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Abstract

Punctuality is a key performance indicator for railway traffic, and high punc-
tuality is vital if the railways are to be an attractive means of transport. In
any railway network, delays will occur, and in order to maintain high punctu-
ality, these delays must be dealt with in such a way that they are minimized
and have a minimal impact on the rest of the traffic in the network. This is
a complex task, as the train schedules are strongly intertwined, and capacity
in the network is limited. Today, this task is done by human dispatchers,
with some help from varying decision support systems.

I have formulated a mathematical model for trains running on a network of
stations and tracks, and present an algorithm for solving to optimality the
Railway Traffic Control of re-scheduling trains in real-time. The algorithm
can be implemented using either dynamically added cover cuts, or a compact
flow formulation for station capacity conflicts.

Testing the two approaches on three test cases with an increasing number
of trains and stations, we see that the cover cuts implementation has more
flexibility, better scaling properties, and is the best choice for real world
implementations.

This thesis describes a model and an algorithm that can solve the Single-
Track Railway Traffic Control problem to optimality in real-time.

Keywords: real-time traffic control, single-track, handling congestion, fail-
ures and downtime, mixed integer programming, optimal rescheduling, com-
pact vs non-compact formulation
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Chapter 1

Introduction

Despite the official aim for a doubling of the freight transport volume on
Norwegian railways by 2020, manifested by the Norwegian National Rail Ad-
ministration (Jernbaneverket) in 2007[12] and later adopted by the Norwe-
gian Parliament in 2009[23], the actual transport volume decreased by more
than 9 percent from 2008 to 2010, returning to the lowest level since 2005.
At the same time the growth in the passenger volume has stagnated, leaving
the passenger numbers at the same level in 2010 as in 2008[15, p. 27]. Both
logistics companies and commuters rely on the trains they use to be punc-
tual. Punctuality is defined as the percentage of trains reaching their final
destination on time or with a limited delay. The allowed delay varies. Jern-
baneverket uses six minutes as the limit for long distance and freight trains,
and four minutes for local, airport and intercity trains. Their statistics show
that from May 2010 through May 2011 the monthly average punctuality var-
ied between 83 and 91 percent for passenger trains, and between 50 and 80
percent for freight trains. The goal for passenger trains is 90 percent.[16, 17]

Delays occur for a number of reasons, including infrastructure or train fail-
ures, waiting for passengers, corresponding transports or even train person-
nel, or external events like land slides and avalanches. Some of these involve
temporary changes to the properties of the railway network, such as reduced
capacity at a station or speed reductions on certain tracks. In addition, a
delayed train often interferes with other trains causing further delays. In
cases where the traffic volume approaches the track capacity, even small de-
lays may spread quickly and cause congestion. On single-track lines, a single
delayed train affects other trains in both directions.

Norway has long stretches of single-track railway. Out of a total of 3950 km
of lines open for traffic, only 241 km have double tracks[15]. On a single track,
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12 CHAPTER 1. INTRODUCTION

trains have to meet (cross or catch up) at stations or other designated meet-
ing points. Detailed graphical timetables determine where different trains
are planned to meet. A four hour excerpt for the single-track railway be-
tween Eidsvoll and Dombås on the Dovre line in Norway is shown in Figure
1.1. The graphical timetables are time-distance diagrams with plotted lines
for all scheduled trains as well as information about the location of and dis-
tance between stations, crossing loops and other significant features of the
infrastructure. While this line uses between 86 and 100 percent of its capac-
ity during peak hours, several other lines in Norway have a peak usage of
more than 100 percent[14]. In this case, the capacity is the maximal number
of trains per hour on the line before congestion causes reduced speed and
therefore increased travel time.

Figure 1.1 also illustrates how strongly connected the train schedules are.
The pattern of where trains should meet is carefully planned each time any
changes are made to the official timetables. When any delays, signal fail-
ures, power outages or other changes occur, the traffic controllers have to
reconsider the planned schedule and perhaps assign pairs of trains to meet
at another station, possibly delaying a train on purpose in order to let other
trains reduce their delays. Delays may also be reduced by shortening the
stops at stations, and in some cases there is a slack in the scheduled running
time between stations, allowing trains to eliminate small delays. Ideally,
the decisions made by the traffic controllers should constitute an optimal
re-scheduling of the trains, minimizing (the cost of) the delays.

Traffic control of trains today is almost entirely done by human traffic con-
trollers, called dispatchers. Implementing and deploying optimization algo-
rithms that efficiently calculate optimal re-scheduling of trains should im-
prove the ability of the railway networks to handle congestion and recover
from unforeseen events, in practice increasing the capacity of the network.

A system for optimal real-time traffic control in metro stations was in opera-
tion on the Milan metro from 2007 to 2009. Test results showed that human
dispatchers in most cases were outperformed by the automated real-time
control system. Prior to deployment, the final tests at the main Sesto FS
metro station showed an increase in punctuality when compared to manual
control of more than 9 percentage points.[22] Several other implementations
are described in [4], but to my knowledge, the only live system solving to op-
timality is the Lötschberg Base Tunnel system (operated by the Swiss BLS),
developed by Systransis AG, which is a proprietary closed-source system.

This thesis aims to construct a suitable model and develop and implement
an algorithm that in real-time can find the (re)scheduling of trains that min-



imizes the deviations from the planned timetable, using a convex cost func-
tion. Here, real-time means within a matter of seconds, as opposed to off-line
optimization in timetable planning, where time is less restricted. The input is
the layout of the railway network in its current state, taking into account any
failures and outages, the planned timetable, the position of all trains and a
cost function for deviations from the timetable. The task is then to solve the
Railway Traffic Control problem, amounting to find a schedule for all trains
that avoids resource conflicts between trains and minimizes the cost of any
deviations from the planned schedule. A mixed integer linear programming
(MILP) formulation is used to solve the problem of rescheduling trains to op-
timality, exploring two different strategies for eliminating resource conflicts.
A compact flow-based representation of conflict-free solutions is derived and
is compared to a simpler strategy of dynamically added cover cuts.

I will start this thesis by giving a short introduction to railway networks in
Chapter 2 followed by followed by a presentation of the concept of graphs
and a mathematical model for trains running through a railway network of
stations and tracks in Chapter 3. Then Chapter 4 gives a short introduction
to the concepts of mathematical optimization used in this thesis. Chapter 5
presents the algorithm developed to solve the Railway Traffic Control prob-
lem, while the results of simulations using the algorithm are given in Chapter
6. Finally Chapter 7 discusses these results, draws the conclusions, and lists
tasks for future research.



14 CHAPTER 1. INTRODUCTION

12 13 14 15 16

12 13 14 15 16

343,04

337,33

330,82

321,83

315,83

307,73

302,99

297,24

291,50

286,35

280,42

276,57

271,33

266,60

259,26

252,45

246,60

242,55

237,74
237,14
235,35

232,19

224,15

219,32

214,35

208,08

203,21

200,09
198,26
196,57

191,68
190,59

187,75

184,18

180,20

174,71

168,47

162,91

155,95

152,48

148,23

144,39

141,35
139,90

136,25

133,19
129,79129,41

126,26

123,85
123,24

119,25

114,42

110,21

107,47

101,77

96,99

93,11

89,81

84,05

79,71

75,33

71,44 *

67,86

Km fra
Oslo S

DOMBÅS

Skeievoll Bp

DOVRE

BRENNHAUG

Rosten Bp

SEL

Myra Bp

OTTA

Sandbu Bp

SJOA

Kjørum Bp

KVAM

Brekka Bp

VINSTRA

FRON

HUNDORP

Frya Bp

RINGEBU

Randklev Bp
Ringebu Pukkverk s.sp
Kvitfjell

FÅVANG

LOSNA

Potterud Bp

TRETTEN

Nordli Bp

ØYER
Hafjell
Hunderfossen
Hunder Bp

FÅBERG
Fåberg Omformerstasjons 

HOVE

LILLEHAMMER

Dallerud Bp

BERGSENG

Martoddden s.sp

BRØTTUM

BERGSVIKA

MOELV

Ringsaker Bp

RUDSHØGDA
Veldre Bp

Thiis & Co A/S s.sp
BRUMUNDDAL

Langodden Bp

JESSNES
Furuberget Bp

HAMAR
Ideal Flatbrødfabr. s.sp
Akersvika Bp

OTTESTAD

STANGE

SØRLI
STEINSRUD

TANGEN

ESPA

Kleverud Bp

STRANDLYKKJA

MORSKOGEN

MOLYKKJA

MINNESUND

Vettalstøen Bp

EIDSVOLL

1: 300 DOM

Km
mellom
stasjon

Kryss
spor-lengde

5,71
2: 500
3: 478
4: 416
10: 956,51

SKE

8,99

2: 568 DOV

6,00

2: 565 BRH

RO

8,10

4,74

2: 740 SEL

5,75

MRA

5,74

2: 390
3: 360
4: 667 OTA

5,15

SDB

5,93

2: 620 SJO

3,85
KJØ

5,24

2: 519 KVA

4,73

BKK

7,34

2: 604 VIN

6,81

1: 640 FRN

1: 690 HUN

5,85

4,05
FRY

4,81

2: 550 RBU

5,55

RAN
RPS

8,04

2: 880 FÅV

2: 579 LOS

4,83

4,97

POT

6,27

2: 860 TRE

4,87
NOR

6,64

2: 572 ØYE

4,89

HER

3,93

2: 652 FÅB
FBS

3,57

1: 665 HVE

3,98

3: 310
2: 652 LHM

5,49

DRU

6,24

2: 673 BGG

2: 740 BUM

4,21

3,65

5,56

6,96

2: 810 BVK

3,47
2: 651 MLV

4,25
RKR

3,84
2: 700 RUD

4,49

VEL

TCS
2: 690 BRD

3,06
LDN

3,40
2: 689 JES

3,53

FUB
MRS

3,02

HMR

IFS

3,99
AVI

4,83

1: 703 OTT

2: 700 STG

2,74
3: 606

5,70

2: 694

4,78

1: 393

SRI

STE

TAN

3,88
1: 661

3,30

5,76

2: 486

2: 680

EPA

KLR

SLY

MOR

4,34

4,38

2: 377 MOL

3,89

2: 670 MSU

3,52
VET

3: 190
3/5: 700
4: 770
5: 310 EVL



 



7
10

43 40

41)

47

57
040

55)

2)
17)

24)

36
3937

52)

59)

22
25

36)

43)

1)

8)

4)

8)

15
16

23)
35)

16)

21)

26)

33)

40)

13)

25
26

32)

22

25)
20)

58)
47

11 16)

18) 36
50)

58)

28)

35)
43)

50)
25

36)

5)
54)

59)42
44

51)

55)

1
2

42)

47)

52)

9)

17)

24)

29)

34)

43)

50)

57)

2)

7) 5)

10)

15)

22)

30)
36)

44)

51)

56)

7)

59) 30)41) 44) 45) 40)3135)39 22)

54)14)

2)

11)

20)
20)

28)

35)

42)

51)

4)

7)

16)

23)

30)
46)

54)

4

32

35)7

12)

29)

11

36) 13)33

41)

49

19)

18)

26)

57
0

8)

15

23)

1

20
23)

32)

29

48

19)

25

30)

24)

30)

36

41)

52)

36)

42)

52)

13)

17)

22
25)

20)

25

30
32)

28)

32)
57)

3

43) 41)

38)

53)

56)38)

47)

55)

3)37)

31)

34)

43)

51)

59)
36)

46
51)

5)

15
21)

30)
13)

21)

29)

38)

37) 37)6)

47

42)

50 1451)

1)
42)

50

22)

50)

38

10)

17

32

28

33)

27)

33)

39

45)

52)

57)

28)
28)

44)2)

10

18)9
18)

28) 45

49)

57
57)

33

40)24)

30

33

39)

23)

27)

34

57)

55)

48)

53)

8)

1)

5

4
8)

9)

2
3

7

9 12

9)

2

2)

13
47

52)
26)

31)

13)

21
26)

35)

9)

147
14)

20)

53)51

18
33)16) 42

13

16)

20)

24)

27)

23)

27)

30)
47)

50

53)40)

45
50)

53)

0
358

7

13)

17

20)

59)

2)
9 25)

28)

33

19)

22)

26)

33
27

33

5)

9)

5)

9)
9)2)

5)

9)

54)

23

18)

24

3133

40

45)

53

45)

50)

32)

30
13)

19)16

36)
36)

41)
41)

48)

4)

8)
0)

5)

13)

56)

0)

22)

27

18

22)

12)

4)

9)

1
4)

5

9)

59)
32)

33

18
32)16)

24)

27)
24 27)

31)13)

45)

48)

16

21)18
21) 51)

35)

35)

42
51)

48

56)
0) 10)

13)

3)

7)

32)
24)

27)

28)

22

56 1)

7

6)

12

16

21)
24)17)

40)
11)

16
50

55)
10)

15)

33

51

56)
20)

25)
41)

46)

56)

47
50

56)

59)

1)
47)

50

55

3
51
4

10)

14
17)

41)

50
122

41)

46
50)

54)
51)

54

57)

22)

25)

29)

36
53

12)

18

18)

24)

44)

46 49)
49

55)

27)
25)

27)

30)

36
38

4
62

4

10)

14

17)

11
9

17)

22

32)
47)

50

53)

0

3)

7)

10)

14)

36)

40

45)

36)

41)38
41)

48)

52
7)

1456)

0)

4)

9)
36)

40)

44

49)
19)

24

28)

33
36)

19)

14
45)

48)

51)

56 16

38)

41)37)

40)

32)18)

22)

25)

56)

22
25)

29)

32)
41)

44)

47)

53

37)

40)

11)

15)

18)

23)

32)

36)

40

20
23)

28

33
36)

36 45)

41)

45)

51)

55)

1)

4)

7)

16

21)

24)

27)
45)

48)

51)

56
30 40)15 56 1541) 23)16)15) 30)56 15 56 15 5651) 46)46)

5734 36)

41

23
43

13
)

57
31

5704
41

64
5
49

)

5736 37)

5704

5716 32)

42

5702 27)

57
15

32
)

23
43

13
)

57
31

5704

41
64

5
49

)

5716 32)

23
43

13
)

5702 27)

5732 23)

42

57
15

32
)

57
31

5704

5702 27)

57
01

41
64

5
49

)

5716 32)

31
3

4) 5732 23)

5716 32)

57
31

57
01

48
11

17
)57

01

5702 27)

57
15

32
)

31
7

6)320

31
5

322 9)

324

42

5738 39)

57
31

5738 39)

41630 47)

573
1

5932

41630 47) 4804 16)

5932

318 7)

318 7) 5701

48
11

17
)

48
11

17
)

48
13

18
)

570
1

57
01

45

5702 27)

45

322 9)

319

5262 24)

48
31

21
)

57
15

32
)

41630 47)

31
5316

5932

48
11

17
)

483
1
21

)

48
13

18
)

57
01

41656 50) 41634 48)

4734 14)

48
13

18
)31
7

6) 320

42

5732 23)

5702 27)

5702 27)

32
1

8)

31
9

48
11

17
)

5738 39)

4804 16)

5932

5732 23)

41662 51)

RUTEORD. NR.BLAD NR. 10 GJELDER FRA OG MED:

160.2EIDSVOLL - DOMBÅS Søndag 12. juni 2011
1) 44, 47, 326, 329, 330 Søndager - fredager.
2) 303, 352 Mandager - fredager unntatt helligdager. Kjøres ikke i tiden 27. juni - 5. august 2011.
3) 304, 307 Alle dager. Kjøres ikke søndager i tiden 26. juni - 7. august 2011.
4) 306, 309, 310, 313 Mandager - lørdager unntatt helligdager. Kjøres ikke lørdager i tiden 2. juli - 6. 

august 2011.
5) 308 Dombås - Lillehammer Mandager - lørdager unntatt helligdager. Lillehammer - Eidsvoll Alle 

dager.
6) 314, 317 Mandager - lørdager unntatt helligdager. Kjøres ikke i tiden 27. juni - 6. august 2011.
7) 318 Mandager - lørdager unntatt helligdager.
8) 321 Alle dager. Kjøres ikke lørdager i tiden 2. juli - 6. august 2011.
9) 322, 325 Søndager - fredager. Kjøres ikke søndager i tiden 26. juni - 7. august 2011.
10) 333, 334 Søndager - fredager. Kjøres ikke i tiden 26. juni - 7. august 2011.
11) 405 Eidsvoll - Minnesund Søndager - fredager. Minnesund - Dombås Mandager - lørdager.
12) 406 Mandager - lørdager.
13) 2340, 2343 Mandager - fredager unntatt helligdager. Kjøres fra og med 29. august 2011.
14) 4731, 4734, 20361, 20362 Onsdager og torsdager unntatt helligdager.
15) 4801, 4802, 6210, 6212 Tirsdager.
16) 4804, 4807 Lørdager.
17) 4811 Mandager.
18) 4813, 4820 Onsdager og fredager.
19) 4817, 4822 Onsdager og torsdager.
20) 4824 Hove - Rudshøgda Mandager. Rudshøgda - Eidsvoll Tirsdager.

21) 4831, 4832 Onsdager. Kjøres bare etter særskilt ordre.
22) 5253 Eidsvoll - Bergsvika Mandager - fredager unntatt helligdager. Bergsvika - Dombås 

Tirsdager - lørdager unntatt dag etter helligdag.
23) 5254, 5708, 5730, 5732 Tirsdager - lørdager unntatt dag etter helligdag.
24) 5261, 5262, 20347, 20348 Mandager og tirsdager unntatt helligdager.
25) 5265 Torsdager unntatt dag før helligdag.
26) 5266 Fredager unntatt helligdager.
27) 5702 Tirsdager - fredager unntatt helligdager. Kjøres bare etter særskilt ordre.
28) 5706 Dombås - Fåvang Mandager - torsdager unntatt helligdager. Fåvang - Eidsvoll Tirsdager - 

fredager unntatt dag etter helligdag.
29) 5707 Eidsvoll - Dovre Mandager - torsdager unntatt helligdager. Dovre - Dombås Tirsdager - 

fredager unntatt dag etter helligdag.
30) 5709 Eidsvoll - Losna Mandager - fredager unntatt helligdager. Losna - Dombås Tirsdager - 

lørdager unntatt dag etter helligdag.
31) 5711 Eidsvoll - Brumunddal Mandager - torsdager unntatt helligdager. Brumunddal - Dombås 

Tirsdager - fredager unntatt dag etter helligdag. Kjøres bare etter særskilt ordre.
32) 5715, 5716 Helligdager.
33) 5718 Hverdag etter helligdag.
34) 5719 Eidsvoll - Losna Helligdag før hverdag. Losna - Dombås Hverdag etter helligdag.
35) 5733 Eidsvoll - Fåvang Mandager - fredager unntatt helligdager. Fåvang - Dombås Tirsdager - 

lørdager unntatt dag etter helligdag.

36) 5734 Onsdager, torsdager og fredager unntatt helligdager og dag etter helligdag. Kjøres bare 
etter særskilt ordre.

37) 5736 Lørdager unntatt dag etter helligdag. Kjøres bare etter særskilt ordre.
38) 5737, 41629 Lørdager unntatt helligdager.
39) 5738 Søndager unntatt dag etter helligdag.
40) 5931 Helligdag før hverdag.
41) 5933 Mandager - torsdager unntatt helligdager og dag før helligdag.
42) 5935 Eidsvoll - Steinsrud Mandager - torsdager unntatt helligdager og dag før helligdag. 

Steinsrud - Dombås Tirsdager - fredager unntatt helligdager og dag etter helligdag.
43) 5936 Dombås - Sjoa Mandager - fredager unntatt helligdager. Sjoa - Eidsvoll Tirsdager - lørdager 

unntatt dag etter helligdag.
44) 5939 Eidsvoll - Bergseng Helligdag før hverdag. Bergseng - Dombås Hverdag etter helligdag.
45) 10351 Tirsdager - fredager unntatt helligdager og dag etter helligdag. Kjøres ikke i tiden 28. juni - 

5. august 2011.
46) 10353 Hverdag etter helligdag. Kjøres ikke mandager i tiden 27. juni - 1. august 2011.
47) 41630 Otta - Hove lørdager unntatt helligdager, kjøres bare etter særskilt ordre. Hove - Eidsvoll 

lørdager unntatt helligdager.
48) 41633, 41634 Onsdager.
49) 41645 Fredager unntatt helligdager. Kjøres bare etter særskilt ordre.
50) 41655, 41656 Søndager.
51) 41661, 41662 Torsdager. Kjøres bare etter særskilt ordre.

Funkwerk IT TrainPlan 2.14.10.1 (Patch 10+)   Side 4 of 6 Utskrift: 01.04.2011 12:31

Figure 1.1: Graphical timetable (distance time graph) for the hours 12–16
on the single-track line between Eidsvoll and Dombås (275 km), from the
Norwegian National Rail Administration (Jernbaneverket)[13]. Note that the
vertical distance axis is not completely linear.



Chapter 2

A short introduction to railways

This chapter aims to present users with little or no prior knowledge of rail-
way structure, terminology and standards with a brief introduction to the
concepts used in this thesis.

2.1 Infrastructure

A signalling block is the segment of track between railway signals. When
using moving blocks, the position and length of a block is not fixed (see
Section 3.7 on page 28)

A crossing loop or passing loop is a meeting point on a single-track line that
enables trains to pass each other.

A movement authority is a permission given to a train driver, allowing the
train to use one or more signalling blocks.

The breaking curve for a moving train is the distance-velocity curve describing
the deceleration of a train after the driver starts braking. See Figure 2.1 for
an illustration. The braking curve for a given train changes with the speed
of the train and the inclination of the track.

The breaking point for a moving train is the point at which it must start to
slow down in order to stop before a certain point, e.g. to comply with the
given movement authority. The breaking point depends on the speed and
breaking curve of the train, as illustrated in Figure 2.1.

Headway is the distance in time between the front of two consecutive trains.

15
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Braking
point

End of
movement
authority

Distance

Speed

Figure 2.1: A braking curve. The slope evens out towards zero in order to
avoid an uncomfortable hard stop.

Automatic Train Protection (ATP) systems apply braking power automati-
cally if the driver fails to stop at a stop signal. Some systems also react in
case the speed of the train is higher than the speed limit for the track.

Automatic Train Control (ATC) includes the features of ATP, and makes
in-cab signalling to the driver possible, reducing the need for lineside signals.

Automatic train operation (ATO) allows for automatic piloting of the vehi-
cles, as well as automatic dispatching.

2.2 Fixed and moving blocks

In traditional fixed block systems the boundaries between signalling blocks are
fixed. These boundaries coincide with lineside signals. As each train occupies
an entire block, the block length puts a lower limit on. The headway can be
reduced by reducing block lengths or implementing moving blocks, where the
blocks are calculated in real-time based on train locations.

In a moving block system the blocks are not fixed, but are calculated based
on the exact location and speed of the trains on the track. A train is regularly
given a movement authority allowing it to move forward up to a given point.
The train itself calculates its braking curve, giving the braking distance and
braking point[9, p. 44]. Basically, the moving block contains the train itself,
its braking distance and security margins allowing for delays in computing
and communication. Theoretically, given that consecutive trains have the
same braking curve, the headway can be further reduced so that it only
includes the breaking response time, but this would not include sufficient
margins if the train in front crashes or derails.
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2.3 European Rail Traffic Management System
(ERTMS)

The European Rail Traffic Management System (ERTMS) is a project that
was set up to create a common signalling and communication standard for
railways throughout Europe. It consists of three parts[5, 11]:

GSM-R is a dedicated mobile radio communication standard building on
the GSM mobile phone standard. It allows for uninterrupted commu-
nication at high speeds.

The European Train Control System (ETCS) is a standard for signalling,
train protection and train control. It is based on a combination of on-
board computers and centralized control.

The European Traffic Management Layer (ETML) is a management
level intended to optimize train movements by implementing real-time
re-routing and re-scheduling of trains.

ETCS specifies a four-layered standard for train control[10]:

Level 0 describes ETCS-equipped trains running on non-ETCS tracks.

Level 1 is a system connected to the existing signalling system. Balises
along the track record information about train position, speed and
integrity, and communicates movement authorities to the train as it
passes.

Level 2 removes the dependency on lineside signals. Instead signals are
transmitted to the trains through GSM-R. This allows trains to receive
new movement authorities at any time, not only when passing a balise.
Lineside track relays are still used to record the position of the trains.

Level 3 is still in a development phase. The trains themselves determine
their exact position and relay it to the control central. This level also
allows for moving blocks.

ETCS is adopted as a standard by the European Union[6], and is already in
use on several lines, with further plans of implementing it on almost 10 000
km of lines by 2015 and around 40 000 km by 2020[7].
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2.4 Measuring quality of service

Regularity is measured as the percentage of trains that run as planned (with
or without delay) without being partially or fully cancelled[17].

Punctuality is measured as the percentage of trains reaching their final des-
tination on time or with a delay of less than six minutes. For local, airport
and intercity trains the delay must be less than four minutes[17].

The uptime is given by subtracting the number of delay hours caused by
issues with the infrastructure from the total number of planned train hours
for passenger and freight trains. This is then given as a percentage of the
total number of planned train hours for passenger and freight trains[17].



Chapter 3

Model

This chapter details the model used to represent the railway network and
trains, and the assumptions I make about the structure of this network and
the planned schedules of these trains.

3.1 Notation and graphs

Bold letters (e.g. x) will be used for vectors and vector valued functions, and
capital letters (e.g. A) for matrices.

For n-vectors x and y the notation x ≤ y will be used to mean that xi ≤ yi
for all i = 1, . . . , n. Likewise x ≥ 0 implies that all elements in x are
non-negative.

An undirected graph (Figure 3.1a) is a pair G = (V,E) where V is a set of
|V | vertices or nodes and E ⊂ {{u, v} : u, v ∈ V } is a set of |E| unordered
node pairs called edges. A pair of nodes in the graph are called connected if
there is a continuous path between the nodes along the edges in the graph.
The graph is called connected if all pairs of nodes in the graph are connected.

A directed graph (Figure 3.1b) is a pair G = (V,A) where V is a set of |V |
vertices or nodes and A ⊂ {(u, v) : u, v ∈ V } is a set of |A| ordered node
pairs called arcs. (u, v) is the arc from u to v. An s-t path in a directed
graph is a continuous path that starts at the node s and ends at the node t
obeying the directions of the arcs.

19
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Figure 3.1: (a) An undirected graph. (b) A directed graph.

3.2 Modelling railway networks

A railway network may be modelled as a connected graph where the nodes are
different types of railway resources, like platforms, switch-points, junctions
and track segments. For safety reasons the network is normally divided
into signalling blocks, such that no two trains can occupy the same block
at the same time. Furthermore, trains running in the same direction may
be restricted to having at least a certain number of empty signalling blocks
between them.

This model uses two types of resources: stations and blocks. The stations may
have one or more platforms, and are connected by blocks. As I am modelling
single-track lines, each pair of two adjacent stations are connected by exactly
one track. For simplicity, I do not divide the track between stations into
more than one block, but the extension to multiple blocks between stations
is straightforward (see Section 3.6 on page 27).

3.3 A model for station-track networks

Let R = S ∪B be the set of railway resources, where S is the set of stations
and B is the set of blocks. While only one train can occupy a block resource,
each station s ∈ S can accommodate up to ds trains, where ds is the station
capacity. I will assume that the station layout is such that the order in which
the trains may leave the station is independent of the order in which they
entered.

Let T be the set of trains, and let l(i) for any train i ∈ T be the number
of railway resources used by i. The route of i may be represented by a path
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P i = {vi1, (vi1, vi2), . . . , (vil(i)−1, v
i
l(i)), v

i
l(i)} where node vik ∈ R for 1 ≤ k ≤ l(i)

represents i using the k-th railway resource on its path. Since a train may
already be anywhere on the line, the sequence may very well start from a
block or from a specific point on the block.

Let V i denote the set of nodes of P i. For any i ∈ T and v ∈ V i, let
rr(v) ∈ R denote the corresponding railway resource, and tr(v) ∈ T the
train. Furthermore, for u ∈ V i and v ∈ V j let u ≈ v denote that u and
v correspond to the same railway resource (i.e., rr(u) = rr(v)). Note that
V i∩V j = ∅ for i 6= j, as the nodes in V i and V j for i 6= j represent locations
of two different trains. In order to compare paths, define V i|V j for i and j
in T to be the nodes of P i that correspond to railway resources also used by
j. Formally V i|V j = {v ∈ V i : ∃u ∈ V j(u ≈ v)}.

The arcs Ai of P i represent precedence constraints, i.e., the fact that the
resource corresponding to node vik is visited by the train before the resource
corresponding to node vik+1. With each arc (u, v) = (vik, v

i
k+1) ∈ Ai associate

the weight Wuv = W i
k,k+1 ≥ 0 representing the minimum time in seconds

necessary for train i to move from the k-th resource to the next. Thus, if vik
represents i stopping at a station, then W i

k,k+1 is the time the train should
spend in the station before departing. If vik corresponds to a block, then
W i
k,k+1 is the time needed to reach the next station (or block, if there are

multiple blocks between stations).

3.3.1 The routes graph

The core of the model is the routes graph, as defined in this section, and
shown in Figure 3.2. The routes graph GT = (V,A) is constructed by letting
A = {(r, vi1), i ∈ T} ∪ {(u, v) ∈ Ai : i ∈ T} and V = {r} ∪ {v ∈ V i : i ∈ T},
that is V contains all nodes associated with the train routes plus an additional
root node r and an end node o. So the new node r is a source, connected to
the first node of each train route P i, and o is a sink, connected to the end of
each route.

For each i ∈ T , associate with the arc (r, vi1)} the weight Wri, which repre-
sents the number of seconds (from now) until the train is expected to start
its route. If the train is already occupying a resource Wri = 0, as shown in
Figure 3.2a. Similarly, the weightWoi on (vil(i)) represents the number of sec-
onds from the train reaches its final node until it is removed from the model.
This happens whenever the train leaves the physical network represented in
the model (e.g. crosses over into a network not governed by the model, or is
stowed away on a sidetrack).
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Figure 3.2: Example of routes graphs for five stations and two trains. Nodes
corresponding to stations are rectangular, while nodes corresponding to blocks
are oval. Nodes corresponding to the same railway resources are placed side
by side. (a) shows two trains running in the same direction. This graph also
displays weights on the arcs showing the minimum amount of time required
to move from one resource to the next. (b) shows two trains running in
opposite directions. Here, the source r and sink o have been duplicated in
order to allow showing corresponding nodes side by side.
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Finally, for each node v = vik in V −{r} let us denote by tv = tik the minimum
time in which train i can reach the k-th resource on its path. Also, let tr = 0.
Observe that by definition each arc (u, v) ∈ A with weight Wuv represents
the time constraint tv ≥ tu + Wuv. For all v ∈ V , the quantity tv can thus
be computed by a longest-path tree computation on GT with weights W and
root r. The vector t ∈ RV

+ is called a schedule or an actual timetable. Indeed,
if v = vik is a station, then tv represents the minimum arrival time for train
i at the station. Similarly, if v = vik is a block b, then tv represents the
minimum time for train i to enter the block or, equivalently, the departing
time from the station which precedes block b on P i. This interpretation must
be slightly modified when train i is already in the line and v = vi1, that is the
node is the first on P i. In this case, we always have ti1 = 0 (since tr = 0 and
Wri = 0), and ti2 represents the time needed for i to complete the remainder
of the block.

3.4 Assumptions

In order to avoid unnecessary complexity, I make the following two assump-
tions. They can both be dropped, at the cost of adding new variables to the
model.

1. For any two given resources, all trains using both resources follow the
same path between them, possibly in reverse order. I.e., for any two
trains i and j in T , the nodes V i|V j form a continuous subpath in P i.

2. If a train i ∈ T overtakes another train j ∈ T , then j cannot overtake
i at another station. Note that any overtakings that have already
happened are invisible to the model, so i overtaking j in the past does
not exclude j overtaking i, e.g. in case of trouble with train i.

3. A following train does not catch up to the train in front at any station
unless it overtakes it at that station.

3.5 Preventing conflicts

The schedule t approximates the behaviour of the trains along the line. How-
ever, we need to take into account other precedence constraints in order to
correctly predict the actual train timetable. It is reasonable to assume that
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the official timetable does not include resource conflicts between trains, but
due to train delays or line dysfunctions, such conflicts may arise. There are
two types of conflicts:

1. Block conflict : Two trains are predicted simultaneously on the same
block.

2. Station conflict : The number of trains predicted to simultaneously be
accommodated in a given station exceeds the station capacity.

Dispatchers solve such conflicts by forcing the pair of conflicting trains to
meet in a specified station, which in turn may not accord with the official
timetable. So, for some pair of trains i and j we may force them to meet
in a given station s of the railway. I show now how to model the effect of
such a decision on the schedule t by adding a suitable set of arcs Aijs to
GT . Including these in the model prevents any block conflicts, regardless of
where the dispatcher decides the trains should meet. The station conflicts
however, depend on the assignment of meeting points, and is therefore left to
the algorithm. Two strategies for eliminating station conflicts are presented
in Section 5.3 on page 37.

In the following, let us distinguish between two cases: i and j travel in
opposite directions or they travel in the same direction.

3.5.1 Case 1: Trains moving in opposite directions

Train i and train j, travelling in opposite directions, meet in station s.
Clearly, s belongs to both P i and P j. So, let vik and vjm be the nodes corre-
sponding to station s on P i and P j, respectively. Since i and j meet in s,
then j leaves s after i has arrived in s, that is tj,m+1 ≥ tik. Similarly, i leaves
s after j enters s, that is ti,k+1 ≥ tjm. This is represented by adding the arcs
Aijs = {(vik, v

j
m+1), (vjm, v

i
k+1)} with weight 0 to the graph GT . This case is

illustrated in 3.3b, where Aijs is shown with bold arcs. Observe that these
arcs ensure that i and j will not conflict on a block in the resulting schedule,
since trains i and j enter the station from opposite directions (and thus they
cannot conflict before they enter) and they exit in opposite directions (and
they cannot conflict again after they have met).

As Aijs depends on the station s, different arcs will be included for different
choices of s. Figure 3.4b shows the arcs for all possible choices of s.
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Figure 3.3: Expanding the routes graphs in Figure 3.2 with precedence con-
straints for meeting trains. The bold arcs represent precedence constraints
preventing track conflicts. (a) shows two trains running in the same direc-
tion. Train 1 is overtaken by Train 2 at station s. The weight on the bold
arcs is zero. (b) shows two trains running in opposite directions, meeting at
station s. The source r and sink o have been duplicated in order to allow
showing corresponding nodes side by side.
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Figure 3.4: Depending on the choice of station where the trains should meet,
different arcs must be included. (a) shows two trains running in the same
direction. Exactly one arc from each of the dashed or dotted pairs must be
included in the graph to prevent a track conflict. The weight on the disjunctive
arcs is zero. (b) shows two trains running in opposite directions. Either one
of the pairs of dashed or dotted arcs or one of the single dashed arcs at the
ends must be included to prevent a track conflict. The source r and sink o
have been duplicated in order to allow showing corresponding nodes side by
side.
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3.5.2 Case 2: Trains moving in the same directions

Train i and train j, travelling in the same direction, meet in station s. This
may be necessary if, for example, a train should catch up and overtake an-
other train. This case is a bit more complicated because, for safety reasons,
two trains can never be on the same block, even if running in the same di-
rection. So, again let vik and vjm be the nodes corresponding to station s on
P i and P j, respectively. Let us assume that i precedes j before reaching
station s, and follows j afterwards. This means that, for every station s′

preceding or coinciding with s on P i, train i must arrive in s′ before train j
has entered the block which immediately precedes s′ on both routes (if such
block belongs to P j). So, if we start considering station s, and assuming that
vjm−1 ∈ P j, then (vik, v

j
m−1) ∈ Aijs . If we now consider the station immediately

preceding s on the route P i, this corresponds to node vik−2. Similarly if the
block entering such station belongs to the route of j then vjm−3 ∈ P j, and the
arc (vik−2, v

j
m−3) ∈ Aijs . Similarly, if vik−4, v

j
m−5 ∈ V , then (vik−4, v

j
m−5) ∈ Aijs ,

and so forth.

The roles of i and j are interchanged after station s, and for every station
s′ following s on P j, train j must arrive in s′ before train i has entered the
block which immediately precedes s′ on both routes (if such block belongs
to P i). So, as long as the corresponding nodes are in V , we have that arcs
(vjm+2, v

i
k+1), (vjm+4, v

i
k+3), . . . belong to Aijs .

The arcs in Aijs are shown as bold arcs in Figure 3.3a. It is not difficult to
see that the inclusion of these arcs will prevent any block conflict for trains
i and j in the resulting schedule t.

Just as for the opposing trains, all the arcs depending on the choice of s has
been included in Figure 3.4a. In each of the four pairs of arcs, exactly one
arc must be included.

3.6 Handling track sections

As previously noted, the tracks between stations, as well as the tracks of
the stations themselves are often partitioned into several fixed blocks. The
extension of the model is straightforward.

As before, a node is associated with each block and each station, but we may
now have more than q−1 blocks in B, and block i does no longer necessarily
lie between stations i and i+ 1.
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Since trains travelling in opposite directions are still restricted to meet at
stations, Case 1 above is unchanged.

Similarly, a train overtaking another train must still do so at a station, but as
there may now be several blocks between stations Case 2 is a little different.
Using the same assumptions as above, we see that for every node vik−n, n ∈ N0

preceding s on P i where vik−n−1 does not correspond to a station, train i must
enter this node before train j can enter vjm−n−1 (if such block belongs to P j),
adding the arcs

{(vik−n, v
j
m−n−1) : n ∈ N0, v

i
k−n ∈ P i, vjm−n−1 ∈ P j \ S}

Like above, the roles are interchanged after station s, and we must also add
the arcs

{(vjm+n+1, v
i
k+n) : n ∈ N, vik+n ∈ P i \ S, vjm+n+1 ∈ P j}.

Security constraints requiring additional empty blocks between trains are
easily accommodated replacing the constant 1’s in the above sets of arcs
by any number of blocks, while also adjusting the expressions to avoid arcs
“crossing” stations.

3.7 Moving blocks

The model used here has no apparent extension to moving blocks. Instead
this must be approximated by partitioning the track into short fixed blocks.
Koning compares the performance of ETCS Level 2 and Level 3 in [20], and
simulates approximately 10 percent smaller headways on free tracks for Level
3 with moving blocks than with Level 2, even for relatively short blocks (600
m). Consequently, even shorter blocks have to be used in order to get closer
to the optimal solution, at the cost of a larger model.

Except for in-station movements, the comparisons in [20] consequently shows
smaller headway using moving blocks, suggesting that an approximation us-
ing the model described here will be feasible for railways using moving blocks,
although not optimal.



Chapter 4

Solving optimization problems

This chapter presents a brief introduction to the concepts of mathematical
optimization used in this thesis. The reader should be familiar with linear
and integer programming and basic graph theory, or study the references
presented in the sections below.

4.1 Concepts from graph theory

Graphs have already been used in Section 3.3 to describe the paths of the
trains, and the precedence constraints in the model. This section presents
some concepts from graph theory that will be used throughout Chapter 5.

4.1.1 Cliques

A clique in G = (V,E) is a completely connected set of nodes C ⊂ V , i.e.,
{u, v} ∈ E for all u, v ∈ C. The original definition by Luce and Perry requires
a clique not to be a subset of any other clique (and to have at least three
nodes)[21], and this definition is still used by some authors. I will instead
use the term maximal clique to describe a clique that cannot be extended to
a larger clique by adding an adjacent node.

A clique is a maximum clique if there are no other cliques in the graph with a
higher number of nodes. The maximum cliques in Figure 4.1 are {A,B,C},
{A,C,D}, {C,D,E} and {C,D, F}. The clique {F,G} is maximal but not
a maximum clique.

29
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Figure 4.1: An interval graph. The maximal cliques are {A,B,C},
{A,C,D}, {C,D,E}, {C,D, F} and {F,G}

4.1.2 Interval graphs

An interval graph is a graph representation of intervals on the real line. Each
node represents an interval, and nodes are connected by an edge if and only if
their intervals overlap. Figure 4.1 shows an interval graph and the underlying
intervals. Note that while the interval graph is uniquely determined by a set
of intervals, this does not hold the other way. The graph simply contains
information on which intervals that overlap.

Finding cliques in graphs is generally hard. Deciding whether a graph con-
tains a clique larger than a given size is NP-complete [18, pp. 94, 97]. However,
the task here is to find cliques in an interval graph, as can be seen in Figure
4.1. Finding the maximal cliques, or determining if a k-clique exists in an
interval graph can be done in O(n log n) time[27]. All one needs to do is to
iterate over the intervals, each representing a train, and add the start and
end times to a sorted list. Then, using a counter which is initially zero, one
starts at the first start time, increasing the counter for every interval that
starts and decreasing it for every interval that ends. At any point the value
of the counter equals the number of trains in the station.

4.1.3 Flows

The definitions given here correspond to the ones used in [26], where you can
also find an extensive treatment of graph theory as used in combinatorial
optimization, including flows and circulations.
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Figure 4.2: Augmenting a flow. (a) An initial flow. The numbers in paran-
theses are the upper and lower bounds. (b) The residual graph. An aug-
menting path is emphasized. (c) The new flow. In this case the new flow is
maximal.

Given a directed graph D = (V,A) and two nodes s, t ∈ V , an s-t flow is a
function x : A→ R, such that

i) x(a) ≥ 0 for each a ∈ A and

ii)
∑

a∈δ−(v)

x(a) =
∑

a∈δ+(v)

x(a) for each v ∈ V \ {s, t}

where δ−(v) and δ+(v) are the sets of arcs leaving and entering v, respectively.
In other words, a flow associates a non-negative number with every arc, so
that for each node, except a source s and a sink t, the in-flow is equal to the
out-flow. Given lower bound l and upper bound f on the arcs, i) is replaced
by l(a) ≤ x(a) ≤ f(a). A circulation is a flow with no sink or source, i.e.,
where the in-flow is equal to the out-flow in every node. The value of the
flow is

∑
a∈δ−(s) x(a).

Given a graph D = (V,A), with lower bound l and upper bound f and an
s-t flow function x, as shown in Figure 4.2a, the residual graph is the graph
Dx = (V,Ax) in Figure 4.2b where

Ax = {a | a ∈ A, x(a) < f(a)} ∪ {a−1 | a ∈ A, x(a) > l(a)}

and a−1 = (v, u) for a = (u, v). That is, for every arc in A where the flow can
be increased Ax contains an equal arc, and for every arc in A where the flow
can be decreased Ax contains an opposite arc. An augmenting path is an s-t
path in Dx. Such a path is emphasized in Figure 4.2b. By adding units of
flow along an augmenting path, when such a path exists, we get a new s-t
flow with a greater value, shown in Figure 4.2c.
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4.2 Linear programming

A linear programming problem or linear program is any problem where we
seek to maximize or minimize the value of a linear objective or cost function
f =

∑
i cixi, subject to linear constraints. It can be written on standard form

using matrix notation as

maximize cTx

subject to Ax ≤ b

x ≥ 0

where x is a vector of n unknowns, and the m× n constraint matrix A and
m-vector b gives the constraint inequalities’ left hand coefficients and right
hand constants respectively. A thorough treatment of linear programming is
given by Vanderbei in [28].

4.2.1 Integer and mixed integer linear programming

An integer linear programming (ILP) problem is a linear program with integer
unknowns. A mixed integer linear programming (MILP) problem has both
continuous and integral unknowns. The general ILP or MILP problem is NP-
hard [24, pp. 125–126], meaning that no general polynomial-time solution is
likely to exist. For certain classes of integer problems though, polynomial-
time solutions exist[25].

4.2.2 Piecewise linear programs

Using a piecewise linear objective function gives a more flexible model, and
can be used to approximate functions of higher order. Generally, linearly
constrained problems having a separable piecewice linear objective function
can be converted into a MILP problem, and when we are minimizing (max-
imizing) over convex (concave) piecewise linear functions, as the functions
seen in Figure 4.3, the resulting problem is an LP problem[2, pp. 160–161].

This thesis minimizes over monotonically increasing piecewise linear cost
functions. The linearization of this kind of objective functions is particularly
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Figure 4.3: Examples of convex piecewise linear function

straightforward. Generally, for n unknowns, we have the problem

minimize
n∑
i=1

ci(xi)

subject to Ax ≤ b

x ≥ 0

where ci for all i = 1, . . . , n is a monotonically increasing piecewise linear
function, such as the one seen in Figure 4.3c. This can be linearized using
one of several methods detailed in [8].
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4.3 Solution strategies

For linear problems with continuous unknowns a common solution methods
is the simplex method, discovered by Dantzig in 1947. It is described in
detail in [3]. The simplex method is capable of efficiently solving most linear
problems, although exponential time examples for Dantzig‘s algorithm have
been constructed[19].

4.4 Separation oracles

A separation oracle for an optimization problem min{f(x) : x ∈ P}, where
P is the polyhedron {x ∈ Rn : Ax ≤ b} is an algorithm that takes as input
an n-vector x̄ and either determines that x̄ ∈ P or returns an inequality
aTx ≤ b that is valid for all solutions in P , but violated by x̄.[1]

4.5 The cutting plane method

A cutting plane method combines a separation oracle and a linear program
solver. The dynamic simplex method combines a separation oracle and the
simplex method to solve optimization problems that have an impractically
large number of constraints. Even when it is possible to list or compute all
the constraints, there are a lot of cases where computing and including all
the constraints may be too time and memory consuming, or there may be a
large number of constraints that slow down the optimization.

First, one relaxes the original problem, e.g. by dropping the integrality con-
straints, so that one has an LP problem solvable by the simplex method.
Then the simplex method is applied in order to find an optimal solution for
the relaxed problem. As long as the solution violates any of the constraints
in the original problem, one or more of the violated constraints are added
to the relaxed problem, and the simplex method is reapplied. An optimal
solution of the relaxed problem is a lower bound for the original problem, so
when an optimal solution of the relaxed problem also lies in the the original
solution space, it must be an optimal solution also for the original problem.
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Algorithm

This chapter describes the formulations and algorithms used to solve the
Single-track Traffic Control Problem to optimality.

5.1 Evaluating the actual timetable

The quality of the actual timetable depends on its conformity to the official
timetable. For each train i ∈ T and each station s represented in P i, let v
let OAv = OAis and ODu = ODi

s be the official arrival and departure time,
respectively. Observe that if s corresponds to node vik ∈ P i, then the actual
arrival time in s is tv = ti,k, whereas the actual departure time is ti,k+1.
Deviating from the official timetable is costly, so we are given a convex cost
function cv for each v ∈ V , and the total cost is given by

c(t) =
∑
v∈V

cv(tv) =
∑

v∈V i∀i∈T

cvtv =
∑

vik∈P i∀i∈T

.

In this thesis, only delayed arrivals will be assigned a cost. Departing early
will be disallowed, and departing late has zero cost in itself, though it may
lead to a costly delayed arrival at the next stop. The cost function can then
be expressed as

c(t) =
∑

v∈V :rr(v)∈S

cv(tv −OAtr(v)
rr(v)).

In my simulations I have used the same cost function for all nodes, namely
the piecewise linear function shown in Figure 5.1, with breaking points at 0,
3, 5 and 10 minutes.

35
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Figure 5.1: The function used for the cost of arriving late. The time is
given in seconds. The cost per second of a delay is given by the slopes of the
function and is 1 up to three minutes, then 2 up to 5 minutes, 3 up to 10
minutes and then 5. Arriving early is costless.

5.2 A MILP formulation for STC

The algorithm needs to identify and resolve possible conflicts. In the following
the set of possibly conflicting pairs of trains will be denoted by K = {{i, j} :
i ∈ T, j ∈ T, i and j conflicting}. How to determine this set will be detailed
in Section 5.4 on page 42. To simplify the notation let ij = {i, j}. For every
pair of possibly conflicting trains ij ∈ K, let S(ij) be the set of stations
where i and j can actually meet. For every ij ∈ K, s ∈ S(ij), let yijs = 1
if i and j meet in s, and 0 otherwise. Denote by G(y) the graph obtained
from GT by including the arcs of Aijs when yijs = 1, for all ij ∈ K, s ∈ S.
Let t(y) be the schedule computed on G(y). Then the Single-track Traffic
Control problem (STC) amounts to finding a binary vector y such that t(y)
is conflict free and c(t(y)) is minimized.

The following is an integer programming formulation for the STC problem:

min
∑

v∈V cv(tv)

s.t.
(i) tv − tu ≥ Wuv, (u, v) ∈ A

(ii) tv − tu ≥M(yijs − 1), ij ∈ K, s ∈ S(ij), (u, v) ∈ Aijs
(iii) t conflict free, t ∈ RV , yijs ∈ {0, 1}, ij ∈ K, s ∈ S(ij)

(5.1)
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where M is a large suitable constant.

Next, I show how to represent constraint (iii) by introducing suitable vari-
ables and linear inequalities. Note that we only need to ensure that t(y)
does not imply station conflicts, since block conflicts are prevented by the
additional arcs (constraints (ii)).

5.3 Strategies for eliminating station conflicts

5.3.1 Strategy 1: Cover cuts

The actual timetable can be regarded as a set of interval graphs, one for each
station. Using the schedule t, the intervals for each train begins when the
train enters the station, and ends when it leaves. For any two trains i and j
in T , their intervals in station s ∈ S overlap if and only if yijs = 1. Finding
station conflicts in a given station s amounts to finding a set of trains C ∈ T
with cardinality |C| > ds such that yijs = 1 for all i, j ∈ C, i 6= j, i.e., a clique
in the graph G = (T, Ys) where Ys = {(i, j) : yijs = 1 ∀ i, j ∈ T, i 6= j} for
any s ∈ S.

As mentioned in Section 4.1.2 on page 30, deciding whether such a clique
exists, can be done in O(n log n) time, by ordering the intervals as shown
in Figure 5.2 and iterating over them from first to last. This way we can
generate all the maximal cliques at the same time. However, we are only
interested in the cliques with exactly ds + 1 trains, as ruling them out would
also rule out larger cliques at the same time. This is implemented here by
iterating over the intervals while keeping a list of the latest arrivals, removing
a train from the list either when it departs, or when the list has exactly ds+1
trains and it is the train in the list that departs first. This does not generate
all
(
n
ds

)
sub-cliques of a maximal n-clique, but it generates a set of cliques

covering the maximal clique, and does so in O(n log n) time. For all the
violating cliques generated, the cover cut

∑
i,j∈C y

ij
s ≤

|C|(|C|−1)
2

is added to
the formulation.

5.3.2 Strategy 2: A compact, flow based representation
of station conflict-free solutions

Let us first fix a meet assignment ȳ. For any train j ∈ T , let Su(j, s, ȳ) be the
set of successors of j in station s, that is the set of trains i ∈ T which enter
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Figure 5.2: Train stop intervals at a station, and the corresponding interval
graph. The cliques with size greater than one are {2, 3}, {2, 3, 4} and {3, 4}.
If the station capacity is less than three, constraints must be added in order
to avoid a station conflict.

s after j leaves the station. Note that since the meet assignment is given,
Su(j, s, ȳ) is known for all j ∈ T and s ∈ S (if s is visited by j). Now, think
of station platforms as unit resources that can be supplied to trains. Then
a train i receives the platform either “directly” from the station s, or from
a train j such that i ∈ Su(j, s, ȳ), which received the platform at an earlier
stage. Then the assignment ȳ is station conflict-free if every train receives
the required platform, as I will show more formally below. This feasibility
problem can be represented as a network flow problem, where nodes are
associated to the station s and to the trains. Station s is a supply node
(it supplies up to ds units of resource) and every train j can act both as a
demand node and as a supply node, since it can supply 1 unit of resource to
successive trains.
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……………
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Figure 5.3: The support network. The possible arcs for EW are dashed.
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Now, concentrate on a given station s. To simplify the notation, assume
that every train in T will go through s. Since both s and ȳ are fixed, let
Su(j, s, ȳ) = Su(j). Also, assume that trains are ordered by their arrival
times in station s. So, j ∈ Su(i) implies j > i.

Let us introduce the support graph N(s, ȳ) = ({r, p} ∪ U ∪W,E) shown in
Figure 5.3, where U = {u1, . . . , u|T |}, W = {w1, . . . , w|T |}. Let the arc set be
defined by

E = Er ∪ EU ∪ EW ∪ Ep ∪ {(p, r)}
Er = {(r, u) : u ∈ U}
EU = {(uj, wj) : j ∈ T}
EW = {(wi, uj) : j ∈ Su(i)}
Ep = {(w, p) : w ∈ W}

With each arc e ∈ E associate lower bound le and upper bound fe. Namely,
le = 0 and fe = 1 for e ∈ Er ∪ EW ∪ Ep. Then le = fe = 1 for e ∈ EU and
finally lpr = 0, fpr = ds.

Theorem The assignment ȳ is station conflict-free if and only if, for every
s ∈ S, the graph N(s, ȳ) has a circulation satisfying all lower and upper
bounds.

Proof Given a station conflict-free assignment ȳ, I will show that a circula-
tion on N(s, ȳ) exists. For a given station s, consider the graph N ′ obtained
from N(s, ȳ) by removing the arc (p, r), and let z be an r-p flow on N ′. Such
a flow exists regardless of ȳ, as we can let

ze =

{
1 if e ∈ Er ∪ EU ∪ Ep
0 if e ∈ EW

Now, let ze be a minimum r-p flow satisfying the upper and lower bounds.
Then, until there are no pairs of trains j, k ∈ Su(i), j < k where i ∈ T and
z(wi,uk) = z(r,uj) = 1 we add one unit of flow along the cycle

r, (r, uk), uk, (uk, wi), wi, (wi, uj), uj, (uj, r), r

in the residual graph. As this does not change the value of the flow, it is still
a minimum r-p flow.

We now have that for every train j ∈ T such that z(r,uj) = 1 either
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1. j /∈ Su(i) for all i ∈ T, i < j,

2. z(wi,uk) = 0 for all i, k ∈ T such that j, k ∈ Su(i) and k > j.

This in turn implies that for a train j ∈ T such that z(r,uj) = 1, there are
already

∑
i∈T,i<j z(r,ui) trains in the station when j enters it. Finally, as ȳ is a

station conflict-gree assignment,
∑

i∈T,i<j z(r,ui) < ds where j is the last train
such that z(r,uj) = 1, which in turn proves that

∑
e∈Er

ze ≤ ds. By applying
this flow to the original graph N(s, ȳ) and adding

∑
e∈Er

ze units of flow on
the edge (p, r), we obtain a circulation satisfying all lower and upper bounds.
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Figure 5.4: The cut in the necessity proof.

Now it remains to show that if there does not exist a platform assignment
for some station s, then N(s, ȳ) does not admit a circulation. Hoffman’s
circulation theorem[26, p. 171] states that N does not have a circulation if
and only if there exists a set of nodes H such that

∑
e∈δ−(H) le >

∑
e∈δ+(H) fe.

So, assume that a platform assignment does not exist, then there exist ds+ 1
trains, say Q = {k, k+1, . . . , k+ds} ⊆ T , which are simultaneously in station
s. We construct a cut by letting

H = {p} ∪ {wj : j ∈ {k, . . . , |T |}} ∪ {uj : j ∈ {k + ds + 1, . . . , |T |}}.

We then have
∑

e∈δ−(H) le = |Q| = ds + 1 since the only arcs with positive
lower bound (the arcs in EU) entering H are precisely the arcs (uk, wk), . . . ,
(uk+ds , wk+ds). All other arcs in EU are either completely contained in H, for
j > k + ds, or in the complement H of H, for j < k.

On the other hand, it is easy to see that the only arc going out from H is
δ+(H) = {(p, r)}, which implies

∑
e∈δ+(H) fe = ds < cs + 1 =

∑
e∈δ−(H) le. In

fact:



5.3. STRATEGIES FOR ELIMINATING STATION CONFLICTS 41

1. Er ∩ δ+(H) = ∅. Indeed, all arcs in Er are outgoing from r and r ∈ H.

2. EU ∩ δ+(H) = ∅. Indeed, uj ∈ H for j = k+ ds, . . . , |T |. But then also
wj ∈ H for j = k + ds, . . . , |T |.

3. EW ∩ δ+(H) = ∅. We must show that (wi, uj) /∈ EW for i ≥ k and
j ≤ k + ds. That is, we show that for j ∈ {1, . . . , k, . . . , k + ds} and
i ≥ k, then j /∈ Su(i). This is trivial for i > k + ds since j /∈ Su(i)
for all i > j. Also, by assumption, the trains in Q = {k, . . . , k + ds}
are simultaneously in the station, which implies that j /∈ Su(i) for all
j, i ∈ Q.

4. Ep ∩ δ+(H) = ∅. Trivial, since p ∈ H and all arcs in Ep are incoming
in p.

This concludes the proof.

The above result can be used to model the station capacity constraint into the
MILP program. To this end, introduce a binary variable xijs for all stations
s ∈ S and all pairs of trains i ∈ T, j ∈ T , with the interpretation that xijs = 1
if and only if j ∈ Su(i, s, y). Observe that, if i and j are not conflicting trains,
then the value of xijs can be easily derived from the official timetable or from
the current status of the trains. Otherwise, x is a function of y and it can
be easily expressed by linear constraints.

Then we need to represent, for each station s ∈ S the network flow problem
discussed above on the graph N(s, y). This can be done by considering an
extended flow network N obtained from N by letting EW = {(wi, uj) : i ∈
T, j ∈ T}, leaving all other arc sets unchanged. So, EW contains all possible
arcs from W to U . Observe that N is independent of y. However, to prevent
sending flow on “forbidden” arcs, fix the upper bound fwi,uj = 0 whenever
j /∈ Su(i) (this in turn depends on y).

Next, for every arc e ∈ N , introduce a flow variable zes , with lower and upper
bounds le ≤ zes ≤ fe. Then impose on each node v ∈ N the flow conservation
constraints

∑
e∈δ−(v) z

e =
∑

e∈δ+(v) z
e.

Lower and upper bounds are defined as for N(s, y) except for the arcs in EW .
For such arcs simply let f swiuj

≤ xijs . In this way, the arc (wi, uj) can be used
to send one unit of flow only if j ∈ Su(i, s, y).

To see how x and y are related, consider two conflicting trains i, j and a
station s. In what follows I write s1 ≺ij s2 (s1 �ij s2) if station s1 precedes
(follows) stations s2 on the route of i and j.
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Assume i and j travel in the same direction and let i be the initial follower.
Let s̄ be the meeting station, i.e., yijs̄ = 1. Denote by S = {s ∈ S : s ≺ij s̄}.
Then s ∈ S implies xjis = 1 (i follows j in s, thus i ∈ Su(j, s, y)). For all
remaining stations but s̄ we have xijs = 1 (j follows i in s). This can be
expressed by the following set of linear constraints:

xjis =
∑
q�ijs

yijq , s ∈ S.

Then, we write for all s 6= s̄,

xijs = 1− xjis , s ∈ S \ {s̄}.

Finally, let xijs̄ = 0.

5.4 Identifying possible conflicts

In the foregoing I have used the setK = {{i, j} : i ∈ T, j ∈ T, i and j conflicting}.
The naive approach is to include all pairs of trains in K. That ensures that
all possible conflicts are covered, but introduces unnecessarily many variables
and constraints. I will instead use a small set of pairs of possibly conflicting
trains, and dynamically add new pairs if necessary. Initially let the set K be
the pairs of trains that are scheduled to meet or directly follow each other
in any station. Alternately, K can initially contain just the pairs of crossing
trains, or no trains at all, causing more conflicting pairs to be discovered and
added dynamically.

At any point in the dynamic or branch and cut search, we test for pairs of
trains having conflicting schedules, and add them to the formulation, along
with corresponding sets of disjunctive arcs.



Chapter 6

Results

The purpose of this chapter is to see if the algorithm is capable of returning
an optimal solution for the single-track traffic control problem within the
short time frame available in a real-time setting. The algorithm is tested
using three different test inputs, presented below. While the small and large
instances are artificial, the medium-sized instance is a real snapshot from the
Trento – Bassano line in Italy.

The algorithm was implemented in two versions, one for each of the conflict
elimination strategies in Section 5.3. Both implementations are in C++
using the Concert Technology API of the IBM ILOG CPLEX Optimizer.
The following are the results of running the two versions on three test cases
with an increasing number of trains and stations. All tests were run on the
same computer, a workstation with a 2.93 GHz quad-core hyper-threaded
Intel R© CoreTM i7 CPU, under Red Hat Enterprise Linux (64-bit).

The results from the different instances are presented below, along with a
brief summation of the differences between the results. Further discussion is
saved for Chapter 7.

43



44 CHAPTER 6. RESULTS

6.1 Small instance

This instance has 6 trains and 10 stations. All trains travel the whole line,
with half the trains running in each direction. While the input is small, all
trains have an initial delay causing conflicts between their schedules.

The results for both conflict separation strategies are shown in Table 6.1. The
total number of rows, columns and non-zero elements show the dimension and
sparsity of the constraint matrix, illustrating the size of the problem. The
number of binary variables is the number of variables that the program must
fix to zero or one. For a (continuous) linear program this number would be
zero.

CPLEX starts by performing a presolve routine, reducing the number of rows
and columns. The number of remaining rows, columns, non-zeros and binary
variables show the size of the problem that must be solved in the search
phase.

The search methods are chosen automatically by CPLEX, and differ between
the two conflict strategies. Also, as shown in Section 6.5, the gain from
multi-threading differs between the versions, and consequently the number
of threads used differ.

The numbers of different cuts applied is also shown, and shows how many
cuts are needed to strengthen the relaxation of the initial formulation.

Both versions present an optimal solution. The solution value gives the
minimum total cost of all delays for all trains in the data set. As shown in
Chapter 5, the cost is simply an increasing function of the delay in time. It
shows the extent of delays, but is not directly a financial cost. Finally, the
time taken to obtain an optimal solution is listed.
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Conflict strategy
Cover cuts Resource flow

Total number of rows 902 1770
Total number of columns 421 1281
Total number of non-zero elements 2461 4952
Total number of binaries 180 538
Presolve time (seconds) 0.02 0.02
Reduced MIP rows 979 1405
Reduced MIP columns 332 751
Reduced MIP nonzeros 1696 4193
Reduced MIP binaries 152 247
MIP search method Branch & cut Dyn. search
Parallel mode no yes
Implied bound cuts applied 102 850
Mixed integer rounding cuts applied - 146
Gomory fractional cuts applied 12 55
Total cuts applied 114 1051
Solution value 9810 9810
Optimal yes yes
Solution time (seconds) 0.48 2.32

Table 6.1: Detailed results from running the small instance
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6.2 Medium-sized instance

This instance uses real data collected from the Trento – Bassano line in
Italy. It has 23 stations, including simple stops, with capacities varying from
1 to 3 trains. Out of the total of 31 trains, 21 run the whole line in either
direction, while 10 trains traffic only the first 13 stations. 3 of the trains are
already underway at the start of the simulation. The results for both conflict
separation strategies are shown in Table 6.2.

The size of this problem is obviously a lot larger, resulting in a larger con-
straint matrix. Compared with the small instance, though, a lot more rows
and columns are eliminated from the initial problem during the presolve rou-
tine.

As the problem is larger, more cuts are needed, and the solution time is
longer. While the solution time is very much longer for the resource flow
strategy, the increase is less for the cover cut strategy.

Conflict strategy
Cover cuts Resource flow

Total number of rows 20375 64636
Total number of columns 13931 59280
Total number of non-zero elements 49560 167242
Total number of binaries 11578 33313
Presolve time (seconds) 0.08 0.37
Reduced MIP rows 12211 17783
Reduced MIP columns 4121 18748
Reduced MIP nonzeros 35065 73608
Reduced MIP binaries 2357 3293
MIP search method Branch & cut Dyn. search
Parallel mode no yes
Cover cuts applied - 1
Implied bound cuts applied 113 628
Mixed integer rounding cuts applied - 2699
Gomory fractional cuts applied 71 289
Total cuts applied 184 3617
Solution value 1355 1355
Optimal yes yes
Solution time (seconds) 1.46 17.84

Table 6.2: Detailed results from running the medium-sized instance
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6.3 Large instance

In order to test how the algorithm reacts to an increased number of trains,
this instance was created with twice the number of trains as the medium-
sized instance, but with the same number of stations, i.e., 62 trains and 23
stations. As with the medium-sized instance, approximately two thirds of the
trains run the whole line. The results for both conflict separation strategies
are shown in Table 6.3.

Conflict strategy
Cover cuts Resource flow

Total number of rows 64797 240701
Total number of columns 51886 232240
Total number of non-zero elements 144287 600811
Total number of binaries 47181 133896
Presolve time (seconds) 0.33 2.76
Reduced MIP rows 24422 36652
Reduced MIP columns 8242 60729
Reduced MIP nonzeros 70130 193683
Reduced MIP binaries 4714 6586
MIP search method Branch & cut Dyn. search
Parallel mode no yes
Implied bound cuts applied 217 2642
Flow cuts applied - 1003
Mixed integer rounding cuts applied - 974
Gomory fractional cuts applied 99 350
Total cuts applied 316 4969
Solution value 1595 1595
Optimal yes yes
Solution time (seconds) 5.27 45.07

Table 6.3: Detailed results from running the large instance
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6.4 Comparing the sizes of the instances

Figures 6.1–6.4 graph the dimensions of the constraint matrices in the three
instances before and after presolving, as listed in Tables 6.1–6.3. In Figures
6.1 and 6.2 the horizontal axis shows the squared product of the number of
trains and stations, while in Figures 6.3 and 6.4 the product is not squared.

While, for both conflict strategies, the number of rows, columns, non-zeros
and binaries in the initial problem is approximately proportional to the
squared product of the number of trains and stations, the corresponding num-
bers in the reduced problems are approximately proportional to the product,
not the squared product, of the number of trains and stations. The excep-
tions are the number of non-zeros and columns in the reduced problem for
the flow formulation, which are approximately proportional to (|S| · |T |)3/2.

6.5 Impact of multi-threading

In order to see the parallelization capabilities of the two strategies, a com-
parison was done using the medium-sized instance and different number of
threads. The results are shown in Table 6.4. It is clear that there is little
or no impact of multi-threading when using the cover cut strategy, while the
resource flow strategy clearly benefits from parallelization.

Threads Cover cuts Resource flow
1 1.46 25.39
2 1.48 22.49
4 1.40 18.66
8 1.46 17.84

Table 6.4: Running time comparison with different number of threads. Times
in seconds.
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Figure 6.1: Dimensions of the constraint matrix for the cover cut formulation
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Figure 6.2: Dimensions of the constraint matrix for the flow formulation
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Figure 6.3: Dimensions of the reduced constraint matrix for the cover cut
formulation
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Chapter 7

Discussion and Conclusion

In this final chapter, I will discuss the results found in Chapter 6. In order
to be of practical use, a real-time traffic control optimizer must be able to
solve the STC to (near) optimality within seconds. In [20], Koning puts the
total system response time for ETCS Level 2 at 19 seconds and for ETCS
Level 3 with moving blocks at 31 seconds. This is the time from automatic
position reports are collected to the updated movement authority is displayed
to the driver, and gives us a reference frame for the running time of the re-
scheduling iterations. In practice the response time for Level 2 will be longer
if the sensors on the track are sparse.

7.1 Comparing the two strategies for conflict-
free solutions

Tables 6.1–6.3 and Figures 6.1–6.4 show that the flow formulation strategy
generates vastly larger coefficient matrices than the cover cut strategy, even
though they both grow at a rate proportional to the squared product of the
number of trains and stations. The larger parallelization benefits from using
the flow formulation strategy does not make up for this difference. It is also
worth noting that the size of the coefficient matrix after CPLEX has done
presolving grows faster for the flow formulation strategy, which implies that
the search space is increased accordingly.

As the results show, the implementation using cover cuts performs signif-
icantly better than the implementation using the flow formulation, for all
input sizes. It is not surprising that the separation using flow formulation
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has worse scaling properties, as the number of variables is higher. Since the
cover cut strategy is also more flexible, as the separation oracle can easily be
extended to consider new rules or even special prohibited cases, it is a better
choice for real world implementations.

7.2 General performance of the algorithm

The results show that the better of the two strategies performs within an
acceptable time frame when applied to real world data. When it is fed
with much larger instances, the running time grows larger than the wanted
time frame, but this is to be expected. As this implementation only supports
single-track lines, extensions and partitions must already be considered when
applying it to more complex networks, e.g. where several single-track lines
connect at a station. In such cases, simply partitioning the problem spatially
will give faster but normally not optimal results.

The CPLEX parameters have not been systematically explored, and along
with a dedicated strategy for branching, it would be reasonable to expect a
significant reduction of the running time.

7.3 Implementation challenges

A real railway network has complex features that either have to be assumed
irrelevant or incorporated into the model. As the model used here is very sim-
ple and extendable, such features can be included when building the routes
graph. The challenge lies in finding a reasonable balance between complete
details and complexity, so that all relevant train routes and schedules are
allowed, while keeping computation time and memory usage at acceptable
levels.

In order to calculate optimal schedules with high precision, it is important
to have reliable and precise input data. If we do not know how soon a train
can reach the next station, we will have to extrapolate based on the latest
information. All such uncertainty in the input increases the uncertainty in
the output, and increases the risk that the optimal schedule found is either
infeasible or not really optimal.
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7.4 Conclusion and future research

My conclusion is that the model used herein combined with the algorithm
presented, using the cover cuts strategy, gives optimal solutions to the single-
track traffic control problem within a satisfactory running time in a real-time
setting.

Future developments of the algorithm should establish a branching scheme for
the meet assignments (the y-variables), in order to achieve faster convergence.

Implementing an algorithm for finding an initial valid, but not optimal, in-
teger solution could also decrease the time needed to find an optimal integer
solution.

Without good input data, it is difficult for both man and machine to calculate
optimal schedules in real-time. Consequently, is is adamant that modern
train control systems are widely implemented. Knowing the exact positions
of the trains, along with the condition of the infrastructure, will also benefit
the customers through better real-time public information.





References

[1] Geir Dahl and Carlo Mannino. Notes on Combinatorial Optimization.
Published online, 2011. url: http://heim.ifi.uio.no/~geird/
comb_notes.pdf.

[2] George Bernard Dantzig and Mukund Narain Thapa. Linear Program-
ming: Introduction. Springer series in operations research. New York,
USA: Springer, 1997. isbn: 0-387-94833-3.

[3] George Bernard Dantzig and Mukund Narain Thapa. Linear Program-
ming: Theory and extensions. Springer series in operations research.
New York, USA: Springer, 2003. isbn: 0-387-98613-8.

[4] Andrea D’Ariano. “Improving real-time train dispatching: models, al-
gorithms and applications”. In: NGInfra PhD Thesis Series on Infras-
tructure 18 (2008).

[5] European Commission, Energy and Transport. ERTMS – Deliver-
ing Flexible and Reliable Rail Traffic. [Online; accessed 2011-09-24].
Brussels, Belgium, 2006. url: http://bookshop.europa.eu/en/
ertms - delivering - flexible - and - reliable - rail - traffic -
pbKO7205273/.

[6] European Commission (Press release). Commission facilitates inter-
operability for Europe’s trains. [Online; accessed 2011-09-24]. 2008-
04-23. url: http://europa.eu/rapid/pressReleasesAction.do?
reference=IP/08/629\&format=HTML\&aged=1\&language=en\
&guiLanguage=en.

[7] European Commission (Press release). European rail transport: a
major step towards a harmonised signalling system. [Online; ac-
cessed 2011-09-24]. 2009-07-22. url: http://europa.eu/rapid/
pressReleasesAction.do?reference=IP/09/1167\&format=HTML\
&aged=0\&language=en\&guiLanguage=en.

55

http://heim.ifi.uio.no/~geird/comb_notes.pdf
http://heim.ifi.uio.no/~geird/comb_notes.pdf
http://bookshop.europa.eu/en/ertms-delivering-flexible-and-reliable-rail-traffic-pbKO7205273/
http://bookshop.europa.eu/en/ertms-delivering-flexible-and-reliable-rail-traffic-pbKO7205273/
http://bookshop.europa.eu/en/ertms-delivering-flexible-and-reliable-rail-traffic-pbKO7205273/
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/08/629\&format=HTML\&aged=1\&language=en\&guiLanguage=en
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/08/629\&format=HTML\&aged=1\&language=en\&guiLanguage=en
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/08/629\&format=HTML\&aged=1\&language=en\&guiLanguage=en
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/09/1167\&format=HTML\&aged=0\&language=en\&guiLanguage=en
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/09/1167\&format=HTML\&aged=0\&language=en\&guiLanguage=en
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/09/1167\&format=HTML\&aged=0\&language=en\&guiLanguage=en


56 REFERENCES

[8] James K. Ho. “Relationships among linear formulations of separable
convex piecewise linear programs”. In: Mathematical Programming: Es-
says in Honor of George B. Dantzig Part I. Ed. by Richard W. Cottle
et al. Vol. 24. Mathematical Programming Studies. Springer Berlin Hei-
delberg, 1985, pp. 126–140. isbn: 978-3-642-00919-8.

[9] IEEE Standard for Communications-Based Train Control (CBTC)
Performance and Functional Requirements. IEEE Standard 1474.1.
The Institute of ElectricalElectronics Engineers, Inc., 2004. url: http:
//ieeexplore.ieee.org/servlet/opac?punumber=9643.

[10] International Union of Railways. ETCS Implementation Handbook.
[Published online]. 2008. url: http://www.uic.org/IMG/pdf/etcs_
handbookf.pdf.

[11] International Union of Railways. What is ERTMS? [Online; accessed
2011-09-24]. 2011-03-29. url: http://www.uic.org/spip.php?
article381.

[12] Jernbaneverket (Norwegian National Rail Administration). Godstrans-
port på bane, Jernbaneverkets strategi. [Online; accessed 2011-09-24].
2007. url: http : / / www . jernbaneverket . no / no / dokumenter /
Prosjekter / Godstransport - pa - bane --- Jerbaneverkets -
strategi/.

[13] Jernbaneverket (Norwegian National Rail Administration). Grafiske
togruter f.o.m 12.juni 2011. [Online; accessed 2011-08-21]. 20.05.2011.
url: http://www.jernbaneverket.no/no/Marked/Informasjon-
for-togselskapa/Grafiske-togruter-fom-12juni-2011/.

[14] Jernbaneverket (Norwegian National Rail Administration). Jernbanes-
tatistikk 2008 / Railway Statistics 2008. Tech. rep. Oslo, 2008. url:
http : / / www . jernbaneverket . no / no / dokumenter / Om - oss /
Jernbanestatistikk/Jernbanestatistikk-2008/.

[15] Jernbaneverket (Norwegian National Rail Administration). På skinner
2010. Annual report. Oslo, 2010. url: http://www.jernbaneverket.
no / no / dokumenter / 2011 / Multimedia / Pa - skinner - 2010 ---
Jernbaneverkets-arsmelding/.

[16] Jernbaneverket (Norwegian National Rail Administration). Punkt-
lighet persontog pr mnd (%). [Online; accessed 2011-08-21]. url:
http://www.jernbaneverket.no/PageFiles/14723/Punktlighet%
20persontog%20pr%20mnd%20innev%C3%A6rende%20%C3%A5r.htm.

http://ieeexplore.ieee.org/servlet/opac?punumber=9643
http://ieeexplore.ieee.org/servlet/opac?punumber=9643
http://www.uic.org/IMG/pdf/etcs_handbookf.pdf
http://www.uic.org/IMG/pdf/etcs_handbookf.pdf
http://www.uic.org/spip.php?article381
http://www.uic.org/spip.php?article381
http://www.jernbaneverket.no/no/dokumenter/Prosjekter/Godstransport-pa-bane---Jerbaneverkets-strategi/
http://www.jernbaneverket.no/no/dokumenter/Prosjekter/Godstransport-pa-bane---Jerbaneverkets-strategi/
http://www.jernbaneverket.no/no/dokumenter/Prosjekter/Godstransport-pa-bane---Jerbaneverkets-strategi/
http://www.jernbaneverket.no/no/Marked/Informasjon-for-togselskapa/Grafiske-togruter-fom-12juni-2011/
http://www.jernbaneverket.no/no/Marked/Informasjon-for-togselskapa/Grafiske-togruter-fom-12juni-2011/
http://www.jernbaneverket.no/no/dokumenter/Om-oss/Jernbanestatistikk/Jernbanestatistikk-2008/
http://www.jernbaneverket.no/no/dokumenter/Om-oss/Jernbanestatistikk/Jernbanestatistikk-2008/
http://www.jernbaneverket.no/no/dokumenter/2011/Multimedia/Pa-skinner-2010---Jernbaneverkets-arsmelding/
http://www.jernbaneverket.no/no/dokumenter/2011/Multimedia/Pa-skinner-2010---Jernbaneverkets-arsmelding/
http://www.jernbaneverket.no/no/dokumenter/2011/Multimedia/Pa-skinner-2010---Jernbaneverkets-arsmelding/
http://www.jernbaneverket.no/PageFiles/14723/Punktlighet%20persontog%20pr%20mnd%20innev%C3%A6rende%20%C3%A5r.htm
http://www.jernbaneverket.no/PageFiles/14723/Punktlighet%20persontog%20pr%20mnd%20innev%C3%A6rende%20%C3%A5r.htm


REFERENCES 57

[17] Jernbaneverket (Norwegian National Rail Administration). Se punk-
tlighetstall og tiltak. [Online; accessed 2011-08-21]. url: http : / /
www.jernbaneverket.no/no/Nyheter/Togenes-punktlighet-og-
regularitet/.

[18] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In:
Complexity of Computer Computations. Ed. by Raymond E. Miller and
James W. Thatcher. The IBM research symposia series. New York:
Plenum Press, 1972, pp. 85–103. url: http://www.cs.berkeley.
edu/~luca/cs172/karp.pdf.

[19] Victor Klee and George J. Minty. “How good is the simplex algorithm?”
In: Inequalities. Vol. III. Proc. Third Sympos., Univ. California, Los
Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin.
Academic Press, New York, 1972, pp. 159–175.

[20] Jan A. Koning. “Comparing the performance of ERTMS level 2 fixed
block and ERTMS level 3 moving block signalling systems using sim-
ulation techniques”. In: Eighth International Conference on Comput-
ers in Railways. Computers in Railways VIII. Ed. by John J. Allan
et al. Southampton, UK: WIT Press, 2002. url: http://library.
witpress.com/pages/dlfreepaper.asp?pID=89.

[21] R. Duncan Luce and Albert D. Perry. “A method of matrix analysis
of group structure”. In: Psychometrika 14 (2 1949), pp. 95–116. issn:
0033-3123.

[22] Carlo Mannino and Alessandro Mascis. “Optimal Real-Time Traf-
fic Control in Metro Stations”. In: Operations Research 57.4 (2009),
pp. 1026–1039.

[23] Ministry of Transport and Communications. St.meld. nr. 16 (2008–
2009) Nasjonal transportplan 2010–2019. [Online; accessed 2011-09-
24]. Oslo, Norway, 2009. url: http://www.regjeringen.no/nb?
id=548837.

[24] George L. Nemhauser and Laurence A. Wolsey. Integer and Combina-
torial Optimization. Wiley-Interscience series in discrete mathematics
and optimization. New York, USA: Wiley-Interscience, 1988. isbn: 0-
471-82819-X.

[25] Shmuel Onn. “Polynomial Time Primal Integer Programming via
Graver Bases”. In: Wiley Encyclopedia of Operations Research and
Management Science. Ed. by James J. Cochran et al. John Wiley
& Sons, Inc. [Published online], 2010. isbn: 9780470400531. url:

http://www.jernbaneverket.no/no/Nyheter/Togenes-punktlighet-og-regularitet/
http://www.jernbaneverket.no/no/Nyheter/Togenes-punktlighet-og-regularitet/
http://www.jernbaneverket.no/no/Nyheter/Togenes-punktlighet-og-regularitet/
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://library.witpress.com/pages/dlfreepaper.asp?pID=89
http://library.witpress.com/pages/dlfreepaper.asp?pID=89
http://www.regjeringen.no/nb?id=548837
http://www.regjeringen.no/nb?id=548837


58 REFERENCES

http://onlinelibrary.wiley.com/doi/10.1002/9780470400531.
eorms0677/abstract.

[26] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Ef-
ficiency. Springer-Verlag Berlin Heidelberg, 2003.

[27] Joseph Y.-T. Leung Udaiprakash I. Gupta Der-Tsai Lee. “Efficient al-
gorithms for interval graphs and circular-arc graphs”. In: Networks 12.4
(1982), pp. 459–467. issn: 1097-0037.

[28] Robert J. Vanderbei. Linear Programming, Foundations and Exten-
sions. Third edition. International Series in Operations Research &
Management Science. Springer US, 2008. isbn: 978-0-387-74388-2.

http://onlinelibrary.wiley.com/doi/10.1002/9780470400531.eorms0677/abstract
http://onlinelibrary.wiley.com/doi/10.1002/9780470400531.eorms0677/abstract

	List of Figures
	List of Tables
	List of Symbols
	Introduction
	A short introduction to railways
	Infrastructure
	Fixed and moving blocks
	European Rail Traffic Management System (ERTMS)
	Measuring quality of service

	Model
	Notation and graphs
	Modelling railway networks
	A model for station-track networks
	The routes graph

	Assumptions
	Preventing conflicts
	Case 1: Trains moving in opposite directions
	Case 2: Trains moving in the same directions

	Handling track sections
	Moving blocks

	Solving optimization problems
	Concepts from graph theory
	Cliques
	Interval graphs
	Flows

	Linear programming
	Integer and mixed integer linear programming
	Piecewise linear programs

	Solution strategies
	Separation oracles
	The cutting plane method

	Algorithm
	Evaluating the actual timetable
	A MILP formulation for STC
	Strategies for eliminating station conflicts
	Cover cuts
	A compact, flow based representation

	Identifying possible conflicts

	Results
	Small instance
	Medium-sized instance
	Large instance
	Comparing the sizes of the instances
	Impact of multi-threading

	Discussion and Conclusion
	Comparing the two strategies for conflict-free solutions
	General performance of the algorithm
	Implementation challenges
	Conclusion and future research

	References

