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Abstract (147 words)

Families transmit genes and environments across generations. When parents’ genetics affect

their children’s environments, these two modes of inheritance can produce an “indirect genetic

effect.” Such indirect genetic effects may account for up to half of the estimated genetic variance

in educational attainment. We tested if indirect genetic effects reflect within-nuclear-family

transmission (“genetic nurture”) or instead a multi-generational process of social stratification

(“dynastic effects”). We analyzed indirect genetic effects on children’s academic achievement in

their 5th-9th years of schooling in N=37,117 parent-offspring trios in the Norwegian Mother,

Father, and Child Cohort Study (MoBa). We used pairs of genetically-related families (parents

were siblings, children were cousins; N=10,913) to distinguish within-nuclear-family

genetic-nurture effects from dynastic effects shared by cousins in different nuclear families. We

found that indirect genetic effects on children’s academic achievement cannot be explained by

processes that operate exclusively within the nuclear family.
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Introduction

Genetically-informed research designs offer strong evidence that education is transmitted

across generations via the inheritance of environmental advantage. Adoption1, twin2, molecular

genetic3, and genome wide association studies (GWAS)4–6 all offer evidence that the

intergenerational transmission of educational attainment occurs via both genetic and

environmental (i.e. social) mechanisms (Table 1). Studies of adoptees show that children

resemble their adoptive (social) parents in education, despite not being genetically related to

them7. Studies of twins reveal educational similarities within monozygotic and dizygotic pairs

that are in line with a role for both the genome and the environment8. Molecular genetics studies

have also established evidence for environmental mechanisms of intergenerational transmission

of educational attainment (EA)9,10. Molecular-genetic studies of parent-offspring trios, of adopted

parent-child dyads, and of biological siblings all show that people’s EA is associated with the

genetic variants they did not inherit—an association that can only operate via the

environment/social context11–14.

A new wave of molecular genetic studies measures genetic correlations with EA using polygenic

indices (PGIs). The PGI method uses results from GWAS to summarize information about

hundreds of thousands of genetic variants associated with a target trait or behavior into a single

number for each research participant. Taken at face value, PGIs based on GWAS of EA can

predict as much as 12-16% of variation in EA in independent, population-based samples15, a

level of explanatory power similar to parental education. In these studies, PGIs are measured

from DNA collected from the same individuals whose education is being measured. However,

PGI associations with EA reflect more than direct genetic influences on the development of

characteristics that promote success in school. Studies of gene-environment correlations reveal

that children’s EA PGIs are correlated with environments they inherit from their parents,

including the social and economic circumstances of their families and neighborhoods14,16,17. EA

PGIs therefore measure not just a child’s genetic background, but their environment as well.

EA PGIs are associated with not just educational outcomes, but a range of social and economic

behaviors, including where and how far people move from home, who they have children with,

and how they parent16–19. A parent generation’s EA PGIs therefore become their children’s

environment. In family-based PGI studies, researchers can separate out the effects of genetics

that are passed on from parents to children (transmitted genotypes) from those that parents’

possess, but which their children do not inherit (non-transmitted genotypes). These studies find
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that children’s EA is influenced by PGIs based on both the transmitted and non-transmitted

genotypes11,12. The effects of the non-transmitted genotypes reflect a process of inheritance that

is mediated by the environment. These “indirect'' genetic effects will be detected in GWAS and

subsequently affect downstream PGI analyses of EA20. Indirect genetic effects are also viewed

as a means to study how parental traits affect childhood outcomes, while accounting for the

direct genetic effects on offspring outcomes21.

Evidence for indirect genetic effects on EA come from PGI studies of siblings and adoptees. In

sibling studies, GWAS of educational differences between siblings estimate lower heritability as

compared to GWAS of unrelated individuals4. PGI studies based on these GWAS find that

effect-sizes for PGIs based on sibling-difference GWAS are smaller than effect-sizes for PGIs

based on between-family GWAS6,22. In adoption studies, two findings stand out. First, adoptive

parents’ PGIs are associated with their adopted children’s outcomes23, an association that could

not be mediated by direct genetic transmission. Second, PGI effect-sizes are larger for children

living with their biological parents than for adoptees who live with social parents to whom they

are not genetically related24. A key difference between these two groups of children is that the

adoptee’s PGIs are uncoupled from environments correlated with their parents’ genotypes.

While there is consistent evidence for the presence of indirect genetic effects on EA, the

mechanisms that produce these effects remain unclear. Among the most evocative descriptions

of indirect genetic effects on EA are “Genetic nurture” and “dynastic effects”11,25. “Genetic

nurture” invokes the transmission of skills and values from parents to children within nuclear

families via “nurturing” parenting behaviors. Evidence for genetic nurture-type mechanisms

comes from studies that find parenting behaviors mediate indirect-genetic-effect associations of

parental genotypes with their children’s educational outcomes26. The term “dynastic effects”

invokes the transmission of wealth and social status within family lineages across generations.

Evidence for dynastic-type mechanisms comes from studies that show multi-generational

socioeconomic stratification correlated to the parental genotype22, assortative mating27–29, and

subtle population stratification30,31.

Indirect genetic effects are defined as the association of one individual’s genotype with another

individual’s phenotype, above and beyond that individual’s own genotype. Within the regression

framework, indirect genetic effects on EA are estimated by including the child’s genotype in a

model testing the association between their parents’ genotype and the child’s EA. The control
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for the child’s genotype isolates the environmentally-mediated portion of the effect of the

parent’s genotype. We define nurture effects as the consequence of mechanisms, operating

within the nuclear family, flowing from parental actions or status that introduce a correlation

between parental genotypes and child outcomes above and beyond the effect of the genotypes

transmitted to the child. We negatively define “dynastic effects” as any social or historical

process that introduces a correlation between parental genotype and offspring outcomes that is

not nurture, as such it includes processes like assortative mating and population stratification.

Assortative mating may contribute to indirect effects by capturing the genetic component of the

phenotype with which non-transmitted alleles of the parents are correlated.32 Population

stratification occurs when differences in genotype frequency spuriously correlate with

environmental differences, and this induces confounding between genotype and outcome. We

choose these specific definitions of nurture and dynastic effects as in our design we can sharply

distinguish nurture from other causes of indirect genetic effects, but we cannot directly

differentiate between other mechanisms behind the indirect effects.

An extended-pedigree design that includes multiple families in which some of the parents are

siblings makes possible a further decomposition of the effect of the parent’s genotype. In the

extended-pedigree design, the indirect genetic effect isolated by the control for the child’s

genotype can be further divided into two components: (1) the between-family indirect genetic

effect, identified as the effect of the average genotype among the siblings in the parental

generation, and (2) the within-family indirect genetic effect, identified as the effect of the

deviation of the parent’s genotype from their sibship average. Within the regression framework,

this is accomplished by including the parental-sibship-average genotype as a covariate in the

model. This covariate effectively captures the effects of the grandparental genotype as well as

effects of any environments that are shared within the extended-family pedigree (the parent and

their siblings) and correlated to genotype. This design further includes a control for subtle

population stratification, as the parent and their sibling have identical ancestry. An alternate

specification is to regress the child's educational attainment on their own genotype, their parents

genotype and their uncle or aunts’ genotype. If the parental genotype correlates with the child's

outcome because of nurture in the nuclear family, the genotype of the child’s aunt/uncle should

be independent from the child’s outcome conditional on the parents genotype.

Within the extended-pedigree genetic-nurture model, the within-family indirect genetic effect

represents “nurture”, i.e., environmentally-mediated effects operating within the nuclear family
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environment. This could include effects mediated by parenting behaviors or direct investments

by parents in their children. In parallel, the estimate of the between-family indirect genetic effect

captures both indirect effects that operate via “dynastic transmission” and those that act via

nurture. This could include effects mediated by multigenerational stratification in environments.

Between family indirect genetic effects could also be a function of a bias introduced in the

estimated relations between genotype and phenotype introduced by people systematically

selecting mates that are similar in terms of education or related traits (“assortative mating”)

across multiple generations. This bias does not persist within families. Therefore assortment

among spouses would introduce a between family indirect genetic effect but not a within family

indirect genetic effect.

We conducted extended-pedigree analysis of indirect genetic effects on academic achievement

in the Norwegian Mother, Father, and Child Cohort Study (MoBa), in which both children and

their parents are genotyped, and which includes over 10,000 sibling pairs in the parental

generation. MoBa recorded children’s grade-5, -8, and -9 standardized test scores on three

subjects (reading comprehension in Norwegian [for almost all children their first language],

math, English). We computed four PGIs from the most recent GWASs of EA and related

phenotypes; a PGI for EA (GWAS N > 3 million)15, PGIs for cognitive- (GWAS N = 257,700) and

non-cognitive-skill (GWAS N = 510,795) contributions to EA33, and a PGI based on a GWAS of

EA performed within sibling pairs (GWAS N = 128,777)4.

We structure our analysis around four models (outlined in detail in the methods section). We first

establish that the children’s own PGI’s are related to their academic achievement in this sample

(model 1). Next, we establish the presence of indirect genetic effects following the standard

approach of regressing children's achievement on parental PGIs while conditioning on children’s

own PGIs (model 2). Then, in order to test whether the indirect effects reflect genetic nurture or

dynastic effects, we specify a model that includes the mean of one parent and sibling PGIs, the

parent-sibling’s deviation from that mean, and the PGI of the parent that does not have a sibling

in the data (model 3). The presence of a within family indirect effect is consistent with

nurture-like processes, while its absence in the presence of a between family indirect effect is

consistent with dynastic-like processes. Finally, we consider an alternative specification where

the child's achievement is regressed on their own PGI, their parents' PGI's and the PGI of a

sibling of one of the parents (i.e. the child’s aunt’s or uncle’s PGI). In this final model, the logic is
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that the PGI of the aunt or uncle would not relate to the child's achievement through nurture

within the nuclear family (model 4).

Results

Figure 1 shows results from all four models estimated on the parent-sibling sample, with

numerical results available in Supplementary Tables 2-4.

Associations of children’s PGIs with academic achievement

In the MoBa child cohort included in our analysis, the effect-size (standardized beta) for the

association of the EA4 PGI with academic achievement was 0.24 (t(10287) = 30.3; SE = 0.008;

p<0.001). For the PGIs of cognitive (Cog) and non-cognitive (NonCog) contributions to

education, which were analyzed as concurrent predictors, effect-sizes were 0.26 (t(10318) =

32.9; SE=0.008; p<0.001) for Cog and 0.14 (t(10281) = 17.1; SE=0.008; p<0.001) for Non-Cog.

For the PGI from the within-family GWAS of EA (WFEA), the effect-size was 0.17 (t(10315) =

22.1; SE=0.008; p<0.001).

Indirect genetic effect estimates from parent-offspring data

In all models that include an indirect genetic effect, the direct genetic effects remained

significant, but were attenuated, with standardized betas that were reduced by 15% - 35%

compared to models that did not include indirect genetic effects (see Figure 1 and

Supplementary Tables S2-S4 for numerical results). The parent-offspring model (model 2)

includes PGIs for parents and their child as concurrent predictors of the child’s academic

achievement. In these models, the effect-estimate for the parental PGIs can be interpreted as

an indirect genetic effect (because directly inherited genetic influences are captured by the

child’s PGI). Effect-sizes for indirect genetic effects were modest, but in the expected direction

and statistically different from zero at the alpha=0.05 level. For the EA4 PGI, effect-sizes for

fathers and mothers were 0.05 (mothers: t(10271) = 5.22; SE=0.01; p<0.001; fathers: t(10293) =

4.72; SE=0.01; p<0.001); for the within-family GWAS PGI, the effect-size for fathers was 0.04
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(t(10283) = 4.2; SE=0.02; p<0.001) and for mothers was 0.05 (t(10341) = 4.7; SE=0.01;

p<0.001). For the Cog and Non-Cog PGIs, which were tested in the same model, Cog

effect-sizes were 0.03 (t(10277) = 3.3, SE=0.01, p<0.001) for fathers and 0.04 (t(10295) = 4.0,

SE=0.01, p<0.001) for mothers and Non-Cog effect-sizes were 0.05 (t(10285) = 4.8, SE=0.01,

p<0.001) for fathers and 0.04 (t(10267) = 4.1, SE = 0.01, p<0.001) for mothers. The model

confirms an indirect genetic effect.

Indirect genetic effects estimates from extended pedigrees

Models 3 and 4 are extended-family models. Model 3 includes PGIs for parents and their child

as well as the mean PGI for parental siblings as concurrent predictors of the child’s academic

achievement. In model 3, the estimate for the parental PGIs can be interpreted as a

within-family indirect genetic effect because directly inherited genetic influences are captured by

the child’s PGI and between-family indirect genetic effects are captured by the

parental-sibship-mean PGIs.

Considering the PGI based on the EA4 GWAS we find a large effect of the child’s PGI (beta =

0.184, t(10273) = 16.2, SE = 0.011, p<0.001) on their test score, a modest but significant

(p<0.05) effect for the PGI of the parent for whom no sibling is in the data (beta = 0.051,

t(10294) = 5.3, SE= 0.011), a similar effect of the mean sibling PGI for the parent and their

sibling (who is an aunt/uncle to the child) (beta = 0.053, t(10261) = 5.0, SE= 0.011, p<0.001),

while the deviance of their parent relative to their sibling is not significant (beta = 0.014, t(10324)

= 0.82, SE = 0.017, p=0.412).

Using the PGI based on the WFEA GWAS we also find a large effect of the child’s PGI (beta =

0.126, t(10305) = 10.8, SE = 0.011, p<0.001) on their test score, a modest but significant effect

for the PGI of the parent for whom no sibling is in the data (beta = 0.036, t(10329) = 3.6, SE =

0.010, p<0.001), a similar effect of the mean sibling PGI for the parent and their sibling (beta =

0.058, t(10294) = 5.7, SE= 0.010, p<0.001), while the deviance of their parent relative to their

sibling is not significant (beta = 0.020, t(10292) = 1.14, SE= 0.017, p=0.252).

We consider the Cog and NonCog PGI jointly, and observe a substantial effect of the child’s Cog

PGI (beta = 0.222, t(10276) = 19.3, SE= 0.011, p<0.001) and a modest effect of the child’s
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NonCog PGI (beta = 0.089, t(10271) = 7.71, se = 0.011, p<0.001). The between

parental-sibling-pair PGIs were significant for both the Cog PGI (beta = 0.042, t(10280) = 3.87,

SE = 0.011, p<0.001) and the NonCog PGI (beta = 0.053, t(10277) = 4.94, SE = 0.011,

p<0.001). Crucially, neither the effect of the within parental-sibling-pair Cog (beta = -0.002,

t(10270) = -0.14, SE=0.017, p=0.882) nor NonCog (beta = 0.027, t(10339) = 1.59, SE=0.016,

p=0.112) PGI was significantly different from zero.

[FIGURE 1 ABOUT HERE]

We performed one-tailed tests of the hypothesis that the difference between the between

parental-sibling-pair coefficient(s) and the within parental-sibling-pair coefficient(s) is equal to or

smaller than zero (cf. Supplementary Table 5). Tests reject the hypothesis for results obtained

with all three PGIs: EA4 (t = 2.16, p = 0.0155, βdifference = 0.0394), Cog/NonCog (t = 2.38, p =

0.0087, βdifference = 0.0696), and WFEA (t = 2.09, p = 0.0183, βdifference = 0.038).

The alternate specification, model 4, includes the PGIs of the child, the parent for whom no

sibling is in the data, the parent who has a sibling in the data, and that parent’s sibling. The

results are as expected (see Table 2 for expectations). Considering the PGI based on the EA4

GWAS, we find a large direct effect of the child’s PGI (beta = 0.184, t(10273) = 16.2, SE =

0.011, p<0.001), a modest but significant effect for the PGI of the parent for whom no sibling is

in the data (beta = 0.051, t(10294) = 5.3, SE= 0.011, p<0.001), a smaller, and significant effect

for the parent for whom a sibling is available (beta = 0.034, t(10298) = 3.09, SE= 0.011,

p<0.001), and a significant effect of the PGI of the aunt/uncle on the child (beta = 0.019,

t(10315) = 2.08, SE= 0.009, p = 0.038).

We find a large effect of the child’s WFEA PGI (beta = 0.126, t(10305) = 10.7, SE = 0.012,

p<0.001), a modest but significant effect for the PGI of the parent for whom no sibling is in the

data (beta = 0.036, t(10330) = 3.63, SE = 0.010, p < 0.001), a smaller, and significant effect for

the parent for whom a sibling is available (beta = 0.038, t(10296) = 3.5, SE= 0.011, p < 0.001),

and a significant effect of the PGI of the aunt/uncle on the child (beta = 0.019, t(10286) = 2.11,

SE= 0.009, p = 0.035).
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Finally, the effect of the child’s Cog PGI is quite pronounced (beta = 0.222, t(10276) = 19.4, SE

= 0.011, p < 0.001), the effect of the NonCog PGI is modest (beta = 0.088, t(10271) = 7.71, SE

= 0.011, p < 0.001), the effect of the PGI of the parent for whom no sibling is in the data is

significant and modest (Cog: beta = 0.040, t(10298) = 4.12, SE= 0.01, p<0.001; Non-Cog: beta

= 0.040, t(10268) = 4.12, SE = 0.01, p<0.001), the effects of the PGIs for an aunt/uncle are

significant for Cog but not NonCog (Cog: beta = 0.021, t(10282) = 2.27, SE = 0.009, p=0.023;

Non-Cog: beta = 0.014, t(10333) = 1.48, SE= 0.009, p=0.139), while the Cog and NonCog

effects of the parent for whom a sibling is in the data is modest (and insignificant for Cog: beta =

0.020, t(10265) = 1.84, SE= 0.011, p=0.066; Non-Cog: beta = 0.039, t(10307) = 3.57, SE=

0.011, p<0.001).

Results from models 1 and 2 estimated on the largest possible sample, and stratified by school

grade and test subject, are shown in Supplementary Figure 1. Results from models 1-4

estimated on the sample of all parent-sibling families, and stratified by school grade and test

subject are reported in Supplementary Figure 2-9.

Discussion

The discovery of specific genetic variants associated with EA has given researchers a new tool

for investigating the intergenerational transmission of education. In particular, the observation of

indirect genetic effects, whereby the parental genotype is associated with offspring outcomes

beyond the child’s genotype, illustrates the role of the environment in the intergenerational

transmission. Our indirect genetic effect estimates are consistent with previous analysis of

MoBa34, and of Dutch35 and UK22 cohorts, but somewhat smaller than the average effect from a

recent meta-analysis13. The meta-analytic average may be stronger because it included studies

of educational outcomes obtained from later stages of the life course, such as adult educational

attainment.

We used an unique extended pedigree dataset with genotyped relatives from multiple

generations to study the environmental processes driving the indirect genetic effect. In contrast

to the processes implied by the phrase “genetic nurture,” we did not find evidence that a large

portion of the indirect genetic effects repeatedly established in previous work, predominantly

runs through environmental mechanisms within the nuclear family, such as for example parental
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behaviors or investments. Instead, our findings suggest that the majority of the indirect genetic

effect in academic achievement, though not necessarily all of it, does not arise within the

nuclear family, but instead reflects processes shared across families with common

grandparents. Specifically, after accounting for genetics shared at the extended-family-level

(between a child’s parent and their aunt or uncle), and the child’s own genetics, the “genetic

nurture” association of a parent’s PGI with their child’s educational achievement was not

statistically different from zero. Another important source of indirect genetic effects that is

consistent with our findings is a major role for assortative mating, where repeated spousal

selection on characteristics that are related to educational success would introduce indirect

genetic effects that in our extended-family design were fully controlled with parental sibling

pairs, as those are matched on their history of genetic assortment.

In contrast, the extended-family-level PGI did show a statistically significant association with the

child’s educational achievement that was comparable in size to the original

indirect-genetic-effect estimate. This result does not rule out the presence of

within-nuclear-family indirect genetic effects on EA. But it does suggest that genetic nurture

processes unique to the nuclear family are likely to be a minor contributor to the indirect genetic

effects observed in studies of trios or parent-child dyads.

We acknowledge limitations of the study. There are known biases to models that use PGIs to

separate direct from indirect genetic effects. The GWAS from which we derived the per-SNP

effect estimates for the Cog, NonCog and EA PGIs are influenced by unmodeled indirect

genetic effects. Thus, for each SNP, we rely on an effect estimate that is a mix of direct and

indirect effects. This mixture can result in bias to within-family analysis of PGIs derived from

these GWAS36,37. However, our findings persist in analysis using a PGI derived from

within-family GWAS, in which the bias in SNP effects that go into the PGI, induced by

gene-environment correlation, are sharply attenuated, though not entirely absent38.

Our analysis may be under-powered to detect very small within-nuclear-family indirect genetic

effects. Our analysis utilizes the largest sample for extended-pedigree indirect-genetic-effect

analysis currently available. Our results are consistent across analysis of 3 PGIs and 2 different

specifications. Nevertheless, there could be a non-zero within-family indirect genetic effect

undetected in our analysis. Power calculations reveal that our analysis was powered to detect

effects of half the size (0.04) of the indirect genetic effect on educational outcomes estimated in
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a recent meta-analysis13. Finally selection bias could affect results. MoBa has relatively high

participation rates. Our use of national register data to determine educational achievement limits

loss to follow-up as a source of bias. However, the MoBa sample is healthier and wealthier than

the Norwegian population. Replications with other samples with the appropriate data structure

(for example, the HUNT study39) should be a primary concern. Replication should be closely

followed by generalization to other educational outcomes, such as high school completion or

college enrollment. These outcomes are believed to be more strongly influenced by the nuclear

family environment than are children’s scores on standardized tests.35 A recent meta-analysis of

indirect genetic effects on a variety of educational outcomes including adult attainment reported

an effect size (marked by dashed line in Figure 1) stronger than those obtained in our analysis.

The specific educational tests we use have limited consequences for educational careers and

therefore could be considered low stakes tests while parents may be more invested (and seek

more influence) for educational outcomes that are closer linked to the child’s future social

position. It would further be desirable to triangulate our result across alternate designs, for

example, adoption in the parental generation or directly observed grandparental genotypes.

Finally, there is a need to generalize beyond contemporary Norway, which has relatively low

income inequality, a high quality tuition-free public education system, and a generous welfare

state.

Our results are consistent with the interpretation of indirect genetic effects on academic

achievement as in part or largely due to “dynastic effects”. Such effects could reflect subtle

socioeconomic and genetic-ancestry stratification co-occurring within homogeneous

populations30,31,4.According to this interpretation, the extended-family-level PGI is correlated with

a set of inherited social circumstances which affect children's academic achievement. An

alternative interpretation is that dynastic effects reflect extended-family-level behaviors and

investments that contribute to children’s academic achievement. Our results are further

consistent with a bias in the population GWAS and PGI estimates introduced by assortative

mating. Our analysis cannot isolate the precise mechanisms of indirect genetic effects on EA.

However, we can conclude that, for childhood academic achievement in the context of

contemporary Norway, the mechanisms that give rise to indirect genetic effects, as indexed by

current PGIs, operate mostly beyond the boundaries of nuclear families.

Children from higher SES families perform better on standardized tests of academic

achievement. As with PGI associations, correlations between children’s test scores and SES
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might reflect “nurture” processes occurring within the nuclear family (e.g., parents actively using

their resources to support their children’s educational careers with higher incomes pay for

private tutoring) as well as dynastic processes that persist across generations (e.g.,

accumulation of wealth and access to social capital). Our results suggest that, to the extent that

currently available PGIs come to be correlated with child academic achievement because they

are systematically associated with SES-related environmental variation, they are capturing

multigenerational effects of socioeconomic privilege, rather than the more local advantages

conferred by individual parents on their own offspring.

Our results do not imply that parenting behaviors or a nurturing family environment do not affect

school performance. Instead, they shed light on the mechanisms behind the widely observed

indirect genetic effect of parental education-related PGI on offspring education

outcomes11,13,22–24. Any effects of parenting that are not correlated to the parental educational

PGIs are not detected in studies of the indirect genetic effect. By focusing on parental PGI for

education-related traits, we omit potentially important parental influences. The education PGI

used here would for example not index all parental life events or circumstances that may relate

to worse educational outcomes for children. While our analysis can speak to the widely studied

effect of parental educational PGI on childhood academic achievement, and is well-designed to

avoid genetic confounding, it does not represent a comprehensive evaluation of parental

influences on their children’s educational outcomes.

There are strategies to leverage genetic data to study parenting without relying on

education-related PGI. One follow-up would be to repeat the current analysis as a GWAS,

regressing child outcomes on each SNP in the child, the same SNP in the parent and include

the mean SNP of the parent and their sibling as a third covariate. A GWAS of parental effects on

childhood outcomes, while using the parental sibling structure to control for confounding (i.e., a

within-sibling GWAS), would yield SNP level summary statistics that would allow analytical

techniques like LD score regression to test genetic correlations between the indirect effects and

hundreds of heritable parental traits like personality, psychopathology, wellbeing and physical

health. The primary constraint on this type of analysis is sample size. However, with the

continued development of national genetic databases, such extended-family GWAS of genetic

nurture may soon be possible. Ultimately, a better understanding of the environmental/social

intergenerational transmission of education will benefit from a tighter integration between social

scientific data and genetic data.
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Methods

Participants

The Norwegian Mother, Father and Child Cohort Study (MoBa) is a population-based pregnancy

cohort study conducted by the Norwegian Institute of Public Health40. Participants were recruited

from all over Norway from 1999-2008. Women consented to participation in 41% of the

pregnancies. The cohort now includes 114,500 children, 95,200 mothers and 75,200 fathers.

Not all participants have yet been genotyped, and legal restrictions related to consent reduce

our effective sample size relative to some other versions of the data. The current study is based

on version 12 of the quality-assured survey data files released for research in January 2019 and

MoBaPsychGen v.1. The establishment of MoBa and initial data collection was based on a

license from the Norwegian Data Protection Agency and approval from The Regional

Committees for Medical and Health Research Ethics. The MoBa cohort is now based on

regulations related to the Norwegian Health Registry Act. The current study was considered by

The Regional Committees for Medical and Health Research Ethics.

In our version of the data, 39,230 nuclear families have genotype information on complete trios

(mother, father, and child) where both parents were born in Norway. The Norwegian system of

personal ID numbers facilitates linking of data from MoBa to register-based information for

educational outcomes, basic demography and links between parents and their siblings. The

data structure is illustrated in Supplementary Figure 10. For 37,117 complete trio families,

children have one or more educational outcomes available. In our analytic sample, there are

10.913 nuclear families where the child and both parents are genotyped, the child has taken at

least one standardized test, and one parent has a sibling that is a genotyped parent in another

MoBa family in the data set.

Measures

Academic achievement is measured by children’s results on national standardized tests

(“Nasjonale prøver”) in reading (i.e., reading comprehension in Norwegian, for almost all

children their first language), math, and English. Reading and math were administered in 5th,

8th and 9th grades and English in 5th and 8th grades. Nearly all MoBa children have data on

5th grade tests, while the youngest cohorts do not yet have data on 8th and 9th grade tests. The

test scores were obtained from Norwegian administrative registries. The scores were

standardized within the test and year to control for test version and changes over time.
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PGIs were computed for all individuals using the LDpred2 software. GWAS summary statistics

were obtained from a GWAS-by-subtraction, for cognitive (Cog) and non-cognitive (Non-Cog)

SNP effects on EA33, and from the within-family GWAS of EA 15,41. For the EA PGIs, we relied on

the top 10,000 publicly reported SNPs.15

Statistical analysis

Regression models

We fit four models. All eight test scores are included, with test fixed-effects and a child-specific

random intercept included in all models. The first two models establish the presence of an

indirect genetic effect in the sample of all genotyped parent-offspring trios. Model 1 estimates

the total genetic effect measured by the PGI.

(model 1)𝐸𝑑𝑢
𝑖𝑗

 =  β
𝑃𝐺𝐼 

𝑃𝐺𝐼
𝑐ℎ𝑖𝑙𝑑 𝑖

+  ...  +  𝑢
𝑖

+  𝑒
𝑖𝑗

Model 2 adds additional parameters for parents’ PGIs and decomposes the total genetic effect

into a direct component, measured by (for the child’s PGI) and indirect components,β
𝑑𝑖𝑟 

measured by and (for the parents’ PGIs).β
𝑓𝑎𝑡ℎ 

β
𝑚𝑜𝑡ℎ

(model 2)𝐸𝑑𝑢
𝑖𝑗

 =  β
𝑑𝑖𝑟 

𝑃𝐺𝐼
𝑐ℎ𝑖𝑙𝑑 𝑖

 +  β
𝑓𝑎𝑡ℎ 

𝑃𝐺𝐼
𝑓𝑎𝑡ℎ𝑒𝑟 𝑖

 +  β
𝑚𝑜𝑡ℎ

𝑃𝐺𝐼
𝑚𝑜𝑡ℎ𝑒𝑟 𝑖

 +   ...   𝑢
𝑖

+  𝑒
𝑖𝑗

We then decompose the indirect genetic effect into within- and between-family components.

First, we select parents with one or more siblings in the MoBa sample. We next compute the

following predictors:

𝑃𝐺𝐼
µ
 =  1

𝑚

∑𝑃𝐺𝐼
𝑚

𝑚

where is the mean PGI for a sibship of size m;𝑃𝐺𝐼
µ
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𝑃𝐺𝐼
∆
 =  𝑃𝐺𝐼

𝑚
−  𝑃𝐺𝐼

µ

where is the deviation of each parent’s PGI from their sibship-mean PGI ( ), and𝑃𝐺𝐼
∆

𝑃𝐺𝐼
µ

, which is the PGI of parents who do not have a sibling in the data. Finally, we combine𝑃𝐺𝐼
𝑜𝑡ℎ𝑒𝑟

these parameters in the equation for model 3:

𝐸𝑑𝑢
𝑖𝑗

 =  β
𝑑𝑖𝑟 

𝑃𝐺𝐼
𝑐ℎ𝑖𝑙𝑑 𝑖

 +  β
𝑤𝑖𝑡ℎ𝑖𝑛 

𝑃𝐺𝐼
∆

 +  β
𝑏𝑒𝑡𝑤𝑒𝑒𝑛

 𝑃𝐺𝐼
µ

 + β
𝑜𝑡ℎ𝑒𝑟

𝑃𝐺𝐼
𝑜𝑡ℎ𝑒𝑟 𝑝𝑎𝑟𝑒𝑛𝑡

  ...  + 𝑢
𝑖
 +  𝑒

𝑖𝑗

(model 3)

Children for whom neither parent has a sibling in the data are omitted (N=28,317). The model

specification, which follows previous work22 results in identical between-family and within-family

effects in the absence of population stratification and/or the absence of a multigenerational

effect on childhood academic achievement42. In the presence of either, we expect the between

parental-sibling-pair effect to be larger than the within parental-sibling-pair effect.

As an alternative specification to Model 3, we fit a parallel model that parametrizes within- and

between-family indirect genetic effects using a different approach. In this alternative

specification, model 4, we include the PGIs of the parents and their siblings (i.e., the uncle or

aunt of the child) in the regression.

𝐸𝑑𝑢
𝑖𝑗

 =  β
𝑑𝑖𝑟 

𝑃𝐺𝐼
𝑐ℎ𝑖𝑙𝑑 𝑖

 +  β
𝑓𝑜𝑐𝑎𝑙 

𝑃𝐺𝐼
𝑓𝑜𝑐𝑎𝑙 𝑝𝑎𝑟𝑒𝑛𝑡

 +  β
𝑢𝑛𝑐𝑙𝑒/𝑎𝑢𝑛𝑡

 𝑃𝐺𝐼
𝑢/𝑎

 + β
𝑜𝑡ℎ𝑒𝑟

𝑃𝐺𝐼
𝑜𝑡ℎ𝑒𝑟 𝑝𝑎𝑟𝑒𝑛𝑡

  ...  + 𝑢
𝑖
 +  𝑒

𝑖𝑗

(model 4)

Here, an indirect genetic effect consisting of purely within-family (“genetic nurture”) mechanisms

would result in a parameter estimate of zero for . In contrast, an indirect effectβ
𝑢𝑛𝑐𝑙𝑒/𝑎𝑢𝑛𝑡

 

consisting of only between-family (“dynastic effect”) mechanisms would result in a parameter

estimate of zero for .β
𝑓𝑜𝑐𝑎𝑙 

All regression models include a set of child covariates indicated by the ellipsis (...): sex, birth

year, test subject and grade fixed effects (to account for systematic differences in achievement
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between tests), the first 10 genetic principal components (to account for population

stratification), and genotyping-batch fixed effects (to account for batch-to-batch variation in

genotype processing and measurement). We performed a power analysis and established we

had > 80% power to detect a βwithin sibling-pair effect half that of previous meta-analytic indirect

genetic effects13. All tests are two-tailed unless otherwise specified.

Relation between parameter and conceptual processes

In the regression models above we define 3 parameters that relate in the following way to

underlying mechanisms that generate associations between parental PGIs and child’s outcome

conditional on the child’s own PGI. In model 2 we define: and which are the sum ofβ
𝑚𝑜𝑡ℎ

β
𝑓𝑎𝑡ℎ 

influences of genetic nurture, dynastic effects and assortative mating. In model 3 and 4 we

define which is a consequence of genetic nurture but not dynastic effects or assortment.β
𝑤𝑖𝑡ℎ𝑖𝑛 

and are again the sum of the effects of influences of genetic nurture, dynasticβ
𝑏𝑒𝑡𝑤𝑒𝑒𝑛

 β
𝑜𝑡ℎ𝑒𝑟

effects and assortative mating.

If is not different from zero we find no evidence for “genetic nurture”, while if is notβ
𝑤𝑖𝑡ℎ𝑖𝑛 

β
𝑤𝑖𝑡ℎ𝑖𝑛 

different from to and not different from the average of and (which areβ
𝑏𝑒𝑡𝑤𝑒𝑒𝑛

 β
𝑚𝑜𝑡ℎ

β
𝑓𝑎𝑡ℎ 

estimated in a larger sample, and hence with more power) this would be consistent with the

absence of the influence of a “dynastic effect” or “assortative mating”. For convenience

summarize the relations between the mechanisms that can generate PGI-phenotype

associations and the regression parameters we estimate in Table 2. The relationships are

confirmed through simulations available on the GitHub repository that accompanies this paper.
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Tables

Table 1. Evidence from Genetically Informed Studies for Environmental Transmission of

Educational Outcomes

Design Key Comparison

Twins Are dizygotic twins more similar in their EA than can be
accounted for by their genetic relatedness?

Twins + offspring Are children of (e.g., female) monozygotic twins more similar
in their EA to their mother than to their aunt?

Adoptees Do adopted offspring resemble their adoptive parents more
than their biological parents in their EA?

Adoptees + siblings Do offspring adopted into more environmentally advantaged
homes have higher EA than their siblings who were not
adopted away?

Adoptees + PGIs Do adoptive parents’ PGIs predict adopted children’s EA? Is
the association between one’s own PGI and one’s own EA
stronger if raised by biological parents than by adoptive
parents?

Parent-offspring trios + PGIs Is the portion of the parental genotype that is not inherited by
the offspring (untransmitted PGI) associated with offspring’s
EA?

Siblings + PGIs Is the PGI-EA association attenuated after controlling for a
family-specific effect or family’s socioeconomic status (SES)?
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Table 2. Expectations for indirect genetic effect parameter estimates for two model specifications under three conditions.

Condition Model specification

Model 3: Mean of parent and sibling PGIs and
parent’s deviation PGI

Model 4: Uncle and aunt PGI

Only genetic nurture = = = andβ
𝑤𝑖𝑡ℎ𝑖𝑛 

β
𝑏𝑒𝑡𝑤𝑒𝑒𝑛

 β
𝑜𝑡ℎ𝑒𝑟

 β
𝑚𝑜𝑡ℎ

β
𝑓𝑎𝑡ℎ 

= &β
𝑓𝑜𝑐𝑎𝑙 

β
𝑜𝑡ℎ𝑒𝑟

 β
𝑢/𝑎

 =  0

Only assortative
mating

= 0β
𝑤𝑖𝑡ℎ𝑖𝑛 

β
𝑓𝑜𝑐𝑎𝑙 

= β
𝑢/𝑎

 =  0. 5β
𝑜𝑡ℎ𝑒𝑟

  

Only dynastic effects = 0β
𝑤𝑖𝑡ℎ𝑖𝑛 

β
𝑓𝑜𝑐𝑎𝑙 

= β
𝑢/𝑎

 =  0. 5β
𝑜𝑡ℎ𝑒𝑟
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Figures legends & captions

Figure 1. Results from four models of academic achievement using three definitions of polygenic
scores.

From left to right results for the models 1 and 2 (N=37,117 families) and 3 and 4 (N=10,913 families)

where achievement is regressed on a set of PGIs and covariates (age, year, test, genomic principal

components), with a child-specific random effect. Figure only presents the effect of the PGIs of interest.

Upper panel shows coefficients the educational attainment (EA4) PGI; middle panel, show coefficients for

cognitive skills (blue) and noncognitive skills (orange) PGIs and lower panel coefficients for within-family

PGI for educational attainment. Symbols represent point estimates and vertical error bars represent 95%

confidence intervals. Dashed line is a reference value for the indirect genetic effect as established in

previous meta-analysis (that did not include MoBa) of educational outcomes.
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Supplementary Information 1: Power analysis

An insightful reviewer requested we perform power analyses for detecting a nurture effect
using the association between educational outcomes and PGIs. We did this before analyzing
the new, larger sample. We define the nurture effect as an effect of PGI deviance between
parent and their sibling on the child’s outcome, conditional on the child’s PGI, the mean of
the parent-sibling PGIs , and the other parent’s PGI.

From the literature (Wang et al. 2021) we obtain a precise meta-analytic estimate of the total
indirect genetic effect expressed as a standardized regression coefficient (where both
outcome and predictors are scaled to unit variance) of 0.08 (95% CI = 0.07-0.09). As this
estimate does have unknown heterogeneity arising from sample, study, and statistical
design, we also consider an effect size consistent with half the explained variance (±0.056)
and half the effect size (0.04) as reported in Wang et al. ( 2021).

Power simulation
# Clear memory:
rm(list=ls())
gc()

used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 566943 30.3 1285188 68.7 NA 669297 35.8
Vcells 1035174 7.9 8388608 64.0 24576 1839975 14.1

# requirements and seed:
require(gt)

Loading required package: gt

set.seed(123)

n <- 5200 # parental sibs
s <- 2 # sibship size

rep <- 1000
out <- matrix(NA,rep,3)

We simulate 1000 datasets with PGIs for 2 siblings, their spouses, and their kids. We then
simulate a direct PGI effect of 0.17 (standardized beta) and an indirect effect that is pure
nurture and an effect size of 0.08 (standardized beta) based on previous literature. These
effects are from the meta-analysis (n > 38.000) that did not contain MoBa results. We then
simulate scenario’s half the squared effect size (half of r2) and with half the effect size.
We evaluate power as the proportion of simulations given each scenario in which the effect
of the parents’ PGI deviation from the parent and their sibling mean is significantly related to
the outcome at alpha 0.05, 0.01 or 0.005, conditional on the child’s PGI, the other parent’s
PGI and the parent and sibling mean PGI. The simulated sample size is 5200 extended
families. Each extended family consists of two “nuclear families”. In each of the nuclear
families, one parent is a sibling of a parent in the other nuclear family. Thus, the sample
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consists of a sibling pair (of which both are parents), their spouses (the other parent) and
children (N = 10.200, i.e. one child for each sibling). The sample size is similar to our
empirical data.

# loop power sim:
for(i in 1:rep){
bp_pgi_f <- rnorm(n)
wf_g1a <- rnorm(n) # within family V(g) 50%
wf_g1b <- rnorm(n) # within family V(g) 50%

fp_pgi <- sqrt(.5) * bp_pgi_f + sqrt(.5)*wf_g1a
fp2_pgi <- sqrt(.5) * bp_pgi_f + sqrt(.5)*wf_g1b

# betwene family parental PGI
bp_pgi <- rep((fp_pgi+fp2_pgi)/2,2)

# within family parental PGI:
wp_pgi <- c(fp_pgi,fp2_pgi) - bp_pgi

# parental PGI:
fp_pgi_c <- c(fp_pgi,fp2_pgi)
# Other parent PGI:
op_pgi <- rnorm(n*s)

# within fam V(a) kids;
wf_g2 <- rnorm(n*s) # within family V(g) 50%

# child PGI:
fc_pgi <- sqrt(.25)*fp_pgi_c + sqrt(.25)*op_pgi + sqrt(.5)*wf_g2
var(fc_pgi) # should be 1
cor(fc_pgi,fp_pgi_c) # cor with your parent should be .5
cor(fc_pgi[1:n],fp_pgi_c[(n+1):(s*n)]) # cor with uncle/aunt should
be .25

# family identifier for later use:
fam_id <- rep(1:n,s)

environment <- rnorm(s*n)
cor_env_g <- rnorm(n)
environment <- scale(environment + c(cor_env_g,cor_env_g)) #
environments ( & unmeasured genetic fx) are correlated between sibs!

# true within family nurture, effect size size same as meta-analysis
by Wang et al.
#(Wang, B., Baldwin, J. R., Schoeler, T., Cheesman, R., Barkhuizen,
W., Dudbridge, F., ... & Pingault, J. B. (2021).
#Robust genetic nurture effects on education:
#A systematic review and meta-analysis based on 38,654 families
across 8 cohorts.
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#The American Journal of Human Genetics, 108(9), 1780-1791.):

nurture <- 0.08
direct <- 0.17
phenotype <- direct*fc_pgi + nurture *fp_pgi_c + nurture *op_pgi +
sqrt(.9-nurture-direct)*environment

ak <- lmerTest::lmer(phenotype ~ fc_pgi + wp_pgi + bp_pgi + op_pgi
+(1|fam_id))
out[i,1] <- summary(ak)$coef[3,1]/summary(ak)$coef[3,2]

# true within family nurture, effect size size HALF r2 Wang et al.
#(Wang, B., Baldwin, J. R., Schoeler, T., Cheesman, R., Barkhuizen,
W., Dudbridge, F., ... & Pingault, J. B. (2021).
#Robust genetic nurture effects on education:
#A systematic review and meta-analysis based on 38,654 families
across 8 cohorts.
#The American Journal of Human Genetics, 108(9), 1780-1791.):

nurture <- sqrt(.5*(.08^2))
direct <- 0.17
phenotype <- direct*fc_pgi + nurture *fp_pgi_c + nurture *op_pgi +
sqrt(.9-nurture-direct)*environment

ak <- lmerTest::lmer(phenotype ~ fc_pgi + wp_pgi + bp_pgi + op_pgi
+(1|fam_id))
out[i,2] <- summary(ak)$coef[3,1]/summary(ak)$coef[3,2]

# true within family nurture, effect size size HALF r Wang et al.
#(Wang, B., Baldwin, J. R., Schoeler, T., Cheesman, R., Barkhuizen,
W., Dudbridge, F., ... & Pingault, J. B. (2021).
#Robust genetic nurture effects on education:
#A systematic review and meta-analysis based on 38,654 families
across 8 cohorts.
#The American Journal of Human Genetics, 108(9), 1780-1791.):

nurture <- 0.04
direct <- 0.17
phenotype <- direct*fc_pgi + nurture *fp_pgi_c + nurture *op_pgi +
sqrt(.9-nurture-direct)*environment

ak <- lmerTest::lmer(phenotype ~ fc_pgi + wp_pgi + bp_pgi + op_pgi
+(1|fam_id))
out[i,3] <- summary(ak)$coef[3,1]/summary(ak)$coef[3,2]
}

Our analysis reveals that we have ample power in most scenarios to detect non-zero nurture
effects that are at least half the effect of half the squared effect size:
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# Power at alpha = 5% two sided:
p1_05 <- (sum(out[,1] > sqrt(qchisq(0.95,1))) / rep) * 100
p2_05 <- (sum(out[,2] > sqrt(qchisq(0.95,1))) / rep) * 100
p3_05 <- (sum(out[,3] > sqrt(qchisq(0.95,1))) / rep) * 100

# Power at alpha = 1% two sided:
p1_01 <- (sum(out[,1] > sqrt(qchisq(0.99,1))) / rep) * 100
p2_01 <- (sum(out[,2] > sqrt(qchisq(0.99,1))) / rep) * 100
p3_01 <- (sum(out[,3] > sqrt(qchisq(0.99,1))) / rep) * 100

# Power at alpha = 0.5% two sided:
p1_005 <- (sum(out[,1] > sqrt(qchisq(0.995,1))) / rep) * 100
p2_005 <- (sum(out[,2] > sqrt(qchisq(0.995,1))) / rep) * 100
p3_005 <- (sum(out[,3] > sqrt(qchisq(0.995,1))) / rep) * 100

Power <- c(p1_05,p2_05,p3_05,p1_01,p2_01,p3_01,p1_005,p2_005,p3_005)

Effect_Source <- rep(c("Wang et al.", "50% of the squared beta
implied Wang et al.","50% of the beta implied in Wang et al."),3)
Effect <- round(c(0.08,sqrt(.5*(0.08)^2),0.04),4)
Alpha <- rep(c("0.05","0.01","0.005"),3)

tab <- gt(cbind.data.frame(Effect_Source,Effect ,Alpha,Power))

tab

Effect_Source Effect Alpha Power

Wang et al. 0.0800 0.05 100.0

50% of the squared beta
implied Wang et al.

0.0566 0.01 99.4

50% of the beta implied
in Wang et al.

0.0400 0.005 89.5

Wang et al. 0.0800 0.05 100.0

50% of the squared beta
implied Wang et al.

0.0566 0.01 98.3

50% of the beta implied
in Wang et al.

0.0400 0.005 71.9

Wang et al. 0.0800 0.05 100.0

50% of the squared beta
implied Wang et al.

0.0566 0.01 96.5

50% of the beta implied
in Wang et al.

0.0400 0.005 63.9

Power exceeds 60% in all cases and exceeds 80% unless we consider effects that are half
the power observed in the previous meta-analysis at an alpha of 0.01 or 0.005.
Inevitably, there are various modeled potential processes that could mean our power
analysis is too optimistic or pessimistic. For example, in the empirical analysis we consider
repeated assessments of educational achievement which could yield us additional power,
the meta-analysis includes multiple statistical designs and data from countries with more
deeply stratified educational systems, which could result in bigger indirect genetic effects,
which would cost us power. We feel that, by considering various reasonable effect sizes, and
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alpha’s, we cover the magnitude of genetic effects that is currently referred to as “genetic
nurture” and could conceivably be viewed as product of within-family nurturing processes.
References
Wang, Biyao, Jessie R. Baldwin, Tabea Schoeler, Rosa Cheesman, Wikus Barkhuizen,
Frank Dudbridge, David Bann, Tim T. Morris, and Jean-Baptiste Pingault. 2021. “Robust
Genetic Nurture Effects on Education: A Systematic Review and Meta-Analysis Based on
38,654 Families Across 8 Cohorts.” The American Journal of Human Genetics 108 (9):
1780–91. https://doi.org/10.1016/j.ajhg.2021.07.010.
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Frequently Asked Questions

Contents

What did this study do?
What is a polygenic index and how is it calculated?
What are “indirect” genetic effects?
Who are the people in this study?
What do the findings mean for the effects of parents’ nurturing behavior on children?
What do the findings mean for the research on education and educational performance?

What did this study do?

This study examined how genes and environments were related to educational outcomes in

Norwegian children, who completed standardized academic tests (“Nasjonale prøver”) of

reading comprehension, mathematics and English (as a second language) at ages 10,15

and 16. For every children we calculated something known as a polygenic index, which is a

measure of genes thought to be correlated with going further in formal education. In addition,

we also calculated the polygenic index of the children’s parents and of any of their parents’

siblings. In our work, the correlations between genes and outcome, education in this case,

aren't thought of as immutable or fixed, but rather a function of society, environment and

population. If a society shifts its emphasis on what is thought of as important to attain

education, then that will subtly shift which genes correlate to educational outcomes.

Our study tested three things. First, does a child’s own genes predict their own academic

test performance? Second, does a child’s parents’ genes predict their test performance,

above and beyond the child’s own genes? Such an association (termed indirect genetic

effects) cannot be due to genetic inheritance and is evidence for an environmental process.
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Third, does a child’s parents’ genes predict their test performance, even after controlling for

the parents’ siblings’ genes? This type of analysis is unusual because most studies don’t

have data on extended pedigrees of relatives. This analysis is important because it tests

whether the environmental processes that are “tagged” by polygenic indices, and are

associated with children’s educational outcomes, are operating within nuclear families

(parents and children) or are operating multi-generationally.

What is a polygenic index and how is it calculated?

As a genetic effect the study considers a polygenic index, which is a weighted sum of your

genotypes, weighted by their suspected effect on education, based on previous genetic

studies. Since these previous genetic studies are large, a polygenic index of education

explains about ±7-13% of variance in educational outcomes, though that includes both

contributions from direct and indirect genetic effects.

What are “indirect” genetic effects?

Indirect genetic effects – sometimes called genetic nurture – is a term for the presence of an

association between your parents’ genotypes, and your outcome, over and above the effect

the genotype has through its presence in you, as you have inherited genes from your

parents. If ignored in the analysis of genetic effect, or environmental effects for that matter,

indirect genetic effects might appear like direct genetic effects and inflate our estimate of

those. In particular when it comes to educational outcomes, genetic effects and

environmental effects seem steeply correlated, which has inflated the estimates of genetic
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effects on educational outcomes, but also raises the question what causes these indirect

genetic effects to occur?

There are a few processes researchers think might give rise to indirect genetic effects on

educational outcomes. For example genetic variants that every so slightly improve you

parents socio-economic position (for example, trough effects on their education), will

become correlated to your education if their socio-economic advantage puts you in a better

school/neighborhood, or if it means they have more time to be available to help you learn,

resulting in better educational outcomes. However, there are also competing explanations

where the indirect genetic effects don't really act through your parents in some way shaping

your environment. If for example people with similar education levels consistently (for a

number of generations) marry and have kids, this could also give rise to indirect genetic

effects, without any effect through nurture or socio-economic advantage on part of your

parents. We would like to find out whether these indirect genetic effects, of your parents'

polygenic index for education on your school outcomes, reflect processes that plays out

within the nuclear family, or are consequences of some of these multi-generational mate

choice processes.

Who are the people in this study?

The research used data from Norwegian Mother, Father and Child Cohort Study, a large

cohort data set collected in Norway. MoBa is a unique study where over 90,000 pregnant

women were recruited from 1998 to 2008. More than 70,000 fathers have participated. It

provides data on children, mothers and fathers from questionnaires, biobanks and

administrative registers. For more information about MoBa, see its homepage.
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Norway, the country in which data were collected, is a Scandinavian welfare state with a

universal, free education system. The Norwegian state also provides a range of social

insurance and benefits to the population. The results of the research must be interpreted in

this context. Results might not be similar in other countries that have different economies

and educational systems.

What do the findings mean for the effects of parents’ nurturing behavior
on children?

Our findings related parents’ polygenic indices for education to their child’s educational

achievement. Obviously, your nurturing behavior is more than your propensity for having a

long education. Any nurture processes that do not correlate to the education PGI, of which

there are probably many, can obviously influence kids' success, and other outcomes in their

lives. As so often, our findings are narrow and specific, and don’t easily translate to broad lay

concepts like “nurture” or “parenting”. So our findings are not a test of the importance of

nurture, rather they are a test of the particular indirect genetic effect researchers have

previously observed.
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What do the findings mean for the research on education and
educational performance?

Our work, and that of many others, highlights that there are many sociological and historical

reasons why your genotype can be correlated with any outcome. In particular, when that

outcome is as socially determined as education, this inevitably leads to gene-environment

correlation. Our work suggests the source of gene-environment correlation is likely

predominantly due to a longer term process. One such process is assortative mating, the

phenomenon where partners – and thus parents – are matched on their education level or

other traits that are partially shaped by genetics. It is then also important to understand that

assortment itself is a very complex sociological and psychological process, profoundly

shaped by social and cultural factors. We can't fully rule out a modest effect of your parents'

educational polygenic index on your success in school, nor can we rule out other

multi-generation processes that would slowly introduce gene-environment correlation.
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Supplementary Table S1: Descriptive statistics for analysis variables

All available trios Sibling sample

Variable N M SD Min Max N M SD Min Max

Math 5th 36532 0.10 0.95 -2.65 2.04 10234 0.15 0.96 -2.45 2.04

Math 8th 18519 -0.13 0.81 -2.38 2.02 5292 -0.09 0.82 -2.38 1.62

Math 9th 12435 0.00 0.85 -2.74 1.53 3552 0.04 0.86 -2.57 1.53

Reading 5th 36139 0.24 0.97 -2.94 2.29 10123 0.28 0.97 -2.94 2.29

Reading 8th 18496 0.09 0.99 -2.96 2.16 5279 0.12 1.00 -2.96 2.16

Reading 9th 12458 0.15 0.96 -3.29 1.73 3563 0.18 0.96 -3.29 1.73

English 5th 36268 0.19 1.05 -2.67 2.57 10165 0.19 1.04 -2.67 2.57

English 8th 18419 0.07 0.99 -2.37 2.19 5253 0.07 1.01 -2.37 2.02

Child Year of Birth 39230 2005.47 1.89 2002.00 2009.00 10913 2005.45 1.88 2002.00 2009.00

Mother Year of
Birth

39230 1974.79 4.73 1956.00 1991.00 10913 1974.83 4.38 1960.00 1990.00

Father Year of
Birth

39218 1972.40 5.41 1942.00 1989.00 10913 1972.56 4.92 1946.00 1988.00
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Supplementary Table S2. Results from four models of academic achievement using EA4 PGIs

___________________________________________________________________________________________________________________________

Model 1 Model 2 Model 3 Model 4

Beta 95% CI Beta 95% CI Beta 95% CI Beta 95% CI

(Intercept) 0.197 [0.134, 0.260] 0.196 [0.133, 0.259] 0.195 [0.132, 0.258] 0.195 [0.132, 0.258]

Child PGI EA4 0.236 [0.221, 0.251] 0.184 [0.162, 0.207] 0.184 [0.162, 0.207] 0.184 [0.162, 0.207]

Mother PGI EA4 0.050 [0.031, 0.069]

Father PGI EA4 0.046 [0.027, 0.065]

Parent-Sibship Deviation EA4 0.014 [-0.019, 0.047]

Parent-Sibship Mean EA4 0.053 [0.033, 0.074]

Other parent PGI EA4 0.051 [0.032, 0.070] 0.051 [0.032, 0.070]

Sibling parent PGI EA4 0.034 [0.012, 0.055]

Uncle/aunt PGI EA4 0.019 [0.001, 0.037]

SD(Child intercepts) 0.731 0.729 0.729 0.729

SD(Tests) 0.593 0.593 0.593 0.593

N 53461 53461 53461 53461

logLik -58872.4 -58860.6 -58861.2 -58862.0

AIC 117802.8 117783.1 117786.4 117788.1
_____________________________________________________________________________________________________________________________
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Supplementary Table S3. Results from four models of academic achievement using Cog/NonCog PGIs

______________________________________________________________________________________________________________________________

Model 1 Model 2 Model 3 Model 4

Beta 95% CI Beta 95% CI Beta 95% CI Beta 95% CI

(Intercept) 0.187 [0.125, 0.250] 0.186 [0.124, 0.248] 0.186 [0.123, 0.248] 0.186 [0.123, 0.248]

Child PGI Cog 0.261 [0.245, 0.276] 0.222 [0.199, 0.244] 0.222 [0.199, 0.244] 0.222 [0.199, 0.244]

Child PGI NonCog 0.135 [0.120, 0.151] 0.088 [0.066, 0.111] 0.089 [0.066, 0.111] 0.088 [0.066, 0.111]

Mother PGI Cog 0.039 [0.020, 0.058]

Mother PGI NonCog 0.040 [0.021, 0.059]

Father PGI Cog 0.032 [0.013, 0.052]

Father PGI NonCog 0.047 [0.028, 0.066]

Parent-Sibship Mean Cog 0.042 [0.021, 0.063]

Parent-Sibship Deviation Cog -0.002 [-0.036, 0.031]

Parent-Sibship Mean NonCog 0.053 [0.032, 0.074]

Parent-Sibship Deviation NonCog 0.027 [-0.006, 0.061]

Sibling parent PGI Cog 0.020 [-0.001, 0.041]

Sibling parent PGI NonCog 0.039 [0.018, 0.061]

Other parent PGI Cog 0.040 [0.021, 0.059] 0.040 [0.021, 0.059]

Other parent PGI NonCog 0.040 [0.021, 0.059] 0.040 [0.021, 0.059]

Uncle/aunt PGI Cog 0.021 [0.003, 0.039]

Uncle/aunt PGI NonCog 0.014 [-0.005, 0.032]

SD(Child intercepts) 0.722 0.720 0.720 0.720

SD(Tests) 0.593 0.593 0.593 0.593

N 53461 53461 53461 53461
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______________________________________________________________________________________________________________________________

Model 1 Model 2 Model 3 Model 4

Beta 95% CI Beta 95% CI Beta 95% CI Beta 95% CI

logLik -58763.8 -58757.6 -58760.4 -58762.0

AIC 117587.6 117583.3 117592.8 117596.0

______________________________________________________________________________________________________________________________
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Supplementary Table S4. Results from four models of academic achievement using WFEA PGIs

_____________________________________________________________________________________________________________________________

Model 1 Model 2 Model 3 Model 4

Beta 95% CI Beta 95% CI Beta 95% CI Beta 95% CI

(Intercept) 0.198 [0.134, 0.262] 0.196 [0.132, 0.260] 0.195 [0.131, 0.260] 0.195 [0.131, 0.260]

Child PGI WFEA 0.173 [0.158, 0.189] 0.125 [0.102, 0.148] 0.126 [0.103, 0.149] 0.126 [0.103, 0.149]

Mother PGI WFEA 0.046 [0.027, 0.065]

Father PGI WFEA 0.041 [0.023, 0.060]

Parent-Sibship Deviation WFEA 0.020 [-0.014, 0.054]

Parent-Sibship Mean WFEA 0.058 [0.038, 0.078]

Other parent PGI WFEA 0.036 [0.016, 0.055] 0.036 [0.016, 0.055]

Sibling parent PGI WFEA 0.038 [0.017, 0.060]

Uncle/aunt PGI WFEA 0.019 [0.001, 0.037]

SD(Child intercepts) 0.747 0.746 0.746 0.746

SD(Tests) 0.593 0.593 0.593 0.593

N 53461 53461 53461 53461

logLik -59074.4 -59066.4 -59066.7 -59067.3

AIC 118206.7 118194.9 118197.3 118198.6

_____________________________________________________________________________________________________________________________
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Supplementary Table 5: Tests of mean and deviation coefficients in sibling models (Model 3)

Tests were one-tailed t-tests of the hypothesis that the difference in coefficients for Parent-Sibship Mean and Parent-Sibling Deviation were

larger than zero. Tests were not adjusted for multiple comparisons.
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Supplementary Figure 1. Results from Models 1 and 2 estimated on full trio sample

Supplementary Figure S1: Results from Models 1 and 2 of eight test scores for academic achievement and a model of all test scores combined (N=37,117). Models were

estimated using three different sets of PGIs: Cognitive (blue dots) and Non-cognitive (orange squares) PGIs, EA4 (black triangles), and within-family EA (black crosses). Point

estimates (indicated by symbols) are shown with associated 95% confidence intervals.

Figure shown on next page
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Supplementary Figures 2-9. Results from Models 1 to 4 for eight separate tests by grade and subject

Figures S2-S9: Results for eight regression models (models 1 and 2: Nmax=37,117 families; models 3 and 3: Nmax = 10,913 families) of test scores including PGIs for child,

non-sibling parent, sibling parent deviation from sibship mean, sibling parent sibship mean. Each panel includes estimates for Cognitive (blue dots) and Non-cognitive (orange

squares) PGIs, EA4 (black triangles), and within-family EA (black crosses). Point estimates indicated by symbols and associated 95% confidence intervals indicated by vertical

lines.

Figures in the following order: Math 5th, Math 8th, Math 9th, Reading 5th, Reading 8th, Reading 9th, English 5th, English 8th.

19



20



21



22



23



24



25



26



27



Supplementary Figure 10. Illustration of data structure

Blue squares indicate MoBa participants. White squares (grandparents) are identified through register links.
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Supplementary Figure 11. Results from sensitivity analysis for relatedness

Supplementary Figure S11: Results for the full sample and for a sample restricted by excluding close relatives (except those involved in identification of parameters in models

3 and 4; for models 1 and 2: Nfull=37,117 and Nrestricted=31,326 ; for models 3 and 4: Nfull=10,913 and Nrestricted=8,485 families) of test scores including EA4 PGIs for child,

non-sibling parent, sibling parent deviation from sibship mean, sibling parent sibship mean. Estimates and their associated 95% confidence intervals for the full sample

indicated by squares and whole lines. Estimates and associated 95% confidence intervals for the restricted sample are indicated by triangles and dashed lines.
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