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Abstract

In general notice, the horizontal component of ground motions will normally always play
the dominant role for response of buildings compared to the response from the vertical
component. Therefore, the vast literature is well written for modeling of buildings to sim-
ulate the effect of horizontal components of ground motions. However, with the relatively
recent recognition that the vertical component of ground motion can exceed its horizontal
counterpart, there is a renewed interest in vertical ground motions and their impact on
buildings.

In practical earthquake engineering, modeling of buildings to simulate effects of ground
motions are based on simplified methods such as the lumped mass approach and Bernoulli
beam elements. The objective in this thesis has been to maintain the simplicity in these
assumptions and generalize them to determine whether a simplified model is suitable to
simulate the effect of vertical motion. To evaluate the accuracy of simplified models, they
are compared to an exact model which includes extremely refined element mesh.

The eigenvalue analysis has to a great extent been dominant for the investigation. Com-
paring both natural horizontal and vertical mode shapes and periods for different models,
has been essential to determine which simplified model with least amount of computational
effort can simulate realistic vertical motion. It is the Author’s belief that studies in this
thesis show that simplified models can be used to simulate vertical motion. Nevertheless,
the common modeling assumption in earthquake pratice cannot be used to simulate realistic
vertical motion. This applies especially to the rigid diaphragm assumption when modeling
the slab.

Furthermore, response parameters from time history analysis of a suite of ground motions,

shows that simplified models can simulate the effect of vertical ground motion with reliable
accuracy compared to the exact solution.
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Chapter 1

Introduction

Throughout this introductory chapter, the motivation, specification, scope and outline fol-
lows.

1.1 Motivation

The common practice in earthquake analysis of buildings is to ignore the vertical component
of ground motions and analyze the structure under horizontal components of the ground
motion. In general earthquake analysis, buildings are mostly modeled by using Bernoulli
beam elements to model beams and columns without physically modeling the slab system.
The effects of slabs are simulated implementing rigid-diaphragm constraint for the nodes
that are at the same floor level. The mass of each floor is assumed to be lumped at the
center of mass of the floor. Although this approach works perfectly fine for analysis of
buildings under horizontal ground motions only, it has been observed that lumped mass
models can lead to unrealistic mode shapes and deformation patterns when the vertical
component of the ground motion is included in the analysis. With the increasing interest
in vertical ground motions, modeling of buildings to simulate the effects of vertical motions
remains to be a major challenge for the earthquake engineering community.

From a historical point of view, horizontal component amplitudes of ground motions nor-
mally plays the dominant role compared to the vertical counterpart. However, acceleration
records from the January 17, 1994, Northridge earthquake in the United States, the January
17, 1995, Hyogoken earthquake in Japan and the February 22, 2011, Christchurch earth-
quake in New Zealand, among others, showed that the magnitudes of the vertical component
can be as large, or exceed, the horizontal component. hence, research on this topic is limited.
Iyengar and Shinozuka used a cantilever beam to investigate the effect of the vertical
component of earthquakes. Ariaratnam and Leung analyzed a 2D story frame building
and concluded that the vertical acceleration causes the reduction of the column stiffness and
increases the lateral displacement. Sadeghvaziri and Foutch pointed out that vertical
vibration leads to the instability of columns. The effects of the vertical component of earth-
quake motion were studied by Gupta and Hutchinson 3] using a simple lumped-mass model
of a single story building resting on a rigid foundation. All these aforementioned studies
was conducted on 1D or 2D vases with limited degrees of freedom. However, in a study
conducted by Ju et al. [5] a systematic study of 3D analyses was analyzed to investigate
the extreme column axial forces and beam moments between vertical earthquake and dead
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loads. Nevertheless, simplified models with least amount of computational effort to simulate
the effects of vertical motions appears to be absent in the literature.

With the relatively recent recognition that the vertical component of ground motions can
be as high, or even exceed the horizontal counterpart, efforts towards modeling buildings
to simulate the effects of vertical ground motions has been done. However, taken into
account that normal modeling procedure in earthquake engineering is based on simplified
assumptions, the intention is to maintain the simplicity in these assumptions and generalize
them to model buildings to simulate realistic vertical motion. To server the exact solution,
highly improved element meshes in finite element softwares are used. Much effort has been
done to create highly refined models so that the accuracy of simplified models can be reliable
when they are compared to the ezact solution. The main intention of this thesis is to
determine which of the simplified modes, with least amount of computational effort, can
simulate realistic vertical motion.

It is worthwhile to note that some modern finite element softwares allows structures compo-
nents to be modeled with perfection using a very fine mesh of elements using consistent mass
approach. However, the computational efforts for these advanced finite element softwares
are much higher than general engineering software. On the other hand, different alternative
modeling approaches in a general engineering software (OpenSEES) are developed in order
to assess the efficiency of these models in capturing the vertical and horizontal vibration
modes. The most efficient modeling approach, i.e. the approach that requires least effort
while maintaining sufficient accuracy, is identified.

1.2 Specifications

In this thesis, the following steps will be accomplished

1. A set of model buildings with different structural systems will be analyzed in ANSYS
using a finite element modeling (FEM) approach. The structural systems will be
modeled in their entirety including all structural members and slab systems. The
masses will be modeled as continuous masses throughout the structural members and
slabs. Eigenvalue-value and elastic response history analysis under a suite of ground
motions will be conducted to evaluate the vibration modes and characteristics of the
model buildings. As such, the full FEM models will provide a realistic representation
of the model buildings and will serve as “benchmark” to evaluate the efficiency and
accuracy of simplified models that will be developed in the further stages.

2. Model buildings will be re-modeled using the lumped-mass assumption in OpenSEES.
FEigen-value and elastic response history analysis conducted in step 1 will be repeated
using the lumped-mass model and the results will be compared to investigate and
document the shortcomings of the lumped-mass model.

3. Efforts will be put towards eliminating the shortcomings of the lumped-mass models
that have been identified in step 2. The accuracy of the simplified approaches in
capturing the vertical vibration modes and deformation patterns of the buildings will
be investigated for:

(a) using multiple elastic beam elements to simulate the effects of slabs
(b) explicit modelling of slabs using plate elements

(c) explicit modelling of slabs using shell elements
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4. For all approaches in step 3, several meshing options from coarse to very fine will be
analyzed to determine the optimum mesh configuration. The results of eigen-value
analysis and elastic response history analysis obtained from these improved models
will be compared to the benchmark results for evaluation. The most efficient model
that can simulate the behavior of buildings under vertical ground motions will be
identified.

1.3 Scope

Different modeling approaches, based on the lumped mass approach, of buildings are created
to simulate the effects of vertical component of ground motions. Coarse to fine lumped mass
models, as well as the slab, classifies the accuracy for each model compared to the exact
solution. Both 2D and 3D multiple-degree-of-freedom buildings are included in the analysis,
where eigenvalue analyses to a great extent determines the reliability of each model to
capture realistic vertical motion when they are compared to the ezact solution. Numerical
time history analyses are performed, but limited to the 2D range only. In this case, both
horizontal and vertical component of recorded ground motions are included in the analysis.
All analyses performed are modeled and calculated in finite element software.

Although earthquake analysis for buildings normally render the inelastic range, this study
involves only the elastic range and eigenvalue analysis and time history analysis are used
to solve equation of motion. Shear deformation and second order effects are neglected.
Symmetrical buildings are used.

1.4 Outline

To serve the specifications, the thesis is divided into two parts.

Part I provides some of the necessary theoretical background needed to understand the
complexity of the specifications in this thesis. Throughout part I, some fundamental theory
and applications for earthquake engineering are explained within the elastic range. With
advanced knowledge in theory and applications to earthquake engineering, part I may not
be necessary to go through for fully understand the later on results. However, taken into
account that the terminology that is used in this part carries on throughout the entire report,
it is recommended to briefly overview the main equations and algorithms.

Chapters 2 in Part I introduce a general introduction to the equation of motion subjected to
ground motion. Time history analysis and eigenvalue analysis are the methods used in this
thesis to solve equation of motion, and Chapter 3 provides theory of these methods. Based
on that finite element software’s are used extensively to solve the methods in Chapter 3,
Chapter 4 defines how to determine the parameters in equation of motion in a finite element
range. The last chapter 5, in Part I, is general seismology.

Part IT introduces modeling procedures, assumptions and restrictions of the thesis. Chapter
7 presents the 2D model and Chapter 8 the 3D model. In both Chapters 7 and 8, modeling
procedure, analysis, results and discussion are provided. Conclusion and recommendation
for further studies is the last chapter.
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Chapter 2

Equation Of Motion:
Earthquake Excitation

This chapter introduces equation of motion due to ground motion for single-degree-of-
freedom (SDOF) systems and then due to multiple-degree-of-freedom (MDOF') systems.
Equation of motion mathematically describes the behavior of structures under dynamic
loading and is developed by Newtons second law and D’Alembert’s principle of motion @
In general form, equation of motion can be defined as

mii(t) + cu(t) + ku(t) = p(t) (2.0.1)

where : m is mass, ¢ is damping, k is stiffness and the dynamic response of the structure
to the dynamic loading p is defined by the acceleration (t) is acceleration, velocity 4, and
displacements u.

2.1 Single-degree-of-freedom systems

Fig. shows the ground displacement uy(t) and the relative displacement between the
mass and ground u,(t). This gives total (or absolute) displacement of the mass w0t ().

For each instant of time, the relationship between uy(t) and u,(t) can be expressed

Utor (1) = ur(t) + ug(t) (2.1.1)

If the system in figure consider only one DOF, say lateral displacement of u.:, and the
mass is concentrated at one location with the rest of the frame massless, it can be idealized
as an one-story system (although the static analysis problem has to be formulated with three
DOFs). The mass is in this case lumped.
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Figure 2.1.1: Singel degree of freedom system; Displacement conditions due to ground dis-
placement. And internal forces of the system.

The equation of motion for the idealized one-story system of fig. [2.1.1] can be developed by
using the concept of dynamic equilibrium. Dynamic equilibrium is satisfied when

frtfo+fs=0 (2.1.2)

where f; = miiz(t) is the inertia force, fp = ct,.(t) is the damping force and fg = ku,.(¢)
is the lateral stiffness force, respectively. Inertia force f; = miiyo(t) is based on the total
displacement w0 (t), because that is the total displacement of the mass. Meanwhile, elastic
force fp = ku,(t) and damping force fs = cu,(t) only depends on relative motions wu,(t)
and 4, (t), respectively.

From these relationships, Eq.(2.1.2) and (2.1.1)) can be rewritten as

m (it () + iy (t)) + cit (t) + ku,(£) = 0

which is equal to
mily (t) + et (t) + kur(t) = —miig(t) (2.1.3)

Eq.([2.1.3]) is called equation motion subjected to a ground acceleration ii4(t), or more general
equation of ground motion.

The relative displacement u,(t) of the structure due to the ground acceleration i, (t) is
identical to the total displacement position of the structure if the structure is standing on a
stationary base exposed by an external force —miiy(t). Therefore, the right side of Eq.
can be replaced by what is called the effective earthquake force pess(t) = —miiy(t) showed

in Fig Pesf(t) = —miiy(t) is the dynamic loading in Eq. (2.0.1) and is related to
ground motion.

o p() = -mig(®)

m

tg(t) Stationary base

Figure 2.1.2: Ground motion i, represented as a force connected to the mass location of
the SDOF system.
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The effective earthquake force is proportional to the total mass of the structure, which means
that the mass (m) and effective earthquake force pss(t) increase equally.

2.2 Multiple-degree-of-freedom systems

The same principles as for SDOF systems are also valid for MDOF systems. In SDOF
systems, the mass (m), stiffness (k) and damping (c) are regained a single scalar quantity,
while they are represented as matrices in MDOF systems. Matrices are designated with bold
capital letters inside brackets [|, and vectors with bold capital letters inside loop parentheses

{}-

The total displacement from Eq. (2.1.1) is for a MDOF system combined in vector form
such as

{Ulior (1) = {U},(8) + ug(){i} (2.2.1)

where i is the influence vector representing the displacements of the masses of a unit ground
displacement.

Using the same concept of dynamic equilibrium as introduced for SDOF systems, dynamic

equilibrium is satisfied for MDOF systems when

{F}H{Fip +{F}g=0 (2.2.2)

and now, [F]; = [M]{ﬂ}tat(t) is the inertia force matrix, [F|, = [C]{U}r(t) is the damping
force matrix and [F]g = [K]{U}, (¢) is the stiffness force matrix, respectively.

Combining Eq. (2.2.1]) and (2.2.2)) leads to the equation of ground motion of MDOF system
such as

IMI{U}, (1) + [C]{U},.(t) + [K] {U},(t) = — [M}{i}it,(¢) (2.2.3)

The effective earthquake force {p} ;;(t) = —[M]{i}iiy(¢) are related with the same condi-
tions as for SDOF systems showed in Fig. [2.1.2] but with several mass positions.

Later in this thesis, solutions of equation of motion are solved with both horizontal and
vertical component of the ground motion. Equation of motion subjected to two components
of the ground can be express

IM]{T},(t) + [C1{U}, (0) + K] {U}, () = = [M] {{ix}itg + {iy itgy } (1) (2.2.4)

where x and y are horizontal and vertical components, respectively.
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Chapter 3

Analysis Methods

This chapter provides two analysis methods to solve different applications of equation of
motion for multiple-degree-of-freedom systems, such as eigenvalue analysis and time
history analysis. Mathematical expressions and explanations of these two methods are pro-
vided. In part II, both of these methods are used to analyze a suite of different models.

3.1 Eigenvalue Analysis

The first analysis method is the eigenvalue analysis, and it is limited to free vibration only.
Free vibration of systems is the motion of a structure without any dynamic excitation.
Solutions of eigenvalue analysis are natural mode shapes and frequencies of a structure.
Free vibrations of systems play a central role in dynamic and earthquake analysis of linear
systems when modal analyses are general application to solve equation of motion. However,
modal analyses are not provided or used in this thesis.

3.1.1 Natural vibration frequencies and mode shapes

This subsection develops the notion of natural frequencies and natural modes of MDOF
systems. A systematic mathematical build-up of how to assume free vibration of equation
of motion and the solve natural properties such as mode shapes and vibrations are provided.

Natural vibrations frequencies and mode shapes of an undamped system can be developed
by reduce equation of motion (2.2.3)) to

IMI{U}(¢) + (K] {U}(¢) = {0} (3.1.1)

Solution of time variation of displacements {U}(¢) gives a system that oscillates with con-
stant peaks. However, an eigenvalue analysis is not a problem solved in the time domain,
but in the frequency domain. Therefore, the natural mode shape{¢}, does not vary with
time. The free vibration of an undamped system can then be described by

{U} (1) = an(t) {0} (3.1.2)

11
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where the time variation of the displacements ¢, (t) is described by the harmonic function

qn(t) = A, cos(wnt) + Bpsin(wyt) (3.1.3)

where A,, and B,, are constants determined by the initial conditions that initiate the motion.

Combining Eq. (3.1.2) and (3.1.3) gives

{UHt) = {0}, (Ancos (wnt) + Bysin (wpt)) (3.1.4)

where w,, and ¢,, are unknown.

Furthermore, substituting Eq.(3.1.4) in Eq.(3.1.1)) and then twice derive this with respect
of time gives

[—waMJ{¢}, + [KI{¢},] g.(t) = {0} (3.1.5)

This equation (3.1.5) has two solutions in order to be satisfied. One solution is the trivial
solution, ¢,(t) = 0, which means that the displacements {U}(¢) = 0 from Eq. (3.1.2). The
other solution requires that the natural frequencies and mode shapes satisfies

—wr[Ml{¢},, + [Kl{¢}, =
(K] —wiM]] {¢}, = 0] (3.1.6)

which is called the matriz eigenvalue problem. This equation as also two solution in order
to be satisfied, and {¢}, = 0 is the trivial. Natural frequencies can then be determined by

det [[K] — w;[M]] = {0} (3.1.7)
Solutions of w? can then mode shapes {¢}, in Eq. (3.1.6).

In summary, a MDOF vibration system has N natural vibration frequencies w;,, and modes
{¢} jn» Where j =1, 2, .., N. They are arranged in sequence from smallest to largest
Win < wap < ... < wnp; Corresponding natural frequencies w;, and natural modes shapes

{9}

Normalization of modes

The eigenvalue problem, Eq. , only determines natural modes within a multiplicative
factor. if the vector {¢}, is a natural mode, any vector proportional to {¢}, is the same
natural mode because it also satisfies Eq. . Scale factors can be applied to natural
modes to standardize their elements associated with various DOF. This process is called
normalization. Normally this is on the top of a multistory building.

Normalization are much necessary to perform in this thesis when mode shapes from different
models are compared to each other.

Solution methods to solve the eigenvalue problem

Finding the vibration properties requires solution of the matriz eigenvalue problem of Eq.
(3.1.6). The eigenvalues are the roots of the characteristic equation (3.1.7));
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p(N) = det [K—AM] = 0 (3.1.8)

where p () is a polynomial of order N in being the number of DOFs of the system. However,
using the determinant to solve the matrix eigenvalue problem is not a practical method
because evaluation of the N coefficients of the polynomial requires much computational
effort, and the roots of p(\) are sensitive to numerical round-off errors. Thus, for large
matrices, reliable and efficient methods to solve the eigenvalue problem is needed. Hand
calculations cannot be performed to solve this, and the computer as a calculation tool is
necessary.

All solution methods for eigenvalue problems must be solved iterative, naturally because
solving the eigenvalue problem is equivalent to finding the roots of the polynomial p (\) and
no explicit formulas are available for these roots when N is larger than 4 .

In this thesis, finite element software’s that solve Eq. (3.1.8]) uses subspace iteration or
the Lanczos method. However, these methods are not explained here, but can be found in

[25416].

3.2 Time history analysis

Time history analysis methods directly solve equation of motion in time domain. With
implicit or explicit integrations methods, both SDOF and MDOF systems can be solved
within the elastic or inelastic range. In earthquake analysis, an implicit algorithm to solve
equation of motion is favored @ Based on that, this section contains an implicit direct
integration method emphasizing the Newmark’s method for MDOF systems. However, only
a short introduction of the method is presented. This method is used later when time history
analyses are performed.

3.2.1 Implicit direct integration method

Direct integration of Eq. refers to step-by-step calculation of response history in
time. Direct integration methods evaluate response separately at each instant of time At
(e.g. recorded ground motion). With an implicit integration method, the time step is n 4+ 1.
Equation of motion subjected by two components of the ground motion can then be
expressed

{0} +[C{U} KUY, = - M {{idigen + lyYigen)  (3:21)

Newmark’s method
Newmark’s method contains numerical factors v and S that control characteristics of the

algorithm such as accuracy and numerical stability. for MDOF systems, Newmark relations
of the {U} vector of d.o.f are

{o}  ={o},+acp {0} +a-a{o} ] (322
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{U},1 = {0}, + At {0 } + %AtQ [2/3 {t'J}n+1 +(1-28) {U}} (3.2.3)

Solving Eq. (3.2.3)) for {U} and substituting this expression into Eq. (3.2.2)) gives
n+1

(8).1 s (-, o{e) ) (5 1) (0], o

{U}n+1 - ﬁ ({U},,, —{U},) - (g - ) {U}n — At (276 - ) {U}n (3.2.5)

Egs. (3.2.3), (3.2.5) and (3.2.4) can now be substituted into the equation of motion (3.2.1)

and then solve for { U

n+1 ’

To begin calculations, {U} needs to be calculated. A step by step procedure of this is
summarized in .

Accuracy and stability

To provide accuracy, {U} cannot be set as {U} = {0} unless the mass matrix is diagonal
0 0

such as an lumped mass approach. Forcing {U} to zero, may reduce the accuracy from

second-order to first-order \\ Evaluating {U}O requires that [M] is assembled and reduced

for equation-solving.
Furthermore, Newmark method have unconditional stability when

28272 (3.2.6)

DN =

and conditional stability when

D]
&

3

)

3

where

2

Co-P+yi-sre0-Y)

chit =
1-7

in which ( is the damping ratio.

However, conditionally stable implicit method are rarely used in practice, because of the
severe constraint placed on At and the substantial cost per time step of an implicit method
in 2D and 3D problems. Unconditional stability is a computational cheaper and even very
large values of At do not make calculations "blow up”[7|].



Chapter 4

Methods to Define Stifiness,
Mass and Damping

This chapter provides theories of how to define stiffness [K], mass [M] and damping [C]
in equation of motion when modeling MDOF systems. The purpose of this chapter is to
understand the effect of using different methods to define stiffness and mass when solving
applications of equation of motion.

The principle of minimum potential energy (PMPE) can provide the relations of stiffness
and mass. PMPE has been used because finite element softwares used in this thesis are
based on this principle. Applications on how to define stiffness is not provided. However,
the mass matrix methods are divided into two subsections. The first provides the consistent
mass matrix from PMPE, and the other is the lumped mass approach. Taken into account
that determine natural mode shapes and vibration periods plays a dominant role in this
thesis, evaluating stiffness and mass are considered necessary and reasonable to include.

4.1 Stiffness matrix

There is a vast literature describing theories and methods to understand stiffness of struc-
tures, such as; Material properties, boundary conditions and methods to describe geometric
structural properties. The stiffness contribution from material properties and boundary
conditions appears as a result of defined limits of a structure. However, geometrical prop-
erties depends of a method’s ability to involve actual physical phenomena, e.g., bending,
shear deformation, torsional deformations and/or second order effects (often called P-delta
effects). However, only shear deformation effects are explained within detail in this section.

Furthermore, this section provides theories of how to evaluate the stiffness of beams and
plates in structures when the principle of minimum potential energy is used. However, a
profound implementation in finite element methods is explained in . Nevertheless, further
presentations are based on the presumptation that the reader is familiar with the finite
element method for analysis of static structural problems.

15
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Elastic Stiffness matrix: Stiffness matrix from PMPE can be written as

(K] = / B]” [E] [B] dV (4.1.1)

where [K€] is the local stiffness matrix (local matrices are assigned with raised e), [B] =

% {N}, where {N} are the shape functions of beams or plates and [E] is constitutive
matrix.

4.1.1 Shear and bending deformation effects

This subsection introduces both beams and plate theories including or neglecting first order
shear deformation effects. However, a deep understating of the theories are not provided.

Beam theories

In Finite Element Analyses, shape functions can be described by evaluating interpolations of
an element. Interpolate is to device a continuous function that satisfies prescribe conditions
at nodes. For 2D beams with two degrees of freedom in each end, rotation # and translation
V showed in Fig. [I.1.2] the shape functions can be expressed by the shape function vector
{N}T = {Ny, Ny, N3, Ny }. Where N; represents each interpolation showed in Fig

Figure 4.1.1: Shape functions N; for the 2D beam element. Slopes at x =0 and = = L.
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Y Y
1 2

Figure 4.1.2: Positive definitions of the shape functions in Fig. x. 6 is rotational degree of
freedom and V is translation.

Euler Bernoulli beam theory

Euler Bernoulli beam theory invokes zero shear stress assumptions which results in zero
transverse shear deflection. The displacement field implies that straight lines normal to
the mid plane before deformation remain straight and normal to the mid plane after defor-
mation, showed in Fig Although the restrictions of neglecting shear deformation is
an approximation of the reality, the error is considered small when beams are reasonably
slender [7]. This theory is often referred as classic beam theory.

Figure 4.1.3: Euler-Bernoulli beam: Undeformed state and deformed state retained Naviers
hypotese.

From this relation, the shape functions for 2D beams can be expressed
z 3)
§) (4.1.2)

In terms of accuracy, these shape functions describes bending exact .

The local stiffness matrix for Bernoulli beams [K¢] can then be expressed by Eq.

@11)

Bernoulli

12 6L —12 6L

L
e T EI| 6L 4L* —6L 2L?
K g = [ BT EIBI =5 | Of fe TOF 2 (113
0
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Timoshenko beam theory

Timoshenko beam theory introduced first order shear deformation for beam theory. This
theory is also called first order shear deformation beam theory. In Timoshenko beam theory,
the normlaity of Euler-Bernoulli beam theory is relaxed and a constant state of the transverse
shear strain with respect to the thickness coordinate is included. Fig. shows deformed
and undeformed state of the Timoshenko beam, where the normal in underformed shape
rotates by ®. The error of constant shear stress distribution through the beam depth in
Timoshenko beam theory, requires the shear correction ® to compensate ﬂgﬂ For Bernoulli,
the normal is always the angle 4%

dz *

Figure 4.1.4: Timoshenko beam theory. The normal rotates by .

From the relation of how first order shear deformation is included in Timoshenko beam
theory, the shape functions for 2D beams can be expressed

iy [1-3(3) +2(2)°+ (- $)9)
N s 2 _f([g) +() +3(5-®)7) 9] (4.1.4)

This will from Eq. (4.1.1)) give the local stiffness matrix for Timoshenko beam theory

L
KT rimomienso = | 1B [E][B]do
0
12 6L —12 6L
B EI 6L (4+®)L> —6L (2—®)L> (415)
A+ L% | 12 —6L 12 6L -

6L (2—®)L> —6L (4+ ®)L>

The term @ gives the relative importance of the shear deformations to the bending defor-

mations, showed in Fig.

12E71

d—
G(3)r
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g is the effective shear area for transverse shear deformation. Determining the shear cor-
rection factor can be done with different methods, however, in engineering practices, Tim-
oshenko provided general expressions assumed good enough ﬂgﬂ For solid rectangular cross
section, the shear correction factor can be assumed o = %

When elements becomes more and more slender, ® approaches zero and the shear deforma-
tion contribution progressively decreases. Neglecting all shear deformation can be done by

specify ® = 0.

Plate and shell theories

Plates and shell can be described with and without shear deformation effects as well. Kirch-
hoff and Mindlin-Reissner plate theories are mentioned in this section, although it is not
provided a mathematical understanding which was provided for beams. For the interested
reader, this can be found in [11].

Kirchhoff plate theory

The Kirchhoff plate theory is an extension of Euler—Bernoulli beam theory restricted to thin
plates % < %0. Where ¢ denotes the plate thickness and L denotes the length of the plate.
Kirchhoft’s plate theory do not include shear deformation effects. Thin plates must satisfy
- continuity, which implies the shape functions to be continuity after first derivative. The

classic thin plate theory is based on Kirchhoff hypothesis:

e Straight lines perpendicular to the mid-surface before deformation remain straight
after deformation

e The transverse normal do not experience elongation

e The transverse normals rotate such that they remain perpendicular to the mid-surface
after deformation.

The consequence of the Kirchhoff hypothesis is that the transverse strains are zero, and
consequently, the transverse stresses do not enter the theory.

Mindlin- and Reissner plate theory

Mindlin- and Reissner plate theory include first order shear deformation recommended for
thick plates %>% > %.

Mindlin plate theory invoke plane stress, while Reissner includes the possibility that the
plate thickness may change during deformation — which is not a possibility in Mindlin
theory. Mindlin and Reissner is in general called Mindlin-Reissner plate theory, despite
their profound differences in assumptions and formulations . Misunderstanding of the
differences in Mindlin- and Reissner plate theory causes that, in practical engineering, both
Mindlin- or Reissner plate theory results in the same shear deflection contribution. A deep
understanding of both theories can be found in .
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4.1.2 Stiffness approach of slender buildings in general engineering
pratice

In general engineering, buildings is normally modeled using one element for each structural
member. This benefits Euler Bernoulli beam theory when this practically makes it im-
possible for Timoshenko beam theory to satisfy the requirement of thick beams to obtain
shear deformation . Neglecting shear deformation in general structural engineering is an
assumption made out of that building components normally contain slender structural mem-
bers and shear deformation effects are small compared to bending. However, including shear
deformation effects when defining the stiffness matrix indicates that bigger deformations are
possible which results in slower periods.

4.1.3 Second order effects

The axial force in a structure contributes on the stiffness. Tensile force increases the stiffness
so that the structure can resist displacements perpendicular of the axial force better. On
the other hand, compressive forces reduces the stiffness and displacements perpendicular of
the axial force increases.

Generally, vertical components in buildings exposure compressive forces because of the build-
ings weight and the gravity force. Compressive forces in the vertical components increases
the displacements perpendicular of the axial force, and the base moment increases. This
effects can be called geometrical effects or P-delta effects, expressed as Fg. Fg is approxi-
mately proportional to the displacement and can be written as

Fa(t) = [Kq|{U}, (t)
where [K,] is geometrical stiffness [24}[20].

This extra moment force can be included in the equation of motion such as

IM]{T},(t) + [C{U}, (1) + (K] {U}, (1) - (K, {U}, (t) = — [M]{i}i(t)

Reduction of the stiffness matrix directly indicates that bigger deformations are possible,
which results in slower natural periods.

4.2 Mass matrix methods

For a real building, the mass is distributed over each and single physical element of the
building. This way to model the mass is not profitable to be practiced for solving the
equation of motion because that provides the mass matrix, theoretically, to be infinite big.
However, continuous mass distribution can be discrete represented as a mass matrix idealized
as consistent or lumped. In general earthquake engineering, the lumped mass approach is
generally used based on that only the horizontal component of ground motions are considered
in the analysis.

This section provides the consistent and lumped mass approach.



21 Chapter 4. Methods to Define Stiffness, Mass and Damping

4.2.1 Consistent mass matrix

Mentioned in the stiffness matrix section, shear deformation effects improved the deforma-
tion pattern. As shown, the shape functions for beam elements are different for Bernoulli
and Timoshenko. That is the case for the consistent mass matrix as well, because the matrix
develops from the shape functions for an element with the relationship

L

[M°] = / (N} {N} pA dx (4.2.1)
0

where {N} is the shape function vector, p is the density and A is the area of the cross
section.

This provides a full mass matrix largely parallels that of the stiffness matrix. Consistent
mass matrix for individual element are formed in local coordinates, transformed to global,
and merged into the global consistent mass matrix following exactly the same techniques
used for solving the stiffness matrix, [K]. For Bernoulli beam theory, the consistent mass
matrix for each element is created from the shape functions of Eq. to be

156 22L o4 —13L

L
) B T om | 220 4L 13L —3L2
[M ]Bernoulli - /{N} {N} pA dr = @ 54 13L 156 _929], (422)
0

—13L —-3L%? —22I 4I2

and for Timoshenko beam theory involving shear deflection from Eq. (4.1.4) to be

L
[Me]Timoshenko = / {N}T {N} pA dx
0

3124 588® + 2800 (44 + T7® + 350%) L

m | (44770 +350%) L L(8+ 149 4 79%) L?
840 | 108+ 2520 +1750% (26 + 630 + 3597) L
— (26 +63® +3502) L — (6 + 14® + 7P?) L?

108 + 2520 + 17502 — (26 + 630 + 35®2%) L

(26 + 63® + 350%) L — (6 + 14 + 79?) L? 123

312 4 588® + 28092  — (44 + T7P + 3502) L (42.3)
— (44 + 770 +350%) L (8+14®+70%) L7 |,

This indicates that the consistent mass matrix is different for Bernoulli beam theory and
Timoshenko beam theory. However, if ® = 0 there are no differences..

Plate elements regarding Kirchhoff and Mindling theory can be found in [22)21].

4.2.2 Lumped mass matrix

The lumped mass matrix approach results in diagonal matrix where mass is assigned to
nodes and is determined for the portion of the weight that can reasonably be assigned to

the node, showed in Fig.
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Structural element

Lumped mass

Figure 4.2.1: Lumped mass approach.

This implies that each structural element share a point mass at its nodes. A notable dif-
ference with the stiffness matrix is the possibility of using diagonal mass matrix based on
direct lumping. In case of a beam element with constant cross section, half of the mass is
lumped in each node. If these masses are considered to contribute to translational motion
only, the mass matrix on element level would appear as

1
[Me] = (4.2.4)

0

Terms to take into account the effect of rotational inertia are usually placed in the two
diagonal coefficients of Eq. (4.2.4]) which now contain zeros.

Notice that regardless of what Bernoulli beam theory or Timoshenko beam theory is con-
sidered, the lumped mass approach remains the same. This is the same for plates as well.

4.2.3 Mass approach of buildings in general engineering practice

In a general building, the majority of the building’s mass is distributed over the slab system
and then only a very small proportion is left in the columns. Because of that, the mass from
the columns is normally included in the lumped mass approach, showed in Fig This
modeling procedure is common practice in structural engineering and earthquake engineering
when modeling buildings.

For horizontal motion without distributing the mass in the columns, the lumped mass as-
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sumptions increases accuracy for buildings with the relationship; Total slab mass >> total
column mass, in which this implies that the mass of the columns barley constitute any mass.

4.3 Damping matrix

Unlike the stiffness and mass matrices, damping matrix cannot be computed using matrial
and physical properties. There are many significant part of the energy dissipation that
could not explicitly been taken into account such as; friction of steel connections, opening
and closing of microcracks in concrete, fire-proofing friction between structure and non-
structural components. Therefore, damping of MDOF systems is generally determined by
numerical values for the damping ratios assigned to individual nodes, bases on experimental
data for similar structures. Different damping ratios can be determine from modal damp-
ing ratios which account for energy-dissipating of mechanism. Damping ratios of different
materials can be estimated from earthquakes, where the buildings components do not enter
the inelastic range @ Different materials and conditions of structures is listed up in Table
Normally assumption of damping ratio for concrete buildings is 5%.

Table 4.3.1: Recommended damping values, \\

Type and Condition Damping Ratio
Stress Level of Structure (%)
Working stress, Welded steel, prestressed 2-3
no more than about concrete, well-reinforced
% yield point concrete (only slight cracking)
Reinforced concrete with 3-5
considerable cracking
Bolted and/or riveted steel, 5-7
wood structures with nailed or
bolted joints
At or just below ‘Welded steel, prestressed 5-7
yield point concrete (without complete
loss in prestress)
Prestressed concrete with no 7-10
prestress left
Reinforced concrete 7-10
Bolted and/or riveted steel, 10-15

wood structures with
bolted joints

Wood structures with nailed 15-20
joints

4.3.1 Rayleigh Damping

This subsection introduces how to calculate the damping matrix using the Rayleigh damping
theory. An eigenvalue analysis is required to determine solutions of frequencies which is
needed in Rayleigh damping theory.

Rayleigh damping have the relation

[C] = a0 [M] + a1 [K] (4.3.1)
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where the constants ag and a; have the units of sec™! and sec, respectively.

The damping ratio for the nth mode (from the eigenvalue analysis) is

Wl o, (4.3.2)

Gn = 2w, 2

From specified damping ratios Constants ; and (;, ap and a; can be determined for the ith
and jthe mode, respectively. Eq. (4.3.2]) can be expressed in a matrix form such as

Based on experimental data, it is reasonable to assume that both modes have the same
damping ratio. Eq. (4.3.3)) can then be rewritten as

2(4.]1'(,0]' 2
’ a; = C
wj + wj wj + wj

apg = C (434)

Applying this procedure to a practical problem, the ith and jth mode should be those
modes which contributes significantly to the response, because only these modes will have
exactly 5% damping. Fig. |4.3.1| shows the relationship of the damping ratio ¢ and natural
frequencies w; and wj.

G
Rayleigh damping

Wi W

Natural freq. , Wn (rad/sec)

Figure 4.3.1: Variation of modal damping ratios with natural frequency for Rayleigh damp-
ing.

Fig. [£.3.1] shows that the damping for the modes in between w; and w; gives somewhat less
damping, while those after w; gives more. The damping ratio for modes after w; increases
monotonically and corresponding modal response essentially eliminates because of their high
damping.



Chapter 5

Seismology

Seismology covers a vast field, and only a short introduction within a few theories has been
given in this chapter. How earthquakes occur, elastic waves that can create dangerous
earthquakes and how to record ground motions in both horizontal and vertical direction are
explained.

5.1 Introduction

Seismology is the scientific study of earthquakes and the propagation of elastic waves through
or around the earth. In general, people relate earthquakes as collisions between tectonic
plates on the Earth’s surface. India, Italy and Japan are examples of this, and earthquakes
often appears in these countries. Fig shows epic center of all earthquakes with an
amplitude over 3.5 or more in the period 1963-1998.

Figure 5.1.1: Overview of the epic center of all earthquakes with an amplitude of 3.5 or
more in the period 1963-1998. The picture is taken from

An earthquake occurs when rocks being deformed suddenly break along a fault. The two
blocks of rock on both sides of the fault slip suddenly, setting off the ground vibration. This

25
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slippage occurs most commonly at plate boundaries, regions of the Earth’s crust or upper
mantle where most of the ongoing deformation take place. The fault can

5.2 Body waves

Earthquake shaking and damage is the result of basic types of elastic waves. Two of them
propagate within a body of rock. The faster of these body waves is called the primary or P
wave and the slower ones is called the secondary or S wave, showed in Fig. [5.2.1]

P wave’s motion is as it spreads out, it alternately compresses anddilates the rock. As a S
wave propagates, it shears the rock sideways at right angles to the direction of travel. The
actual speed of P and S seismic waves depends on the density and elastic properties of the
rocks and soil through which they pass. In most earthquakes, the P waves comes first, then
some seconds later, the S waves arrive and the ground surface shakes both vertically and
horizontally. This is the wave motion that is so damaging to buildings.

Compressions
——
P -
P wave &
e —
S wave N N 2
g B % = bl
—
Wavelength

Figure 5.2.1: Visually graphic of how the P and the S wave shakes through the body. Picture

from .

5.3 Seismometer

Seismometers are instruments that measure motions of the ground, and they are extremely
sensitive to seismic waves generated by e.g. earthquakes. The seismometer makes use of the
principle of inertia. If a heavy mass is only loosely coupled to the ground, as in Fig. [5.33]
the motion of the Earth caused by a seismic wave is only partly transferred to the mass.
While the ground vibrates, the inertia of the heavy mass assures that it does not move as
much, if at all. The seismometer amplifies and records the relative motion between the mass
and the ground, such as u, in Fig. .
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heavy mass
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Figure 5.3.1: The principle of the seismometer. Suspended heavy mass remains stationary
when the ground and suspension move to left and right. Picture from [15].

Fig. [5.3.2h and [5.3.2b shows schematically design of seismometers which can capture hor-
izontal and vertical motion based on the principle of inertia. For the vertical-motion seis-

mometer, a large mass is mounted on the horizontal bar hinged at a pivot so that it can move
only in the vertical direction. A loose coupling between the mass and the housing is assured
when a bar is held in the horizontal position by a weak spring. The theory remains the same
for horizontal-motion seismometer, where the inertial mass is mounted on a horizontal bar
but it is hinged vertically so the mass only can swing in the horizontal plane.
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Figure 5.3.2: Schematic design illustrating the mechanical pendulum type of vertical- and
horizontal-seismometer: (a) Horizontal (b) Vertical Pictures from .

Another instrument to record motion is the electromagnetic instruments which respond to
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the velocity of ground motions. Some modern electromagnetic instruments can record
three orthogonal components of the motion simultaneously.

Mentioned in the motivation of this thesis, it is the general notice that the horizontal com-
ponent of ground motions normally plays the dominant role. However, relatively recently
recorded ground motions shows that the vertical component can exceed its counterpart. Fig.
[(-333h and b shows how the vertical component recorded from the PRPC station from the
Christchurch earthquake 2011 clearly exceeded the horizontal counterpart.
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Figure 5.3.3: Horizontal and vertical ground acceleration from PRPC station of the
Christchurch earthquake February 2011. (a) Horizontal component, W. PGA=0.67g (b)
Vertical component, UP. PGA=1.63g.
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Chapter 6

Modeling Assumptions

This chapter introduces a short presentation of the finite element softwares and the rea-
son why they are used in this thesis. Furthermore, assumptions, restrictions and how the
modeling procedure has been done are explained.

6.1 Finite element softwares: OpenSEES and ANSYS

OpenSEES and ANSYS are the two finite element software used in this thesis. However,
ANSYS is only used when modeling in 3D.

The main purpose of using OpenSEES and ANSYS, is that OpenSEES is a general engi-
neering software using the lumped mass approach while ANSYS uses the consistent mass
approach. Moreover, ANSYS is a complex finite element software and require much more
computational effort than OpenSEES, which is not favored in general engineering practice.

Simplified models in OpenSEES contains classic beam elements (Bernoulli) and shell ele-
ments (Kirchhoff), while ANSYS offers more advanced elements including e.g. transverse
shear deformation effects (Timoshenko and Mindlin). However, the intention in this thesis
is to created simplified models using the lumped mass method and compare these models
to very fine element mesh using the consistent mass approach.

Shell elements in OpenSEES uses the bilinear isoparametric formulation with 6 DOF
in each node. Beam elements are model as elastic classic Bernoulli beams.
Models in ANSYS uses shell93 and beam4/beam189.

6.2 Assumptions and restrictions

Eigen-value analysis is to a great extent been used in this thesis to identify natural mode
shapes and periods. It is assumed that determine natural mode shapes and periods from
eigen-value analysis classifies the accuracy of different simplified lumped mass models when
they are compared to an ezxact solution. Furthermore, it is then assumed that if a simplified
lumped mass model gives very similar natural mode shapes and vibration periods compared
to the exact solution, this simplified model is a reliable model to simulate vertical motions.

31
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This assumption is based on the common modal analysis to solve equation of motion under
ground motions@. Nevertheless, modal analysis is beyond the scope of this thesis. Instead,
time history analysis is used to solve equation of ground motion.

The ezxact solution when modeling in 2D is restricted to the lumped mass approach and it is
assumed that a very fine element mesh with lumped masses serves as the Benchmark model
to simulate vertical motion.

In 3D modeling, the slab is modeled with shell elements. Shell elements are provided instead
of solid elements because of a license restriction of 64 000 DOF in ANSYS. However, it is
further assumed that a model with shell elements reaches out as a reliable model to simulate
vertical motion because a very fine element mesh is used.

Slender component are utilized when modeling buildings in this thesis. Therefore, it is
assumed that the contribution from shear deformations are very small. Based on that
distributing the mass in columns are normally not modeled in engineering practice, columns
are modeled without mass and one element per structural member is used.

For simplified models in 3D, only shell elements are used to model the slab.

6.3 Modeling procedures

In general earthquake engineering, modeling the slabs remains to be a challenge when the
vertical component of ground motion is taken into account. Determing realistic vertical
mode shapes and frequencies requires the slab to be included in the modeling procedure
in 3D and several beam elements in 2D. This section start up with explaining the general
lumped mass method to model buildings in earthquake engineering pratice. Thereafter, the
modeling procedures of how lumped mass models are created in this thesis are explained.

6.3.1 General practice in earthquake engineering to model build-
ings

In earthquake engineering practice, the vertical component of ground motion is normally
ignored. This implies that only the horizontal component of ground motion is taken into
account when modeling buildings under earthquakes. Based on that, the lumped mass
approach is normally used and Fig. shows where the masses generally are placed in
earthquake engineering practice.
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(a) 2D. (b) 3D.

Figure 6.3.1: General lumped mass configuration for earthquake modeling in 2D and 3D.
Total mass for each story is lumped in the mass center.

Furthermore, the common approach in 3D is to assume the slab to be rigid in its plane,
showed in Fig A rigid diaphragm method can be used to achieve these preconditions,
including nodes in a plane to connect to a master node. Introducing this assumption implies
that both (x and y) horizontal DOFs of all the nodes at a floor level are related to the
three rigid-body DOFs of the floor diaphragm in its own plane. these DOFs are defined as
translation and rotation about the rigid-diaphragm axis. The mass needs only to be defined
in these DOFs and no where else. This theory implies that the slab is not needed to be
modeled with any elements, and therefore, it is a less computationally complex modeling
procedure. In general, it is common to place the master node in the mass center and the
lumped mass connected to the master node.

Lumed mass and
master node

| In-plane-
rigid-body

Figure 6.3.2: In-plane rigid diaphragm, lumped mass approach and master node in the
middle of the geometrical center.
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6.3.2 Lumped mass approach to model buildings to include vertical
motion

The whole intention of using a lumped mass approach to model buildins to include vertical
motion is desired because this is the common modeling approach in earthquake engineering
practice. A lumped mass approach is also favored when finite element softwares in general
engineering only offer this approach.

Lumping the mass is only been done over the beam and shell elements, which implies that
columns is model without mass. Fig. shows two lumped mass models where the
lumped masses are distributed. Fig shows how the mass can be lumped on top of the
columns, and Fig shows how the mass can be lumped on top of the columns and in
the middle of each beam. Similar methodology is used in this thesis to descretesize different
lumped mass approaches in both 2D and 3D problems. Coarse to very fine lumped mass
models are explicitly created.

Structural element

Lumped mass

Lumped mass

(b)

Figure 6.3.3: Lumped mass models. (a) Lumped mass on top of the columns (b) Lumped
mass on top of columns and in the middle of the beam.



Chapter 7

2D Modeling, Analyses, Results
and Discussion

7.1 Introduction of the building

Figure [7.1.]] represents a five story building modeled in 2D. The building is assumed to
be reinforced concrete. A preliminary design to determine column and beam sites were
conducted. All necessary information of the building is given in the Table
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I ] ] ] ] ]

" 4500 mm " 4500 mm " 4500 mm ' 4500 mm " 4500 mm

Figure 7.1.1: 2D elevation view of the five story building. All structural members are
modeled as elastic.
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Table 7.1.1: Structural properties for the five story building

Properties Initials Values
Cross section beams Hy - B, 600mm -300mm
Cross section Columns H,.-B. 450mm - 450 mm

Young-module E 25000
Poisson’s ratio v 0.3
Mass at each floor m 85000 kg
Total mass Mot 425000 kg

This building is modeled in OpenSEES with coarse to very fine lumped mass models. How-
ever, ANSYS is not been used to model this building and a consistent mass approach is
therefore not included to serve the exact solution. This implies that the ezact solution of
this building is created in OpenSEES using a lumped mass approach. However, it is assumed
that a fine mesh of lumped masses serves as a reliable ezact solution to simulate the effects
of vertical components of ground motions.

Furthermore, columns are modeled with one Bernoulli beam element per structural member,
and the mass from columns is neglected.

7.1.1 The benchmark model

The Benchmark model, showed in Fig. is created in OpenSEES with 81 lumped masses
over each floor. As mentioned, this very fine mesh of lumped masses are assumed to simulate
the effects of vertical ground motions with good accuracy because of the very fine lumped
mass distribution. m in the figure implies the total amount of mass in each floor.

m/81

Ved Ved Ved Ved Ved Ved

Figure 7.1.2: The benchmark of the 2D building. Each red dot implies a lumped mass, and
there are 81 lumped masses over each floor.

7.1.2 Simplified lumped mass models

The intention is now to create simplified lumped mass models and compare these to the
Benchmark model. Simplified lumped mass models are defined in Fig[7.1.3] and includes
coarse to very fine models. Fig[7.1.3h is the common model in earthquake engineering
today. Fig . to shows better and better distributed lumped mass models, were
the last one is the most refined simplified lumped mass model.
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For all subfigures in Fig. m implies the total amount of mass in each floor and the
relationship 7' is the quantity of each lumped mass.
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(a) Mass model 1.
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(b) Mass model 2.

(¢) Mass model 3.
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(d) Mass model 4.

Figure 7.1.3: Simplified lumped Mass models for the five story building. Each red point
implies a lumped mass.



7.2. Discussion of results 38

7.2 Discussion of results

Both Eigenvalue analysis and time history analysis of all models of the five story building
are performed. The eigenvalue results and discussion are provided in the first subsection.
Results and discussion from time history analysis are provided in the last subsection, but
an introduction of how the time history analyses are performed and which ground motions
used are first explained.

7.2.1 Eigenvalue analyses 2D

The first four modes in each direction is obtained by eigenvalue analyses in OpenSEES.
Mode shapes from the Benchmark model and simplified models are plotted on top of each
other to identify differences. The mode shapes are normalized with the quantity 1.0 at the
top of the roof. Natural horizontal mode shapes and vibration periods are presented and
discussed first, then comes the vertical.

Horizontal modes:

Compared to the Benchmark model, the horizontal mode shapes, showed in Fig and
[7:2:2] shows that there are very small or no differences regardless of which Mass model that
are used. However, the horizontal periods from Table [7.2.1] implies that there are some
differences in natural horizontal periods, and that they decreases with higher modes. On
the other hand, the mode shapes shows that there are very small differences between models
compared to the Benchmark model for the first two modes and that the errors increases for
higher modes.

Zero or small errors for the horizontal modes implies that distribute the lumped mass mesh
over beams constitute no differences. Based on these results, it is adequately to assume that
mass approach 1 is the model with less computational effort to simulates horizontal motions
with reliable accuracy.

Table 7.2.1: Horizontal natural periods.

Natural periods, T, (sec.)
Mode 1 Mode 2 Mode3 Mode 4
Mass model 1 0.728 0.241 0.145 0.108
Mass model 2 0.727 0.238 0.140 0.101
Mass model 3 0.692 0.227 0.133 0.095
Mass model 4 0.723 0.237 0.139 0.099
Benchmark model 0.710 0.232 0.136 0.098
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Figure 7.2.1: Horizontal mode shapes. (a) Mode 1 (b) Mode 2.
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Vertical modes:

Unlike the results for horizontal modes, there are remarkable differences from different mass
models compared to the Benchmark model for vertical eigenvalues.

The vertical periods from Table shows that the common lumped mass approach, Mass
model 1, can lead to twice as high vertical periods as that of the benchmark. This applies
to all vertical modes. All vertical mode shapes for Mass model 1, showed in Fig. [7.2.3] and
shows that the deformation pattern is completely different compared to the benchmark
model. This implies that Mass model 1 leads to unrealistic vertical deformations.

Compared to Mass model 1, Mass model 2 is much more accurate to the Benchmark. How-
ever, there are clearly differences in the deformation pattern and periods. For all modes,
Table [7.2.2] shows that Mass model 2 has remarkably higher natural vertical periods than
the Benchmark model. Furthermore, Fig. and shows that the accuracy of the
natural vertical mode shape decreases for higher modes.

Mass model 3 and Mass model 4, in Fig. [7.2.3|and [7.2.4] and Table[7.2:2] shows both signif-
icantly similar periods and deformation pattern compared to the Benchmark model. Even
though Mass approach 3 has a coarse lumped mass approach compared to the Benchmark
model, the eigenvalue comparison of this model to the Benchmark model implies very similar
tendencies. This applies to all vertical modes. Moreover, differences in Mass approach 3
and Mass approach 4 are very small.

Based on the eigenvalue analysis, both Mass model 3 and Mass model 4 showed very high
accuracy in both vertical mode shapes and periods compared to the Benchmark model.
However, because of the small differences in Mass model 8 compared to Mass model 4, Mass
model 3 is the coarsest simplified lumped mass model to cover realistic vertical motion with
minimum computational effort.

Table 7.2.2: Vertical natural periods.

Natural period, T, (sec.)
Mode 1 Mode 2 Mode3 Mode 4
Mass model 1 0.182 0.144 0.140 0.137
Mass model 2 0.089 0.087 0.083 0.081
Mass model 3 0.072 0.069 0.065 0.059
Mass model 4 0.076 0.073 0.068 0.061
Benchmark model  0.076 0.073 0.067 0.060
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Figure 7.2.3: Vertical mode shapes. (a) Mode 1 (b) Mode 2.
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Figure 7.2.4: Vertical mode shapes. (a) Mode 3 (b) Mode 4.
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7.2.2 Time history analyses

This section introduces time history analyses performed in this thesis. Time history analyses
are performed on all simplified models and the benchmark model of the 2D building in Fig.
[7I1] The intention of time history analyses are primary to evaluate response parameters in
simplified models and compare them to response parameters in the Benchmark model. This
verifies the accuracy of each model.

Time history analyses are solved by Eq. under a set of both horizontal and vertical
ground motions. This has been done in OpenSEES and Newmark’s integration method is
used. Unconditional stability in Newark’s method are satisfied, were § = 0.25 and v = 0.5.
Furthermore, 5% damping is assumed and Rayleigh damping is used to calculate the damping
matrix. The first horizontal mode and the first vertical mode, for each individual model, is
used to calculate a; and aso, respectively. Time step At of the recorded accelerations are
0.02s for all stations. The duration of the ground accelerations used are between 50 and
80sec.

Ground motion records

Recorded ground motions from the Christchurch earthquake February 2011 are used in the
time history analysis. The earthquake had a magnitude of 6.3 (M) and the epicenter was
centred 2 kilometers west of the town of Lyttelton, and 10 kilometers south-east of the
center of Christchurch. Location of the epicenter and ground motion stations is showed in
Fig. [7.2.5] Information about each station can be found in Table .
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Figure 7.2.5: Map of the city of Canterbury and locations of the stations-
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Ground motion records for eight of the most centered stations around the city are included
in the analysis and both horizontal and vertical component are used.

The ground motion records are showed in Figures These ground motions are used
because of the high amplitudes of the vertical component of the ground motion. This is
assumed to give a better basis when different lumped mass models are compared to the
Benchmark model. As the ground motions shows, all vertical amplitudes are very strong
and some of them are much stronger compared to the horizontal amplitudes. The red lines

in all subfigures of Fig. [7.2.6] implies the vertical ground acceleration, and the blue lines the
horizontal.
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Figure 7.2.6: Horizontal and vertical ground accelerations from the Christchurch earthquake.
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Table 7.2.3: List of the earthquake records used in the numerical time history analysis.

Record Station Epicentral Comp. PGA
nr. Distance (km) (g)

1 Cristchurch Cathedral College 6.0 NG64E 0.479

(Ccee) ' Up 0.691

9 Cristchurch Reshaven 8.0 S88FE 0.719

(REHS) ' Up 0.528

3 Papanaui High School 12.0 S33wW 0.213

(PPHS) ’ up 0.195

4 ulverstone Drive Pumping 9.0 S86W 0.294

(HPSC) ' Up 0.857

5 Page Road Pumping 6.0 W 0.670

(PRPC) ' UP 1.629

6 Cristchurch Botanic Gardens 9.0 N8IW 0.554

(CBGS) ' Uup 0.270

7 Cristchurch Hospital 8.0 S89W 0.365

(CHHC) ' UP 0.511

3 Heathcote Valley Primary School 95 NG4E 1.430

(CCCe) ' UP 1.440

Comparative response of different models

Solutions of time history analyses are response parameters such as accelerations, shear forces
and axial forces showed in Fig. Due to symmetry properties, axial forces are deter-
mined in the three base column and shear forces in the end of the bottom beams. Accel-
erations are determined in the middle of each beam. Green points represents acceleration,
blue line represent shear in the end of the lower beams and red lines represents axial forces
in the base columns. Locations of shear and axial response parameters are chosen because
these are normally fragile under earthquakes. Acceleration response location is strategically
positioned in the middle of each beam to obtain highest vertical acceleration in the building.

Acceleration

r Shear force

$ Axial force

Beam 1 Beam 2 Beam 3

I
Column 1 Column 2 Column 3

Veccd Veccd 7777 7777 7777 777

Figure 7.2.7: Response parameters of the time history analysis. Green points are accelera-
tion, blue lines are shear forces and red lines are axial forces.

In each model, the maximum response parameters from each ground motion determines
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from time history analysis. Then, the maximum responses of all eight ground motions are
added and then divided by eight. This gives the average response parameters from all eight
ground motions of each model. Furthermore, to evaluate the response parameter errors from
each simplified model compared to Benchmark model, the following equation are used

Response of Mass model i

Model error = ( 1) * 100%

Response of The becnchmark B
where i = Mass model 1, 2, 3 and 4.

This shows the percentage error for each model compared to the Benchmark model.

7.2.3 Time history analysis results

The results from the time history analysis gives the total error of each simplified model
compared to the Benchmark model, because both vertical and horizontal component of the
ground motion are used in the analysis.

Each response parameter errors are provided in separate figures.

Discussion of acceleration errors

The Y-axis in Fig. [7.2.8| represent each floor level in Fig. [7.2.7] The X-axis represents
negative or positive errors compared to the Benchmark Model. Positive errors implies higher
acceleration response, and negative implies lower. For simplicity’s reasons, the acceleration
error is the average acceleration error in each floor.

The entire discussion is based on Fig. [7.2.8 unless stated otherwise.

Mass model 1: Mass model 1 shows between 19% to 45% less acceleration compared to the
Benchmark model. The acceleration errors are smallest in the lower floor, and increases for
each floor. This, however, are the common trend for all mass models.

Mass model 2: Mass model 2 is much more accurate than Mass model 1 compared to the
Benchmark model. However, the accelerations are up to 10% less for the higher floors. On
the other hand, the acceleration in the first floor shows that mass model 2 gives 9% more
acceleration compared to the Benchmark model.

Mass model 3 and 4: Conservative results appears when the acceleration errors of Mass
model 3 and 4 are compared to the Benchmark model. Although both models shows very
small errors, the errors implies more acceleration in each and single floor. This implies that
Mass model 8 and 4 contributes to higher acceleration in each floor than the Benchmark
model.

Based on acceleration errors in Fig. [7.2.8] both Mass model 3 and 4 showed low errors com-
pared to the Benchmark and can reasonably capture the effects of vertical ground motion.
Moreover, because the errors between these models are small, the coarsest, Mass model 3,
can simulate the effects of vertical ground motions with reliable accuracy and least amount
of computational effort.
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Figure 7.2.8: Acceleration errors for each model compared to the Benchmark model. x=0.0
implies the Benchmark model.

Discussion of shear forces

The X-axis in Fig. represents the lower beams from Fig. from beam 1 to beam 3.
The Y-axis represents positive and negative shear force errors for each mass model compared
to the Benchmark model. Negative shear force errors implies less shear force compared to
the Benchmark model and positive shear force implies more.

The entire discussion is based on Fig. unless stated otherwise.

Mass model 1: The shear force errors of Mass model 1 shows that it is over 70% more shear
force in the inner beam while there are very low otherwise compared to the Benchmark
model. High shear forces in the inner beam comes from that the mass in this model are
centered only in the middle of each floor.

Mass model 2: Mass model 2 shows that it is more shear forces in all beams compared to
the Benchmark model. The biggest positive errors are 7% in the inner beam.

Mass model 3: Mass model 8 shows that it is less shear forces in all beams compared to the
Benchmark model. However, the negative errors are less than 6% in all beams.

Mass model 4: Mass model 4 shows that it is slightly more shear forces in all beams compared
to the Benchmark model. However, the negative errors are less than 2% in all beams

Based on the shear force errors in Fig. Mass model 1 is useless to simulate realistic
shear force effects from vertical ground motion, Mass model 2, 3 and 4 shows accurate
tendencies. However, only Mass model 4 is very accurate compared to the Benchark model.



49 Chapter 7. 2D Modeling, Analyses, Results and Discussion
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Figure 7.2.9: Shear force errors for each model compared to the Benchmark model. y=0.0
implies the Benchmark model.

Discussion of axial forces

The X-axis in Fig. [7.2.10]and [7.2.11| represents the base columns showed in Fig. The
Y-axis represents positive and negative axial force errors for each mass model compared to
the Benchmark model. Negative axial force errors implies less axial force compared to the
Benchmark model and positive force implies more. Fig. [7.2.10]and [7.2.11]shows compressive
and tensile forces, respectively.

The entire discussion is based on Fig. for compressive and Fig. [7.2.11] for tensile,
unless stated otherwise.

Mass model 1: Both compressive and tensile forces in Mass model 1 shows negative errors
in column 2 and the errors are between 80 and 100% compared to the Benchmark model.
Similar for the inner column, although here there are positive errors of 60% and 50%.
Furthermore, the outer column shows 9% negative errors in compressive and 5% positive
errors in tensile.

Mass model 2: Mass model 2 shows up to 17% positive compressive force errors compared
to the Benchmark model while tensile force errors are low for all columns.

Mass model 3: Mass model 3 shows small errors in compressive, but significantly higher in
tensile. In tensile, the error is at is maximum of 20% negative in the inner column compared
to the Benchmark model. In compressive, the maximum error is 8% negative.

Mass model 4: Mass model 4 shows very small errors compared to the Benchmark model.
Errors from both tensile and compressive forces are less than 3%.
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The most accurate mass model compared to the Benchmar model is Mass model 4. Both
tensile and compressive errors are here very low. Nevertheless, even if Mass model 3 shows
some differences, this model needs considerably less computationally efforts than Mass model

4. Taken all analysis methods into account, Mass model 3 shows small errors and differences
to the Benchmark model.

Compressive force errors
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Figure 7.2.10: Compression force errors for each model compared to the Benchmark model.
y=0.0 implies the Benchmark model.
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Tensile force errors
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Figure 7.2.11: Tension force errors for each model compared to the Benchmark model. y=0.0
implies the Benchmark model.

Based on both eigenvalue analysis and time history analysis, Mass model 3 and 4 are
simplified models which had overall small differences and small errors compared to the
Benchmark model. However, terms to take into account is that the computational effort is
twice as less in Mass model 3 compared to 4.
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Chapter 8

3D Modeling, Analyses, Results
and Discussion

8.1 Introduction of the building

Similar to the building modelled in 2D, a fairly common building is modelled 3D. Fig. B.1.]]
shows 3D view of the building. The building is assumed to be reinforced concrete. A
preliminary design to determine column, beam and slab sites were conducted. Properties
of the building is to be found in Table [8.1.1] and Fig. [8.1.2] sizes the building’s overall
dimensions at each elevation and plan view.

Figure 8.1.1: 3D view of the four story building. All structural members are modelled as
elastic.
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Both OpenSEES and ANSYS are used to model this building. To serve as the ezxact solution,
a highly refined element mesh over the slab is created in ANSYS where the consistent mass
approach is used. Shear deformation effects are included in the exact model.

Several alternative models are developed in OpenSEES. First of all, the building is modeled
using the common, rigid-diaphragm approach where the slab is assumed to possess in-plane
stiffness. Later, slabs are physically modeled using shell elements. Two different mesh
configurations are used to identify the optimum solution which can capture the vertical
effects without compromising simplicity. Beam and columns are modeled using Bernoulli
beams. All shear deformations are neglected.

Table 8.1.1: Structural Properties for the 3D building.

Properties Initials Values
Cross section beams and Girders Hyp - B, 600 mm - 400 mm
Cross section Columns H.-B. 500mm-500mm
Slab thickness St 150 mm
Young-module E 25000
Poisson’s ratio v 0.18
Mass at each floor M; 387 tons

Total mass including Mot 1548 tons
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8.1.1 The benchmark model

The Benchmark model is created in ANSYS and the slab is modeled with 1500 shell elements
over each floor, as shown in Fig. [81.3] Shell element are based on Mindlin plate theory
and shear deformations are included. Furthermore, columns are modeled with one Bernoulli
beam element per structural member.

ELEMENTS ?MSYS“

3D Building

Figure 8.1.3: The benchmark model in ANSYS. Each floor includes 1500 shell elements.

8.1.2 Simplified lumped mass models

The intention is now to model the slab explicit with an optimum number of shell elements and
mass configuration and compare the Eigen-values and eigen-vectors with to the Benchmark
model.

Fig. B1.4h shows plan view of the building modeled using the common rigid-diaphragm
approach, where the slab is assumed to possess in-plane stiffness. This model is called Rigid
diaphragm model.

Fig. shows a plan view of the finest shell element mesh with lumped mass assigned
to all nodes. This model is called Shell model 240, because 240 shell elements are used to
mesh the slab in each floor.

Fig. [8.1.4f shows a plan view of the coarsest shell element mesh with lumped mass assigned
to all nodes. This model is called Shell model 60, because 60 shell elements are used to mesh
the slab in each floor.

Other simplified models are not provided to model the slab. However, it is to mention that
beam elements was tried to be included, but highly unrealistic deformation pattern and
periods was observed and therefore not included in this thesis.
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(a) Rigid diaphragm model
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(b) Shell model 16

(c) Shell model 4

Figure 8.1.4: Lumped mass models in 3D. One red point implies one lumped mass. (a)Rigid
diaphragm model (b) Shell model 16 (c) Shell model 4.
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8.2 Eigenvalue analyses 3D

The first three modes in each direction is obtained by eigenvalue analyses in OpenSEES and
ANSYS. Similar for 2D, all mode shapes from all models are plotted on top of each other
to show differences in between models and to compare simplified models to the Benchmark
model. The mode shapes are normalized with the quantity 1.0 at the top of the roof for each
mode.

Due to the symmetrical properties of the building, vertical mode shapes are plotted for
sections A1-A3 to A3-A3 and B1-Bl to B3-B3 as shown in Fig. Horizontal mode
shapes are plotted for each elevation view, vertical mode shapes for section A-A and B-B
in Fig. and torsional mode shapes are plotted in the plan view where only the upper
floor of the building are used.

Al A2 A3

= K -

Bﬂz ﬂXBl

B2 Teo
S5 IR N A N Tes

Figure 8.2.1: Sections A1-Al to A6-A6 and B1-B1 to B4-B4 of the 3D building. Dashed
lines implies center lines of each section.

Natural horizontal and torsional mode shapes and vibrations periods are presented and
discussed first.
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Discussion of horizontal and torsional modes

The following discussion is drawn from natural horizontal mode shapes in Fig [8:2.2] [8:2:3]
and [B:2.4] and natural horizontal periods in Table. 8:2.1] The green lines represents the
Benchmark model, yellow line represents the Rigid diaphragm model, red line represents
Shell 240 model and blue line represents shell model 60. Dashed lines in all figures represents
the building in undeformed state.

Discussion

Table [8:2.1] shows that there are small differences of horizontal and torsional periods regard-
less of which model is used compared to the Benchmark model. This applies for all modes.
However, Shell model 60 shows biggest differences in periods compared to the Benchmark
model. That applies for all modes in all directions, which implies that Shell model 60 is
stiffer in horizontal motion compared to the Benchmark model.

Table 8.2.1: Horizontal and Torsional natural periods.

Natural periods (sec)

Mode shape direction Model Mode 1 Mode 2 Mode 3
Benchmark model 0.543 0.175 0.102
Horizontal Rigid diaphragm model — 0.548 0.176 0.101
A-A Shell model 16 0.533 0.172 0.100
Shell model / 0.513 0.167 0.099
Benchmark model 0.506 0.166 0.099
Horizontal Rigid diaphragm model — 0.509 0.166 0.098
B-B Shell model 16 0.498 0.163 0.097
Shell model / 0.483 0.160 0.096
Benchmark model 0.439 0.143 0.084
Torsional Rigid diaphragm model — 0.425 0.138 0.080
Shell model 16 0.443 0.145 0.085
Shell model / 0.411 0.135 0.081

Fig. 2.2, 2.3 and [8.2.4] shows zero or extremely small differences of the horizontal mode
shapes for all simplified models in all directions and in all modes compared to the Benchmark
model.

Based on the horizontal eigenvalue results, all of the simplified models can obtain realistic
horizontal motion. Therefore, the Rigid diaphragm model can obtain realistic horizontal
mode shapes and periods with least amount of computational effort.
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Figure 8.2.2: Horizontal mode shapes section A-A.
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Figure 8.2.3: Horizontal mode shapes section B-B.
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Mode shape 1: Plan view
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Figure 8.2.4: plan view of torsional mode shapes for the upper floor.
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Discussion of vertical modes

The following figures shows natural vertical mode shapes from section A1-Al to A3-A3 or
B1-B1 to B3-B3. There are in total 6 figures. Furthermore, the first two figures shows all
sections of vertical mode 1, then the next two figures shows all sections for vertical mode 2,
and the two last figures shows all sections for vertical mode 3.

Discussion

As opposed to the horizontal modes, there are clearly differences in the vertical mode shapes
for different models. First of all, Table[8:2.1]shows that there are no vertical periods obtained
by the Rigid diaphragm model. Furthermore, Shell model 240 shows very small differences
in the vertical periods compared to the Benchmark model while there are some differences
for Shell 60. Regardless of mode, the differences in between models remain the same.

Table 8.2.2: Vertical natural periods.

Natural period (sec)
Direction Model Mode 1 Mode 2 Mode 3
Rigid diaphragm model - - -
Vertical The benchmark model 0.075 0.073 0.071
Shell model 16 0.073 0.071 0.069
Shell model 4 0.067 0.063 0.060

The following discussion are based on Fig. [8.2.5] [8.2.6] [8.2.7] [8.2.8] [8.2.9] and [8.2.10]

Since the tendencies for all vertical mode shapes in all mode are the same, a general discus-
sion of all figures follows immediately.

Rigid diaphragm: Yellow lines in all figures, which represent mode shapes of the Rigid
diaphragm model, show zero vertical deformation pattern. There are no vertical modes.

Shell model 60: Red lines in all figures, which represents mode shapes of Shell model 60,
shows that the vertical mode shape in mode 1 only follow the Benchmark model in a global
context. There are clearly differences, but only in detail level. However, the differences
reduces with higher modes and the vertical mode shapes are very much more accurate
compared to the Benchmark model.

Shell model 240: Blue lines in all figures, which represents mode shapes of Shell model 240,
shows that there are very small differences even in detail level compared to the Benchmark
model. This appeals to all modes and all sections.

Vertical modes cannot be simulated or captured using a rigid diaphragm method. However,
extremely similar mode shapes and very small differences in the periods compared to the
Benchmark model indicates that Shell model 240 can simulate vertical motion with great
accuracy compared to the Benchmark model. However, Shell model 60 showes overall similar
mode shapes and followed the Benchmark model in the global context in all modes. General
accurate similarities of Shell model 60 compared to Benchmark model implies that Shell
model 60 can simulate vertical motion with useable accuracy.
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Mode shape 1: Section A1-Al
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8.2. Eigenvalue analyses 3D

Figure 8.2.5: Vertical mode shape 1, section A1-A1, A2-A2 and A3-A3.
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Figure 8.2.6: Vertical mode shape 1, section B1-B1, B2-B2 and B3-B3.
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Mode shape 2: Section A1-Al
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8.2. Eigenvalue analyses 3D

Figure 8.2.7: Vertical mode shape 2, section A1-A1, A2-A2 and A3-A3.
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Mode shape 2: Section B1-B1
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Mode shape 2: Section B3-B3
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Figure 8.2.8: Vertical mode shape 2, section B1-B1, B2-B2 and B3-B3.
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Figure 8.2.9: Vertical mode shape 3, section A1-A1, A2-A2 and A3-A3.
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Figure 8.2.10: Vertical mode shape 3, section B1-B1, B2-B2 and B3-B3.
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Chapter 9

Conclusion and
Recommendations

9.1 Summary

With the increasing interest in vertical ground motions, modeling buildings to simulate the
effects of vertical motions remains to be a major challenge for the earthquake engineering
community. In this thesis, simplified modeling approaches are investigated to see if a lumped
mass approximation could simulate the vertical motion realistically. This was done by
comparing natural mode shapes and periods from the simplified models to an exact solution
modeled with an extremely refined element mesh.

Solutions from eigenvalue analysis confirmed that the common modeling procedure could not
be used to simulate realistic vertical motion. This applies especially to the common rigid
diaphragm method. However, it was succeeded to create simplified lumped mass models
with remarkable similarities of natural mode shapes and periods compared to exact solution
in both 2D and 3D.

9.2 Conclusion and observations

The following conclusions are drawn from the evaluation of both eigenvalue analysis and
time history analysis. However, evaluation of the time history analysis includes only the
building modeled in 2D.

Simplified models in 2D

e Mass model 1, which is the common procedure to model buildings in earthquake en-
gineering practice, showed that natural vertical mode shapes and vibration periods
mismatched completely to the Benchmark model. The deformation patterns from the
mode shapes showed very unrealistic behavior and got even worse for higher modes.
Furthermore, the average acceleration level was up to 50% less and the axial and shear
force at the inner columns up 100% more compared to the Benchmark model. Based
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on this, Mass model 1 cannot be used to simulate realistic vertical motion.

e Mass model 2 showed small, but noticeable, differences in the first vertical mode shape
and vibration period compared to the Benchmark model. For higher modes, the errors
increased and was completely off for the fourth vertical mode shape. Results from
the time history analysis showed that the acceleration level mismatched up to 10% to
the Benchmark model. Furthermore, errors of shear and axial forces was 14%. Based
on the noticeable errors compared to the Benchmark model, particularly in the mode
shapes, Mass model 2 is not suitable to simulate the dynamic behavior of buildings in
the vertical direction.

e Mass model 3 and 4 showed both significantly similar vertical mode shapes and periods
to the Benchmark model. Time history analysis showed that Mass model 3 had some
errors of shear forces and axial forces compared to Benchmark model while Mass model
4 showed in all response parameters less than 3% errors from the Benchmark model.

e Mass model 8 require least amount of computational effort to simulate realistic vertical
motion with reliable accuracy compared to the Benchmark model.

e All simplified models showed similar horizontal mode shapes and periods. Therefore,
Mass model 1 require least amount of computational effort to simulate horizontal
motion with great accuracy compared to the Benchmark model.

Simplified models in 3D

e The rigid diaphragm model cannot capture any vertical modes because of the require-
ment of boundary condition constrained in vertical direction. However, all horizontal
and torsional natural mode shapes and vibration periods matched with great accuracy
to the benchmark.

o Shell model 240 showed very accurate tendencies in all vertical, torsional and horizon-
tal modes compared to the Benchmark model. Only small differences in the vertical
mode shapes could be identified. Shell model 240 can with great accuracy simulate
horizontal, torsional and vertical motion.

o Shell model 60 showed that the main vertical deformation shape followed the Bench-
mark model, although it was inaccurate in details. For higher mode, the differences
decreased. However, even though Shell model 60 cannot perfectly capture the first
mode shape, Shell model 60 requires significantly less effort compared to shell model
240, and, thus, can be a viable option to model building to simulate the effects of
vertical ground motions.

9.3 Recommendation for further studies

e Perform time history analyses in 3D of a suite of ground motions to evaluate the
accuracy of both Shell model 60 and 2/0. Furthermore, try to create models with
element resolution between the element mesh of Shell model 60 and 240. Identify the
model which requires least amount of computational effort to simulate horizontal and
vertical ground motion with reliable accuracy compared to the Benchmark model.

e Create the Benchmark model in 2D with a consistent mass approach and compare
Mass model 3 to this new benchmark. Perform time history analysis and eigenvalue
to evaluate differences and similarities.
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e Model the slab with a suite of different beam elements, and investigate the the accuracy
of these compared to an exact model with shell or brick elements.

e Provide inelastic analysis for the recommended simplified models
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