
670 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

To Migrate or Not to Migrate: An Analysis
of Operator Migration in Distributed

Stream Processing
Espen Volnes , Thomas Plagemann , and Vera Goebel

Abstract—One of the most important issues in distributed
data stream processing systems is using operator migration to
handle highly variable workloads cost-efficiently and adapt to
the needs at any given time on demand. Operator migration
is a complex process involving changes in the state and stream
management of a running query, typically without any data
loss, and with as little disruption to the execution as possible.
This tutorial aims to introduce operator migration, explain the
core elements of operator migration, and provide the reader
with a good understanding of the design alternatives used in
existing solutions. We developed a conceptual model to explain
the fundamentals of operator migration and introduce a unified
terminology, leading to a taxonomy of existing solutions. The
conceptual model separates mechanisms, i.e., how to migrate, and
policy, i.e., when to migrate. This separation is further applied
to structure the description of existing solutions, offering the
reader an algorithmic perspective on various design alternatives.
To enhance our understanding of the impact of various design
alternatives on migration mechanisms, we also conducted an
empirical study that provides quantitative insights. The operator
downtime for the naïve migration approach is almost 20 times
longer than when applying an incremental checkpoint-based
approach.

Index Terms—Middleware, adaptive systems, big data.

I. INTRODUCTION

D ISTRIBUTED stream processing (DSP) has been
researched for more than 20 years, and is becoming

ubiquitous in application domains where real-time decision-
making is essential [1], like the Internet of Things (IoT),
fraud, and anomaly detection, smart cities [2], and autonomic
systems. DSP is a useful technology whenever there is too
much data to store all of it, and when the data is only valuable
shortly after it is generated. Deep learning can be applied to
facilitate analytics on streaming data in IoT [3]. Industry 4.0
is a term that means the fourth generation of the industrial
revolution and applies stream processing to do data collection,
analysis, storing and querying [4].

Manuscript received 5 September 2022; revised 13 March 2023, 26 June
2023, and 20 September 2023; accepted 30 October 2023. Date of publication
7 November 2023; date of current version 27 February 2024. This work was
supported by the Parrot Project (Research Council of Norway, IKTPluss)
under Grant 311197. (Corresponding author: Espen Volnes.)

Espen Volnes is with the Department of Informatics, The University of
Oslo, 0373 Oslo, Norway (e-mail: espenvol@ifi.uio.no).

Thomas Plagemann and Vera Goebel are with the Department of
Informatics, The University of Oslo, 0373 Oslo, Norway (e-mail: plageman@
ifi.uio.no; goebel@ifi.uio.no).

Digital Object Identifier 10.1109/COMST.2023.3330953

DSP is currently used by companies that need to process and
analyze billions of events every day. For example, the popular
stream processing engine Apache Flink [5] is used by Alibaba,
AWS, Comcast, Ebay, Huawei, Lyft, Uber, Zalando, and many
more companies, to perform real-time processing [6]. Another
indicator of the wide use and importance of stream processing
is that most cloud vendors offer support for deploying man-
aged stream processing pipelines [7], and a sign of its future
relevance is the estimated economic impact of the IoT industry,
estimated to be between $3.9 trillion and $11.1 trillion a year
by 2025, around 11% of the global economy [8].

Stream processing engines (SPE) come in several flavors,
are deployed in different environments (i.e., cloud, fog, edge,
in-network), and perform data stream management, real-time
stream analytics, event stream processing, and complex event
processing (CEP). The common denominator in all these
systems is that data arrive continuously (generally as tuples)
from multiple sources, and need to be processed as soon as
they arrive (in memory) to enable immediate decision-making.
Thus, the response time must be short, even in case of large
loads.

SPEs take queries as input and compile them into operator
graphs. In the simple example in Figure 1 the query at the
top of the figure is compiled to an operator graph with two
data producing operators (Auction and Bid stream), a join
operator, and a data consuming operator (Section II-C builds
on this simple example and gives further details). Operator
graphs are directed acyclic graphs (DAGs), as illustrated in
Figure 1, that represent the logical execution of a query, which
includes the operators (i.e., state management of subqueries)
and the dependencies between them (i.e., stream management)
represented as vertices. If these operators are mapped to
several physical hosts and form an overlay network, a DSP
system is established. Incoming data tuples to an operator
are processed, e.g., by filtering and joining as in Figure 1, or
transforming, aggregating, or running a user-defined function.

A key requirement for DSP is the ability to handle system
dynamics, like changes in workload, resource availability,
and mobility. Operator migration is the key mechanism for
handling such changes. The four primary goals that motivate
different operator migration solutions are: (1) to re-balance
uneven distribution of computational tasks across nodes (load
balancing), (2) adapting the amount of allocated resources to
increasing or decreasing workload (elasticity), (3) maintaining
system operability even in the presence of hardware failure

c© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1388-981X
https://orcid.org/0000-0002-2598-9228
https://orcid.org/0000-0002-2850-066X

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 671

Fig. 1. Overview of operator placement.

and other faults (fault tolerance), and (4) maintaining or
optimizing the Quality of Service (QoS). Operator migration
entails (1) state management to move the state of the operator
from an old host to a new host, and (2) stream management to
change data stream routing in the overlay network. Decisions
on when to migrate the data and where to migrate them to are
key aspects of operator migration. The potential approaches to
state management, stream management, and decision-making
as well as their combinations result in a large design space for
operator migration algorithms.

This tutorial aims to give the reader a good understanding
of (1) the need for operator migration, (2) the core elements
of operator migration, (3) the design of existing solutions,
and (4) how design decisions can impact the performance
of operator migration solutions. To this end, we develop a
conceptual model that captures the fundamental components of
operator migration, i.e., the components on which all solutions
are based and their relationships. This model provides a
unified terminology and is used to establish a taxonomy of
existing solutions. Based on this, we describe the main existing
operator migration solutions.

Operator migration introduces some form of cost, like freeze
time during migration or increased resource consumption to
move the state of the operator. Keeping these costs low is
a core requirement in the design of operator migration algo-
rithms. Furthermore, during decision-making, it is important
to balance the costs of migration against its benefits. There
is a general awareness of this trade-off, but surprisingly, few
studies have explicitly described how costs and benefits are

considered in the migration algorithm and decision-making.
Therefore, we place particular emphasis on costs and benefits
in our analysis of work in this area. We structure the descrip-
tion of existing solutions into two parts:

• Mechanisms: How does the operator migration work, and
which mechanisms are used?

• Policies: When should operator migration be performed,
and how is the migration decision executed?

In addition to this functional view of operator migration, we
perform an empirical study to gain and mediate quantitative
insights into different operator migration and decision models.
The aim is to illustrate the quantitative effect of different
design decisions. This empirical quantification demonstrates
the advantage of a comprehensive migration model beyond the
contribution of the literature. We use Apache Flink [5] and
Siddhi [9], two operator migration algorithms, and apply part
of the NEXMark benchmark [10] as workload to measure the
run-time performance.

A. Tutorial Novelty and Contributions

To the best of our knowledge, this tutorial represents the
first comprehensive effort to explain operator migration mech-
anisms and related decision-making in data stream processing
systems. There exists a short description of a tutorial given in
2014 [11] by Heinze et al. However, due to space limitations
the published version of the tutorial cannot be comprehensive
and it can not capture developments after 2014. Therefore, this
tutorial is unique in its scope and contribution to the current
state of knowledge on the topic.

There is a range of surveys that cover operator migra-
tion [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22]
to a certain extent. However, all these surveys have a broader
scope than this tutorial and do therefore not explore operator
migration in corresponding depth and detail. For example,
none of these surveys presents a type of framework for
operator migration like a taxonomy or a conceptual model,
and none of the surveys provides a unified terminology
for operator migration. This tutorial distinguishes itself by
presenting different types of operator migration algorithms
in detail and the relationship between the cost and benefit
of migration, the decision to migrate, and the migration
algorithm. Furthermore, the surveys do not give the reader an
insight into the quantitative impact of certain design decisions
for operator migration.

Table I characterizes related surveys with respect to their
focus area as well as the questions of whether:

1) any kind of framework, like a taxonomy or a conceptual
model for operator migration is provided;

2) details of the decision-making process are given, such
as the goal of migration, the performance of migration,
and the cost of migration;

3) the survey methodology;
4) the deployment environment is considered in the discus-

sion of existing solutions;
5) the paper uses some experimental investigations to

demonstrate and quantify the effect of different design
decisions.

672 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

TABLE I
SUMMARY OF RELATED SURVEYS AND COMPARISON WITH THIS TUTORIAL (T)

Lakshmanan et al. [12] focused on operator placement
and reconfigurations for Internet-scale data stream systems.
They distinguished between reconfiguration solutions based
on where the change is made: either in the network, data,
or flow graph. Moreover, different triggers for migrations
were studied, such as thresholds, constraint violations, and
periodic re-evaluations. However, they did not investigate
the different varieties of operator migration in any detail.
Hummer et al. [13] focused on elasticity in the cloud, which
can be achieved through event reordering and prioritization,
load shedding, deferred processing, and operator migration.
They also investigated the state in different types of windows
and how these have to be migrated in case of a scaling
operation. Moreover, the cost of migration is also problema-
tized, i.e., that performing a scaling operation costs time
that might adversely affect the performance of the system.
Similarly, Röger and Mayer [17] investigated elasticity and
parallelization in stream processing. Operator migration is
in this context one method to achieve elasticity, but details
about operator migration mechanisms and migration decision-
making are not given.

Hirzel et al. [14] cataloged different types of stream pro-
cessing optimizations, including operator graph optimizations,
operator placement, load balancing, state sharing, batching,
load shedding, and several more. Operator migration is rele-
vant for load balancing and operator placement, but the paper’s
aim is too broad to describe migration in the detail targeted in
this tutorial. Microbenchmarks with InfoSphere Streams are
used to demonstrate the profitability of the optimization, but
operator migration is not experimentally investigated.

To et al. [16] studied state management in stream processing
systems, with a focus on big data cloud-based systems. They
investigated existing ways of representing state in the system,
optimizing performance, and provide insights into various
state management techniques. Operator migration, elasticity
and load balancing are three of the 18 concepts of state
management that are presented.

Similarly, de Assunção et al. [15] explored migration in
relation to stream processing and edge computing. They
provided informative summaries of multiple generations of
DSP systems and analyzed existing work on elasticity to
adapt resource allocation to handle the workload of stream
processing services. Operator migration is one of many means
for elasticity and the inner workings of operator migration are
not analyzed and described in detail.

Liu and Buyya [19] presented a taxonomy of resource
management and scheduling in DSP. Operator migration and
state management are not explored in the paper, as it is
assumed that the mechanisms have been studied and are
provided by the state-of-the-art systems. On the other hand,
the decision-making process is investigated in depth.

Qin et al. [18] defined a taxonomy for different live
reconfigurations in SPEs. This includes 17 types of adap-
tations, including operator migration, load balancing, and
scaling. However, this tutorial investigates these three issues as
fundamentally being similar types of adaptations. Furthermore,
the survey [18] is of pure enumerative nature and does
not aim to explain how operator migration works. Similarly,
Cardellini et al. [21] presented a survey on run-time adap-
tations. They studied the methodological and architectural
approaches for adaptation control and differentiate 14 adap-
tation mechanisms. Their presentation of adaptation goals
includes a popularity analysis of metrics used for adaptation.
In Section V of this tutorial, the metrics used by papers is
discussed in depth. Bergui et al. [20] surveyed geo-distributed
frameworks, some of which are described in this tutorial.
Moreover, they discussed several challenges pertaining to geo-
distributed data analytics, where operator migration plays only
a minor role in some of the solutions.

Vogel et al. [22] presented a systematic literature survey
of self-adaptation mechanisms of parallel stream processing.
Operator migration is not explored in this paper, but a
conceptual framework is proposed that includes adaptation
goals and decision-making. The scope is much broader than

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 673

this tutorial, and can therefore not go into the same depth in
the related topics.

The main contributions of this tutorial are as follows:
• We propose a conceptual model of operator migration that

provides a unified terminology and leads to a taxonomy
of operator migration. Moreover, this model facilitates the
development of new operator migration solutions.

• We describe the main works on operator migration
and analyze not only current stream management and
state management solutions (i.e., mechanisms), but
also emphasize a cost-benefit analysis of the migration
decision (i.e., policies).

• We perform an experimental study involving two migra-
tion algorithms on Apache Flink and Siddhi to gain
insight into the quantitative aspects of operator migration.

B. Literature Search Methodology

The conceptual model of operator migration has been
created in an iterative manner using the existing works in the
literature. The focus has been to select the works that describe
their migration mechanism in detail, or how the migration
decisions are made.

We have searched for existing literature in the most popular
search engines, e.g., Google Scholar and Web of Science.
The searches have included DSP and many keywords that
relate to operator migration, elasticity, load balancing and
fault tolerance. We have included works in the tutorial that
have a substantial contribution to migration mechanisms or
migration decision-making. This search is not straightforward,
since sometimes, operator migration might be applied in a way
where it is not the main contribution. Moreover, while some
works categorize operator migration as a specific subset of big
data adaptation techniques [18], our tutorial takes a broader
perspective. It presents operator migration not as a specific
adaptation, but as a crucial mechanism that enables other
key features of big data adaptation, including load balancing,
elasticity, QoS and fault tolerance.

Many works exist on migration of services in Multi-access
Edge Computing (MEC) [23], [24], [25], [26], [27], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39].
One of the core features of MEC is the ability to offload heavy
tasks to a host with more resources or better conditions for
completing the task [40]. The entities to migrate may be virtual
machines (VM) [24], containers [30], [37] or Virtual Network
Functions [27]. The methods proposed in these papers may
also be applicable to operator migration when it comes to
deciding when and where to migrate, which is discussed in
Section V. However, the migration mechanisms that have been
developed specifically for DSP and described in Section IV,
are different from the ones used when migrating services, since
operators in DSP are more fine-grained. The migration entity is
not an entire application, but rather an internal state. Whereas
the entire service must be at the new host until the service can
be restarted in the case of MEC, certain optimizations can be
made in DSP, depending on what type of stateful operator is
migrated.

Table II lists the studies considered in this work that form
the foundation of the conceptual model. It classifies them
according to the environment of their deployment and the
goal of migration, which are important factors for the migra-
tion decision and placement. The most common deployment
environments for DSP are cloud, fog, and edge networks.
Cloud has been used to classify data center applications
that might handle very high throughputs, and can scale the
systems both horizontally and vertically to handle variable
traffic loads. The pay-as-you-go business model makes the
hardware provisioning easier [41]. The concepts of fog and
edge are relatively new terms that seem similar, but have
some significant differences. Edge computing often focuses on
offloading heavy tasks from local resource-constrained devices
to either a close base station or a data center [42]. With
edge computing, heavy tasks, like deep learning computation
and videogames, can be executed using edge devices such as
smartphones and laptops [43]. Fog is an extension of the cloud
in which the computing tasks of an application are distributed
on multiple devices, including end devices, edge resources,
and the cloud itself [44], [45]. As such, clients may send most
information to a server close to them instead of a centralized
data center to reduce energy consumption, congestion on the
Internet, and response times for clients.

Table III lists the goals of migration and the overlap
between studies in the area in terms of percentage. For
instance, 40% of the studied papers on elasticity also consider
load balancing. This is a common combination, because load
balancing can be used after performing a scaling operation
to redistribute the load. Few fault tolerance-based solutions
describe migration mechanisms, but it is natural that fault
tolerance overlaps with load balancing or elasticity as they are
often cloud-based solutions, and steps to restore the number
of states of a node are similar to those of a scale-in operation.
Approaches that use QoS constraints on operators to determine
when to migrate, often also use load balancing. This is because
a clear sign that workload rebalancing is necessary is when
the QoS guarantees of an operator have been violated.

C. Tutorial Structure

Figure 2 sketches the structure of this tutorial, i.e., the
sections and some of their content, and identifies the three core
parts of the tutorial. Section II describes some basic concepts
of distributed data stream processing. The first core part
introduces in Section III a conceptual framework for operator
migration. The two main concerns of operator migration,
i.e., to move the operator state from one host to another host
and to decide whether to migrate, structure the conceptual
model as well as the other two core parts of the tutorial.
Sections IV and V form the second part of the tutorial. The
aim of this part is to explain to the reader how the concepts are
applied in existing research works to design operator migration
algorithms (Section IV) and to perform migration decisions
(Section V). The third part, i.e., Section VI, follows a “hands-
on” approach and aims to give the reader quantitative insights
gained through empirical investigations. On the one hand,
decision models for operator migrations are developed and

674 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

TABLE II
OVERVIEW OF STUDIES ON THE CATEGORIES OF OPERATOR MIGRATION

TABLE III
GOALS OF MIGRATION AND THE OVERLAP IN STUDIES IN THE AREA

Fig. 2. Paper structure.

analyzed through a use-case study, and on the other hand, two
different operator migration algorithms are implemented, and
their performance is analyzed through experimentation.

To ensure that readers from various backgrounds have a
clear and unified understanding of the key terms used in this
tutorial, we provide a glossary of critical terms in Table IV.
These terms are integral to the discussion and understanding
of migration algorithms, state management, and other aspects
covered in this paper. The glossary covers terminology that is
prevalent in the context of DSP systems, offering definitions
aimed at beginners in the field. Readers are encouraged to
familiarize themselves with these terms for a comprehensive
understanding of the subsequent sections.

In summary, the tutorial first introduces a conceptual model,
presents and discusses afterwards design choices of existing

TABLE IV
GLOSSARY OF TERMS

works, and demonstrates in the last part the impact of partic-
ular design choices through empirical studies. The tutorial is
completed through some reflections and discussion of future
directions in Section VII and the conclusions in Section VIII.

II. DISTRIBUTED DATA STREAM PROCESSING

A. Data Stream Processing

Data stream processing deals with continuous processing of
data tuples. The system model applied in this tutorial is based
on [51].

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 675

A data stream is an unbounded sequence of tuples
that are continuously generated over time. It is denoted
as S = t1, t2, t3, . . . , where ti represents the ith
tuple in the stream. For example, a data stream that
represents stock market prices could be denoted as
S = t1, t2, t3, . . . , where ti = (symbol, AAPL),
(price, 150. 23), (time, 2022-02-14 10: 30: 00), representing
the stock symbol, price, and timestamp of the ith price update
in the stream.

A tuple is an ordered list of attribute-value pairs that
represents a single unit of data. It is denoted as a set of key-
value pairs, where the keys represent the attribute names and
the values represent the corresponding attribute values. For
example, a tuple that represents a person’s information could
be denoted as (name, John), (age, 30), (gender, male). Instead
of including the attribute names in the tuples, a data stream
expects the incoming tuples to follow a schema, and thus, the
attributes are inferred.

A query is a function that processes a data stream and
returns a result based on some criteria. It is denoted as Q(S),
where S is the input data stream and Q is the function that
defines the query. For example, a query that computes the
average of a stream of numbers could be denoted as Q(S) =
(1/n) ∗ ∑

ni = 1xi , where n is the number of elements in
the stream, xi is the ith element in the stream, and

∑
is the

summation operator.
Nodes in an operator network can be static or mobile, and

have one or more of the following roles:
• Data producer: Examples of this include sensors that

convert analog signals into data tuples, often with a fixed
sampling rate, and software monitors that might create
data tuples at a dynamic rate. Crucially, the operator
network must be able to process all tuples produced by
these sources for further processing.

• Data consumer: These are nodes that request a service,
and typically have some QoS requirement, such as less
than a given tuple latency.

• Operator host: These nodes execute at least one oper-
ator and contribute to event forwarding in the operator
network, i.e., map the input events (from upstream nodes)
of the operators they execute to output events, and for-
ward them to downstream nodes in the operator network.

Data stream processing queries may be stateful or stateless.
The focus of this paper is on the stateful queries. For instance,
when joining two data streams, one tuple arrives before the
other, and is placed within a data window, where it will remain
until it expires and is deleted. When aggregating state, such
as counting words, we are typically interested in creating
an aggregate per group/key. In concurrent systems, each key
produces output separate from other keys, and as such, these
aggregates can be produced by different threads/processes.
Therefore, it is common to parallelize such queries, and
execute some keys on one host and other keys on another host,
in a cluster.

Numerous data stream processing systems exist, including
but not limited to Storm [119], Flink [5], Esper [120], and
Siddhi [9]. For a more comprehensive list, please refer to the
survey by Isah et al. [121]. In Section VI, we run real-world

experiments with Siddhi and Flink. As these systems are
difficult to execute, there have been efforts to simplify the
interface for running such systems. Apache Beam [122] is
a system that provides a unified interface to existing stream
processing systems, where each supported system needs a
runner that represents the integration between Beam and a
given system. Expose [123] is a stream processing evaluation
framework that provides an easy interface for running dis-
tributed experiments with any distributed stream processing
system that has a wrapper, that implements an API that
represents the core functionality of the system. There is also
an interest in simulating these systems, and efforts have been
made in DCEP-Sim [124] and ECSNeT++ [125].

When it comes to simulation of fog and edge com-
puting that model more generic services, with mobility
and service migration, there has been a range of
simulators, including, CloudSim [126], iFogSim [127],
iFogSim2 [128], EdgeCloudSim [129], FogNetSim++ [130],
IoTSim-Edge [131], MobFogSim [132], YAFS [133],
PureEdgeSim [134], IoTNetSim [135], SatEdgeSim [136], and
IoTSim-Osmosis [137]. These simulators, however, do not
focus on data stream processing, and are often more focused
on the interactions between edge, fog, and cloud nodes, and
using generic services, instead of specific operators, which
are necessary in data stream processing.

B. Initial placement

A DSP can be considered to be a set of collaborating
SPEs that form an overlay network to process queries over
data streams. Consider Figure 1 as an example of such an
application. SPEs run on network nodes that provide the
computational and networking resources for the DSP overlay.
The objective of the initial operator placement is to dis-
tribute the processing of a query over network nodes such
that the goals of the system can be met as adequately as
possible [138]. The first step is to transform a query into
an operator graph. An operator graph can be modeled as
a DAG in which the operators derived from the query are
represented as vertices. The placement of these operators in
a network, i.e., finding appropriate network nodes to host the
operators, is typically driven by an objective function. Such an
objective function typically includes (contradicting) criteria of
optimization, like low latency of event delivery, low resource
consumption (e.g., bandwidth and energy), reliability, and fault
tolerance. Typically, a placement function is used to calculate
a placement score based on the criteria of optimization. To find
the optimal placement is usually an NP-hard problem [138],
and heuristics are often used to find close to optimal solutions.
Both centralized and decentralized versions of operator place-
ment can be used to establish an operator network, and are
generally implemented as an overlay for the DSP.

DSP is performed in a dynamic context involving variable
workload, resource availability, and possibly mobility. As
such, initial placement might, after some time, become sub-
optimal and the operator network should be adapted by
migrating one or several operators to a new host.

676 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

TABLE V
OUTPUT WITH STATEFUL MIGRATION

TABLE VI
INPUT AFTER MIGRATION

C. Naïve Migration Example

To illustrate the challenges of state migration, we go through
the simple example introduced in Figure 1. Consider a data
stream processing application that involves three entities: the
data producers, the operator hosts, and the data consumers.
The data producers may include sensor nodes that produce
data. This data is sent to the operator hosts to process the
tuples, i.e., to transform, filter, aggregate, and join the data.
Data with a specific schema is called a data stream. Different
data streams have different attributes in them.

In this simple naïve migration example, a node gets
overloaded and has to migrate stateful operators to another
node. We use a join query that joins all Bid events with
their corresponding Auction event. This query is based
on the NEXMark benchmark [10], and is also applied in
Section VI for the empirical quantification of the conceptual
model. As Auction tuples arrive, they are stored as part
of the state in the join operator until expiration. In this
way, incoming Bid tuples can be matched against Auction
tuples.

In Table V, four Auction tuples are described that are sent
before the migration starts. Table VI lists the Auction and Bid
tuples that are sent after the migration. If no state is migrated,
the output will only be one tuple, shown in Table VII. If the
Auction tuples from before the migration are migrated, the
output will be VIII. The reason why so many more tuples
are produced after the migration when Auction tuples are
migrated is that the incoming Bid tuples find a matching
Auction tuple to join with. Without them being migrated,
only the new Auction tuple with id 5 can be joined with.
This is a simple example that shows the necessity of state
migration. The migration mechanisms that are introduced in
Section III-A, and described more extensively in Section IV,
face the same problem of making the operator state available
on the new host, such that the operators produce the correct
output.

III. A CONCEPTUAL MODEL OF OPERATOR MIGRATION

We establish a conceptual model of operator migration to
capture the basic concepts and elements on which consensus

TABLE VII
OUTPUT WITH STATELESS MIGRATION

TABLE VIII
OUTPUT WITH STATEFUL MIGRATION

has been achieved in the literature, and form a unified
terminology for operator migration. For the understanding and
the design of operator placement, it is important to separate
between mechanism and policy. There are two major concerns
for operator migration mechanisms: (1) stream management
to stop, buffer, redirect, and start streams; and (2) state
management to establish the current state of the operator at
the new operator host, which may require moving the state
from the old host to the new one, and starting a replica for the
operator on the new host before the state transfer is finished.
All algorithms require some stream management functions,
such as stop, start, buffer, and redirect. State management
stands apart due to the multitude of design alternatives it
presents. For example, one could choose to move the entire
state at once or incrementally. Furthermore, it is possible to
execute the operator exclusively at one host during migration,
or to do so in parallel on multiple hosts. The policy is
implemented in the operator migration decision component
that needs to determine whether and when to migrate an
operator. This involves several steps. Migration decisions first
require a trigger for when to make a migration decision and
then a placement mechanism to determine the placement that
yields the best performance. The cost of the migration must
be weighed against its benefit. The policy must determine the
degree to which the migration decision should be proactive
(e.g., before a host becomes overloaded) or reactive (e.g., when
a host is overloaded). The more proactive a migration decision
is, the higher uncertainty it has. The more reactive a decision
is, the higher cost of migration it has.

Figure 3 illustrates the concepts and building blocks that
make up migration algorithms. It also highlights the rele-
vant decision-making processes, outlines the properties of
state management mechanisms in migration, and presents the
associated costs of migration. Migration cost is important
for migration mechanisms and migration decisions, because
every migration mechanism introduces some form of costs
and the migration decision needs to take the costs into
account to determine whether it is worthwhile to migrate.
This relationship between the migration mechanism and the
migration decision makes the migration cost a core element of
the conceptual model. The state management node describes
the dimensions of migration mechanisms that are explored in
this tutorial.

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 677

Fig. 3. Concepts of migration.

The remaining structure of this section directly reflects
the structure of Figure 3, i.e., a detailed discussion of the
components and design alternatives for migration mechanisms
is given in Section III-A, followed by an overview of the com-
mon cost parameters in Section III-B, and, in Section III-C,
the migration decision.

A. Migration Mechanism

The two major concerns of migration mechanisms are state
management and stream management. State management is
relevant for operators that derive their output based on multiple
tuples, e.g., looking for a sequence of tuples using CEP,
joining streams, or aggregating tuples over windows [16].
The state can be thought of as tuples. The internal state of
the operator is, in practice, typically optimized to include
only the necessary information for the given operator, such
as the given aggregate value for the extent of a window, or
as a finite state machine in CEP. In addition to such stateful
operators, there exist also stateless operators, like filter and
map. These operators do not require state because they process
each input tuple independently. Therefore, operator migration
distinguishes itself markedly from VM migration, where the
entire VM must be transferred to the new host. While some
solutions to operator migration, such as the MCEP [98], do
include VM migration, VM migration is not addressed in
this tutorial. The simplest method of operator migration for a
stateful operator is to move it to the new host and replay all
necessary historical tuples from the upstream nodes [139]. This
technique is used in current publish-subscribe systems, such
as Kafka [140], to achieve fault tolerance in stream processing
systems like Flink [5]. Using this technique also makes it
possible to migrate the data to a different stream processing
system, which is usually not possible when extracting the
state from the system, because the internal state is system
specific. However, as the state can become very large, it is
often undesirable to replay all tuples. Therefore, this tutorial
focuses on operator migration techniques that extract the state
from the stream processing system and move it to the new host.

The purpose of state management in operator migration is
to establish, at the new host, an operator with the state of the
operator at the old host when switching the processing from
the old host to the new host. In a moving state algorithm,
the old host extracts the state of the operator and sends it
to the new host. Some algorithms do not need to perform

this task, either because they manage stateless operators,
e.g., filter operators, or because the old and the new host can
schedule a seamless handover of the operator. In a parallel-
track algorithm, originally a term used by Zhu et al. [141],
both the old and new hosts receive the same tuples for some
time during migration. The handover from the old to the
new host is carried out gradually such that the downtime of
the operator is minimized. The cost of this approach is that
upstream nodes must send twice as many tuples during some
part of the migration. A parallel-track algorithm with moving
state is called state-recreation, and one without moving state
is called window-recreation. These terms are inspired by
StreamCloud [103]. In a single-track algorithm, the upstream
nodes send tuples either to the old host or to the new host.

Stream management deals with notifying upstream and
downstream nodes of changes made to the DSP overlay.
Typically, nodes have to update their routing table to reflect
the new topology at the upstream node, and this results in a
redirection of the outgoing stream to the new operator host.
To prevent tuples from getting lost when the operator is down,
streams might be stopped and tuples need to be buffered.
There are three locations at which tuples can be buffered:
upstream nodes, the old host, and the new host. The tasks of
redirecting streams, stopping streams, buffering streams, and
restarting streams are coordinated among the hosts involved
through control messages. Both centralized and decentralized
coordination is possible. As such, there are several design
options that can be implemented for a particular operator
migration solution.

For presentation purposes, the taxonomy is divided into
two parts: single-track algorithms (Figure 4) and parallel-track
algorithms (Figure 5). In single-track algorithms, each tuple
is processed either on the old host or the new host, but not
both, at any given time. This means that even if an operator
is active on both hosts during the migration, each individual
tuple is processed exclusively on one host or the other.
In contrast, parallel-track algorithms involve tuples being
processed on both the old and new hosts simultaneously during
the migration period, meaning the same tuple is processed
on both hosts. The small text in brackets under some of the
categories denotes a term for the given type of algorithm.
For instance, a pause-drain-resume algorithm is a single-track
algorithm without moving state, and a parallel-track algorithm
with moving state is a state-recreation algorithm. The most
basic operator migration algorithm is a pause-drain-resume

678 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

Fig. 4. Single-track migration algorithms.

algorithm, and works only with stateless operators or in cases
where some state inconsistency is permitted. The operator to
migrate is first started on the new host while the old host
is also running it. Then upstream nodes redirect their output
streams from the old to the new host. After this, the old host
can stop the execution of the operator. Since no state needs
to be moved, migration occurs without any downtime. A few
control messages must be sent (1) from the controller to the
old host, (2) from the old host to the new host, and (3) from the
old host to the upstream nodes. As there is no downtime for
the operator, any delay caused by these messages is negligible.

When state must be moved and a single-track is used, the
operator has some downtime. Specifically, tuples can neither
be processed on the old nor the new host while the state is in
transmission. In this process, tuples from the upstream nodes
must be buffered before the new host can process them. The
buffering can be carried out on the upstream nodes, the old
host, or the new host. In many cases, tuples can be received
after query processing has been stopped. These tuples need to
be forwarded from the old host to the new host.

Partial state movement involves splitting the state to be
migrated into several parts and moving these parts to the new
host while the operator is still processing on the old host. This
approach avoids having to stop operator processing for the
entire state transfer. If the state is periodically checkpointed
and distributed on different nodes, this is called checkpoint-
assisted migration, and can substantially reduce or eliminate
the downtime of the operator. Either the entire state already
exists on the new host or an incremental checkpoint is
extracted before the operator shuts down, and then sent to
the new host. While the last checkpoint is sent to the new
host, the operator stops for a much shorter time compared to
sending the entire checkpoint at once. A single-track moving
state solution can never avoid downtime. This is the reason
why parallel-track solutions have been developed.

Parallel-track algorithms differ from single-track algorithms
in a fundamental way. They can achieve zero downtime,
but at the cost of running the old and new hosts with
duplicate input streams and, sometimes, duplicate output

streams [113]. A moving-state parallel-track algorithm per-
forms state-recreation, which means that the new host receives
the state from the old host while also receiving the same tuples
as it does from upstream. A parallel-track algorithm without
state migration performs window-recreation, which means that
the new host receives the same tuples as the old host until
the old tuples expire and they both have the same tuples in
their windows. At this point, the upstream nodes redirect their
streams to the new host, and it takes over without the tuples
being buffered or any waiting time.

Most of the existing works assume fully consistent state
for the operator migration. This means that before and after
the migration, the internal state of the operators looks like
it would if there was no migration, except that some state
might arrive in different order. No state is lost. This is an
important principle for adaptive stream processing systems;
that adaptations occur transparently to the data producers and
consumers. In a recent work [143], however, state shedding is
presented as the idea of performing a migration where the most
important partial states are migrated, and some less important
partial states are dropped if the total state is too big to migrate.
This is meant to be used in volatile cases where the system
fails unless an adaptation is done quickly.

An important motivation for establishing the terminology
and building blocks in Figure 4 and 5 is that existing work has
described the same concepts by different names. For instance,
what Zhu et al. [141] called parallel-track is described as
window-recreation in StreamCloud [103], smooth migration in
Enorm [62], and the seamless minimal state in TCEP [99]. In
StreamCloud, a different algorithm called state-recreation is
also parallel-track, but also involves moving state. In contrast
to parallel-track, single-track with moving state is called
disruptive migration in Enorm [62] and Pause & Resume
in [11] because it leads to downtime, as opposed to smooth
migration that eliminates downtime. Instant migration [62]
is single-track migration without moving state. Checkpoint-
assisted algorithms have been described in [58], [78], [113]. A
characteristic of these algorithms is that a minimal state needs
to be sent during migration. It should be noted that what is

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 679

Fig. 5. Parallel-track migration algorithms.

considered state differs among different systems. Therefore,
what is considered partial state or all-at-once state might
differ. TCEP has a fine-grained migration algorithm that moves
during operator migration the entire tuple state all at once, but
since the entire operator consists of multiple elements where
the tuple state is just part of it, it is not considered a partial
state movement algorithm.

B. Migration Cost

Operations performed as part of state management and
stream management lead to two classes of the cost of migra-
tion, related to resource consumption and temporal aspects.
The temporal costs are caused by the fact that the operator is
not operational during state extraction, state serialization, state
movement, state deserialization, and runtime initialization.
The bandwidth required to move the state from the old to
the new host is the most commonly considered resource in
resource-aware geo-distributed cases [20]. The computational
requirements of extracting the state from the old host and
the messages needed to coordinate stream management are
more commonly considered in centralized data centers. Stream
management messages may also have an impact on the
operator downtime, e.g., streams from upstream nodes need
to be stopped and no events should arrive at the operator
until they have been redirected and started again. The operator
is further suspended during state extraction at the old host,
moving the state from the old to the new host, and installing
it at the new host.

Two metrics are used to assess temporal cost: freeze
time and latency spikes. Freeze time quantifies the duration
for which an operator cannot work, i.e., freeze time =
tstart − tstop , where tstop is the point in time when the
old host stops the operator and tstart is when the new host
resumes it. Latency spikes quantify the increased latency of
event delivery caused by a non-working operator. It is often
approximated by the time needed for state movement, which
is the duration for which the state is in transit between the old
and the new host, i.e., state movement time = treceive − tsend ,
where tsend is the time at which the old host starts sending
the state, and treceive is the time at which the new host has
received the entire state. The state movement time depends

on the size of the state and the available bandwidth between
old and new host. Thus, state size can be seen as related
to the costs of both resources and time. Existing research is
largely concerned with the tuple delay of a placement [93],
but tuple latency caused by migration has not been given the
same priority.

It should be noted that latency spikes reflect the cost much
better than freeze time since it is possible for the operator not
to produce any event during the freeze period. Examples of
such a case are incoming events during this period that do not
match the pattern that can trigger the operator to produce an
event, or if a tumbling window implemented by the operator
is much larger than the migration time such that all delayed
incoming events can be processed on the new host before the
window expires.

From the descriptions of the different types of algorithms
above, it is easy to see that they differ in the cost of migration.
Operator downtime or the latency of the output tuple can be
considered a reasonable definition of the cost of migration
for single-track state movement algorithms. However, for
parallel-track algorithms, this definition of cost can result in
excessively frequent migrations, as it typically results in a
value close to zero. Therefore, it is necessary to define the cost
of migration in such a way that the migrations do not become
too frequent.

With parallel-track, operator replicas need to be executed
during migration, and upstream nodes must send duplicate
streams to the old and new hosts. They may also take a
significant amount of time to execute when using window-
recreation [103], which, in addition to using operator replicas
during this time, might result in a significant increase in
monetary costs. Therefore, it makes sense to consider the
monetary cost when using parallel-track algorithms.

C. Migration Decision

To perform the migration decision several steps are neces-
sary (see Figure 6). First, the decision process needs to be
triggered. Then, a better placement has to be selected. The
cost and benefits of a migration to the host must be estimated
and compared in order to determine whether it is worthwhile
to migrate.

680 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

Fig. 6. Migration decision-making.

Most studies have handled migration as part of an adaptation
mechanism, where the goal is to improve execution or recover
it in case of node failure. Regularly collected metrics can be
used to indicate the need for an adaptation. Recent surveys
have focused on adaptation mechanisms [7], [18], while this
tutorial focuses on operator migration. Migration is usually the
most costly aspect of an adaptation, and this perspective can
be useful for better understanding adaptations. Even though
adaptations differ in some aspects, they share major parts in
terms of cost.

1) Migration Goal: This section describes four of the most
common goals of migration: load balancing to distribute the
load evenly on the available nodes, elasticity to efficiently
leverage computational resources, fault tolerance to ensure that
the DSP system can continue processing in the event of fail-
ures, and improving the QoS. This is not a comprehensive set
of migration goals but it constitutes the main categories. For
instance, security can be another reason for making adaptation
changes. However, the general migration goal is to improve
performance of the system. For instance, a DDOS attack might
cause a migration, but this would also be addressed using QoS
as the migration goal.

While all goals of migration can be applied to any deploy-
ment environment, the solutions with load balancing and
elasticity are mainly aimed at cloud-based DSP systems and
executed within a single data center, whereas QoS optimization
is normally carried out when an operator undergoes back-
pressure and needs an adaptation to improve the QoS, which
can happen in any deployment environment. While migration
is relevant for fault tolerance, few solutions describe it as a
mechanism to facilitate reliable execution. Instead, solutions
often use an upstream rollback approach [139] that replays
to the new host tuples that are part of the failed operator.
Below, we analyze all the goals of migration except fault
tolerance.

QoS-driven migration is employed to enhance the system’s
QoS. Crucial QoS metrics in operator migration include
bandwidth, availability, latency, throughput, and more. For
instance, to maintain the goal of low latency in mobile settings,
the system works to position the operators close to the data
producer. This can be seen as a broad optimization problem,
with the objective of maximizing the selected QoS metrics, as
depicted in Equation (1). Later, in Section V, we delve into

which of these metrics are frequently taken into account:

max

n∑

i=1

QoSi (1)

Another important parameter in mobile settings is energy
preservation for resource-constrained nodes [97], [145]. In a
cluster setting, the goal is often to ensure that the nodes are
not overloaded and that the latency of the tuple is not too high.
If the latency of an operator increases significantly, it might
be migrated to a node that can provide lower latency.

The basic goal of migration is to improve the QoS. Most
solutions are more specific about the goal of migration
because finding the optimal solution is usually an NP-hard
problem [138], which is unfeasible to solve for networks of
most sizes. A simpler approach is to add constraints to the
operator. If the operator cannot fulfill these constraints, it must
be relocated. This is typically a much more scalable solution
that looks for a placement that is good enough, instead of
looking for the optimal solution. It is a push-based manner
of letting the coordinator know when the operator needs to
be relocated. It should be noted that constraints or thresholds
are also often used to achieve the other goals of migration.
One characteristic of QoS-based migration is that it is mainly
related to the migration of individual operators.

Load balancing is a necessity in distributed streaming
systems, because the workload might vary significantly over
time, leading to unbalanced distributions of state over the
processing nodes. The coordinator should monitor the resource
usage on the nodes to ensure that neither the network nor the
CPU resources become bottlenecks for the performance of the
operators. If resource usage on the nodes is unbalanced, the
coordinator moves some of the tasks among the nodes. If these
are stateful processes, the tasks to be moved must be paused,
moved, and restarted on the new node. Load balancing-driven
migration differs from QoS-based migration in the sense that
the data consumers do not necessarily benefit much from the
balancing, and in that multiple operators are usually migrated
through load balancing. However, the decision on when to
perform load balancing and where to migrate operators must
still take into account the same concerns as for constraint
violation, i.e., whether the cost of migration is worth the
benefit of the new placement.

Load balancing is typically modeled as a resource schedul-
ing problem, where the goal is to distribute the load as
evenly as possible. For instance, minmax the latency on the
nodes [77], as shown in Equation (2).

min (max l(Gi)) (2)

Elasticity refers to adding or removing operator replicas that
facilitate parallel processing (also called operator scaling). For
instance, a query with stateful windows that are grouped by
a key can be run in parallel in multiple threads, where each
thread is responsible for a subset of the keys. Four scaling
operations are commonly used:

• Scale up: Create a new process and migrate some
partitions of existing threads to it.

• Scale down: Migrate all partitions of a thread to the other
threads and shut it down.

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 681

• Scale out: Create a new worker to which some threads
can be moved.

• Scale in: Remove a worker and move its threads to
existing workers.

In a cloud setting, the scaling out of a streaming system
means adding more servers to a cluster. The streaming system
then automatically decides which operators to move to it and
potentially scale up. Scaling in means the opposite: A server
is removed from the cluster. First, all the server’s operators are
moved to other servers and some scale-down operations might
be performed. Scaling in and out can be modeled as special
cases of load balancing. When scaling out, a new container
or VM is started on a new machine, which is then added to a
load balancing pool. The load balancer can then use this new
machine for load balancing. When scaling in, a machine is
eliminated from the load balancing pool, and at least its own
state must be migrated to the other nodes.

2) Triggers: To determine whether migration should be
performed, it is necessary to compare the current placement
with an alternative placement to estimate the benefits of
migration. If these benefits are significantly greater than the
costs, migration is beneficial. However, the calculation of
a new placement, its benefits, and the related costs might
require a non-negligible amount of resources. As such, the
naïve approach to scheduling a migration decision with a
fixed frequency might be too costly. Instead, some form of
context awareness needs to be supported to detect changes in
the system (e.g., related to workload, resource availability, or
mobility) that indicate that there might be a good chance of
determining a better placement. The relevance of such changes
is generally implied by the goal of migration. Monitoring the
runtime system is an important task to detect such changes.
The DSP system can also perform some book-keeping, like
the number of operators a node hosts, and trigger a migration
decision if a threshold is reached.

A simple trigger is a constraint or threshold. For instance,
load balancing systems may make balancing decisions when
the load imbalance of the systems is above a certain threshold.
For elasticity-based solutions, checks on whether to scale in
or out are similarly performed using thresholds. If the system
has a balanced load and its use is still above a given threshold,
the system might decide to scale out. If the utilization is below
a threshold, the system can scale in. If an operator has latency
constraints that are not fulfilled, the coordinator can be notified
that migration must occur. The coordinator can either be the
node hosting the operator in a decentralized solution or a
centralized controller in a data center. In all scenarios, a unit
collects metrics from the runtime system in order to make a
decision.

3) Timing Decision: Migration decisions can be made reac-
tively or proactively. In the former case, a system migrates
when the given situation calls for a change to be made, such
as when QoS guarantees for an operator are not fulfilled.
Proactive migration decisions rely on predictions about future
changes that require migrations.

In several cases, the need for migration scales with its cost.
For instance, if the migration is triggered when the tuple rate
exceeds a limit and causes QoS violations, more tuples are

affected by operator downtime when the need for migration
is more pressing. In other words, the more pressing the need
to migrate is, the higher the cost of migration is. If a node is
over-provisioned, and cannot handle a higher input rate for a
given operator, the operator benefits from being migrated to
another node. If this situation is detected when the input rate
is already too high, a potential migration results in latency
spikes for the affected tuples. However, if it is possible to
predict that the tuple rate will increase, one can reduce the
cost of migration by proactively migrating before the tuple
rate becomes too high.

The cost-benefit analysis for making migration decisions is
not trivial as the cost of migration is a one-time investment
and the benefit from better performance is accumulated over
time. When confronted with dynamic surroundings in stream
processing scenarios, it makes sense to consider a given
placement only for a given amount of time. This time can
be regarded as the horizon for which predictions are made.
Migration decisions are then made in such a way that the
new placement amortizes cost during that time. As such,
this time horizon is called amortization time. The notion of
working with a limited future horizon for making optimization
decisions is also used in model predictive control (MPC), and
has been applied by De Matteis and Mencagli [107] to make
proactive scaling decisions.

The higher the number of tuples that are impacted, the more
the migration option is penalized. However, the number of
tuples impacted is an estimate that depends on the accuracy
of the prediction. It is possible to assume that tuples are sent
evenly across the time window of the horizon, in a single
burst, as fast as possible, or a mix between the two. To
make such predictions, it is necessary to collect metrics from
upstream nodes to determine the density of distribution of the
transmitted tuples.

4) Cost Versus Benefit: Once the decision process has been
initiated, it is necessary to determine a better placement and
relate its benefits to the costs of the migration to determine
whether to migrate [13]. One clear approach to calculating a
new placement is to re-run the original placement algorithm
with the same objective function. Some of the data needed
for calculating a new placement might be available from the
monitoring component that triggers the migration decision. In
most cases, additional live data must be collected, where this
represents a substantial part of the overhead of making the
migration decision.

The gain in performance owing to a new placement is gener-
ally reflected in the output of the objective function of the old
placement versus that of the new placement [97], [138], [146].
By optimizing the objective function during placement, a new
placement that delivers the best performance is identified.
The problem with simply migrating to the host with the
best performance is that the cost of migration might be
so high that it is not worth migrating. It might be that a
sub-optimal placement is preferred in terms of the objective
function owing to a lower migration cost, or maybe that no
migration is worth it at all. What makes the comparison of
cost and placement performance challenging is that they are
not directly comparable. On the one hand, multiple, possibly

682 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

contradicting, metrics can be used to determine cost and
performance. On the other hand, the cost of migration is a
one-time investment while the performance of a placement
represents how a placement performs over a certain amount
of time. The placement performance continuously increases
the overall benefit as long as there are no changes in the
system. As such, there is a need to distinguish between the
benefits of placement and migration. The benefit of placement
simply expresses the difference in placement scores between a
new host and the given host, while the benefit of migration is
calculated based on (1) the cost of migration, (2) the placement
performance, and (3) the amortization time.

Three common ways to avoid excessively frequent migra-
tions have been discussed by Lakshmanan et al. [12]: (1) A
threshold to ensure that the score of the new placement is
significantly better than that of the current placement. (2) If
the QoS guarantees of an operator are violated, it triggers a
migration, which means that migrations are performed only
when necessary. (3) Periodic re-evaluation of the objective
function where the interval is set to be reasonably high.
In a more recent example, Buddhika et al. [66] regularly
calculated interference scores of operators that describe the
need for migration, and migrated them to a node where
they were subjected to less interference. However, neither
Lakshmanan et al. [12] nor Buddhika et al. [66] performed an
explicit cost-benefit analysis. This is of interest to us not only
to avoid excessively frequent migrations, but to understand
why migration is worth it in some cases and not in others
based on its costs and benefits. Suppose a placement is an
improvement over the given placement. In that case, we
want to be able to state exactly why the migration is worth
performing (or not) in a meaningful and understandable way.
The amortization of the cost of migration is a simple goal
to understand as long as one weighs the one-time cost of
migration against the benefit of the continuous performance of
the new placement, but this deliberation is often not presented
explicitly in existing works.

IV. MIGRATION MECHANISMS

In this section and Section V, we present an overview
of existing literature on operator migration. Specifically, we
examine the design of current migration strategies, with a
focus on those that assume full consistency of the operator
state.

As the volume and velocity of data have increased with the
emergence of big data [147], the simple single-track moving
state algorithm has become inadequate. Specialized and inno-
vative solutions that provide no downtime and solutions that
leverage fault tolerance mechanisms, such as periodically
performed back-ups, have been designed. We explore the
state-of-the-art migration algorithms and provide a historical
perspective on innovations proposed.

Migration mechanisms are characterized by their state and
stream management. This involves executing certain tasks,
such as redirecting, buffering, pausing streams, and moving
states between nodes. Moreover, it is important to specify
whether these tasks can be executed in parallel and where it is

most beneficial to execute them. The most important properties
identified in Section III-A are whether the algorithms require
state migration and how this is performed, and whether they
are single-track or parallel-track. Most of the investigated
migration mechanisms can be derived from these properties.
For instance, some mechanisms are centralized, and rely on
a coordinator, such as [46], [78], [103], whereas others are
decentralized and initiate migration on the operator host,
e.g., [85], [96]. In some cases, multiple dependent migrations
are planned and performed in sequence, but the details of
managing multiple migrations are not presented in this tutorial.
Examples of such algorithms include load balancing, where
many keys of an operator may be moved to a new location,
and when an operator graph is distributed geographically and
several operators are migrated, e.g., in TCEP [99].

The most fundamental mechanisms are single-track without
state migration, single-track with state migration, and parallel-
track without state migration, i.e., window-recreation. These
mechanisms were introduced together by Zhu et al. [141]
and were later applied to the SPE CAPE [56]. The authors
discussed the steps of migration and cost models of the
different mechanisms. They called them moving state, parallel-
track, and pause-drain-resume migration mechanisms. Using
the terminology established in Section III, the moving state
mechanism is single-track moving state, the parallel-track
mechanism is parallel-track without state migration, and the
pause-drain-resume mechanism is single-track without state
migration. The paper by Shah et al. [46] forms the basis for
load balancing, and presented a means of repartitioning keys
in a key-value-partitioned operator state, which is relevant
for cluster-based systems. We characterize this mechanism
as a single-track moving state algorithm, but in which the
operators are already running on the destination node. In
contrast to some studies, for instance by Qin et al. [18],
we do not consider state movements in load balancing and
operator migration to be fundamentally different, and posit
that only the entities being migrated are different, i.e., keys
are moved instead of operators. In load balancing, the entities
being migrated are often a set of keys and their associated
states, whereas in operator migration, the entities are usually
an operator and its associated state.

A. Mechanism Descriptions

This section describes the relevant mechanisms in a concise
and systematic manner. Since details of what happens in
migration mechanisms are typically omitted from research
papers, our descriptions may deviate to some extent from
the original implementations of the migration mechanisms
considered. For the most significant variations of these mech-
anisms, we show how migration is performed using a figure
that illustrates the topology of stream processing and the
communication between nodes. Please refer to the legend
in Figure 7 for the description of symbols that are used
in this section to describe the migration mechanisms. The
following types of nodes are used: old host (OH), new host
(NH), upstream nodes (US), and downstream nodes (DS). The
upstream node and downstream node can both represent one

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 683

Fig. 7. Legend for the migration mechanism illustrations in Figure 8–12.

or more nodes, but for the sake of simplicity, only one of
them is shown in the figures. Each figure is accompanied
by an enumerated description of the steps of the relevant
algorithm on the right-hand side, and each step is provided
in the figure to facilitate the understanding of the algorithm.
Furthermore, we show in subsequent listings the contents of
the control messages sent to provide the reader with a kind
of computational viewpoint of the involved nodes. Since the
control messages comprise the tasks that must be executed by
the nodes, there is a natural correspondence to the steps listed
in the figure.

Control messages used for migration are typically embedded
into the data streams. These tell the nodes that a migration
will be performed, and might be used for other coordination
tasks. In some solutions, this message is sent only to the
old or the new host; in other solutions, it is sent to the
old and the new host, or to upstream nodes, old and new
hosts, and downstream nodes. There may be many reasons for
notifying different nodes about migration, such as updating
the view of where key partitions are maintained, and routing
streams. We describe only a subset of control messages for
each mechanism, and they describe the essential tasks that
should be executed to perform stream and state management
tasks. In the illustrations, the control messages are shown in
blue whereas the other messages are shown in red. In addition
to the visual representation of the topology and messages sent
among nodes, the essential tasks to execute during migration
are shown in a listing. The first blue control message from
the coordinator, which features in step one of each algorithm,
is shown in this listing. All other control messages represent
subsequent steps in the algorithm that are described in the first
blue control message.

B. Standard Moving State

The standard moving state mechanism (see Figure 4 and 5)
uses direct state movement between the old and the new hosts,
and the entire state is sent all at once. Aside from moving
the state, migration requires changing the stream routing.
Figure 8 shows the steps involved in the standard moving state
algorithm developed by Shah et al. [46]. They proposed an
operator called Flux that can adapt the state partitioning of the

pipelines of dataflow using a state movement algorithm. Other
state movement mechanisms largely follow the same steps, but
they might vary in their approach to stream management or
in the roles assigned to specific nodes.

Our interpretation of the moving state mechanism’s blue
migration control message from Step 1 in Figure 8 is described
in Listing 1. The upstream nodes buffer, stop, and redirect
streams from the old host to the new host. Following this,
the task of migrating the state from the old host to the
new host is issued to the old host, after which the streams
are resumed. Instead of stopping the upstream nodes, other
solutions [78], [103] redirect streams from the upstream nodes
to the new host. The new host buffers the streams and
starts to process them when the state from the old host has
been received and installed. Other solutions send the control
message to the old host instead of the upstream nodes [85], or
even to the new host [50]. The benefit of this class of migration
mechanisms is that it is straightforward and simple, but the
downside is that it may cause significant downtime.

C. Parallel-Track

There are two types of parallel-track mechanisms: state-
recreation and window-recreation mechanisms. The difference
between them is that state-recreation involves moving state
and window-recreation does not. The completion time for
a state-recreation algorithm is proportional to the state size,
whereas for a window-recreation algorithm, it is propor-
tional to the window size [103]. Zhu et al. [141] introduced
the window-recreation parallel-track migration mechanism.
Gulisano et al. [103] presented both a window-recreation and
a state-recreation mechanism, and Ottenwälder et al. [96]
performed state-recreation migrations based on changes in
mobility. Madsen et al. proposed a direct window-recreation
mechanism in Enorm [62] and a checkpoint-assisted state-
recreation mechanism in [58]. ChronoStream [113] performs a
checkpoint-assisted state-recreation migration of state slices to
provide horizontal elasticity. UniMiCo [144] (uninterruptable
migration of continuous queries) is a direct window-recreation
algorithm that can handle both time-based and tuple-based
window semantics.

StreamCloud’s [103] state-recreation and window-recreation
mechanisms are shown in Figure 9 and Figure 10. In both
mechanisms, a handover between the old and new hosts
is scheduled using a timestamp. In window-recreation, the
handover is performed in a way such that the old host empties
its windows and the new host fills them in parallel, resulting
in a smooth handover. For this purpose, the upstream nodes
send tuples to both the old and new hosts. In state-recreation,
the old host sets the handover timestamp immediately before
serializing and transmitting the state to the new host. Any
subsequent tuples with a timestamp lower than the handover
timestamp are processed by the old host, and the other tuples
are processed by the new host. Operator downtime can be
avoided here if the handover timestamp is set to a time after
the new host is expected to have received the state and started
its execution. When the state is received by the new host, it
processes all tuples it receives from the upstream nodes in

684 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

Fig. 8. Moving state (according to [46]).

Listing 1. Single-track moving state.

parallel with the old host, but produces only tuples caused
by input tuples with a timestamp higher than the handover
timestamp.

Our interpretation of the window-recreation mechanism for
the blue migration control message from Step 1 in Figure 9
is described in Listing 3. The control message is sent by the
coordinator to the upstream nodes. From there, it is forwarded
to the old host, which schedules the takeover time for the
new host and sends it to the upstream nodes. From then on,
the upstream nodes send tuples to both the old and the new
hosts. The new host processes the same tuples as the old host,
but does not produce any tuple until the old host has stopped
processing.

Our interpretation of the state-recreation mechanism for the
blue migration control message from Step 1 in Figure 10 is
described in Listing 3. The control message is sent by the
coordinator to the upstream nodes. This algorithm requires
slightly greater coordination between the old and the new host
than in case of window-recreation, because the old host must
move its state to the new host, and the latter needs to know the
takeover time. These classes of migration mechanisms have as
benefit that they may result in zero downtime for the operators,
but at the expense of overhead when duplicating the data
streams and maintaining two copies of the stream processing
system. Window-recreation requires no state transfer, but at
the expense of increasing the total migration time, which in a
pay-as-you-go scenario increases the monetary cost of running
the system.

D. Indirect State Movement

Gedik et al. [142] described an indirect state migration
mechanism for load balancing that has been used as the basis

in several studies [61], [63], [107]. They proposed an operator
that outputs to multiple replicas partitioned by keys, called a
splitter, that can decide to change the distribution of the keys,
which requires state migration between replicas. Moreover,
they introduced a two-phase approach to migration: donate
and collect. In the donate phase, the state to be migrated
is moved from the old host’s in-memory store to a backing
store. In the collect phase, the new host retrieves the state
from the backing store. This method was subsequently used by
Cardellini et al. [61] and Li et al. [63] to implement features of
elasticity in migration in Apache Storm. The drawback of this
method is that streams from the upstream nodes are paused
during execution. De Matteis and Mencagli [105], [107]
defined a similar state migration mechanism. However, their
implementation contains a number of improvements, e.g., the
splitter can send new tuples during state movement instead of
blocking until migration is complete.

In the donate phase of the mechanism proposed by
Gedik et al. [142], replicas place the state to be moved into
packages, one for each replica that takes over the state. The
data are moved away from the in-memory store of the replicas
to a backing store. A vertical barrier is used across the replicas
to ensure that they do not progress to the next phase until all
packages have been donated. In the collect phase, the replicas
check the backing store for any packages that contain the state
that they take over and restore it. Following this, a horizontal
barrier is used to prevent the splitter from sending any tuples
until the migration process has been completed.

The benefit of the two-phase approach is that it involves an
API where an operator simply requires implementing methods
to extract the state, and sends it to a backing store instead of
requiring intricate communication among operators. Moreover,
it can use existing fault tolerance mechanisms that periodically
create checkpoints of states for the backing store.

E. Partial State Movement

With partial state movement, the state is partitioned and
each partition is moved individually, to minimize operator
downtime. MigCEP [96] is an algorithm designed for frequent
migrations to minimize downtime. The state is split up into

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 685

Fig. 9. Parallel-track window-recreation algorithm (according to [103]).

Listing 2. Window-recreation.

two parts: immutable and mutable. An immutable or static
state includes the operator and, possibly, databases whose data
have not changed during migration. A mutable state consists
of tuples that are being processed in the operator.

A further improvement involves sending the last incremental
checkpoint of the state to the new host before the operator goes
down. This is the case in ChronoStream [113] and Rhino [78],
where the state is split before the operator is migrated, and an
incremental checkpoint that includes the new state after the
first part has been extracted. This can be seen as analogous to
the immutable and mutable states described in MigCEP [96].

Megaphone [75] is a state migration technique for migrating
many keys in an efficient way to minimize latency spikes.
In this case, the state is split into many equal-sized parts.
Each causes some downtime for the system. However, while
the total migration time increases, the spikes due to tuple
latency are substantially reduced compared to sending the
entire state all at once. However, the Megaphone mechanism
introduces some additional overhead to operators during non-
rescaling periods. Another state migration technique called
Meces [80] may improve upon Megaphone by being more
lightweight and prioritizing the migration of partial states
that are needed by incoming tuples. A newly received tuple
that requires a given partial state fetches it from the old
host, instead of waiting for it in a larger batch, or relying
on complex synchronization mechanisms. The commonality
between Megaphone and Meces is that they are only beneficial
with operators where the state is split up into many keys,
e.g., word count with words as keys, equijoin operators, or
other aggregation operators with keys.

Fragkoulis et al. [7] distinguished between all-at-once and
continuous state movements, which are classified in this tuto-
rial as all-at-once and partial state movements, respectively.
Megaphone, Rhino, and ChronoStream are characterized in
this tutorial as exemplars of partial state movement, while
Fragkoulis et al. categorized Megaphone as using continuous
state movement, and Rhino and ChronoStream as using all-
at-once state movement. The reason for this difference is
that ChronoStream and Rhino rely on distributed checkpoint
replication, and need only to send the state that has been
built up since the last checkpoint. In this tutorial, migration
is further divided by distinguishing between solutions that
use distributed checkpoint replication and those that do not.
Megaphone and Meces do not use it, and send the entire
state directly from the old host to the new host, whereas
ChronoStream and Rhino depend on distributed checkpoint
replication. If Rhino and ChronoStream do not use distributed
checkpoint replication, this means that the initial checkpoint
is sent from the old host to the new host instead of existing on
the new host already. Therefore, using partial state movement
is not necessarily an indication that multiple states are sent
during migration.

State shedding combines load shedding and operator migra-
tion in a way that demands fine-grained migration [143]. Each
partial state is assigned a utility based on how important it
is, similar to how it is done in load shedding. The most
important partial states are then migrated, whereas the least
useful partial states may be dropped. The primary advantage
of state shedding is the ability to prioritize the migration of
critical states. However, it does require calculating the utility
of partial states, which can be challenging to predict.

F. Distributed Checkpoint Replication

Some solutions leverage fault tolerance mechanisms to
improve the scalability and performance of migration using
periodically updated, and distributed and replicated check-
points of the state of stream processing. Since these algorithms
use checkpoint solutions that may already exist, they are called

686 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

Fig. 10. Parallel-track state-recreation algorithm (according to [103]).

Listing 3. State-recreation.

checkpoint-assisted algorithms. If the target of migration is
a host that already contains the state, a migration algorithm
can be as simple as one that loads the checkpoint in memory
and replays the upstream tuples to the new host. This requires
exactly-once guarantees, as provided by pub-sub systems such
as Kafka [140]. A parallel-track algorithm can work similarly,
but, instead of stopping the old host before replaying tuples
on the new host, both the old host and the new host run until
the latter takes over. In this process, output tuples need to
be filtered to remove duplicate tuples. ChronoStream [113]
uses distributed checkpoint replication to implement a parallel-
track algorithm, Rhino [78] to realize a single-track algorithm,
and the proposal of Madsen and Zhou [58] to carry out both.
The algorithms often also use partial state movement when
updating checkpoint replicas to send as little state as possible.

Monte et al. [78] introduced a checkpoint-assisted single-
track migration mechanism called Rhino that can migrate state
sizes of up to terabytes 15 times faster than the state-of-the-
art solutions (as of 2020) by using incremental checkpointing.
Their algorithm is shown in Figure 11. Most of the state is
sent before the old host is stopped. Afterward, it sends an
incremental checkpoint that represents a change in the original
state. In this way, only tuples that arrive after migration has
started need to be migrated in the incremental checkpoint.
This algorithm is a cluster-based migration mechanism that is
executed by a handover manager (HM). The HM informs all
workers about the migration and about what will happen, by

injecting a control message into the source streams (inspired
by Chi [71]). Afterward, the source nodes are redirected. When
the old host has received a control message on all of its
incoming streams, it sends the state to the new host. The green
box indicates the state repository for the old host, while the
yellow box indicates the state repository for the new host.
The intermediary hosts, including the old and the new host,
send control messages to their next hop nodes. When the
nodes have completed their tasks, including the redirection of
streams and the migration of state, they acknowledge the HM.
The migration is complete when all nodes have acknowledged
the HM.

Our interpretation of the checkpoint-assisted moving state
algorithm’s blue migration control message from Step 1 in
Figure 11 is described in Listing 4. The control message is
issued to the upstream nodes, which forward a control message
to all downstream nodes. We describe tasks that the old host
might be assigned. The main difference between this algorithm
and the standard moving state algorithm is that most of the
state is assumed to be on the new host before the migration
starts. As such, when the state is moved, it is moved using
the partial state movement task MoveIncrementalState
instead of MoveState.

Wu et al. proposed ChronoStream [113], a checkpoint-
assisted state-recreation migration algorithm that provides
horizontal elasticity, as illustrated in Figure 12. The states of
all tasks on a node are periodically backed up and sent to
the other nodes. As a result, migration only involves updating
a subset of the backed-up state, which significantly reduces
the number of states to be moved. This process is split into
four phases: migration preparation, state rebuilding, dataflow
rerouting, and resource release. The first phase sets up a
container for the operator on the destination node if this has
not been done already. In the second phase, the new host
fetches the operator’s state locally or remotely and rebuilds
it, and notifies the master node when finished. The green box
indicates the state repository for the old host, while the yellow
box indicates the state repository for the new host. The third
phase involves the master telling the data sources to send

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 687

Fig. 11. Checkpoint-assisted single-track mechanism (according to [78]).

Listing 4. Checkpoint-assisted single-track.

tuples to the new host as well, including any tuple that is not
included in the state that the new host received. At this point,
the new host participates in the processing and produces the
same tuples as the old host, and duplicate output tuples are
filtered out by downstream operators based on the sequence
numbers of the tuples. Finally, the controller tells the old host
to release the resources such that the new host is the only node
running the operator.

Our interpretation of the checkpoint-assisted parallel-track
mechanism for the blue migration control message from Step 1
in Figure 12 is described in Listing 4. The main difference
between the parallel-track checkpoint-assisted mechanism and
a non-checkpoint-assisted mechanism is that the immutable
state is sent or made available on the new host before any
downtime occurs.

Checkpoint-assisted migration mechanisms can greatly
reduce operator downtime, providing a significant performance
boost in cases where fault tolerance features are already
established. However, if the system does not already have
checkpointing functionality, it must be added.

V. MIGRATION DECISION

We review the elements of migration decision-making
including the calculation of the costs and benefits of migra-
tion. There are existing surveys that go into depth of what
methods are used for decision-making [19], and that is not

the purpose of this tutorial. We introduce some migration
decision methods and describe which metrics are used to base
migration decisions on, and what measurements are done in
evaluations. This gives a picture of the struggle of making
decisions on incomplete data, because the consequences of a
migration choice are not known until it is done.

A. How to Make Migration Decisions

To start out, we give a small introduction to the topic of how
to make migration decisions. We can split this problem in two
phases: the problem definition phase and the problem solution
phase. The problem definition defines mathematically what
is the goal of the system, e.g., to minimize load imbalance,
latency and maximize throughput. Thereafter, the problem
solution involves some way to achieve this. Re-placement
or re-scheduling of operators on different nodes or CPU
cores is an NP-hard problem. Some works [92], [138] solve
the problem using an Integer Linear Programming (ILP)
solver such as gurobi [148] or CPLEX [149]. However, they
do not scale well since they require a global view of the
network. Operator scaling, on the other hand, is a problem
about minimizing the amount of instances to operators while
upholding the QoS guarantees [150].

In Table IX, we summarize a selection of the studied papers
that contribute to the modeling techniques, algorithms, and
decision-making strategies for operator migration. For each
paper, we highlight the specific problem being addressed, the
applied algorithm or technique, and the approach to decision-
making.

The proposed solutions typically use heuristics, which are
approximate methods that are designed to quickly find a
solution that is close to optimal. These heuristics often involve
using specific algorithms that are tailored to the particular
optimization problem at hand. For example, a common objec-
tive in migration is to minimize the latency of data tuples or
maximize the rate at which data tuples are processed.

Pietzuch et al. [117] define a stream-based overlay network
(SBON) that uses a placement and adaptation algorithm called

688 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

TABLE IX
MODELING TECHNIQUES AND ALGORITHMS FOR PERFORMING DECISION-MAKING IN OPERATOR MIGRATION

Fig. 12. Checkpoint-assisted parallel-track algorithm (according to [113]).

Listing 5. Checkpoint-assisted parallel-track.

Relaxation. Relaxation is a heuristic algorithm that minimizes
the network usage of a query. The overlay network consists
of a cost space with three latency dimensions (each direction),
and one load dimension. The latency dimensions constitute the
latency space, and physical nodes are placed in this space such
that the distance between nodes represents the communication
latency.

Buddhika et al. [66] present a heuristic algorithm for
load balancing where the goal is to reduce interference that
negatively impacts the performance of stream processing
performance. A construct called prediction rings is applied
that predicts the future resource usage of stream processing
computations, and these are used to calculate the interference
score. Thereafter, the goal is to move stream processing
computations to the nodes with the least interference. If the
interference score exceeds a predefined threshold, the operator
is migrated to a node with less interference.

Gedik et al. [57] introduced three heuristic partitioning
algorithms to perform load balancing, namely scan, redist and
readj. The job of the partitioning functions is to make sure
that the mapping from key to server is balanced. These have
in common that they apply the same metrics for making the
decisions and have the same end-goal, but have different ways
of achieving it.

Hochreiner et al. [65] proposed a platform for elastic
stream processing, called PESP, which uses heuristics with
predefined thresholds to make scaling decisions. Specifically,
when the CPU utilization of the system exceeds a certain
threshold, PESP scales up the resources to handle the increased
workload. Conversely, when the CPU utilization drops below
a certain threshold, PESP scales down the resources to avoid
overprovisioning.

B. Parameters

We first provide an overview of the parameters of
optimization, and the cost and benefit metrics used in existing
work (see Table X and the pie charts in Figure 13. We then
describe (1) how cost values are modeled and measured,
(2) approaches for optimization to increase benefits, and
(3) reactive and proactive methods. The figure and table show
similar results to Figure 8 by Cardellini et al. in [21], but here
we go more in depth of how the metrics are used.

Even though there are many different definitions of the
parameters of optimization, they are often related. Therefore,

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 689

Fig. 13. Popularity of metrics for modeling and measuring migration cost and placement benefit, shown by usage frequency.

TABLE X
GOALS OF OPTIMIZATION GROUPED BY THE GOAL OF MIGRATION

we group them in Table X into six categories: network
performance (e.g., bandwidth, bandwidth latency product),
tuple performance (e.g., tuple latency, tuple rate), load, costs
of migration, monetary costs, and energy usage. Since the
goal of migration is important for optimization, we differ-
entiate between the categories of parameters of optimization
in research according to the goals of migration. The most
prominent goal is load balancing, and load is the most
commonly used optimization parameter. While monetary cost
is not commonly used as optimization parameter, migration is
often used to avoid the need for over-provisioning and, thus,
indirectly reduces monetary costs.

Figure 13 and Table XI give an overview of the metrics
used to define the modeled and measured costs of migration,
and the modeled and measured benefit of migration. Table XI
catalogs each paper by the specific environment for migration,
the goal of migration, the cost models, the benefits, and
actual costs and benefits measured. This table offers a quick
reference to understand how various researchers have modeled
and evaluated their solutions. When a metric is used for
modeling the migration cost or placement benefit, it means that
it is part of an equation that is typically applied to decision-
making. This may include attempts at calculating the current

system state, or predicting future system state doing proac-
tive migration decisions. Ideally, the measured and modeled
metrics should be identical, but they are not. One reason for
this mismatch is, that it is much easier to measure values for
certain metrics, than to use them for decision-making, like
tuple latency and tuple rate. Kalavri et al. [150] discuss how
the observed tuple rates may not be good for doing decision-
making, because what is really interesting is to know the
capacity of a system,5 or the “true” tuple rate. Values for costs
and benefits need to be estimated for each migration decision,
whereas values of the evaluation metrics are measured during
migration. The mismatch between the modeled cost and the
benefit, and the measured evaluation metrics might also help
to complement future migration decisions and the assessment
of migration using further metrics. The most commonly used
parameters to determine the cost of migration are the migration
time and state size, and few systems use more precise cost
parameters, such as latency spike and performance penalty.
While some approaches, such as [52], are listed in Table X
for performing placement optimization based on the cost of
migration, they are notably absent from Table XI because
these approaches do not use any specific metric to describe
the cost of migration.

690 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

TA
B

L
E

X
I

O
V

E
R

V
IE

W
O

F
PA

P
E

R
S

O
N

M
IG

R
A

T
IO

N
D

E
C

IS
IO

N
S
,C

O
V

E
R

IN
G

D
E

P
L

O
Y

M
E

N
T

E
N

V
IR

O
N

M
E

N
T
,M

IG
R

A
T

IO
N

G
O

A
L

S
,

A
N

D
M

E
T

R
IC

S
U

S
E

D
F

O
R

M
IG

R
A

T
IO

N
C

O
S

T
A

N
D

B
E

N
E

FI
T

(C
on
tin
ue
d)

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 691

TA
B

L
E

X
I

(C
on

ti
nu

ed
)

O
V

E
R

V
IE

W
O

F
PA

P
E

R
S

O
N

M
IG

R
A

T
IO

N
D

E
C

IS
IO

N
S
,C

O
V

E
R

IN
G

D
E

P
L

O
Y

M
E

N
T

E
N

V
IR

O
N

M
E

N
T
,M

IG
R

A
T

IO
N

G
O

A
L

S
,

A
N

D
M

E
T

R
IC

S
U

S
E

D
F

O
R

M
IG

R
A

T
IO

N
C

O
S

T
A

N
D

B
E

N
E

FI
T

692 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

C. Migration Cost

Accurately defining the cost of migration is essential for
making the correct migration decisions. It can be manifested as
increased resource consumption and any kind of degradation
of execution, such as decreased throughput or increased tuple
latency. Table XI indicates that it is more common to measure
the cost of migration than it is to model it for making migration
decisions.

The vast majority of solutions use migration-specific metrics
to model the cost, as opposed to metrics that are used for
measuring the benefit of the adaptation. Tuple processing
performance is used in many cases to model and measure
benefit, but very few approaches have used it to calculate the
cost of migration. Heinze et al. [55] modeled and predicted
tuple latency as part of the cost of migration, by using the
predicted input rate, migration time, and time before queued
events can be processed. The tuple latency is defined in
Equation (3).

latSpike(op) = pauseTime(op) + delayproc(op)

− delayarrival (op) (3)

No solution was provided to model the tuple rate, because it
is much easier to measure tuple processing performance than
to predict it, when it comes to the cost of migration. Operator
downtime is an indicator of spikes in latency but also depends
on the tuple rate, because only those tuples that are supposed
to be processed during operator downtime are affected. As we
discuss later, several solutions have been proposed to model
and predict the future tuple rate in a DSP. These predictions
can be leveraged to make migration decisions. However, none
of the existing solutions take into account the cost of migration
in terms of reduced tuple rate.

The migration time and the size of the state to be moved are
the most common costs of migration metrics. Migration time
is typically calculated as a function of state size, bandwidth,
and latency. In environments where the bandwidth and latency
are stable, such as within data centers, the state size is
often interchangeable with migration time. In most cases,
the migration time is assumed to be easy to model and no
calculation for it is given. Some solutions can migrate multiple
operators at a time, and thus define the migration time as the
maximum time it takes to move any of the operators [72], [92].
Cardellini et al. [72] used a data center-based solution to define
the operator downtime based on the type of adaptation made,
size of the state to be moved, and the round-trip delay between
the nodes and the computational resources. WASP [92] is
a wide area network solution that defines the time it takes
to move an operator based on the state size and bandwidth
between links, the latter of which is significantly more limited
and variable in a wide area network than a data center. Using
the migration time, WASP [92] makes the decision of where
to migrate by solving a minmax problem by minimizing the
slowest migration: minmax (

|states1|
Bs2
s1

), where B s2
s1 represents

the available bandwidth from site s1 to s2 and |states1|
represents the size of the state on the old host (s1).

Zhu et al. [141] focused on the time needed for each step
of migration, such as the time spent cleaning the accumulated
tuples, state matching, moving the state, and recomputing it.

In Elysium [68], migration time is defined as: Rstate +
Rrestart + Rqueue , where Rstate is the time it takes to send
the state, Rrestart is the time it takes to restart the topologies,
and Rqueue is the time it takes to process the tuples that were
received and queued up during Rstate + Rrestart .

Ma et al. [108] defined a migration cost model:
cost = (t2 − t1) × (i2 − i1), where t2 − t1 is the migration
time, and i2 − i1 is the difference in performance between the
new host and the old host. The logic is that migration decisions
need to make a trade off between the migration cost and
benefit. If the new host has significantly better performance
than the old host, it might be worth to do the migration, even
though the migration takes a long time.

Using state size as the cost of migration is among the
easiest ways of defining cost because it requires only looking
at the size of the state to be migrated. The solutions that
we analyzed that use state size as cost metric are all cloud-
based, which makes sense since data centers feature a high and
stable bandwidth between nodes, in contrast to geo-distributed
environments. The state size is frequently used as part of the
objective function when making migration decisions [50], [57]
as part of a constraint to prevent costly solutions from being
selected [67], and can even be the only criterion to minimize
when making load balancing decisions [70], [73].

Luthra et al. [99] used the number of control messages
during migration as part of the definition of the cost of
migration. This parameter is significant because if nodes have
to wait for acknowledgments for these messages, the total
migration time then depends on the distance between nodes.
When the cost of migration is defined in terms of migration
time, only the time taken to move the state is generally
included in the equation, and might result in an inaccurate
view of the cost.

The bandwidth delay product is a measure of how much
data can be sent in a given duration. As part of the cost of
migration, it represents the amount of data that can be sent
when a migration is underway. The more tuples that can be
sent, the higher is the cost of migration, and the less desirable
a migration is. MigCEP [96], [98] uses the average bandwidth
delay product during migration as its cost. This represents the
utilization of the network due to migration.

The monetary costs of migration have been modeled by
Zacheilas et al. [60] and Hiessl et al. [90]. VISP [90]
distinguishes between the enactment cost of a placement,
which is the cost of running the current topology, and the
migration cost, which is the cost of making a change.

Enactment cost:

Cop(x) =
∑

i∈Vdsp

∑

u∈V i
res

Cuxi ,u (4)

Migration cost:

Cmig (x) =
∑

i∈Vdsp

∑

u∈V i
res

∑

u∈V i
res

C (i , u, v) xprevi,u xi ,v (5)

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 693

where Vdsp represents the operators, Vres represents the
compute nodes, xi ,v represents the placement of operator i ∈
Vdsp on the new host v ∈ Vres , and xprevi ,u represents the
placement of operator i ∈ Vdsp on the old host u ∈ Vres .

Considering both the enactment cost and the migration cost
makes it possible to assess whether the long-term cost savings
from scaling down to fewer instances exceed the short-term
cost of migration, leading to a reduction in the frequency of
migrations.

D. Benefit

To explore the optimization goals of different migration
solutions, we begin by examining the most important metrics
used to assess the benefits of migration. The benefit of
migration is based on performance in terms of the placement,
amortization time, and the cost of migration (as explained
in Section III-B). This is either explicitly defined or implicit
in the decision-making, where the goal is to maximize
performance in terms of the placement and minimize the cost
of migration.

One could argue that all goals of optimization are relevant
to all goals of migration. However, some are more tightly
coupled than others. For instance, load balancing involves
using the load of a system to make balancing decisions.
QoS solutions, on the contrary, are not bound specifically
to any goal of optimization. Elasticity-based solutions aim
to minimize resource usage while maintaining the QoS. In
other words, they use as few resources as possible for an
application, and trigger a scaling operation when the load
is above or below a given threshold. Fault tolerance-based
solutions involve migrations when nodes fail and the operators
must be migrated to new or existing nodes.

Network performance as a goal of optimization means using
the quality of the network links to determine performance in
terms of placement. Important metrics in this context include
the bandwidth between links in the overlay topology, the
latency between nodes, and the bandwidth delay product.
Tuple processing performance in query processing is the most
popular indicator of the quality of an adaptation, as shown
by the number of studies that have measured the benefit of
migration in terms of tuple latency or rate. If a node is
overloaded in a data center, the latency of the tuple might
exceed acceptable levels, leading to QoS violations. A long
migration time might temporarily worsen performance, but if
the general gain in performance outweighs the degradation,
the migration is considered worth it. The load of a system
is an important goal of optimization that makes it possible
to run as many operators on a node as it can handle, and to
make changes when the workload is above or below a given
threshold. The cost of migration is essential to consider when
making migration decisions to avoid excessively frequent
migrations and ensure that the benefit of the new placement
outweighs the cost of migration. When the cost of migration
is used to calculate its benefit, the result is the modeled
benefit of migration. Monetary cost can be useful as a goal of
optimization to make a tradeoff between the cost of resources
and the performance of the system.

1) Network: In decentralized fog and edge computing solu-
tions, network usage as well as bandwidth and latency between
links are crucial metrics. Pietzuch et al. [117] developed
an overlay network that can make network-aware placement
and migration decisions. Parameters, like the latency and
bandwidth of overlay links and the load on nodes are used as
criteria of optimization when placing and migrating operators.
Rizou et al. [88] implemented a similar method that converges
to the optimal placement in fewer migrations than the solution
by Pietzuch et al. [117].

2) Tuple Performance: Being able to analyze streaming
data as soon as it arrives and to react immediately to certain
patterns in the data is one of the core motivations for SPEs.
Therefore, tuple performance is of significant importance.
Furthermore, in a resource-constrained environment, tuple
latency can be an indicator of energy consumption and the goal
to minimize latency can implicitly lead to energy reduction.
For most existing approaches, the goal of migration directly
or indirectly involves improving performance. Most elasticity-
based and load balancing-based solutions are cluster-based,
and are more concerned with the load on the system than the
bandwidth of or latency between links.

The tuple rate of a data stream can be used to detect
backpressure, i.e., when the input rate is higher than the
processing rate. This can be used as an indicator of the
load on the nodes, and to calculate the variance in load. For
instance, Buddhika et al. [66] proposed a methodology to
reduce the interference between stream processing operators
using migration. To achieve this, the interference score of an
operator is calculated, where the higher the score is, the greater
the need is for migration. This interference score is based
on the prediction of future packet load. Similarly, the WASP
system [92] relies on the expected input and output rates of an
operator instead of merely on the observed rates. Repantis and
Kalogeraki [86] defined latency constraints on the operators
and used tuple latency to determine when an operator must be
migrated.

Tuple latency is a common constraint to have on the
operator performance. If the latency constraints are not kept,
it causes the system to scale out or perform load balancing.
Röger et al. [91] studied the relationship between latency
constraints and monetary costs. In particular, the lower the
latency constraints are, the more instances a system needs to
run, and thus, the more costly the operation is. As such, the
optimization problem is:

min
∑

cu∈path
cost(cu, latency)

∀paths
∑

cu∈path
latency(cu) <= e-to-e latency bound

(6)

3) Load: Unsurprisingly, all load balancing solutions use
either load as a parameter when making decisions or tuple
performance to model load. One method is to minimize the
variance in load between nodes in a cluster [57]. In this
case, a coordinator monitors the load on the system nodes
and, when a balancing decision has to be made, selects the

694 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

configuration with the least variation in load. This might,
however, require expensive migrations of large loads among
many nodes, and redistributing loads that are not the cause of
the imbalance. Another method is to trigger a load balance
when the imbalance has crossed over a given threshold to re-
balance the load to at least below a given threshold [57]. In
other words, load balancing is used as a constraint. In this case,
the goal is to minimize the cost of migration by redistributing
the minimum amount of load to achieve an acceptable load
balance. This method achieves an acceptable load balance
while moving the smallest load.

Resource usage can mean multiple metrics that relate to
the system’s workload. It can be the number of threads
assigned to the operators, as described in the work by Xu and
Palanisamy [100]. Alternatively, it can also be understood
in terms of the CPU queue state of a computing node, as
illustrated by Sun et al. [77]:

lcn,[ts ,te] =
∑

vi∈Vcn,[ts ,te]

nvi ,cn,[ts ,te], (7)

where nvi ,cn,[ts ,te], indicates the number of tuples of operator
vi during [ts , te], and vi ∈ Vcn,[ts ,te]. The load is then
partially based on the tuple rate, and later used as a constraint
in a minmax load balancing optimization problem.

Elasticity-based solutions increase or reduce the number
of resources used by an application based on its variable
workload. If a cluster is overloaded after load balancing,
this is a sign that the system should scale out [104]. In
decentralized fog-based solutions, the load of a system is not
known beforehand, and therefore, there might be a tradeoff
between latency and load. Pietzuch et al. [117] introduced a
cost space model in which a topology of systems is constructed
based on the latency and bandwidth between nodes as well
as the load on systems. If the load of a system is large, the
relevant node appears farther in the cost space when mapping
an operator graph to a physical topology, and thus is less likely
to be selected.

4) Monetary Costs: In the cloud model, followed by the
fog and edge models, users mostly pay based on usage. Users
can allocate a certain amount of resources and scale out or
in whenever more or less resources are needed, to keep the
resource usage cost low. A complicated issue in this case is
balancing the monetary costs with the benefits of improved
placement. None of the load balancing solutions use monetary
cost as an optimization criterion. This makes sense as the load
balancing problem involves evenly distributing the load over
a fixed amount of resources, whereas elasticity can increase
or reduce the amount of resources. In terms of hardware
resources, there is nothing to optimize as they are already
paid for. The monetary cost of moving states during migration
can thus be minimized. Typically, this is implicitly done
by designing the objective function to minimize the number
of state that need to be moved. Elasticity-based solutions
require a tradeoff between resource usage and monetary
costs [60], [65], [89]. An elastic solution might use a threshold
for the load to determine when to scale out. However, deciding
when to scale in might be more complex, considering that it
requires a certain downtime for the worker to be removed.

5) Costs of Migration: Any type of migration introduces
some costs. However, this does not mean that a migration
always affects the QoS. If no tuples arrive during the downtime
of the operator no tuples will be affected and neither the
QoS. Most studies aim to prevent the cost of migration from
affecting the QoS by implicitly minimizing the number of
migrations, their frequency, or their magnitude. Zhou et al. [49]
emphasized the need to minimize the time needed for query
migration but did not describe a means of implementing this
in their solution. Lombardi et al. [68] defined the cost of
migration in terms of the time it takes to perform different steps
but did not attempt to minimize it. The cost of migration can be
minimized by either using single-objective optimization [57],
[73], [76], [92], or simple additive weighting (SAW) with
multiple objectives [50], [52], [72], [89], [95]. If only the
cost of migration is minimized, constraints have to be placed
on the quality of the placement to ensure that the selected
placement is acceptable. With load balancing, minimizing the
cost of migration while maintaining constraints on the load
imbalance is a good way to ensure a balanced load that
minimally affects the performance of the system.

Minimizing the number of migrations is a similar
goal to minimizing the cost of migration. Repantis and
Kalogeraki [86] proposed a hotspot alleviation-based solution
with the goal of minimizing the number of migrations that
leads to an acceptable QoS for the operators. Rizou et al. [88]
implemented a similar relaxation algorithm to the one in [117],
and showed that it requires fewer migrations before converging
to the optimal placement and fewer control messages. The
easiest way to prevent needless migrations is to use a threshold
that ensures that they are beneficial. Load balancing systems
commonly use thresholds of load imbalance to ensure that the
load is redistributed only when the load imbalance is above
a certain threshold. A different type of threshold targets the
migration itself to ensure that its benefit is worth its cost.
Pietzuch et al. [117] proposed a method that migrates data
only when the benefit in terms of network capacity is higher
than a threshold based on the cost of migration.

Using the cost of migration as a goal of optimization
means penalizing a placement alternative based on it. Even
if a placement is better than the given placement, it might
not be preferred because the cost of the reconfiguration is
too high. In load balancing-based approaches, the cost of
migration is commonly minimized but most often as an
implicit goal rather than as part of the objective function. The
goal is generally to achieve an acceptable load distribution as
quickly as possible, and the redistribution itself constitutes the
highest cost. The cost of migration can be minimized while
maintaining a balanced load [73]. The number of migrations
can be minimized while fulfilling QoS requirements [86].
Another way is to maximize the improvement in a query plan
and divide the improvement in performance by the cost of
migration [52]. Load balancing decisions can be made with
cost of migration in mind in multiple ways [57]: minimizing
the cost of migration with load balancing as a constraint,
keeping the cost of migration as a constraint while minimizing
the load imbalance, or combining load and cost of migration
to minimize both.

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 695

In elasticity-based approaches, the cost of migration is
often considered in the same way as in load balancing
because scaling can be considered to be an extension of load
balancing. Zacheilas et al. [60] minimized the monetary costs
of computational resources, the cost of migration, and the
cost of missing tuples. In this approach, a tradeoff is made
between the cost of resources, the cost of missing tuples, and
the migration time. A reinforcement learning-based approach
was used in [89] that minimizes the cost of reconfiguration,
the performance penalty due to QoS constraints, and the cost
of resources for using the computational resources.

E. Proactive Migration Decisions

Current migration solutions generally use reactive
approaches to make migration decisions. That means migration
is a reaction to a certain trigger-event that happened. For
instance, a migration might be triggered if a node is overloaded
and QoS guarantees are violated, such as when the tuple
latency increases excessively. In contrast, proactive migration
is performed before a trigger-event happens. This means that
the trigger-event needs to be predicted, typically based on
historical monitoring data. Most proactive solutions predict
whether the node can sustain the workload.

In Table XII, we summarize the studied papers that con-
tribute with proactive decision-making strategies for operator
migration. For each paper, we highlight the specific prediction
approach and its key idea.

There are many ways to model or estimate the metrics
described above. The classical way is to collect some mea-
surements from possible migration hosts and formulate an
optimization problem using, e.g., ILP, and then attempt to
solve it. This is done by Cardellini et al. in [72], [138].

Some solutions predict the adaptability of QoS viola-
tions [86], [104]. Repantis et al. [86] used linear regression
and the incoming tuple rate to predict QoS violations of the
end-to-end execution time. They predicted QoS violations to
prevent them. Lohrmann et al. [104] built a predictive latency
model using queuing models and Kingman’s formula [153] to
make scaling decisions.

Zacheilas et al. [60] estimated the load and expected
latency of Esper to make scaling decisions by using Gaussian
processes [154] because they can help to estimate the uncer-
tainty in predictions. However, this method has a cubic
computational complexity due to the use of matrix inver-
sion. Liu et al. [82] used the extended Gaussian Processes
upper confidence bound algorithm to search for the optimal
configuration for bottleneck operators for modeling the ser-
vice capacity. Wang et al. [69] predicted resource usage
in real time to choose the configuration that can minimize
CPU and memory resources while fulfilling QoS guaran-
tees. This is done using incremental learning techniques
based on Weka [155] and MOA [156]. De Matteis and
Mencagli [107] used MPC to predict optimal scaling decisions,
called the future horizon. Buddhika et al. [66] used prediction
rings to forecast the interference score that expresses the
degree to which a system is expected to be overloaded.
Lombardi et al. [68] used a reactive and a proactive mode

for making scaling decisions in their Elysium system. In the
reactive mode, the tuple rate is used as the basis for decisions,
and in the proactive mode, the input load is predicted over a
certain time, called the prediction horizon.

In [89], a reinforcement learning approach is applied to
decide when to perform scaling operations. Liu et al. [74]
predicted the load of operators as the number of tuples
that operators need to process during a prediction horizon.
In WASP [92], the expected input and output rates of the
operators are estimated as an alternative to backpressure
monitoring for estimating load. Backpressure is weaker as it
is based on the observed load instead of the actual workload,
and this may lead to less accurate adaptation decisions [150].
A composition of reactive, proactive, and delayed migrations
was presented in [152]. The results of this empirical study
indicated that knowledge of the window state can be used
to schedule a migration when the state is minimal (i.e., after
completing a tumbling window, as in [99]), or when no output
tuple is affected by the migration.

The Phoebe system [81] predicts future workloads as a
way to make near-optimal scaling decisions. This is done
using models for predicting the end-to-end latency of tuples
and recovery time of the system. The end-to-end latency
model uses multiple regression and clustering for estimating
latencies of scaleouts and workload rates. The recovery time
model bases its predictions on multistep-ahead time series
forecasting [157] of the expected workload rate over time and
a regression model for predicting the maximum processing
capacity of the system.

VI. EMPIRICAL QUANTIFICATION OF CORE

CONCEPTS OF MIGRATION

The previous two sections have given the reader an under-
standing of how operator migration works and which design
choices for migration mechanisms and decisions have been
investigated in existing works. The aim of this section is
to complement the understanding of the functional aspects
of operator migration with some insights into the impact of
design decisions on the performance of operator migration.
Therefore, we first define two direct moving state migration
algorithms: (1) one that uses partial state movement, and
(2) another that sends the entire state at once. They are defined
in an abstract way such that they can be implemented in
different SPEs, and we have decided to implement them in
the two popular SPEs Apache Flink and Siddhi. We define
decision models to determine when and where to migrate the
data. We conducted a real migration experiment to analyze the
migration algorithms based on the NEXMark benchmark [10].
We show a use case of the decision models for migration to
illustrate their effect on decision-making.

A. Migration Algorithms

The difference between the partial state movement algo-
rithm and the all-at-once state movement algorithm is that
the former splits the state into a large static state and a
small dynamic state. The static state is transmitted while
the operator is still running and processing tuples, followed

696 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

TABLE XII
PROACTIVE MIGRATION PREDICTION TECHNIQUES

by the extraction of the dynamic state. As such, static state
transmission involves little or no overhead in query processing,
and constitutes only one additional step in the algorithm. Note
that a partial state movement algorithm might split the state
into more than two parts, such as in Megaphone [75] and
Meces [80].

We use the algorithms described in Section IV as basis.
In particular, we divide the algorithms into functions that
are executed by different nodes participating in the network
according to their roles. When moving the state, the old host
provides the next hops for the query. Thus, there is no need to
add them explicitly in these tasks. These tasks follow a similar
format to that used in Expose [123], which is a framework and
toolset for efficiently defining and executing DSP experiments.
Wrappers for different SPEs are provided such that all SPEs
support a common set of tasks. Expose has been extended with
additional tasks to enable operator migration.

Listings 6 and 7 describe the tasks we use to define the
all-at-once state movement algorithm and the partial state
movement algorithm, respectively. They differ slightly from
similar algorithms in Section IV in some respects, such as
the ways in which streams are managed. It is possible to
send a batch of tasks to upstream nodes, as in Flux [46],
to the new host as in [50], and to the old host as in [85].
The difference between the all-at-once state movement and
partial state movement algorithms is that the latter involves
sending the current state of the query before the operator is
paused, achieving the same effect as in checkpoint-assisted
solutions.

Implementation: To facilitate the migration of any moving
state operator, an SPE needs to be able to extract the runtime
state and the load state. This feature is supported in different
ways by Siddhi and Flink. In Siddhi, the state is loaded
from the runtime system into a byte array, and requires that
the entire state is available in memory. As such, there are
limitations on how large the state can be. On the contrary,
Flink writes the state as a set of checkpoint files, each of which
does not exceed a configurable size. Therefore, the state to

migrate with Flink can be larger than in Siddhi. The imple-
mentation of the other tasks, including BufferStreams,
StopStreams, ControlMessage, AddNextHop and the
rest, is supported through simple tasks defined in the SPE
wrapper in Expose [123].

The standard moving state algorithm is implemented in
Flink and Siddhi, but only Flink supports partial state
movement since this requires the ability to split a given
state into a large, immutable state and smaller incremen-
tal checkpoints. This feature is supported by one of the
state backends in Flink called RocksDB [158]. Flink with
RocksDB is also used for the checkpoint-assisted algorithm
in Rhino [78], which uses partial state movement. Another
benefit of RocksDB is that it does not store the entire state in
memory while the system is running, but instead writes it to
file and minimizes its size based on multiple criteria.

As discussed in Section V, there are many different ways
of making the migration decision. Our solution is to make the
decision process as transparent and meaningful as possible by
optimizing the QoS. The goal is to maximize the performance
of a placement while penalizing it based on the cost of
migration, which varies for different nodes and is zero for the
current host. In this way, it is clear why a new placement is
selected over the old one, for reasons other than simply that
the old host is over-provisioned or the new placement delivers
better performance.

The amortization time (at) varies depending on the reliabil-
ity of a placement score for the operator on a given host. If
the placement score is stable over time, the amortization time
increases since it is less likely that the placement becomes
suboptimal shortly after the migration. For instance, a mobile
node might have less consistent placement score than a server
located in a data center, and as such, it is even more important
that the migration is worth the cost of it.

at(h, op) = minat + (maxat −minat)/100 ∗ (100− rsdp(h, op))

(8)

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 697

Listing 6. All-at-once state movement.

where rsdp(h, op) expresses the relative standard deviation
(RSD) of the historical placement scores of operator op on
host h.

When defining the cost of migration, operator downtime
alone is not sufficient, because it does not reveal how many
tuples, if any, are affected by the downtime. Therefore, we
use the tuple rate during the migration as a foundation for the
cost of migration. Since the data sink waits for tuples from the
operator, we consider the number of expected output tuples
PTout (at , op) that are affected by the migration to calculate
its cost. Buddhika et al. [66], Phoebe [81] and Liu et al. [82]
describe tuple prediction methods that can be applied here:

PTout (at , op) = PTin(at , op) ∗ Sel(op) (9)

where PTin(at , op) is the predicted number of input tuples
for operator op during amortization time at and Sel(op) is the
selectivity of operator op, which could for instance be a join,
pattern matching operator or an aggregation operator.

The cost of migration can be calculated as the operator
downtime divided by the amortization time. Since we focus
on output tuples from the query, the cost of migration C(op,
oh, nh) is defined as the ratio of the predicted output tuples
(PTout (mt(oh,nh, op)) from a query during migration to the
output tuples predicted from it during the amortization time
(PTout (at(nh, op))).

C (op, oh,nh) = wc ∗ PTout (mt(oh,nh, op))

PTout (at(nh, op))
(10)

The cost has a weight associated with it, meaning that
the system can dynamically change how much the cost of
migration matters based on the selected policy. If wc is set to
one, this suggests that the performance of a placement should
be reduced in proportion to the number of tuples that are
received during operator downtime. If wc is set to 1.5, the
placement is penalized further. This makes sense as buffered
tuples may take some time to process, during which time no
new tuples may be processed.

B. Decision Models

Given the amortization time, the benefit of the migration
Bm (op, oh,nh) of a placement is its finite performance
penalized by the cost of migration, instead of it being a general
placement score. Of two placements with the same migration
cost, the one with the higher placement score is selected. The
only difference arises when two placements have different
costs of migration, for instance, when comparing the given
placement with zero cost of migration with another placement

Listing 7. Partial state movement.

that requires a migration. The benefit of migration can be
calculated as:

Bm (op, oh,nh) = P(nh, op) ∗ (1− C (op, oh,nh)) (11)

where P(nh, op) is the estimated placement score for the new
host nh running operator op.

The above functions show how the migration decisions
are made. Migration checks are periodically performed by
calculating the placement score. Following this, the benefit of
the migration of placements is calculated by penalizing the
placement score based on the cost of migration. We define
M(oh, phs, op) as the potential host with the maximum benefit
for the given operator. This host is selected as the future
host for the operator, and triggers migration if it is not the
given placement:

M (oh, phs , op) = max
ph∈phs

B(oh, ph, op). (12)

C. Empirical Evaluation

We quantitatively analyzed the proposed decision models
for migration through a use case and our migration algorithm
through experiments. The goal was to show the usefulness
of incorporating the cost of migration into the process. We
considered a use case for the decision models, because it
makes the analysis and discussion of the results easier. On
the other hand, implementing and running the migration
algorithms on SPEs is necessary to understand the impact of
migration.

Figure 14 illustrates our evaluation scenario: Figure 14a
shows the operator graph used for both the use case and
the migration experiment, and Figure 14b shows the DSP
overlay topology. The mapping from the operator graph to the
physical topology is demonstrated using the decision models in
Section VI-C1, and an experiment involving the migration of
state from the join operator on one node to another is described
in Section VI-C2.

1) Decision Model Use Case: The decision models for
migration were assessed in this use case. They were applied
using a prediction model oracle with 100% accuracy to
make migration decisions. We expect that the migration time
can be predicted based on periodically updated topological
information and network statistics. By using knowledge of the
number of tuples sent in the time window and the migration
time, we can predict the total end-to-end latency of the tuples
during a given time window. The parameters of the use case

698 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

Fig. 14. Evaluation scenario.

TABLE XIII
PARAMETERS OF THE USE CASE

are provided in Table XIII. We considered two source nodes
A and B, three potential hosts C, D, and E, and a sink node F.

Results: Table XV shows the results of the use case for
the configurations given in Table XIII and the run-specific
parameters are provided in Table XIV, including amortization
time and placement scores for the potential hosts. These scores
would in a real-world system be calculated based on the
expected performance of a node that runs the system. Node
E has the best P score in all runs, as illustrated in Figure 14,
which means it is the best candidate for running the operator.
However, the cost of migration, as indicated in Table XIII,
shows that Node E has five times higher migration cost than
migration to Node D, which leads to Node E only being
preferred when the cost is ignored (M (NCM)), and Node C
and D are preferred when the cost is considered (M (CM)).
The previously described equations are used along with the at
and P scores to define the benefits of the potential placements,
and the preferred host is selected based on M.

Since the P score was stable for Node E, and was signif-
icantly better than that for Node C, a decision policy may
decide to dynamically increase the amortization time for nodes
that had demonstrated their stability in terms of the predicted

TABLE XIV
PLACEMENT SCORE AND AMORTIZATION TIME PARAMETERS FOR EACH

SPECIFIC RUN IN THE USE CASE

TABLE XV
RESULTS OF THE USE CASE

P score. On the contrary, Node D has a significantly variable
P score, which increased above that of Node C with a value of
1.6 in the second row, but yielded a lower benefit of migration
of 1.36, and was not selected as the new host. With a score
of 2.5 that was reduced to 2.125 given the migration cost, it
beat the given host, and was selected as the new host.

2) Migration Experiment: In this experiment, we demon-
strated two migration algorithms by analyzing and comparing
their execution results in two different SPEs, with one SPE
limited to a single algorithm. The all-at-once state movement
runs were used to send 100,000, 1,000,000, and 5,000,000
tuples. The partial state movement runs were used to send
between 1,100,000 and 300,100,000 tuples. The noticeable
differences in the number of migrated tuples between the all-
at-once and partial state movement runs were a result of the
limitations in the SPE’s state backends, as explained in further
detail below. The additional 100,000 tuples with partial state
movement were sent during migration, and were part of the

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 699

TABLE XVI
SERVER SPECIFICATION

TABLE XVII
RESULTS OF ALL-AT-ONCE MOVING STATE EXPERIMENT

TABLE XVIII
PARTIAL MOVING STATE EXPERIMENT RESULTS

dynamic state to be sent. The experiment used a simplified
version of the topology in Figure 14b in two ways. First, there
was only one upstream node. Second, there were only two
hosts: the old and the new host.

The experiment tested the cost of migration by varying
the size of the state to be moved. For runs of the partial
state movement, the number of tuples that were migrated
during static state migration and dynamic state migration
were varied. The dataset of the NEXMark stream processing
benchmark [10] was used in the experiment. NEXMark is
based on an auction scenario, where three streams are used:
a Person, a Bid, and an Auction item stream. For this
experiment, only one of the queries was used, one that joined
the Person and Bid streams. We used this query because a
join query makes it easier to test the migration algorithm and
adjust the size of the state to migrate. One can simply send
a given number of tuples of the first stream, migrate it to the
new host, and send a single tuple of the second stream to the
new host. If this triggered the correct number of output tuples
to be produced, the migration was considered to have been
successful.

Four processes with different roles were used in the
experiment: a data producer node, an operator host running
the operator to be migrated, a new host that contained the
operator after migration, and the data sink that consumed
the output tuples of the operator. We used two machines for
the experiment, one for the old host, and the other to run the
data producer, data consumer, and new host. The machines
were connected via Ethernet cable in a local area network. The
specifications of the machines are shown in Table XVI. In the
experiment, the data producer generated a certain amount of
Auction tuples that were sent to the old host. The state was
then migrated to the new host, and the data producer sent a
single Person tuple that joined with all the Auction tuples to
trigger the same number of output tuples to be sent to the data

sink as Auction tuples that were sent prior to the migration.
The query we used was a modification of NEXMark’s [10]
Query 8. Originally, this query does not select the itemName
of the auction, but chooses the person’s name. Each Auction
tuple was augmented with 1 kB of a randomized string to
increase the size of the state to be migrated.

In all runs, we counted the number of tuples that were
migrated, the state size, the state extraction time, the state
transfer time, and the state loading time. For the partial state
movement algorithm, the same parameters were used for the
static and dynamic states. The state to be migrated ranged from
1 to 300 GB. However, Siddhi has a limit of 1 GB because
it extracts the entire state into a single byte array, whereas
Flink’s state backend RocksDB splits the state into multiple
files. RocksDB is used in both the all-at-once approach and
partial state migration approach, but where all-at-once disables
incremental checkpointing and partial state migration enables
it. When migrating all-at-once with Flink, the maximum state
that could be migrated is 5 GB, because the checkpoints
fail at larger states. It is unknown why this issue occurs. It
would be possible to run Flink with all-at-once migration with
incremental checkpoints, but then it would be the same as the
partial state migration, except where the state transfer of the
static state is added to the freeze time.

Results: Tables XVII and XVIII show the experimental
results of the all-at-once state movement algorithm and the
partial state movement algorithm, respectively. Siddhi and
Flink migrated operator states of different sizes depending on
the query and the number of tuples that were processed.

The state transfer times of Siddhi and Flink were similar
because they used similar implementations of the TCP socket.
Siddhi performed slightly better, because Flink had to read
the checkpoint from multiple files, and state transfer was
executed in parallel with reading the files. State extraction
appeared to scale relatively poorly for both Siddhi and Flink

700 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

with the all-at-once state movement algorithm, but with the
partial moving state, Flink had a significantly lower state
extraction overhead. Moreover, state loading using partial
state movement was much faster than without it. Note that
these results do not represent the general performance of
the SPEs, but the outcomes for a specific join query that
was used for a specific system. Another query might have
yielded different results. For instance, this query was very
write heavy and the Auction tuples were made to be larger
in size than the benchmark normally defines. In this case,
the partial state movement algorithm performed better in all
respects.

One might think that the all-at-once state movement algo-
rithm would have had faster state loading as it has a
monolithic checkpoint, but this was not the case. We think
this result is obtained because the incremental checkpointing
uses RocksDBs native checkpoint files whereas Flink’s full
snapshot approach iterates through the RocksDB state and
creates its own files. RocksDB is designed to be efficient, and
performs indexing to increase its efficiency. This benefit was
lost in the full snapshot approach.

If we assume that the number of tuples that were received
during the freeze time arrived at a fixed rate, the average
additional tuple latency as a result of the migration would
be equal to half the freeze time. The maximum additional
tuple latency would be approximately equal to the freeze time
and the minimum was close to zero. The number of affected
tuples could vary significantly, ranging from zero to hundreds
of thousands per second.

The partial state movement algorithm performed much
better than the all-at-once algorithm in terms of freeze time,
almost 20 times less freeze time for the partial state movement
algorithm versus the all-at-once movement algorithm when
the state to migrate was around 5 GB. There are two rea-
sons for the performance gain. First, using the incremental
checkpointing led to lower state loading times. Second, most
of the state was moved before the operator was shut down.
This difference in performance was especially significant when
considering how similar the algorithms were in terms of how
they were described in Listings 6 and 7. Only one task was
added to Listing 7, which was to migrate the immutable state
before the streams were redirected by the upstream nodes.
This leads to the important conclusion that the literature can
benefit from a common language when defining or using a
migration algorithm. Exactly what tasks are executed during
the migration, in particular, those that increase the freeze time,
can be described using, e.g., the concepts of the migration
model in Section III.

Table XVIII shows that the size of the dynamic state in the
partial state movement runs was unpredictable. For instance,
when 25 million tuples were migrated, the size of the dynamic
checkpoint containing 100k tuples was 3 GB, whereas it was
only 279 MB for 200 million tuples. However, the actual size
of the 100k tuples remained around 100 MB across all runs.
This could be attributed to the fact that we disabled RocksDB
compaction after extracting the static state. Had we kept the
compaction enabled, the final incremental checkpoint would
have potentially merged with the static state, resulting in a

new set of state files that would be incompatible with the ones
sent to the new host.

VII. REFLECTIONS AND FUTURE DIRECTIONS

The historical development in operator migration, from the
early single-track moving all-at-once state migration solutions
to checkpoint-assisted partial state movement and parallel-
track solutions without state movement, has been driven
by the deployment of SPEs to the cloud environment, and
improvements to them to achieve fault tolerance and dynamic
scalability. The core ideas to achieve this are related to
resource availability and state management. Cloud environ-
ments provide large amounts of computational resources (even
though at different scales), and their servers are interconnected
with low-latency high-bandwidth networks. This allows to
execute operators in parallel to improve migration performance
at the cost of higher resource utilization. Early single-track
migration solutions treat the state as a single large binary
object as such there is no other way to migrate the entire state
all-at-once.

More advanced state management solutions allow to parti-
tion the state which in turn leads to more design options for
migration solutions. Checkpointing, distinguishing between
immutable and mutable state, and prioritization of state par-
titions are examples for partition mechanisms. The more
advanced solutions, e.g., based on prioritization, consider the
semantics of the state to determine which piece of the state
should be migrated first to improve the migration performance.
Very recent approaches follow the idea of prioritization to
perform state shedding, which reduces the size of the state to
be migrated at the cost of inconsistency between the state at
the old and new host. Another way to reduce the state size is
to schedule the migration. Based on these insights on how to
improve operator migration for cloud-based environments it is
reasonable to expect that such solutions might also work well
in fog environments.

However, in fog environments that are geo-distributed, the
connections between hosts have substantially lower available
bandwidth and higher latencies that can impact the cost and
benefit of operator migration, and require adapted migration
mechanisms. The periodic checkpointing and replication of
checkpoints are used in some cluster-based SPEs to facilitate
fault tolerance and fast migrations, but it is not always feasible
to replicate and distribute checkpoints, especially in resource
constrained IoT devices. For future in-network processing
solutions with mobile platforms, e.g., advanced crowd-sensing.

It is clear that the smaller the size of the data to be migrated
is, the less energy is consumed. Therefore, scheduling operator
migration at a point in time when the state is small or even zero
is important. This can be achieved, for example, by delayed
migration by waiting until a tumbling window is emptied [98],
and through proactive migration. Another alternative is to
allow for some inconsistent state, i.e., not the entire state is
migrated to the new host. In some cases, aggregation operators
can be moved without the state, resulting in zero freeze time.
Alternatively, load shedding techniques can be applied to send
some of the state, or components of it can be assigned a

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 701

priority such that only the most important state is migrated,
while the less significant part of it is omitted. However,
a thorough investigation of the pros and cons of reactive,
delayed, and proactive migrations in different environments
with different workloads and guarantees of consistency is still
elusive.

Another gap in research is an analysis and comparison of
stream management techniques. Several aspects are important
for such an investigation: (1) the sequence of tasks like
the stopping, buffering, redirecting, and starting of streams,
(2) the locations where streams are buffered, (3) the delivery
semantics, i.e., at least once, at most once, exactly once as
well as ordered or out-of-order delivery, and (4) tasks related
to buffer management and transport protocols.

The quality of decision-making on migration depends on
the data available to calculate its cost and benefit, as well
as the freshness of the data. The continuous collection and
dissemination of monitoring data in DSP can be expensive.
Efficient monitoring solutions, and leveraging other sources of
monitoring data that are, for example, used for network and
system management have the potential to reduce the overall
cost of DSP and ensure good decision-making.

Leveraging historical data to perform predictions with
advanced statistics or modern machine learning solutions, as
is done for traffic prediction in network management [159]
and data prediction in wireless sensor networks [160], is
another subject that deserves more attention in research. Some
studies have already explored proactive migration techniques,
as discussed earlier in the paper, but further investigation into
this area remains necessary. Both proactive migration and the
use of amortization time in the cost model require some form
of prediction. The oxymoron of operator migration, i.e., that
the need for migration occurs when the cost of migration is
high, can be avoided with proactive migration. Furthermore,
proactive migration can be used to schedule a migration when
the state is still small in size. However, both traffic and data
patterns might be changing during the deployment of DSP
systems, and appropriate and efficient online learning solutions
need to be investigated for operator migration.

One promising research direction is to further explore the
application of DSP in MEC scenarios. While many previous
works have focused on the migration of services, most
of them have assumed an all-at-once migration approach.
It is worth investigating how partial state migration, state
shedding, parallel-track, and distributed checkpoint replication
algorithms can be adapted to the more challenging and
geo-distributed MEC settings. Specifically, how can these
migration mechanisms affect decision-making and change the
frequency of migration, compared to the all-at-once approach?

A key challenge in MEC scenarios is the significant increase
in migration time due to limited bandwidth and variable
hardware resources among potential operator hosts. Therefore,
we need to investigate how different migration mechanisms
can be applied in such settings, especially in low-bandwidth
scenarios where these mechanisms could have the largest
benefits. For example, a parallel-track migration mechanism
might be a good fit for MEC, as it splits the data streams
into one for migration and one for processing. This allows for

normal processing to occur while the migration is ongoing,
resulting in a smooth handover without discernible downtime.
Alternatively, we could consider using the partial state migra-
tion approach Megaphone, which could be particularly useful
in low-bandwidth scenarios. In contrast, within data centers,
these mechanisms may not be necessary, because migration
times are significantly lower due to high bandwidth.

VIII. CONCLUSION

DSP is becoming increasingly important for handling data
with high velocity and large variety. The variety is caused by
data from different sources and over time as well as other
system dynamics, e.g., resource availability, require adapting
DSP accordingly. Operator migration is the mechanism for
keeping the DSP in an “optimal” configuration over its
lifetime. However, operator migration is a complex task that
can be solved in many different ways, i.e., there are many
design alternatives for operator migration. Which of those
alternatives are a good choice depends on factors like the
deployment environment, the system goal, workload, etc.

To enable the reader to gain a good understanding of how
operator migration works and the design space for it, we
introduced a conceptual model of operator migration based on
the largest common denominator in the literature to establish
a common and unified terminology and taxonomy. In the
model, we separated clearly mechanism and policy, i.e., migra-
tion mechanism and migration decision. For the latter we
placed emphasis on its costs and benefits. The description of
existing solutions shall provide the reader with an overview
on existing solutions and further foster the understanding
of the design alternatives from an algorithmic viewpoint.
We complemented this with an empirical study to give the
reader some quantitative insights into the impact of different
design alternatives for migration mechanisms (i.e., all-at-once
and partial state movements), and the impact of the choice
of data stream processing system (i.e., Siddhi and Apache
Flink). We demonstrate how the freeze time for the naïve all-
at-once migration approach is almost 20 times longer than
when applying an incremental checkpoint-based partial state
migration approach that is based on Rhino [78].

ACKNOWLEDGMENT

The authors thank Fabrice Starks and Stein Kristiansen for
insightful discussions on mechanisms of operator migration,
and Boris Koldehofe for reviewing and commenting on an
earlier version of the manuscript. The authors would like to
express their gratitude to the anonymous reviewers for their
insightful and constructive feedback.

REFERENCES

[1] E. Mehmood and T. Anees, “Challenges and solutions for processing
real-time big data stream: A systematic literature review,” IEEE Access,
vol. 8, pp. 119123–119143, 2020.

[2] A. Gharaibeh et al., “Smart cities: A survey on data management,
security, and enabling technologies,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 4, pp. 2456–2501, 4th Quart., 2017.

702 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

[3] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep
learning for IoT big data and streaming analytics: A survey,” IEEE
Commun. Surveys Tuts., vol. 20, no. 4, pp. 2923–2960, 4th Quart.,
2018.

[4] R. Sahal, J. G. Breslin, and M. I. Ali, “Big data and stream processing
platforms for industry 4.0 requirements mapping for a predictive
maintenance use case,” J. Manuf. Syst., vol. 54, pp. 138–151, Jan. 2020.

[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache fLink: Stream and batch processing in a single
engine,” Bull. IEEE Comput. Soc. Techn. Committee Data Eng., vol. 36,
no. 4, p. 10, 2015.

[6] “fLink.” Accessed: Feb. 27, 2023. [Online]. Available:
https://flink.apache.org/powered-by

[7] M. Fragkoulis, P. Carbone, V. Kalavri, and A. Katsifodimos. “A
survey on the evolution of stream processing systems.” 2020. [Online].
Available: https://arxiv.org/abs/2008.00842

[8] J. Manyika et al., Unlocking the Potential of the Internet of Things.
McKinsey Global Inst., New York, NY, USA 2015.

[9] S. Suhothayan, K. Gajasinghe, I. L. Narangoda, S. Chaturanga,
S. Perera, and V. Nanayakkara, “SIDDHI: A second look at complex
event processing architectures,” in Proc. ACM Workshop Gateway
Comput. Environ., 2011, pp. 43–50.

[10] P. Tucker, K. Tufte, V. Papadimos, and D. Maier, “NexMark—A
benchmark for queries over data streams draft,” OGI School Sci. Eng.,
OHSU, Portland, OR, USA, Sep. 2008.

[11] T. Heinze, L. Aniello, L. Querzoni, and Z. Jerzak, “Cloud-based data
stream processing,” in Proc. 8th ACM Int. Conf. Distrib. Event Based
Syst., 2014, pp. 238–245.

[12] G. T. Lakshmanan, Y. Li, and R. Strom, “Placement strategies for
Internet-scale data stream systems,” IEEE Internet Comput., vol. 12,
no. 6, pp. 50–60, Nov./Dec. 2008.

[13] W. Hummer, B. Satzger, and S. Dustdar, “Elastic stream processing
in the cloud,” Wiley Interdiscipl. Rev. Data Min. Knowl. Disc., vol. 3,
no. 5, pp. 333–345, 2013.

[14] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm, “A catalog
of stream processing optimizations,” ACM Comput. Surveys, vol. 46,
no. 4, pp. 1–34, 2014.

[15] M. D. de Assunção, A. da Silva Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” J. Netw. Comput. Appl., vol. 103, pp. 1–17,
Feb. 2018.

[16] Q.-C. To, J. Soto, and V. Markl, “A survey of state management in big
data processing systems,” VLDB J., vol. 27, no. 6, pp. 847–872, 2018.

[17] H. Röger and R. Mayer, “A comprehensive survey on parallelization
and elasticity in stream processing,” ACM Comput. Surveys, vol. 52,
no. 2, pp. 1–37, 2019.

[18] C. Qin, H. Eichelberger, and K. Schmid, “Enactment of adaptation
in data stream processing with latency implications—A systematic
literature review,” Inf. Softw. Technol., vol. 111, pp. 1–21, Jul. 2019.

[19] X. Liu and R. Buyya, “Resource management and scheduling in
distributed stream processing systems: A taxonomy, review, and future
directions,” ACM Comput. Surveys, vol. 53, no. 3, pp. 1–41, 2020.

[20] M. Bergui, S. Najah, and N. S. Nikolov, “A survey on bandwidth-aware
geo-distributed frameworks for big-data analytics,” J. Big Data, vol. 8,
no. 1, pp. 1–26, 2021.

[21] V. Cardellini, F. L. Presti, M. Nardelli, and G. R. Russo, “Run-time
adaptation of data stream processing systems: The state of the art,”
ACM Comput. Surveys, vol. 54, no. 11, pp. 1–36, 2022.

[22] A. Vogel, D. Griebler, M. Danelutto, and L. G. Fernandes, “Self-
adaptation on parallel stream processing: A systematic review,”
Concurrency Comput. Pract. Exp., vol. 34, no. 6, 2022, pp. 1–36, 2022.

[23] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid method
for minimizing service delay in edge cloud computing through VM
migration and transmission power control,” IEEE Trans. Comput.,
vol. 66, no. 5, pp. 810–819, Nov. 2017.

[24] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K. R. Choo, and M. Dlodlo,
“From cloud to fog computing: A review and a conceptual live VM
migration framework,” IEEE Access, vol. 5, pp. 8284–8300, 2017.

[25] J. Hu, G. Wang, X. Xu, and Y. Lu, “Study on dynamic service migration
strategy with energy optimization in mobile edge computing,” Mobile
Inf. Syst., vol. 2019, Oct. 2019, Art. no. 5794870.

[26] S. K. Pande, S. K. Panda, and S. Das, “Dynamic service migration
and resource management for vehicular clouds,” J. Ambient Intell.
Humanized Comput., vol. 12, pp. 1227–1247, Jan. 2021.

[27] Z. Zeng et al., “Efficient edge service migration in mobile edge
computing,” in Proc. IEEE 26th Int. Conf. Parallel Distrib. Syst.
(ICPADS), 2020, pp. 691–696.

[28] R. Urgaonkar, S. Wang, T. He, M. Zaxfer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-cloud,”
Perform. Eval., vol. 91, pp. 205–228, Jan. 2015.

[29] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live
service migration in mobile edge clouds,” IEEE Wireless Commun.,
vol. 25, no. 1, pp. 140–147, Feb. 2018.

[30] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers
via docker container migration,” in Proc. 2nd ACM/IEEE Symp. Edge
Comput. (SEC), 2017, pp. 1–13.

[31] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in Proc. IFIP
Netw. Conf. (IFIP Netw.), 2015, pp. 1–9.

[32] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar, “A dynamic
service migration mechanism in edge cognitive computing,” ACM
Trans. Internet Technol., vol. 19, no. 2, pp. 1–15, Apr. 2019.

[33] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Mobility-induced service migration in mobile micro-clouds,” in Proc.
IEEE Mil. Commun. Conf., 2014, pp. 835–840.

[34] H. Wang, Y. Li, A. Zhou, Y. Guo, and S. Wang, “Service migration
in mobile edge computing: A deep reinforcement learning approach,”
Int. J. Commun. Syst., vol. 19, no. 2, 2020, Art. no. e4413.

[35] C. Zhang and Z. Zheng, “Task migration for mobile edge computing
using deep reinforcement learning,” Future Gener. Comput. Syst.,
vol. 96, pp. 111–118, Jul. 2019.

[36] Z. Gao, Q. Jiao, K. Xiao, Q. Wang, Z. Mo, and Y. Yang, “Deep
reinforcement learning based service migration strategy for edge
computing,” in Proc. IEEE Int. Conf. Service Oriented Syst. Eng.
(SOSE), 2019, pp. 116–1165.

[37] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge
services leveraging container layered storage,” IEEE Trans. Mobile
Comput., vol. 18, no. 9, pp. 2020–2033, Sep. 2019.

[38] C. Dupont, R. Giaffreda, and L. Capra, “Edge computing in
IoT context: Horizontal and vertical Linux container migration,”
in Proc. IEEE Global Internet Things Summit (GIoTS), 2017,
pp. 1–4.

[39] U. Mandal, M. F. Habib, S. Zhang, B. Mukherjee, and M. Tornatore,
“Greening the cloud using renewable-energy-aware service migration,”
IEEE Netw., vol. 27, no. 6, pp. 36–43, Nov./Dec. 2013.

[40] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Commun. Surveys
Tuts., vol. 19, no. 3, pp. 1628–1656, 3rd Quart., 2017.

[41] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey of large scale
data management approaches in cloud environments,” IEEE Commun.
Surveys Tuts., vol. 13, no. 3, pp. 311–336, 3rd Quart., 2011.

[42] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in edge
computing: A survey,” IEEE Commun. Surveys Tuts., vol. 23, no. 4,
pp. 2131–2165, 1st Quart., 2021.

[43] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904,
2nd Quart., 2020.

[44] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Proc. Workshop Mobile Big Data, 2015,
pp. 37–42.

[45] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Commun. Surveys Tuts., vol. 20, no. 3, pp. 1826–1857, 3rd Quart.,
2018.

[46] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J. Franklin,
“FLUX: An adaptive partitioning operator for continuous query
systems,” in Proc. 19th Int. Conf. Data Eng., 2003, pp. 25–36.

[47] Y. Xing, S. Zdonik, and J.-H. Hwang, “Dynamic load distribution in
the borealis stream processor,” in Proc. IEEE 21st Int. Conf. Data Eng.
(ICDE), 2005, pp. 791–802.

[48] J.-H. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik, “A cooperative,
self-configuring high-availability solution for stream processing,” in
Proc. IEEE 23rd Int. Conf. Data Eng., 2007, pp. 176–185.

[49] Y. Zhou, K. Aberer, and K.-L. Tan, “Toward massive query
optimization in large-scale distributed stream systems,” in Proc.
ACM/IFIP/USENIX Int. Conf. Distrib. Syst. Platforms Open Distrib.
Process., 2008, pp. 326–345.

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 703

[50] W. Hummer, P. Leitner, B. Satzger, and S. Dustdar, “Dynamic
migration of processing elements for optimized query execution
in event-based systems,” in Proc. OTM Confeder. Int. Conf. Move
Meaningful Internet Syst., 2011, pp. 451–468.

[51] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using
operator state management,” in Proc. ACM SIGMOD Int. Conf. Manag.
Data (SIGMOD), ‘ 2013, pp. 725–736.

[52] C. Lei and E. A. Rundensteiner, “Robust distributed query processing
for streaming data,” ACM Trans. Database Syst., vol. 39, no. 2,
pp. 1–45, 2014.

[53] A. Martin, A. Brito, and C. Fetzer, “Scalable and elastic realtime click
stream analysis using Streammine3G,” in Proc. 8th ACM Int. Conf.
Distrib. Event Based Syst., 2014, pp. 198–205.

[54] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer, “Auto-scaling
techniques for elastic data stream processing,” in Proc. IEEE 30th Int.
Conf. Data Eng. Workshops, 2014, pp. 296–302.

[55] T. Heinze, Z. Jerzak, G. Hackenbroich, and C. Fetzer, “Latency-
aware elastic scaling for distributed data stream processing systems,”
in Proc. 8th ACM Int. Conf. Distrib. Event Based Syst., 2014,
pp. 13–22.

[56] E. A. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu, B. Pielech,
and N. Mehta, “CAPE: Continuous query engine with heterogeneous-
grained adaptivity,” in Proc. 13th Int. Conf. Very Large Data Bases,
vol. 30, 2004, pp. 1353–1356.

[57] B. Gedik, “Partitioning functions for stateful data parallelism in stream
processing,” VLDB J., vol. 23, no. 4, pp. 517–539, 2014.

[58] K. G. S. Madsen and Y. Zhou, “Dynamic resource management in a
massively parallel stream processing engine,” in Proc. 24th ACM Int.
Conf. Inf. Knowl. Manag., 2015, pp. 13–22.

[59] A. Martin, T. Smaneoto, T. Dietze, A. Brito, and C. Fetzer, “User-
constraint and self-adaptive fault tolerance for event stream processing
systems,” in Proc. 45th Annu. IEEE/IFIP Int. Conf. Depend. Syst.
Netw., 2015, pp. 462–473.

[60] N. Zacheilas, V. Kalogeraki, N. Zygouras, N. Panagiotou, and
D. Gunopulos, “Elastic complex event processing exploiting
prediction,” in Proc. IEEE Int. Conf. Big Data (Big Data), 2015,
pp. 213–222.

[61] V. Cardellini, M. Nardelli, and D. Luzi, “Elastic stateful stream
processing in storm,” in Proc. Int. Conf. High Perform. Comput.
Simulat. (HPCS), 2016, pp. 583–590.

[62] K. G. S. Madsen, Y. Zhou, and L. Su, “ENORM: Efficient
window-based computation in large-scale distributed stream processing
systems,” in Proc. 10th ACM Int. Conf. Distrib. Event Syst., 2016,
pp. 37–48.

[63] J. Li, C. Pu, Y. Chen, D. Gmach, and D. Milojicic, “Enabling elastic
stream processing in shared clusters,” in Proc. IEEE 9th Int. Conf.
Cloud Comput. (CLOUD), 2016, pp. 108–115.

[64] Y. Liu, X. Shi, and H. Jin, “Runtime-aware adaptive scheduling in
stream processing,” Concurrency Comput. Pract. Exp., vol. 28, no. 14,
pp. 3830–3843, 2016.

[65] C. Hochreiner, M. Vögler, S. Schulte, and S. Dustdar, “Elastic stream
processing for the Internet of Things,” in Proc. IEEE 9th Int. Conf.
Cloud Comput. (CLOUD), 2016, pp. 100–107.

[66] T. Buddhika, R. Stern, K. Lindburg, K. Ericson, and S. Pallickara,
“Online scheduling and interference alleviation for low-latency, high-
throughput processing of data streams,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 12, pp. 3553–3569, May 2017.

[67] K. G. S. Madsen, Y. Zhou, and J. Cao, “Integrative dynamic recon-
figuration in a parallel stream processing engine,” in Proc. IEEE 33rd
Int. Conf. Data Eng. (ICDE), 2017, pp. 227–230.

[68] F. Lombardi, L. Aniello, S. Bonomi, and L. Querzoni, “Elastic symbi-
otic scaling of operators and resources in stream processing systems,”
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 3, pp. 572–585, Mar.
2018.

[69] C. Wang, X. Meng, Q. Guo, Z. Weng, and C. Yang, “Automating
characterization deployment in distributed data stream manage-
ment systems,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 12,
pp. 2669–2681, Dec. 2017.

[70] J. Fang, R. Zhang, T. Z. J. Fu, Z. Zhang, A. Zhou, and J. Zhu,
“Parallel stream processing against workload skewness and variance,”
in Proc. 26th Int. Symp. High Perform. Parallel Distrib. Comput., 2017,
pp. 15–26.

[71] L. Mai et al., “CHI: A scalable and programmable control plane for
distributed stream processing systems,” Proc. VLDB Endow., vol. 11,
no. 10, pp. 1303–1316, 2018.

[72] V. Cardellini, F. L. Presti, M. Nardelli, and G. R. Russo, “Optimal
operator deployment and replication for elastic distributed data stream
processing,” Concurrency Comput. Pract. Exp., vol. 30, no. 9, 2018,
Art. no. e4334.

[73] J. Fang, R. Zhang, T. Z. J. Fu, Z. Zhang, A. Zhou, and X. Zhou,
“Distributed stream rebalance for stateful operator under workload
variance,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 10,
pp. 2223–2240, Oct. 2018.

[74] S. Liu, J. Weng, J. H. Wang, C. An, Y. Zhou, and J. Wang, “An
adaptive online scheme for scheduling and resource enforcement in
storm,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1373–1386, 2019.

[75] M. Hoffmann, A. Lattuada, F. McSherry, V. Kalavri, J. Liagouris,
and T. Roscoe, “Megaphone: Latency-conscious state migration for
distributed streaming dataflows,” Proc. VLDB Endow., vol. 12, no. 9,
pp. 1002–1015, 2019.

[76] L. Wang, T. Z. J. Fu, R. T. B. Ma, M. Winslett, and Z. Zhang,
“Elasticutor: Rapid elasticity for realtime stateful stream processing,”
in Proc. Int. Conf. Manag. Data, 2019, pp. 573–588

[77] D. Sun, S. Gao, X. Liu, X. You, and R. Buyya, “Dynamic redirection
of real-time data streams for elastic stream computing,” Future Gener.
Comput. Syst., vol. 112, pp. 193–208, Jun. 2020.

[78] B. D. Monte, S. Zeuch, T. Rabl, and V. Markl, “Rhino: Efficient
management of very large distributed state for stream processing
engines,” in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2020,
pp. 2471–2486.

[79] L. Zhang, W. Zheng, C. Li, Y. Shen, and M. Guo, “AutraScale: An
automated and transfer learning solution for streaming system auto-
scaling,” in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
2021, pp. 912–921.

[80] R. Gu, H. Yin, W. Zhong, C. Yuan, and Y. Huang, “MECES: Latency-
efficient rescaling via prioritized state migration for stateful distributed
stream processing systems,” in Proc. USENIX Annu. Techn. Conf.
(USENIX ATC), 2022, pp. 539–556.

[81] M. K. Geldenhuys, D. Scheinert, O. Kao, and L. Thamsen, “PHOEBE:
QoS-aware distributed stream processing through anticipating dynamic
workloads,” in Proc. IEEE Int. Conf. Web Services (ICWS), 2022,
pp. 198–207.

[82] Y. Liu, H. Xu, and W. C. Lau, “Online resource optimization for
elastic stream processing with regret guarantee,” in Proc. 51st Int. Conf.
Parallel Process., 2022, pp. 1–11.

[83] Y. Ahmad, U. Cetintemel, J. Jannotti, A. Zgolinski, and S. B. Zdonik,
“Network awareness in Internet-scale stream processing,” IEEE Data
Eng. Bull., vol. 28, no. 1, pp. 63–69, 2005.

[84] O. Papaemmanouil, U. Cetintemel, and J. Jannotti, “Supporting generic
cost models for wide-area stream processing,” in Proc. IEEE 25th Int.
Conf. Data Eng., 2009, pp. 1084–1095.

[85] T. Repantis and V. Kalogeraki, “Alleviating hot-spots in peer-to-peer
stream processing environments,” in Proc. 5th Int. Workshop Databases
Inf. Syst. Peer-to-Peer Comput. DBISP2P, 2007, p. 13.

[86] T. Repantis and V. Kalogeraki, “Hot-spot prediction and alleviation in
distributed stream processing applications,” in Proc. IEEE Int. Conf.
Depend. Syst. Netw. FTCS DCC (DSN), 2008, pp. 346–355.

[87] W. Wang, M. A. Sharaf, S. Guo, and M. Tamer Özsu, “Potential-driven
load distribution for distributed data stream processing,” in Proc. 2nd
Int. Workshop Scalable Stream Process. Syst., 2008, pp. 13–22.

[88] S. Rizou, F. Dürr, and K. Rothermel, “Solving the multi-operator
placement problem in large-scale operator networks,” in Proc. 19th Int.
Conf. Comput. Commun. Netw., 2010, pp. 1–6.

[89] V. Cardellini, F. L. Presti, M. Nardelli, and G. R. Russo, “Decentralized
self-adaptation for elastic data stream processing,” Future Gener.
Comput. Syst., vol. 87, pp. 171–185, Oct. 2018.

[90] T. Hiessl, V. Karagiannis, C. Hochreiner, S. Schulte, and M. Nardelli,
“Optimal placement of stream processing operators in the fog,” in Proc.
IEEE 3rd Int. Conf. Fog Edge Comput. (ICFEC), 2019, pp. 1–10.

[91] H. Röger, S. Bhowmik, and K. Rothermel, “Combining it all: Cost
minimal and low-latency stream processing across distributed hetero-
geneous infrastructures,” in Proc. 20th Int. Middleware Conf., 2019,
pp. 255–267.

[92] A. Jonathan, A. Chandra, and J. Weissman, “WASP: Wide-area adap-
tive stream processing,” in Proc. 21st Int. Middleware Conf., 2020,
pp. 221–235.

[93] Y. Zhou, B. C. Ooi, K.-L. Tan, and J. Wu, “Efficient dynamic operator
placement in a locally distributed continuous query system,” in Proc.
OTM Conf. Int. Meaningful Internet Syst., 2006, pp. 54–71.

[94] G. Brettlecker and H. Schuldt, “Reliable distributed data stream
management in mobile environments,” Inf. Syst., vol. 36, no. 3,
pp. 618–643, 2011.

704 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 26, NO. 1, FIRST QUARTER 2024

[95] V. Kakkad, A. E. Santosa, and B. Scholz, “Migrating operator place-
ment for compositional stream graphs,” in Proc. 15th ACM Int. Conf.
Model. Anal. Simulat. Wireless Mobile Syst., 2012, pp. 125–134.

[96] B. Ottenwälder, B. Koldehofe, K. Rothermel, and U. Ramachandran,
“MigCEP: Operator migration for mobility driven distributed complex
event processing,” in Proc. 7th ACM Int. Conf. Distrib. Event Syst.,
2013, pp. 183–194.

[97] G. Chatzimilioudis, A. Cuzzocrea, D. Gunopulos, and N. Mamoulis,
“A novel distributed framework for optimizing query routing trees in
wireless sensor networks via optimal operator placement,” J. Comput.
Syst. Sci., vol. 79, no. 3, pp. 349–368, 2013.

[98] B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, D. Lillethun,
and U. Ramachandran, “MCEP: A mobility-aware complex event
processing system,” ACM Trans. Internet Technol., vol. 14, no. 1,
pp. 1–24, 2014.

[99] M. Luthra, B. Koldehofe, P. Weisenburger, G. Salvaneschi, and R. Arif,
“TCEP: Adapting to dynamic user environments by enabling transitions
between operator placement mechanisms,” in Proc. 12th ACM Int.
Conf. Distrib. Event Syst., 2018, pp. 136–147.

[100] J. Xu and B. Palanisamy, “Model-based reinforcement learning for
elastic stream processing in edge computing,” in Proc. IEEE 28th Int.
Conf. High Perform. Comput. Data Anal. (HiPC), 2021, pp. 292–301.

[101] P. Liu, D. D. Silva, and L. Hu, “DART: A scalable and adaptive edge
stream processing engine,” in Proc. USENIX Annu. Tech. Conf., 2021,
pp. 239–252.

[102] E. Oliveira, A. R. da Rocha, M. Mattoso, and F. C. Delicato, “Latency
and energy-awareness in data stream processing for edge based IoT
systems,” J. Grid Comput., vol. 20, no. 3, p. 27, 2022.

[103] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez, “StreamCloud: An elastic and scalable data stream-
ing system,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 12,
pp. 2351–2365, Dec. 2012.

[104] B. Lohrmann, P. Janacik, and O. Kao, “Elastic stream processing with
latency guarantees,” in Proc. IEEE 35th Int. Conf. Distrib. Comput.
Syst., 2015, pp. 399–410.

[105] T. De Matteis and G. Mencagli, “Keep calm and react with foresight:
Strategies for low-latency and energy-efficient elastic data stream
processing,” ACM SIGPLAN Notices, vol. 51, no. 8, pp. 1–12, 2016.

[106] N. Tziritas, T. Loukopoulos, S. U. Khan, C.-Z. Xu, and A. Y. Zomaya,
“On improving constrained single and group operator placement using
evictions in big data environments,” IEEE Trans. Services Comput.,
vol. 9, no. 5, pp. 818–831, Sep./Oct. 2016.

[107] T. De Matteis and G. Mencagli, “Proactive elasticity and energy aware-
ness in data stream processing,” J. Syst. Softw., vol. 127, pp. 302–319,
May 2017.

[108] K. Ma, B. Yang, and Z. Yu, “Optimization of stream-based live data
migration strategy in the cloud,” Concurrency Comput. Pract. Exp.,
vol. 30, no. 12, 2018, Art. no. e4293.

[109] D. Dedousis, N. Zacheilas, and V. Kalogeraki, “On the fly load
balancing to address hot topics in topic-based pub/sub systems,” in
Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2018,
pp. 76–86.

[110] B. Li, Z. Zhang, T. Zheng, Q. Zhong, Q. Huang, and X. Cheng,
“Marabunta: Continuous distributed processing of skewed streams,”
in Proc. 20th IEEE/ACM Int. Symp. Cluster Cloud Internet Comput.
(CCGRID), 2020, pp. 252–261.

[111] V. Gulisano, H. Najdataei, Y. Nikolakopoulos, A. V. Papadopoulos,
M. Papatriantafilou, and P. Tsigas, “Stretch: Virtual shared-nothing
parallelism for scalable and elastic stream processing,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 4221–4238,
Dec. 2022.

[112] T. Heinze et al., “FUGU: Elastic data stream processing with latency
constraints,” IEEE Data Eng. Bull., vol. 38, no. 4, pp. 73–81,
Jan. 2015.

[113] Y. Wu and K.-L. Tan, “ChronoStream: Elastic stateful stream compu-
tation in the cloud,” in Proc. IEEE 31st Int. Conf. Data Eng., 2015,
pp. 723–734.

[114] L. Xu, B. Peng, and I. Gupta, “STELA: Enabling stream processing
systems to scale-in and scale-out on-demand,” in Proc. IEEE Int. Conf.
Cloud Eng. (IC2E), 2016, pp. 22–31.

[115] X. Ni, S. Schneider, R. Pavuluri, J. Kaus, and K.-L. Wu, “Automating
multi-level performance elastic components for IBM streams,” in Proc.
20th Int. Middleware Conf., 2019, pp. 163–175.

[116] D. Sun, S. Gao, X. Liu, and R. Buyya, “A multi-level collaborative
framework for elastic stream computing systems,” Future Gener.
Comput. Syst., vol. 128, pp. 117–131, Mar. 2022.

[117] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing
systems,” in Proc. IEEE 22nd Int. Conf. Data Eng. (ICDE), 2006,
pp. 49–49.

[118] F. Liu, Z. Jin, W. Mu, W. Zhu, Y. Zhang, and W. Wang, “DROAllocator:
A dynamic resource-aware operator allocation framework in distributed
streaming processing,” in Proc. Netw. Parallel Comput. 17th IFIP WG
10.3 Int. Conf. (NPC), Sep. 2021, pp. 349–360.

[119] “Apache.” Accessed: Feb. 26, 2023. [Online]. Available:
https://storm.apache.org

[120] “Espertech.” Accessed: Feb. 26, 2023. [Online]. Available:
https://www.espertech.com/esper

[121] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and S. Khan,
“A survey of distributed data stream processing frameworks,” IEEE
Access, vol. 7, pp. 154300–154316, 2019.

[122] “Apache Beam.” Accessed: Feb. 26, 2023. [Online]. Available:
https://beam.apache.org

[123] E. Volnes, T. Plagemann, V. Goebel, and S. Kristiansen, “EXPOSE:
Experimental performance evaluation of stream processing engines
made easy,” in Proc. Technol. Conf. Perform. Eval. Benchmarking,
2020, pp. 18–34.

[124] F. Starks, T. P. Plagemann, and S. Kristiansen, “DCEP-SIM: An open
simulation framework for distributed CEP,” in Proc. 11th ACM Int.
Conf. Distrib. Event Syst., 2017, pp. 180–190.

[125] G. Amarasinghe, M. D. de Assuncao, A. Harwood, and
S. Karunasekera, “ECSNet: A simulator for distributed stream
processing on edge and cloud environments,” Future Gener. Comput.
Syst., vol. 111, pp. 401–418, Oct. 2020.

[126] T. Goyal, A. Singh, and A. Agrawal, “CloudSim: Simulator for
cloud computing infrastructure and modeling,” Procedia Eng., vol. 38,
pp. 3566–3572, 2012. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1877705812023259

[127] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,” Softw.
Pract. Exp., vol. 47, no. 9, pp. 1275–1296, 2017.

[128] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “iFogSim2: An
extended iFogSim simulator for mobility, clustering, and microservice
management in edge and fog computing environments,” J. Syst. Softw.,
vol. 190, Aug. 2022, Art. no. 111351.

[129] C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An environ-
ment for performance evaluation of edge computing systems,” Trans.
Emerg. Telecommun. Technol., vol. 29, no. 11, 2018, Art. no. e3493.

[130] T. Qayyum, A. W. Malik, M. A. K. Khattak, O. Khalid, and S. U. Khan,
“FogNetSim: A toolkit for modeling and simulation of distributed fog
environment,” IEEE Access, vol. 6, pp. 63570–63583, 2018.

[131] D. N. Jha et al., “IoTSim-edge: A simulation framework for modeling
the behavior of Internet of Things and edge computing environments,”
Softw. Pract. Exp., vol. 50, no. 6, pp. 844–867, 2020.

[132] C. Puliafito et al., “MobFogSim: Simulation of mobility and migration
for fog computing,” Simulat. Model. Pract. Theory, vol. 101, May 2020,
Art. no. 102062.

[133] I. Lera, C. Guerrero, and C. Juiz, “YAFs: A simulator for IoT scenarios
in fog computing,” IEEE Access, vol. 7, pp. 91745–91758, 2019.

[134] C. Mechalikh, H. Taktak, and F. Moussa, “PureEdgeSim: A simulation
toolkit for performance evaluation of cloud, fog, and pure edge
computing environments,” in Proc. Int. Conf. High Perform. Comput.
Simulat. (HPCS), 2019, pp. 700–707.

[135] M. Salama, Y. Elkhatib, and G. Blair, “IoTNetSim: A modelling
and simulation platform for end-to-end IoT services and networking,”
in Proc. 12th IEEE/ACM Int. Conf. Utility Cloud Comput., 2019,
pp. 251–261.

[136] J. Wei, S. Cao, S. Pan, J. Han, L. Yan, and L. Zhang, “SatEdgeSim:
A toolkit for modeling and simulation of performance evaluation
in satellite edge computing environments,” in Proc. 12th Int. Conf.
Commun. Softw. Netw. (ICCSN), 2020, pp. 307–313.

[137] K. Alwasel et al., “IoTSim-OSMOSIS: A framework for modeling and
simulating IoT applications over an edge-cloud continuum,” J. Syst.
Architect., vol. 116, Jun. 2021, Art. no. 101956.

[138] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, “Optimal operator
replication and placement for distributed stream processing systems,”
ACM SIGMETRICS Perform. Eval. Rev., vol. 44, no. 4, pp. 11–22,
2017.

[139] B. Koldehofe, R. Mayer, U. Ramachandran, K. Rothermel, and
M. Völz, “Rollback-recovery without checkpoints in distributed event
processing systems,” in Proc. 7th ACM Int. Conf. Distrib. Event Syst.,
2013, pp. 27–38.

VOLNES et al.: TO MIGRATE OR NOT TO MIGRATE: AN ANALYSIS OF OPERATOR MIGRATION 705

[140] “Kafka.” Accessed: Jul. 5, 2021. [Online]. Available:
https://kafka.apache.org

[141] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman, “Dynamic plan
migration for continuous queries over data streams,” in Proc. ACM
SIGMOD Int. Conf. Manag. Data, 2004, pp. 431–442.

[142] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 6, pp. 1447–1463, Jun. 2014.

[143] E. Volnes, T. Plagemann, B. Koldehofe, and V. Goebel, “Travel light:
State shedding for efficient operator migration,” in Proc. 16th ACM
Int. Conf. Distrib. Event Syst., 2022, pp. 79–84.

[144] T. N. Pham, N. R. Katsipoulakis, P. K. Chrysanthis, and A. Labrinidis,
“Uninterruptible migration of continuous queries without operator state
migration,” ACM SIGMOD Rec., vol. 46, no. 3, pp. 17–22, 2017.

[145] F. Starks and T. P. Plagemann, “Operator placement for efficient
distributed complex event processing in MANETs,” in Proc. IEEE 11th
Int. Conf. Wireless Mobile Comput. Netw. Commun. (WiMob), 2015,
pp. 83–90.

[146] U. Srivastava, K. Munagala, and J. Widom, “Operator placement for
in-network stream query processing,” in Proc. 24th ACM SIGMOD-
SIGACT-SIGART Symp. Principles Database Syst., 2005, pp. 250–258.

[147] D. Abadi et al., “The beckman report on database research,” Commun.
ACM, vol. 59, no. 2, pp. 92–99, 2016.

[148] “Gurobi.” Accessed: Jan. 23, 2023. [Online]. Available:
https://www.gurobi.com

[149] “IBM.” Accessed: Jan. 23, 2023. [Online]. Available: http://www-
01.ibm.com/software/commerce/optimization/cplex-optimizer

[150] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw,
and T. Roscoe, “Three steps is all you need: Fast, accurate, automatic
scaling decisions for distributed streaming dataflows,” in Proc. 13th
USENIX Symp. Oper. Syst. Design Implement. (OSDI), Oct. 2018,
pp. 783–798.

[151] N. Hidalgo, D. Wladdimiro, and E. Rosas, “Self-adaptive processing
graph with operator fission for elastic stream processing,” J. Syst.
Softw., vol. 127, pp. 205–216, May 2017.

[152] M. Lindeberg and T. Plagemann, “A study on migration scheduling in
distributed stream processing engines,” in Proc. 23rd Int. Conf. Distrib.
Comput. Netw., 2022, pp. 50–61.

[153] J. F. C. Kingman, “The single server queue in heavy traffic,” in
Mathematical Cambridge Philosophical Society, vol. 57. Cambridge,
U.K.: Cambridge Univ. Press, 1961, pp. 902–904.

[154] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer School on Machine Learning. Berlin, Germany: Springer,
2003, pp. 63–71.

[155] “Weka.” Accessed: Aug. 28, 2021. [Online]. Available:
https://weka.cms.waikato.ac.nz/

[156] “MOA.” Accessed: Aug. 28, 2021. [Online]. Available:
https://www.cs.waikato.ac.nz/ml/weka/

[157] S. B. Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A review and
comparison of strategies for multi-step ahead time series forecasting
based on the NN5 forecasting competition,” Exp. Syst. Appl., vol. 39,
no. 8, pp. 7067–7083, 2012.

[158] “RocksDB.” Accessed: Jan. 23, 2023. [Online]. Available:
https://rocksdb.org/

[159] M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep learning for network
traffic monitoring and analysis (NTMA): A survey,” Comput. Commun.,
vol. 170, pp. 19–41, Mar. 2021.

[160] G. M. Dias, B. Bellalta, and S. Oechsner, “A survey about prediction-
based data reduction in wireless sensor networks,” ACM Comput.
Surveys, vol. 49, no. 3, pp. 1–35, 2016.

Espen Volnes received the B.E. and M.E. degrees
in computer science from the Department of
Informatics, The University of Oslo in 2016 and
2018, respectively, where he is currently pursu-
ing the Ph.D. degree. His research is focused on
distributed stream processing systems, with a par-
ticular emphasis on operator migration and the
performance evaluation, modeling, and simulation of
these systems.

Thomas Plagemann received the Dr.Sc. degree in
computer science from the Swiss Federal Institute
of Technology (ETH), Zürich, Switzerland, in 1994.
Since 1996, he has been a Professor with The
University of Oslo, Oslo, Norway. He has pub-
lished over 200 papers in peer-reviewed journals,
conferences, and workshops in his field. His research
interests include multimodal sensor systems, dis-
tributed data stream processing, and mHealth. He
received the Medal of ETH Zurich in 1995. For a
period of 13 years, he served as the Editor-in-Chief

for Multimedia Systems (Springer). He is an Associate Editor of the ACM
Transactions on Multimedia Computing, Communication, and Applications.
He is a member of the Association for Computing Machinery.

Vera Goebel received the M.S. degree in computer
science from the University of Erlangen–Nuremberg,
Erlangen, Germany, in 1989, and the Ph.D. degree
in computer science from the University of Zurich,
Zürich, Switzerland, in 1994. Since 1997, she has
been a Professor with the Department of Informatics,
The University of Oslo, Oslo, Norway. She has
published over 150 papers in peer-reviewed jour-
nals, conferences, and workshops in her field. Her
research interests include data management, eHealth,
data mining, distributed systems, multimodal sensor

systems, and complex event processing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

