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ABSTRACT How well the heart is functioning can be quantified through measurements of myocardial
deformation via echocardiography. Clinical assessment of cardiac function is generally focused on global
indices of relative shortening; however, segmental strain indices have been shown to be abnormal in
regions of myocardial disease such as scarring. In this work, we propose a single framework to predict
myocardial scars at global, territorial, and segmental levels using regional myocardial strain traces as input
to a convolutional neural network (CNN). An anatomically meaningful representation of the input data from
the clinically standard bullseye representation to a multi-channel 2D image is proposed, thus enabling the use
of state-of-the-art neural network configurations. A Fully Convolutional Network (FCN) is trained to detect
and localize myocardial scar from regional left ventricular (LV) strain traces. Simulated regional strain data
from a controlled dataset of virtual patients with varying degrees and locations of myocardial scar is used
for training and validation. The proposed method successfully detects and localizes the scars on 98% of the
5490 left ventricle (LV) segments of the 305 patients in the test set using strain traces only. Due to the sparse
existence of scar in the dataset, only 10% of the LV segments are scarred. Taking the imbalance into account,
the class balanced accuracy is calculated as 95%. The proposed method proves successful on the strain traces
of the virtual cohort and offers the potential to solve the regional myocardial scar detection problem on the
strain traces of the real patient cohorts.

INDEX TERMS Deep learning, echocardiography, fully convolutional network, myocardial scar, strain.

I. INTRODUCTION
Echocardiography uses ultrasound technology to visualize
different structures of the heart, offering users various meth-
ods to quantify its functioning. One of the main functions
of the heart is to pump blood throughout the body. One way
to evaluate the pumping abilities of the heart is to quantify
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the changes in shapes i.e., deformation of its chambers. 2D
Speckle Tracking Echocardiography (STE) is a technique for
tracking the speckles in the myocardial tissue of the heart
chambers throughout the heart cycle. Strain and strain rate
can be measured using this tracking technology. Strain mea-
surements enable the assessment of the systolic and diastolic
functions of the LV [1]. Longitudinal strain is calculated at
each time point of the cardiac cycle as the fractional length
change of a myocardial segment relative to its length at end
diastole, as measured via 2D STE.
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Apical four chamber (4CH), apical two chamber (2CH)
and apical long axis (APLAX) views are necessary for calcu-
lating the longitudinal strain for 18 LV segments. Each view
yields six segmental strain traces, resulting in 18 traces in
total. Figure 1 shows an example of a strain measurement
result. Since strain is the measure of relative length change,
in a complete cycle, the measurements should start and end
at zero. Bull’s eye in the figure shows the peak systolic strain
for 18 LV segments [1].

FIGURE 1. Example of a strain measurement shown in EchoPAC
(GE HealthCare, Horten, NO), demonstrating the deformation of the LV
throughout the heart cycle. Strain traces are measured from
4CH (top left), 2CH (top right) and APLAX (bottom left) views.

Segmental strain traces contain diagnostic information
which can aid the clinician in therapeutic decision making.
An important example is the use of strain imaging for detect-
ing myocardial scar in heart failure (HF) patients consid-
ered for cardiac resynchronization therapy (CRT). Previous
studies have demonstrated that presence of myocardial scar
can cause non-response to CRT [2] or even induce life-
threatening arrhythmias upon pacing [3], [4]. It has addition-
ally been shown that posterolateral scar is associated with less
favorable outcome after CRT [5], [6]. Not only the size of
scar but also its location should therefore be considered when
implanting a CRT device.

In current clinical practice, myocardial scar can readily
be detected by late gadolinium enhancement (LGE) cardiac
magnetic resonance (CMR) imaging [2], [7]. The use of LGE-
CMR, however, has several disadvantages, including that it
is relatively costly, it involves administration of a contrast
agent, and it is unsuitable for patients with claustrophobia
or previous device implantation. Using non-invasive echocar-
diographic strain imaging could provide a faster, cheaper,
and more widely applicable alternative for myocardial scar
detection.

Clinical studies on strain analysis point to the difference
between the strain traces of a scarred and healthy region
in heart [7], [8]. D’Andrea et al. analyzed 2D STE strain
values from 45 patients with ischemic dilated cardiomyopa-
thy (DCM) at segmental and global level for understanding
effects of strain and scar on CRT response [8]. Peak systolic
strain values were significantly different for infarcted and

non-infarcted segments. Global longitudinal strain (GLS) for
each subject was calculated as the average of peak strain for
all segments and were reduced for the patients with DCM
when compared to healthy subjects. Having access to CMR
images to assess the location and size of the scars, they
found a correlation between reduced strain and transmural
scar extent.

Candidates for CRT typically have a left bundle branch
block (LBBB) contraction pattern [9], which complicates the
use of peak strain for myocardial scar detection. In the early
activated septum, peak strain can be reduced while contractile
strength is unaffected, while the late activated lateral wall can
have increased peak strain due to its Frank-Starling behavior.
Consequently, in LBBB, quantification of peak strain does
not accurately reflect myocardial contractile properties, and
there is a need for a better approach to detect scar which
does not rely on a single strain feature. There is currently a
lack of tools to automate the assessment of the strain data
to cope the task of identifying myocardial regions with scar.
In this study, we therefore aim to develop a clinical tool which
automatically identifies regions with scar from a patient’s set
of complex myocardial strain patterns.

The relationship between myocardial scar and regional
longitudinal strain was validated in [7] on 96 patients with
coronary artery disease. Strain traces were measured with
feature tracking algorithm of the LGE CMR images. They
observed a reduced magnitude of regional longitudinal strain
in scarred areas when compared to non-scarred areas.

With the growing size of clinical patient data, there is a
growing clinical need for diagnostic tools that could leverage
the advances in the field of machine learning. A machine
learning model is developed to automatically identify hyper-
trophic cardiomyopathy (HCM) patients without myocardial
fibrosis [10]. Although the authors used functional and mor-
phological features of myocardium and not strain traces, they
point to the importance of finding patterns in strain traces of
patients with non-ischemic fibrosis, such as HCM patients.
They suggest that their machine learning algorithm could
benefit from adding the strain parameters to the input.

There are also applications of machine learning meth-
ods that target the automatic interpretation of strain traces
for better diagnosis. Tabassian and coauthors used Princi-
pal Component Analysis (PCA) to extract temporal features
from the strain traces from acute myocardial infarction (MI)
patients; patients with suspected ischemic heart disease with-
out any scar and healthy subjects [11]. They concatenated
each temporal feature set of 18 LV segments to obtain a sin-
gle spatio-temporal feature set per patient. Two independent
K Nearest Neighbor (KNN) classifiers were built for strain
and strain rate data separately to distinguish healthy and MI
subjects. The proposed machine learning framework yielded
87% accuracy, which was significantly higher compared to
overall 70 % accuracy of the expert readers.

Loncaric et al. showed that unsupervised methods can help
clinicians understand phenotypes purely by automatic inter-
pretation of echocardiography data, eliminating the possible
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FIGURE 2. The virtual patient simulation pipeline with the CircAdapt model.

bias towards any diagnosis or outcome [12]. They used Mul-
tiple Kernel Learning of velocity traces from Pulsed Wave
Doppler in addition to strain traces from 2D STE, to represent
a hypertensive patient cohort in a lower dimensional space.
Using regression methods, they estimated average strain and
velocity profiles and were able to detect subtle differences
between LV basal septal strain profiles from opposing regions
of the hypertensive patient space. They divided the hyperten-
sive space into four groups using k-means clustering, where
the first two groups correlated with healthy and transitional
hearts, while the third group had clear remodeling due to high
blood pressure, and the final group correlated with female
patients with other co-morbidities.

Similarly, Cikes at al. uses strain traces along with volume
traces, temporal deformation vector and clinical parameters
to predict response to CRT on a large set of heart failure (HF)
patients [13]. The authors were able to divide the patients
into four phenogroups using unsupervised machine learn-
ing methods and identify the responder and non-responder
patients.

To supplement clinical decision making, automatic extrac-
tion of diagnostic information from the segmental strain
traces of real patients could be utilized. However, working
with real patient data from the clinical setup poses several
challenges such as smaller sizes of datasets, lack of labels
and noise in the strain traces. Using a controlled dataset of
simulated strain data, we aim to reduce the impact of these
challenges. The use of deep learning algorithms developed
on the controlled virtual data and real patient data could help
translate the information derived from the strain patterns into
automatic diagnostic support for decision making. With the
availability of such tools in practice, the cardiologists can
use the patient level predictions for guiding their decisions
on prioritizing the patients. The localized predictions for
LV segments and coronary artery territories can be used for
planning and guiding the treatment of the patients.

In this work, our aim is to automate the analysis of the
segmental strain traces, to recognize subtle changes and pat-
terns that suggest scar infiltration, including those that may
be unnoticeable to the examiner beside other clinical tasks
in their heavy workload. We propose a deep learning model
and train it on a set of virtual patient cohort as proof of
concept for this task. Using a virtual cohort of synthetic
patients to test the proposed approach enables both access to
an automatically labeled strain dataset with known disease
substrates and a controlled dataset where labels are certain.

We use the proposed approach to identify the patients with
scarred segments and quantify the scar. We propose that
using anatomical representation of temporal strain patterns
instead of peak systolic segmental strain and/or GLS brings
additional value when assessing the extent of the scar in LV.

We are investigating whether we can identify the presence
of myocardial scar at a global, territorial, and segmental level
based on regional strain alone.

There are three main contributions of the study:
1. Using a bull’s eye representation of the strain traces as

an input to the model by converting a 2D signal to an image
space that captures the inter-connectivity between regions.

2. Using a neural networkmodel to classify the strain traces
to detect scar at a global, territorial, and segmental level.

3. Leveraging synthetically generated regional strain data
to test the methods under well-controlled conditions.

While there are numerous studies using deep learning tech-
nologies on medical data; to the best of our knowledge, this
is the first study to use neural networks to classify strain data
from virtual patients to detect scar at multiple levels.

II. MATERIALS AND METHODS
A virtual patient cohort is created to generate realistic syn-
thetic strain data, which gives the advantage of having the
ground truth labels on presence, location, and extension of
scar available. Having the labels available for relatively big
amount of data compared to what is usually available in
clinical practice enables the use of a supervised deep learning
approach. The bull’s eye representation of strain data is used
for preserving the spatial information from the regional strain
traces and creates a template for representing strain data as a
suitable input to CNN architectures. Finally, a fully convolu-
tional neural network (FCN) is employed to predict the scar
existence at segmental, territorial, and global levels.

A. CIRCADAPT VIRTUAL PATIENT DATASET
The CircAdapt computational model of the human heart
and circulation [14], [15] developed at Maastricht Univer-
sity, is used to simulate regional myocardial mechanics and
global hemodynamics in an 18-segments model of the LV.
To generate the virtual population of heart failure patients,
7000 parameters set are generated using the Sobol-Low Dis-
crepancy sequence [16]. Each parameter set contains different
model parameters describing global cardiac pump function
and regional systolic and diastolic tissue properties. These
parameters are chosen because they are the most sensitive
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in determining ventricular strain patterns in patients with
electromechanical dyssynchrony and myocardial infarction.
The methodology to simulate virtual patients with myocar-
dial infarction using a lumped two-compartment modeling
approach integrated into the CircAdapt model is previously
introduced in [17]. The resulting cohort is filtered with global
hemodynamic parameter values and strain indices representa-
tive of a CRT cohort, found in literature, guidelines [18], and
clinical data. The final cohort consists of 3043 virtual patients
affected by left bundle branch block (LBBB) and possible
myocardial infarction (MI) in one of the three coronary artery
territories. The summary of the simulation pipeline is given
in Figure 2.

For the experiments in this work, significant input param-
eters of the CircAdapt model are left ventricle and right ven-
tricle global contractility (Pa), delay of mechanical activation
(sec) and relative volume of myocardial scar (%). The output
of interest from the model is the set of strain traces of the
virtual patients.

The advantage of using simulated data is three-fold:
Data availability: Any number of patients can be generated

with desired abnormalities.
Label availability: With predefined threshold values that

are used to tune the input parameters, we generate the scar
labels automatically and objectively. There is no manual pro-
cess involved in labeling.

Transfer learning: The algorithms that are developed for
recognizing patterns in strain traces are not specific for virtual
patients and can be re-trained on the strain traces of real
patient data with the help of transfer learning techniques.

Each patient in the dataset has different levels of extension
of scar depending on the volume fraction of the scarred
region. Since predicting the scar extension of the patients is
out of the scope of this study, labels are generated bymapping
the volume fractions to binary labels to indicate the existence
of scar. Using a one hot encoding setup, the LV segments with
any non-zero volume fraction of scar are labeled with one and
the LV segments with no-scar were labeled with zero. The
American Heart Association’s (ASE) 18 segment model for
the LV is used in this project [1].

B. TEMPORAL PREPROCESSING OF THE STRAIN DATA
The heart rate values for each patient are different in the
virtual patient dataset. Having variability in the duration of
the heart cycles requires a preprocessing operation to handle
different number of data points present in each trace since
input data lengths need to be consistent for the use of CNNs.

In an earlier study [11], Tabassian et al. used purely the LV
longitudinal strain and strain rate traces to classify infarct.
To overcome the issue of variable number of data points,
they interpolated the strain traces to the average number of
data points per cardiac phase over all healthy subjects. In the
proposed approach, we also use a time series re-sampling
method, but instead of resampling to the average number of
data points in patient strain traces, we use a reference strain

FIGURE 3. Comparison of the strain traces of patients with scar (top) and
without scar (bottom) after temporal preprocessing of the systolic and
diastolic phases separately, to yield an equivalent length of the strain
data. Reduced contractility in systole is observed for some of the
segments of the patients with scar. As CircAdapt virtual patient dataset
contains patients with LBBB, one can notice abnormal behavior in the
strain traces of the patient without scar (bottom). Abbreviations used for
the LV segment names: bas = Basal, Inf = Inferior, ap = Apical.

length to resample to. In addition, we use the aortic valve
closure (AVC) time point to resample the systole and diastole
phases separately before merging them back into one signal.

Using the strain data simulated with the CircAdapt model,
we have access to the time markers of all valve events occur-
ring throughout the heart cycle; namely the mitral valve clo-
sure (MVC), aortic valve opening, aortic valve closure (AVC)
and mitral valve opening. These events could have been
utilized to divide the heart cycle into more phases than the
systole and diastole. However, the next step is to validate the
proposed methods for applications on real patient data where
the time markers that are available through the strain analysis
software are MVC and AVC by default. For compatibility
purposes, the time markers that are used for strain resampling
operations in this work are therefore MVC for defining the
start of the heart cycle, and AVC for separating the systole
and diastole phases.
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FIGURE 4. Spatial representation of the strain. A) Deformation patterns of the left ventricle to a 2D bullseye representation. It should be noted that the
bull’s eye captures the strain values from a single point in time. B) Unwrap circular bullseye to rectangular 2D matrix. C) Pad the bullseye matrix to
imitate the circularity present in the bull’s eye shape. Abbreviations for the LV segment names: bas = Basal, ap = Apical, Ant = Anterior, Sept = Septal,
Inf = Inferior, Post = Posterior, Lat = Lateral, AntSept = AnteroSeptal.

FIGURE 5. Temporal representation of the strain. The channels of the
input layer in the FCN are used for capturing the time axis of the strain
data, eliminating the need for using a 3D CNN architecture. It should be
noted that the strain trace shown in this figure is from a single LV
segment. Every patient has one trace for each segment throughout the
cycle, resulting in 18 traces for the 18-segment model of the LV.

We empirically set the number of data points to 500 to
obtain equal length feature vectors for all patients. Figure 3
demonstrates the differences in strain patterns of two sample
patients with and without the scar, after the preprocessing
operations are applied on the traces.

C. BULL’S EYE SPATIAL REPRESENTATION OF STRAIN
UNWRAPPED TO AN IMAGE GRID
1) FROM STRAIN TRACES TO BULL’S EYE
We integrate the spatial locations of the LV segments into
the input tensor. The spatial locations of the LV segments
are represented with the well-known bull’s eye representation
from clinics.

2) BULL’S EYE CIRCULAR GRID UNWRAPPED TO A
RECTANGULAR GRID
Creating an image representation of the strain helps us lever-
age CNNs for strain classification and represent the patient

data anatomically. We unwrap the circular bull’s eye into a
2D matrix.

3) HORIZONTAL PADDING FOR CIRCULARITY
Padding is applied to preserve the circularity of the real LV
geometry. The horizontal padding is used since it reflects
the continuity of the neighboring segments. Strain data holds
information along the time axis, and therefore has to be stored
in a 3D structure with two spatial dimensions for LV segments
(Figure 4) and one temporal dimension for the time datapoints
of the heart cycle (Figure 5). Representing the strain traces
with bull’s eye and unwrapping it to a 2D grid yields a
robust template for patient strain data which can be used for
training a 2D CNN architecture of choice for any given strain
classification task.

D. STRAIN CLASSIFICATION MODEL
The proposed method focuses both on identifying patients
with scar and on localizing the scar for guiding the clinician to
improve treatment plans. An example use case for the former
could be to group the patients based on the attention they
need due to possible scar in their LV regions i.e., patients
with scar may need to be more regularly followed up than
those without. An example use case for the latter could be
to predict the response to CRT when deciding for CRT can-
didates, based on the knowledge of which coronary artery
territory (CAT) is affected and therefore may not benefit from
corresponding the proximity of the pacemaker lead to the
scarred region. While the feature extraction and classification
layers of any CNN classifier could be used for the former
problem, a specific architecture is required to solve the latter
problem.

A simplified version of the FCN introduced in [19] is
implemented for this task to tackle the scar localization prob-
lem, which outputs the prediction in the form of a binarymask
of LV segments as shown in Figure 6. The original FCN archi-
tecture predicts the pixel-wise scores for each class, which
results in an output layer with channel dimension N, where
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FIGURE 6. Local scar detection pipeline for LV segmental strain traces. The temporal representation of the strain is fed to the FCN for convolution
operations.

N is the number of classes in their image segmentation task.
Similarly, the proposed architecture predicts the segment-
wise scores for scar and no-scar classes, which results in an
output layer with channel dimension two.

The channels in the input layer represent the time steps
from the strain traces. In each channel, strain values from
all 18 segments are represented in the 2D tensor for that
time step. Since the strain traces carry the information for
each LV segment over the entire heart cycle, the data is high
dimensional in the time axis. Using 2D CNNS with many
input channels to store the temporal data, we eliminate the

need of using computationally expensive 3D CNN archi-
tectures.

Three layers with 2D convolution operations are followed
by a 2D transpose convolution operation as the last layer,
to convert the feature maps back to the original shape of the
unwrapped bull’s eye grid. The output of the scar detection
FCN is a stack of two tensors with the prediction values of
each segment having scar (first channel) and no scar (second
channel) as shown in Figure 6. The class with the highest pre-
diction score for a given segment is assigned as the predicted
class for that segment.

In addition to detection, we quantify the scar extent in
terms of number of affected LV segments and their locations.
After obtaining the scar predictions at the segmental level,
we post-process the results to generate predictions for CAT
and patient levels. A CAT is considered to have scar if any
of its corresponding segments has scar; similarly, a patient is
considered to have scar if any of their LV segments has scar.

III. RESULTS
The original dataset of 3043 virtual patients is partitioned into
development and test sets with ratios of 90% and 10% respec-
tively, taking the number of scarred segments into account
for stratification. 80% and 20% of the development set was
used for training and validation respectively. After setting the
padding configuration to no-padding, training and validation
sets are scaled by sampling 50%, 75% and 100% of the
patients to assess the effect of dataset size on scar prediction
performance. The validation loss is minimumwhen themodel
is trained on 100% of the dataset. The models trained on 50%,

FIGURE 7. Comparison of the performances of the scar detection network
without padding (top) and with horizontal padding (bottom) when the
dataset scale is set to 50%. There is a drop in confusion of the
non-scarred segments when horizontal padding is applied.

75% and 100% of the dataset yield balanced accuracy scores
of 92%, 93% and 95% respectively.

In addition, to assess the effect of padding applied on 2D
bulls eye template, the scale of the dataset is set to constant
percentage of 50% and the model is trained with bull’s eye
templates with no padding and horizontal padding configu-
rations. The minimum validation loss is obtained from the
horizontal padding. After observing the experiment setups
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TABLE 1. Performance evaluation of the models that were trained on the bull’s eye representation with and without padding when the dataset scale is
set to 50%. The scores are given for global (patient), territorial, and segmental levels.

with the minimum validation losses, the size of the dataset
to be used and the padding configuration of the bull’s eye
template is determined accordingly. The experiment is then
carried out on the entire dataset with the horizontal padding
configuration, which is referred to as the ideal experiment
setup in the rest of the paper. This setup has the following
distribution for each set: 2191 patients in the training set,
547 patients in the validation set and 305 patients in the test
set. Themodel is trained for 50 epochs with a batch size of 32.
The learning rate is set to a constant value of 0.001 throughout
the training. Binary cross entropy with logits loss function
is used with weight of 10 for the positive class ’scar’ to
correct for class imbalance due to sparse existence of scar
in LV segments. The results with horizontal and no padding
configurations, where the model is trained on constant 50%
percent of the dataset are compared in Figure 7 with the
confusion matrices for the segmental level. Out of 5490 LV
segments (of 305 test patients with 18 segments each), 5330
were correctly classified without the padding and 5355 were
correctly classified with the horizontal padding.

Table 1 shows in detail the prediction scores for the same
experiment setup as in Figure 7. Horizontal padding yields
higher accuracy, balanced accuracy, and specificity for almost
all the levels, while both options yield comparable sensitivity
scores. Excellent specificity scores are achieved with the
horizontal padding. Having higher specificity than sensitivity
scores is expected when the class imbalance in favor of
the negative class is considered. The proposed system can
identify significantly higher proportion of no-scar segments,
territories, and patients than it can identify the scarred ones
due to having 10 times more samples with the negative class
label in the training set.

Padding the LV segments in horizontal axis as shown in
Figure 4C, improves all the scores except for the sensitiv-
ity score at almost all the levels. At the segmental level,

FIGURE 8. The strain traces of the patients which the algorithm
misclassified as no-scar (top) and scar (bottom). Abbreviations for the LV
segment names: Ant = Anterior, ap = Apical.

sensitivity scores of 88% and 87% are achieved for no
padding and horizontal padding options respectively, which
are calculated directly on the segment-wise predictions of the
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FIGURE 9. The balanced accuracy scores for the model that is trained with dataset scale of 100% and the horizontal bull’s eye template. The scores are
reported for three levels: Global (left), territorial (middle) and segmental (right). Abbreviations for the coronary artery territories: LAD = Left Anterior
Descending, RCA = Right Coronary Artery, LCx = Left Circumflex Artery. Abbreviations for the LV segment names: bas = Basal, ap = Apical, Ant =

Anterior, Inf = Inferior, AntSept = AnteroSeptal, InfSept = InferoSeptal, InfLat = InferoLateral, AntLat = AnteroLateral.

FCN model without any post-processing. The model yields
94% sensitivity score at the global patient level for both
no padding and horizontal padding, indicating that a high
proportion of patients who have at least one of their LV
segments scarred can be identified correctly.

The results from the selected experiment setup where the
model is trained with the horizontal padding configuration
of the bull’s eye template on 100% of the dataset is given
in Figure 9. The balanced accuracy score is given for three
levels with increasing granularity from left to right. Out of
156 patients with scar, five of them were misclassified as
no scar. Out of 52 patients with scar on their LAD territory,
three of them were misclassified as no-scar. Out of 55patients
with scar on their LCx territory, none of them were mis-
classified as no-scar. Out of 49 patients with scar on their
RCA territory, two of themwere misclassified as no-scar. Out
of 5490 LV segments (of 305 test patients with 18 segments
each), 5376 were correctly classified. Out of 530 segments
with scar within these 5490 segments, only 41 of them were
misclassified as no-scar. In this ideal experiment setup, the
accuracy and balanced accuracy scores of the model are
0.98 and 0.95 respectively. In addition, the model can cor-
rectly identify 97% of the patients with scar and 99% of the
patients with no-scar. With a sensitivity score of 0.92 at the
segment level and 0.97 at the patient level, the model that is
trained with the ideal experiment setup outperforms the mod-
els that are trained with 50% of the dataset which are listed
in Table 1.

Strain traces shown in Figure 3 are taken from the set of
patients who are classified correctly by the proposed algo-
rithm. It is also important to investigate the misclassified
patients to understand what may have caused the false pre-
dictions. In Figure 8, the strain traces of two misclassified
patients are shown with their true labels of scar existence.
The patient in the top row is misclassified as no-scar patient
while there are two LV segments with low volume fraction of
scar as highlighted with colors in the figure. For this patient,
having low volume fraction of scar may have caused the

misclassification due to mild effect on the traces. The patient
in the bottom row has no scar, but the algorithm predicted one
of the LV segments as scarred.

IV. DISCUSSION
The FCN classifier trained with the unwrapped bull’s eye
strain resulted in excellent performance for detecting scar in
LV segments of the virtual patients. Since this is a binary
classification task, sensitivity is the recall of the positive
‘scar’ class, while specificity is the recall of the negative ‘no
scar’ class. Thus, the sensitivity column of the score table
is of importance when the priority is to correctly identify
high proportion of the patients with actual scar. Having an
automatic framework to identify the patients with myocardial
scar with high sensitivity is expected to improve the decision-
making processes in the clinics as the treatment plans for
those patients need to be adapted accordingly.

While using only the echocardiography exams is not the
standard procedure for LV segmental scar detection, similar
to [20], we investigate the possibility of identifying scar
with the use of echocardiography. In addition, we try to
overcome the shortcomings of manual assessment of strain
traces by enabling automatic interpretation using a CNN.
In [8], the authors use the GLS for scar prediction which
could result in discarding the temporal patterns of the strain
traces. In our study, we work with the strain traces from
the whole heart cycle to preserve temporal aspect of the
signals.

Both [11] and [12] overcome the issues of manual interpre-
tation of strain traces and makes use of the temporal structure
of the traces. However, the spatial representation of strain data
omits the locations of LV segments in these studies. Inspired
by the frequent use of bull’s eye representation in clinics,
we introduce a novel 2D representation of strain based on
18 segment model of the LV.

In [11], the authors reported the MI classification on the
patient level, while the local damage information of coronary
artery territories and LV segments are unknown. We tackle
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this problem by reporting the scar detection results in three
different levels: global, segmental, and territorial, so that the
use of our predictions can provide more detailed insight into
the condition of the patient. Using an unsupervised approach,
the authors in [12] eliminated the need for labeling the patient
data. However, using the conventional k-means method for
clustering, the additional feature extraction step for project-
ing the strain traces to a lower dimensional space could be
eliminated, which could result in the loss of critical informa-
tion. In our study, we use the raw strain traces without any
processing other than the resampling operation. Although we
are using a supervised learning technique, we take advantage
of the virtual patient cohort which comes in pair with the auto-
matically assigned scar labels in addition to the controlled LV
strain traces.

In the presented work, which serves as a proof of con-
cept for myocardial scar detection, a virtual patient dataset
is used to train and test the model. While this provided a
controlled dataset to investigate the potential of the proposed
method, there are limitations of using a virtual patient dataset.
Simulated strain traces do not carry the noise that can be
present in the strain traces that are calculated based on
estimated measurements on the ultrasound images of the
patients. There are no inter-user differences present in virtual
dataset; given the same input parameters, CircAdapt model is
expected to behave identical in each run, when generating the
patient strain data. This may suggest an easier classification
task when compared to classifying strain traces of the real
patients, which may then result in poor generalization per-
formance when the learning is transferred to the real patient
setup.

The cardiac cycle time markers for aortic and mitral valve
closure that are used in preprocessing the strain traces are
obtained from the CircAdapt model in this work. While in
clinical setup, ECG is used for generating the time markers,
which is subject to noise and time markers can be mislocated
as a result. This, in addition to the varying quality of the
images acquired during the exam may introduce additional
challenges when the proposedmethod is going to be validated
on the strain traces of the real patients.

Using one hot encoding for labeling neglects the volume
fraction of scar in the LV segment, which could lead to mis-
classification of the segments withminor scar fractions. In the
next step, using multi-class labeling to grade the scar severity
should help tackling this problem. Accordingly, we would
like to train the FCN for predicting different extension levels
of the scar in addition to detecting their locations, by leverag-
ing the volume fraction information.

The present work leveraged image channels in the input
layer of the FCN to capture the temporal information in strain
data. Alternatively, the input data could be represented by a
3D tensor, and a 3D CNN could be used to classify the strain
traces for predicting the segmental scar existence, where
the third dimension could be leveraged for storing temporal
strain.

V. CONCLUSION
In this work, we propose a novel method to detect myocar-
dial scar using a multi-level approach, which corresponds
to global, territorial, and segmental predictors of myocardial
scar. A simple FCN model is trained and validated on a
dataset of 2738 virtual patients generated by the CircAdapt
model. The proposed model was able to correctly detect
the absence and existence of scar in 95% of the 5490 LV
segments of 305 patients in the test set, in the ideal experiment
setup, where the padding configuration is set to horizon-
tal, and the entire dataset is used. The patients who have
at least one of their segments scarred were detected with
97% accuracy, while the existence of scar in coronary artery
territories of the patients were detected with 94%, 100%
and 96% accuracies for LAD, LCx and RCA respectively.
An improved sensitivity score at the segmental level is antic-
ipated if the model can be trained on a balanced dataset.
However, realistically, the ratio of non-scarred segments is
expected to be higher when compared to scarred segments
in the clinics. Therefore, it is important that the proposed
method can give over 0.9 sensitivity score despite the class
imbalance. A multi-class labeling approach where the degree
of LV scar is graded based on the volume fraction of the scar
for each patient is also expected to give better performance at
all levels.

In future work, this proof of concept will be validated on
real patient data to investigate the applicability to clinics.
As a follow-up experiment, we would like to evaluate the
performance of the FCN model that is pre-trained on the
virtual patient data, on the strain traces of the real patients.
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