizing (·, ·)𝐿2(Ω(𝑘)) with the basis functions in the

basis for 𝑄(𝑘) and 1 = (1, · · · , 1)⊤ is a vector of ones of the corresponding size. Certainly, we have 𝐶(𝑘)
A 1 = 1.

We observe that the Gauss rule yields

v(𝑘)
I
⊤
𝐷

(𝑘)
I

⊤1 =
(︁
∇ · v(𝑘)

I , 1
)︁

𝐿2(Ω(𝑘))
=
(︁
v(𝑘)

I · n(𝑘), 1
)︁

𝐿2(𝜕Ω(𝑘))
= 0

for all v(𝑘)
I ∈ V(𝑘)

I , i.e., 𝐷(𝑘)
I

⊤1 = 0. Define 𝑊 (𝑘) := 𝐷
(𝑘)
I 𝐾

(𝑘)
II

−1
𝐷

(𝑘)
I

⊤ + 𝐶
(𝑘)
A

⊤
𝐶

(𝑘)
A and observe that

𝑊 (𝑘)−1
𝐶

(𝑘)
A

⊤ = 1. Using these identities, it is easily verified that

⎛
⎜⎜⎝

𝐾
(𝑘)
II 𝐷

(𝑘)
I

⊤ 0

𝐷
(𝑘)
I 0 𝐶

(𝑘)
A

⊤

0 𝐶
(𝑘)
A 0

⎞
⎟⎟⎠

−1

=

⎛
⎜⎜⎝

𝐾
(𝑘)
II

−1 −𝐾
(𝑘)
II

−1
𝐷

(𝑘)
I

⊤
𝑊 (𝑘)−1

𝐷
(𝑘)
I 𝐾

(𝑘)
II

−1
𝐾

(𝑘)
II

−1
𝐷

(𝑘)
I

⊤
𝑊 (𝑘)−1 0

𝑊 (𝑘)−1
𝐷

(𝑘)
I 𝐾

(𝑘)
II

−1 1 1⊤ −𝑊 (𝑘)−1 1

0 1⊤ 0

⎞
⎟⎟⎠.



STABLE DISCRETIZATIONS AND IETI-DP SOLVERS FOR THE STOKES SYSTEM 937

Using the definition of 𝑆(𝑘)
𝐴 and by expanding the products, we obtain

𝑆
(𝑘)
𝐴 = 𝑆

(𝑘)
𝐾 + 𝑆

(𝑘)
D − 𝑆

(𝑘)
𝐸 ,

where 𝑆(𝑘)
𝐾 = 𝐾

(𝑘)
ΓΓ −𝐾

(𝑘)
ΓI 𝐾

(𝑘)
II

−1
𝐾

(𝑘)
IΓ is as defined in (24) and

𝑆
(𝑘)
D :=

(︁
𝐾

(𝑘)
ΓI 𝐾

(𝑘)
II

−1
𝐷

(𝑘)
I

⊤ −𝐷
(𝑘)
Γ

⊤
)︁
𝑊 (𝑘)−1

(︁
𝐷

(𝑘)
I 𝐾

(𝑘)
II

−1
𝐾

(𝑘)
IΓ −𝐷

(𝑘)
Γ

)︁
,

𝑆
(𝑘)
𝐸 := 𝐷

(𝑘)
Γ

⊤1 1⊤𝐷(𝑘)
Γ .

We first observe that

w(𝑘)⊤𝑆
(𝑘)
𝐾 w(𝑘) = w(𝑘)

(︁
𝐼 −𝐾(𝑘)

ΓI 𝐾
(𝑘)
II

−1
)︁(︃𝐾(𝑘)

ΓΓ 𝐾
(𝑘)
ΓI

𝐾
(𝑘)
IΓ 𝐾

(𝑘)
II

)︃(︃
𝐼

−𝐾(𝑘)
II

−1
𝐾

(𝑘)
IΓ

)︃
w(𝑘) =

⃒⃒
⃒ℋ𝑘w(𝑘)

⃒⃒
⃒
2

𝐻1(Ω(𝑘))
. (31)

Next, we observe that

𝑆
(𝑘)
D =

(︁
𝐼 −𝐾(𝑘)

ΓI 𝐾
(𝑘)
II

−1
)︁(︃𝐷(𝑘)

Γ
⊤

𝐷
(𝑘)
I

⊤

)︃
𝑊 (𝑘)−1

(︁
𝐷

(𝑘)
Γ 𝐷

(𝑘)
I

)︁(︃ 𝐼(𝑘)

−𝐾(𝑘)
II

−1
𝐾

(𝑘)
IΓ

)︃
= ℋ⊤𝑘 𝐷(𝑘)⊤𝑊 (𝑘)−1

𝐷(𝑘)ℋ𝑘,

where 𝐷(𝑘) :=
(︁
𝐷

(𝑘)
Γ 𝐷

(𝑘)
I

)︁
is the overall divergence andℋ𝑘 is the matrix representation of the discrete harmonic

extension. This means that we have using Lemma 5.1

w(𝑘)⊤𝑆
(𝑘)
D w(𝑘)⊤ = sup

𝑞(𝑘)∈𝑄(𝑘)

(︀
∇ ·
(︀
ℋ𝑘w(𝑘)

)︀
, 𝑞(𝑘)

)︀2
𝐿2(Ω(𝑘)),⃦⃦

𝑞(𝑘)
⃦⃦2

𝑊 (𝑘)

·

Using

1⊤𝑊 (𝑘)1 = sup
v

(𝑘)
I ∈V

(𝑘)
I

(︁
∇ · v(𝑘)

I , 1
)︁2

𝐿2(Ω(𝑘))⃒⃒
⃒v(𝑘)

I

⃒⃒
⃒
2

𝐻1(Ω(𝑘))⏟  ⏞  
= 0

+
⃒⃒
⃒Ω(𝑘)

⃒⃒
⃒
−2
(︂∫︁

Ω(𝑘)
1 d𝑥

)︂2

= 1.

Using the Gauss rule and the choice 𝑞(𝑘) = 1, we obtain

w(𝑘)⊤𝑆
(𝑘)
D w(𝑘) ≥

(︁
∇ ·
(︁
ℋ𝑘w(𝑘)

)︁
, 1
)︁2

𝐿2(Ω(𝑘))
=
(︁(︁
ℋ𝑘w(𝑘)

)︁
· n(𝑘), 1

)︁2

𝐿2(𝜕Ω(𝑘))

=
(︁
w(𝑘) · n(𝑘), 1

)︁2

𝐿2(𝜕Ω(𝑘))
=
(︁
∇ · v(𝑘)

Γ , 1
)︁2

𝐿2(Ω(𝑘))
=
(︁

1⊤𝐷Γv
(𝑘)
Γ

)︁2

= v(𝑘)
Γ
⊤
𝑆

(𝑘)
𝐸 v(𝑘)

Γ = w(𝑘)⊤𝑆
(𝑘)
𝐸 w(𝑘),

where v(𝑘)
Γ ∈ V(𝑘)

Γ such that v(𝑘)
Γ |𝜕Ω(𝑘) = w(𝑘) (and thus v(𝑘)

Γ = w(𝑘)). This shows

w(𝑘)⊤𝑆
(𝑘)
𝐴 w(𝑘) = w(𝑘)⊤

(︁
𝑆

(𝑘)
𝐾 + 𝑆

(𝑘)
D − 𝑆

(𝑘)
𝐸

)︁
w(𝑘) ≥ w(𝑘)⊤𝑆

(𝑘)
𝐾 w(𝑘)

and thus the desired bound from below.
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The definition of 𝑊 (𝑘), local inf-sup stability (8) and 𝛽𝑘 ≤ 𝛿 =
√

2 give for all 𝑝(𝑘) ∈ 𝑄(𝑘):

𝑝(𝑘)⊤𝑊 (𝑘)𝑝(𝑘) = sup
vI∈V

(𝑘)
I

(︀
∇ · vI, 𝑝

(𝑘)
)︀2
𝐿2(Ω(𝑘))

|vI|2𝐻1(Ω(𝑘))
+
⃒⃒
⃒Ω(𝑘)

⃒⃒
⃒
−2
(︂∫︁

Ω(𝑘)
𝑝(𝑘) d𝑥

)︂2

≥ 𝛽2
𝑘 inf

𝑞∈R

⃦⃦
⃦𝑝(𝑘) − 𝑞

⃦⃦
⃦

2

𝐿2(Ω(𝑘))
+
⃒⃒
⃒Ω(𝑘)

⃒⃒
⃒
−2
(︂∫︁

Ω(𝑘)
𝑝(𝑘) d𝑥

)︂2

≥ min
{︀
𝛽2

𝑘, 1
}︀⃦⃦
⃦𝑝(𝑘)

⃦⃦
⃦

2

𝐿2(Ω(𝑘))
≥ 𝛽2

𝑘

2

⃦⃦
⃦𝑝(𝑘)

⃦⃦
⃦

2

𝐿2(Ω(𝑘))
.

Using (4) and (31), we further obtain

w(𝑘)⊤𝑆
(𝑘)
D w(𝑘) ≤ 2𝛽−2

𝑘 sup
𝑝(𝑘)∈𝑄(𝑘)

(︀
∇ · (ℋ𝑘w(𝑘)), 𝑝(𝑘)

)︀2
𝐿2
(︁
Ω(𝑘)

)︁

⃦⃦
𝑝(𝑘)

⃦⃦2

𝐿2
(︁
Ω(𝑘)

)︁

≤ 2𝛽−2
𝑘 𝛿2

⃒⃒
⃒ℋ𝑘w(𝑘)

⃒⃒
⃒
2

𝐻1(Ω(𝑘))
= 2𝛽−2

𝑘 𝛿2w(𝑘)⊤𝑆
(𝑘)
𝐾 w(𝑘).

Using w(𝑘)⊤𝑆
(𝑘)
𝐸 w(𝑘) ≥ 0 and 1 ≤ 𝛽−2

𝑘 𝛿2, we finally have

w(𝑘)⊤𝑆
(𝑘)
𝐴 w(𝑘) = w(𝑘)⊤

(︁
𝑆

(𝑘)
𝐾 + 𝑆

(𝑘)
D − 𝑆

(𝑘)
𝐸

)︁
w(𝑘) ≤ 3𝛽−2

𝑘 𝛿2w(𝑘)⊤𝑆
(𝑘)
𝐾 w(𝑘),

which finishes the proof. �

Recalling

𝐹 = 𝐹Π +
𝐾∑︁

𝑘=1

𝐹 (𝑘),

we estimate 𝐹 (𝑘) and 𝐹Π separately using Lemmas 5.3 and 5.6 below.

Lemma 5.3. For 𝑘 = 1, . . . ,𝐾, the matrices 𝐹 (𝑘) are symmetric and positive semidefinite and satisfy

‖𝜆‖
𝐹 (𝑘) = sup

w(𝑘)∈̃︁W(𝑘)
Δ

(︁
𝐵(𝑘)⊤𝜆,w(𝑘)

)︁
ℓ2⃦⃦

w(𝑘)
⃦⃦

𝑆
(𝑘)
𝐴

·

Proof. Using the definition of 𝐹 (𝑘), the block structure of 𝐴(𝑘), the fact that we can reorder the entries in 𝐴(𝑘),
block Gaussian elimination and (26), we obtain

𝐹 (𝑘) = 𝐵̄(𝑘)𝐴(𝑘)−1
𝐵̄(𝑘)⊤ =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝐵(𝑘)⊤

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

⊤
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐾
(𝑘)
ΓΓ 𝐶

(𝑘)
C

⊤
𝐾

(𝑘)
ΓI 𝐷

(𝑘)
Γ

⊤ 0

𝐶
(𝑘)
C 0 0 0 0

𝐾
(𝑘)
IΓ 0 𝐾

(𝑘)
II 𝐷

(𝑘)
I

⊤ 0

𝐷
(𝑘)
Γ 0 𝐷

(𝑘)
I 0 𝐶

(𝑘)
A

⊤

0 0 0 𝐶
(𝑘)
A 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎜⎜⎝

𝐵(𝑘)⊤

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

=
(︀
𝐵(𝑘) 0

)︀
(︃
𝑆

(𝑘)
𝐴 𝐶

(𝑘)
C

⊤

𝐶
(𝑘)
C 0

)︃−1(︃
𝐵(𝑘)⊤

0

)︃
.

Since w(𝑘) ∈ ̃︁W(𝑘)
Δ if and only if 𝐶(𝑘)

C w(𝑘) = 0, Lemma 5.1 gives the desired representation. This representation
shows that 𝐹 (𝑘) is symmetric and positive definite. �
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Before we discuss 𝐹Π, we observe that the primal basis functions associated to the averaging conditions are
just the constant pressure functions, precisely the pressure component of the 𝑘-th basis function 𝜒Ω(𝑘) , i.e., 1
on the patch Ω(𝑘) and 0 on all other patches. The velocity component vanishes on all patches.

Lemma 5.4. We have Ψ(𝑘)
ΓA = 0, Ψ(𝑘)

IA = 0 and Ψ(𝑘)
𝑝A = 1𝑅(𝑘)

A .

Proof. Since 𝑅(𝑘)
A = (0, · · · , 0, 1, 0, · · · , 0), where the non-zero coefficient is in the 𝑘-th column, we immediately

obtain from the definition (22) that all other columns of Ψ(𝑘)
ΓA, Ψ(𝑘)

IA and Ψ(𝑘)
𝑝A vanish. Let 𝜓(𝑘)

ΓA
, 𝜓(𝑘)

IA
and 𝜓(𝑘)

𝑝A
be

the 𝑘-th column of these matrices. Then, we have
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐾
(𝑘)
ΓΓ 𝐾

(𝑘)
ΓI 𝐷

(𝑘)
Γ

⊤ 0 𝐶
(𝑘)
C

⊤

𝐾
(𝑘)
IΓ 𝐾

(𝑘)
II 𝐷

(𝑘)
I

⊤ 0 0

𝐷
(𝑘)
Γ 𝐷

(𝑘)
I 0 𝐶

(𝑘)
A

⊤ 0

0 0 𝐶
(𝑘)
A 0 0

𝐶
(𝑘)
C 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜓(𝑘)

ΓA

𝜓(𝑘)

IA

𝜓(𝑘)

𝑝A

𝜌(𝑘)

𝜇(𝑘)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (32)

Since the matrix 𝐴(𝑘) is non-singular, the system has a unique solution. Choose 𝜓(𝑘)

ΓA
:= 0, 𝜓(𝑘)

IA
:= 0, 𝜓(𝑘)

𝑝A
:= 1,

𝜌(𝑘) := 0 and 𝜇(𝑘) such that

𝜇(𝑘)⊤𝐶
(𝑘)
C v(𝑘)

Γ = −
∫︁

𝜕Ω(𝑘)
v(𝑘)

Γ · n(𝑘) d𝑠 ∀v(𝑘)
Γ ∈ V(𝑘)

Γ ,

which is possible since 𝐶(𝑘)
C evaluates the primal degrees of freedom and the integrals of the normal components

of the velocity variable on each edge are primal degrees of freedom. So, 𝜇(𝑘) is just such that sum over the edges.
Using the Gauss rule, we further have

𝜇(𝑘)⊤𝐶
(𝑘)
C v(𝑘)

Γ = −
∫︁

Ω(𝑘)
∇ · v(𝑘)

Γ d𝑥 = −1⊤𝐷(𝑘)
Γ v(𝑘)

Γ ∀v(𝑘)
Γ ∈ V(𝑘)

Γ ,

which shows 𝐷(𝑘)
Γ

⊤1 + 𝐶
(𝑘)
C

⊤
𝜇(𝑘) = 0. Analogously, we obtain 𝐷

(𝑘)
I

⊤1 = 0. Since 1 represents the constant
function with value 1 and 𝐶(𝑘)

A evaluates the average, we have 𝐶(𝑘)
A 1 = 1. Using these results, it is easily verified

that (𝜓(𝑘)

ΓA
, 𝜓(𝑘)

IA
, 𝜓(𝑘)

𝑝A
, 𝜌(𝑘), 𝜇(𝑘)) as chosen solves (32). This finishes the proof. �

Analogously to Lemma 5.3, we show that the operator 𝐹Π corresponds to taking the maximum in ̃︁WΠ.
Before we give a proof, we introduce some useful notation by collecting local contributions to global matrices
and vectors.

Notation 5.5. The matrix 𝐵 is a block row matrix containing the corresponding patch-local contributions,
like 𝐵 :=

(︀
𝐵(1) · · · 𝐵(𝐾)

)︀
. The matrices ΨΓC and ΨΓA are block column matrices containing the corresponding

patch-local contributions. The matrices 𝑆𝐴, 𝑆𝐾 , 𝐷Γ and 𝒟 are block diagonal matrices containing the cor-
responding patch-local contributions. The vectors, like w, are the corresponding block vectors containing the
patch-local contributions.

Lemma 5.6. The matrix 𝐹Π is symmetric and positive semidefinite and satisfies

‖𝜆‖𝐹Π
= sup

w∈̃︁WΠ

(︀
𝐵⊤𝜆,w

)︀
ℓ2

‖w‖𝑆𝐴

·
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Proof. Recall that

𝐹Π = 𝐵̄Π𝐴
−1
Π 𝐵̄⊤Π =

(︀
𝐵Π 0

)︀
(︃
𝐴Π 𝐶⊤Π
𝐶Π 0

)︃−1(︃
𝐵⊤Π
0

)︃

with 𝐴Π =
∑︀𝐾

𝑘=1 Ψ(𝑘)⊤𝐴(𝑘)Ψ(𝑘) and 𝐵Π =
∑︀𝐾

𝑘=1𝐵
(𝑘)Ψ(𝑘). We decompose the basis for the primal space into

basis functions corresponding to the continuity conditions (Ψ(𝑘)
C ) and basis functions corresponding to the

averaging conditions (Ψ(𝑘)
A ):

Ψ(𝑘) =
(︁

Ψ(𝑘)
C Ψ(𝑘)

A

)︁
, where Ψ(𝑘)

C :=

⎛
⎜⎜⎝

Ψ(𝑘)
ΓC

Ψ(𝑘)
IC

Ψ(𝑘)
𝑝C

⎞
⎟⎟⎠ and Ψ(𝑘)

A :=

⎛
⎜⎜⎝

Ψ(𝑘)
ΓA

Ψ(𝑘)
IA

Ψ(𝑘)
𝑝A

⎞
⎟⎟⎠.

From (22), we have ⎛
⎜⎜⎝

Ψ(𝑘)
IC

Ψ(𝑘)
𝑝C

𝜌C

⎞
⎟⎟⎠ = −

⎛
⎜⎜⎝

𝐾
(𝑘)
II 𝐷

(𝑘)
I

⊤ 0

𝐷
(𝑘)
I 0 𝐶

(𝑘)
A

⊤

0 𝐶
(𝑘)
A 0

⎞
⎟⎟⎠

−1⎛
⎜⎜⎝

𝐾
(𝑘)
IΓ

𝐷
(𝑘)
Γ

0

⎞
⎟⎟⎠Ψ(𝑘)

ΓC. (33)

Using 𝐶(𝑘)
A Ψ(𝑘)

𝑝C = 0, equations (33) and (26), we have

Ψ(𝑘)
C
⊤
𝐴(𝑘)Ψ(𝑘)

C =

⎛
⎜⎜⎝

Ψ(𝑘)
ΓC

Ψ(𝑘)
IC

Ψ(𝑘)
𝑝C

⎞
⎟⎟⎠

⊤⎛
⎜⎜⎜⎝

𝐾
(𝑘)
ΓΓ 𝐾

(𝑘)
ΓI 𝐷

(𝑘)
Γ

⊤

𝐾
(𝑘)
IΓ 𝐾

(𝑘)
II 𝐷

(𝑘)
I

⊤

𝐷
(𝑘)
Γ 𝐷

(𝑘)
I 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

Ψ(𝑘)
ΓC

Ψ(𝑘)
IC

Ψ(𝑘)
𝑝C

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Ψ(𝑘)
ΓC

Ψ(𝑘)
IC

Ψ(𝑘)
𝑝C

𝜌C

⎞
⎟⎟⎟⎟⎠

⊤⎛
⎜⎜⎜⎜⎜⎝

𝐾
(𝑘)
ΓΓ 𝐾

(𝑘)
ΓI 𝐷

(𝑘)
Γ

⊤ 0

𝐾
(𝑘)
IΓ 𝐾

(𝑘)
II 𝐷

(𝑘)
I

⊤ 0

𝐷
(𝑘)
Γ 𝐷

(𝑘)
I 0 𝐶

(𝑘)
A

⊤

0 0 𝐶
(𝑘)
A 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Ψ(𝑘)
ΓC

Ψ(𝑘)
IC

Ψ(𝑘)
𝑝C

𝜌C

⎞
⎟⎟⎟⎟⎠

= Ψ(𝑘)
ΓC
⊤
𝑆

(𝑘)
𝐴 Ψ(𝑘)

ΓC ≥ 0.

(34)

Using Lemma 5.4, we have

Ψ(𝑘)
A
⊤
𝐴(𝑘)Ψ(𝑘)

A =

⎛
⎜⎝

0
0

1𝑅(𝑘)
A

⎞
⎟⎠

⊤
⎛
⎜⎜⎜⎝

𝐾
(𝑘)
ΓΓ 𝐾

(𝑘)
ΓI 𝐷

(𝑘)
Γ

⊤

𝐾
(𝑘)
IΓ 𝐾

(𝑘)
II 𝐷

(𝑘)
I

⊤

𝐷
(𝑘)
Γ 𝐷

(𝑘)
I 0

⎞
⎟⎟⎟⎠

⎛
⎜⎝

0
0

1𝑅(𝑘)
A

⎞
⎟⎠ = 0 (35)

and

Ψ(𝑘)
A
⊤
𝐴(𝑘)Ψ(𝑘)

C =

⎛
⎜⎝

0
0

1𝑅(𝑘)
A

⎞
⎟⎠

⊤
⎛
⎜⎜⎜⎝

𝐾
(𝑘)
ΓΓ 𝐾

(𝑘)
ΓI 𝐷

(𝑘)
Γ

⊤

𝐾
(𝑘)
IΓ 𝐾

(𝑘)
II 𝐷

(𝑘)
I

⊤

𝐷
(𝑘)
Γ 𝐷

(𝑘)
I 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

Ψ(𝑘)
ΓC

Ψ(𝑘)
IC

Ψ(𝑘)
𝑝C

⎞
⎟⎟⎠ = 𝑅

(𝑘)
A
⊤1⊤𝐷(𝑘)

Γ Ψ(𝑘)
ΓC (36)

since 1⊤𝐷(𝑘)
I Ψ(𝑘)

IC = 0. Using (34)–(36), we obtain

𝐹Π =
(︀
𝐵Π 0

)︀
(︃
𝐴Π 𝐶⊤Π
𝐶Π 0

)︃−1(︃
𝐵⊤Π
0

)︃
=
(︀
𝐵ΨΓC 0 0

)︀
⎛
⎜⎝

Ψ⊤ΓC𝑆𝐴ΨΓC Ψ⊤ΓC𝑍 0

𝑍⊤ΨΓC 0 𝐶⊤Π
0 𝐶Π 0

⎞
⎟⎠

−1⎛
⎜⎝

Ψ⊤ΓC𝐵
⊤

0
0

⎞
⎟⎠,
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where 𝑍 is a block-diagonal matrix containing 𝐷(1)
Γ
⊤1, . . . , 𝐷(𝐾)

Γ
⊤1. Using Lemma 5.1, we have

‖𝜆‖𝐹Π
= sup

wC∈WC

(︀
𝐵⊤𝜆,ΨΓCwC

)︀
ℓ2

‖ΨΓCwC‖𝑆𝐴

,

where WC := {wC : 𝐶Π𝜇 = 0 ⇒ 𝜇⊤𝑍⊤ΨΓCwC = 0}. Define w := ΨΓCwC and let w = (w(1), · · · ,w(𝐾)) ∈ ̃︁W
be the function associated to the coefficient vector w. Observe that the condition

𝐶Π𝜇 = 0 ⇒ 𝜇⊤𝑍⊤w =
𝐾∑︁

𝑘=1

𝜇𝑘1⊤𝐷(𝑘)
Γ w(𝑘) = 0 translates to

𝐾∑︁

𝑘=1

𝜇𝑘 = 0 ⇒
𝐾∑︁

𝑘=1

𝜇𝑘

∫︁

𝜕Ω(𝑘)
w(𝑘) · n(𝑘) d𝑠 = 0.

Since functions in ̃︁W satisfy homogeneous Dirichlet boundary conditions and since they satisfy a continuity
condition on the averages of the normal components of the velocity, we also have

0 =
∫︁

𝜕Ω

w · n d𝑠 =
𝐾∑︁

𝑘=1

∫︁

𝜕Ω(𝑘)
w(𝑘) · n(𝑘) d𝑠.

By combining these results, we obtain that
∫︀

𝜕Ω(𝑘) w(𝑘) ·n(𝑘) d𝑠 = 0 for all 𝑘 = 1, . . . ,𝐾. Since w is in the image
space of the primal basis functions, we also know that w satisfies the remaining conditions in the definition of
̃︁W and that it is orthogonal to ̃︁WΔ. This shows w ∈ ̃︁WΠ. The reverse direction, i.e., that for each w ∈ ̃︁WΠ,
there is some wC ∈ WC with w := ΨΓCwC is straight forward. So, we obtain

‖𝜆‖𝐹Π
= sup

w∈̃︁WΠ

(︀
𝐵⊤𝜆,w

)︀
ℓ2

‖w‖𝑆𝐴

,

which is what we wanted to show. This representation immediately shows that the symmetric matrix 𝐹Π is
positive semidefinite. �

From the Lemmas 5.3 and 5.6, we immediately obtain that the matrix 𝐹 is symmetric positive semidefinite
and that the following result holds.

Lemma 5.7. The identity

‖𝜆‖𝐹 = sup
w∈̃︁W

(︀
𝐵⊤𝜆,w

)︀
ℓ2

‖w‖𝑆𝐴

(37)

holds for all 𝜆.

Proof. Using orthogonality, the Cauchy–Schwarz inequality and Lemmas 5.3 and 5.6, we have

sup
w∈̃︁W

(︀
𝐵⊤𝜆,w

)︀2
ℓ2

‖w‖2𝑆𝐴

= sup
∑︀

𝑘 w
(𝑘)
Δ +wΠ∈̃︁W

(︁
𝜆,
∑︀𝐾

𝑘=1𝐵
(𝑘)w(𝑘)

Δ +𝐵wΠ

)︁2

ℓ2

∑︀𝐾
𝑘=1

⃦⃦
⃦w(𝑘)

Δ

⃦⃦
⃦

2

𝑆
(𝑘)
𝐴

+ ‖wΠ‖2𝑆𝐴

= sup
∑︀

𝑘 w
(𝑘)
Δ +wΠ∈̃︁W

⎛
⎝∑︀𝐾

𝑘=1

(︁
𝜆,𝐵(𝑘)w

(𝑘)
Δ

)︁

ℓ2⃦⃦
⃦w(𝑘)

Δ

⃦⃦
⃦

𝑆
(𝑘)
𝐴

⃦⃦
⃦w(𝑘)

Δ

⃦⃦
⃦

𝑆
(𝑘)
𝐴

+
(𝜆,𝐵wΠ)

ℓ2

‖wΠ‖𝑆𝐴

‖wΠ‖𝑆𝐴

⎞
⎠

2

∑︀𝐾
𝑘=1

⃦⃦
⃦w(𝑘)

Δ

⃦⃦
⃦

2

𝑆
(𝑘)
𝐴

+ ‖wΠ‖2𝑆𝐴
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≤ sup
∑︀

𝑘 w
(𝑘)
Δ +wΠ∈̃︁W

⎛
⎜⎜⎝

𝐾∑︁

𝑘=1

(︁
𝜆,𝐵(𝑘)w(𝑘)

Δ

)︁2

ℓ2⃦⃦
⃦w(𝑘)

Δ

⃦⃦
⃦

2

𝑆
(𝑘)
𝐴

+
(𝜆,𝐵wΠ)2ℓ2
‖wΠ‖2𝑆𝐴

⎞
⎟⎟⎠ = ‖𝜆‖2𝐹 .

The Cauchy–Schwarz inequality is satisfied with equality if the corresponding terms are equal, i.e.,
(︁
𝜆,𝐵(𝑘)w(𝑘)

Δ

)︁
ℓ2⃦⃦

⃦w(𝑘)
Δ

⃦⃦
⃦

𝑆
(𝑘)
𝐴

=
⃦⃦
⃦w(𝑘)

Δ

⃦⃦
⃦

𝑆
(𝑘)
𝐴

and
(𝜆,𝐵wΠ)ℓ2

‖wΠ‖𝑆𝐴

= ‖wΠ‖𝑆𝐴
.

Let W* ⊂ ̃︁W be the subset of functions that satisfy these conditions. Due to scaling invariance and the fact
that the Cauchy–Schwarz inequality is satisfied with equality and W* ⊂ ̃︁W, we have

‖𝜆‖2𝐹 = sup
∑︀

𝑘 w
(𝑘)
Δ +wΠ∈W*

⎛
⎜⎜⎝

𝐾∑︁

𝑘=1

(︁
𝜆,𝐵(𝑘)w(𝑘)

Δ

)︁2

ℓ2⃦⃦
⃦w(𝑘)

Δ

⃦⃦
⃦

2

𝑆
(𝑘)
𝐴

+
(𝜆,𝐵wΠ)2ℓ2
‖wΠ‖2𝑆𝐴

⎞
⎟⎟⎠ = sup

w∈W*

(︀
𝐵⊤𝜆,w

)︀2
ℓ2

‖w‖2𝑆𝐴

≤ sup
w∈̃︁W

(︀
𝐵⊤𝜆,w

)︀2
ℓ2

‖w‖2𝑆𝐴

,

which finishes the proof. �

Lemma 5.8. Let w = 𝒟−1𝐵⊤𝐵v, where w and v are the coefficient representations of w ∈ W and v ∈ ̃︁W,
respectively. Then, we have w(𝑘)|Γ(𝑘,ℓ) = v(𝑘)|Γ(𝑘,ℓ) − v(ℓ)|Γ(𝑘,ℓ) .

This lemma is standard, for a proof, see, e.g., Lemma 4.16 of [22].

Lemma 5.9. Let w = 𝒟−1𝐵⊤𝐵v, where w and v are the coefficient representations of w ∈ W and v ∈ ̃︁W,
respectively. We have w ∈ ̃︁W.

Proof. Since the basis functions on the vertices are not affected by the constraints, functions that are represented
by coefficient vectors in the image of 𝐵 vanish on the vertices. This guarantees continuity at the vertices.
Lemma 5.8 and the continuity of the integrals of the normal components of v imply that the corresponding
integrals of w vanish. This finishes the proof. �

Lemma 5.10. The identity 𝐵𝒟−1𝐵⊤𝐵 = 𝐵 holds.

Since we exclude the corners, this statement is standard, see, e.g., [18].

Lemma 5.11. For all v ∈ ̃︁W with coefficient representation v, the estimate

⃦⃦
𝒟−1𝐵⊤𝐵v

⃦⃦2

𝑆𝐾
≤ 𝐶 p

(︂
1 + log p + max

𝑘=1,...,𝐾
log

𝐻𝑘

ℎ𝑘

)︂2

‖v‖2𝑆𝐾

holds, where 𝐶 only depends on the constants from the Assumptions 3.3 and 3.5.

Proof. Within this proof, we write 𝑎 . 𝑏 if there is a constant 𝑐 that only depends on the constants from the
Assumptions 3.3 and 3.5 such that 𝑎 ≤ 𝑐 𝑏. Let v ∈ ̃︁W and w ∈ W with coefficient representations such that
w = 𝒟−1𝐵⊤𝐵v. Using Theorem 4.2 of [22] (which depends on the constants from Assumptions 3.3 and 3.5),
we obtain

⃦⃦
𝒟−1𝐵⊤𝐵v

⃦⃦2

𝑆𝐾
= ‖w‖2𝑆𝐾

.
𝐾∑︁

𝑘=1

⃒⃒
⃒ℋ𝑘w(𝑘)

⃒⃒
⃒
2

𝐻1(Ω(𝑘))
. p

𝐾∑︁

𝑘=1

⃒⃒
⃒w(𝑘)

⃒⃒
⃒
2

𝐻1/2(𝜕Ω(𝑘))
,
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where we apply Theorem 4.2 of [22] to both components of the velocity variable separately. By apply-
ing Lemma 4.15 of [22] (which depends on the constants from Assumptions 3.3 and 3.5) to both velocity
components separately, we further obtain

⃦⃦
𝒟−1𝐵⊤𝐵v

⃦⃦2

𝑆𝐾
. p

𝐾∑︁

𝑘=1

∑︁

ℓ∈𝒩Γ(𝑘)

(︂⃒⃒
⃒w(𝑘)

⃒⃒
⃒
2

𝐻1/2(Γ(𝑘,ℓ))
+ Λ

⃒⃒
⃒w(𝑘)

⃒⃒
⃒
2

𝐿∞0 (Γ(𝑘,ℓ))

)︂
,

where Λ := 1 + log p + max𝑘=1,...,𝐾 log 𝐻𝑘

ℎ𝑘
and |𝑣|𝐿∞0 (Γ(𝑘,ℓ)) := inf𝑞∈R ‖𝑣 − 𝑞‖𝐿∞(Γ(𝑘,ℓ)). Using Lemma 5.8 and

the triangle inequality, we further obtain

⃦⃦
𝒟−1𝐵⊤𝐵v

⃦⃦2

𝑆𝐾
. p

𝐾∑︁

𝑘=1

∑︁

ℓ∈𝒩Γ(𝑘)

(︂⃒⃒
⃒v(𝑘) − v(ℓ)

⃒⃒
⃒
2

𝐻1/2(Γ(𝑘,ℓ))
+ Λ

⃒⃒
⃒v(𝑘) − v(ℓ)

⃒⃒
⃒
2

𝐿∞0 (Γ(𝑘,ℓ))

)︂

. p
𝐾∑︁

𝑘=1

(︂⃒⃒
⃒v(𝑘)

⃒⃒
⃒
2

𝐻1/2(Γ(𝑘,ℓ))
+ Λ

⃒⃒
⃒v(𝑘)

⃒⃒
⃒
2

𝐿∞0 (Γ(𝑘,ℓ))

)︂
.

By applying Theorem 4.2 and Lemma 4.14 of [22] (which depend on the constants from Assumptions 3.3 and 3.5)
again to both velocity components, we arrive at

⃦⃦
𝒟−1𝐵⊤𝐵v

⃦⃦2

𝑆𝐾
. p

𝐾∑︁

𝑘=1

(︂⃒⃒
⃒ℋ𝑘v(𝑘)

⃒⃒
⃒
2

𝐻1(Ω(𝑘))
+ Λ2 inf

𝑞∈R

⃦⃦
⃦ℋ𝑘v(𝑘) − 𝑞

⃦⃦
⃦

2

𝐻1(Ω(𝑘))

)︂
.

Using a Poincaré inequality (6), we have

⃦⃦
𝒟−1𝐵⊤𝐵v

⃦⃦2

𝑆𝐾
. p

𝐾∑︁

𝑘=1

(︂⃒⃒
⃒ℋ𝑘v(𝑘)

⃒⃒
⃒
2

𝐻1(Ω(𝑘))
+ Λ2

⃒⃒
⃒ℋ𝑘v(𝑘)

⃒⃒
⃒
2

𝐻1(Ω(𝑘))

)︂
,

from which the desired result follows. �

If standard Krylov space methods are applied to the singular matrix 𝐹 , preconditioned with a non-singular
preconditioner 𝑀sD, all iterations live in the corresponding factor space. The convergence behavior is dictated
by the essential condition number of 𝑀sD𝐹 , cf. Remark 23 of [18]. The essential condition number for a positive
semidefinite matrix is the ratio between the largest eigenvalue and the smallest positive eigenvalue.

Theorem 5.12. Provided that the IETI-DP solver is set up as outlined in the previous section, the condition
number of the preconditioned system satisfies

𝜅ess(𝑀sD𝐹 ) ≤ 𝐶 p
(︂

1 + log p + max
𝑘=1,...,𝐾

log
𝐻𝑘

ℎ𝑘

)︂2(︂
max

𝑘=1,...,𝐾

𝛿

𝛽𝑘

)︂
,

where 𝛿 is as in (4), 𝛽𝑘 is as in (8) and 𝐶 is a constant that only depends on the constants from the Assump-
tions 3.3 and 3.5.

Proof. Within this proof, we write 𝑎 . 𝑏 if there is a constant 𝑐 that only depends on the constants from the
Assumptions 3.3 and 3.5 such that 𝑎 ≤ 𝑐 𝑏. For an upper bound, we use Lemma 5.2, (37), Lemma 5.11 and the
fact that 𝐵 has a full rank,

√︁
𝜆⊤𝐹𝜆 = sup

w∈̃︁W∖{0}

(︀
𝐵⊤𝜆,w

)︀
ℓ2

‖w‖𝑆𝐴

≤ sup
w∈W∖{0}

(︀
𝐵⊤𝜆,w

)︀
ℓ2

‖w‖𝑆𝐾

= sup
w∈W∖Ker𝐵

(𝜆,𝐵w)ℓ2

‖w‖𝑆𝐾



944 J. SOGN AND S. TAKACS

. 𝜔 sup
w∈W∖Ker𝐵

(𝜆,𝐵w)ℓ2

‖𝒟−1𝐵⊤𝐵w‖𝑆𝐾

≤ 𝜔 sup
𝜇∈𝐿∖{0}

(︀
𝜆, 𝜇

)︀
ℓ2

‖𝒟−1𝐵⊤𝜇‖𝑆𝐾

= 𝜔 sup
𝜇∈𝐿∖{0}

(︀
𝜆, 𝜇

)︀
ℓ2

‖𝜇‖𝑀sD

= 𝜔

√︁
𝜆⊤𝑀−1

sD 𝜆,

where 𝐿 is a vector space of the corresponding dimension and 𝜔2 := p(1 + log p + max𝑘 log 𝐻𝑘

ℎ𝑘
)2. This provides

an upper bound for the eigenvalues of 𝑀−1
sD 𝐹 .

Next, we estimate the smallest non-zero eigenvalue. We consider the following generalized eigenvalue problem:
𝐹𝜆 = 𝜇𝑀−1

sD 𝜆. We are interested in the smallest non-zero eigenvalue 𝜇. Define

𝐿0 :=
{︁
𝜆0 : (𝜆0, 𝐵w)ℓ2 = 0 ∀w ∈ ̃︁W

}︁
and 𝐿1 :=

{︁
𝜆1 : 𝜆1 = 𝑀sD𝐵w with w ∈ ̃︁W

}︁

and observe that (𝜆0, 𝜆1)𝑀−1
sD

= 0 and 𝐹𝜆0 = 0 for all 𝜆0 ∈ 𝐿0 and 𝜆1 ∈ 𝐿1. This means that all 𝜆0 ∈ 𝐿0

are eigenvectors with eigenvalue 0. Since all eigenvectors with non-zero eigenvalue are 𝑀−1
sD -orthogonal to the

eigenvectors with eigenvalue 0, these eigenvectors have to be in 𝐿1. Using 𝜆1 ∈ 𝐿1∖{0} and Lemma 5.10, we
have

√︁
𝜆⊤1 𝑀

−1
sD 𝜆1 =

(︀
𝑀−1

sD 𝜆1, 𝜆1

)︀
ℓ2⃦⃦

𝑀−1
sD 𝜆1

⃦⃦
𝑀sD

≤ sup
w∈̃︁W∖Ker𝐵

(𝐵w, 𝜆1)ℓ2

‖𝐵w‖𝑀sD

= sup
w∈̃︁W∖Ker𝐵

(︀
𝐵𝒟−1𝐵⊤𝐵w, 𝜆1

)︀
ℓ2

‖𝒟−1𝐵⊤𝐵w‖𝑆𝐾

·

Using Lemma 5.9, we know that v := 𝒟−1𝐵⊤𝐵w ∈ ̃︁W, so using Lemma 5.2 we further obtain

√︁
𝜆⊤1 𝑀

−1
sD 𝜆1 ≤ sup

v∈̃︁W∖{0}

(𝐵v, 𝜆1)ℓ2

‖v‖𝑆𝐾

.

(︂
max

𝑘=1,...,𝐾

𝛿

𝛽𝑘

)︂−1

sup
v∈̃︁W∖{0}

(𝐵v, 𝜆1)ℓ2

‖v‖𝑆𝐴

=
(︂

max
𝑘=1,...,𝐾

𝛿

𝛽𝑘

)︂−1√︁
𝜆⊤1 𝐹𝜆1,

which provides a lower bound for the positive eigenvalues. Having these eigenvalue bounds, we immediately
obtain the desired bound on the essential condition number. �

With the observations of Remark 3.14, the results for the IETI solver can be generalized to mixed boundary
conditions.

6. Numerical results

In this section, we present numerical results that illustrate the efficiency of the proposed IETI-DP solver.
In Section 6.1, we present results for domains that have been previously considered in IgA and which are
fully covered by the presented theory. In Section 6.2, we present a more physical test example using boundary
conditions that go beyond the model problem considered for the theory.

6.1. Results for quarter annulus and Yeti-footprint

We consider the Stokes problem (1) with the right-hand-side function

f(𝑥, 𝑦) =
(︀
−𝜋 cos(𝜋𝑥)− 2𝜋2 sin(𝜋𝑥) cos(𝜋𝑦), 2𝜋2 cos(𝜋𝑥) sin(𝜋𝑦)

)︀⊤

and the inhomogeneous Dirichlet boundary conditions

u(𝑥, 𝑦) = (− sin(𝜋𝑥) cos(𝜋𝑦), cos(𝜋𝑥) sin(𝜋𝑦))⊤ for (𝑥, 𝑦) ∈ 𝜕Ω.

We solve this problem on two computational domains: a B-spline approximation of a quarter annulus with
64 patches and the Yeti-footprint, where we split the patches uniformly such that the domain has 84 patches
(rather than 21), see Figure 3. On each patch, we obtain a discretization space by performing ℓ = 1, 2, . . . uniform
refinement steps. The problem is discretized as outlined in Section 3 and solved using the IETI-DP method
proposed in Section 4. The conjugate gradient solver is started using a random initial guess and stopped when
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Figure 3. Domains: quarter annulus (left) and Yeti-footprint (right).

Table 3. Iteration counts (it) and condition numbers 𝜅, quarter annulus.

p
ℓ 2 3 4 5 6

it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅

2 17 7.3 17 8.2 17 8.5 17 9.3 16 9.3
3 18 8.7 19 9.8 19 10.3 18 10.9 18 11.0
4 20 10.2 20 11.4 20 11.7 20 12.9 19 12.7
5 22 12.7 22 13.8 22 14.3 21 14.7 21 15.6

Table 4. Iteration counts (it) and condition numbers 𝜅, Yeti-footprint.

p
ℓ 2 3 4 5 6

it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅

2 16 7.9 17 8.8 16 9.7 16 10.3 16 10.9
3 18 9.6 18 10.1 18 11.6 18 12.1 17 12.2
4 20 11.6 20 12.8 20 13.7 19 14.4 19 14.9
5 22 13.7 22 14.9 22 15.9 21 16.6 21 17.4

the Euclidean norm of the residual vector is reduced by a factor of 𝜖 = 10−6 compared to the Euclidean norm
of the initial residual vector. While performing the conjugate gradient method, we also estimate the condition
number based on the underlying Lanczos iteration. The local linear systems are solved using a sparse LU-solver.
All experiments have been implemented using the G+Smo library1 and have been performed on the Radon1
cluster2 in Linz.

We present the iteration counts and the condition numbers in Tables 3 (Quarter annulus) and 4 (Yeti-
footprint). We see that the iteration counts and the condition numbers grow about linearly in ℓ, which corre-
sponds to a growth like log 𝐻𝑘

ℎ𝑘
, which is slower than (log 𝐻𝑘

ℎ𝑘
)2, predicted by the theory. The growth in the spline

degree parameter p seems to be linear or sublinear. Here, the theory does not tell the complete story since we
do not actually know how the inf-sup constant depends on the spline degree. For both domains, the condition
numbers and the iteration counts are very satisfactory, keeping in mind the results from Section 3.5.

1https://github.com/gismo/gismo.
2https://www.ricam.oeaw.ac.at/hpc/.

https://github.com/gismo/gismo
https://www.ricam.oeaw.ac.at/hpc/
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Figure 4. Rectangular domain with a circular hole.

Table 5. Iteration counts (it) and condition numbers 𝜅, rectangle domain

p
ℓ 2 3 4 5 6

it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅

2 11 4.4 11 5.3 11 6.0 12 6.6 12 7.1
3 12 6.0 12 6.9 13 7.7 13 8.4 13 9.0
4 13 7.7 13 8.8 13 9.6 13 10.4 14 11.1
5 14 9.6 14 10.8 14 11.9 14 12.7 14 13.5

6.2. Flow through a rectangle with an obstacle

In this section, we consider a stationary flow through a rectangle with a circular hole. This domain consists 11
patches, see Figure 4. The first four patches, which are adjacent to the circle are parameterized using NURBS.
The remaining patches are parameterized using a standard affine mapping, represented as tensor-product B-
spline mappings. Even though some patches are parameterized NURBS, we use tensor-product B-splines to set
up the discrete function spaces. Starting from a coarsest level with no interior knots, we perform ℓ = 1, 2, 3, 4, 5
uniform refinements to obtain the grid used for the simulation.

The differential equation is set up as follows. We have a zero source term, f = 0, and the boundary conditions
are chosen as follows. For (−2, 30)×{−2} and (−2, 30)×{2}, we choose a noslip condition, i.e., u = (0, 0). On
{−2} × (−2, 2), we use an inlet boundary condition by setting

u(−2, 𝑦) =
(︂

sin
(︂
𝜋

2 + 𝑦

4

)︂
, 0
)︂⊤

for 𝑦 ∈ (−2, 2).

On {30}×(−2, 2), we choose an outlet boundary condition, that is, we use the homogeneous Neumann condition

∇u · n + 𝑝n = 0.

This problem does not coincide with our model problem (1) as we have a Neumann boundary condition. Using
the Neumann condition, the average of the pressure is uniquely solvable in 𝐿2(Ω). So, we omit the condition
on the average pressure. We solve the resulting system as proposed in Section 4. The only difference is that we
now do not average the overall pressure, that is, we no longer enforce 𝐶Π xΠ = 0.

In Table 5, we present iteration counts and estimated condition numbers for various refinement levels ℓ and
spline degrees p. These numbers behave similarly to those presented in Tables 3 and 4. In Figure 5, we present
a reconstruction of the solution for ℓ = 4 and p = 2. Note that we changed the sign of the pressure such that it
is positive.

7. Conclusions and outlook

In this paper, we have shown how bounds on the inf-sup constant, previously derived for single-patch iso-
geometric analysis, can be carried over to the multi-patch case. Moreover, we have proposed and analyzed a
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Figure 5. Reconstructed solution for ℓ = 4 and p = 2.

IETI-DP solver, where the provided condition number bounds only depending on the inf-sup constants for the
patch-local problems and not on the inf-sup constant for the global problem. This means that only the local
geometries, and not the global geometry effect the convergence rates.

There are several challenges for future research, like the extension to three dimensions, which would require
further work on discrete harmonic extensions for B-splines in this case. Moreover, extensions to the saddle point
formulation of (linearized) elasticity problems would be of interest. There, besides the inf-sup constant, also the
constant from the Korn inequality would pose challenges.

Appendix A.

Before we give a proof of Lemma 3.8, we construct an operator Π ̃︀𝐹 that is similar to the Fortin operator. This
construction only requires a few basis functions per patch and is best understood as a variation of well-known
techniques in the area of finite elements, where the patches Ω(𝑘) play the role of elements.

Lemma A.1. There exists an operator Π ̃︀𝐹 : [𝐻1
0 (Ω)]2 → V such that

⃒⃒
Π ̃︀𝐹 u

⃒⃒2
𝐻1(Ω)

≤ ̃︀𝑐F
𝐾∑︁

𝑘=1

(︁
𝐻−2

𝑘 ‖u‖2
𝐿2(Ω(𝑘)) + |u|2

𝐻1(Ω(𝑘))

)︁
∀u ∈

[︀
𝐻1

0 (Ω)
]︀2

(A.1)

and (︀
∇ ·
(︀
𝐼 −Π ̃︀𝐹

)︀
u, 𝑝1

)︀
𝐿2(Ω)

= 0 ∀u ∈
[︀
𝐻1

0 (Ω)
]︀2

and ∀𝑝1 ∈ 𝑄1, (A.2)

hold, where ̃︀𝑐F > 0 only depends on the constants from Assumptions 3.3 and 3.4.
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Proof. For each interface Γ(𝑘,ℓ) with pre-image ̂︀Γ(𝑘,ℓ) := G−1
𝑘 (Γ(𝑘,ℓ)), we define a function 𝜓(𝑘,ℓ) as follows. If

̂︀Γ(𝑘,ℓ) = {1} × [0, 1], we define 𝜓(𝑘,ℓ) on patch Ω(𝑘) by

𝜓(𝑘,ℓ)(𝑥) = ̂︀𝜙
(︀
G−1

𝑘 (𝑥)
)︀
n(𝑘)

(︁
𝑥(𝑘,ℓ)

)︁
with ̂︀𝜙(𝜉1, 𝜉2) := 𝜉1𝜉2(1− 𝜉2), (A.3)

where n(𝑘) and 𝑥(𝑘,ℓ) are as in Assumption 3.4. If ̂︀Γ(𝑘,ℓ) is one of the other sides, the function ̂︀𝜙 is rotated
around the center of the unit square such that it is non-zero on ̂︀Γ(𝑘,ℓ) and zero on the other sides. On the patch
Ω(ℓ), we define

𝜓(𝑘,ℓ) := −𝜓(ℓ,𝑘). (A.4)

On all other patches, we set 𝜓(𝑘,ℓ) := 0. Note that this construction guarantees that 𝜓(𝑘,ℓ) is continuous. (The
negative sign in (A.4) is due to n(ℓ) = −n(𝑘).) Since the spaces ̂︀V(𝑘) and ̂︀V(ℓ) contain quadratic functions, they
contain ̂︀𝜙. Thus, we have 𝜓(𝑘,ℓ) ∈ V.

By this construction, we obtain (︁
𝜓(𝑘,ℓ) · n(𝑘), 1

)︁
𝐿2(Γ(𝑘,ℓ))

̸= 0 (A.5)

and
𝜓(𝑘,ℓ)|Γ(𝑟,𝑠) = 0 for {𝑘, ℓ} ≠ {𝑟, 𝑠}. (A.6)

Next, we define the projector Π ̃︀𝐹 . Let u be arbitrary but fixed. We define

Π ̃︀𝐹 u :=
𝐾∑︁

𝑘=1

∑︁

ℓ∈𝒩Γ(𝑘),ℓ>𝑘

(︀
u · n(𝑘), 1

)︀
𝐿2(Γ(𝑘,ℓ))(︀

𝜓(𝑘,ℓ) · n(𝑘), 1
)︀
𝐿2(Γ(𝑘,ℓ))

𝜓(𝑘,ℓ).

Using this definition, equations (A.5) and (A.6), we immediately obtain
(︀(︀

u−Π ̃︀𝐹 u
)︀
· n(𝑘), 1

)︀
𝐿2(Γ(𝑘,ℓ)) = 0 for

all 𝑘 and all ℓ ∈ 𝒩Γ(𝑘). This immediately yields
(︀
u−Π ̃︀𝐹 u) · n(𝑘), 1

)︀
𝐿2(𝜕Ω(𝑘)) = 0, and by integration by parts

further (A.2), which finishes the first part of the proof. Next, we estimate the 𝐻1-seminorm of Π ̃︀𝐹𝑢. Using the
triangle inequality, |𝒩Γ(𝑘)| ≤ 4 and the bounded support of 𝜓(𝑘,ℓ) = −𝜓(ℓ,𝑘), we obtain

⃒⃒
Π ̃︀𝐹 u

⃒⃒2
𝐻1(Ω)

=

⃒⃒
⃒⃒
⃒⃒

𝐾∑︁

𝑘=1

∑︁

ℓ∈𝒩Γ(𝑘),ℓ>𝑘

(︀
u · n(𝑘), 1

)︀
𝐿2(Γ(𝑘,ℓ))(︀

𝜓(𝑘,ℓ) · n(𝑘), 1
)︀
𝐿2(Γ(𝑘,ℓ))

𝜓(𝑘,ℓ)

⃒⃒
⃒⃒
⃒⃒

2

𝐻1(Ω)

≤ 4
𝐾∑︁

𝑘=1

∑︁

ℓ∈𝒩Γ(𝑘)

(︀
u · n(𝑘), 1

)︀2
𝐿2(Γ(𝑘,ℓ))

(︀
𝜓(𝑘,ℓ) · n(𝑘), 1

)︀2
𝐿2(Γ(𝑘,ℓ))

⃒⃒
⃒𝜓(𝑘,ℓ)

⃒⃒
⃒
2

𝐻1(Ω(𝑘))
.

(A.7)

In the remainder of this proof, we write 𝑎 . 𝑏 (or 𝑏 & 𝑎) if there is a constant 𝑐 > 0 that only depends on the
constants from Assumptions 3.3 and 3.4 such that 𝑎 ≤ 𝑐 𝑏. Using Assumptions 3.3 and 3.4 and (A.3), we obtain

⃒⃒
⃒⃒
(︁
𝜓(𝑘,ℓ) · n(𝑘), 1

)︁
𝐿2(Γ(𝑘,ℓ))

⃒⃒
⃒⃒ & 𝐻𝑘

⃒⃒
⃒(̂︀𝜙, 1)𝐿2(̂︀Γ(𝑘,ℓ))

⃒⃒
⃒ = 𝐻𝑘

√︀
1/30. (A.8)

Using (5) and (A.3), we also obtain
⃒⃒
⃒𝜓(𝑘,ℓ)

⃒⃒
⃒
𝐻1(Ω(𝑘))

. |̂︀𝜙|𝐻1(̂︀Ω) =
√︀

13/90. (A.9)

Using a combination of (A.7)–(A.9), the Cauchy–Schwarz inequality, Assumption 3.3, ‖1‖2
𝐿2(Γ(𝑘,ℓ))

.

𝐻𝑘‖1‖2𝐿2(̂︀Γ(𝑘,ℓ)), and a standard estimate for the trace yield

⃒⃒
Π ̃︀𝐹 u

⃒⃒2
𝐻1(Ω)

.
𝐾∑︁

𝑘=1

∑︁

ℓ∈𝒩Γ(𝑘)

𝐻−2
𝑘

(︁
u · n(𝑘), 1

)︁2

𝐿2(Γ(𝑘,ℓ))
.

𝐾∑︁

𝑘=1

∑︁

ℓ∈𝒩Γ(𝑘)

𝐻−1
𝑘 ‖u‖2

𝐿2(Γ(𝑘,ℓ))
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.
𝐾∑︁

𝑘=1

∑︁

ℓ∈𝒩Γ(𝑘)

‖u ∘G𝑘‖2𝐿2(̂︀Γ(𝑘,ℓ)) .
𝐾∑︁

𝑘=1

(︁
|u ∘G𝑘|2𝐻1(̂︀Ω(𝑘)) + ‖u ∘G𝑘‖2𝐿2(̂︀Ω(𝑘))

)︁
.

The estimate (5) finishes the proof. �

Note that the operator from Lemma A.1 fails to meet the conditions for a Fortin operator due to the additional
term of the form 𝐻−2

𝑘 ‖u‖2
𝐿2(Ω(𝑘)). For the proof of the desired error bound, we need an approximation error

estimate that only needs to decrease with the patch size 𝐻𝑘, not with the grid size ℎ𝑘. For the construction of
such an approximation error estimate, we use a Scott–Zhang operator, which relies on Poincaré estimates. In
the following, we verify that the Poincaré constant for the subdomains 𝒮(𝑗) from (A.10) only depends on the
constants from Assumptions 3.2 and 3.3.

Lemma A.2. For all 𝑗 = 1, . . . , 𝐽 , we have

inf
𝑐∈R

‖𝑢− 𝑐‖𝐿2(𝒮(𝑗)) ≤ ̃︀𝑐𝑝 diam𝒮(𝑗) |𝑢|𝐻1(𝒮(𝑗)) ∀𝑢 ∈ 𝐻1
0 (Ω), where 𝒮(𝑗) :=

⋃︁

𝑘∈𝒩𝑥(𝑗)

Ω(𝑘), 𝑗 = 1, . . . , 𝐽.

(A.10)
and ̃︀𝑐𝑝 only depends on the constants from the Assumptions 3.2 and 3.3.

Proof. Let 𝑗 be arbitrary but fixed. Let 𝑁 := 𝒩𝑥(𝑗) be the number of patches adjacent to the vertex 𝑥𝑗 . From
Assumptions 3.2 and 3.3, we know 3 ≤ 𝑁 ≤ 𝐶2. Let Ω(𝑘1), . . . ,Ω(𝑘N) be the patches adjacent to 𝑥𝑗 , enumerated
in counter-clockwise ordering. 𝒮(𝑗) is the union of these patches. Let ̃︀𝒮 be a pre-image of 𝒮(𝑗) consisting of
rhombi ̃︀Ω𝑛, 𝑛 = 1, . . . , 𝑁 , of size 1, arranged as depicted in Figure A.1. Let T𝑛 : ̂︀Ω → ̃︀Ω𝑛 be the canonical linear
maps with positive Jacobi-determinant and such that G𝑘𝑛(T−1

𝑛 (̃︀𝑥𝑗)) = 𝑥𝑗 , where ̃︀𝑥𝑗 is the common vertex of
the rhombi, see Figure A.1. On ̃︀𝒮, a Poincaré inequality holds

inf
𝑐∈R

‖𝑢− 𝑐‖𝐿2( ̃︀𝒮) ≤ ̃︀𝑐𝑃 |𝑢|𝐻1( ̃︀𝒮) ∀𝑢 ∈ 𝐻1( ̃︀𝒮), (A.11)

where the constant ̃︀𝑐𝑃 only depends on 𝑁 , which is well-bounded due to Assumption 3.2. The statement (A.11)
can be transferred to 𝒮(𝑗) by applying the same arguments as for (6). The constants only depend on the
Jacobians of G𝑘𝑛

and T𝑛, which are bounded due to Assumptions 3.2 and 3.3. This finishes the proof. �

Let V1 := {u ∈ [𝐻1
0 (Ω)]2 : u ∘ G𝑘 bilinear for 𝑘 = 1, . . . ,𝐾} ⊂ V. We choose the function values at the

vertices 𝑥1, . . . , 𝑥𝐽 , which are the corners of the patches not located on the (Dirichlet) boundary, as the degrees
of freedom. Based on this choice of degrees of freedom and the corresponding nodal basis, we define a Scott–
Zhang projector Π𝑆𝑍 : [𝐻1

0 (Ω)]2 → V1 (cf. [24]). Using the Poincaré inequalities (6) and Lemma A.2 and the
Friedrich’s inequality (7), using the same arguments as in [24] we obtain

|Π𝑆𝑍u|𝐻1(Ω) ≤ 𝑐𝑆 |u|𝐻1(Ω) ∀u ∈ [𝐻1
0 (Ω)]2 (A.12)

and
𝐾∑︁

𝑘=1

𝐻−2
𝑘 ‖(𝐼 −Π𝑆𝑍)u‖2

𝐿2(Ω(𝑘)) ≤ 𝑐𝑆 |u|2𝐻1(Ω) ∀u ∈ [𝐻1
0 (Ω)]2, (A.13)

where the constant 𝑐𝑆 > 0 only depends on the constants from the Assumptions 3.2 and 3.3.
We continue by giving a constructive proof for the existence of a Fortin operator.

Proof of Lemma 3.8. We define Π : [𝐻1
0 (Ω)]2 → V as Π := Π𝑆𝑍 + Π ̃︀𝐹 (𝐼−Π𝑆𝑍), where Π𝑆𝑍 is the Scott–Zhang

projector and Π ̃︀𝐹 is the operator from Lemma A.1. Using the triangle inequality and (A.1), we obtain

|Πu|2𝐻1(Ω) = |Π𝑆𝑍u + Π ̃︀𝐹 (𝐼 −Π𝑆𝑍)u|2𝐻1(Ω) ≤ 2|Π𝑆𝑍u|2𝐻1(Ω) + 2|Π ̃︀𝐹 (𝐼 −Π𝑆𝑍)u|2𝐻1(Ω)
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Ω̂

Ω̃1

Ω̃2

Ω̃3

Ω̃4

Ω̃5

Ω̃6

Ω(k1)
Ω(k2)

Ω(k3)

Ω(k4)

Ω(k5)

Ω(k6)

Gk5

T5

Gk5 ◦ T−1
5

x̃j

xj

S̃ =
N⋃

n=1
Ω̃n

S(j) =
N⋃

n=1
Ω(kn)

Figure A.1. ̃︀𝒮, the pre-image of 𝒮(𝑗) and corresponding mappings.

≤ 2|Π𝑆𝑍u|2𝐻1(Ω) + 2𝑐 ̃︀𝐹

𝐾∑︁

𝑘=1

(︁
𝐻−2

𝑘 ‖(𝐼 −Π𝑆𝑍)u‖2
𝐿2(Ω(𝑘)) + |(𝐼 −Π𝑆𝑍)u|2

𝐻1(Ω(𝑘))

)︁
.

We now use (A.12) and (A.13) to show (10). It remains to show (11). We have

(∇ · (𝐼 −Π)u, 𝑝1)𝐿2(Ω) =

⎛
⎝∇ ·

(︀
𝐼 −Π ̃︀𝐹

)︀
(𝐼 −Π𝑆𝑍)u⏟  ⏞  

w :=

, 𝑝1

⎞
⎠

𝐿2(Ω)

= 0

for all 𝑝1 ∈ 𝑄1 by applying (A.2) to w, which concludes the proof. �

Proof of Lemma 5.1. Since the statements (28) and (29) can be found in the literature, cf. Chapter II, S 1.1 of
[11], we only show (30). Let 𝑤 ∈𝑊2 be such that it maximizes sup𝑤∈𝑊2

(𝐵𝑤,𝜆)ℓ2

‖𝑤‖𝐴
. Observe that 𝑤 is only defined

up to scaling. So, we introduce the constraint 𝑤⊤𝐴𝑤 = 1. The first order optimality system for the minimizer
then reads as follows:

𝐵⊤𝜆+ 𝜉𝐴𝑤 + 𝐶⊤𝜇 = 0

𝑤⊤𝐴𝑤 = 1

𝐷𝜈 = 0 ⇒ 𝜈⊤𝐶𝑤 = 0
𝐷𝜇 = 0,

(A.14)

where 𝜉 ∈ R and 𝜇 ∈ R𝑚2 are the Lagrange multipliers. The specific form in the third line in (A.14) is obtained
by the fact that we may only consider derivatives in the feasible directions. By multiplying the first line in (A.14)
from left with 𝑤⊤, we obtain using the second line in (A.14) that 𝑤⊤𝐵⊤𝜆 + 𝜉 + 𝑤⊤𝐶⊤𝜇 = 0. Since 𝐷𝜇 = 0,
we know from the third line in (A.14) that 𝑤⊤𝐶⊤𝜇 = 0. This shows 𝜉 = −𝑤⊤𝐵⊤𝜆 = −𝜆⊤𝐵𝑤. The third line
in (A.14) is satisfied if and only if 𝐶𝑤 + 𝐷⊤𝜌 = 0 for some 𝜌. From this line, the first line in (A.14) and the
fourth line in (A.14), we obtain

−

⎛
⎜⎝
𝜉𝑤

𝜇

𝜉𝜌

⎞
⎟⎠ =

⎛
⎜⎝
𝐴 𝐶⊤ 0

𝐶 0 𝐷⊤

0 𝐷 0

⎞
⎟⎠

−1⎛
⎜⎝
𝐵⊤𝜆

0
0

⎞
⎟⎠.



STABLE DISCRETIZATIONS AND IETI-DP SOLVERS FOR THE STOKES SYSTEM 951

By multiplying this from left with
(︀
𝜆⊤𝐵 0 0

)︀
, we obtain

−𝜉𝜆⊤𝐵𝑤 =
(︀
𝜆⊤𝐵 0 0

)︀
⎛
⎜⎝
𝐴 𝐶⊤ 0

𝐶 0 𝐷⊤

0 𝐷 0

⎞
⎟⎠

−1⎛
⎜⎝
𝐵⊤𝜆

0
0

⎞
⎟⎠ = ‖𝜆‖2𝑀2

and consequently

(︁
𝜆⊤𝐵𝑤

)︁2

‖𝑤‖2𝐴
= ‖𝜆‖2𝑀1

,

where we make use of ‖𝑤‖2𝐴 = 1 and 𝜉 = −𝜆⊤𝐵𝑤. This finishes the proof. �
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