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Abstract 

The motivation of writing this thesis arises in connection with the interpretation of wave 

measurements: How can the wave height be determined from a grazing incidence radar 

image? How well can nonlinearity of the ocean surface be distinguished from grazing 

incidence RADAR images given the fact that the imaging mechanism itself is highly 

nonlinear? Wave height estimation from RADAR images has traditionally been considered a 

difficult task. Several fundamentally different approaches have been described for the 

extraction of wave height. The approach chosen by WAMOS II is based on an empirical 

formula   ̂               √    proposed for marine RADAR by Nieto 

Borge(1997,1998) building on established theory for Synthetic Aperture Radar imaging. 

However, recent theoretical work by Krogstad and Trulsen (2010) suggests that for a 

nonlinear wave field, the linear dispersion relation may not be revealed by direct Fourier 

analysis of spatiotemporal data. This may have implications regarding the correct 

identification of “signal” and “noise” in the signal-to-noise ratio     . In this thesis, 

numerical simulations of linear and nonlinear wave fields are carried out and used as a basis 

to generate synthetic radar imaging with grazing incidence. By studying the differences of the 

remote sensing image-spectra for the linear and nonlinear ocean wave fields, I come to the 

following conclusion: The signal-to-noise ratio becomes more and more inaccurate as the 

actual wave height increases. The numerical simulations of nonlinear wave fields are 

essentially a repetition of recent work by Krogstad & Trulsen. 
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Chapter 1 

Introduction 

1.1 Idea and motivation 

There is at present industrial interest in deterministic measurement and prediction of ocean 

waves. If waves could be measured at some distance, and with sufficient resolution, such that 

once could achieve advance warning of the occurrence of exceptional or dangerous waves, 

quiescent periods, or resulting ship motion. With predications: Automated landing of 

helicopter or airplane on a moving deck, dynamic positioning, more efficient maneuvering, 

steering of sensitive operations, wider operating windows for marine operations, etc. 

The two most feasible remote measurement systems are likely LIDAR and marine RADAR. 

Both systems can be mounted on ships and platforms, both measure the sea surface with 

grazing incidence, and they share several challenges regarding interpretation of the 

measurements. While LIDAR may not work well under certain weather or environmental 

conditions, marine RADAR suffers from uncertainty about how to interpret the RADAR 

image. 

Marine RADAR was chosen as the designated wave measurement system for the recent 

industry project “On Board Wave and Motion Estimator” (OWME) coordinated by MARIN, 

and by the group of Prof. Günther Clauss at the Technical University Berlin. LIDAR was 

chosen for wave measurements by the group of Prof. Mike Belmont at the University of 

Exeter. Many other research efforts can be identified around the world. Recently efforts are 

underway to establish a follow-up OWME-II. 

At least two companies offer commercial products capable of extracting directional wave 

spectra and surface currents from the sea clutter images of marine RADAR, the WAMOS II 

system of Ocean WaveS, and the two systems WAVEX and “SM-050 Wave and Current 

Radar” of Miros. And, of significant importance for deterministic wave prediction, it is 

claimed by Ocean WaveS that the WAMOS II system is capable of extracting single-wave 

properties of the wave field. 
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This master thesis will focus on a specific set of problems that arise in connection with the 

interpretation of wave measurements: How can the wave height be determined from a grazing 

incidence RADAR image? How well nonlinearity of the ocean surface be distinguished from 

grazing incidence RADAR images given the fact that the imaging mechanism itself is highly 

nonlinear? 

Wave height estimation from RADAR images has traditionally been considered a difficult 

task. Several fundamentally different approaches have been described for the extraction of 

wave height. The approach chosen by WAMOS II is based on an empirical formula 

 

      √    

Proposed for marine RADAR by Nieto Borge (1997, 1998) building on established theory for 

Synthetic Aperture Radar (SAR) imaging (Alpers and Hassenlmann, 1982). In the above 

formula    is the significant wave height, SNR is the signal-to-noise ratio, and A, B are two 

empirical parameters that can usually only be determined by a field experimental calibration 

campaign. Indeed, WAMOS II depends on a field calibration campaign, comparing with e.g. 

buoy measurements, for reliable estimate of wave height. There are various reasons why the 

above formula needs an empirical calibration, one being that the Modulation Transfer 

Function (MTF) for typical marine RADAR is in general not known, SAR should being that it 

is still not understood why the above formula known to be valid for SAR should also be valid 

for grazing incidence RADAR. 

It has also been proposed to estimate wave height through direct statistical analysis of the 

radar image. The simplest approach is to estimate the fraction of illuminated surface due to 

shadowing (Buckley and Aler, 1997; Buckley, 2001). More sophisticated statistical analysis 

has also been described, e.g. work done by Rune Gangeska attempting analysis of radar image 

texture for application to Miros RADAR images (Gangeskar, 2000a, b). These methods have 

apparently not been implemented in practical systems yes. 

The Miros wave RADAR does not depend on any calibration campaign for reliable 

measurements of wave height, and is sometimes quoted as being more reliable for the 

estimation of wave height than the WAMOS II system. However, the method employed by 

the Miros wave RADAR is an industry secret not yet published. It should be mentioned here 

that the Miros wave RADAR is a Doppler RADAR provided by Miros, quite different from 

the WAMOS II system that allows a variety of standard marine RADAR models to be 

employed. 

Recent theoretical work by Krogstad and Trulsen (2010) suggests that for a nonlinear wave 

field, the linear dispersion relation may not be revealed by direct Fourier analysis of 

spatiotemporal data. It is suggested that the phase and group velocities may be different from 

those expected for wave components below and above the spectral peak. It is also suggested 

that rather than being a thin dispersion surface, the dispersion relation may be a continuous 

distribution in Fourier space. This has yet to be verified by experiments, and may affect the 
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proper interpretation of wave measurements including the interpretation of RADAR images. 

For example, this may have implications regarding the correct identification of “signal” and 

“noise” in the signal-to-noise ratio (SNR), and it may affect the correct interpretation of the 

Doppler shift in order to identify currents. 

 

1.2 Problem description 

In this thesis, I carry out numerical simulations of linear and nonlinear wave fields with 

different design spectra, employing various steepnesses. Two of the nonlinear models 

described by Krogstad and Trulsen (2010) are employed to account for nonlinearity. These 

wave fields will be used as a basis for synthesized RADAR imaging with grazing incidence. 

We will employ these simulated datasets as a basis for analysis of the simulated radar images. 

The following types of analysis are included: 

Characterize the RADAR image spectrum, and compare with the physical wave spectrum, 

with particular attention to the distortion of the high frequency tail. 

Characterize the observed dispersion relation of the RADAR image, and compare with the 

observed and theoretical dispersion relations of the physical wave data. 

Discuss the feasibility of extracting wave properties directly from the RADAR image, with 

particular attention to the estimation of wave height. 

Study wave field based on the nonlinear Schrödinger equation and its shadowing effect. 

This master thesis is essentially an extension of the work of Rune Gangeskar, but starting out 

from synthetic data rather than field observations. The numerical simulations of nonlinear 

wave fields are a repetition and extension of the recent work by Krogstad & Trulsen. 

 

1.3 Thesis structure 

Chapter 2: 1D linear wave field and its shadowing effect 

(Generation of 1D, 1
st
 order ocean waves and computation of their shadow masks) 

Chapter 3: 2D linear wave field and its shadowing effect 

(Generation of 2D, 1
st
 order ocean waves and computation of their shadow masks) 

Chapter 4: Extracting useful wave information from Fourier analysis of the 1D shadow masks 
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(Generation of 1D, 2
nd

 order nonlinear ocean waves and extraction of wave information from 

their shadow masks) 

Chapter 5: Wave field generated by the nonlinear Schrödinger equation and its shadowing 

       effect 

(Solving the NLS equation and extracting wave information from the shadow masks) 

Chapter 6: Conclusion 
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Chapter 2   

1D linear wave field and its shadowing effect 

2.1 Model for the 1st order ocean surface elevation 

In fluid dynamics, wind waves or, more precisely, wind-generated waves that occur on the 

free surface of oceans are called ocean surface waves. They usually result from the wind 

blowing over a vast enough stretch of fluid surface. Waves in the ocean can travel thousands 

of miles before reaching land and range in size from small ripples to huge waves over 30 

meters high.  

Ocean surface waves have a certain amount of randomness: subsequent waves differ in 

height, duration and shape, with a limited predictability. They can be described as a stochastic 

process, in combination with the physics governing their generation, growth, propagation and 

decay. Therefore, the following mathematical model works reasonably for 1D ocean surface 

waves. 

  ∑                                                           [1] (1) 

Where           are surface elevation, wave number, wave frequency, wave amplitude and 

phase shift respectively. The phase shift varies from   to   and is a good description of the 

stochastic randomness. 

In a macro-scopic stand point, surface tension on the ocean surface is not significant 

comparing to the effect of gravity and thus neglectable. Furthermore, oceans are incredibly 

deep, for instance, the average depth of the Atlantic Ocean is around 3,926 meters (12,881 

feet) and the deepest spot is 8,605 meters (28,232 feet). Due to these two factors, we can well 

apply the dispersion relation for gravity waves in deep water of infinite depth and the 

mathematical model immediately becomes: 

  ∑        
  

 

                                                   (2)                           

In conclusion, an ocean surface wave field can be modeled with a group of sinusoidal waves 

of various frequencies, periods, amplitudes and phase shifts. 

http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Free_surface
http://en.wikipedia.org/wiki/Ocean
http://en.wikipedia.org/wiki/Wind
http://en.wikipedia.org/wiki/Capillary_wave
http://en.wikipedia.org/wiki/Randomness
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Stochastic_process
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2.2 Derivation of the frequency spectrum 

In order to find the wave amplitudes in equation (2), we introduce the idea of wave spectrum 

     and its auto-correlation function     . The spectrum describes the energy distribution of 

waves among different wave frequencies and is defined as the Fourier transformation of its 

auto-correlation function. In statistics, the auto-correlation function of a random process 

describes the correlation between values of the process at different points in time, as a 

function of the time difference. In signal processing, the above definition is often used 

without the normalization and defined as:  

      [              ] 

  [(∑        
 

         )(∑        

 

             )] 

 ∑∑ [       (          )                    ]

  

 

 ∑ [  
    (          )    (               )]

 

 ∑ [       (          )                    ]

   

 

 

 

Since    is independent of    the second part equals to  , we get: 

 ∑∫ [  
    (          )    (               )      ]   

  

 

 

   

 

Since   varies from   to   the density function (  )  
 

  
 , we get: 

 ∑∫ [  
    (          )    (               ) (

 

  
) ]    

  

  

 

Furthermore, we use the trigonometric formula                              and 

get: 
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Then we determine the two-sided spectrum: 
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Set the auto-correlation function into the equation: 

 
 

  
∫ ∑
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Introducing the Kronecker delta function 
 

  
∫    (    )  

 

  
        , we get the two 

sided spectrum: 
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 ∑
  

 

 
 

( (    )         ) 

  

(3) 

  

 

 Applying the normalization rule, we get: 

∫        
 

  

        

             ∑  (  )   ∑
 

 
  

 
   

  (  )   
 

 
  

  

       √  (  )                                                     (4) 

In conclusion, equation (4) describes wave amplitudes with respect to a given spectral 

distribution. 

 

 

2.3 Pierson Moskowitz spectrum 

The Pierson-Moskowitz (PM) spectrum is an empirical relationship that defines the 

distribution of energy with frequency within the ocean. Developed in 1964 the PM spectrum 

is one of the simplest descriptions for the energy distribution. It assumes that if the wind 

blows steadily for a long time over a large area, then the waves will eventually reach a point 

of equilibrium with the wind. This is known as a fully developed sea. To obtain a spectrum of 

a fully developed sea, Pierson and Moskowitz used measurements of waves made by 

accelerometers on British weather ships in the North Atlantic. They selected wave data for 

times when the wind had blown steadily for long times over large areas of the North Atlantic. 

The following graph is a rough illustration of their experiments. 
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Figure 2.1: Wave spectra of a fully developed sea for different wind speeds according to 

Moskowitz (1964). 

 

They finally established a mathematical model for the wave spectrum. 

     
   

     (
 

  
)
 

                                            [2](5) 

Where 

   is a numerical constant =0.0081 

   is a numerical constant =0.74 

 g is gravity coefficient  

 U is the wind speed at 19.4m above the sea surface. 

From the stand point of doing numerical experiments, it is convenient to set        as the 

peak wave frequency so as to have a control over the dominating wave frequency in the PM 

spectrum. 
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2.4 Construction of the ocean surface elevation 

After having defined all the variables in equation (2), we may implement the mathematical 

model with the following Matlab code: 

function eta1(L,T,M,N,omegaP,filename) 
%L-spatial length;  
%T-time length;  
%M-num. of spatial points;  
%N-num. of time points;  
%omegaP-peak wave frequency in PM-spectrum  
alpha=0.0081; 
beta=0.74; 
g=9.8;  
%Discretize omega. 
d_omega=0.2; 
omega_max=6; 
omega_min=0.2; 
omega=omega_min:d_omega:omega_max; 
J=(omega_max-omega_min)/d_omega+1;  
%Discretize k 
k=omega.^2/g; 
%Create the spectrum. 
S=((alpha*g^2)./omega.^5).*exp(-beta.*(omegaP./omega).^4); 
%Construct the coefficients Aj. 
A=sqrt(2*S*d_omega); 
%Discretize the time. 
dt=T/N; 
%Discretize the distance. 
dx=L/M; 
[x,t]=meshgrid(0:dx:L-dx,0:dt:T-dt); 
%load phase 
structure=load('phase','-mat'); 
phi=structure.phi; 
%Construct the wave elevation. 
eta=0; 
for j=1:J 
    eta_frag=A(j)*cos(omega(j)^2/g*x-omega(j)*t+phi(j)); 
    eta=eta+eta_frag; 
end 
x=x(1,:); 
t=t(:,1)'; 
save(filename,'x','t','eta','L','T'); 
fprintf('Sea surface creation is done.\n'); 

 

%Take this out for other uses in other chapters 

function phase() 
d_omega=0.2; 
omega_max=6; 
omega_min=0.2; 
J=(omega_max-omega_min)/d_omega+1; 
for j=1:J 
    phi(j)=2*pi*rand(1); 
end 
save('phase','phi'); 
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Figure 2.2 and 2.3 are the synthetic ocean surface waves generated by the codes. The former 

has a shorter spatial length while the later has a longer one, and they are both at time point 

   . 

 

Figure 2.2: 1D ocean surface waves in a short distance 

 

Figure 2.3: 1D ocean surface waves in a long distance 

In conclusion, ocean surface waves are modeled as a combination of many monochromatic 

waves with different properties and they are highly stochastic. 
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2.5 Computation of the shadow masks 

By detecting waves on the ocean surface with a spatially fixed radar, we observe a radar 

image consisting of visible portions (“islands”) of reflection as well as shadowed regions of 

no reflection (“troughs”). A “shadow mask” is defined by representing “islands” with “1”s 

and “troughs” with “0”s. It is not possible to give an analytical function for the shadow mask 

of a surface wave field, consisting of the superposition of many partial waves. Therefore 

shadow masks are usually found by numerical computations. 

We shall first establish a mathematical model to find shadow masks. We assume a given sea 

surface       with interpolation points   on the  -axis and a fixed radar at the point of       

on the   -plane. First of all, we establish a line-function to represent the path that light 

reflects from waves to the radar, notice that the line-function goes through two points       

and           , so we calculate: 

  
    

  
                                                           (6) 

 

Furthermore, we need to check, for a selected point on the surface   , whether the heights of 

all its previous points:                exceed the corresponding z-values of the line-

function               . That is to check if: 

                               (7) 

 

Figure 2.4: 1D shadow mask analysis 

From the graph, we could clearly observe that if condition (7) is fulfilled for any given point-

  , and then    is shadowed by a point ahead of it and thus not visible to the radar. 
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Implement the mathematical model with MATLAB code: 

s=size(eta); 
Sm=ones(s(1),s(2)); 
%calculate the shadow mask matrix Sm. 
for k=1:s(1) %iterator of time 
    for i=1:s(2) %iterator of distance 
        yl=(eta(k,i)-H)/x(i)*x+H; 
        res=yl-eta(k,:); 
        cross=find(res<0,1); 
        if cross<i 
            Sm(k,i)=0; 
        end 
    end 
end 

 

 

Figure 2.5: 1D shadow mask 

For Figure 2.5, radar is set to the marked point       and the red curve is the shadow mask 

simulated from the 1D ocean surface. One can easily check the correctness by using a ruler. 
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2.6 Discrete Fourier transform 

In mathematics, the discrete Fourier transform (DFT) is a specific kind of discrete transform, 

used in Fourier analysis. It transforms one function into another, which is called the frequency 

domain representation, or simply the DFT, of the original function. The DFT requires an input 

function that is discrete. Such inputs are often created by sampling a continuous function. The 

discrete input function must also have a finite duration, such as one period of a periodic 

sequence. FFT algorithms are so commonly employed to compute DFTs that the term "FFT" 

is often used to mean "DFT" in colloquial settings. Formally, there is a clear distinction: 

"DFT" refers to a mathematical transformation or function, regardless of how it is computed, 

whereas "FFT" refers to a specific family of algorithms for computing DFTs. The 

terminology is further blurred by the synonym finite Fourier transform for the DFT, which 

apparently predates the term "fast Fourier transform" [3]. 

In Matlab, the discrete Fourier transform is implemented as the followings: 

        ∑   

   

   

  
   
 

   

         
 

 
∑   

   

   

 
   
 

   

We shall use these to find out wave spectra and image spectra of shadow masks in next 

section. 

 

2.7 Wave and image spectra 

As being discussed in the previous sections, surface waves can be constructed by giving the 

spectrum (frequency or wave number spectrum). On the other way around, we can extract the 

spectrum by sampling the waves. A general way of doing this is to compute the Fourier 

transform  ̂      of       , and the spectrum immediately becomes  ̂      | ̂     | . 

The difference between  ̂      and the PM-frequency spectrum in section 2.3 is that  ̂      

contains one more variable  - the wave number. Under this circumstance, a contour-plot of  

 ̂      reveals the dispersion relation. Since   and   in equation (2) have opposite signs,     

and      have to be applied in turn. The Matlab code for this is: 

%DFT for the surface elevation. 

s=size(eta); %eta(t,x); 
N=s(1); %number of columns (num of time levels) 
eta_hat=1/N*fft(ifft(eta).').'; 
eta_hat=fftshift(eta_hat); 
eta_estimator=(abs(eta_hat)).^2; 

 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Discrete_transform
http://en.wikipedia.org/wiki/Fourier_analysis
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Discrete-time_signal
http://en.wikipedia.org/wiki/Sampling_(signal_processing)
http://en.wikipedia.org/wiki/Finite_Fourier_transform
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Figure 2.6: wave spectra of 1D ocean surface waves 

In figure 2.5, the red, parabolic curve is the function of dispersion shell   
  

 
. The contour 

plot is symmetric around the origin and part of the contour lies along the theoretical 

dispersion function. This method makes it possible to observe the dispersion relation from 

surface waves measured.  

With the same method, we compute the Fourier transform   ̂      of the shadow 

masks        , and the image spectrum becomes  ̂      |  ̂     |
 
. Matlab code for 

this is: 

%DFT for the shadow mask. 
sm_hat=1/N*fft(ifft(sm).').'; 
sm_hat=fftshift(sm_hat); 
sm_estimator=(abs(sm_hat)).^2;  
%re-construct omega for plots. 
n_omega=0:N-1; 
omega2=2*pi*(n_omega-round(N/2))/T; 
%re-construct k for plots. 
n_k=0:M-1; 
k2=2*pi*(n_k-round(M/2))/L; 
%create meshgrids for k and omega. 
[k,omega]=meshgrid(k2,omega2); 
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Figure 2.7: Image spectra of 1D shadow masks 

In figure 2.6, the contours lie dispersed along different harmonic shells from the lowest 

reclined –the 0
th

 harmonic to the highest parabolic shaped- the 2
nd

 harmonic. Theoretically 

speaking, there are infinitely many harmonic shells and they are all partly occupied by these 

contours. By comparing figure2.6 with figure2.7, we also notice that the image spectra mantle 

the wave spectra, in other words, the image spectra contain useful information of the waves. 

By filtering out the useful information from the image spectra, we can estimate many 

properties of the waves including the significant wave height. We should discuss the topic in 

next chapters. 
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Chapter 3   

2D linear wave field and its shadowing effect 

3.1 Derivation of the auto-correlation function 

Similar to the one dimensional case, a monochromatic wave is generated by: 

                   

A superposition of many monochromatic waves gives rise to the 2D ocean surface: 

∑∑                                       

  

 

Applying the dispersion relation for gravity waves in infinitely deep water: 

  √   √ √  
    

  

         
  

 
     

         
  

 
     

We get: 

 ∑∑        
  

 

 
       

  
 

 
                

  

 

To find the amplitude       first of all, we calculate the auto-correlation function: 

          [                      ] 
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Since      is independent of      the second part equals to , and we get: 
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Since   varies from   to   the density function becomes  (    )  
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By using the trigonometric formula                              , we get: 
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 ∑∑
    

 

 
   (           )

  

 

The energy in the waves is found by          ∑ ∑
    
 

   . Recall that for a real process we 

have                      and it follows that the spectrum has the symmetry 

 (          )   (       )  Furthermore the normalization criterion has to be satisfied: 

 

 
∫ ∫ ∫  (       )           

    

 

  

          

    ∫         
 

 
 ∑ ∑

    
 

                                                                    (1) 

 

 

3.2 Directional spectrum 

Directional spectrum describes the energy distribution in possible directions and is given by 

the following form: 

     {
 

 
    

  

  

  
         | |                                           [4] (2) 

Where   is the directional spreading coefficient, it infects the crest length of waves. 

 

Figure 3.1: Directional distribution for 2D waves 
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Equation (2) has the following property: 

∫         
 

 
                                                           (3) 

By multiplying (1) (3) together, we get: 

∫ ∫         
  

 

      
 

 

∑∑
    

 

 
  

 

Numerically, the amplitudes are found by: 

     √                                                            (4) 

This analysis replaces the unknown spectrum            with two independent variables 

         . Thus, it is only a simplification of the original spectrum. 

 

 

3.3 Construction of the ocean surface elevation 

Matlab code for generating 2D ocean surface waves is: 
%Parameters. 
alpha1=0.08; 
alpha2=0.74; 
g=9.8; 

omegaP=?; 
%Discretize omega. 
d_omega=0.5; 
omega_max=10; 
omega_min=0.5; 
omega=omega_min:d_omega:omega_max; 
J=(omega_max-omega_min)/d_omega+1;  
%Create the spectrum. 
S=((alpha1*g^2)./omega.^5).*exp(-alpha2.*(omegaP./omega).^4); 
%Discretize theta. 
beta=?; 
d_theta=0.05; 
theta_max=beta2; 
theta_min=-beta2; 
theta=[theta_min:d_theta:theta_max]'; 
K=(theta_max-theta_min)/d_theta+1;  
%Create the directional spectrum. 
D=1/beta*(cos(pi*theta/(2*beta))).^2; 
F=D*S; 
%Amplitude of the 3D ocean wave. 
A=sqrt(F*d_omega*d_theta);  
%Discretization of time. 
T=25; 
dt=0.5; 
Nt=T/dt; 
t=0:dt:T-dt; 
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%Discretization of spatial length in x-direction. 
Lx=20; 
dx=0.2; 
Nx=Lx/dx; 
x=0:dx:Lx-dx; 
%Discretization of spatial length in y-direction. 
Ly=20; 
dy=0.2; 
Ny=Ly/dy; 
y=0:dy:Ly-dy; 
%construct wave numbers in both directions 
[xx,yy,tt]=meshgrid(x,y,t); 
kx=cos(theta)*omega.^2/g; 
ky=sin(theta)*omega.^2/g; 
%Generation of 2D ocean surface waves. 
eta=0; 
for k=1:K 
    for j=1:J 
       eta_frag=A(k,j)*sin(kx(k,j)*xx+ky(k,j)*yy-omega(j)*tt+2*pi*rand(1)); 
        eta=eta+eta_frag; 
    end 
end 
surf(x,y,eta(:,:,1),'EdgeColor','none'); 

 

Since   effects the crest length, the appearance of the ocean surface changes with its value. 

For example, when       , we get short-crested ocean waves: 

 

Figure 3.2: short crested ocean waves 

 

When   number becomes a little bit smaller, say 0.35 we get long-crested waves. 
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Figure 3.3: long crested ocean waves 

As we decrease the number to very near to 0, the waves have infinite crest lengths. 

 

Figure 3.4: infinite long crested ocean waves 

In conclusion, 2D wave model can be generated by introducing the directional spectrum. In 

the real ocean, the   number is around 0.15 up to 0.75, and the plots above look very realistic. 
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3.4 Algorithm & computation of the shadow masks 

We shall establish a mathematical model for finding the shadow masks in several steps. 

Step 1: Represent the line-function that light reflects from a random point (          ) on 

ocean surface to a spatially fixed observer         over the surface. We define the line-

function in 3D space to be      and it is given by: 

 

 
 

 

 
 

   

        
   

                                                         (5) 

Step 2: Linearly discretize the space by sampling   from   to  with   indices           
  . So expression (5) becomes: 

                                   [   ]                          (6) 

Notice that {       |               }determines almost a vertical plane going through 

the line-function      so we define the plane to be     . 

Step 3: Define the surface elevation function framed in the plane      to be             and 

compare its values with            . That is to check if: 

                                                                                 (7) 

If condition (7) is satisfied, then the selected point        can not be observed by the radar. 

 

Figure 3.5: 2D shadow mask analysis 
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Make examples with two given points          and          on ocean surface (see figure 

3.5). For the former point, we can observe from the figure that: In the plane       , there is at 

least one point on the ocean surface prevents the light from reaching the observer, which is 

consistent with condition (7), therefore the former point is invisible to the observer. For the 

later point, we can observe that: In the plane       , all points on the ocean surface are not 

able to block the light from its traveling to the radar, which is inconsistent with condition (7), 

therefore the later one is visible to the observer.  

Implement the mathematical model with Matlab code: 

function sm() 
%Discretize omega. 
d_omega=0.5; 
omega_max=10; 
omega_min=0.5; 
omega=omega_min:d_omega:omega_max; 
J=(omega_max-omega_min)/d_omega+1; 
%Discretize theta. 
beta2=0.35; 
d_theta=0.05; 
theta_max=beta2; 
theta_min=-beta2; 
theta=[theta_min:d_theta:theta_max]'; 
K=(theta_max-theta_min)/d_theta+1; 

% Create phase shifts in advance 
for n=1:K 
    for m=1:J 
        phi(n,m)=2*pi*rand(1); 
    end 
end 

%Discretize spatial and time domain. 
Lx=40; 
Ly=50; 
T=25; 
x=0:1:Lx; 
xn=length(x); 
y=0:1:Ly; 
yn=length(y); 
t=0:0.5:T; 
tn=length(t); 
sm(xn,yn,tn)=1; 
for k=1:tn 
    fprintf('Time step %i of %i.\n',k,tn); 
    for i=1:yn 
        for j=1:xn 
            sm(i,j,k)=Line(x(j),y(i),t(k),phi); 
        end 
    end 
end 
save('shadowmask_3d','sm','Lx','Ly','T'); 

 
%Find the line function 
function sm=Line(x0,y0,t0,phi) 
l=0:0.01:1; 
x=x0*l; 
y=y0*l; 
eta0=eta3(x0,y0,t0,phi); 
z=(eta0-2)*l+2; 
eta=eta3(x,y,t0,phi); 
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v=z-eta; 
sm=1; 
for i=1:length(v)-1 
    if v(i)<=0 
        sm=0; 
        break; 
    end 
end 
return; 

  
function eta=eta3(xx,yy,tt,phi) 
%Parameters. 
alpha1=0.08; 
alpha2=0.74; 
g=9.8; 

omegaP=?; 
%Discretize omega. 
d_omega=0.5; 
omega_max=10; 
omega_min=0.5; 
omega=omega_min:d_omega:omega_max; 
J=(omega_max-omega_min)/d_omega+1; 
%Create the spectrum. 
S=((alpha1*g^2)./omega.^5).*exp(-alpha2.*(omegaP./omega).^4); 
%Discretize theta. 
beta=?; 
d_theta=0.05; 
theta_max=beta2; 
theta_min=-beta2; 
theta=[theta_min:d_theta:theta_max]'; 
K=(theta_max-theta_min)/d_theta+1; 
%Create the directional spectrum. 
D=1/beta*(cos(pi*theta/(2*beta))).^2; 
F=D*S; 
%Amplitude of the 3D ocean wave. 
A=sqrt(F*d_omega*d_theta); 
%construct wave numbers in both directions 
[xx,yy,tt]=meshgrid(x,y,t); 
kx=cos(theta)*omega.^2/g; 
ky=sin(theta)*omega.^2/g; 
%Construct surface elevations 
eta=0; 
for k=1:K 
    for j=1:J 
        eta_frag=A(k,j)*sin(kx(k,j)*xx+ky(k,j)*yy-omega(j)*tt+2*phi(k,j)); 
        eta=eta+eta_frag; 
    end 
    %fprintf('%i/%i is finished\n',k,round(K)); 
end 
return; 

 



 

26 
 

 

Figure 3.6: 2D shadow mask 

 

The shadow mask in Figure 3.6 is observed from the radar at point        . The red color 

represents    s and the blue color represents ‘0’s. 

 

 

3.5 Wave and image spectra 

Similar to the one dimensional case, the spectrum is considered as  ̂(        )  

| ̂         |
 
. Since the spectrum contains three variables-   ,   and  , a 3D contour plot 

of it reveal the dispersion relation of the original wave. 

In Matlab, the discrete Fourier transform in a multi-dimensional space is implemented as: 

          []      and                   

applies the FFT operation across the dimension dim. 

And the “zero-padding” is implimented as: 

                    

applies the fftshift operation along the dimension dim 
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Matlab code for revealing the wave spectra: 

%fft 
s=size(eta) 
Nx=s(1); 
Ny=s(2); 
Nt=s(3); 
eta_hat=1/(Nx*Ny)*ifft(fft(fft(eta,[],1),[],2),[],3); 
eta_hat=fftshift(eta_hat); 
eta_estimator=(abs(eta_hat)).^2; 
size(eta_estimator) 
%re-construct omega for plots. 
n_omega=0:Nt-1; 
omega2=2*pi*(n_omega-round(Nt/2))/T; 
%re-construct kx for plots. 
n_kx=0:Nx-1; 
kx2=2*pi*(n_kx-round(Nx/2))/Lx; 
%re-construct ky for plots. 
n_ky=0:Ny-1; 
ky2=2*pi*(n_ky-round(Ny/2))/Ly; 

  
%create meshgrids for k and omega. 
[ky,kx,omega]=meshgrid(ky2,kx2,omega2); 
size(kx) 

  
[kx3 ky3]=meshgrid(kx2,ky2); 
surf(kx3,ky3,sqrt(9.8*sqrt(kx3.^2+ky3.^2)),'edgecolor','none');hold on; 

  
isosurface(ky,kx,omega,eta_estimator,0.005); 
xlabel('k_x');ylabel('k_y');zlabel('\omega'); 

 

 

 

Figure 3.7: wave spectra of 2D ocean surface waves 
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In figure 3.7, the colored, curved surface is the dispersion shell for the gravity waves  

  √ √  
    

  in infinitely deep water. The contour plot is symmetric around the origin 

and part of the contour lies along the theoretical dispersion function. 

Similarly, we compute the Fourier transform   ̂          of the shadow masks          , 

and the image spectrum becomes  ̂(       )  |  ̂         |
 
.  

 

Figure 3.8: Image spectra of the shadow masks in 2D 

In figure 3.8, the contours lie dispersed along different harmonic shells including the 0
th

, the 

1
st
 and the 2

nd
 ones. There are infinitely many harmonic shells and they are all partly occupied 

by these contours. By comparing figure 3.8 with figure 3.7, we also notice that the image 

spectra mantle the wave spectra, in other words, the image spectra contain useful information 

of the waves. 
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Chapter 4  

1D, 2nd order ocean surface waves 

 

4.1 Derivation of 2nd order wave surface elevation 

Equations for an incompressible, in-viscid fluid: 

 

  

  
 

  

  

  

  
 

  

  
             

 

(1) 

 

  

  
    

 

 
                    

 

(2) 

 

                     

 

 

(3) 

Introduce perturbation expansions to the second order: 

 
           

 
(4) 

 
           

 

(5) 
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Set (4), (5) into (1): 
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(6) 

Set (4), (5) into (2): 
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(7) 

Set (4), (5) into (3): 

  (
    

   
 

    

   
)    (

    

   
 

    

   
)    (8) 

 

Separate      for           equations    -    become: 

 
   

  
 

   

  
               (9) 

 
   

  
                (10) 

 

 

 

    

   
 

    

   
                (11) 

Assume a particular set of solutions for equations (9)-(11): 

 
  
    {           }  

 

(12) 

   
    {   | |           } (13) 
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The absolute sign prevents an exponential growth in the potential function. And equation (13) 

guarantees that the potential tends to be 0 at infinite water depth      . 

Set (12), (13) into (9), and evaluate the equation at    : 

 

                  | |              

   
   

 
 

 

(14) 

Set (12), (13) into (10), and evaluate the equation at      

 

                                 

  
  

  
 

 

(15) 

From (14), (15), we can get the dispersion relation for deep water (infinite water depth): 

 

 

      

 

(16) 

Due to the linearity of the equations (9)-(11), the summation of all the particular solutions is 

the general solution, so we seek solution of the following form: 

 

 

   ∑  {   
          } 

 

 

 

(17) 

 

   ∑  {    
|  |             } 

 

 

 

(18) 

Where    
   

  
.  

Separate        for        , equations    -    become: 

 
   

  
 

   

  
 

   

  

   

  
            (19) 
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                (21) 

 

First of all, we calculate the following expressions: 
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|  |             }
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(24) 

 

 

By the bi-chromatic identity, we get: 
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 ∑∑  {          |  |   [                 ]
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(25) 
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(26) 
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 ∑∑  {  |  | 
|  |             }  {  |  | |  |             }

  

 ∑∑  {    |  ||  | |  |  |  |   [                 ]

  

     |  ||  | |  |  |  |   [                 ]} 

 

(27) 

Set the expressions (25)-(27) into the equations (19)-(20) and we get: 

 

 

   

  
 

   

  

 ∑∑  {         |  |   [                 ]
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(28) 
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∑∑  {    |  ||  | |  |  |  |   [                 ]

  

     |  ||  | |  |  |  |   [                 ]} 

(29) 

 

To simplify the equations, we want to get rid of the potential function. Take time derivative of 

equation (28) and  -derivative of equation (29) on both sides, we get: 
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(31) 

 

Equation (30) + (31) gives: 

 
    

   
  

   

  
 (32) 



 

35 
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Assume a solution to equation (32) of the following form: 

 

   ∑∑  {    
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 ∑∑  {    
   [                 ] }

  

 

 

(33) 

Set (33) into (32) and the left hand side of equation (32) becomes: 
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           [                 ] }
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(34) 

Compare equation (34) with (32), and evaluate them at      
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    (36) 

In the case of only positive wave numbers are concerned, we have much simplified 

expressions: 

 

    
    

        

       
 

 

    
    

        

       
 

 

    (37) 

 

(38) 

 

Set expression (15) into (37), (38), we get: 

 

    
   

         

         
 

 

    
   

         

         
 

 

 

(39) 

 

(40) 

 

We notice that the expressions (39), (40) are only valid when      . In the case of 

     , the second term of expression (33) is only a constant, and it gives no contribution 

after taking the derivative of   and  . Therefore, the only coefficient left is     
 : 

     
   

   
   

 

   
 

 
(41)  
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Set the dispersion relation for infinitely deep water (16) to expression (41): 

     
   

 

 
    

  
(42) 

 

The final expressions for the second order ocean surface waves in infinitely deep water are: 

When 

      

 

   ∑∑  {
         

         
  [                 ] }

  

 ∑∑  {
         

         
  [                 ] }

  

 

(43) 

 

When 

      

 

   ∑  {
 

 
    

              }

 

 

 

(44) 

 

 

 

4.2 Construction of the 2nd order wave surface elevation 

The following Matlab code describes equation (43), (44) numerically.  
%Construct the wave elevation. 
function eta2(L,T,M,N,omegaP,filename) 
%L-spatial length;  
%T-time length;  
%M-num. of spatial points;  
%N-num. of time points;  
%omegaP-peak wave frequency in PM-spectrum 
alpha=0.0081; 
beta=0.74; 
g=9.8; 
%Discretize omega. 
d_omega=0.2; 
omega_max=6; 
omega_min=0.2; 
omega=omega_min:d_omega:omega_max; 
J=(omega_max-omega_min)/d_omega+1; 
%calculate the wave number. 
k=omega.^2/g; 
%Create the spectrum. 
S=((alpha*g^2)./omega.^5).*exp(-beta.*(omegaP./omega).^4); 
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%Construct the coefficients Aj. 
A=sqrt(2*S*d_omega); 
%Discretize the time and spatial domain. 
dt=T/N; 
dx=L/M; 
[x,t]=meshgrid(0:dx:L-dx,0:dt:T-dt); 
%load phase 
structure=load('phase','-mat'); 
phi=structure.phi; 
%Construct the wave elevation. 
eta=0; 
for j=1:J 
    eta_frag=A(j)*cos(k(j)*x-

omega(j)*t+phi(j))+1/2*A(j)^2*(omega(j)^2/g)*cos(2*omega(j)^2/g*x-

2*omega(j)*t+2*phi(j)); 
    eta=eta+eta_frag; 
end 
for j1=1:J 
    for j2=1:J 
        if j1~=j2 
            

eta_frag=g*A(j1)*A(j2)*k(j1)*k(j2)/(omega(j2)*(omega(j1)+omega(j2)))*cos((k

(j1)+k(j2))*x-

(omega(j1)+omega(j2))*t+phi(j1)+phi(j2))+g*A(j1)*A(j2)*k(j1)*k(j2)/(omega(j

2)*(omega(j1)-omega(j2)))*cos((k(j1)-k(j2))*x-(omega(j1)-

omega(j2))*t+phi(j1)-phi(j2)); 
            eta=eta+eta_frag; 
        end 
    end 
end 
x=x(1,:);t=t(:,1)'; 
save(filename,'x','t','eta','L','T'); 
fprintf('Sea surface creation is done.\n'); 
 

 
Figure 4.1: The 2

nd
 order ocean wave field (green) and its shadow mask (red) 

 

 

radar 
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4.3 Wave and image spectra 
I 
With the same method introduced in Chapter 2.7, we can extract the wave spectra of the 2

nd
 

order wave field. Notice that the plot should be made in logarithmic scales rather than in 

linear ones, otherwise some parts of the contours are too small in values to be visible. 
 

Figure 4.2 second order wave spectra 

 

From Figure 4.2, we observe four contours with different locations. The flat circular shaped 

contour centered around the 0
th

 harmonic shell is generated by the second term of equation 

(43); The thin, parabolic shaped contour on the 1
st
 harmonic (dispersion shell) is generated by 

the linear waves; The parabolic shaped contour on the 2
nd

 harmonic is generated by equation 

(44); And the wing shaped contour between the 1
st
 and 2

nd
 harmonics is generated by the first 

term of equation (43).  

We are also interested in two more plots: image spectra to the 1
st
 order linear wave field and 

the 2
nd

 order nonlinear wave field. See the following plots: 
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Figure 4.3 Image spectra of shadow masks for the 1
st
 order linear wave field. 

 

Figure 4.4 Image spectra of shadow masks for the
 
2

nd
 order nonlinear wave field. 
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By comparing Figure 4.3 with Figure 4.4, we understand that there is no big difference in 

appearance of the two image spectra. For the 1
st
 order image spectra (Figure 4.3), the energy 

on the 2
nd

 harmonic shell is complete noise generated by the nonlinearity of the shadow 

masks, but for the 2
nd

 order image spectra, the energy on the same shell contains both noise 

and wave information. Then the problem arises: How can we extract the wave information 

from the noise on the 2
nd

 harmonic shell? 

 

4.4 Extract wave information from shadow masks 

In this section, we aim to extract wave information from Fourier analysis of shadow masks 

with special attention to the 2
nd

 harmonic shell. Therefore, we consider the following wave 

functions: 

     ∑                  
 
                                          (45) 

     ∑ [  
 
                   

 

 
  

                     ]        (46) 

Equation (46) is a simplification of the 2
nd

 order ocean waves according to the analysis in 

section 4.2. The reason of doing this is to consider the energy only on the 2
nd

 harmonic shell. 

My numerical experiments showed different appearances of the image spectra with respect to 

   (defined in section 2.3) 

 

 

 

 

 

 

 

 

Figure 4.5 Image spectra of shadow masks with        (left) and     (right) 
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Figure 4.6 Image spectra of shadow masks with      (left) and     (right) 

 

 

 

 

 

 

 

 

 

Figure 4.7 Image spectra of shadow masks with      (left) and     (right) 

From Figure 4.5 to 4.7, we observe that: as the significant wave height gets smaller (   gets 

bigger), the contours spread out from the center to harmonic shells and gradually become 

tangent to the shells. The theory for the experiments is introduced in the next section.  
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Wave height estimation from image spectra is based on an empirical formula      

 √   , where    is the estimated significant wave height, SNR is the signal-to-noise ratio, 

and A, B are two empirical parameters that can usually only be determined by a field 

experimental calibration campaign. For synthetic data generated by numerical experiments, 

the signal-to-noise ratio is the wave information divided by the information of shadowing. 

The wave information is traditionally considered as the energy on the harmonic shells (except 

the 0
th

 harmonic shell). However, this is not completely correct. For the 2
nd

 order image 

spectra, both the wave information (signal) and the information of shadowing (noise) are 

contained on the 2
nd

 harmonic shell. Theoretically, a wrong signal-to-noise ratio can cause an 

inaccurate result in the estimation of the significant wave height. Therefore, how to 

distinguish the signal from the noise on the shell is of our interest. A possible way of 

achieving the goal is to make a comparison of the 1
st
 and 2

nd
 order image spectra, that is to 

compare the energy on the 2
nd

 harmonic shell of the 1
st
 order image spectra (only noise) with 

that of the 2
nd

 order one (signal and  noise). So we shall filter out the energy on the 2
nd

 

harmonic shell for both cases. A traditional filtering method is to take a bunch of energy 

within a certain bandwidth along the 2
nd

 harmonic shell. However, this method is very 

inaccurate after looking closely to figure 4.5. When the ocean surface is at a violent state 

(wave height is big), noise-energy dots outside the 2
nd

 harmonic shell are too close to the shell 

and they are much bigger in values. 

In order to get reliable results, it is necessary to allocate each energy dot in exact one cell 

along the 1
st
 and 2

nd
 harmonic shells. This thought can be carried out by taking the advantage 

of the dispersion relation. In infinitely deep water, the 1
st
 and 2

nd
 harmonic shells are    

   and 
  

 
     respectively. A suggested discrete frequency range for ocean surfaces is 

                       [5]. I expand the range a little bit farther, from 0.2 to 6.0, 

and a series of calculations are carried out to find a proper solution for this matter. 

For the 1
st
 harmonic shell: 

            

            

                 

            

           

For the 2
nd

 harmonic shell: 
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This indicates that if each energy dot on the 1
st
 harmonic shell is located in exact one cell, so 

does that on the 2
nd

 harmonic shell. Furthermore, the spatial and time length taken should 

cover the extra wave number range (       ]  and the extra frequency range (  
          ]  on the 2

nd
 harmonic shell. It is also suggested that the frequency is discretized 

in steps of         [5]. However, this tiny value of the step-length would consume 

massive time in computations, which is very hard for school computers. To spend an 

acceptable time in computations, I choose to discretize the frequency in steps       , and 

therefore get the following statistics on the 1
st
 harmonic. 

            

            ……

            

            

             

            …… 

           

 

The above suggests us the following discretization: 

            

            

                Time length 

            

            

            

                Spatial length 

            

            

            

            

                Num. of time points

            

            

            

                Num. of spatial points 

 

The above four parameters are used as inputs of the numerical code to generate the 1
st
 and 2

nd
 

order ocean waves and their shadow masks. The rest of the work is to track the frequencies 

and wave numbers in pair along the two shells and filter them out. The following two plots 

are a proof of the success.  
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Figure 4.5: Filtered energy on the 1
st
 and 2

nd
 harmonic shells. 

 

And the following two tables contain the statistics collected from the numerical experiments 

with            . 
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              4.5 The statistics of image spectrum for both 1st and 2nd order ocean waves  

with radar height 10(m), spatial length 50  (m) and time length 10 (s). 

Hs1 represents the significant wave height of the 1st  order ocean wave generated by PM-spectrum. 

Hs2 represents the significant wave height of the 2nd  order ocean wave generated by PM-spectrum. 

D1 represents the energy on the 1st  harmonic shell of the 1st  order ocean wave image spectrum. 

D2 represents the energy on the 1st  harmonic shell of the 2nd  order ocean wave image spectrum. 

F1 represents the energy on the 2nd  harmonic shell of the 1st  order ocean wave image spectrum. 

F2 represents the energy on the 2nd  harmonic shell of the 2nd  order ocean wave image spectrum. 

E1 represents the total energy of the 1st  order ocean wave image spectrum. 

E2 represents the total energy of the 2nd order ocean wave image spectrum. 

ωp represents the peak wave frequency in the PM-spectrum. 

ωp 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

Hs1 12.5199 5.6170 3.2431 2.0544 1.4295 1.0494 0.8027 0.6335 0.5123 0.4224 0.3539 0.3004 0.2578 0.2232 

Hs2 12.5260 5.6186 3.2437 2.0547 1.4297 1.0495 0.8028 0.6336 0.5123 0.4224 0.3539 0.3004 0.2578 0.2232 

D1 15.4783 22.5121 26.9115 30.6971 34.0451 36.8514 39.5721 42.5036 45.3933 48.1320 50.6809 53.0851 55.0851 57.9340 

D2 15.1697 22.2536 26.7572 30.5391 33.8735 36.7298 39.4749 42.2647 45.1491 47.9817 50.5321 52.9858 55.5809 57.7695 

F1 2.3391 0.8438 0.5198 0.5088 0.3319 0.4312 0.5178 0.5088 0.4497 0.4064 0.3902 0.3574 0.3268 0.3017 

F2 2.6066 1.0247 0.6409 0.6367 0.4658 0.5806 0.6493 0.6345 0.5673 0.5179 0.4904 0.4564 0.4177 0.4037 

E1 118.026 131.125 139.000 146.107 152.486 158.624 164.690 170.685 175.946 181.190 186.133 190.892 195.626 199.905 

E2 117.463 130.758 138.722 145.808 152.175 158.453 164.523 170.477 175.732 181.043 185.981 190.810 195.510 199.843 
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      The statistics of image spectrum for both 1st and 2nd order ocean waves 

with radar height 25(m), spatial length 50  (m) and time length 10 (s). 

Hs1 represents the significant wave height of the 1st  order ocean wave generated by PM-spectrum. 
 

Hs1 represents the significant wave height of the 1st order ocean wave generated by PM-spectrum. 

Hs2 represents the significant wave height of the 2nd  order ocean wave generated by PM-spectrum. Hs2 represents the significant wave height of the 2nd order ocean wave generated by PM-spectrum. 

D1 represents the energy on the 1st  harmonic shell of the 1st  order ocean wave image spectrum. D1 represents the energy in the dispersion shell of the 1st order ocean wave image spectrum. 

D2 represents the energy on the 1st harmonic shell of the 2nd  order ocean wave image spectrum. D2 represents the energy in the dispersion shell of the 2nd order ocean wave image spectrum. 

F1 represents the energy on the 2nd  harmonic shell of the 1st  order ocean wave image spectrum. F1 represents the energy in the first harmonic shell of the 1st order ocean wave image spectrum. 

F2 represents the energy on the 2nd  harmonic shell of the 2nd  order ocean wave image spectrum. F2 represents the energy in the first harmonic shell of the 2nd order ocean wave image spectrum. 

E1 represents the total energy of the 1st  order ocean wave image spectrum. E1 represents the total energy of the 1st order ocean wave image spectrum. 

E2 represents the total energy of the 2nd order ocean wave image spectrum. E2 represents the total energy of the 2st order ocean wave image spectrum. 

ωp represents the peak wave frequency in the PM-spectrum. ωp represents the peak wave frequency in the PM-spectrum. 

ωp 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

Hs1 12.5199 5.6170 3.2431 2.0544 1.4295 1.0494 0.8027 0.6335 0.5123 0.4224 0.3539 0.3004 0.2578 0.2232 

Hs2 12.5260 5.6186 3.2437 2.0547 1.4297 1.0495 0.8028 0.6336 0.5123 0.4224 0.3539 0.3004 0.2578 0.2232 

D1 48.6608    53.8744    56.3767    59.4576    61.5543    63.5024    65.6453    67.2866    68.1993 68.8693    69.5287    69.9141    69.7031 69.1269 

D2 48.3486    53.7044    56.0855    59.2160    61.2985    63.2621    65.5193    67.1506    67.9445 68.7539    69.4040    69.8143    69.6284    69.0233 

F1 1.8107     0.5019     0.4540     0.3828     0.4285     0.3476     0.2893     0.2312     0.2194 0.1936         0.1738     0.1579 0.1517     0.1469 

F2 2.0537     0.7647     0.6848     0.6068     0.6350     0.5008     0.4110     0.3424     0.3300 0.2955     0.2602     0.2395     0.2328     0.2104 

E1 192.700   199.585   205.134   209.653   213.211   216.080   218.338  219.986   220.985 221.405   221.235   220.477   219.081   217.056 

E2 192.458   199.422   204.930   209.522   213.096   215.997   218.307   219.968   220.962 221.403   221.245   220.500   219.110   217.080 
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4.6 Analysis of the results 

Ideally, if      , the energy difference       would represent the wave energy (wave 

information) on the 2
nd

 harmonic shell of the 2
nd

 order ocean waves. However, in our case, the 

total energy (   and    ) are not equal due to the unequal wave heights      and   2). 

Since the difference is very small, I use a correction-factor on    so as to get a more accurate 

result: 

                                    
  

  
             

After applying this method, we find out three important information: 

1) The wave energy on the 2
nd 

 harmonic tends to get bigger as the wave height gets 

higher. 

2) The wave energy on the 2
nd

  harmonic is much smaller than the noise-energy on the 

same shell. 

3) The wave energy on the 1
st
 harmonic gets smaller as the wave height gets higher. 

The Calibration method [6] suggests that the significant wave height of the 2
nd

 order ocean 

waves can be determined by: 

    √
     

        
             

Since the formula miss-uses    as the wave energy input (   
  

  
   , the acuracy of    

measured can be very different in two cases. (See table 2) 

Case 1: The sea is peaceful (Significant wave height is small) 

In this case, we have: 
                              

   
  

  
                               

So the replacement of     
  

  
   with    does not affect the significant wave height much. 

Thus, the formula is pretty accurate. 

Case 2: The sea is violent (Significant wave height is big) 

In this case, we have: 
                                             

   
  

  
                              

So the miss-use of    would cause an inaccurate wave height. From this point of view, the 

more violent sea becomes, the less accurate    becomes. 
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Chapter 5 

Wave field generated by the NLS equation and its 

shadowing effects 

5.1 Solving the NLS equation with split step Fourier 
method. 
We shall limit our consideration to solving the cubic nonlinear Schrödinger (NLS) equation 

for deep water of infinite depth. The NLS equation is given as: 

 

 
  

  
   

  

  
 

   

   

   

   
 

 

 
    

 | |     [7](1) 

Step 1: Scale the equation with dimensionless variables. 

Introduce the following dimensionless variables: 

                
              

      

Equation (1) then becomes: 

 
   

   
 

 

 

   

   
 

 

 

    

    
 

 

 
|  |      (2) 

Step 2: Normalize the spatial domain. 

The spatial domain is normalized from   [     to   [      by setting    
  

 
 . 

Equation (2) then becomes (replace            for convinience): 

  
  

  
  

  

 

  

  
 

  

   
   

   
 

 

 
| |   (3) 
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Step 3: Use split step Fourier method. [8] 

Let the linear part and non-linear part on the right hand side of equation (3) to be: 

 
  

 

 

  
 

  

   
   

   
  ̂               

 

 
| |   ̂ 

And equation (3) becomes: 

  
  

  
 [ ̂   ̂]  (4) 

Equation (4) has the general solution: 

            [ ̂  ̂]       (5) 

Since [ ̂   ̂] are operators, they do not in general commute. However, the Baker-Hausdroff 

formula showed that the error from treating them as if they do is of order       . Therefore 

we write: 

                 ̂      ̂       (6) 

Apply Fourier transformation on both sides of equation (6) and the partial derivative operator 

can be converted into a number by substituting      for 
 

  
 , where 

   
 

 
            

 

 
   and   is the number of spatial grids. [9]Then we have: 

 [         ]   [      ̂      ̂      ] 

      [         ]   
    [ 

  

 
     

  

   
     ]

 [      ̂      ] 

      [         ]   
    [

 

 
  

  

   
  ]

 [     
 

 
| | 

      ]                         (7)  

Use inverse Fourier transformation on both sides of equation (7) again we get: 

              [ 
    [

 
 
  

  

   
  ]

 [     
 
 
| | 

      ]] (8) 

Step 4: Reconstruct the surface elevation to the 2
nd

 order. 

For the dimensional surface 

        
 

 
[                  

 

 
                        ] (9) 

For the dimensionless surface: 
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[                   

 

 
                       ] (10) 

Where     represents the complex conjugates for the previous two terms. 

 

Matlab code for step 1-step 4: 
function nls11(kc,M,N) 
%discretize the dimensionless spatial distance and time interval. 
L=500; 
T=250; 
dx=L/(M); 
dt=T/(N); 
x=0:dx:(M-1)*dx; 
t=0:dt:(N-1)*dt; 
%initial condition 
%Function initial1() can only deal with dimensional quantities: the 
%parameters it carries and the value it returns are all dimensional. 

%initial1() is introduced in Step5 later. 
A=kc*initial1(x/kc,kc); 
%Split step Fourier method. 
m = -M/2:1:M/2-1; 
for n=1:N 
    A=exp(-i*0.5*abs(A).^2*dt).*A; 
    A=fftshift(fft(A)); 
    A=exp(-i*dt*(pi/(L)*m-pi^2/(2*L^2)*m.^2)).*A; 
    A=ifft(fftshift(A)); 
    Q(:,n)=A; 
end 

%construct the 2nd order dimensionless surface elevation. 
Q2=1/2*Q.^2; 
for t_j=1:N 
    for x_j=1:M 
        eta(x_j,t_j)=0.5*(Q(x_j,t_j)*exp(i*(x(x_j)-

t(t_j)))+conj(Q(x_j,t_j))*exp(-i*(x(x_j)-

t(t_j)))+Q2(x_j,t_j)*exp(2*i*(x(x_j)-t(t_j)))+conj(Q2(x_j,t_j))*exp(-

2*i*(x(x_j)-t(t_j)))); 
    end 
end 
%for plots and other uses. 
A=Q; 
save('111','x','t','A','eta','dx','dt','kc'); 
eta=eta'; 
save('data','x','t','eta','L','T','kc'); 
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5.2 Derivation of the spectrum of the amplitude. 
 
The amplitude       is a complex quantity; it is of the following form: 

 

       ∑   
             

 

 

where    is a random variable from [0,    .The auto-correlation function is then (* here 

represents the complex conjugate): 
       [               ] 

  [(∑   
             

 

)(∑                     

 

)] 

Set             
 
 and       , we get: 

  [∑∑                

  

] 

  [∑∑                  

  

] 

 ∑∑     [              ]

  

 

 ∑  
  [     ]

 

 

 ∑  
       

 

 

The spectrum of        is the inverse Fourier transform of      , so we have: 

      
 

  
∫      

 

  

        

 
 

  
∫ ∑  

       

 

 

  

        

 ∑  
 

 

  
∫             

 

   

 

Introducing Dirac delta function 
 

  
∫            

 

  
       , we get:  

       ∑  
        

 

 
(11) 
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5.3 Derivation of wave number spectrum for the 2nd order 
wave surface construction. 
 
Set in        ∑    

             
  and we get: 

       ∑     {                    }

 

 
 

 
∑∑         {                               }

  

 

The auto-correlation function is: 

       [              ] 

  [(∑     {                    }

 

 
 

 
∑∑         {                            

  

   })(∑     {(     )      (     )    }

 

 
 

 
∑∑         {(         )      (         )       }

  

)]      

Let                         and             and set them into equation 

(11), we get: 

       [(∑       

 

 
 

 
∑∑                

  

)(∑     (     )

 

 
 

 
∑∑         (           )

  

)]

  [∑∑         

  

   (     )

 
 

 
∑∑∑                  

   

   (     )
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   (           )

 
 

 
∑∑∑∑          

              (           )

    

] 

 

Since             are independent of each other, we have : 
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  [∑  
                

 

 
 

 
∑  

                     

 

 
 

 
∑  

                     
 

 
∑  

   
                     

  

] 

we use the trigonometric formula 
                 

 
           and get: 
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   {         } 

The wave spectrum is then: 

      
 

  
∫      

 

  

        

 
 

  
∫ (

 

 
∑  
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    {         })

 

  

        

Since    {        }  
 

 
           

 

 
           , we get: 
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∫ (                          )
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∫ (                              )

 

  

   

Introducing Dirac delta function 
 

  
∫            

 

  
       , we get: 

 
      

 

 
∑  

 

 

{                     }

 
 

  
∑  

   
 

 

{                         } 

 

 

 

 

(12) 
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5.4 Relationship between the wave spectrum and the 
amplitude spectrum. 
 

We assume that    decreases as     , then the wave spectrum in equation (12) has four 

peaks allocated at                 respectively (one-sided spectrum has only two peaks). 

As a result, many theoretical wave spectra like Pierson&Moskowitz spectrum, Jonswap 

spectrum, Gaussian spectrum are not consistent with the multiple peaks. Therefore, none of 

them is a good description of the actual wave spectrum if we insist on the nonlinear theory. 

How can we create a correct spectrum for the waves? Let us first investigate equation (11). 

We also assume that    decreases as     , then the amplitude spectrum in equation (11) 

has only one peak centered at     , which can be described by any of the theoretical 

spectra mentioned (P&M, Jonswap or Gaussian spectrum). In addition, the amplitude 

spectrum       is linked with the wave spectrum       by the constant factors   . This 

indicates that if we generate       with, for example Gaussian spectrum, then       will 

naturally be generated with multiple peaks. See Figure 5.1. 

 

 

 
 
 
 

 
 
 

Figure 5.1: A sketch of narrow banded       and       

 

A very bad situation can happen when we generate the wave spectrum (See Figure 5.2) If the 

bandwidth of       is wide, the two peaks of       will overlap with each other, which 

possibly creates another significant peak. Therefore we must modify the value of    in 

equation (11) so that       is narrow-banded and the overlapping area is not very big. 

 

 
 
 
 
 
 
 
 

Figure 5.2: A sketch of wide banded       and       
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5.5 Initial condition setup 
 

We shall model       with Gaussian spectrum. The benefit of choosing this spectrum is very 

obvious if we compare it with P&M spectrum. The wind speed     is the only input parameter 

in P&M spectrum, which makes it impossible to fix the spectral width, but for Gaussian 

spectrum, the width appears to be an input parameter-  right away, thus easily controllable.  

The two dimensional Gaussian spectrum is given by: 

  (     )  
  

      
 
 
       

 

   
  

  
 

   
 
 

(13) 

[10] 

In order to get the 1D spectrum, we integrate equation (13) over    and get: 
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(     )

 

   
 

  √    

 

Then the amplitude spectrum       is: 

       
  

 √   
 
 
      

 

    (14) 

Where        are the peak wave number, spectral width, steepness respectively. Notice 

that    must be set to 0 in order to satisfy the criterion we discussed in the last section. To 

have a one-sided spectrum of      , we apply the normalization rule and get: 

∫         
 

  

       

∫         
 

  

 ∑  
 

 

 

   √          

 

 To make the spectrum narrow banded we set       and            . 

 

Matlab code for the initial input: 
function y=initial1(x,kc)                
d_k=0.0125; 
k_max=2*kc; 
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k_min=-2*kc; 
k=k_min:d_k:k_max; 
J=(k_max-k_min)/d_k+1; 
%Gaussian spectra. 
epsillon=0.1; 
sigma=0.1; 
S=epsillon^2/(2*sqrt(2*pi)*sigma)*exp(-k.^2/(2*sigma^2)); 
B=sqrt(2*S*d_k); 
%surface elevation by Gaussian spectra 
A=0; 
for j=1:J 
    A_frag=B(j)*exp(i*(k(j)*x+2*pi*rand(1))); 
    A=A+A_frag; 
end 

%plots 
figure;plot(x,A,'b',x,-i*A,'r'); 
y=A; 

 
Figure 5.3: Initial amplitude        in a zoomed distance 

(real part –curve starting above 0, imaginary part –curve starting below 0) 

 
 
5.6 The appearance of waves and wave spectra 
 
In this section we shall study the phenomena of waves with respect to the steepness and the 

numerical experiments are done by the following characteristic groups. 

Group 1:                   

Group 2:                   

Group 3:                 . 
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 Surface elevation for group 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 : surface elevation with                   
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                                          Wave spectra for group 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

             Figure 5.5: wave spectra with                  , energy on the second shell is not visible in the linear plot. 
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                 Surface elevation for group 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.6: surface elevation with                  
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   Wave spectra for group 2 

 

             Figure 5.7: wave spectra with                 . 
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              Surface elevation for group 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: surface elevation with                  
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First of all, we observe from the wave plots that | | acts as the envelope of the waves, and the 

waves behave nicely within it. Secondly, we observe from Figure 5.4, 5.6, 5.8 that as the 

steepness gets bigger, the surface elevation becomes very steep (see figure 5.8) and does not 

correspond to the phenomena in reality. To generate more realistic waves, a limitation of the 

value of the steepness should be defined, that is      [11]. Finally, from Figure 5.5, 5.7, we 

see spectra with two different shapes due to the steepness. When the steepness is small, the 

contours tend to follow the harmonic shells. When it is big, they appear to be tangent to the 

shells at point      . 

 

5.7 Image spectra by Fourier analysis. 
 

The shadow masks are found by the same numerical algorithm introduced in Chapter 2 (see 

Figure 5.8). As my numerical experiments showed that even if the wave spectra look very 

different regarding to the steepness, the image spectra of the corresponding shadow masks 

have almost the same appearance: there are infinitely many contours allocate tangently to the 

harmonic shells. (See Figure 5.9) 

 

Figure 5.8: Shadow masks found by radar set to       
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Figure 5.9: Image spectra of shadow masks with              
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5.8 Extracting wave information from shadow masks 
 
By comparing Figure 5.7, 5.9, we notice that the image spectra contain the information of the 

original waves as well as the noise caused by the nonlinearity of the shadow masks. Since the 

construction of the waves are of the 2
nd

 order, wave information spreads out on the 1
st
 and 2

nd
 

harmonic shells of the image spectra. What is the proportion of the wave information to the 

noise on the two shells? We shall investigate the problem by looking at the wave number 

spectrum of both the waves and the shadow masks. 

 

Figure 5.10: Wave number spectra of waves (lower) and shadow masks (upper),       
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Figure 5.11: Wave number spectra of waves (lower) and shadow masks (upper),        

 

When the steepness is     (see Figure 5.10), the first peak of the wave spectrum (blue peak at 

   ) is nearly 10 times smaller in value than its corresponding peak of the image spectrum 

(the red peak at    ), the second peak of the wave spectrum (blue peak at    ) has an 

even smaller value, thus worthless to compare with the red peak above it. When the steepness 

is 0.01 (see Figure 5.11), the wave spectrum loses the second peak and becomes even smaller 

in values, while the image spectrum nearly fluctuates around the same logarithmic level. 

Therefore we conclude that, for both cases, the noise is more significant than the wave 

information on the 1
st
 and 2

nd
 harmonic shells. 

The first term (1
st
 order wave component) in equation (9) creates noise on all the harmonic 

shells and preserves its wave information to the 1
st
 harmonic shell of the image spectrum. The 

second term (2
nd

 order wave component) in equation (9) further increases the noise on all the 

shells and preserves its wave information to the 2
nd

 harmonic shell of the image spectrum. We 

shall concentrate on the effect of how much noise is added on both the 1
st
 and 2

nd
 harmonic 

shells by the 2
nd

 order wave component. Therefore, we need to filter out the energy on both 

shells of the image spectrum for both the 1
st
 and 2

nd
 order surface reconstructions of the 

waves. Since the contours look very much like straight bars, we use line-functions as their 

skeletons and filter out everything within a certain bandwidth around the line-functions. (See 

Figure 5.12, 5.13)   
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Figure 5.12: The line-function tangent to the 1
st
 harmonic shell at point (1,1) and the contour 

filtered out. 

 

Figure 5.13: The line-function tangent to the 2
nd

 harmonic shell at point (2,2) and the contour 

filtered out. 
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Matlab code for the filtering method: 

function picc(data,O) 

%If O=1, we filter out the energy on the 1st harmonic shell. If O=2, we do 

the same for the 2nd harmonic shell. 
%Get useful information from the file. 
structure=load(data,'-mat'); 
L=structure.L; 
T=structure.T; 
eta=structure.eta; %eta can be waves or shadow masks. 
kc=structure.kc; 
omegac=sqrt(kc*9.8); 
%measure the size of surface elevation matrix. 
s=size(eta); 
N=s(1);% num. of discrete points in t-dimonsion. 
M=s(2);% num. of discrete points in x-dimonsion. 
g=9.8; 
%DFT for the surface elevation. 
eta_hat=1/N*fft(ifft(eta).').'; 
eta_hat=fftshift(eta_hat); 
eta_estimator=(abs(eta_hat)).^2; 
%reconstruct omega for plots. 
n_omega=1:N; 
omega2=2*pi*(n_omega-round(N/2))/(T); 
%reconstruct k for plots 
n_k=1:M; 
k2=2*pi*(n_k-round(M/2))/(L); 
[k,omega]=meshgrid(k2,omega2); 

%function tl() is the filtering method for the 1st harmonic shell. 
if O==1 

[xxx,yyy,eta_filted]=tl(kc,kc,L,T,M,N,k2,omega2,eta_estimator); 
End 

%function tl2() is the filtering method for the 2nd harmonic shell. 
if O==2 

[xxx,yyy,eta_filted]=tl2(2*kc,kc,L,T,M,N,k2,omega2,eta_estimator); 
end 
figure; 

%plot the line-function and the filtered contour. 
contour(k,omega,eta_filted,100);hold on;plot(xxx,yyy); 

%plot the two harmonic shells 
xx=-6*omegac:0.05*omegac:6*omegac; 
yy=(xx).^2/g/kc; 
plot(yy,xx/omegac,'r',yy/2,xx/omegac,'r');xlabel('k/k_c');ylabel('\omega/\o

mega_c'); 

 

function [k,omega,eta_filted]=tl(k0,kc,L,T,M,N,k2,omega2,eta) 

%k0 is the tangent point (here k0=kc). 
g=9.8; 
omegac=sqrt(kc*g); 
%find the slope (tan) of the line-function 
p_index=round(k0*L/(2*pi))+round(M/2)+1 
k_1=k2(p_index)/kc; 
omega_1=sqrt(k2(p_index)*g)/omegac; 
k_2=k2(p_index+1)/kc; 
omega_2=sqrt(k2(p_index+1)*g)/omegac; 
tan=(omega_2-omega_1)/(k_2-k_1); 
%the length of the line-function.  
k=-1:2*pi/L:3; 
omega=tan*(k-k_1)+omega_1; 
omega_indexs=round(omega*T/(2*pi))+round(N/2); 
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k_indexs=round(k*L/(2*pi))+round(M/2)+1; 
J=length(omega_indexs); 
for j=1:J 
    omega(j)=omega2(omega_indexs(j)); 
end 
%define the bandwidth. 
omega_upper_indexs=omega_indexs+3; 
omega_lower_indexs=omega_indexs-2; 
%eta_filted stores the filtered energy. 
eta_filted=zeros(N,M); 
l=0; 
for i=k_indexs(1):k_indexs(J) 
    l=l+1; 
    for j=omega_lower_indexs(l):omega_upper_indexs(l) 
        eta_filted(j,i)=2*eta(j,i); 
    end 
end 

 

function [k,omega,eta_filted]=tl2(k0,kc,L,T,M,N,k2,omega2,eta) 

%k0 is the tangent point (here k0=2*kc). 
g=9.8; 
omegac=sqrt(kc*g); 

%find the slope (tan) of the line-function 
p_index=round(k0*L/(2*pi))+round(M/2)+1 
k_1=k2(p_index)/kc 
omega_1=sqrt(2*k2(p_index)*g)/omegac 
k_2=k2(p_index+1)/kc 
omega_2=sqrt(2*k2(p_index+1)*g)/omegac 
tan=(omega_2-omega_1)/(k_2-k_1) 

%the length of the line-function.  
k=0.5:2*pi/L:5; 
omega=tan*(k-k_1)+omega_1; 
%find the indexes of omega and k 
omega_indexs=round(omega*T/(2*pi))+round(N/2); 
k_indexs=round(k*L/(2*pi))+round(M/2)+1; 
J=length(omega_indexs); 
for j=1:J 
    omega(j)=omega2(omega_indexs(j)); 
end 
%define the bandwidth. 
omega_upper_indexs=omega_indexs+3; 
omega_lower_indexs=omega_indexs-2; 
eta_filted=zeros(N,M); 
l=0; 
for i=k_indexs(1):k_indexs(J) 
    l=l+1; 
    for j=omega_lower_indexs(l):omega_upper_indexs(l) 
        eta_filted(j,i)=2*eta(j,i); 
    end 
end 
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We shall carry out numerical experiments with the above code and collect data. Before that 

we shall define some key words for the convenience of writing. We shall call the image 

spectra of the shadow masks generated by the 1
st
 order waves “the 1

st
 order image spectra” 

and the image spectra of the shadow masks generated by the 2
nd

 order waves “The 2
nd

 order 

image spectra”. The input parameters are set to:                   (meter),   

   (meters),      (seconds),     ,     ,    ,     ,     . By changing 

the phase shifts   -s for each group, we have the follow statistics for the energy distribution. 

  Group1 Group2 Group3 Group4 

1
st
 order 

wave spectra 

1
st
 harmonic 0.0047 0.0049 0.0047 0.0048 

2
nd

 harmonic - - - - 

2
nd

 order 

wave spectra 

1
st
 harmonic 0.0047 0.0049 0.0047 0.0048 

2
nd

 harmonic 0.00006 0.00002 0.000062 0.000044 

1
st
 order 

image 

spectra 

1
st
 harmonic 0.0692 0.075 0.0667 0.0778 

2
nd

 harmonic 0.0179 0.0239 0.0171 0.0227 

2
nd

 order 

image 

spectra 

1
st
 harmonic 0.0616 0.068 0.0594 0.0703 

2
nd

 harmonic 0.0171 0.0228 0.0162 0.0217 

 

Table 5.14: Energy distribution on the 1
st
 and 2

nd
 harmonic shells for both wave and image 

spectra 

We observe from Table 5.14 that the energy on the 2
nd

 harmonic shell of the wave spectra is 

very tiny comparing to that on the 1
st
 harmonic shell of the same spectra. By adding this tiny 

energy, the 1
st
 order wave spectra become the 2

nd
 order wave spectra, and the 1

st
 order image 

spectra become the 2
nd

 order image spectra. Since the filtering method also takes some 

unwanted noise into account, the statistics may have some round-off errors. But in a certain 

degree, the differences between the values in the last and third-last row can describe how 

much wave information is added on the 2
nd

 harmonic shell. We conclude that the addition is 

very tiny and thus the wave information is much less than the noise on this shell. When the 

steepness of the waves are even smaller than 0.1, we can deduct that the 2
nd

 order wave 

component is worthless to consider. 
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Chapter 7 Conclusion  

This thesis is a combination of mathematical formulations and numerical implementations. 

The derivation of the mathematical models uses the knowledge in mathematics, mechanics 

and statistics while the numerical algorithms contain some personal ideas. 

In this thesis, I have generated the wave and image spectra based on the synthetic wave fields 

and extracted the wave information from shadow masks with special attention to the second 

harmonic shell. My numerical results showed that: For the second order nonlinear waves 

generated by the NLS equation, the wave information on the second harmonic shell is too tiny 

to consider comparing to the noise on the same shell. This is probably due to the limitation of 

the steepness       , which upper bounds the wave amplitudes to around 0.1 meter. For the 

second order waves generated by the nonlinear extension of linear wave theory, the wave 

information on the second harmonic shell becomes more and more considerable as the wave 

height increases. It seems that the wave information on the second harmonic shell depends on 

the actual wave height. If the actual wave height on the ocean surface is very big, the signal-

to-noise ratio in the empirical formula would not be correct, which leads to an incorrect 

estimation of the actual significant wave height. If the actual wave height on the ocean surface 

is small, the wave information on the second harmonic shell is neglectable and the empirical 

formula would be fine. 
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