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Abstract

The master thesis presents various (k, ω)-spectra which shows measured disper-
sion relations derived from various measured laboratory irregular long-crested wave
fields. The measured dispersion relations are presented and compared with the lin-
ear dispersion relation and higher order dispersion shells. The experimental work
includes the surface elevation and the current. Numerical simulations by Krogstad
and Trulsen (2010) of the dynamic nonlinear evolution of unidirectional long-crested
free waves using the nonlinear Schrödinger equation and its generalizations suggest
that components above the spectral peak can have larger phase and group velo-
cities than anticipated by linear theory. Moreover it has been suggested that the
spectrum does not maintain a thin well-defined dispersion surface but rather de-
velops into a continuous distribution in (k, ω)-space. The main purpose of the
experimental work in the thesis has been to design high-resolution spatiotemporal
laboratory measurements to investigate the above peak behaviour suggested from
the numerical simulations. Moreover, underlying purposes has been to validate
the linear dispersion relation and higher order dispersion shells and to fill the gap
between unidirectional numerical simulations and low-resolution field data. The
experimental results show that the spectrum does not maintain a thin well-defined
surface. Close to the spectral peak the propagation of free waves has been validated
to satisfy the linear dispersion relation. Spectral distributions caused by second
and third order bounded waves have been identified. Moreover, it has only partly
been validated that components above the spectral peak can have larger phase and
group velocities than anticipated by linear theory, the main reason probably being
caused by that the simultaneous coverage in space applied in the experiments is too
short to allow significant dynamic nonlinear evolution.
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1 Introduction

Linear wave theory is the leading order mathematical model for freely propagating
water surface waves and for more than fifty years it has been a cornerstone in the
development of ocean engineering, see (Newman 1977), (Goda 2000) and (Tucker
and Pitt 2001) and the references therein. Linear wave theory assumes that the
water surface is a random linear superposition of non-interacting regular waves and
introduces the linear dispersion relation connecting wave angular frequencies (ω)
and wavenumber vectors (k), expressed in term of the wavelengths (λ). The lin-
ear dispersion relation is a widely used model for water surface wave propagation
and in particular it shows that water surface waves on deep water are dispersive
and propagate with wave phase speeds (c) proportional to the square root of the
wavelengths (λ).

By considering straightforward perturbation expansions of the surface elevation,
bound harmonics are added to the linear field. The bound harmonics are caused by
bounded waves and the higher harmonic bounded waves are bounded to the freely
propagating waves with integer multiple frequency and wavenumber components of
the free waves.

The bound harmonics are referred to as static nonlinearities and leads to re-
construction of the freely propagating waves. The most prominent of the bounded
wave interactions is the second order difference which appears below the spectral
peak. The second order difference leads to significant reconstruction of the freely
propagating waves in the form of a peaked crest and a flattened trough. The higher
harmonics above the spectral peak contribute to smaller reconstructions of the crests
and the troughs. For offshore engineering it has been of interest to determine higher
harmonic wave forces and the effect of resonant build-up, Huseby and Grue (2000),
and in ocean engineering the second order theory has become routine and even es-
sential for many applications, Forristall (2000).

Nevertheless, it is well-known since the pioneering work of Tick (1959), Phil-
lips (1960, 1961), Longuet-Higgins (1963), Hasselmann (1962, 1963a, 1963b) and
Hasselmann et al. (1973) during the fifties, sixties and seventies that dynamic non-
linearities in the form of energy transfer between propagating waves in wave groups
appear, which dissociate from the static nonlinearities. The first dynamic nonlinear
correction to the linear spectrum was calculated by Tick (1959), and Phillips (1960,
1961) introduced the resonant quartet interaction theory which later was used by
Hasselmann (1962, 1963a,b) and Hasselmann et al. (1973) to estimate the dynamic
nonlinear energy transfer between spectral wave components.

During the seventies, the applicability of the linear dispersion relation was ques-
tioned and in the late seventies Lake and Yuen (1978) proposed a model for a single
nonlinear wave train with a carrier frequency equal to the dominant frequency in the
spectrum. Lake and Yuen (1978) also proposed that the most appropriate model for
describing the dynamics of the dominant wave envelope, would be to use the nonlin-
ear Schrödinger equation as a basis, with reference to Zakharov (1968) who derived
the appropriate nonlinear Schrödinger equation for the complex wave envelope. Res-
ults from laboratory experiments performed by the authors and Ramamonjiarisoa
and Coantic (1976) supported evidence for the applicability of the model. It was re-
ported that spectral components above the spectral peak had phase velocities close
to that of the spectral peak and it was suggested that the energy was essentially
propagating with the group velocity of the spectral peak.

A striking result from the laboratory observations, based on the correlation
between pairs of wave staffs, by Lake and Yuen (1978) and Ramamonjiarisoa and
Coantic (1976), was that the apparent phase speed of wave components above the
spectral peak were nearly independent of frequency and thus appeared to be non-
dispersive. These results were quite curious and inconsistent with linear wave the-
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ory. Later in the beginning of the eighties Phillips (1981), in cooperation with the
authors, explained the results as a consequence of dispersion of short waves in the
presence of longer waves. The results of the work showed that short waves are dis-
torted and convected by dominant long waves, but they continue to propagate at
phase speeds that depends on their own intrinsic frequencies and on their location
with respect to the dominant wave if the dominant wave is short of breaking. It
was suggested that dominant wave breaking could suppress the propagation of the
shorter waves. It was also suggested that filtered signals would be strongly domin-
ated by the conditions at the long-wave crests, and that capillary blockage at very
high frequencies under strong wind forcing could suppress freely travelling capillary-
gravity waves even without breaking. The sum of these effects implied that waves
generated under such conditions could be much less dispersive. Later also Barrick
(1986) explained the claim by Phillips (1981) from a somewhat different perspective
by invoking known results from perturbation theory.

Numerical simulations by Krogstad and Trulsen (2010) of the cubic nonlinear
Schrödinger equation (NLS) and the Dysthe (1979) or modified nonlinear Schrödinger
equation (MNLS) suggested that components above the spectral peak could have
larger phase and group velocities than anticipated by linear theory. Moreover, it
was also suggested that the spectrum did not maintain a thin well-defined disper-
sion surface but rather developed into a continuous distribution in (k, ω)-space.
The dynamic nonlinearity is contained in the (M)NLS evolution equations and in
the numerical simulations Krogstad and Trulsen accounted for the dispersion of
Phillips (1981), the bound harmonics of Barrick (1986) in addition to a classical
nonlinear Stokes amplitude correction (Tucker and Pitt 2001). The numerical wave
field evolved over a rather long propagation distance of 140 peak wavelengths.

High-resolution spatiotemporal measurements suitable for validation of the lin-
ear dispersion relation are rarely available. In the late seventies experiments in a
wind-wave flume were carried out by Mitsuyasu et al. (1979) and interpreted in
terms of a weakly nonlinear theoretical model developed by Masuda et al. (1979).
The theoretical model also proposed a method for separating the spectra of free and
bounded waves from the measured spectrum. For the experiments a linear array
of twelve equispaced resistance-type wave gauges were used to measure the wind
induced surface elevation. Among the experimental findings were components near
the spectral peak satisfying linear theory. It was also reported about enhanced en-
ergies from spectral components at twice the spectral peak caused by second order
bounded waves.

In the mid-eighties Donelan et al. (1985) published an extensive study of (k, ω)-
spectra both from field data from Lake Ontario and from a 80 m long laboratory
wave flume. Both in the field and in the laboratory study an array of fourteen
capitance-type wave staffs in the form of a cross was used to measure the surface
elevation. Under conditions of strong wind forcing in the laboratory their findings
were significant effects on the phase velocity caused by amplitude dispersion and the
presence of bound harmonics. Under natural wind conditions the field observations
showed amplitude related dispersions, but bound harmonics were too weak to be
detected from the field data.

Recent published papers of field studies related to wave dispersion are found in
Hara and Karachintsev (2003) and Wang and Hwang (2004). Hara and Karach-
intsev (2003) examined how static nonlinearity and directionality influenced the
frequency spectrum of a growing wave field under increasing wind forcing. As the
wind forcing increased their findings were enhanced contributions from bounded
waves in the frequency spectra. The field observations were taken from a moored
spar buoy outside the coast of California. The surface elevation was measured with
three wave staffs placed 1 m apart and the wave staffs were composed of 10 m long
capitance wave gauges.
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Wang and Hwang (2004) examined the dispersion relation of short wind waves.
A linear wave gauge array configured from a set of 20 capitance wires was used in
the field measurements. The array was mounted on a free drifting buoy deployed
at two different field sites, in St. Andrews bay, Florida, well sheltered from long
waves by a barrier island and in the Gulf of Mexico. Similar to our work, Wang and
Hwang derived two-dimensional wavenumber-frequency spectra from the space-time
recordings. The low-resolution spectra revealed main contributions near the linear
wave dispersion manifold and effects from higher harmonics were reported. Both
wavenumber-based and frequency-based phase speeds, c(k) and c(ω), were extrac-
ted from the spectra, showing that the effect of higher harmonics revealed in the
two-dimensional spectra was most prominent on the frequency-based phase speeds
c(ω).

The data collected from field measurements are often characterized by relatively
low spatial resolution and on field scale, conducting high-resolution spatiotemporal
measurements are limited by the spatial extension and economic cost such record-
ings would require. The imaging of the ocean surface with X-band marine radar
does provide the desired spatiotemporal coverage, but the interpretation of the
radar images currently depends on the linear dispersion relation as a prerequisite,
Nieto Borge et al. (2004). For example is the linear dispersion relation used to
estimate the surface current by means of a least square fit using the linear disper-
sion equation with current advection, Nieto Borge et al. (2008). The main part
of the analysis of X-band radar imagery consists of applying a 3D band-pass filter
keeping only those (k, ω)-components that belong to the imaged wave field. Thus,
high-resolution spatiotemporal measurements could open for a better identification
of the location and behavior of these spectral contributions.

An important step towards achieving real time deterministic wave prediction
has been the recent advances in the inversion of X-band nautical radar imagery
into real ocean surface elevation. However, as mentioned, the inversion of the radar
imagery currently relies on linear wave theory as a prerequisite.

Attention to nonlinear effects can substantially improve the performance of X-
band nautical radars and improve the quality of real time wave prediction. Real
time wave prediction over time intervals of the order of seconds to minutes opens
up for a range of possible applications. Examples are avoidance against extreme
waves and dangerous wave groups causing enormous forces and leading to critical
situations or even loss of ship, cargo and crew, Clauss et al. (2008). Once a dan-
gerous wave group is identified, one approach to avoid dangerous situations is to
adjust heading and cruise speed.

Wave prediction could lead to improvement of weather sensitive and costly off-
shore operations. This applies to dynamic positioning in float-over-installations,
lifting operations, oil and gas loading operations and helicopter take-off and land-
ing on ship deck, to mention a few.

Another interesting application is alternative energy, where wave prediction
could lead to enhanced extraction of power from floating wind turbines and real
time latching control of wave energy devices, Barbarit and Clément (2006).

On laboratory scale high-resolution spatiotemporal measurements are less costly
and easy to conduct and could give valuable information about wave dispersion and
fill the gap between field data and unidirectional numerical simulations. When a
laboratory wave field is long-crested and unidirectional information about dispersive
properties is relatively easily achieved from a linear array and a 2D FFT routine. If
a laboratory wave field is directional and short-crested, as is always the case in the
ocean, the dispersion relation need to be derived from an array design which meas-
ures directionality and by applying a 3D FFT routine. If a wave field propagate in a
range of different directions, high-resolution spatial measurements are complicated
to achieve. To create dispersion models for directional and short-crested wave fields,
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and multiple wave fields interacting from different directions, is probably one of the
biggest challenges in the development of ocean water surface wave prediction in the
future.

The main purpose of the experimental work in the thesis has been to design
high-resolution spatiotemporal measurements and to derive spectra of measured
dispersion relations to investigate more precisely how spectral components are dis-
tributed in the spectra both in comparison to the linear dispersion relation and
static and dynamic nonlinear effects. As in the numerical simulations by Krogstad
and Trulsen (2010) the wave fields are long-crested and unidirectional when an ab-
sorbing beach is used at the far end of the wave flume. A central part of the work
has been the design of linear equispaced synthetic arrays which allows the surface
elevation to be measured with higher spatial resolutions. Our findings so far have
only partly validated the suggestion from the numerical simulations that spectral
components above the peak can have larger phase and group velocities than anti-
cipated by linear theory. This could be caused by that the laboratory wave field
evolves over a relatively shorter propagation distance compared to the numerical
simulations. The sampled propagation length in the laboratory covers only about
14 peak wavelengths and thus only 10% of the sampled propagation length in the
numerical simulations. The propagation distance for the wave field in the laborat-
ory could therefore be too short to allow significant dynamic nonlinear evolution.

The main focus of the work in the thesis has been to derive various spectra for
the measured dispersion relations. In chapter 2, a brief presentation of the theor-
etical framework for linear wave theory and the static and dynamic nonlinearity is
given. The experimental arrangement is presented already in chapter 3 such that
the synthetic measurement techniques are easier to associate with the method of
analysis of the surface elevation in the following chapter 4. A presentation of signal
processing issues related to the surface elevation data, tapering to prevent spectral
leakage caused by the finite extension of the space and time series and frequency and
wavenumber spectra is given in chapter 5. The wave-induced current is presented in
chapter 6. In chapter 7 a relatively extensive presentation of the main result in the
thesis, the measured dispersion relations, is given. A leading order numerical model
was developed to simulate some of the small suspected measurement errors in the
experiments. The model and the results are presented in chapter 8. Topics which
were evaluated to be rather lengthy to include in the mentioned chapters are presen-
ted in the Appendix. These include detailed mathematical derivations, quantitative
presentations of the frequency spectra and the effect of developed tapering functions
and other information regarding signal processing issues.
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2 Theoretical framework

This chapter presents the theoretical framework which is applied to compare with
the experimental results. The chapter is divided into two sections. In the first
section linear wave theory and the linear dispersion relation is presented. Detailed
derivations are given in Appendix A.1. In the second section, a brief presentation
of the most fundamental properties of nonlinear waves and a abstract of some of
the results from Krogstad and Trulsen (2010) is given.

2.1 Linear wave theory

The governing equations for the velocity potential φ(r, z, t) and the surface displace-
ment η(r, t) of an incompressible, inviscid, irrotational fluid with uniform depth h
are, the Laplace equation,

∇2φ = 0 for − h < z < η, (1)

the kinematic boundary condition at the free surface,

∂η

∂t
+ ∇φ · ∇η =

∂φ

∂z
at z = η, (2)

the dynamic boundary condition at the free surface,

∂φ

∂t
+ gη +

1

2
(∇φ)2 = 0 at z = η (3)

and the kinematic boundary condition at the bottom,

∂φ

∂z
= 0 at z = −h, (4)

where g is the acceleration of gravity, the horizontal position vector is r = (x, y),
the vertical coordinate is z, ∇ = (∂/∂x, ∂/∂y, ∂/∂z), and t is time. Surface tension
is neglected. The linearization of the equations (1)-(4) is,

∇2φ = 0 for − h < z < 0, (5)

∂η

∂t
=
∂φ

∂z
at z = 0, (6)

∂φ

∂t
+ gη = 0 at z = 0, (7)

∂φ

∂z
= 0 at z = −h, (8)

Kundu and Cohen (2008). The solution of the linearized equations (5)-(8) is a linear
superposition of simple harmonic regular waves such as

η(r, t) = a cos(k · r − ωt) (9)

φ(r, z, t) =
aω

k

coshk(z + h)

sinh kh
sin(k · r− ωt). (10)

where a is the amplitude, ω = 2π/T is the angular frequency and T is the period.

k = (kx, ky) is the wavenumber vector and |k| =
√

kx
2 + ky

2 is the wavenumber.
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For waves which propagate along the x-direction only, we define |k| =
√

kx
2 + ky

2 =

k = 2π/λ, where λ is the wavelength, and the solutions to the linear equations can
be written on the form,

η(x, t) = a cos(kx− ωt) (11)

φ(x, z, t) =
aω

k

cosh k(z + h)

sinh kh
sin(kx− ωt). (12)

Appendix A.1.1 shows how the velocity potential in equation 12 is obtained by
solving the boundary value problem of the linearized equations (5) - (8).

The linear dispersion relation,

ω2 = gk tanh kh, (13)

is obtained by substituting the velocity potential (12) and and the monochromatic
wave solution (11) into the linearized dynamic boundary condition (7), see Appendix
A.1.2. With current advection,

(ω − uk)2 = gk tanh kh (14)

where u is the x component of the current velocity U = (u, v, w).
The phase plane of the waves moves with the speed,

c =
ω

k
=

2π/T

2π/λ
=
λ

T
(15)

in surface normal direction, and c is therefore called the phase speed. By substitut-
ing ω = ck into the linear dispersion relation (13) we find the phase speed,

c =

√

g

k
tanh kh. (16)

On deep water when kh→ ∞ the hyperbolic tangent function tanh kh ∼ 1 and,

c =

√

gλ

2π
. (17)

(17) shows that for free surface gravity waves on deep water the phase speed c
is proportional to the square root of the wavelength

√
λ. Waves for which c is a

function of λ, are called dispersive because waves of different wavelengths, propagate
at different speeds, and disperse or separate, Kundu and Cohen (2008).

The group velocity is given by,

cg =
dω

dk
. (18)

By substituting equation (13) into (18),

cg =
c

2

(

1 +
2kh

sinh 2kh

)

. (19)

On deep water,

cg =
c

2
. (20)
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The rate of transmission of energy of a sinusoidal wave component is the wave
energy times the group velocity, Kundu and Cohen (2008),

F = Ecg, (21)

so according to linear theory, the wave energy is transmitted with the group velocity
cg.

The regular wave solution in (11),

η(x, t) = a cos(kx− ωt),

can from Euler’s identity be written in terms of the exponential function such that,

η(x, t) =
a

2

[

eiθ + e−iθ
]

=
a

2
eiθ + c.c.

= Re
[

aeiθ
]

, (22)

where θ = kx−ωt is the phase function, i =
√
−1 is the imaginary unit, c.c. denotes

the complex conjugate, and Re denotes the real part of the complex number. Given
that (22) is a regular wave, its propagation will satisfy the linear dispersion relation
ω = ω(k) in equation (13).

Linear theory assumes that the free surface η is a random linear superposition
of n non-interacting regular waves,

η(x, t) =
∑

n

an cos(knx− ωnt+ ψn) (23)

where θn = knx−ωnt are the phase functions, ψn are random uniformly distributed
phases, and each regular wave in equation (23) satisfies the linear dispersion relation,

ωn = ω(kn). (24)

In terms of the exponential function, (23) can be written on the form,

η(x, t) =
∑

n

an
2

[

ei(θn+ψn) + e−i(θn+ψn)
]

=
∑

n

1

2
Ane

iθn + c.c.

(25)

where the complex number An = ane
iψn has been introduced. When a synthetic

wave field is composed from a random linear superposition, a common approach is
to relate the amplitudes an of the waves to a frequency spectrum an =

√

2S(ωn)∆ω,
or a wavenumber spectrum, where the energy at each frequency component S(ωn)
is given from alternative distributions; Gaussian, JONSWAP, etc. This approach
is applied to create the synthetic wave field with a JONSWAP spectral frequency
distribution in the numerical model in chapter 8.
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2.2 Nonlinearity

We distinguish two types of nonlinearity,

• Static nonlinearity due to wave reconstruction leading to various dispersion
shells.

• Dynamic nonlinearity due to energy transfer among different wave components
over long spatial propagation distances leading to various distributions of wave
energy.

As mentioned in the introduction the static nonlinearities which leads to reconstruc-
tion of the freely propagating waves are added to the linear field by considering
straightforward perturbation expansions of the surface elevation. In (k, ω)-space
the frequency and wavenumber components of the higher harmonic bounded waves
are assumed to be distributed along various dispersion shells. In comparison with
the measured dispersion relations in chapter 7 we have plotted the curves for,

(qω)
2

= gqk tanh(qkh), (26)

where q = 1, 2 and 3 and q = 1 corresponds to the linear dispersion relation, also
referred to as the first order dispersion shell, q = 2 corresponds to the second order
dispersion shell and q = 3 corresponds to the third order dispersion shell.

The dynamic nonlinearities are caused by energy transfer among different wave
components which leads to various distributions of wave energy. The dynamic non-
linearities evolve over longer propagation distances. We were particularly interested
in investigating how the wave energy of the free waves were distributed adjacent to
the linear dispersion relation. If the wave energy is distributed tangentially to the
linear dispersion relation ω = ω(k) this could, from a very simplified perspective,
indicate that the free waves propagate with the group velocity cg = dω/dk, which
by mathematical definition is tangential to the linear dispersion relation curve.

As mentioned in the introduction the dynamic nonlinearity is contained in the
(M)NLS evolution equations. The nonlinear models can be summarized in the fol-
lowing evolution equation for the first harmonic complex amplitude B(x, t) of the
free waves, Krogstad and Trulsen (2010),

∂B

∂t
+ LB +

iωckc
2

2
|B|2B

+

[

5ωckc
4

|B|2 ∂B
∂x

+
ωckc

4
B
∂|B|2
∂x

+ ikcB
∂φ̄

∂x

]

= 0,

at z = 0,

where the terms in the brackets are discarded for the NLS equation and included
for the MNLS equation. The characteristic wavenumber kc and angular frequency
ωc are related by the linear dispersion relation. The linear dispersive part is written
in the exact form and the differential operator L is defined in terms of,

L = i

{

√

√

√

√

g

√

(

kc − i
∂

∂x

)2

−
√

gks

}

.
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For the MNLS equation the induced flow is also added,

∂φ̄

∂z
=
ωc
2

∂|B|2
∂x

at z = 0,

∂2φ̄

∂x2
+
∂2φ̄

∂z2
= 0 for −∞ < z < 0,

∂φ̄

∂z
= 0 at z → −∞.

The reconstruction of the surface elevation η includes static nonlinear bounded
waves which takes the form,

η = [η̄] +
1

2
(Beiθ +B2e

2iθ +
[

B3e
3iθ
]

+ c.c.),

where θ = kcx− ωct is the phase function and c.c. denotes the complex conjugate.
Again the terms in the brackets are discarded for the NLS equation and included
for the MNLS equation. The bound wave components are given by,

B2 =
kc
2
B2 −

[

i

2
B
∂B

∂x

]

, B3 =
3kc

2

8
B3, η̄ = −1

g

∂φ̄

∂t
.

The (M)NLS equations are the result of a perturbation expansion with respect
to two small parameters, the steepness and the bandwidth. The zeroth-harmonic
bound waves appears at third order. This is due to the fact that as a result of
the perturbation expansion the zeroth-harmonic bound waves turns out to be the
product of the bandwidth and the square of the steepness, Krogstad and Trulsen
(2010).

The (k, ω)-spectra resulting from the nonlinear spatiotemporal evolution of the
long-crested unidirectional irregular waves on infinite depth, described above, are
shown in figure 5 and 7 in Krogstad and Trulsen (2010). Figure 5 shows the spec-
tra resulting from the simulation with the NLS evolution equation and figure 7
shows the spectra resulting from the simulation with the MNLS evolution equation.
The wave fields have been reconstructed to second and third order, respectively. For
both spectra the amplitudes of the waves are initialized from a Gaussian bell-shaped
wavenumber spectrum with scaled RMS width σx = 0.1. The steepness ǫ = kcac =
0.1, where kc is the characteristic wavenumber, and the characteristic amplitude is
ac =

√

2〈η2〉. The spectral estimates are taken from spatiotemporal measurements
covering 140 peak wavelengths and 170 peak periods.

In figure 5 and 7 in Krogstad and Trulsen (2010), the white curve corresponds
to the linear dispersion relation. The separate wave energy distributions above and
under the linear dispersion relation corresponds to the various dispersion shells of
the higher harmonic waves caused by the static nonlinearities. The deviation of
wave energy distributions from the linear dispersion relation corresponds to dy-
namic nonlinearities. The numerical simulations suggest that components above
the spectral peak have larger phase and group velocities than anticipated by linear
theory. Moreover, the spectrum does not maintain a thin well-defined dispersion
surface, but rather develops into a continuous distribution in (k, ω)-space.
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3 Experimental arrangements

In this chapter the experimental arrangements are presented. In principal two dif-
ferent arrangements were used in the wave flume. The first arrangement presented
in section 4.1 was applied in an early stage of the experimental work. In these
experiments a stationary array with four ultrasonic probes was used to measure the
surface elevation. The second arrangement presented in section 4.3 was applied in a
later stage of the experimental work. In these experiments a stationary array with
sixteen probes was used to measure the surface elevation and an acoustic Doppler
current profiler (ADCP) was used to measure the wave-induced fluid particle velo-
cities. In section 4.2 a detailed presentation of the synthetic array design is given.
The synthetic array is central in the developement of high-resolution spatiotemporal
measurements of the surface elevation.

3.1 Early stage experimental arrangement

The experiments were carried out in the long wave flume in the Hydrodynamic
laboratory at the University of Oslo, Blindern. The wave flume is 24.6 m long and
0.5 m wide. Figure 1 shows a 1:193 scaled version of the wave flume with the exper-
imental arrangement which was used in the early stage of the experimental work.
In these experiments the wave flume was filled with h = 0.35 m of water.

D = 0

3.00 m21.60 m

h = 0.35 m

D = 9.00 m

1

2

3

1. Wave generator

3. Absorbing beach
2. Linear stationary array with M = 4 equispaced probes

Ultrasonic probe

x

z

Figure 1: Early stage experimental arrangement.

At the left end of the wave flume there is a hydraulic piston wave generator (1)
which induces water surface waves into the flume. The wave generator is controlled
by a computer software, Wavelab©. In Wavelab input files in electrical Voltage
can be given for the back and forth movement of the wave generator. In the experi-
ments six input files from a foregoing project, Grue et al. (2003), was applied. The
input files give irregular wave fields with spectral distributions based on different
JONSWAP spectra. The wave fields which are generated from the six input files
are defined as series 1-6. The length of each time series is about five and a half
minutes (330 s). We attempted to modify the original input files to increase the
amplitude in the generated time series. The modifications of the original input files
are presented in more detail in Appendix B.1.1.

The waves which are generated into the flume are long-crested and the crests and
the troughs of the waves extend over the entire width of the flume perpendicular to
the propagation direction. This allows us to consider waves which propagate along
one axis. The x-axis is defined to be the axis along the longitudinal direction of
the wave flume. The z-axis is defined to be the vertical axis. The mean water level
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is defined to be at z = 0. This reference system is also applied in the theoretical
framework and in the method of analysis in chapter 2 and 4.

At the right end of the wave flume there is an absorbing beach (3). The beach
reflects less than 3% of the amplitude of the incoming waves from the wave gener-
ator, Grue et al. (2003). At a water depth of h = 0.35 m the reflection of incoming
waves was larger than at a water depth of h = 0.60 m which was the water depth
that was applied at a later stage of the experimental work. This was caused by
that at h = 0.35 m the waves hit the vertical edge of the absorbing beach which
increases the presence of reflected waves in the flume. With the absorbing beach
operational the waves are approximately unidirectional. With increased reflection
the waves are strictly not unidirectional, but propagate only along the longitudinal
direction of the wave flume.

The surface elevation is measured with a set of ultrasonic U-GAGE S18U probes
from Banner®. The probes are vertically looking and located 15 cm above the
mean water level at the half-width of the wave flume. In distinction to capitance
or resistance-type wave gauges the ultrasonic probes are non-intrusive and do not
affect the wave propagation. The probes are controlled by a computer softwave,
LabView©. In LabView the probes are set to measure the surface elevation in a
window ranging from −5 cm < z < 5 cm. At the early stage of the experimental
work a linear stationary array with M = 4 equispaced probes placed ∆x = 0.30
cm apart (2), was applied to measure the surface elevation. These four probes are
defined as P1, P2, P3 and P4 respectively. The array was placed D = 9.00 m from
the wave generator. D is defined to be the distance between the wave generator
and the first probe P1 in the array. This distance is indicated in figure 1.

The sampling rate of the data aquisition was 200 Hz. In the experiments N =
68000 samples (340 s) of the wave field were taken by each probe and in the spec-
tral analysis the first 12000 samples (60 s) and the last 4000 samples (20 s) were
removed. This was done to remove the effect of startup waves from the wave gen-
erator and to obtain information from the wave field after that it had stabilized for
some time and to remove the samples of the wave field which were taken after the
wave generator ceased to generate waves into the wave flume.

The probes were triggered to start the measurement simultaneously with the
wave generator. In the experiments the probes were triggered to start the meas-
urement of the surface elevation 1 s before the wave generator started to generate
waves into the flume.

The ultrasonic probes have a sensing range from smin = 3 cm to smax = 30 cm,
and emit ultrasonic sound at frequencies of 300 kHz. When a pulse of ultrasonic
energy is emitted it will travel through the air at the speed of sound. A portion
of this energy is reflected by the water surface and travels back to the sensor. The
sensor measures the total time required for the energy to reach the target and return
to the sensor. The distance to the water surface is then calculated simply by

ds =
cstt
2
,

where ds is the distance from the sensor to the water surface, cs ≈ 343 m/s is the
speed of sound in air, and tt is the transit time for the ultrasonic pulse to reach
the target and return to the sensor. All the ultrasonic probes which were applied
in the experiment were calibrated and in Appendix B.1.2 the calibration procedure
is explained in more detail.

There are limitations to which extent the ultrasonic probes can measure an in-
clined surface. At a minimum sensing range smin the maximum target inclination
angle is αsmin

= 10°, and decreases to a maximum target inclination angle of ap-
proximately αsmax

= 5° at the maximum sensing range smax. Beyond these angles
the signal from a probe reflects off the target at such a large reflection angle that
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it cannot return to the sensor. This effect is particulary seen when steep waves
are measured, and dropouts in the measured surface elevation data appear at steep
spatial locations, between the crest and the troughs. A cubic interpolation method
was developed to replace the dropouts. A more detailed presentation of the inter-
polation method is given in chapter 5.

Another problem, common for all digital and electronical measuring devices, is
noise, which is handled with filtering. Noise can also be seen in the measurement
data from the ultrasonic probes. The filter applied is presented in more detail in
chapter 5.

3.2 Synthetic array design

The upper array in figure 2 illustrates the stationary array with 4 equispaced probes
from figure 1. The probes were placed ∆x = 30 cm apart.

∆x

x∆

∆x

0cm
+5cm

+10cm
+15cm

+25cm

+20cm

= 30cm

= 30cm

5cm=

Linear stationary array with M = 4 equispaced probes

Linear synthetic array with M = 24 equispaced measurement positions

Figure 2: A stationary array and synthesis of a more dense array.

For two identical electrical signals the wave generator moves back and forth
with the exact same motions. In Grue et al. (2003) it was reported that the
wave fields are very repeatable, but it was also reported about small repetition
differences in the wave fields. Due to nonlinear wave interactions we might doubt
that the wave generator will generate the exact same spatial and temporal wave
field in the wave flume from two identical input files. It might be expected that two
wave fields which are generated from the same input file over a long time period
can be slightly different due to nonlinear wave interactions. The repeatability of
two time series is presented in more detail and discussed in chapter 5, and shows
that there generally is a 1-3% relative error between two time series which are
generated with the absorbing beach operational at the far end of the wave flume.
In experiments with constructions at the far end of the wave flume which provides
increased reflection and steeper wave fields, the relative errors increases. This is
mostly caused by dropouts in the surface elevation data, which in worst case extends
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over entire crests or troughs, leading to failure of the interpolation method. The
problem is presented in more detail in chapter 5.

The stationary array is mobile on rails along the length D of the waveflume.
Since the wave field is approximately repeatable we can create synthesis of a much
more dense array. This can be done by systematically displacing the stationary
array to new spatial locations and measure the wave field at each spatial location.
In the early stage of the experimental work the stationary array was displaced 5
cm for each measurement so that a synthesis of an array with M = 24 equispaced
measurement positions, placed ∆x = 5 cm apart, was created. This procedure is
sketched in figure 2. Six measurements of the five and a half minute time series
are required to create the synthetic array in figure 2. The (k, ω)-spectra from the
synthetic array provides better resolution along the wavenumber axis compared to
the stationary array. But even for the synthetic array with M = 24 measurement
positions the wavenumber resolution is quite poor. A stationary array with sixteen
probes was therefore developed. This array is presented in the next section.

3.3 Later stage experimental arrangement

3.00 m21.60 m

D = 8.10 m

h = 0.60 m

D = 0 D = 3.00 mD = 1.50 m D = 15.20 m

1

2 5

1.Wave generator

5. Reflecting wall

D = 20.70 m

..................................................

Ultrasonic probe

η η ηη ηηηη

x=30cm∆

2. Linear stationary array with M = 16 equispaced probes
x

z

d − number of displacements for a synthetic array

j,0 j,1+d j,2+2d j,3+3d

3

j,12+12d j,13+13d j,14+14d j,15+15d

3. Absorbing beach
4. Acoustic Doppler current profiler (ADCP)

4

Figure 3: Later stage experimental arrangement.

The lower part of figure 3 shows a 1:193 scaled version of the wave flume with the
experimental arrangement which was used at a later stage in the experimental work.
In these experiments the wave flume was filled with h = 0.60 m of water. The linear
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array with four equispaced probes was substituted by a linear array with sixteen
equispaced probes (2) and figure 4. All the probes P1-P16 were placed ∆x = 30 cm
apart from each other. D is defined to be the distance between the wave generator
and the first probe P1.

Figure 4: The linear array, wave generator (end) and the wave field.

Figure 5: ADCP in horizontal position and bottom rack.

An ADCP (4) and figure 5 was applied to measure the wave-induced fluid particle
velocities. The ADCP was placed 10.8 m from the wave generator at the half-width
of the flume. The ADCP has a bi-static sonar type sensor and sends out ultrasound
from a centered beam. The ultrasound has a frequency of 10 MHz. The reflected
signal is received by four sensors. The water is seeded with 20 µm polamid spheres to
increase the reflection. The u, v, and w components of the fluid particle velocities
are measured at one point which is located about 5 cm above the sensors. The
ADCP is controlled by a computer software Vectrino+ where data for the u, v, and
w components of the fluid particle velocities are collected in data columns. The
u, v, and w components are related to a fixed coordinate system on the measuring
device. When the current at the bottom was measured the ADCP was, for practical
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purposes, placed in a horizontal position, and when the current near the mean water
level was measured the ADCP was placed in a vertical position. Since the velocities
are related to a fixed coordinate system, the data for the u-velocity is collected in
different columns in the Vectrino+ software, depending on the horizontal or vertical
positioning. Different racks were used near the bottom (figure 5) and near the mean
water level.

The sampling rate of the data aquisition was set to 200 Hz, which is the similar
sampling rate used to measure the surface elevation. In the experiments the ADCP
was not triggered electronically but started manually simultanously with the wave
generator. About N = 68000 time samples (340 s) were taken from each wave
series and for the statistical analysis of the ADCP data in chapter 6 the first 12000
samples (60 s) and the last 4000 samples (20 s) were removed. Thus, information
about the wave-induced current was taken from the same time window which was
applied for the spectral etimate of the surface elevation.

At the far end of the wave flume it was possible to place a reflecting wall (5) in
front and on top of the vertical edge of the absorbing beach (3). The reflecting wall
is placed in a vertical position and is mounted on rails on the inside side-walls of
the wave flume. The reflecting wall can be removed easily. A reflecting beach with
25° inclination, measured from the horizon, was also applied to increase the wave
reflection. The reflecting beach and the reflecting wall is presented in more detail
in chapter 7. In experiments where the reflection from the absorbing beach and the
reflecting wall was investigated the wave field from series 1 was measured at D =
3.00 m, 8.10 m and 15.20 m from the wave generator. These distances are indicated
in figure 3.

The upper part of figure 3 sketches a general description of how the probes in
the stationary array with sixteen probes are represented in a synthetic array. d
is the number of displacements of the stationary array to create synthesis of more
dense arrays. For the synthetic array which was based on the stationary array with
four probes in section 3.2 the number of displacements was d = 5. As illustrated
in the upper part of figure 3 the measured time series of the surface elevation from
each stationary probe in a synthetic array can generally be represented by

ηn,m+md where d = number of displacements, (27)

n = 0, 1, 2, ..., N − 1 is the number of time samples and m = 0, 1, 2, ..., 15 is the
number of measurement positions in the stationary array. With no displacement
d = 0 the above description represents the stationary array with sixteen probes. If
the number of displacements is chosen to be d = 5 for the stationary array with
sixteen probes, ∆x = 5 cm = 0.05 m and the last surface elevation measurement
ηn,15+15d+d = ηn,95. This corresponds to a synthetic array with M = 96 measure-
ment positions. Each probe has a ∆x associated with them so the length of the
array is equal to L = M∆x = 96 × 0.05 m = 4.8 m.

The measurement procedure presented above can be characterized as a meas-
urement sub-procedure. The sub-procedure can be linked by distances ∆x up to
four times along the wave flume to create longer synthetic linear equispaced arrays.
The longest synthetic array covered a propagation length of L = 4 × 4.8 m = 19.2
m with M = 256 measurement positions and a spatial resolution of ∆x = 7.5 cm.
The number of displacements in each of the four sub-procedures was d = 3. The
surface elevation measurement ηn,0 was taken D = 1.5 m from the wave generator,
and the surface elevation measurement ηn,255 was taken D = 20.7 m from the wave
generator. These distances are indicated in figure 3. Sixteen measurements of the
five and a half minutes time series are required to create this synthetic array.
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4 Method of analysis

4.1 Discrete Fourier transform

For the Fourier analysis of the experimental data we have applied the discrete
Fourier transform DFT, which has been computed with the fast Fourier transform
algorithm FFT implemented in Matlab©.

The temporal discrete Fourier transform is defined on a finite time interval T .
The finite number of samples in time, is defined as N . Each discrete time step is
defined in terms of,

tn = n∆t (28)

where,

T = N∆t (29)

for a number of time samples n = 0, 1, 2, ..., N − 1. In terms of the free surface η
the temporal DFT is defined as,

η(tn) =
N−1
∑

j=0

η̂(ωj)e
−iωjtn . (30)

The discrete angular frequency steps,

ωj =
2πj

T
where ∆ω =

2π

T
, (31)

and j = 0, 1, ..., N −1. η̂j is obtained by utilizing the mathematical property that a
system of complex exponential functions is an orthogonal system of functions, and
by taking the l2 inner product of (30), see Appendix C.1.1, we obtain,

η̂(ωj) =
1

N

N−1
∑

j=0

η(tn)e
iωj tn . (32)

(30) and (32) is the 1D temporal DFT pair.
Figure 6 shows an illustration of an array with M = 4 elements similar to the

stationary array with four probes from our experiments.

x∆ ∆x ∆ x ∆x

L

Figure 6: Example of an array with M = 4 elements.

For an array with M finite elements, the spatial DFT is defined on a finite
spatial interval L which corresponds to the total spatial extension of the array.
Each element in the array has a finite spatial extension ∆x associated with them,
which is equal to the horizontal distance between the elements. The total extension
of the array is equal to,

L = M∆x. (33)
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The discrete spatial steps,

xm = m∆x (34)

for a number of spatial measurement points m = 0, 1, 2, ...,M − 1. The discrete
wavenumber steps,

kg =
2πg

L
where ∆k =

2π

L
(35)

for g = 0, 1, 2, ...,M − 1. The 1D spatial DFT pair is,

η(xm) =

M−1
∑

g=0

η̂(kg)e
ikgxm (36)

and

η̂(kg) =
1

M

M−1
∑

g=0

η(xm)e−ikgxm . (37)

A combination of (30), (32), (36), and (37) gives the 2D spatiotemporal DFT pair,

η(xm, tn) =

M−1
∑

g=0

N−1
∑

j=0

η̂(kg, ωj)e
i(kgxm−ωjtn) (38)

η̂(kg, ωj) =
1

MN

M−1
∑

g=0

N−1
∑

j=0

η(xm, tn)e
−i(kgxm−ωjtn). (39)

In section 5.9 Sampling, more information about sampling criteria for ∆ω, ∆k, ∆t
and ∆x is given.

In general N discrete time samples of the surface elevation η measured from M
discrete measurement positions placed ∆x apart in the experiments can be repres-
ented by a N ×M matrix,

ηn,m =























η0,0 η0,1 η0,2 · · · η0,M−3 η0,M−2 η0,M−1

η1,0 η1,1 η1,2 η1,M−3 η1,M−2 η1,M−1

η2,0 η2,1 η2,2 η2,M−3 η2,M−2 η2,M−1

...
. . .

...
ηN−3,0 ηN−3,1 ηN−3,2 ηN−3,M−3 ηN−3,M−2 ηN−3,M−1

ηN−2,0 ηN−2,1 ηN−2,2 ηN−2,M−3 ηN−2,M−2 ηN−2,M−1

ηN−1,0 ηN−1,1 ηN−1,2 · · · ηN−1,M−3 ηN−1,M−2 ηN−1,M−1























where the columns are the time series and the rows are the space series of the surface
elevation. η̂j,g is computed from the 2D DFT, which results in the matrix,

η̂j,g =























η̂0,0 η̂0,1 η̂0,2 · · · η̂0,M−3 η̂0,M−2 η̂0,M−1

η̂1,0 η̂1,1 η̂1,2 η̂1,M−3 η̂1,M−2 η̂1,M−1

η̂2,0 η̂2,1 η̂2,2 η̂2,M−3 η̂2,M−2 η̂2,M−1

...
. . .

...
η̂N−3,0 η̂N−3,1 η̂N−3,2 η̂N−3,M−3 η̂N−3,M−2 η̂N−3,M−1

η̂N−2,0 η̂N−2,1 η̂N−2,2 η̂N−2,M−3 η̂N−2,M−2 η̂N−2,M−1

η̂N−1,0 η̂N−1,1 η̂N−1,2 · · · η̂N−1,M−3 η̂N−1,M−2 η̂N−1,M−1























The spectral energy density is computed from,

S(kg, ωj) =
∣

∣η̂g,j
∣

∣

2
= η̂g,j η̂

∗

g,j (40)
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where ∗ denotes the complex conjugate c.c. With matrix representation,

Sj,g =























S0,0 S0,1 S0,2 · · · S0,M−3 S0,M−2 S0,M−1

S1,0 S1,1 S1,2 S1,M−3 S1,M−2 S1,M−1

S2,0 S2,1 S2,2 S2,M−3 S2,M−2 S2,M−1

...
. . .

...
SN−3,0 SN−3,1 SN−3,2 SN−3,M−3 SN−3,M−2 SN−3,M−1

SN−2,0 SN−2,1 SN−2,2 SN−2,M−3 SN−2,M−2 SN−2,M−1

SN−1,0 SN−1,1 SN−1,2 · · · SN−1,M−3 SN−1,M−2 SN−1,M−1























In the (k, ω)-spectra in chapter 7 the scalar values from Sj,g are plotted as contour
levels for the corresponding discretizises kg and ωj values.

The angular frequency and wavenumber spectra in chapter 5 are computed from,

S(ωj) = |η̂(ωj)|2 (41)

and,

S(kg) = |η̂(kg)|2. (42)

The discrete Fourier transform can be extended periodically, or cyclically per-
mutated such that temporally,

ηn+N = ηn and η̂j+N = η̂j (43)

and spatially,

ηm+M = ηm and η̂g+M = η̂g. (44)

Look at for instance,

eikg+Mxm = ei
2π(g+M)

L
Lm
M

= ei2π(g+M) m
M

= ei
2πgm

M ei2πm

= ei
2πgm

M · 1 = ei
2πg

L
Lm
M = eikgxm . (45)

We can start the transform summation at any index r,

η̂g =
1

M

r+M−1
∑

g=r

ηme
−ikgxm

=
1

M

r+M−1
∑

g=r

(

M−1
∑

h=0

η̂he
ikgxh

)

e−ikgxm

=

M−1
∑

h=0

η̂h
1

M

r+M−1
∑

i=r

eikg(xh−xm)

=

M−1
∑

h=0

η̂hδh,m

= η̂g, (46)

which shows that the discrete Fourier transform is periodic, and has a cyclic per-
mutation from any index r. Discontinuities in the transition from the end of a space
or time series to the beginning of the series are handled with tapering in time and
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space, which is presented more detail in chapter 5.
It can sometimes be convenient to discretize the angular frequencies and the

wavenumbers for negative values,

ωj =
2πj

T
(47)

for j = −N/2,−(N − 1)/2, ...,−2,−1, 0 , 1, 2, ..., (N − 1)/2, N/2 and,

kg =
2πg

L
(48)

for g = −M/2,−(M − 1)/2, ...,−2,−1, 0 , 1, 2, ..., (M − 1)/2,M/2.
When S(ωj) and S(kg) are computed for the experimental data from the 1D

temporal and spatial DFT for j = 0, 1, ..., N − 1 and g = 0, 1, ...,M − 1, one peak
appears for low discretizised values and one peak appear for high discretizised values.
Due to the periodicity of the Fourier transfrom the peak at the highest discretized
values can be cyclically permutated and discretized for negative angular frequencies
and wavenumbers. This representation has been referred to as the two-sided specta
S(2)(ωj) and S(2)(kg) for ω T 0 and k T 0. It has also sometimes been convenient

to refer to the one-sided spectra S(ωj) = 2S(2)(ωj) and S(kg) = 2S(2)(kg).
In a similar manner, the columns and rows in the matrix representation of the

spectral energy density Sj,g can be cyclically permutated and discretized for negative
angular frequencies and wavenumbers. This has been done for all the (k, ω)-spectra
in chapter 7, but in some of the spectra only the spectral energy density for positive
angular frequencies ω ≥ 0 has been contour plotted. The spectral energy density for
negative angular frequencies ω ≤ 0 is the energy from waves which are represented
by the complex conjugate c.c. and we have chosen to give the water surface waves
with posetive angular frequencies ω ≥ 0 a physical interpretation.

21



5 Surface elevation

For the surface elevation in total 23 experiments were carried out to measure the
dispersion relations, and as a consequence of the synthetic array measurement tech-
niques in total 2376 measurements of the five and a half minute time series 1-6 and
modified series were taken. The time series were measured on two different water
depths h = 0.35 m and h = 0.60 m, and on a range of different locations from 1.5 m
to 20.7 m from the wave generator. Series 1 was also measured with the additional
reflecting beach and end wall. The collection of surface elevation data is therefore
quite extensive, and only recordings from two experiments are selected for the ana-
lysis in the sections in this chapter. The recordings represents four time series from
a experiment with the absorbing beach operational at the far end of the wave flume
and four time series from a experiments were the absorbing beach was substituted
by the reflecting wall. The intention of presenting the data in this manner has been
to show the difference between the two generated wave fields, both with regard to
signal processing issues and with regard to the energy in the wave fields.

The surface elevation measurements were done by the first four probes P1-P4
in the stationary array with sixteen probes at D = 8.1, 8.4, 8.7 and 9.0 m from the
wave generator (∆x = 0.30 cm). For the wavenumber spectra recordings from the
synthetic array which provided the largest number of spatial measurement points
M = 256, over the longest measured propagation length L = 19.2 m, were chosen
for the spectral analysis. For the frequency and wavenumber spectra and the (k, ω)-
spectra in chapter 7 the first 60 s and the last 20 s of each time series were removed
for the spectral estimates.

The chapter is divided into nine sections. The first four sections 5.1 - 5.4 present
the time series of the surface elevation itself and deals with technical issues connec-
ted to the signal processing of the raw data from the ultrasonic probes. In section
5.5 and 5.6 the tapering functions applied to taper the data in time and space are
presented. In section 5.7 and 5.8 the frequency and wavenumber spectra are presen-
ted and the dimensional analysis to obtain information about the steepness of the
wave fields and the normalized bandwidths of the frequency spectrums is presented.
Section 5.9 presents sampling issues connected the measured surface elevations and
the (k, ω)-spectra which will be presented in chapter 7.

5.1 Interpolation

Figure 7 shows the raw data from the measurement by P1 of time series 1 atD = 8.1
m from the wave generator with the absorbing beach operational at the far end of
the wave flume. The measurement is in total 340 s, and the first 10 s shows the
calm water surface which is measured before the first wave in the wave train reaches
the water surface under the probe. The spikes extending vertically up to η = 5 cm
are dropouts at the steepest locations between the crests and the troughs, caused
by the limitations in the probes to measure the inclined surface. The dropouts
appeared quite frequently in the raw data, and a looping sequence was developed to
interpolate the surface elevation between the points where the dropouts appeared.
If the measured data points exceed the thresholds |ηn+1,m−ηn,m| > 1/2, ηn,m > 4.9
and ηn,m < −4.9 these points are removed and the looping sequence interpolates
between the removed points. The thresholds ηn,m > 4.9 and ηn,m < −4.9 are defined
to be larger and smaller than the highest crest and lowest trough respectively, in
both the wave field generated with the reflecting wall and with the absorbing beach.
A quantitativ illustration of the looping sequence is given in section 5.4.

The upper part of figure 8 shows a 20 s abstract from figure 7 after 180 s of wave
generation. We see that the dropouts appear on the largest and steepest waves. The
lower part of the figure shows the surface elevation after a cubic interpolation has
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been used to interpolate between the points were the dropouts appear. It is expec-
ted that the cubic interpolation method is a good estimate for the surface elevation.
At least the only alternative to deal with the problem of the dropouts is to apply
interpolation.
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Figure 7: Raw data.
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Figure 8: Cubic interpolation.

A linear and spline interpolation were also tested and figure 9 shows the result
of the linear, cubic and spline interpolations on the time interval between 188.4 s
and 189.8 s from figure 8. The linear interpolation works quite well on the sharp
transition between the dropout points and the measured surface elevation, but it
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gives a rather straight approximation of the surface elevation beetween the troughs
and the crests. In comparison, the cubic interpolation does not work that well on
the sharp transitions between the interpolation points and the surface elevation,
especially in the transition on the down-crossing at 189.3 s. On the other hand,
the curvature of the cubic interpolation probably gives a more realistic approach
to the surface elevation. With the spline interpolation the transition between the
interpolation points and the measured surface elevation is sharper compared to the
other methods.
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Figure 9: Linear, cubic and spline interpolations.

An extensive data material of dropouts were investigated in this manner. Al-
though it might seem that the linear interpolation gives the smoothest approxim-
ation in this case, it was concluded that the cubic interpolation in many other
cases gave a better approximation since it included a more curved surface. On
this background we decided to apply the cubic interpolation. In any case the three
interpolation methods gave very similar results and as wee will see later larger inter-
pretation uncertainties were connected to measurement errors caused by dropouts
in the surface elevation data.
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5.2 Filter
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Figure 10: Without filter.
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Figure 11: With a Savitzky-Golay
smoothing filter.

Figure 10 shows a 2 s abstract of the interpolated raw data between 195 s and
197 s in figure 8. No filter has been applied to the data, and the noise appears as
small prickles on the measured surface elevation. Figure 11 shows the corresponding
filtered data. A weak Savitzky-Golay filter has been applied to the surface elevation
data. Savitzky-Golay filters are least square smoothing filters, which typically are
applied for signals with relatively broad bandwidth, excluded noise. With reference
to Matlab© instructions, the Savitzky-Golay filter should perform better than
standard averaging FIR filters, which tend to filter out a significant portion of the
frequency content in the signal, excluded noise.

The Savitzky-Golay filter was used to filter the relatively weak noise in the
measured surface elevation data which was applied for the spectral estimates for the
(k, ω)-spectra in chapter 7. Even though it was promised that the Savitzky-Golay
filter should not affect the wavenumber and frequency content we could suspect the
opposite. To test this suspicion a strong filter was tested on the measured (k, ω)-
spectra in subsections 7.1.5 and 7.2.2. The results are presented in Appendix E.3.1
and shows that a strong filter reduces the magnitude of the spectral energy density
but does not seem to effect the spectral distribution in the spectra significantly.

The spectral energy density in the frequency and wavenumber spectra at the end
of this chapter, are obtained from the filtered surface elevations and are in addition
filtered with a weak filter to smooth out the spectral curves. The weak filter applied
should ensure that the spectral distributions are not affected significantly by the
filter. The spectral energy density in the (k, ω)-spectra in chapter 7 has not been
additionally filtered.
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5.3 Startup effects
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Figure 12: Startup waves.

Figure 12 shows the startup waves in series 1, the first waves in the wave train. The
waves were measured at D = 8.1, 8.4, 8.7 and 9.0 m by the first four probes in the
stationary array with sixteen probes (upper to lower plot respectively). We see that
for the first wave in the wave train it takes about 1/2 s to propagate from the first
probe P1 (upper plot) to the fourth probe P4 (lowest plot). As mentioned, for the
spectral estimate the first minute of the time series was removed to avoid transient
startup effects and to contemplate the wave field after it had stabilized for some
time.

5.4 Repeatability

The (k, ω)-spectra which shows the measured dispersion relations in chapter 7 are
obtained from synthetic array measurement techniques which are heavily relaying
on that the wave fields which are generated from the wave generator are repeatable.
In this section the repeatability of the time series is investigated in more detail.
The section is divided into two subsections. In the first subsection the repeatability
when the wave field is generated with the absorbing beach at the far end of the
wave flume is investigated, and in the second subsection a similar investigation is
when the wave field is generated with the reflecting wall at the far end of the wave
flume.

5.4.1 With absorbing beach

Figure 13 shows two independent repetitions, blue and red, of time series 1 meas-
ured from the same positions with the absorbing beach operational at the far end
of the wave flume. The waves were measured at D = 8.1, 8.4, 8.7 and 9.0 m by
the first four probes P1-P4 in the stationary array with sixteen probes respectively.
Upper to lower time series in the figures shows the measurements from P1-P4 re-
spectively. The time series shows the last 20 s of surface elevation which is applied
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for the spectral estimate.
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Figure 13: Repeatability with absorbing beach.

With the absorbing beach operational we see that the time series are quite
identical, and only small differences occur. It is interesting to see that after 300 s
(5 minutes) of wave generation, the two time series are approximately repeatable.

In each experiment where the dispersion relation is measured, the relative errors
between two time series are tabulated together with the corresponding (k, ω)-spectra
in chapter 7. The relative errors between the two time series measured by P1 - P4,
presented above, are given in table 1. The relative errors are estimated from the
entire measured time series (340 s). The begining and the end of the time series are
also quite identical. The repetition errors are relatively small.

D [m] Rel. error at P1 [%] P2[%] P3 [%] P4 [%]

8.1 2.57 2.85 1.90 3.39

Table 1: Repetition errors with absorbing beach.

By comparing the interpolated and filtered time series with the corresponding
time series of the raw data, it does not seem that any of the differences in the surface
elevations are caused by errors in the interpolation of the dropouts. In figure 14 the
upper two time series are the raw data series and the interpolated/filtered series
measured by P1. The lower two time series are the corresponding series measured
by P2. In figure 15 the upper two time series are the corresponding series measured
by P3, and the lower two time series the corresponding series measured by P4. The
raw data from P4 did not contain any dropouts in the time interval.
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Figure 14: With absorbing beach. Comparison with the raw data. P1 and P2.
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Figure 15: With absorbing beach. Comparison with the raw data. P3 and P4.
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Figure 16: Small difference in surface elevation measured by P4.

A difference in the surface elevation which is not caused by errors in the inter-
polation occurs after 304 s of wave generation in the measurement by P4. This type
of repetition difference could be caused by a nonlinear wave-wave interactions.

5.4.2 With reflecting wall
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Figure 17: Repeatability with reflecting wall.

With the reflecting wall at the far end of the wave flume the wave series are less
identical, and the differences between two independent time series measured from
the same positions are larger (figure 17). With the reflecting wall the wave field
generally consists of larger and steeper waves, compared to when the wave field is
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generated with the absorbing beach. The wave field was measured by P1-P4 from
the exact same positions as in the previous subsection.

The relative errors between the two time series measured with the reflecting
wall operational are given in table 2. The errors are higher compared with the
experiments done with the absorbing beach.

D [m] Rel. error at P1 [%] P2[%] P3 [%] P4 [%]

8.1 5.29 7.10 5.68 8.23

Table 2: Repetition errors with reflecting wall.

The raw data from the wave field generated with the reflecting wall is presented
in figure 19 and 20 in a similar manner as in the previous section. The raw data
is quite messy, and dropouts appear frequently. It is possible that some of the
differences in the repetitions are caused by measurement errors in the probes when
dropouts extend over entire crests or troughs. This is examplified in figure 18 which
shows a large error in the measurement between 310-314 s by P1. In the raw data
we see that the probe probably does not measure the trough after 311 s of wave
generation.
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Figure 18: Measurement error by P1.

When this type of measurement error occurs the interpolation method logically
interpolates over and past the trough. As we will see in chapter 7 rather large rel-
ative repetition errors occured in some of the experiments. A comparison with the
raw data similar to the analysis in this section showed that these errors are caused
by a few large measurement errors and consequently errors in the interpolations
which in sum contribute to relatively larger errors in these time series.

The raw data presented here are not of a good quality and we might have to
expect that at least a few relative large errors will be present in the processed data
when the wave field is generated with the reflecting wall. To carry out experiments
efficiently, it would at least have been too time-consuming to manually manipulate
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and fix the raw data. With this approach a quite large uncertainty connected to
the interpretation of the raw data surface elevation would also have been introduced.
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Figure 19: With reflecting wall. Comparison with the raw data. P1 and P2.
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Figure 20: With reflecting wall. Comparison with the raw data. P3 and P4.
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5.5 Time tapering

Any attempt to apply Fourier analysis on a finite series will impose periodic bound-
ary conditions. We might be concerned if the periodic boundary conditions also
impose discontinuities in functional values and derivatives at endpoints. We wish
that the periodic extension should be smooth, so that the Fourier analysis is not
polluted by the effect of lacking smoothness at the endpoints. In general, this type
of data polution results in spectral distributions which often are referred to as spec-
tral leakage.

A signal processing method for preventing spectral leakage is tapering. The
time series is multiplied with a tapering function so that there is a smooth trans-
ition from the end of the time series to the beginning of the time series. We agreed
on making a tapering function which is equal to one most over so that it preserves
most of the time series. At both ends however there should be a function that
gradually declines, or tapers to zero. The end points can be composed from conven-
tional window functions implemented in Matlab©. Figure 21, 22, and 23 shows a
Blackman, Blackman-Harris, and Nuttall window, which is a family of windows that
could be applied at the endpoints of the tapering function. The Nuttall window is a
minimum four term Blackman-Harris window and produces slightly lower sidelobes
than the Blackman-Harris window, Nuttall and Albert (1981). We chose to apply
the Nuttall window at both ends of the tapering function. Our self composed taper-
ing function is quite similar to the Tukey window already implemented in Matlab©.
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Figure 21: Blackman
window.
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Figure 22: Blackman-
Harris window.
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Figure 23: Nuttall win-
dow.
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Figure 24: Illustration of the tapering
function.
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Figure 25: Actual tapering function ap-
plied to taper the time series.

Figure 24 shows an illustration of the tapering function which is applied to
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taper the time series. The tapering function consists of ones in the middle, and
symmetrically at each end is the Nuttall window. The width of the Nuttall window
region can be chosen freely. For illustrating purposes each half of the Nuttall win-
dow streches over 7000 samples, so to see the gradual declination from one to zero.
Figure 25 shows the actual tapering function used to taper the time series. Each
half of the Nuttall window stretches over 100 samples (1/2 s), and the number of
samples which are modified by the tapering function is 0.0038% of the total number
of samples N = 52000 in the time series after that the start and the end of the
series have been removed.

Figure 26 shows the tapered start of time series 1 from a synthetic array meas-
urement where M = 96 time series were measured, and figure 27 shows the corres-
ponding tapered end of the time series. Each element in the time series have been
multiplied with the corresponding elements from the tapering function shown in
figure 25. Within half a second the time series gradually declines, or tapers to zero
at both ends. Appendix E.2.2 shows the effect of time tapering in a (k, ω)-spectrum
measured from M = 96 measurement positions and how the spectral leakage is re-
duced.
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Figure 26: Tapered start of M = 96
time series.
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Figure 27: Tapered end of M = 96 time
series.

5.6 Space tapering

The space series consisted of much fewer data points than the time series and in the
experiments the length of the space series varied between M = 24 and 256. From
the synthetic array based on the stationary array with four probes the space series
only consisted of M = 24 data points. With such few data points we carefully tried
to develop tapering methods in space which hopefully would affect the spatial data
series as little as possible. The first tapering method consisted of adding a zero to
the end of the space series. The zero works as a declination point for the first and
the last data points in the space series. As a bi-effect, the array is prolonged by ∆x
and ∆k = 2π/L decreases slightly which in turn gives a slightly higher resolution
along the wavenumber axis.

The second method consisted of, in addition to adding a zero, multiplying the
first and the last data points in the space series with a 1/2 to obtain a more gradual
declination towards the zero. Other more extended versions of these methods were
also tested. In Appendix E.1.2 these space tapering methods are presented in more
detail in connection with the (k, ω)-spectra measured from M = 24 measurement
positions and shows how the spectral leakage, resulting from the spatial data series,
is reduced.

Later in the experimental work the synthetic arrays based on the stationary
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array with sixteen probes increased the number of elements in the space series to
M = 96, 128, 192 and 256. For these space series a space tapering function similar
to the time tapering function in section 5.5 was developed. The space tapering
function consists of ones in the middle and a Nuttall window symmetrically at both
ends. A zero is added to the end of the tapering function to correspond to the added
zero at the end of the space series. The first and the last elements in the Matlab©
generated Nuttall window are zeros. These have been deleted and replaced by
ones in the middle window region. The width of the Nuttall window region can
be chosen freely. Figure 28 shows the amplitude of the space tapering function
with each Nuttall window region consisting of ten elements. Different widths of the
Nuttall window regions were tested. In chapter 7 the different percentage widths
relative to the entire space series are presented in connection with the (k, ω)-spectra.
Appendix E.2.3 shows the effect of different space tapering Nuttall window widths
in a range of (k, ω)-spectra measured from M = 96 measurement positions and how
the different window widths affect the spectral leakage.
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Figure 28: The space tapering function.
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5.7 Frequency and wavenumber spectra

5.7.1 Frequency spectra

Figure 29 shows the two-sided (ω T 0) linear frequency spectrum S(2)(ω) estimated
from the measured series 1 by P1, with the absorbing beach at the far end of the
wave flume and with a water depth of h = 0.60 m. The time series have been time
tapered and the spectral energy density curve is smoothed with a weak Savitzky-
Golay filter. The frequency spectra for series 1-6 on h = 0.35 m are presented in
Appendix D.1.
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Figure 29: Linear frequency spectrum
with absorbing beach.
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Figure 30: Linear frequency spectrum
with reflecting wall.

Figure 30 shows the two-sided linear frequency spectrum S(2)(ω) estimated from
the time series measured with the reflecting wall at the far end of the wave flume.
The axes are equal in figure 29 and 30 and −3ωp ≤ ω ≤ 3ωp. The spectral energy
density increases when the absorbing beach is substituted by the reflecting wall.

Figure 31 and 32 shows the one-sided logarithmic frequency spectra S(ω) =
2S(2)(ω) from figure 29 and 30, respectively. The axes are equal and 0 ≤ ω ≤ 4ωp.
For series 1 the peak angular frequency was estimated to be ωp = 6.80 rads−1.
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Figure 31: Logarithmic frequency spec-
trum with absorbing beach.
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Figure 32: Logarithmic frequency spec-
trum with reflecting wall.

The peak wavenumber is estimated from a convergent fixed point iteration of
the linear dispersion with ωp as initial input. For series 1 on h = 0.60 m the peak
wavenumber was estimated to be kp = 4.74 radm−1.
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In figure 31 and 32 we see that above the peaks there are additional smaller
peaks. In both spectra the smaller peaks at 2×ωp and 3×ωp should be connected
to enhanced intensities from the second and third order higher harmonic bounded
waves. The second order difference appears as enhanced intensities below the peak.
We see that the energy from the second order difference is intensified and peaks at
lower angular frequency components when the absorbing beach is substituted by
the reflecting wall. The third order higher harmonics are also enhanced when the
absorbing beach is substituted by the reflecting wall.

Other smaller peaks in the spectra are possible connected to dynamic nonlinear
wave interactions in the wave flume. From the wave field generated with the absorb-
ing beach two additional peaks appear between ωp and 2ωp and from the wave field
generated with the reflecting wall in particular one additional peak appear between
ωp and 2ωp.

In table 3 the peak angular frequencies ωp and the peak wavenumbers kp for
all the wave fields generated with the absorbing beach operational are summar-
ized. The peak wavenumber estimated from the linear dispersion relation changes
slightly from 5.00 radm−1 to 4.74 radm−1 when the water depth is increased from
h = 0.35 m to h = 0.60 m. The peak angular frequency is similar on the two water
depths. The 1.7% increasement of the original input file for series 1, as presented
in Appendix B.1.1, had a similar angular frequency distribution and peak angular
frequency as the original series.

Wavefield time series h [m] ωp [rads−1] kp [radm−1]

Series 1 0.60 6.80 4.74
Series 1 0.35 6.80 5.00
Series 2 -”- 5.60 3.71
Series 3 -”- 5.55 3.66
Series 4 -”- 5.50 3.60
Series 5 -”- 6.70 4.90
Series 6 -”- 6.40 4.54
Series 1, 1.7% increase -”- 6.80 5.00

Table 3: ωp and kp with absorbing beach.

For series 1 on h = 0.60 m the non-dimensional depth kph = 2.84 which is roughly
deep water (tanh(kph) ≈ 0.99). For series 1 on h = 0.35 m, kph = 1.75 which is
regarded as more intermediate water depth, (tanh(kph) ≈ 0.94), but not far from
deep water.

Given kp the peak wavelength λp = 1.33 m. For series 1 on h = 0.60 m, the
peak wave phase speed cp =

√

gλp/2π = 1.44 m/s and the group velocity cg = 0.72
m/s. During the generation of the five and a half minutes time series 1, the group
velocity travels Dg = cgT = 237.60 m, so during a generation of the time series the
group velocity, according to linear theory, travel along the length of the wave flume
237.60/21.60 ≈ 11 times.

5.7.2 Bandwidth

A dimensional analysis was performed to gain information about the normalized
bandwidth δ∗ = δ/ωp. δ is the half width at half peak intensity of the linear
angular frequency spectrum. Figure 33 shows an illustration of the bandwidth for
the two-sided linear frequency spectrum, estimated from the absorbing beach wave
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field, in figure 29 in the previous section, for ω ≥ 0. In figure 33, δ is equal to
half the distance between the points marked with × where S(2)(ω) intersects the
horizontal line S(2)max

/2. A similar illustration is given for the two-sided linear
frequency spectra for series 1-6 generated on h = 0.35 m in Appendix D.2. These
spectra were used to find the normalized bandwidths for all the time series.
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Figure 33: Bandwidth from series 1 with absorbing beach.

The estimated values for δ and δ∗ for all the time series are tabulated in table 4.
Series 1 provides the narrowest normalized bandwidth. The normalized bandwidth
of series 1 increases slightly when the water depth is increased to 0.60 m.

Wavefield time series h [m] δ [rads−1] δ∗ = δ/ωp [-]
Series 1 0.60 0.6885 0.1013
Series 1 0.35 0.6750 0.0993
Series 2 -”- 0.6160 0.1100
Series 3 -”- 0.5920 0.1067
Series 4 -”- 0.6160 0.1120
Series 5 -”- 0.7130 0.1064
Series 6 -”- 0.6890 0.1077

Table 4: δ and δ∗ with absorbing beach.

Figure 34 shows an illustration of the bandwidth for the two-sided linear fre-
quency spectrum estimated from the reflecting wall wave field in figure 30 in the
previous section, for ω ≥ 0. The spectral energy density for each angular frequency
component close to the peak increases, and relative to the frequency spectrum es-
timated from the absorbing beach wave field, the spectrum is broader. However,
the normalized bandwidth does not change relatively to S(2)max. The half width
and the normalized bandwidth was in fact estimated to have the same values as for
the spectrum from the absorbing beach wave field.
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Figure 34: Bandwidth from series 1 with reflecting wall.

5.7.3 Wavenumber spectra

Figure 35 and 36 show the two-sided linear wavenumber spectra k T 0 from the
absorbing beach and reflecting wall wave fields, respectively. The axes in the two
figures are equal. The wave fields were measured over a propagation length of L =
19.2 m, from M = 256 positions, on h = 0.60 m. The time and space series used
for the spectral estimate have been time and space tapered. In the figures all the
N = 52000 space series of length M = 256 + 1, with added space tapering zero,
have been plotted, to obtain a visual estimate of the spectral peak.
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Figure 35: Linear wavenumber spec-
trum with absorbing beach.
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Figure 36: Linear wavenumber spec-
trum with reflecting wall.

We see that the wavenumber spectral energy density increases when the ab-
sorbing beach is substituted by the reflecting wall. The vertical white line is the
peak wavenumber kp estimated from the linear dispersion relation. We see that the
spectral peak is just below kp in both spectra. This may indicate that the peak
wavenumber estimated from the spectra is lower than the peak wavenumber kp es-
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timated from linear wave theory.
An interesting analysis could be to determine the RMS wavenumbers kRMS and

compare these wavenumbers with linear wave theory wavenumbers kLWT . Unfortu-
nately, the author did not find time to do this analysis before the deadline. It is a
consistent feature that RMS wavenumbers estimated from measurement data tend
to get much larger than the corresponding linear wave theory wavenumbers when
the frequency drops below the spectral peak, contrary to the behaviour above the
peak, where the two wavenumbers are more similar, Krogstad and Trulsen (2010).

5.8 Steepness

The wave steepness ǫ = kpac were ac =
√

2〈η2〉 is the characteristic amplitude of
the wave field. The estimated values for ac and ǫ from series 1 with the absorbing
beach operational on h = 0.60 m are tabulated in table 5. The values for series 1-6
and the modified series on h = 0.35 m are also tabulated.

ac and ǫ increase when the water depth is increased to h = 0.60 m. This is most
likely caused by that wave breaking in shallower water reduces the amplitudes.

The analysis of series 1-6 on h = 0.35 m showed that series 1 was the wave field
which provided the largest steepness. By modifying series 1, ac and ǫ increased
slightly. Although the modified series 1 gave a steeper wave field we decided to
apply the original series 1 for the latest experiments.

Wavefield time series h [m] ac [m] ǫ [-]

Series 1 0.60 0.0200 0.0946
Series 1 0.35 0.0174 0.0871
Series 2 -”- 0.0226 0.0839
Series 3 -”- 0.0200 0.0733
Series 4 -”- 0.0173 0.0624
Series 5 -”- 0.0153 0.0751
Series 6 -”- 0.0174 0.0789
Series 1, 1.7% increase -”- 0.0179 0.0893

Table 5: ac and ǫ with absorbing beach.

Table 6 shows the values for ac and ǫ for series 1 with the reflecting wall oper-
ational at the far end of the wave flume. We see that ac and ǫ increases when the
absorbing beach is substituted by the reflecting wall.

Wavefield time series h [m] ac [m] ǫ [-]

Series 1 0.60 0.0271 0.1286

Table 6: ac and ǫ with reflecting wall.

For our experiments we requested to have the largest possible ratio between the
steepness ǫ and the normalized bandwidth δ∗, to increase nonlinear effects in the
wave fields. A narrow bandwidth is also an assumption for the (M)NLS equations in
Krogstad and Trulsen (2010). We intended to have a δ∗ which could be comparable
to the relative spectral width σx applied in the numerical simulations. As mentioned
in chapter 2 a Gaussian bell-shaped wavenumber spectrum with scaled RMS width
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σx = 0.1 was used in the numerical simulations. The value for our δ∗ estimated
from the JONSWAP frequency spectrum is therefore not directly convertible to σx.

Table 7 presents the values for ǫ/δ∗ for series 1-6 generated on water depths 0.35
m and 0.60 m. Series 1 provides the largest ratio for ǫ/δ∗. After this dimensional
analysis we decided to use series 1 for the latest experiments.

Wavefield time series h [m] ǫ/δ∗ [-]
Series 1 0.60 0.9176
Series 1 0.35 0.8448
Series 2 -”- 0.7627
Series 3 -”- 0.6870
Series 4 -”- 0.5571
Series 5 -”- 0.7058
Series 6 -”- 0.7326

Table 7: Table of parameters for ǫ/δ∗.

5.9 Sampling

In general many samples are taken in time due to the high sampling frequency of
the ultrasonic probes and few samples are taken in space due to the limitations of
the spatial array. The sampling frequency in time is fs = 200 Hz, and ∆t = 1/200
s = 0.005 s. The Nyquist sampling theorem (Johnson and Dudgeon 1993) states
that reconstruction of a signal is possible when the sampling frequency exceeds
twice the maximum frequency in the sampled signal. Thus we should be able to
reconstruct waves with frequencies up to fN/2 = 100 Hz or angular frequencies
up to ωN/2 = 2πfN/2 ≈ 628 rads−1. ωN/2 is the Nyquist angular frequency, half
of the angular sampling frequency. Given the peak angular frequency ωp = 6.8
rads−1, we should be able to reconstruct waves with angular frequencies up to
about 92×ωp. Thus we should be able to reconstruct water surface waves with
much higher frequencies than those of interest in the laboratory wave flume.

In space the sampling theorem can be expressed in connection with the distance
∆x between our probes;

∆x ≤ 1

2
λ =

1

2

2π

k
=
π

k
. (49)

To be able to reconstruct the peak wavenumber kp = 4.74 radm−1 on h = 0.60 m,
∆x ≤ π/kp = 66 cm. This criterion is satisfied by the stationary array (∆x = 30
cm). With ∆x = 5 cm, which was the smallest distance between the probes applied
in the synthetic array measurements,

k =
π

∆x
= 62.83 radm−1. (50)

Thus, we are able to reconstruct waves with wavenumbers up to about 13×kp. In
the longest synthetic array measurement with L = 19.2 m, M = 256 and ∆x =
7.5 cm we should be able to reconstruct waves with wavenumbers up to 9×kp and
wavelengths down to

λ =
2π

9 × kp
≈ 0.15 m. (51)
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This is quite satisfactory considered that the peak wavelength is λp ≈ 1.33 m.
N = 52000 samples were applied for the spectral analysis, and the corresponding

time series was T = 260 s long. This gives

∆ω =
2π

T
=

2π

260s
≈ 0.024 rads−1. (52)

With L = 19.2 m,

∆k =
2π

L
≈ 0.33 radm−1. (53)

Thus we have a much better resolution in the frequency domain than in the wavenum-
ber domain. This is in particular seen in the (k, ω)-spectra measured with the L =
1.2 m long synthetic array in chapter 7. In the (k, ω)-spectra measured with the
L = 19.2 m long synthetic array the result is more satisfactory. However we should
be aware of how the contour levels of the spectral energy density is plotted on the
(k, ω)-grid. In practice each integer wavenumber in the grid contains only about
three ∆k and each integer angular frequency contains about fourty-one ∆ω.

The numerical simulations in Krogstad and Trulsen (2010) covers 140 peak
wavelengths and about 400 wave periods, of which the last 170 periods have been
used to obtain the spectrum estimate. The peak wave period in the experiments
with series 1 on h = 0.60 m is,

Tp =
2π

ωp
= 0.92 s. (54)

Compared with our experiments this gives,

L = 140λp = 186.2 m (55)

and

T = 400Tp = 368 s. (56)

Thus the simultaneous coverage in space applied in the experiments of L = 19.2 m
is only about 10% of the simultaneous coverage in the numerical simulations and
covers only about 14 peak wavelengths. The measurement time T is about the same
with T = 340 s in the experiments. With Tp from the experiments substituted into
the time T = 170Tp = 156.4 s used to obtain the spectral estimate in the numerical
simulations, we see that the time used to obtain the laboratory spectral estimate
T = 260 s could have been reduced more significantly.
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6 Current

The random wave fields are run so long that an additional return flow in the wave
flume is induced, Grue et al. (2003). A return flow below the wave group generally
reduces the velocities below mean water level and increases the velocities near the
crest. The return flow is caused by the radiation stress, Longuet-Higgings and Stew-
art (1963). In order to identify a possible Doppler shift on the dispersion surface
in the (k, ω)-spectra presented later in chapter 7 we were interested in determining
the wave-induced current.

Grue et al. (2003) applied PIV equipment to perform precise measurements of
the instantaneous velocity field below crest. The wave-induced current is however
a slowly varying velocity field, and recordings of long time series of the wave field
using PIV is prevented by limitations of the apparatus. As pointed out in Grue
et al., they were unable to measure the induced drift velocities in the wave flume
using PIV equipment. On this background Grue et al. speculated that a relatively
pronounced slowly varying return velocity was responsible for an additional tilt in
the velocity profiles observed in the late part of the experiments in some of the
series.

Instead of using PIV we attempted to measure the slowly varying wave-induced
current with the acoustic Doppler current profiler ADCP, presented in section 3.3,
which in contrast to the PIV equipment does not have any limitations on records
of long time series.

The chapter is divided into two sections. Section 6.1 presents the ADCP meas-
urements which were done with the absorbing beach at the far end of the flume,
and section 6.2 presents the ADCP measurements which were done when the ab-
sorbing beach was substituted by the reflecting wall. The measured data for the
u component of the fluid particle velocity U = (u, v, w) are presented. The fluid
particle velocities were measured from series 1 on a water depth of h = 0.60 m.
The analysis shows that the wave-induced velocities in general increase when the
absorbing beach is substituted by the reflecting wall.

The estimated values for the u current speed is subtituted into the theoretical
linear dispersion relation with current advection in equation (14), and in chapter 7
the theoretical solution which includes the estimated value for u has been plotted
with white curves. Since for the spectral estimates the first minute and the last
twenty seconds of the surface elevation time series were removed this has also been
done for the analysis of the current series so that the data material for the current
and the possible Doppler shift on the dispersion surface are comparable. The ADCP
was started manually so the removed samples do not correspond exactly to the re-
moved samples in the surface elevation time series. It is expected that this does
not introduce large uncertainties since the wave-induced current is a slowly varying
phenomena. It has been important to remove the first minute of the current time
series because in the early part of the series the current is probably weaker than in
the late part of the series and this would have led to a underestimation compared to
the possible Doppler shift of the spectral energy density on the dispersion surface.

We have attempted to apply a statistical analysis for the ADCP data. The fluid
velocity fields were measured in a range of positions along a vertical line from the
bottom of the flume to the top near the deepest trough. For each measurement
position the mean of the time series of the u(t) speed and the standard deviations
σ =

√

〈u2〉 have been estimated. A deviation from the mean of u could possible be
caused by the slowly varying wave-induced current.

It turned out that it was a quite complicated task to determine an estimate
for u. The time series of u(t) contains velocities which mostly are induced by the
rapidly moving waves in the form of the well-known spiral movements of the fluid
particles in the water, Newman (1977). In addition, these velocities have a lon-
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gitudinal drift; the well-known Stokes’ drift, Newman (1977). Even at the bottom
the spiral movements were observed both in the flume during the experiments and
in the velocity data. This leads to a much larger estimate for σ than what would
be representable for the wave-induced flow only. In general it is very difficult to
distinguish between the slowly varying wave-induced current and other velocities
which are induced by the rapidly varying individual waves in the wave field.

6.1 With absorbing beach

Figure 37 shows an abstract from the time series of u at the lowest measurement
position at a water depth of z = -52.5 cm for the last 30 s which are used for the
statistical analysis in this section. We see that near the bottom fluid particles move
with oscillatory motions similar to motions of fluid particles near the surface.
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Figure 37: Time series of u at z = -52.5 cm. With absorbing beach.

Two or three repetitions of the time series were measured at positions along a
vertical line from the bottom to the free surface. Table 8 presents the arithmetic
mean of the mean velocities ū and the standard deviations σ =

√

〈u2〉 from all re-
petitions. Three repetitions were done close to mean water level and at z = −45.0
cm and z = −52.5 cm.
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z [cm] Nr. of repetitions 〈ū〉 〈σ〉
-6.0 3 0.36 7.12
-10.0 3 -0.14 6.65
-14.0 3 0.32 4.84
-20.0 2 -0.74 3.71
-25.0 2 -0.83 3.10
-30.0 2 -0.97 2.67
-35.0 2 -1.01 2.33
-40.0 2 -0.64 2.26
-45.0 3 -0.51 1.66
-49.5 2 -0.34 1.55
-52.5 3 -0.37 1.53

Table 8: Arithmetic means of ū and σ. With absorbing beach.

In figure 38 and 39 the data points (z, 〈ū〉) and (z, 〈σ〉) have been plotted. The
lower black horizontal line corresponds to the bottom in the flume, the upper dark
blue horizontal line corresponds to the mean water level z = 0, and the light blue
regular wave corresponds to a wave which has an amplitude equal to the amplitude
of the deepest trough (z = −4.21 cm) in the wave field generated with the absorbing
beach. Note that 39 is not a velocity profile in the sense that it is the arithmetic
means of the positive standard deviations in each measurement point that have
been plotted.
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Figure 38: Arithmetic means of the mean speeds 〈u〉.
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Figure 39: Arithmetic means of the standard deviations 〈σ〉.

The mean values of u seem to form a profile with maximum speeds u at z =
-35 cm. It was observed during the experiment that fluid particles near the bottom
have a drift in the negative x-direction, so this is in accordance with the obtained
data in the middle and near the bottom of the profile. The three measurements
near the surface deviate from the other measurements.

There is uncertainty connected to the results at the upper three measurement
positions near the surface. At these measurement positions the ADCP was posi-
tioned in a vertical position. The x coordinate on the ADCP which was used to
measure u when the ADCP was placed in a vertical position could have a slightly
different setting than the z coordinate which was used to measure u when the ADCP
was in a horizontal position for all the other measurements. It is not possible to
calibrate the x, y and z coordinates on the ADCP. Ideally the same coordinate po-
sition should have been used for all measurements in the profile, but this was not
possible with the rack equipment available in the laboratory.

The analysis shows that the standard deviations of u are largest near the mean
water level, and decrease towards the bottom. However, from this analysis we are
not able to tell much about the current induced velocity, since most standard de-
viations in the fluid velocities results from the rapidly varying movements of the
individual waves in the wave field.

6.2 With reflecting wall

Figure 40 shows an abstract from the time series of u at a water depth of z = -52.5
cm for the last 30 s which are used for the statistical analysis in this section. We see
that the velocities increase in comparison with figure 37 when the absorbing beach
is substituted by the reflecting wall. The axes in figure 37 and 40 are equal.
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Figure 40: Time series of u at z = -52.5 cm. With reflecting wall.

Table 9 presents the arithmetic mean of the mean velocities ū and the standard
deviations σ =

√

〈u2〉 from all repetitions with the reflecting wall at the far end of
the flume. Three repetitions were done close to mean water level and at z = −45.0
cm and z = −52.5 cm.

z [cm] Nr. of repetitions 〈ū〉 〈σ〉
-6.0 3 0.19 13.63
-10.0 3 0.10 9.94
-14.0 3 0.28 7.86
-20.0 2 -1.02 5.90
-25.0 2 -0.98 4.92
-30.0 2 -1.05 4.17
-35.0 2 -1.06 3.60
-40.0 2 -1.05 3.12
-45.0 3 -0.78 2.70
-49.5 2 -0.80 2.54
-52.5 3 -0.57 2.39

Table 9: Arithmetic means of ū and σ.

In figure 41 and 42 the data points (z, 〈ū〉) and (z, 〈σ〉) have been plotted. The
light blue regular wave corresponds to a wave which has an amplitude equal to the
amplitude of the deepest trough (z = −4.47 cm) in the wave field generated with
the reflecting wall.
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Figure 41: Arithmetic means of mean speeds 〈u〉.
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Figure 42: Arithmetic means of the standard deviations 〈σ〉.

The mean values of 〈u〉 seem to form a more vertical profile with higher devi-
ations from the mean in the middle and at the bottom of the profile. As in the
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previous section there are uncertainties connected to the upper three measurements
near the surface. The standard deviations of 〈u〉 are larger when the absorbing
beach is substituted with the reflecting wall. The reflected waves contribute to
more rapidly varying movements of the fluid particles.

For the wave fields which are generated with the absorbing beach the article
Grue et al. (2003) might give expedient information about several single events in
the wave fields. In Grue et al. section 4.3 it is pointed out that the additional
tilt in the velocity profiles appears especially for the wave field in series 2. Quoted
from the article: ”The waves in series 2 are 40% longer than those in series 1 and 4.
The wave velocity (group velocity) is correspondingly 20% higher and the estimated
Stokes drift 60% higher. Correspondingly, an estimated return velocity beneath the
wave is 120% higher in series 2 than in series 1 and 4. An addition to the return
flow due to a finite length of the tank is set up quicker and becomes stronger in
series 2 than in 1 and 4.”

The velocity profiles for series 1 in figure 4 and for series 2 in figure 6 in sec-
tion 4.3 in Grue et al. (2003) shows that the additional tilt is smaller and almost
neglectable for series 1 compared to series 2. Thus, we could based on the PIV
measured single events late in the time series in Grue et al. (2003), speculate that
the wave induced current velocity in series 1 is relatively weak with the absorbing
beach operational.

The standard deviations 〈σ〉 which are partly estimated from the rapidly vary-
ing movements of the waves in the wave field are probably much larger than the
wave-induced fluid velocities. The mean velocities 〈ū〉 might give an indication of
a slowly varying deviation from the mean, but there are uncertainties connected to
the calibration of the ADCP.

For illustrating purposes we have plotted the theoretical solution of the linear
dispersion relation with current advection from equation (14) in the (k, ω)-spectra
in chapter 7 with u = 1 and 2 cm/s. The author believes that an estimate for u
probably is lower than these values both with the absorbing beach and the reflecting
wall operational. This believe is reasoned by the observation of fluid particles, near
the bottom of the wave flume during the experiments, which tend to drift at a very
slow speed.
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7 Measured dispersion relations

This chapter presents the (k, ω)-spectra, the directly measured dispersion relations,
from the wave fields generated in the wave flume. The chapter shows the evolution
of measurements done over relatively short propagation lengths L with few measure-
ment points M to measurements done over longer propagation lengths with more
measurement points. The analysis of the (k, ω)-spectra has been the main focus
of the work in the thesis, and therefore a quite comprehensive presentation of the
spectra is given in this chapter.

The chapter is divided into two sections. Section 7.1 presents the experiments
which were done with the absorbing beach at the far end of the flume, and section
7.2 presents the experiments which were done with installations at the far end of the
flume which provided more reflection of incoming waves from the wave generator.
The spectra in subsection 7.1.5 and 7.2.2 were measured over the longest propaga-
tion length L with most measurement points M . These spectra will be commented
more extensively.

The (k, ω)-spectra from series 1-6 were measured with the synthetic array based
on the stationary array with four probes. For this relatively short array, with
L = 1.2 m, the information about the spectral energy density distribution in the
(k, ω)-spectra is rather limited by the low resolution along the wavenumber axis.
Therefore only the (k, ω)-spectrum from series 1 is presented in subsection 6.1.1.,
and the (k, ω)-spectra from series 2-6 are presented in Appendix E.1.1.

Since N = 52000 time samples were used for the spectral analysis, ω was distrib-
uted over a relatively long range of integer angular frequencies. As a consequence
it was quite CPU time consuming to produce contour plots of the entire (k, ω)-
domains. This problem was solved by reducing the number of contour levels. A
presentation of how contour levels were chosen and how the CPU time was reduced
is given in Appendix E.2.1.

Different methods for tapering in time and space were gradually developed in
paralel with the experimental work. The effect of tapering in time and space in
the (k, ω)-spectra is also presented in the Appendix. For the synthetic array based
on the stationary array with four probes the effect of space tapering in the (k, ω)-
spectra is presented in Appendix E.1.2 and for the synthetic array based on the
stationary array with sixteen probes the effect of time and space tapering in the
(k, ω)-spectra is presented in Appendix E.2.2 and Appendix E.2.3.

7.1 With absorbing beach

7.1.1 L = 1.2 m and M = 24

The (k, ω)-spectrum presented in this subsection was measured with the early stage
experimental arrangement presented in chapter 3.1 with the synthetic array based
on the stationary array with four probes. This array was the first developed syn-
thetic array with M = 24 measurement positions over a short propagation length of
L = 1.2 m, and with a spatial resolution of ∆x = 5 cm. Given the relatively short
array length, ∆k = 2π/L becomes relatively large and the information in the (k, ω)-
spectra from the array is rather limited by the low resolution along the wavenumber
axis. The (k, ω)-spectra measured from series 2-6 and the additional modified series
are therefore presented in Appendix E.1.1, and only the (k, ω)-spectrum measured
from series 1 is presented in this subsection.

Figure 43 shows the linear (k, ω)-spectrum, the directly measured dispersion re-
lation from series 1 on h = 0.35 m. The wave field was measured at D = 9.0 m
from the wave generator.

The wavenumber and angular frequency axes are discretized both for positive
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and negative values. The lower black curve is the linear dispersion relation, and the
upper black curve is the second order dispersion shell. The data-points ◦ are the
peak points (kp, ωp), and (2kp, 2ωp) and the dashed line is a reference line through
the peak points.
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Figure 43: Linear (k, ω)-spectrum. L = 1.2 m and M = 24.
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Figure 44: Logarithmic (k, ω)-spectrum. L = 1.2 m and M = 24.

In figure 43 the contours of the spectral energy density S(k, ω) are plotted on
a linear scale which gives rather limited information about the spectral energy
density distribution. We solved this problem by instead plotting the contours of
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log10 S(k, ω) which magnifies the relatively small scalar values of S(k, ω). The con-
tour lines are defined on a self composed logarithmic scale which is based on only
the scalar values around the maximum of log10 S(k, ω) to reduce the CPU-time sig-
nificantly. This procedure is explained in more detail and examplified in Appendix
E.2.1.

Figure 44 shows the contour plot of log10 S(k, ω). The low resolution along the
wavenumber axis results in the impression that the logarithm of the spectral energy
density log10 S(k, ω) has a relatively broad distribution. Although, we can see that
the spectral energy density is distributed along the linear dispersion relation, and
the second order dispersion shell. The spectral energy density for reflected waves
is also identified for positive angular frequencies ω ≥ 0 and negative wavenumbers
k ≤ 0. The reflection from the absorbing beach was more pronounced at h = 0.35
m, than at h = 0.60 m, because at h = 0.35 m the waves hits the vertical grid edge
which the beach is buildt upon.

The broad horizontal distributions out from the peak area is spectral leakage
caused by discontinuities in the transition between the end and the start of the spa-
tial data series. At this stage of the experimental work we had developed a quite
primitive method for tapering in space, and Appendix E.1.2 shows and presents the
effect of tapering in space in the (k, ω)-spectrum from series 6.

As mentioned earlier the (k, ω)-spectra are obtained from synthetic array meas-
urement techniques which are heavily relaying on that the wave fields which are
generated from the wave generator are repeatable. The relative errors between two
independent repetitions of the time series measured from the same position are
summarizes in table 10. The relative errors are small, with the exception of larger
errors in the experiment with series 2 . In this series measurement errors in the
raw data surface elevation were observed, and figure 45 shows a meaurement error
after 311 s of wave generation. The dropout in the first repetition (blue) extends
over the entire crest, but in the second repetition (red) the probe marginally man-
ages to measure the crest successfully. As a consequence of the measurement error
the interpolation method interpolates between the points under the crest. Similar
errors contributes to a rapid increasement in the overall repetition errors of series
2. The waves in series 2 were rather long and high and relatively many waves had
crests and troughs extending to the boundaries of the measurement window of the
probes −5 < z < 5. Since series 2 was not applied for later work we will not go into
further detail.

Wavefield time series Rel. error at P1 [%] P2[%] P3 [%] P4 [%]

Series 1 3.72 3.10 1.57 2.56
Series 2 10.23 12.35 12.60 10.88
Series 3 1.03 1.54 0.92 0.59
Series 4 1.41 1.40 1.37 1.47
Series 5 0.38 0.33 1.08 0.66
Series 6 0.67 0.57 0.74 0.56
Series 1 modified 2.24 2.50 2.31 2.44

Table 10: Repetition errors. L = 1.2 m and M = 24.
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Figure 45: Large interpolation error after 311 s of wave generation in series 2.

7.1.2 L = 4.8 m and M = 96

Figure 46: Absorbing beach at h = 0.60 m.

The (k, ω)-spectra presented in this
subsection were measured with the
later stage experimental arrangement
presented in chapter 3.3 with the syn-
thetic array based on the stationary
array with sixteen probes. This syn-
thetic array had M = 96 measurement
positions over a propagation length of
L = 4.8 m, and a spatial resolution
of ∆x = 5 cm. This gave a smaller
∆k, and a better resolution along the
wavenumber axis compared to the syn-
thetic array in subsection 7.1.1.

The (k, ω)-spectra in this subsection
were measured from series 1 on h = 0.60
m. The measurements of the wave field
were performed at three different loca-
tions along the wave flume to investig-
ate if the effect of reflected waves from the absorbing beach (figure 46) was depend-
ent on the measurement distance from the absorbing beach. The experiments were
performed at distances D = 3.0, 8.1, and 15.2 m from the wave generator. In the
experiment D = 15.2 m from the generator, the last surface elevation measurement
ηn,95 was done 1.30 m from the vertical edge of the absorbing beach.

Figure 47, 48 and 49 shows the directly measured dispersion relation at D =
3.0, 8.1, and 15.2 m respectively. Apperently we can see more clearly an indication
that the spectral energy density is distributed along the linear dispersion relation
curve and the second order dispersion shell. An interesting feature which now also
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appears in the (k, ω)-spectra is the second order difference harmonic below the spec-
tral peak. The spectral energy density from the third order bounded waves is also
possible identified around (3kp, 3ωp) over the second order dispersion shell curve.

The broad horizontal distributions out from the peak area is spectral leakage
caused by discontinuities in the transition between the end and the start of the
spatial data series. At this stage of the experimental work the space tapering func-
tion presented in chapter 5.6 was developed. Appendix E.2.3 shows the effect of the
space tapering function in the (k, ω)-spectrum from figure 47 for a range of different
Nuttall window end widths.

The (k, ω)-spectra in figure 47-49 showed that the appearance of reflected waves
was relatively weak and independent of whether the wave field was measured far
from the absorbing beach or close to the absorbing beach. On this background three
more experiments were performed with a steeper and harder beach constructed from
a wooden plate. The (k, ω)-spectra from these experiment are presented in section
7.2.1 and shows that the spectral energy density from reflected waves increases.

Figure 47: (k, ω)-spectrum. L = 4.8 m and M = 96. D = 3.0 m.
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Figure 48: (k, ω)-spectrum. L = 4.8 m and M = 96. D = 8.1 m.

Figure 49: (k, ω)-spectrum. L = 4.8 m and M = 96. D = 15.2 m.

Smaller intensities to the right and the left of the peak intensity with similar
shapes as the peak intensity appear especially in the (k, ω)-spectra in figure 48 and
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49. These are most likely caused by small errors in either the distance ∆x between
the probes, or the 5 cm displacement between each synthetic measurement. These
distances were set carefully, but since the Fourier transform is discrete, the transform
is relatively sensitive to small errors. It is possible that small or larger repetition
errors in the wave fields also appear as intensities in Fourier space. The numerical
model in chapter 8 will be applied as a tool to test ∆x errors.

Table 11 shows the values for the characteristic amplitude ac and the wave
steepness ǫ = ackp at the three locations D from the wave generator. ac and ǫ seem
to have the largest values at the surface elevation 3.0 m from the wave generator, and
lower values 8.1 m and 15.2 m from the generator. The relative size of higher order
spectra depends on the steepness of the wave field, Krogstad and Trulsen (2010),
but the relatively small differences in ǫ here do not seem to have any significant
effect on the spectral distributions along the dispersion shells.

h [m] D [m] ac [m] ǫ [-]
0.60 3.0 0.0211 0.0998
-”- 8.1 0.0200 0.0946
-”- 15.2 0.0185 0.0877

Table 11: ac and ǫ at D = 3.0, 8.1 and 15.2 m.

D [m] Rel. error at P1 [%] P2[%] P3 [%] P4 [%]

3.0 3.11 3.24 3.49 3.46
8.1 2.57 2.85 1.90 3.39
15.2 2.02 2.74 3.25 4.79

Table 12: Repetition errors. L = 4.8 m and M = 96. With absorbing beach.

Table 12 shows the relative errors between two independent time series measured
by the first four probes in the stationary array. The errors are on a acceptable level
with the exception of the relative error of 4.79% in P4 in the experiment D = 15.2
m from the wave generator.

7.1.3 L = 9.6 m and M = 192

At a later stage of the experimental work we started to focus on measuring the wave
field over longer propagation lengths to possibly capture alterations in the spectral
energy density distributions resulting from the dynamic nonlinear evolutions which
evolve over longer spatial propagation lengths in the wave field. We also now aimed
our focus on how the wave-induced current presented in chapter 6 could be detect-
able as a Doppler shift on the dispersion surface.

Figure 50 shows the (k, ω)-spectrum from a measurement with M = 192 meas-
urement positions over a propagation length of L = 9.6 m, and with a spatial
resolution of ∆x = 5 cm. This measurement procedure corresponds to linking the
two measurement procedures for the synthetic array with length L = 4.8 m. The
measurement was done from the middle of the tank at D = 8.1 m.

The wavenumber and angular frequency axes were made dimensionless, and
10.4% of the elements in the spatial data series were modified by the space tapering
function. The white curves shows the linear dispersion relation off-set by a small
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Doppler shift due to an estimated wave-induced current of u = 2 cm/s. The upper
black curve shows the third order dispersion shell.

Although the wave field is measured over a longer propagation length there is no
pronounced difference in the spectral distribution around the first order dispersion
shell. Intensities along the third order dispersion shell are identified.

Figure 50: (k, ω)-spectrum. L = 9.6 m and M = 192. u = 2 cm/s.

D [m] Rel. error at P1 [%] P2[%] P3 [%] P4 [%]

8.1 10.27 12.58 14.31 13.58

Table 13: Repetition errors. L = 9.6 m and M = 192.

Table 13 shows the relative errors between two independent series measured by the
first four probes in the stationary array. The relative errors are high. Interpolation
errors were observed in the surface elevation data and figure 51 shows the first 80
s which are used for the spectral estimate meaured by P1-P4 (upper to lower plot
respectively). Four large interpolation errors can be seen; P2 (at 100 s), P3 and
P4 (at 130 s) and P4 (at 70 s). Other errors were also observed later in the time
series. The interpolation errors are caused by measurement errors extending over
entire crests and troughs.
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Figure 51: Large interpolation errors. L = 9.6 m and M = 192.

The author could not find an explanation of why there was such a sudden in-
creasement in measurement errors in series 1 which had been measured with lower
relative errors earlier. Large dropouts appeared frequently of unknown reasons.
Since this array represents a middle stage in the development of the synthetic array
we will not go further into detail.

7.1.4 L = 19.2 m and M = 128

Figure 52 shows the (k, ω)-spectrum from the first experiment that covered most
of the wave field in the flume. The synthetic array covered a propagation length
of L = 19.2 m, with M = 128 measurement positions, and a spatial resolution of
∆x = 15 cm. 7.8% of the elements in the spatial data series were modified by the
space tapering function. The white curve shows the linear dispersion relation off-set
by a small Doppler shift due to an estimated wave-induced current of u = 2 cm/s.

In figure 52 the extension of the wavenumber axis is short compared to other
spectra. This is caused by that relatively few measurement points M are taken over
a long propagation length L.

Over the peak ◦ the spectral energy density is distributed over the first order
dispersion shell and follows the white wave-induced off-set quite closely. Compared
to L = 9.6 m in the previous subsection the spectral energy density seem to be
distributed more over the first order dispersion shell above the peak. This could be
caused by a weak Doppler shift, but the observation could also indicate that we to
a larger extent are able to detect the dynamic nonlinear evolution when the wave
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field is measured over longer propagation lengths. Uncertainties are connected to
dispersion of shorter waves in the presence of longer waves as explained by Phillips
(1981). Short propagating waves in presence of longer dominant propagating waves
were observed in the wave field generated with the absorbing beach. We will discuss
this problem more in detail in the conclusion in chapter 9.

Figure 52: (k, ω)-spectrum. L = 19.2 m and M = 128. u = 2 cm/s.

Table 14 shows the relative error between two independent time series measured
by the last four probes in the stationary array P13-P16. P13 was placed D = 5.10
m from the wave generator. The relative errors are quite low and lower than in the
experiment presented in the previous section.

D [m] Rel. error at P13 [%] P14[%] P15 [%] P16 [%]

5.10 2.11 3.29 2.57 2.51

Table 14: Repetition errors. L = 9.6 m and M = 192.

7.1.5 L = 19.2 m and M = 256

Figure 53 shows the directly measured dispersion relation using a synthetic array
which covered a length of L = 19.2 m, with M = 256 measurement positions, and a
spatial resolution of ∆x = 7.5 cm. 4% of the elements in the spatial data series were
modified by the space tapering function. The wavenumber and angular frequency
axes were made dimensionless. The white curves show the linear dispersion relation
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off-set by a small Doppler shift due to an estimated wave-induced current of u = 1
cm/s. This illustrates the effect of a weaker current.

The spectral distribution of the free waves close to the peak suggests the valid-
ity of the linear dispersion relation. Above the peak the spectral energy density is
distributed slightly over the linear dispersion relation. This could be caused by a
weak Doppler shift on the dispersion surface. In addition the above peak deviation
could indicate that dynamic nonlinear wave interactions are present in the wave
field. The effect is on occasion relatively weak.

The spectrum does not maintain a thin well-defined dispersion surface, but we
should be aware that relatively broad spectral distributions are caused by spectral
leakage. Broad distributions are also caused by the relatively low resolution along
the wavenumber axis.

Figure 53: (k, ω)-spectrum. L = 19.2 m and M = 256. u = 1 cm/s.

Intensities along the second and third order dispersion shells are identified.
Along the third order dispersion shell intensities are identified close to (3kp, 3ωp).
Intensities from the second order difference harmonic below peak is pronounced and
is distributed out from the origin and up to about (2kp, ωp).

The intensities which extends horizontally in bows and crosses the angular fre-
quency axis at ω = 1.6ωp, 2.4ωp and 2.9ωp have not been identified. During the
master thesis project we discussed that these intensities have a similar distribution
as the dispersion of the Klein-Gordon equation. This has not been confirmed and
will be discussed in the conclusion in chapter 9.

As in the previous subsections the smaller intensities to the left of the peak in-
tensity with similar shape as the peak intensity is most likely caused by small errors
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in either the distance ∆x between the probes, or the 5 cm displacement between
each synthetic measurement. The error will be tested in the numerical model in
chapter 8.

Table 15 shows the relative error between two independent time series measured
by the last four probes in the stationary array P13-P16. P13 was placed D = 5.10 m
from the wave generator. The relative errors are low and a few minor measurement
errors were observed in the surface elevation data.

D [m] Rel. error at P13 [%] P14[%] P15 [%] P16 [%]

5.10 3.46 3.07 5.11 2.79

Table 15: Repetition errors. L = 19.2 m and M = 256. Absorbing beach.
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7.2 With reflecting beach and end wall

7.2.1 L = 4.8 m and M = 96

Figure 54: Reflecting beach.

When the water depth was increased
to h = 0.60 m, the spectra in sub-
section 7.1.2 showed that the appear-
ance of reflected waves was less pro-
nounced than when the water depth
was h = 0.35 m. It was also observed
that the appearance of reflected waves
in the flume diminished when the wa-
ter level was increased to h = 0.60 m.
At h = 0.35 m the waves hit the ver-
tical grid edge which the beach is built
upon and this resulted in more reflec-
ted waves in the flume. At h = 0.60 m
the waves propagated onto the sloped
absorbing beach and were damped and
absorbed more efficiently by the con-
struction. On this background three
additional experiments were performed
with a steeper and harder beach constructed from a wooden plate (figure 54). The
(k, ω)-spectra shows that the appearance of reflected waves then increases.

Figure 55: (k, ω)-spectrum. Reflecting beach. L = 4.8 m and M = 96. D = 3.0 m.

Figure 55-57 shows the directly measured dispersion relation at D = 3.0, 8.1,
and 15.2 m, with the reflecting beach at the far end of the wave flume. The spectral
energy density for reflected waves increases in the second quadrant for positive
angular frequencies ω ≥ 0, and negative wavenumbers k < 0.

The (k, ω)-spectra shows that the spectral energy density from reflected waves
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extends further up on the first order dispersion shell from the measurement at D =
15.2 m. This indicates that the presence of shorter reflected waves with higher
frequency and wavenumber components are more pronounced near the absorbing
beach.

Figure 56: (k, ω)-spectrum. Reflecting beach. L = 4.8 m and M = 96. D = 8.1 m.

Figure 57: (k, ω)-spectrum. Reflecting beach. L = 4.8 m and M = 96. D = 15.2 m.

Table 16 shows the values for ǫ and ac from the measured wave fields at D =
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3.0, 8.1, and 15.2 m. ac and ǫ increases when the wave reflection, from the reflecting
beach, increases. Similar to the experiments in subsection 7.1.2 ac and ǫ have the
largest values at D = 3.0 m and lower values at D = 8.1 and 15.2 m.

D [m] ac [m] ǫ [-]
3.0 0.0231 0.1095
8.1 0.0228 0.1082
15.2 0.0212 0.1005

Table 16: ac and ǫ with reflecting beach.

D [m] Rel. error at P1 [%] P2[%] P3 [%] P4 [%]

3.0 19.86 18.63 22.19 20.22
8.1 1.93 2.71 1.46 1.91
15.2 3.41 2.28 2.22 2.85

Table 17: Repetition errors. L = 4.8 m and M = 96. Reflecting beach.
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Figure 58: Repetition errors in experiment at D = 3.0 m with reflecting beach.

Table 17 shows the relative errors between two independent time series meas-
ured by the first four probes in the stationary array. The large errors in the
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experiment at D = 3.0 m from the wave generator were caused by that in this
experiment the reflecting beach was taken out of the wave flume between each
run of series 1 to obtain more damping and less waiting time between each run.
Figure 58 shows how these repetition errors appear in the time series and how
sensitive the wave field is to slightly different positioning of the reflecting beach.
In the experiments at D = 8.1 and 15.2 m the reflecting beach was not removed
between each wave run and in these experiments the repetition errors were lower.

Figure 59: Reflecting wall.

This experience established the im-
portance of applying a reflection con-
struction which could be kept in the
same position for each wave run.
Later we applied instead a vertical
plastic wall which could be moun-
ted on vertical rails on the wave
flume inside side-walls (figure 59).
The reflecting wall gives more reflec-
tion and is kept in the same pos-
ition at each wave run. The re-
flecting wall can be removed eas-
ily between each wave run so that
it takes less time before the wave
field is damped and ready for a next
run.

Figure 60: (k, ω)-spectrum. Reflecting wall. L = 4.8 m and M = 96. D = 8.1 m.

Figure 60 shows the directly measured dispersion relation using the reflecting
wall at the far end of the wave flume. The wave field was measured in the middle of
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the tank at D = 8.1 m. The spectral energy density from reflected waves (ω ≥ 0 and
k < 0) increases in comparison with figure 55-57. There is now nearly a balance, in
the spectral energy density distribution, between reflected and non-reflected waves.

Table 18 and 19 shows the values for ǫ and ac from the experiment with the
reflecting beach and the reflecting wall. There is a significant increasement in ac
and ǫ when the reflecting beach is substituted by the reflecting wall.

D [m] ac [m] ǫ [-]
8.1 0.0228 0.1082

Table 18: ac and ǫ with reflecting beach.

D [m] ac [m] ǫ [-]
8.1 0.0271 0.1286

Table 19: ac and ǫ with reflecting wall.

Table 20 shows the relative errors between two independent time series measured
by the first four probes in the stationary array. The errors were presented in more
detail in chapter 5.4.2. The relative errors are caused by measurement errors from
the probes which partly are a consequence of the increased steepness in the wave
fields. Otherwise the repeatability is also quite good when the wave field is generated
with the reflecting wall.

D [m] Rel. error at P1 [%] P2[%] P3 [%] P4 [%]

8.1 5.29 7.10 5.68 8.23

Table 20: Repetition errors. L = 4.8 m and M = 96. Reflecting wall.

7.2.2 L = 19.2 m and M = 256

Figure 61 shows the directly measured dispersion relation using the reflecting wall
at the far end of the wave flume. The wave field was measured over a propagation
length of L = 19.2 m, from M = 256 measurement positions, and with a spatial res-
olution of ∆x = 7.5 cm. 4% of the elements in the spatial data series were modified
by the space tapering function. The white curve is the linear dispersion relation
off-set by a small Doppler shift due to an estimated wave-induced current of u = 1
cm/s.

The spectral distribution for reflected free waves k < 0 suggests the validity of
the linear dispersion relation. The spectral energy density is distributed slightly
under the first order dispersion shell and closer to the wave-induced off-set. This
could indicate a weak Doppler shift on the dispersion surface.

For non-reflected free waves k > 0 the spectral energy density is distributed
along the first order dispersion shell and close to the peak, the spectral distribution
suggests the validity of the linear dispersion relation. Above the peak the spectral
energy density is distributed slightly over the first order dispersion shell.
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The spectrum does not maintain a thin well-defined dispersion surface, but we
should be aware that relatively broad spectral distributions are caused by spectral
leakage. Broad distributions are also caused by the relatively low resolution along
the wavenumber axis. The effect of the resolution could be investigated in more
detail.

Compared to the similar array measurement with the absorbing beach in sub-
section 7.1.5 figure 53, the spectral energy density along the second and third order
dispersion shells are intensified. Even for the reflected waves we can see a weak
intensity along the upper third order dispersion shell at (−3kp, 3ωp). The intens-
ification could be a consequence of a increasment in ǫ, from ǫ ≈ 0.10 in the wave
field generated with the absorbing beach to ǫ ≈ 0.13 in the wave field generated
with the reflecting wall.

Figure 61: (k, ω)-spectrum. Reflecting wall. L = 19.2 m and M = 256. u = 1 cm/s.

The intensity from the second order difference harmonic below peak is not as pro-
nounced as for the wave field which was generated with the absorbing beach. The
spectral energy density is distributed from the origin and up to about (kp,

1
2ωp).

This indicates that the bounded second order difference waves appears at lower
angular frequency and wavenumber components when the absorbing beach is sub-
stituted by the reflecting wall. The wave field generated with the reflecting wall
generally consisted of longer and steeper waves.

Compared to the wave field generated with the absorbing beach the intensity
from freely propagating waves above the spectral peak seemed to be less pronounced.
This could be caused by that shorter propagating waves were suppressed and erased
by the longer and steeper dominant breaking waves. With the reflecting wall oper-
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ational, dominant wave breaking occured frequently.
Similar to figure 53 intensities extend horizontally in bows and crosses the an-

gular frequency axis at ω = 1.6ωp and 2.4ωp. For reflected waves enhanced more
pointwise intensities also appear at (kp, 3ωp) and (−kp, 3ωp). These have not been
identified.

The smaller intensities beside the peak intensities with similar shapes as the peak
intensities are most likely caused by small errors in either the distance ∆x between
the probes, or the 5 cm displacement between each synthetic measurement. The
errors will be tested in the numerical model in chapter 8.

Table 21 shows the relative errors between two independent time series measured
by the last four probes in the stationary array P13-P16. P13 was placed D = 5.10
m from the wave generator. The relative repetition errors are high. Some large
measurement errors were observed in the surface elevation data.

D [m] Rel. error at P1 [%] P2[%] P3 [%] P4 [%]

5.10 10.73 13.20 12.42 10.40

Table 21: Repetition errors. L = 19.2 m and M = 256. Reflecting wall.
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8 Numerical model

A simple first order numerical model of the unidirectional wave field in the laborat-
ory wave flume was developed. The numerical model was applied to investigate the
unwanted artifacts in the (k, ω)-spectra in chapter 7, the suspicion of small errors
in ∆x in the synthetic array measurements.

8.1 First order numerical model

A random linear superposition of s non-interacting regular synthetic unidirectional
waves are generated from the summation,

η(xm, tn) =
∑

s

As cos(ksxm − ωstn + θs) (57)

where θs are random uniformly distributed phases between 0 and 2π. A new se-
quence of random numbers for the random phases is generated for each s.

The wavenumbers are uniformly distributed,

ks =
2πs

Ls
(58)

for s = 0, 1, 2, ..., S−1. Ls is the propagation length of the synthetic wave field. The
length of the array is set to La = 19.2 m in accordance with the longest synthetic
array applied in the experiments. The propagation length of the synthetic wave field
is approximately equal to the distance between the wave generator and the edge
of the absorbing beach. The propagation length is set to be a irrational number
Ls =

√
470 = 21.6794... so no rational relations occur between Ls and La.

The angular frequencies,

ωs =
√

gks tanh(ksh) (59)

satisfies the linear dispersion relation and are non-uniformly distributed. To satisfy
the non-uniformity ∆ωs is obtained by taking the difference between each ωs value.
The water depth is set to h = 0.60 m, in accordance with the latest experiments.

The amplitudes,

As =
√

2Ss∆ωs (60)

where Ss is the spectral distribution from a JONSWAP spectrum with peak angular
frequency ωp = 6.80 rads−1 in accordance with series 1 from the experiments.

The wavefield is sampled in time and space such that xm = m∆x for m =
0,1,2,...,M -1, and tn = n∆t for n = 0,1,2,...,N -1. The number of measurement
points is set to M = 256 in accordance with the synthetic array which covered a
propagation length of L = 19.2 m. N = 64000 time samples are taken from the
synthetic wave field. After the samples have been collected N = 12000 time samples
are removed from the start of the time series and the last N = 52000 time samples
are applied for the spectral estimate. The time and space series have been tapered
correspondingly to the referred experiment.

For the spectral analysis the angular frequencies and the wavenumbers have been
discretized in the same manner as for the experimental analysis in section 4.1 with

ωj =
2πj

T
(61)

for j = −N/2,−(N − 1)/2, ...,−2,−1, 0 , 1, 2, ..., (N − 1)/2, N/2 and

kg =
2πg

La
(62)
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for g = −M/2,−(M − 1)/2, ...,−2,−1, 0 , 1, 2, ..., (M − 1)/2,M/2. La = 19.2 m
is the length of the array. The spectral energy density is obtained from equation
(40) in section 4.1,

S(kg, ωj) =
∣

∣η̂g,j
∣

∣

2
= η̂g,j η̂

∗

g,j . (63)

The contour levels of log10 (S) have been chosen in the same manner as in the
experimental analysis.

8.2 Errors in ∆x

Figure 62 shows the spectra for the first order synthetic wave field as presented in the
previous section. No errors between theM = 256 equispaced measurement positions
have been introduced. The bandwidth of the JONSWAP spectrum is relativly
broader compared to the bandwidth of the measured spectrum in the laboratory. In
fact it was rather difficult to diminish the spectral energy density above the spectral
peak by applying the JONSWAP parameters to obtain a similar distribution as for
the experimental wave fields. The relativly narrow bandwiths from the experiments
are naturally caused by the relativly weak energy from waves with high frequency
and wavenumber components in the laboratory wave flume. The spectra shows
that the first order synthetic wave field satisfies the linear dispersion relation. The
resolution in the spectra is not very satisfactory but it should be possible to see the
introduced errors in ∆x.

Figure 62: No errors in ∆x introduced.

Figure 63 shows the spectrum in figure 62 when a 3 mm error in ∆x is introduced
between the 1st and the 2nd probe in the stationary array of sixteen probes. The
spectrum shows similar features as in the spectrum from the experiments with
the absorbing beach (figure 53 in subsection 7.1.5) but the spectral distributions
connected to the errors is distributed more closely than in the experimental spectra.
Caused by the relative broader bandwidth in the numerical simulations the spectral
distribution extends up to higher wavenumber and angular frequency components.
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Figure 63: 3 mm error in ∆x between the 1st and 2nd probe.

Figure 64 shows the spectrum when a 3 mm error in ∆x is introduced between
the 4th and the 5th probe in the stationary array of sixteen probes. Compared to
figure 63 the distributions are grouped in three and three.

Figure 64: 3 mm error in ∆x between the 4th and 5th probe.

Figure 65 shows the spectrum when a 3 mm error in ∆x is introduced between
the 8th and the 9th probe in the stationary array of sixteen probes. Compared to
the spectra in figure 63 and figure 64 the distance between the distributions are
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longer but the spectral distributions connected to the errors are still distributed
more closely than in the experimental spectra.

Figure 65: 3 mm error in ∆x between the 8th and 9th probe.

Figure 66 shows the spectrum when a 3 mm error in ∆x is introduced between
the 12th and the 13th probe in the stationary array of sixteen probes. The spectra
shows similar features as the spectrum in figure 64 were the error was introduced
between the 4th and the 5th probe.

Figure 66: 3 mm error in ∆x between the 12th and 13th probe.
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Figure 67 shows the spectra when a 3 mm error in ∆x is introduced between
the last three synthetic measurement sub-procedures of L = 4.8 m. These errors
introduces a glimmer on the dispersion surface.

Figure 67: 3 mm error in ∆x between the measurement sub-procedures.

When systematic errors in ∆x between the probes in the stationary setup are
introduced the spectra shows similar features in the spectral distributions as in
the laboratory spectra. Although the spectral distributions caused by the errors
are distributed closer in the numerical spectra. The numerical model is conclusive
with regard to the shape of the spectral distributions caused by the errors but non-
conclusive with regard to the distance between the distributions. 3 mm errors were
introduced between all probes in the stationary array of sixteen probes and all errors
showed spectral distributions in the spectra which were distributed closer than in
the experimental spectra. Nevertheless, the shape of the spectral distributions may
give an indication that errors between the probes generates the unwanted artifacts
in the laboratory spectra. When a 3 mm error in ∆x is introduced between the last
three synthetic measurement sub-procedures of L = 4.8 m, these errors introduces
a glimmer on the dispersion surface.
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9 Conclusion

9.1 Conclusions and discussions

With reference to figure 53 and 61 in subsections 7.1.5 and 7.2.2 our laboratory
experiments so far suggest the validity of the linear dispersion relation when the
propagation distance for the free waves is rather short.

When the wave field is measured with the absorbing beach operational the spec-
tral components of the free waves are distributed close to the linear dispersion
relation. Above the peak the spectral energy density is distributed slightly over
the linear dispersion relation. This could be caused by a weak Doppler shift, but
the statistical analysis of the current is non-conclusive about the magnitude of the
wave-induced current velocity. The spectral distributions from short waves above
the peak, located slightly over the linear dispersion relation, are more prominent
when the wave field is generated with the absorbing beach than with the reflecting
wall. This is caused by that the presence of shorter free waves is more pronounced
when the absorbing beach is operational. When the reflecting wall is operational
long and steep waves are more dominant and wave breaking occur more frequently.
As a consequence many short waves are distorted, suppressed and erased.

Based on observations of the wave field generated with the absorbing beach
similar features as explained in reference to Phillips (1981) in indent five in the in-
troduction appear in our experiments. The wave field generated with the absorbing
beach is more short of breaking and this could lead to dispersion of shorter waves in
the presence of longer waves. The deviation above peak could therefore be caused
by that the dispersive short waves continue to propagate at a phase speed which
depends on their own intrinsic frequency and on their location with respect to the
dominant wave. When the slope of the dominating wave in the absorbing beach
wave field increases, so does also its harmonic content which also propagates at the
dominant wave speed. The effect of that the data is weakly filtered is probably
less affective on the short propagating waves with reference to the figures in section
5.2 and the effect of capillary blockage at very high frequencies under strong wind
forcing is less actual for our experiments since the waves are not wind generated.

When the wave field is measured with the reflecting wall operational the spectral
components of both the reflected and the non-reflected free waves are distributed
close to the linear dispersion relation. For non-reflected waves the spectral energy
density is distributed slightly over the linear dispersion relation above the peak and
for reflected waves the spectral energy density is distributed slightly under the lin-
ear dispersion relation above the peak. This could be caused by a weak Doppler
shift, but supported by the statistical analysis of the current, the magnitude of the
wave-induced current velocity is probably larger when the wave field is generated
with the reflecting wall compared to when the wave field is generated with the ab-
sorbing beach. The indicated Doppler shift with the reflecting wall operational can
therefore not be used as a general reference for a Doppler shift for both cases.

Static nonlinearities have been identified up to third order. When the wave
field is generated with the absorbing beach the second order difference is prominent
below the spectral peak in the spectrum. With the absorbing beach operational
the second order difference is distributed up to higher wavenumber and frequency
components compared to when the reflecting wall is operational. This is probably
caused by that steeper and longer waves are more dominant in the wave field gen-
erated with the reflecting wall operational and so the harmonic content from the
second order difference is distributed at lower wavenumber and frequency compon-
ents.

Spectral distributions from higher harmonic second and third order bounded
waves are more prominent when the absorbing beach is substituted by the reflect-
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ing wall. This is most likely caused by the increased steepness of the wave field
generated with the reflecting wall. As the steepness of the wave field increases, so
does its harmonic content. With the reflecting wall operational the spectral distri-
bution from reflected third order higher harmonic bounded waves are identified.

The experiments are non-conclusive with regard to the dynamic nonlinearity.
The deviation from the linear dispersion relation in the numerical simulations by
Krogstad and Trulsen (2010) suggesting that components above the spectral peak
have larger phase and group velocities than anticipated by linear theory has not
found support in the experimental results. This is most likely caused by that the
simultanous coverage in space applied in the experiments is to short to allow signi-
ficant dynamic nonlinear evolution. The longest laboratory measurements covered
a propagation length of 14 peak wavelengths, while for the numerical simulations
a significantly longer propagation length covering 140 peak wavelengths was ap-
plied. Nevertheless, when the laboratory wave fields are measured over the longest
propagation lengths the spectra indicates that the wave energy is distributed more
over the linear dispersion relation above peak than when the wave fields are meas-
ured over short propagation lengths. This could strengthen a assumption that
dynamic nonlinear wave interactions appear in the wave fields, but uncertainty is
also connected to whether the above peak deviation is a consequence of a weak
Doppler shift on the dispersion surface. As explained by Phillips (1981) deviations
from the linear dispersion relation above peak could also be caused by that shorter
waves are less dispersive in the presence of the more dominant breaking waves.

It has also been suggested from the experiments that the spectrum does not
maintain a thin well-defined dispersion surface. Rather than being distributed along
thin theoretical curves the wave energy has a more continous distribution in (k, ω)-
space. Some care needs to be taken into account for this interpretation, regarding
the relatively low resolution along the wavenumber axis in the laboratory spectra
and spectral leakage.

Some unidentified intensities appear in the laboratory spectra. The intensit-
ies which extends horizontally in bows and crosses the angular frequency axis at
ω = 1.6ωp and 2.4ωp in figure 53 and 61 have not been identified. We discussed that
these intensities have a similar distribution as the dispersion of the Klein-Gordon
equation. This has not been investigated. The most reasonable explanation for
these intensities can be found by a evaluation of the wavenumber and frequency
components that these intensities carry in space and time. For instance, if we look
at the lowest bow, the one that crosses the angular frequency axis at ω = 1.6ωp
we see that the highest intensities appears for rather low wavenumbers meaning
that this energy phenomena have rather long wavelengths. In addition the angular
frequency components that this phenomena carry in time is about 50% higher than
the peak angular frequency. One suggestion could be that this phenomena is long
standing waves with different nodes which sets up in the tank during and after each
wave run. When a experiment is performed some waiting between each wave run is
recommended such that the long standing waves are properly damped before a next
wave run. A waiting time for about ten minutes was recommended and used in the
experiments. Nevertheless, the standing waves could be present during the wave
generation and live for a longer time than expected after the wave generator ceases
to generate waves into the flume. The intensities distributed at ω = 2.4ωp and
2.9ωp in the spectra from the absorbing beach wave field could be intensities from
standing waves with other nodes. Offcourse this is only a speculation for the cause
of these intensities and the results have not been confirmed. One way to verify this
phenomena could in fact be to measure the surface elevation systematically after
that the wave fields have been generated and possible supplement the laboratory
investigation with a mathematical model for the eigenfrequencies of the standing
waves in the system, Kundu and Cohen (2008).
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The smaller intensities beside the peak intensities with similar shapes as the peak
intensities are most likely caused by small errors in the distance ∆x between the
probes in the stationary array. When introducing errors in ∆x between the probes
in the numerical model, similar spectral distributions appear as in the laboratory
spectra, but the intensities are distributed closer than in the laboratory spectra.
The shape of the spectral distributions may give an indication that small errors in
∆x between the probes generates the unwanted intensities in the laboratory spec-
tra, but the numerical model is non-conlusive with regard to the distance between
the distributions. When a 3 mm error in ∆x is introduced between the last three
synthetic measurement sub-procedures of L = 4.8 m, the errors introduces a glim-
mer on the dispersion surface, which supports that these errors most likely are not
causing the unwanted intensities in the laboratory spectra.

9.2 Suggestions for further work

To possible verify dynamic nonlinear evolution a wave field should be measured over
a longer propagation distance than that applied in the wave flume in the Hydro-
dynamic laboratory at Blindern. If a wave flume with longer simultaneous coverage
in space could be applied, one requirement is that it is equiped with rails along the
propagation direction of the wave field such that measurements can be taken with
synthetic arrays and the wave field should be repeatable. For the measurements to
be comparable to the numerical simulations by Krogstad and Trulsen (2010) one re-
quirement is also that the generated waves are long-crested and unidirectional. With
the peak wavelength λp = 1.33 m applied from series 1 in the recent experiments,
the wave field should at least cover a propagation length of L = 140λp = 186.2 m to
compare with the simultaneous coverage in space from the numerical simulations.
With sixteen probes, limited by the number of sixteen input chanels on the data
aquisition card, in a stationary array, the consequence would be rather lengthy and
time consuming measurement procedures, but probably possible to achieve.

Another interesting experiment could be to generate directional waves in a larger
wave pool, equiped with multiple wave generators, and design an array which could
measure directionality by using for instance an array transfer function such as from
Barbers’ method explained in Donelan et al. (1985). These types of experiments
could enlighten problems connected to 3D FFT analysis of X-band radar imagery
of short-crested, directional seas. It is known to the author that Marine© in Delft,
in the Netherlands, offers these types of advanced laboratory facilities.

In the Hydrodynamic laboratory one alternative is to reduce the scale of the
unidirectional short-crested wave fields. This can be done by reducing the peak
wavelength and peak wave period. The simultaneous coverage in space in the wave
flume is then utilized more optimally. If the peak wavenumber is reduced to λp =
0.14 m the propagation length L = 19.2 m covers about 140 peak wavelengths. If
such short peak wavelength wave fields are possible to generate with the wave gener-
ator care must be taken to distinguish between the gravity and capillary regime. A
investigation of the capillary wave dispersion relation could in itself be interesting,
but is less applicable to real time ocean wave prediction. Care must be taken for
the sampling in space, but with the synthetic array we have the freedom to chose
the most convenient resolution in space for a given peak wave length.

Together with a reduction in the peak wavelength and wave period, the amplitde
of the waves should be increased to increase the effect of nonlinearity in the wave
field. The bandwidth could also be made more narrow. A Gaussian bell-shaped
spectrum is probably easier to adjust with regard to the bandwith and the wave en-
ergy distribution, and opens up for more precise modification of the wave field, than
the JONSWAP spectrum which in any case is more broad banded as a consequence
of the additional tail above the spectral peak. New input files for the wave generator
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could be created with Gaussian bell-shaped, either frequency or wavenumber, wave
energy distributions. A study of kurtosis or other statistical properties could also
be applied to create laboratory wave fields with possible extreme events.

To determine the wave-induced current is a complicated flow problem. We have
used the ADCP to measure time series of the fluid particle velocities in a range of
positions between the bottom and the trough. Since the ADCP is not possible to
calibrate, the same measurement coordinate should be used at all positions. This
was not done in the experiments and some uncertainty is connected to the meas-
urements at the upper three positions near the trough.

A more extended statistical analysis could be used to analyse the ADCP data.
Fourier analysis could also be used to extract a possible peak fluid speed. The
problem of measuring the time series is that generally it is difficult to extract the
slowly varying movement of the current from the rapidly varying movements of the
fluid particles. Even near the bottom of the flume the rapidly varying movements
of fluid particles are present.

Analytical models could be made to estimate the wave-induced current. One
exercise which was suggested by the main supervisor was, to study a regular wave
on top of a stationary horizontal current which is inhomogenous in the vertical co-
ordinate, and find out how the dispersion relation for the regular wave depends on
the vertical current profile.

One possibility could also be to create a numerical model of the current-induced
velocity by using the above analytical description with a combination of conserva-
tion and momentum equations, finite element/volume methods and the radiation
stress. CFD could also be used, but is probably, depending on the resolution, lim-
ited to shorter time periods.

The peak wave period Tp = 0.92 s from series 1 in the recent experiments. By
using the number of peak wave periods used for the spectral estimate in the nu-
merical simulations in Krogstad and Trulsen (2010) the time period used for the
laboratory spectral estimate should be T = 170Tp = 156.4 s. This is significantly
less than the actual time period of 260 s which was used for the laboratory spectral
estimate. The time period used for the laboratory spectral estimate could therefore
have been reduced more significantly and this would also have reduced the CPU
time for computing the (k, ω)-spectra. A time reduction, and use of the latest part
of the measured time series, could also have been more convenient for the analysis
of the wave-induced current which probably needs time to setup and is weaker in
the begining of the measured time series. Thus, some uncertainty of the acieved
estimate for the wave-induced current could have been removed by removing more
of the start of the time series.
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11 Appendix

A Theoretical framework

A.1 Linear wave theory

A.1.1 Obtaining c1, c2, f(z) and φ

The velocity potential in equation (12) is obtained by assuming that x and z are separable
variables such that,

φ(x, z, t) = f(z) sin(kx − ωt). (64)

Substitution of the separable form of the velocity potential in equation (64) into the
Laplace equation (5) gives a second order ordinary differential equation with two unkonwn
constants c1, and c2 which are determined from the kinematic boundary conditions (8)
and (6),

∂2φ

∂x2
+

∂2φ

∂z2
= 0 =

∂2

∂x2

h

f(z) sin(kx − ωt)
i

+
∂2

∂z2

h

f(z) sin(kx − ωt)
i

= −f(z)k2 sin(kx − ωt) + f ′′(z) sin(kx − ωt)

= f ′′(z) − k2f(z). (65)

(65) is a second order homogenous ordinary differential equation with a general solution
that can be written on the form,

f(z) = c1 cosh kz + c2 sinh kz. (66)

The separable form of the velocity potential (64) then becomes,

φ(x, z) =
h

c1 cosh kz + c2 sinh kz
i

sin(kx − ωt) (67)

where c1, and c2 are constants that can be determined from the kinematic boundary
conditions. The kinematic condition at the bottom z = −h (8) gives,

∂φ

∂z
= 0 =

h

kc1 sinh kz + kc2 cosh kz
i

sin(kx − ωt)

= kc1 sinh−kh + kc2 cosh−kh

= −kc1 sinh kh + kc2 cosh kh

m

c1 = c2
cosh kh

sinh kh
, (68)

and the kinematic condition at the linearized free surface z = 0 (6) gives,

∂η

∂t
=

∂φ

∂z

⇓

ωa sin(kx − ωt) =
h

kc1 sinh 0 + kc2 cosh 0
i

sin(kx − ωt)

m

c2 =
aω

k
, (69)

which gives,

c1 =
aω

k

cosh kh

sinh kh
. (70)
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Substitution of (70), and (69) into (66) gives,

f(z) =
aω

k

cosh kh

sinh kh
cosh kz +

aω

k
sinh kz

=
aω

k

 

cosh kh cosh kz + sinh kz sinh kh

sinh kh

!

=
aω

k

cosh k(z + h)

sinh kh
(71)

which substituted into (64) gives the velocity potential (12),

φ(x, z, t) =
aω

k

cosh k(z + h)

sinh kh
sin(kx − ωt). (72)

A.1.2 Obtaining the linear dispersion relation equation

The linear dispersion relation is obtained by substituting the velocity potential (12) and
the regular wave solution (11) into the linearized dynamic boundary condition (7),

∂φ

∂t
+ gη = 0

⇓

−
aω2

k

cosh k(z + h)

sinh kh
cos(kx − ωt) + ga cos(kx − ωt) = 0

⇓

aω2

k

cosh k(z + h)

sinh kh
= ga

⇓z=0

ω2 cosh kh

sinh kh
= gk

⇓

ω2 = gk tanh kh. (73)

B Experimental arrangements

B.1 Early stage experimental arrangement

B.1.1 Modification of original input files

The original input files are time series in electrical Voltage Ve(t) for the wave generator
based on JONSWAP spectral energy distributions. The input files consists of 214 = 16384
elements. In Wavelab the scan rate, which is the number of elements given from a input file
to the wave generator each second should be set to 50 Hz in accordance with the previous
project Grue et al. (2003). This gives the length of the time series T = 16384/50Hz =
327.68 s, which for simplicity has been approximated to 330 s in chapter 3. Hypothetically
a increased scan rate should give,

• steeper waves which as a consequence would increase the nonlinearity in the wave
fields,

• shorter wave lengths and wave periods which would give a relative longer simultanous
coverage in space for the wave field such that the array would be utilized more
optimally,

• shorter time series and less time consuming experiments.

When the scan rate was increased to over 50 Hz the wave generator refused to generate
the input files. Different methods were then tried out next for modifying the original input
files. These metods can be summarized in the following:

• Increasing the amplitude of the original input files with 0.1-1.8%.

80



• Try to make the original input files shorter by deleting every 2nd, 3rd, 4th, ... , 90th
element.

• Point two in a combination with interpolation.

The wave generator generated the increasement of 1.7% of the original input file for series
1, but refused to generate the 1.8% increasement. All of the modified input files described
in point two and three above were refused by the wave generator. The amplitude ac and
steepness ǫ of the wave field generated with the 1.7% increasement are presented in chapter
5. Later an analysis of the maximum value interval max{dVe(t)}, maximum velocity
max{dVe(t)/dt} and maximum acceleration max{d2Ve(t)/dt2} for each of the original input
files were carried out to get an answer for what was the maximum allowed acceleration for
the wave generator. The results are summarized in table 22 for all the six original input
files and the 1.7% and 1.8% increasement of the input file for series 1.

Input file for; max{dVe(t)} [V] max{ dVe(t)
dt } [V/s] max{ d

2Ve(t)
dt2 } [V/s2]

Series 1 0.1512 7.5619 132.5680
Series 2 0.2026 10.1322 126.0018
Series 3 0.1526 7.6397 110.4315
Series 4 0.1107 5.5326 86.4518
Series 5 0.1245 6.2245 109.0980
Series 6 0.1277 6.3837 89.4255
Series 1, 1.7% increase 0.1538 7.6905 134.8225
Series 1, 1.8% increase 0.1540 7.6980 134.9525

Table 22: Input file velocities and accelerations.

The analysis showed from the 1.7% and 1.8% increasement that the maximum allowed
acceleration for the wave generator probable was between 134.8000 and 134.9000 V/s2

and that the input file for series 1 was the one of the original input files that provided the
largest acceleration.

B.1.2 Calibration

The automatic programming procedure of the probes is easy to use, and from the only
button on the sensor it is possible to program a 10 cm window centered from a chosen
position within the sensing range. There are lights on the probes that indicate if the sensor
is outside the minimum or maximum sensing range.

The calibration of the probes are done to test if the probes respond accurately on
changes of position due to an object. This can simply be done by mounting a probe on
a rod with a ruler above for instance a calm water surface, program the probe for a 10
cm window, raise the probe with +5 cm to the maximum limit of the window, and then
stepwise, with for instance 1 cm for each step, lower the probe down to the minimum limit
at −5 cm of the window, and measure the calm water surface at each step for, for instance
1s. The same procedure can then be done back again, from the minimum to the maximum
limit of the window. Note that we have to make sure that the minimum and maximum
limits of the window is within the sensing range of the probe.

Figure 68 shows the calibration curve for the calibration procedure mentioned above
for one of the probes from the laboratory. The distance observed on the ruler was in
accordance with the data from the probe, and the probe responded accuratly on changes
of position due to the calm water surface. Suprisingly, some of the available probes in the
laboratory had opposite response curves than other probes, for the same calibration pro-
cedure as explained above, and we do not know the reason why this was the case. When
these probes were used to measure the surface elevation the resulting time series became
”up-side-down”. This problem was solved by multiplying the time series with (−1) in Lab-
View such that the time series were turned the right way. The aberration was reported to

81



the company. Some of the available new probes provided data with relativly large signal
to noise ratios compared to older probes. The noise, shown in section 5.2 Filter, could be
problematic if capillary waves should be measured. This aberration was also reported to
the company.
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Figure 68: Calibration curve.

C Method of analysis

C.1 Discrete Fourier transform

C.1.1 Obtaining the DFT η̂

To derive an expression for η̂j we utilize the fundamental mathematical property that a
system of complex exponential functions is an orthogonal system of functions, and take
the l2 inner product,

〈fn, gn〉 =

N−1
X

n=0

fngn
∗ (74)

of (30). ∗ denotes the complex conjugate.

D

ηn, e−iωltn

E

=
D

N−1
X

j=0

η̂je
−iωjtn , e−iωltn

E

⇓

N−1
X

n=0

ηneiωltn =

N−1
X

n=0

N−1
X

j=0

η̂je
−iωjtneiωltn

=

N−1
X

j=0

η̂j

N−1
X

n=0

ei(ωl−ωj)tn

=
N−1
X

j=0

η̂jNδl,j

= Nη̂l, (75)
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where,

δl,j =



1 if l = j
0 if l 6= j

is the Kronecker delta function. (75) gives the DFT η̂,

η̂j =
1

N

N−1
X

j=0

ηneiωjtn . (76)

D Surface elevation

D.1 Frequency spectra from series 1-6 on h = 0.35 m

At an early stage of the experimental work all the six different random wave time series and
a wave time series from a modified input file were measured at a water depth of h = 0.35
m. The modified input file is a 1.7% increasement of the original input file for series 1.
The wave series generated from the modified input file has a similar angular frequency
spectrum as series 1, and therefore only the angular frequency spectrum for series 1 is
presented in this section.

The wave series were measured by the first developed synthetic array with M = 24
measurement positions over a short propagation length of L = 1.2 m, and with a spa-
tial resolution of ∆x = 5 cm. The intention of measuring all seven wave fields was to
investigate which wave field that could provide the largest steepness ǫ, based on the char-
acteristic amplitude ac =

p

2〈η2〉 and the peak wavenumber kp of the wave field. Given
the peak angular frequencies ωp from the angular frequency spectra in this section the peak
wavenumbers kp were estimated from the linear dispersion relation (13) by a numerical
iteration.

Figure 69 and 70 shows the two-sided linear and logarithmic frequency spectra (plot-
ted for only ω ≥ 0) from series 1 measured from all the M = 24 measurement positions in
the synthetic array. The peak angular frequency is ωp = 6.80 rads−1.
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Figure 69: Linear frequency spectrum
from series 1.
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Figure 70: Logarithmic frequency spec-
trum from series 1.

Figure 71 and 72 shows the linear and logarithmic frequency spectra from series 2.
The peak angular frequency is ωp = 5.60 rads−1.
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Figure 71: Linear frequency spectrum
from series 2.
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Figure 72: Logarithmic frequency spec-
trum from series 2.

Figure 73 and 74 shows the linear and logarithmic frequency spectra from series 3.
The peak angular frequency is ωp = 5.55 rads−1.
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Figure 73: Linear frequency spectrum
from series 3.
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Figure 74: Logarithmic frequency spec-
trum from series 3.

Figure 75 and 76 shows the linear and logarithmic frequency spectra from series 4.
The peak angular frequency is ωp = 5.50 rads−1.
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Figure 75: Linear frequency spectrum
from series 4.

0 2 4 6 8 10 12 14 16 18

−10
0.3

−10
0.4

−10
0.5

−10
0.6

−10
0.7

−10
0.8

Angular frequency, ω [rad/s]

S
p
ec

tr
a
l
d
en

si
ty

,
lo

g
(Ŝ
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Figure 76: Logarithmic frequency spec-
trum from series 4.

Figure 77 and 78 shows the linear and logarithmic frequency spectra from series 5.
The peak angular frequency is ωp = 6.70 rads−1.
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Figure 77: Linear frequency spectrum
from series 5.
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Figure 78: Logarithmic frequency spec-
trum from series 5.

Figure 79 and 80 shows the linear and logarithmic frequency spectra from series 6.
The peak angular frequency is ωp = 6.40 rads−1.
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Figure 79: Linear frequency spectrum
from series 6.
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Figure 80: Logarithmic frequency spec-
trum from series 6.
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D.2 Bandwidths from series 1-6 on h = 0.35 m

Figure 81 - 86 shows the linear angular frequency spectra estimated from series 1-6 on
h = 0.35 m with the absorbing beach operational at the far end of the wave flume. All
the frequency spectra are estimated from measurements at D = 9.00 m from the wave
generator. The horizontal line Smax/2 is plotted in all figures. The figures were used to
estimate the normalized bandwidth for series 1-6 on h = 0.35 m.
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Figure 81: Series 1.
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Figure 82: Series 2.
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Figure 83: Series 3.

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

x 10
−3

Angular frequency, ω [rad/s]

S
p

e
ct

ra
l d

e
n

si
ty

, 
S

 [
P

/H
z]

Linear frequency spectrum. Input file: PadleUt4. H=0.35m

Figure 84: Series 4.
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Figure 85: Series 5.
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Figure 86: Series 6.
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E The measured dispersion relations

E.1 L = 1.2 m and M = 24

E.1.1 (k, ω)-spectra measured from series 2-6

This appendix shows the logarithmic (k, ω)-spectra measured from series 2-6 and the modi-
fication of series 1.
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Figure 87: Logarithmic (k, ω)-spectra measured from series 2.
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Figure 88: Logarithmic (k, ω)-spectra measured from series 3.
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Figure 89: Logarithmic (k, ω)-spectra measured from series 4.
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Figure 90: Logarithmic (k, ω)-spectra measured from series 5.
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Figure 91: Logarithmic (k, ω)-spectra measured from series 6.

Wavenumber k [rad/m]

A
ng

ul
ar

 fr
eq

ue
nc

y 
ω

 [r
ad

/s
]

Contours of the logarithm of the spectral density S. Experiment date 24th January 2012

 

 

−60 −40 −20 0 20 40
−30

−20

−10

0

10

20

30

−8

−7

−6

−5

−4

−3

−2

Figure 92: Logarithmic (k, ω)-spectra measured from the modified series 1.
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E.1.2 The effect of space tapering in the (k, ω)-spectra

Different methods have been proposed for tapering in space. Since our space series only
consists of 24 measurement points, conventional high resolution tapering methods may not
be applicable since too few measurement points are represented for a gradual declination
towards the end points.

Method 1

One space measurement with zeros is added after the other 24 measurements in space
such that the last and the first measurements are closer to the declination position. After
this the array is represented by 25 measurement points. The new length of the array is
L = 1.20 + 0.05 m = 1.25 m. This also decreases ∆k slightly, and gives a slightly better
resolution along the wavenumber axis. The effect in the (k, ω)-spectrum is shown in figure
93.
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Figure 93: Method 1.

Method 2

In addition to adding a zero at the end of each space series, the first and the last surface
elevation measurements are multiplied with 1/2 in order to hopefully gain a more gradual
declination towards zero. The 25 measurement positions are then represented by,

[
1

2
η0,n η1,n η2,n ..... η21,n η22,n

1

2
η23,n 0]

The effect in the (k, ω)-spectrum is shown in figure 94.
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The effect in the (k, ω)-spectrum is shown in figure 95.
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Figure 95: Method 3.
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Method 4

Additional proposed method:
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The effect in the (k, ω)-spectrum is shown in figure 96.
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Figure 96: Method 4.

Wavenumber, k [rad/m]

A
ng

ul
ar

 fr
eq

ue
nc

y,
 ω

 [r
ad

/s
]

Contours of the logarithm of the spectral density. Input file: PadleUt6.

 

 

−40 −20 0 20 40 60
−30

−20

−10

0

10

20

30

−9

−8

−7

−6

−5

−4

−3

Figure 97: Method 5.
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Method 5

Additional proposed method:

[
1

10
η0,n

2

10
η1,n

3

10
η2,n

4

10
η3,n

5

10
η4,n

6

10
η5,n

7

10
η6,n

8

10
η7,n

9

10
η8,n η9,n

..... η14,n
9

10
η13,n

8

10
η16,n

7

10
η17,n

6

10
η18,n

5

10
η19,n

4

10
η20,n

3

10
η21,n

2

10
η22,n

1

10
η23,n 0]

The effect in the (k, ω)-spectrum is shown in figure 97.

Method 2, 3, 4 and 5 are similar to multiplying the space series with a tapering function
based on a triangle window. Method 3, 4 and 5 might exaggerate the modification of the
original data.

E.2 L = 4.8 m and M = 96

E.2.1 The entire (k, ω)-domain

Figure 98 shows the entire (k, ω)-domain for the contour plot in figure 47 in subsection
7.1.2, with 5 more contour levels than in figure 47. ◦ is the peak point (kp, ωp).

Figure 98: The whole (k, ω)-domain.

In figure 47 in subsection 7.1.2, the spectral energy density is plotted on 50 contour
levels. Figure 98 shows the entire discretizised (k, ω)- domain with k ≈ [−kM/2, kM/2]
radm−1, and ω ≈ [−ωN/2, ωN/2] rads−1, were kM/2 ≈ 61 radm−1 is the Nyquist wavenum-
ber and ωN/2 ≈ 628 rads−1 is the Nyquist angular frequency. Figure 99 is similar to
figure 98 with ω = [−200, 200] rads−1. As mentioned in subsection 7.1.1 the contour
levels are defined on a self composed logarithmic scale which is based on only the scalar
values around the maximum of log10 S(k, ω) to reduce the CPU-time significantly. The
CPU-time for producing each of the figures 98 and 99 is 2 hours and 52 minutes on a
stationary computer at the University. The defined contour levels for the scalar values of
log10 S(k, ω) ≈ [−2,−11] are plotted in figure 98 and 99. However if all the scalar values
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for log10 S(k, ω) ≈ [−2,−21] would have been plotted, the CPU-time would increase signi-
ficantly to the duration of days, and the domain around the peak would be dominated by
red and orange colours. By reducing the amount of contour levels the peak intensities are
easier to distinguish from the rest of the field, and as mentioned the CPU-time is reduced
significantly.

Figure 99: Parts of the whole (k, ω)-domain.

Figure 98 and 99 also shows that there is a periodicity in the spectral energy dens-
ity distribution of the experimental data, and that local maxima of the spectral energy
densities are distributed along horizontal lines in the (k, ω)-domain.
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E.2.2 The effect of time tapering in the (k, ω)-spectra

Figure 100 and 101 shows the effect of tapering in space for the (k, ω)-spectrum in figure
47 subsection 7.1.2 when N = 100 elements at each end of the time series have been
modified by the time tapering function as presented in section 5.5. The number of contour
levels have been reduced as explained in the previous section. Figure 100 shows that the
spectral leakage is most pronounced on the outer boundary of the plotted contour levels
in the (k, ω)-spectra. The time tapering does not seem to affect the spectral distribution
around the peak ◦ significantly.

Figure 100: Without time tapering

Figure 101: N = 200 elements time tapered
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Figure 102: N = 26000 elements time tapered

Figure 102 shows the spectra when N = 26000 elements at each end of the time series
have been modified by the time tapering function. This corresponds to multiplying the
entire time series with the bell-shaped Nuttall window. The spectral distribution around
the peak is affected and the horizontal distributions on the outer boundary are diminished.

E.2.3 The effect of space tapering in the (k, ω)-spectra

The (k, ω)-spectra in this section shows the effect of tapering in space for the (k, ω)-
spectrum in figure 47 in subsection 7.1.2 by adding a zero to the end of the M = 96
element space series and by applying different end widths of the Nuttall window in the
tapering function presented in section 5.6. Figure 103 shows the (k, ω)-spectrum (figure
47) without space tapering. In figure 104 a zero is added to the end of the space series.

Figure 103: Without space tapering. Figure 104: Zero added to the end of the
space series.

In figure 105 a zero is added to the end of the space series. In addition: the first and
the last element in the space series are multiplied by 0.5292 which instead of 0.5000 is a
value which is generated from the Nuttall window. In figure 106 a zero is added to the
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end of the space series. In addition: the first, second, second last, and the last element
in the space series are multiplied by 0.1105, 0.7983, 0.7983, and 0.1105 respectivly. The
values are generated from the Nuttall window.

Figure 105: End width: one element. Figure 106: End width: two elements.

In figure 107 a zero is added to the end of the space series. In addition: the first, second,
third, third last, second last, and the last element in the space series are multiplied by
values generated from the Nuttall window. In figure 108 four elements at each end of the
space series are modified by the tapering function based on the Nuttal window.

Figure 107: End width: three elements. Figure 108: End width: four elements.

In figure 109 five elements at each end of the space series are modified by the tapering
function based on the Nuttal window. In figure 110 six elements at each end of the space
series are modified.
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Figure 109: End width: five elements. Figure 110: End width: six elements.

In figure 111 seven elements at each end of the space series are modified. In figure 112,
eight elements at each end of the space series are modified.

Figure 111: End width: seven elements. Figure 112: End width: eight elements.

In figure 113 nine elements at each end of the space series are modified. In figure 114
twenty elements at each end of the space series are modified.
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Figure 113: End width: nine elements. Figure 114: End width: twenty elements.

In figure 115 thirty elements at each end of the space series are modified.

Figure 115: End width: thirty elements.

The space tapering in figure 115 might exaggerate the modification of the original
data. Our strategi for the space tapering was to affect the original spectral energy density
distribution as little as possible, and we chose to apply the tapering function corresponding
to figure 109 where only five elements at each end of the space series have been modified.

E.3 L = 19.2 m and M = 256

E.3.1 The effect of a strong filter

Figure 116 and 117 shows the effect when a strong Savitzky-Golay filter is used to filter
the surface elevation data applied for the spectral estimates shown in figure 53 and 61
in subsections 7.1.5 and 7.2.2. For the surface elevation the strong filter reduces the
amplitudes of the waves but does not seem to affect the angular frequency distribution and
the wave phases. Thus, the strong filter in practice reduces the magnitude of the spectral
energy density in the spectra but does not affect the spectral energy density distribution.
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With this example we intend to demostrate that the relativly weak filter applied for the
experimental data probably does not alter the spectral energy density distributions in the
spectra significantly.

Figure 116: L = 19.2 m and M = 256. Strong filter applied.

Figure 117: Reflecting wall. L = 19.2 m and M = 256. Strong filter applied.
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