
Modeling Turbulent Boundary Layers

with

Elliptic Relaxation

by

Jørgen Myre

THESIS
for the degree of

MASTER OF SCIENCE

(Master i Anvendt matematikk og mekanikk)

Faculty of Mathematics and Natural Sciences
University of Oslo

May 2011

Det matematisk- naturvitenskapelige fakultet
Universitetet i Oslo

Modeling Turbulent Boundary Layers

with

Elliptic Relaxation

by

Jørgen Myre

THESIS
for the degree of

MASTER OF SCIENCE
(Master i Anvendt matematikk og mekanikk)

Faculty of Mathematics and Natural Sciences
University of Oslo

May 2011

Det matematisk- naturvitenskapelige fakultet
Universitetet i Oslo

Abstract

The theory behind the RANS equations and common DRSM modeling terms
is presented. Most current DRSM turbulence models have models for the re-
distribution tensor which are developed for homogeneous flow. The Elliptic
Relaxation model is presented, which is an attempt to make homogeneous
redistribution models behave better close to walls. This model is then im-
plemented in the CBC.RANS framework, which uses the Finite Element
Method. Results are analyzed with a focus on stability. Further investiga-
tions and improvements are proposed based on successes and failures.

Acknowledgments

Firstly, I would thank my supervisor Bjørn Anders Reif, who provided the
framework upon which this work stands.

Mikael Mortensen deserves more praise than there is space for here. Most
of all for his neverending patience in the face of unreasonable requests and
incomprehensible code, but also for his willingness to provide good advice
and tips whenever I would interrupt his work day. Without his help, this
thesis would have ended at chapter 3.

With this thesis I complete an education that has been my driving pur-
pose for the past 8 years, and it would have been impossible without the
support of my family. They have been helpful in countless ways, and I hope
the work I’ve done lives up to their expectations.

But my most heartfelt thanks goes to my closest friends and our role-
playing games. Our travels through imaginary worlds have kept me sane
through the trials of this all-too-real one. A special mention goes to Nils
Ødeg̊arden, for his subsidy of my otherwise meager food budget and his level
perspective on life during these past years.

For all these things, and more, I am deeply grateful.

Nomenclature

Notation and physical variables

v vector, vector notation
ei standard basis vector, i’th direction

(1 = x, 2 = y, 3 = z), vector notation
A second order tensor, vector notation
vi vector, index notation
Aij second order tensor, index notation
Mijkl fourth order tensor, index notation

aij (Reynolds stress) Anisotropy tensor, index notation (dimensionless)
A (Reynolds stress) Anisotropy tensor, vector notation (dimensionless)
fij Model tensor for redistribution, index notation (s−1)
F Model tensor for redistribution, vector notation (s−1)
k Turbulent kinetic energy (m2/s2)
L Model length scale (m)

P̃ Total pressure field (kg/[ms2])
P Mean pressure field (kg/[ms2])
p Fluctuating pressure field (kg/[ms2])
Pij Production of Reynolds stresses, index notation (m2/s3)
P Production of Reynolds stresses, vector notation (m2/s3)
R Reynolds stresses, vector notation (m2/s2)
Sij Rate of strain tensor, index notation (s−1)
S Rate of strain tensor, vector notation (s−1)
T Model time scale (s)
Tij Turbulent transport of Reynolds stresses, index notation (m2/s3)

Ũi Total velocity field, index notation (m/s)
Ui Mean velocity field, index notation (m/s)
U , V , W Mean velocity field, individual components (m/s)
ui Fluctuating velocity field, index notation (m/s)
u, v, w Fluctuating velocity field, individual components (m/s)
u Mean velocity field, vector notation (m/s)
uiuj Reynolds stresses, index notation (m2/s2)

u2, v2, uv Reynolds stresses, individual components (m2/s2)
Wij Rate of rotation tensor, index notation (s−1)
W Rate of rotation tensor, vector notation (s−1)
ε Diffusion of turbulent kinetic energy (m2/s3)
εij Diffusion of Reynolds stresses (m2/s3)
φij Redistribution tensor, index notation (m2/s3)
φhij Homogeneous model redistribution tensor, index notation (m2/s3)

φh Homogeneous model redistribution tensor, vector notation (m2/s3)

Model Constants and numerical quantities

C1 SSG, 3.4
C∗1 SSG, 1.8
C2 SSG, 4.2
C3 SSG, 0.8
C∗3 SSG, 1.3
C4 SSG, 1.25
C5 SSG, 0.4
CL Length scale, 0.25
CP LRR-IP production term, 0.6
CR LRR-IP, anisotropy term, 1.8
C∗ε1 ε-equation production, 1.44
C∗ε2 ε-equation dissipation, 1.9 or function
Cεd Nonconstant C∗ε1-equation, 0.045
Cη Length scale, 80
Cµ Turbulent transport, Daly-Harrow model, 0.22
Cν Stabilizing eddy viscosity νT -term, 0.09
ed ε-linearization in k-equation, = 0.5
σε ε-equation, scaling of Laplacian, 1.3
θ Relaxation parameter for Picard Iteration

E Matrix in nonlinear system of equations
E∗ Linearized matrix for nonlinear system
f Vector in nonlinear system of equations
f∗ Linearized vector for nonlinear system
r Residual of nonlinear system of equations
x Vector solution of nonlinear system of equations
xn Vector holding numerical solution, n’th iteration

Contents

1 Introduction 9

1.1 What is turbulence? . 9

1.2 The Energy Cascade and modeling 10

1.3 Boundary layers and their importance 12

1.4 The Elliptic nature of pressure and near-wall effects 14

1.5 The Elliptic Relaxation model 14

1.6 Computational Approach . 14

1.7 Notation . 15

1.7.1 Vector Notation . 15

1.7.2 Outer products . 15

1.7.3 Index Notation . 15

1.7.4 Derivatives . 16

1.7.5 An Apology . 16

1.8 The author’s ’we’ . 17

2 Navier-Stokes and RANS/DRSM 19

2.1 The Navier-Stokes Equations 19

2.2 Averages . 19

2.3 Reynold-Averaged Navier-Stokes 20

2.4 The Reynolds stresses . 21

2.5 Modeling unknown terms . 23

2.6 The near-wall production of kinetic energy 24

2.7 Modeling ε and turbulent transport 25

2.8 The tensors aij , Sij , Wij and scales 27

2.9 The magical mystical φij . 28

3 Elliptic Relaxation 31

3.1 The non-local nature of pressure effects 31

3.2 Elliptic pressure and near-wall effects 31

3.3 Derivation of the Elliptic Relaxation Model 32

3.4 Further modifications . 33

3.5 Boundary Conditions . 34

3.6 The final model . 36

5

4 Implementation 37

4.1 The Finite Element Method 37

4.2 A note on FEniCS . 37

4.3 CBC.RANS . 38

4.4 Test- and trial-functions . 39

4.5 Rewriting ∇2-terms . 39

4.6 Our system of equations on vector form 40

4.7 Method for approximating the solution 41

4.8 How CBC.RANS handles turbulence models 42

4.9 Source terms, scales and linearization 43

4.10 Equations on vector form and linearized 45

4.11 Different schemes for φhij . 45

4.12 2D-simplification and symmetric tensors 46

4.13 Implementation of boundary conditions 46

4.14 The different schemes for coupling 48

4.15 Avoidance of negative values 49

4.16 The function Cε1 . 49

4.17 Interaction with NSSolver . 49

4.18 Model constants and Reτ . 50

4.19 Mesh resolution near walls . 51

4.20 Initial guesses . 51

4.21 Error estimates . 51

4.22 Running our code . 52

4.23 Reading the code . 52

5 Results 53

5.1 Goals and limitations . 53

5.2 Comparison with DNS data 53

5.3 Lack of convergence with ER 3Coupled 54

5.4 Results with LRR-IP . 54

5.5 Results with SSG . 59

5.6 SSG instabilities . 60

5.7 Results with the diffusor geometry 61

5.8 The apbl geometry . 64

6 Conclusions 65

6.1 Successes . 65

6.2 Failures . 66

6.3 Lack of numerical analysis . 66

6.4 The critique of FEM . 67

6.5 The Matter of Uniqueness of Solution 67

6.6 Future work . 68

Bibliography 69

6

A Near-wall graphs 71

B CBC.RANS-code 75
B.1 Turbsolver-subclass ER . 75
B.2 ER-subclasses . 79
B.3 Implementation of boundary conditions 87

7

8

Chapter 1

Introduction

1.1 What is turbulence?

The Navier-Stokes equations are four equations governing the transport of
momentum and mass in fluid flows. Both are derived by looking at arbitrary
control volumes in a fluid. Together, they are all the equations required to
describe the movement of incompressible viscous fluid flow regimes with
constant temperature, and the flows we are to consider will fulfill these
criteria.

Here are the equations:

dv

dt
+ v · ∇v = −1

ρ
∇P + ν∇2v

∇ · v = 0

(1.1.1)

Of the flows described by Navier-Stokes, some are termed ’turbulent’.
It is common to view turbulence as a property imposed on a laminar flow
regime when the Reynolds number reaches a certain number, but this not
nescessarily a correct assumption. Since the equations do not change, it is
better to view turbulence as rather a property of all flows, but one neglible
in flows where other forces, like viscosity, are more dominant. This idea is
not a radical departure from the previous one, since the Reynolds number
represents the ratio of inertia-to-viscous forces. In laminar flows the viscous
forces works to ’damp’ out disturbances in the flow field. This is because
the viscous term in the equation is a Laplacian term, which is elliptic. Such
elliptical terms, when dominant in the equation, will tend towards ’smooth’
and steady-state solutions. The transition between laminar and turbulent
flows is characterized by the fact that pertubations introduced in the flow
are amplified downstream, that is to say that the inertial forces become more
dominant than the viscous. It is common for theoretical purposes to divide a
turbulent flow regime into two parts, the mean flow and the fluctuating flow

9

(also referred to as ’pertubations’). The mean flow is stationary or varies
very slowly in time while the fluctuating flow describes the rapid changes
in the velocity field. Since the mean flow is in some respects mathemati-
cally similar to a laminar flow, this has lead to the ’imposed property’-view.
Turbulent flow regimes are identifiable by the following:

� Vorticity: The flow exhibits strong vorticity (though these vortices
might not be idealized vortices visible to the naked eye)

� Time-dependence: All turbulent flows display fluctuations in time,
though they may be periodical. Some of these fluctuations can be
very small and rapid compared to larger flow phenomena.

� 3-dimensional: All turbulent flows are 3-dimensional, displaying fluc-
tuations in all three directions. This is in contrast to laminar flows
which though they exist in the real world (and thus have at least some
small change in all directions), can be regarded as purely 2-dimensional
in some regions of the flow field.

� Diffusion: Rapid mixing of scalar properties like temperature and col-
ored ink into the flow. Turbulent flows also transfer momentum from
regions in the flow much faster than laminar flows.

� Dissipation of energy: A turbulent flow regime dissipates energy from
the mean flow much faster than the viscosity observed in laminar flows.

These properties are ALWAYS present in turbulent flows, which means that
a flow regime which does not exhibit all these properties is not turbulent.
One other phenomenon in turbulent flow is the ’energy cascade’. This is a
property with important computational consequences.

1.2 The Energy Cascade and modeling

A central physical phenomenon in turbulent flows is the presence of very
small vortical structures or ’eddies’, which are ’fed’ energy from the larger
structures through convection. In fact, it is common [7] to describe the
turbulence as a spectrum of these eddies, from large scale-eddies at the
mean flow level down to tiny eddies at a small-scale level. One can construct
the scales for velocity, time and length of the large eddies from mean flow
properties U and L. The smaller scales are more difficult, but were obtained
through dimensional analysis by Andrey Kolmogorov in 1941. He proposed
that the small scales should only be defined by ’local’ properties at that
point in space and be independent of larger properties. By defining the small
scales as functions of the turbulent kinetic energy, dissipation and molecular
viscosity, he devised such a set of scales. These ’Kolmogorov microscales’
can be shown to be functions of the inverse Reynolds number [7], which

10

means that as the Reynolds number increases, the scales become smaller. It
is worth to point out that since the Reynolds number is a function of large-
scale geometry, it is not strictly true that the microscales are independent of
large scale properties. This means that as the Reynolds number increases,
the smallest fluctuations in the flow will become smaller and smaller, as the
energy is spread over a broader spectrum.

In experiments, these phenomena are easily observable. Initially, the
transition from laminar flow to turbulent is characterized by oscillations and
fluctuations which are easy to discern with the naked eye. As the Reynolds
number is increased, the flow becomes more and more ’chaotic’ and flow
structures become more difficult to see. This is simply the effect of smaller
and smaller fluctuations. This visual ’chaos’ is also intensified by the fact
that in addition to length scales there is a reduction in the time scale, so
that the smallest fluctuations are becoming more and more rapid. A simple
example is presented by the schematic in figure 1.1.

Figure 1.1: Schematic suggesting the increase in small scale structures in a
free-shear layer as Reynolds number increases. Note that the large scales
stay constant. Taken from [7]

A final aspect of the decrease in scales in an increase in computational dif-
ficulty. When a domain is discretized for numerical computation, the small-
est grid discretization should be smaller than the smallest effects. When
discretizing the Navier-Stokes equations, this means that the smallest grid
division must be smaller than the Kolmogorov length scale to capture all
turbulence effects. Since this is practically impossible for high Reynolds
Numbers and complex geometries, we must develop models for the turbu-
lence effects which are neglected when the grid is too coarse.

11

1.3 Boundary layers and their importance

In the fluid mechanics scientific community there seems to be a rather am-
biguous use of the words ’boundary layer’ and ’near-wall’. We will therefore
attempt to explain how we interpret these terms, and how we will use them.
The following account is based on a combination of [9], [18] and our edu-
cation in the field of turbulence modeling, and as such we recognize it as
somewhat biased.

In 1904 Ludwig Prandtl presented the concept of a ’boundary layer’.
This was seen as a breakthrough in fluid dynamics, since it reconciled the
very popular and mathematically elegant system of complex potential solu-
tions and the observable (real) viscous phenomena in fluid flows. Prandtl
posited that the flow around an object could be divided into two parts:
A free stream (potential) flow, in which viscosity could be neglected, and
a viscous boundary layer flow close to the object. When added together,
these two solutions would describe the flow. The main reason for this need
for two solutions was the fact that potential solutions did not predict zero
velocity at the wall (the ’no-slip’ condition), though this was observed in
experiments. Several simplifications to the Navier-Stokes equations could
also be applied in the boundary layer, further enabling easier computation.
This breakthrough allowed for the evaluation of lift and drag on solid bodies,
arguably moving fluid dynamics from the realm of theoretical mathematics
into practical engineering applications. One important observable property
was that the boundary layer area corresponded with the area of the flow
where most of the activity governing heat transfer between the object and
the flow and mixing of particles occurred. This gave credence to the theory,
further cementing the idea of the boundary layer as a concept.

Figure 1.2: A simple schematic of the basic idea of the boundary layer.
Taken from [4]

12

Later, when it was discovered that this approach could not adequately
describe the phenomena observed at high Reynolds numbers, the idea of
’boundary layer solutions’ was still attractive as the only way to model
complicated phenomena, though crudely. This led to the theory that the re-
gions of turbulent flow could be divided into regions where different solutions
could be used, without loosing too much accuracy. In such a model, the area
close to the wall became the ’near-wall’ layer, which is smaller than but still
conceptually similar to the boundary layer. Most prominent was the idea
that the flow properties very close to a wall would be almost identical re-
gardless of the larger geometry, beginning with the ’law-of-the-wall’-model
(first presented by Theodore von Kàrmàn in 1930, see section 4.1 in [7]).
This model assumes that the flow very close to the wall is a function of the
pressure gradient parallel to the wall and fluid properties (density and vis-
cosity) together with modeling parameters used for curve fitting. In other
words, the near-wall flow is only a function of the Reynolds number. It is
important to note that these variables could be found in experiments, while
other properties like velocity profiles and pressure fluctuations were much
more difficult to observe and measure in experiments during the first half of
the 20th century.

However, our claim is that this approach of modeling separate areas of
the flow is fundamentally wrong. It can be shown that a majority of the
production of turbulent kinetic energy occurs close to the wall (we will get
back to this in 2.6). If the production of turbulent kinetic energy (and thus,
the impact of turbulence on the mean flow) and other important effects like
mixing will occur in the area close to the wall, it seems counter-productive
to simplify the area of the flow which arguably needs the most precision.
It is therefore problematic to assume the near-wall flow is independent of
larger flow properties, since the large scale properties being produced near
the wall like turbulent kinetic energy are most certainly affected by large
scale flow properties like geometry. This region should in fact be modeled
with equations which are as close as possible to the ’real’ equations. We will
return to mathematical justifications for these claims in chapter 2 and 3.

Further, the near-wall modeling approach, like the boundary layer method,
is not satisfactory if our goal is to create a general framework for computa-
tional fluid dynamics which can be applied to any geometry. It is further in
the author’s opinion that one model law should apply to the whole field, in-
stead of a transfer from one law to another based simply on empirical data.
This has the possible pitfall of creating a model which creates good results
for one geometry because of curve-fitting, but is useless for all others.

Throughout the remainder of the text we will continue to use the term
’near-wall’. With this we mean the region close to the wall were the pro-
duction of turbulent kinetic energy takes place, and common assumptions
made to derive models for the redistribution of turbulent kinetic energy does
not hold. This is a slightly vague concept, but it is important to keep in

13

mind that for our model it is not necessary to know where the near-wall
region begins and ends. A more precise definition would be ’the region close
to a wall boundary where the assumptions of homogeneous turbulence for
the modeling of the pressure-strain redistributions tensor does not hold’.
Though this means that our ’near-wall region’ is much larger than other
definitions, we are not disinterested in effects very close to the wall, as the
derivations in chapter 3 will show. But because our model seeks to bridge
the gap between models that work away from wall and the ones which work
very close, we will keep a more general definition. In the sections where we
concern ourself with effects at or very close to the wall, the text itself will
make this clear.

1.4 The Elliptic nature of pressure and near-wall
effects

The pressure in a fluid is by nature elliptic. This will be shown in chapter
2, but what this means is that an effect altering the field at one point will
alter the entire field, instantaneously. This effect is only instantaneous in
incompressible flows, but all our flows will be incompressible and stationary,
so this always holds for us. In other terms, we cannot assume that a small
perturbation at one point will not create a noticeable change somewhere
else in the flow field. Why this is important for our model will be properly
explained in chapter 3. It will suffice to say here that this adds further
credibility to our claims for the importance of near-wall effects and the need
to model this area with great fidelity.

1.5 The Elliptic Relaxation model

Our goal is to present a model which does not include any near-wall modifi-
cations, but can still capture some of the near-wall phenomena in turbulent
flows. We hope to attain this by creating a model which more accurately
models the nature of the interaction between pressure fluctuations and ve-
locity fluctuations in the area of strongly non-homogeneous flow. This will
be presented in chapter 3, and implemented in code in chapter 4.

1.6 Computational Approach

We have implemented our Elliptic Relaxation model in the CBC.RANS
framework, which uses the FENICS package for the Python programming
language. FENICS translates more analytical expressions written with Fi-
nite Elements to efficient C++ code. CBC.RANS is a framework which
uses FENICS to allow users to easily implement turbulence model into a

14

segregated Navier-Stokes solver. We will explain all this in greater detail in
chapter 4.

1.7 Notation

Due to the varying standards of notation, we felt it helpful to include a small
section on notation.

1.7.1 Vector Notation

We will sometimes use vector notation. In this notation, a boldface low-
ercase letter denotes a vector, while a boldface uppercase letter denotes a
second order tensor. We have tried to keep this notation consistent, and it
should hold for the entire text in vector notation. For this text, all vectors
and tensors exist in three dimensions, and the tensors are symmetric.

1.7.2 Outer products

In this text, we will drop the ⊗ from outer products of vectors and tensors.
This means the following notation holds:

ab⇐⇒ a⊗ b (1.7.1)

1.7.3 Index Notation

We will throughout chapter 2 and 3 use ’index notation’, where vectors and
tensors are written without basis vectors, with one line representing several
lines for different basis vector directions. In this notation, we use the short
hand:

vi =
∑

viei = v

Aij =
∑∑

Aijeiej = A

Mijkl =
∑∑∑∑

Mijkleiejekel

(1.7.2)

Where, for the remainder of this text, the sums are always over indices from
1 to 3. The second order tensors in the text will also be symmetric, that is:

Aij = Aji for i 6= j (1.7.3)

That is, Aij has 6 unique entries, not 9. As such, each equation represents
either 3 (for the vectors) or 6 (for tensors) equations.

When writing out full equations, sometimes a product will include re-
peated indices. This is the result of a dot product, and signifies a sum over
these indices for each individual index. Example:

AikAkj = AijAkleiej · ekel = AikAkjeiej = A ·A (1.7.4)

15

(Here we replaced l with j, as the exact letter does not mean anything). In
a similar vein, there will sometimes be two repeated indices. In such cases
they correspond to a series of dot products or an inner product. In the case
of an inner product, we have:

A : A = AijAkleiej : ekel = AklAkl (1.7.5)

For the remainder of the text, an attempt has been made to restrict sum-
mation indices to ’k’ and ’l’, while ’i’ and ’j’ are reserved for ’free’ indices.
In index notation it is common to use uppercase letters for quantities which
exists as mean properties while keeping lowercase letters for fluctuating prop-
erties. However, this is not upheld at all when considering the bewildering
array of scales, modeling constants and physical constants.

1.7.4 Derivatives

We will also use another shorthand for spatial and time derivatives in index
notation:

∂if =
∂f

∂xi
(1.7.6)

and a similar notation for time derivatives:

∂tf =
df

dt
(1.7.7)

For repeated summation over indices, eg from a Laplacian term, we rewrite:

∂2
iif =

∂2f

∂x2
i

= ∇2f (1.7.8)

This is sometimes simplified for 1D cases to simply ∂2
yyf . We will sometimes

also write the total/convective derivative in the slightly more compact ’D’-
form, that is:

Df

Dt
= ∂tf + Uk∂kf =

df

dt
+ u · ∇f (1.7.9)

Note the last term uses the different names for the mean velocity field in
each chapter (see start of chapter 4).

1.7.5 An Apology

We apologize for (what is in the author’s mind) the unprofessional mixing
of index and vector notation, but this work is situated between two fields of
study and these follow two different conventions. Instead of engaging in the
Sisyphean task of establishing a unique notation which would be unintelligi-
ble to both communities, we have in each chapter sought to use the notation
commonly used when discussing the topic of that chapter. Therefore index

16

notation is used in the theory chapters (chapters 2 and 3) and vector no-
tation used in the chapters on implementation and results (chapter 4 and
5). Chapter 5, though, has some (probably confusing) mixing of the terms.
In that chapter, vector notation refers to matters of computation and the
code, while index notation concerns the theoretical concepts. There would
simply be to much confusing when explaining implementation into FEN-
ICS if the algorithm was written in index notation when the FENICS-code
is in quasi-vector notation, and concerning the theory much work in index
notation simply sidesteps the questions of vector products.

1.8 The author’s ’we’

The author has, based on preference, chosen to use the ’academic plural’ for
the first four chapters of this thesis. This is because the author finds this
more aesthetically pleasing and easier to read than the repetition of phrases
like ’one can then assume...’ or ’it can be seen...’ and the chapters are
based on much theoretical work by others. However, this form is unsuitable
for the last two chapters, which represents the author’s opinions and results
with little reference to other works. In this chapter a more personal form is
adopted, with the occasional ’I’. The author feels this form is better than
presenting the results and conclusions as stemming from some objective
reality. As with the difference in notation, the author apologizes if this runs
contrary to the reader’s taste, but will in his defense refer to the complete
lack of rules regarding the style to be used in a thesis at the Institute of
Mathematics.

17

18

Chapter 2

Navier-Stokes and
RANS/DRSM

2.1 The Navier-Stokes Equations

Here are the incompressible Navier-Stokes equations on index-form:

∂tŨi + Ũk∂kŨi = −1

ρ
∂iP̃ + ν∂k∂kŨi

∂iŨi = 0

(2.1.1)

Where Ũi is the total turbulent flow, and P̃ the total pressure field.

Our goals should now to be some way of simplifying these equations. As
explained in the previous chapter, we will be unable to capture the precise
movements of the fluctuations with computations, as these exist on very
small scales. The approach we choose is to ’average’ these equations to look
at the long-term effects of the fluctuations on the mean flow, accepting that
we will be unable to capture the exact movements at any one specific point
in time.

2.2 Averages

We must then define what we mean by averages. Based our theories on
experimental data, there are two ways to find averages: Ensemble average
and time average. The ensemble average is found by performing several
experiments and interpolating the average flow field from these. The time
average is found by letting one experiment run for a very long time and
doing the same with the flow at different times. Both require that a large
number of samples have to be taken, and the time average requires that
the samples must be taken over a time period longer than the largest time
scale for the flow. It’s then obvious that the time average will be unable to

19

capture evolution of the flow in time, and we must only use this technique
on problems in which we can assume the mean flow to be stationary. The
ensemble average can capture such evolutions, but has the disadvantage
of requiring a large number of experiments. In fact, to capture the ’true’
average of a flow, we would require an infinite amount of experiments for
the ensemble average and an infinite span of time for the time average.

Put in mathematical terms: Assume xi(t) to be set of values from one
experiment amongst a set of N experiments and T to be some span of time
longer than the largest time scale. We can then represent the average by x,
defined in the following way:
Ensemble Average:

x(t) =
1

N

N∑
i=1

xi(t) (2.2.1)

Time Average:

x =
1

N

N∑
j=1

xi(tj) ≈
1

T

∫ T

0
xi(t)dt (2.2.2)

Note that it is normally assumed that the time average experiment can be
sampled enough times that the sum of samples can be considered an integral.
We observe that since the time average should not be a function of time, we
require the following for any positive value of t0:∫ T

0
xi(t)dt =

∫ T+t0

t0

xi(t)dt (2.2.3)

We call any flow with this property ’statistically stationary’ and for such
flows the ensemble and time average should converge to the same ’true’ av-
erage for large N and T . For the remainder of the text the word ’stationary’
will be understood to mean both ’statistically stationary’ and stationary in
the sense of variables not being dependent on time, as they describe the same
property as the statistical average approaches the ’true’ average. Another
simple observation is that for both these averages we have the following
properties: ∂if = ∂if and ∂tf = ∂tf .

2.3 Reynold-Averaged Navier-Stokes

Having defined what we mean by averages, we divide Ũi into a mean Ui and
a fluctuating ui component, ie Ũi = Ui + ui. The mean and the fluctuating
parts are define by the following properties: Ui = Ui and ui = 0. We repeat
the process for P̃ = P + p. It important to note that although the following
derivation assumes ensemble averages, the only difference obtained by using

20

time averages is that all ∂t-terms will disappear from the final equations.
Although we will only consider stationary flows in this thesis, we assumed
a more general framework based on ensemble averages would be better.

Another important item to note is that it is usual to follow this notation:

{U1, U2, U3} = {U, V,W}
{u1, u2, u3} = {u, v, w}

(2.3.1)

And we will use this notation when referring to a specific entry in the vector
or tensor, eg write ’v’ instead of ’u2’, while ’Ui refers to all the entries (ie,
the entire vector or tensor).
We now have the equations:

∂t(Ui + ui) + (Uk + uk)∂k(Ui + ui) = −1

ρ
∂i(P + p) + ν∂k∂k(Ui + ui)

∂i(Ui + ui) = 0

(2.3.2)

If we average these equations, we get:

∂tUi + Uk∂kUi = −1

ρ
∂iP + ν∂k∂kUi − ∂kukui

∂iUi = 0

(2.3.3)

(Actually, we use a result of the second equation in 2.3.3, ∂iui = 0, to obtain
the first equation in 2.3.3.)

The equations 2.3.3 are generally known as the ’Reynolds-Averaged
Navier-Stokes’, or RANS, equations.

2.4 The Reynolds stresses

The last term in equations 2.3.3, ukui, is generally known as the ’Reynolds
stresses’. The reason they are considered a form of stress is because the term
has the dimensions of a stress term, but this name is misleading. The term
∂kukui represent the average effect of the fluctuating flow field convecting
the fluctuating momentum, more commonly referred to as ’the average effect
of turbulent convection’. Assuming them to be flow properties, we will now
attempt to find a transport equation for these ’stresses’.

By subtracting 2.3.3 from 2.3.2, we get the following equation:

∂tui + Uk∂kui + uk∂kUi + ∂k(ukui − ukui) = −1

ρ
∂ip+ ν∂2

kkui

∂iui = 0

(2.4.1)

Now, we observe that the first line of 2.4.1 is a transport equation for ui. If
we rename this as L(ui), we can obtain a transport equation for uiuj by the

21

normal product rule for differential operators:

L(uiuj) = L(uiuj) = uiL(uj) + ujL(ui) (2.4.2)

We now use 2.4.1 to obtain the following expression for ujL(ui):

∂tuiuj − ui∂tuj + ujuk∂kUi + ujUk∂kui + uj∂k(ukui − ukui)

= −1

ρ
uj∂ip+ νuj∂

2
kkui

(2.4.3)

By adding 2.4.3 to a version of itself with reversed indices, we obtain the
following:

∂tuiuj + ujuk∂kUi + uiuk∂kUj

+ ujUk∂kui + uiUk∂kuj

+ uj∂k(ukui − ukui) + ui∂k(ukuj − ukuj)

= −1

ρ
(uj∂ip+ ui∂jp) + ν(ui∂

2
kkuj + uj∂

2
kkui)

(2.4.4)

We see that the individual terms can be rewritten like this:

ujUk∂kui + uiUk∂kuj = Uk(ui∂kuj + uj∂kui) = Uk∂kuiuj

uj∂k(ukui − ukui) + ui∂k(ukuj − ukuj) = ∂kukuiuj − uj∂kukui − ui∂kukuj
ui∂k(∂kuj) + uj∂k(∂kui) = ∂k(uj∂kui + ui∂kuj)− 2∂kui∂kuj

= ∂2
kkuiuj − 2∂kui∂kuj

(2.4.5)

We now assemble the terms and average (removing the uj∂kukui-terms).
This gives us the final equation, which is known as the Reynold-stress Trans-
port Equation:

∂tuiuj + Uk∂kuiuj =

φij︷ ︸︸ ︷
−1

ρ
(uj∂ip+ ui∂jp)

Pij︷ ︸︸ ︷
−ujuk∂kUi − uiuk∂kUj

− ∂kukuiuj︸ ︷︷ ︸
Tij

− 2ν∂kui∂kuj︸ ︷︷ ︸
εij

+ν∂2
kkuiuj

(2.4.6)

Which is usually written as:

Duiuj
Dt

= φij + Pij + Tij − εij + ν∂2
kkuiuj (2.4.7)

The four new terms are usually called the following:

φij Pressure Redistribution
Pij Production
εij Dissipation
Tij Turbulent transport

(2.4.8)

22

2.5 Modeling unknown terms

Looking at the equations presented in the previous section, we have a bewil-
dering array of new unknowns, and an almost equal amount of new equa-
tions. This closure problem is the cause of the need for turbulence mod-
eling. At the first ’iteration’ we have the RANS equations, which together
with continuity are four equations with 10 unknowns (pressure, the mean
velocities and the Reynolds stresses). We then derive the Reynolds stress
transport equation, but these six equations only add eighteen new unknowns
(φij , εij , Tij). This situation will only become worse, as each new set of equa-
tions inevitably only adds more and more unknowns. It therefore becomes
necessary to model some of these unknown terms as functions of other terms.

As models go, there are two broad categories we will reference: Eddy-
Viscosity models and Differential Reynolds Stress Models (DRSM). The
former attempts to simplify the equations for the Reynolds stresses and
model the effect of turbulence through adding a ’turbulent viscosity’ to
the Navier-Stokes equations. The latter, which we will concern ourselves
with, attempt to model the Reynolds stresses directly through transport
equations. These models attempt instead to create models for the unknowns
in 2.4.7.

The first ’model term’ is in fact no such thing, it is another way to view
the physical quantities we already know. We define the ’turbulent kinetic
energy’ as:

k =
1

2
uiui (2.5.1)

We can get a transport equation for k by setting j = i in 2.4.6 and divide
by 2:

∂tk + Ul∂lk =

1
2
φii︷ ︸︸ ︷

−1

ρ
∂iuip−

1
2
Pii︷ ︸︸ ︷

uiul∂lUi

− 1

2
∂luluiui − ν∂lui∂lui︸ ︷︷ ︸

ε= 1
2
εii

+ν∂2
llk

(2.5.2)

We have put braces on some of the terms, tying them in to terms in the
Reynolds stress transport equations. Note the term uiul∂lUi (half the trace
of the production tensor Pij), which is the production of the kinetic energy.
A common assumption is that φij is traceless, removing the φii-term from
the equation. This assumption is only generally true for homogeneous flows
(p.54, [7]).

The advantage of using k is that it adds no new terms, so we are at least
not making the closure problem worse.

23

2.6 The near-wall production of kinetic energy

If we consider 2D channel flow with a coordinate system with y = 0 in
the middle of a channel with height 2H and the flow driven by a pressure
gradient of strength ∂xP , we have the following from the RANS-equation in
x-direction:

−∂xP
ρ

+ ν∂2
yyU − ∂yuv = 0 (2.6.1)

Observing that this equation must be antisymmetric about y = 0, we have
the following balance:

ν∂yU − uv =
∂xP

ρ
y (2.6.2)

Now, what does this tell us? For one, in laminar flow where uv = 0 we
will have U = −∂xP

2ρν y
2 + ∂xPH2

2ρν . However, in turbulent flows, the order of
U is tied to the order of uv. This means (in most cases) that ‖∂yU‖ will
decrease much faster than the laminar case away from the wall. For a simple
illustration, see figure 2.1.

Figure 2.1: Schematic suggesting the balance between viscous stress (ν∂yU)
and Reynolds shear stress (uv). Here τ = u2

∗. Taken from [7]

It is also common to define a ’friction velocity’ u∗ =
√
−∂xP

ρ . We can

then rewrite 2.6.2 as:
ν∂yU − uv = −u2

∗y (2.6.3)

This is a result which will be used in chapter 5.

24

Now, looking at the production of turbulent kinetic energy with the same
restraints, we see that the only nonzero term in Pij is:

P11 = −2uv∂yU (2.6.4)

The production must be nonnegative, as k cannot be negative. We assume
opposite signs on uv and ∂yU , and see that this makes P11 positive. If we
look at the product of these two terms, we easily see that the production of
turbulent kinetic energy k is largest close to the wall (exactly where varies
with Re). A simple rule of thumb will also be that this point of highest
production will be closer to the wall as the Reynolds number increases.

Now, what does this mean? It means that for the simplest flow, one of the
most important factors for computing a correct velocity profile is decided
in the near-wall area. The simplest argument we can make for near-wall
modeling is then that if this area is important for such simple geometries,
it must be important to model it correctly for more complex geometries.

It also means that all variables must be modeled with good precision,
since we need to model the transfer of energy from k to uv properly. The
argument goes thus: We want the most accurate U , which means we need a
precise value for ∂yU . But to get that, we need a precise value for uv. But
to get this, we need to model the transfer of kinetic energy from k to uv,
which means we need to model the redistribution tensor correctly. We also
know from above that the area of most interest is the near-wall (because of
production). Here we are getting slightly ahead of ourselves, but this is to
foreshadow the assumptions in chapter 3.

Unrelated to our work, this also shows that the integral of turbulent
velocity profile will always be smaller than the laminar case for a given CP
(ie, Reynolds number), which shows that turbulence always removes energy
from the mean flow.

2.7 Modeling ε and turbulent transport

It is also common to model a transport equation for the dissipation trace ε
and have some simplified model for the anisotropy of the dissipation tensor
εij as a function of other variables and ε (we will have to get back to our
specific handling of this at the end of the chapter). It is important to
remember that this equation is purely a model based on the mathematical
form of the k-equation, and does not come from a physical law or set of
equations with a physical basis. The model transport equation for ε we will
use is:

∂tε+ Ul∂lε =
C∗ε1uiul∂lUi − C

∗
ε2ε

T
+
ν

σε
∂2
llε+Q(ε) (2.7.1)

Where C∗ε1 , C∗ε1 and σε are model constants and Q is some model for the
’turbulent transport’ of the ’scalar quantity’ ε. In fact, we notice that most of

25

our current equations (Reynolds stresses, k, ε) require a model for turbulent
transport. For the remainder of the text, we have used the Daly& Harrow-
model [5], since this is a commonly used model. It approximates turbulent
transport as follows:

−∂kukuiuj = ∂k (CµTukul∂luiuj) (2.7.2)

Where Cµ is a model constant and T is some timescale (we will get back
to modeling scales in 2.8). It is usually pointed out that CµTukul has the
same units as viscosity and is usually written as νkl, but we dispense with
this notation, as it simply obfuscates the true model. For the ε-equation,
we have:

Q(ε) = ∂k (CµTukul∂lε) (2.7.3)

But we see that if we are to use these two equations we have to have proper
boundary conditions for no-slip walls. We observe that close to the wall the
flow can be considered to be only a function of y. Note that we will use
y and y = 0, but in this derivation y is the ’wall-distance coordinate’, a
coordinate in a new reference system aligned to the wall, not the Cartesian
y. To avoid further confusion between these wall coordinates, we designate
the normal and tangential components of our coordinate system relative to
the wall as n, t1 and t2. We then have the following Taylor expansion:

ui
∣∣
y=0

= 0

⇓
ut1(y) ' a1y + a2y

2 + a3y
3 + ...⇒ u ' O(y)

un(y) ' b2y2 + b3y
3 + ...⇒ v ' O(y2)

ut2(y) ' c1y + c2y
2 + c3y

3 + ...⇒ w ' O(y)

(2.7.4)

The order of un follows from continuity, as ∂yun = 0 when we assume that
the other components are almost constant in their respective directions very
close to the wall. We then see that for k, we have the following

k
∣∣
y=0

=
1

2
uiui

∣∣
y=0

= 0

k =
1

2
uiui ' O(y2)⇒ ∂yk

∣∣
y=0

= 0

(2.7.5)

We now have two different boundary conditions for k, which means we can
now use our two new equations without any problems. However, when
implementing these equations in computational systems, there are common
difficulties with imposing two boundary conditions at one boundary on one
variable. it is therefore necessary to derive a boundary condition on ε. We
start by observing that by definition

εw = ν∂kui∂kui
∣∣
y=0
≥ 0 (2.7.6)

26

If we assume
∂yut1

∣∣
y=0
6= 0 and ∂yut2

∣∣
y=0
6= 0 (2.7.7)

We get εw ' O(1). If we then look at the least possible order of the terms
in 2.5.2, we have:

O(y2)︷ ︸︸ ︷
∂tk + Ul∂lk =

at least O(y)︷ ︸︸ ︷
−uiul∂lUi −

1

2
∂luluiui

O(1)︷ ︸︸ ︷
−εw + ν∂2

llk (2.7.8)

Which means that in the limit of y → 0, we have

εw = ν∂y∂yk

⇓

lim
y→0

k = A+By +
εwy

2

2ν

(2.7.9)

Now, from 2.7.5 we have A = B = 0, ending up with the boundary condition:

εw = lim
y→0

2νk

y2
(2.7.10)

Although this boundary condition looks rather more complicated to imple-
ment than the simpler ones in 2.7.5, it is just an expression of the same
equation and not a model term, which means a system will behave in the
same way with either of the two boundary conditions.

2.8 The tensors aij, Sij, Wij and scales

When modeling unknowns, it is sometimes valuable to see if one can cre-
ate nondimensional variables and scales (one-dimensional quantities derived
from known variables). These can be used to easily identify the terms which
will be necessary in a modeled equation.

Looking at our variables, we see that we can create a nondimensional
version of uiuj like this:

aij =
uiuj
2k
− 1

3
δij (2.8.1)

This nondimensional tensor is called the Reynolds stress anisotropy tensor,
or simply the anisotropy tensor in this text.

We can also create the following scales [6]:

T = max

{
k

ε
, 6

√
ν

ε

}
L = CLmax

{
k

3
2

ε
, Cη

(
ν3

ε

) 1
4

} (2.8.2)

27

Where the different C’s are determined from experiments. We will come
back to the values we will use at the end of Chapter 4. It is important
to note that these are maximum-expressions because scales should not be
allowed to become zero. An expert reader will note that the first expressions
are the Kolmogorov scales, while the second are combinations of ν and ε
obtained using the pi-theorem.

In addition we can construct the following two tensors from the mean
flow field:

Sij =
1

2
(∂iUj + ∂jUi)

Wij =
1

2
(∂iUj − ∂jUi)

(2.8.3)

These two tensors are called the rate of strain and rate of rotation tensor,
respectively. They are commonly used in modeling, as they are symmetric
and antisymmetric rewritings of ∂iUj .

All of these five variables will be referred to later in the text, they were
collected here instead of introducing them ’on the fly’ in the text.

2.9 The magical mystical φij

Reviewing our equations and variables, the only unknown term we have
not addressed is φij . Before we can evaluate any models, it is important
to examine the physical interpretation of φij . Our first step is to derive
an equation for the fluctuating pressure p. NOTE: The derivation which
follows is usually done for a slightly different pressure-strain redistribution
tensor, but the justifications also work for our (somewhat modified) tensor,
and we have tried to keep the description generic to focus on the general
assumptions. For example, the same approach is used (with regard to JUS-
TIFICATION, not the end result) for the pressure-strain in [15] and the
redistribution tensor in [7]. Firstly, we observe that the basis of modeling
any term in 2.4.6 is that the term can be approximated by function of the
known variables, that is:

φij = fij(uiuj , k, ε, ∂lUk, δij) (2.9.1)

Since this modeling can be done for any of the terms, one usually lumps
several terms into one unknown, like the common expression

φij − εij =

(
φij +

2

3
εδij − εij

)
− 2

3
εδij = φ∗ij −

2

3
εδij (2.9.2)

and we will get back our approach to this in the next chapter.
To the endless grief of the student of turbulence modeling, there is no

solid naming convention for different combinations of tensors, and one must

28

often read carefully what quantities are included in a modeled term (see
differences in notation from [15] and [7]).

We observe that if we take the divergence of the first Navier-Stokes
equation, we get the following:

∇2P̃ = −ρ∂kŨl∂lŨk (2.9.3)

By averaging 2.9.3 and substracting the result from the original equation,
we get the following equation:

∇2p = −ρ(∂kul∂luk − ∂kul∂luk)− 2ρ∂kUl∂luk (2.9.4)

The first two terms of the righthand side of 2.9.4 is commonly called the
’slow’ part and the third term the ’rapid’ part, because the latter changes
immediately as the mean flow changes.

If we disregard the ’slow’ part and considering a homogeneous (un-
bounded) flow, we have a formal solution:

p(x) =
1

4π

∞∫∫∫
−∞

2ρ∂kUl∂
′
luk(x

′)

‖x− x′‖
d3x′ (2.9.5)

If we remember that:

φij = −1

ρ

(
uj∂ip+ ui∂jp

)
By derivating 2.9.5, integrating by parts and using the fact that ∂lUk is
constant in homogeneous flow (details in [7], p 154), we arrive at

ρφhij =
ρ∂lUk

2π

∞∫∫∫
−∞

(
uj(x)∂′i∂

′
kul(x

′) + ui(x)∂′j∂
′
kul(x

′)
) 1

‖x− x′‖
d3x′

(2.9.6)
Where the ’h’ signifies that this result only holds for homogeneous turbulent
flows. This is now used as justification for modeling φhij as:

ρφhij = Mijkl∂lUk (2.9.7)

However, we must remember that our φhij does not model only the pressure-
redistribution, so in addition to the ’rapid’ term, we need a general ’slow’
term which is not a function of ∂lUk. Summed up

ρφhij = Aij +Mijkl∂lUk (2.9.8)

Where both Aij and Mijkl are functions of uiuj , k, ε, ∂lUk andδij . The next
step is then constructing these two tensors in such a way that the numerical
calculations approximate real-life (observed) phenomena. We will not go

29

into much detail on these (homogeneous!) models, except to assume that
they are correct for (homogeneous!) flow.

All this leads to the question: How accurate is the type of models de-
scribed above for flows near walls? The answer is ’pretty accurate, but they
fail very close to the wall’. As shown in 2.6, ∂yU is anything but constant
near the wall, and a basic assumption of these models is that ∂yU is at least
close to constant. However, some of these models are very accurate away
from the near-wall, and it would be nice if one could still use these models
for near-wall modeling. But as we argued in 2.6, the near-wall area is very
important and we would like to model it with the best precision possible.
One would then ask ’is it possible to modify these homogeneous models so
that they work in the near-wall region?’ We believe it is, and that the answer
is Elliptic Relaxation.

30

Chapter 3

Elliptic Relaxation

3.1 The non-local nature of pressure effects

As mentioned in previous chapters, the nature of pressure is elliptic. For
justification, if we look to 2.9.3 we can see that this equation (which governs
the total pressure field) is elliptic, because it is governed by a Laplacian
operator. This means, as mentioned earlier, that a change at one point in
the pressure field can affect the entire field. As such, it would be important
to create a model for φij which can reproduce this elliptic nature. This
is not present in most models which are developed from assumptions of
homogeneous flow, since these model terms tend to be a simple product
of other flow properties. The simplest way to do this is to create a model
equation for φij which is elliptic. Such an equation would then impose this
behavior. Our goals with the Elliptic Relaxation model is to do just that.

3.2 Elliptic pressure and near-wall effects

If we consider the effects discussed in 2.6, we can assert the following:

1. The large area in the middle of the stream where ∂lUk is near zero fits
well with the basic assumption of homogeneous models for φij (∂lUk
is almost constant)

2. The near-wall region where ∂lUk is rapidly changing does not fit the
basic assumption

From the first assertion we can say that a model for φij using homogeneous
assumptions will not be too wrong in the middle of the flow field. But the
second tells us that the opposite should be true close to the wall: A model
for homogeneous flow would by it’s very nature be ill-suited for this area.
Our assumption with the Elliptic Relaxation model is that the most critical
property missing from a homogeneous model when modeling a nonhomoge-
neous flow is the elliptic nature of the pressure.

31

As mentioned in 2.6, we know that for channel flow the redistribution of
energy from uu to uv is important if we are to model ∂yU correctly. Since
we know that the production of kinetic energy and the greatest region of
change in ∂yU is the near-wall region, this adds further motivation for us
to create a very accurate redistribution model for this region. We can infer
from this that redistribution should be important close to walls in general.

Now, as mentioned in the introduction, our hope is that the Elliptic
Relaxation model will model near-wall effects better. But as a perceptive
reader might notice, out model does not concern itself with near-wall effects
per se. This is because that our theory is that by better modeling the effects
of elliptic pressure fluctuations we will have a model which is more accurate
for both the mean flow and the near-wall.

Lastly, it might be conceptually helpful to point out that the Elliptic
Relaxation model is not a model in itself, but a modification of an existing
model (for homogeneous flow). We have for simplicity’s sake called it a
model, as this is simpler than referring to it as ’model modification’. But we
will occasionally refer to it as a ’modification’ or ’method’, based on context.
In general, when referring to the ’ER model’ we consider the entire set of
equations we are using, while when we use the name ER ’modification’ or
’method’, we are referring to the difference between our model and a normal
homogeneous model (there will be slight elaboration on this later).

3.3 Derivation of the Elliptic Relaxation Model

This section is mostly a reproduction of [8], so we will not cite that article
throughout the text, but the reader would be aware that they are very
similar. We remember from the last chapter, that we had found an equation
for the ’rapidly’ fluctuating pressure, 2.9.5, reproduced here:

p(x) =
1

4π

∞∫∫∫
−∞

S(x′)︷ ︸︸ ︷
2ρ∂kUl∂

′
luk(x

′)

|x− x′|
d3x′ (3.3.1)

Which leads to the following equation for the ’rapid’ parts of φij :

ui∂jp(x) =
1

4π

∞∫∫∫
−∞

ui(x)∂S(x′)
∂xj

|x− x′|
d3x′ (3.3.2)

If we now assume we can rewrite ui(x)∂S(x′)
∂xj

as:

ui(x)
∂S(x′)

∂xj
= Rije

−|x−x′|/L (3.3.3)

32

(OBS: Rij is not symmetrical!) We obtain an equation on the form

ui∂jp(x) =

∞∫∫∫
−∞

Rij
e−|x−x

′|/L

4π|x− x′|
d3x′ (3.3.4)

This equation is the Green’s function solution for a modified Helmholtz-
equation on the form:

∇2ui∂jp(x)− 1

L2
ui∂jp(x) = Rij (3.3.5)

This can be used to get the following equation:

∇2φij −
1

L2
φij = −Rij +Rji

ρ
(3.3.6)

We can then use this equation to get create the following model equation:

L2∇2fij − fij = −
φhij
k

(3.3.7)

where kfij = φij . The factor of k also enforces the proper behavior φij = 0
at walls. It is then important to note that the core of the Elliptic Relaxation
is Laplacian term L2∇2fij . Thus when we refer to the ’ER modification’ in
the mathematical sense, we are referring to this term. We see that without
this term we recover the homogeneous model. This is indeed what happens
when in an area of homogeneous flow, as spatial derivatives (the Laplacian)
is zero.

This might look like a small modification, but note that before φij was
just a product of other variables, and was for this reason easily computed.
With Elliptic Relaxation we need to solve the 6 equations for the entries in
fij , adding to the computational complexity of the system.

3.4 Further modifications

As mentioned in the last part of the previous chapter, it is common to
include parts of other unknowns into a modeled unknown like our fij , and
our model is no different. We have until now not mentioned modeling of the
term εij , an this is the reason. Since our model includes a separate equation
for ε, we make the following modification to our model:

φ∗ij = φij − εij + ε
uiuj
k

(3.4.1)

We would now reason that a modification of the equation for fij is in order,
and insert the following:

L2∇2fij − fij = −
φhij
k
− 2aij

T
(3.4.2)

33

Looking at 2.4.7, we now have:

Duiuj
Dt

+ ε
uiuj
k

= φ∗ij + Pij − Tij + ν∂2
kkuiuj (3.4.3)

We immediately see that in the homogeneous limit we get

φ∗ij → φhij + ε
uiuj
k
− ε2

3
δij (3.4.4)

which means that our model reverts to the common homogeneous model.
To avoid further confusion, from this point onwards we will drop the φ∗ij-
notation.

The reasons for moving the new term to the left side is simply con-
venience, as it makes no simplifications. As such, we feel it is perfectly
reasonable, but we will note that this might mean that models for φhij which
do not make this assumption might not fit that well with the Elliptic Re-
laxation model outlined in this chapter. However, it should be simple to see
how our model could be rewritten to accommodate such differences in the
φhij-model.

3.5 Boundary Conditions

Since 3.3.7 is elliptic, we require boundary conditions to solve it. To obtain
these, we do a similar analysis of terms as in 2.7.8, but need to be a little
more careful, as fij is a tensor, not a scalar. If we assume uiuj ∼ O(yq),
we have q = 2 for utut, 3 for utun and 4 for utut, irrespective of specific
tangential component. We now have the following

O(yq)︷ ︸︸ ︷
∂tuiuj +

O(yq+1)︷ ︸︸ ︷
Uk∂kuiuj =

O(?)︷︸︸︷
φij

at least O(y3)︷ ︸︸ ︷
−uiuk∂kUj − ujuk∂kUi +

O(yq−2)︷ ︸︸ ︷
ν∂2

kkuiuj

− uiuj
k

ε︸ ︷︷ ︸
O(yq−2)

+ ∂l (CµTulum∂muiuj)︸ ︷︷ ︸
O(yq+4)

(3.5.1)

We note that this means φij must be O(yq−2) or higher close to the wall.
This an interesting fact, which should be considered. If we assume the
pressure fluctuations to be ∼ O(1), the order of φij is only higher for q 6= 2,
where it is ∼ O(y). We will in any case see that this analysis has problems
for q 6= 2. What this means is that as one get very close to the wall, for the
components nn and nt the principal effects are viscous stresses, dissipation
and redistribution. This should mean that redistribution is important for
modeling unun, unut1 and unut2 very close to the wall.

To continue, we also observe that:

∂2
kkuiuj ' q(q − 1)

uiuj
y2

(3.5.2)

34

and as y → 0, we have from 2.7.10:

y2 =
2νk

ε
(3.5.3)

Looking at only terms of O(yq−2) or less, we have:

lim
y→0

φij = lim
y→0

uiuj
k

ε− ν∂2
kkuiuj

⇓

lim
y→0

fij = lim
y→0

uiuj
k2

ε− q(q − 1)

2

uiuj
k2

ε

= lim
y→0

(
1− q(q − 1)

2

)
uiuj
k2

ε

(3.5.4)

If we designate the normal and tangential components relative to the wall
as n, t1 and t2, we gain the following boundary conditions on fij :

fnn = −5 lim
y→0

unun
k2

ε

fnt1 = −2 lim
y→0

unut1
k2

ε

fnt2 = −2 lim
y→0

unut2
k2

ε

ft1t1 = ft1t2 = ft2t2 = 0

(3.5.5)

The last three conditions are rather problematic as they do not uphold the
condition fii = 0 close to the wall. Instead Demuren and Wilson [8] used
the following condition:

ft1t1 = ft2t2 = −1

2
fnn (3.5.6)

And we intend to use this condition.
Another problem is the nonlinearity with respects to k in the boundary

condition. This might cause instability in the system. However, there is a
rather simple fix for this. If we can find a value for the wall distance y, we
can replace ε

k2
with 4ν2

εy4
. This condition is then still nonlinear because of the

product
uiuj
ε , but should be more stable than before.

We have now assembled all the parts of our Elliptic Relaxation model,
and will move on to implementation. The next page will sum up our equa-
tions

35

3.6 The final model

We have now arrived at the final model to be used for the rest of this thesis:

Duiuj
Dt

= kfij−uiul∂lUj−ujul∂lUi+ν∂l∂luiuj−
uiuj
k

ε+∂l (CµTulum∂muiuj)

Dk

Dt
= −uiul∂lUi − ε+ ν∂l∂lk + ∂l (CµTulum∂mk)

Dε

Dt
= −

C∗ε1uiul∂lUi + C∗ε2ε

T
+ ν∂l∂lε+ ∂l

(
CµT

σε
ulum∂mε

)

L2∇2fij − fij =
φhij
k
− 2aij

T

T = max

{
k

ε
, 6

√
ν

ε

}
, L = CLmax

{
k

3
2

ε
, Cµ

(
ν3

ε

) 1
4

}
With the boundary equations on walls (y is the wall normal coordinate):

uiuj = 0 k = 0 ε = lim
y→0

2νk

y2

fnn = −5 lim
y→0

unun
k2

ε fnt1 = −2 lim
y→0

unut1
k2

ε fnt2 = −2 lim
y→0

unut2
k2

ε

ft1t1 = ft1t2 = ft2t2 = 0

36

Chapter 4

Implementation

4.1 The Finite Element Method

We assume that the reader is familiar with the basic concepts of the Finite
Element Method (FEM), more specifically the Galerkin method and com-
mon bases for test/trial-functions. Fortunately, we will not be using very
complicated FEM-methods or venture much further into the workings of the
FEniCS compiler. As such, a reader unfamiliar with FEM should be able
to follow most of the arguments in this chapter.

It is important to note that there is a reluctance in some parts of the sci-
entific community to use FEM with Computational Fluid Mechanics (CFD).
We are not aware of the nuances of the arguments for or against this, though
there will be some discussion of possible problems in chapter 5. It is im-
portant to point out that the systems of equations which are derived from
naive discretization with Finite Differences, the much lauded (in the CFD
community) Finite Volume Method and the Finite Elements Method are
surprisingly similar, in some cases identical. As such we cannot see large
problems with using FEM, and for further justification see [12].

4.2 A note on FEniCS

From the FEniCS web page [1]:

The FEniCS Project is a collection of free software aimed at au-
tomated, efficient solution of differential equations. The project
provides tools for working with computational meshes, finite el-
ement variational formulations of PDEs, ODE solvers and linear
algebra.

FEniCS is an attempt to create a package for the Python programming
language which will allow the solving of differential equations with FEM in
a manner very similar to analytical work with those equations. The goal is

37

to reduce the time used by the user on setting up numerical solutions and
removing the need for complicated code for what could be considered ’trivial
tasks’ like computing the entries in a matrix. The flip side of this is that
as more thing are done in a ’black box’ manner, the user looses control of
some details, which can lead to mistakes (one example of this is presented
in chapter 5).

We will not delve into the mysteries of FEniCS, noting only that it allows
us to write code for FEM which is almost identical to the mathematical
model we create. This means that the time used writing code is reduced,
and that even to someone not familiar with Python or FEniCS, the code
should be somewhat readable. For a reader interested in the ’nuts and bolts’
of FEniCS, we refer to [1] and [12].

4.3 CBC.RANS

From the CBC.RANS page on launchpad [2]:

CBC.RANS is a FEniCS-based programming framework for mod-
eling turbulent flows by the Reynolds-Averaged Navier-Stokes
Equations. CBC.RANS is primarily being developed as a joint
effort between the Norwegian Defense Research Establishment
(FFI), Kjeller, Norway and Simula Research Laboratory in Oslo,
Norway. The solvers are developed in Python and provide a sim-
ple interface, where new turbulence models can easily be added.
The Navier-Stokes solvers can be used for both laminar and tur-
bulent flows, steady state or transient. Currently implemented
models contain the standard k-epsilon model, the Spalart All-
maras model and the V2F model. CBC.RANS is distributed
freely in the hope that it will be useful, but without any war-
ranty.

CBC.RANS is an attempt to create a programming framework which can
handle a large number of turbulence models with the least possible amount of
work done implementing each model. Through clever use of object oriented
programming, the user needs only write small pieces of code to implement
new models as classes. These models can be further modified or elaborated
upon by creating a subclass. In the end this allows for incredibly rapid
change in the mathematical model without having to rewrite large pieces of
code. In essence, CBC.RANS is a further refinement of the FEniCS goal of
creating a simple mathematical framework, focused on turbulence modeling.

Now that our computational tools have been introduced, we turn to
modifying our mathematical system so that it can be used in code.

38

4.4 Test- and trial-functions

We will for a great part of this text avoid mentioning test- and trial-functions.
Because our focus is on stability and convergence and our solver is rather
simple, there is little to be gained by using complicated test- and trial-
functions. As such, we use Continuous Galerkin elements of order 1 for all
our variables. In the case of vectors and tensor, FEniCS handles the rear-
ranging of entries as separate equations. We simply define a test function
on the function space for the tensor variable.

There are also little advanced use of test functions. They are always from
the same function space as the equation they are testing, and only modified
in the case of the Laplacian terms. The latter case is covered below in 4.5.

The following equations will not follow the test/trial-function notation
common in FEM. There are two reasons for this: Firstly, this serves to keep
the chapter as general as possible, as the inclusion of test functions and
integrals would clutter up the equations, making them difficult to read for
someone not well-versed in FEM. This will also keep the text accessible for
someone looking to implement the same in FDM/FVM. Secondly, FEniCS
diverges from this notation so there is little to be gained in using it. Instead
we encourage the reader to consult the appendices when done with this
chapter, as the use of test/trial-forms there should be easy to read.

4.5 Rewriting ∇2-terms

One basic relation which will be used when computing the inner products
in the code and used in the reasoning behind linearization is the following:
Assuming f and g to be functions in space, we have:∫∫

Ω
f∇2g dΩ = −

∫∫
Ω
∇f · ∇g dΩ +

∫
∂Ω
f(n · ∇g) ∂Ω (4.5.1)

similarly for vector or tensor functions:∫∫
Ω
V : (∇ ·A) dΩ = −

∫∫
Ω

(∇V) : A dΩ +

∫
∂Ω

V : (n ·A) ∂Ω (4.5.2)

(In fact, we see the scalar equation as a special case of the general tensor
equation, but not all readers might see it that way, so we included both.
Note also that A is one order higher than V.)

Now we notice that the last term in both equations is only evaluated
at the edges of the domains. In fact, these terms are the common way to
implement the boundary conditions on the system. However, since FEniCS
implements boundary conditions in a ’black box’-manner, it is not included
in the equations inside the boundary. We treat our boundary conditions in
a slight different manner, but we will still not use this formulation. Thus
we will disregard this boundary integral term in the following derivations.

39

As such, the viscous Laplacian and the turbulent transport terms are
the ones that require rewriting, while the rest are simply the original term
multiplied by a test function and integrated over the cell. If we assume v
and V are appropriate test functions, they are rewritten:

v∇2f = −∇v : ∇f
V : ∇2A = −∇V : ∇A

(4.5.3)

Although we will not rewrite our equations in this chapter, this is important
for the justification behind our linearization, as will be seen. We apologize if
this is somewhat confusing, but since the rewriting modifies the test function
and we do not include test functions in the equations in this chapter, we felt
it best not to rewrite the equations.

4.6 Our system of equations on vector form

Since CBC.RANS uses a lower case u for the velocity vector, we return to a
proper vector notation (lowercase for a vector). It is then important to note
that u in this chapter is not the fluctuations, but the mean velocity (Ui in
chapter 2). We rewrite our variables from chapters 2 and 3 in the following
manner (summation over indices is implied):

u = Uiei

R = uiuj eiej F = fij eiej
S = Sij eiej W = Wij eiej
I = δij eiej A = 1

2kR−
1
3I

P = −R · ∇u− (R · ∇u)T

ν∇2R− u · ∇R + kF + P− R

k
ε+∇ · (CµTR · ∇R) = 0

ν∇2k − u · ∇k +
1

2
tr(P)− ε+∇ · (CµTR · ∇k) = 0

ν∇2ε− u · ∇ε+
C∗ε1

1
2tr(P)− C∗ε2ε

T
+∇ ·

(
CµT

σε
R · ∇ε

)
= 0

L2∇2F− F +
φh

k
+

2

T
A = 0

(4.6.1)

Here all terms have been rearranged on the form f(x) = 0, since this formu-
lation is useful when using FEM. We have also removed the time derivatives,
as we are investigating stationary flows.

40

4.7 Method for approximating the solution

As seen above, we have a set of nonlinear partial differential equations.
When discretized with the Finite Element Method, we will need an algorithm
to solve a (now discrete) set of equations for a large number of unknowns.
Since our goals is to investigate the stability of several differently coupled
systems, it seems logical to choose a rather simple and robust solver.
In vector notation, our system could be written like this:

E(x) · x = f(x) (4.7.1)

where E is a matrix which describes the equations for the set of unknowns
x and f is vector function of x. Finding the solution for our set of equations
would then be the same as finding the x which solves 4.7.1.

Solving such a nonlinear system of equations for x is rather difficult.
Several methods exist, but these are sometimes difficult to implement or only
usable for particular cases. Our approach is to solve the system by a simple
relaxed Picard iteration, which is to say that we linearize the equations in
the following way: We start at an initial guess for the set of unknowns x0.
Then we rewrite the system as follows:

E∗(xn) · x∗ = f∗(xn)

xn+1 = θx∗ + (1− θ)xn
(4.7.2)

Where E∗ is a constant matrix and f∗ a constant vector, both computed from
the values stored in xn and θ is a relaxation parameter. The values stored
in xn are generally called ’old’, since they are from the previous iteration.
Solving for xn+1, the hope is that as one continues to iterate, xn+1 will con-
verge towards the x which will solve 4.7.1. Although mathematically simple,
the method of Picard iteration usually has problem with convergence, but
our hope is that a relaxed method will work better.

The most important part of this method is choosing how to derive the
linearized forms for E∗ and f∗ from E and f . Which terms to evaluate at
x∗ and which can be calculated from xn might be difficult to judge at first
glance. Choosing a good linearization will ensure stability and can speed up
convergence, while a bad choice will lead to instability and little chance of
convergence. Any terms which include a x∗ are inserted into E∗, while the
rest of the terms are inserted into f∗. This is commonly referred to as the
left-hand and right-hand side of 4.7.2 respectively.

When solving for a large system with several different unknown func-
tions, it is common to split the system into into several parts with each part
composing one or more (but not all) of the unknowns, and solve for each part
in turn. Since we only solve some of the unknowns, we use old values from
the last iteration step of their respective solvers for the other unknowns. We
use the term ’uncoupled system’ or ’segregated system’ for these kinds of

41

systems, whereas an undivided system is termed ’fully coupled’. Uncoupled
systems are inherently less stable, but the payoff is a reduced time cost to
the calculations.

It is important to note that no matter the coupling of systems, they will
converge towards the same solution to the equations E, as we assume there
is only one solution. The difference between them lies in the time used to
compute each iteration and the stability.

How to construct E∗ and f∗ will be covered now.

4.8 How CBC.RANS handles turbulence models

Although [11] gives a more in-depth overview of how CBC.RANS handles
solving systems of differential equations, we will attempt to give a brief
explanation, to give the reader a general understanding. Any in-depth ex-
planation would probably become a lower quality reproduction of [11]. We
have however tried to keep the rest of this chapter more general, only com-
menting on specifics in the code when necessary.

CBC.RANS decouples the equations governing the mean flow field and
pressure from the turbulence model and creates a separate system for solv-
ing these equations. The base class for this solver is NSSolver (stored in
NSSolver.py). This is so that models developed for efficient solving of the
Navier-Stokes equations can be applied to this solver. These schemes are
created as subclasses of NSSolver. The turbulence model interacts with the
Navier-Stokes solver through manipulating variables used by it, for example
viscosity (for an eddy-viscosity model) or the body forces (for a DRSM). Our
model does both, for reasons we will explain later. In this way, the NSSolver
is solving equations which are mathematically similar to the Navier-Stokes
equations.

The turbulence model is managed in a similar way, under a base class
called TurbSolver. There is naturally a greater variation in the subclasses
of TurbSolver than it’s counterpart NSSolver. These subclasses are free
to create any number of variables and quantities, allowing them to be very
simple (like a no-frills k-ε model) or very complicated (our ER model). In
general a turbulence model has a parent class with simply the model name
(eg, StandardKE), and then have subclasses holding different linearization
schemes. Because of this division, we will not cover the NSSolver in any
detail except for a small section below. We concern ourself almost exclusively
with the linearization and solving of our turbulence model.

To set up a problem, CBC.RANS uses a class which includes the geome-
try, called TurbProblem. A given geometry is then a subclass of TurbProblem.
The subclasses of TurbProblem we will concern ourself with are channel,
diffusor and apbl. We not go into much detail about the TurbProblem

class except to note peculiarities which affect our code in some sections.

42

4.9 Source terms, scales and linearization

Looking at our equations, we see that most are on the form:

∇2-term+source terms−convective term+turbulent transport = 0 (4.9.1)

These names are meant for descriptive purposes only, to better explain
our linearization. Though the names are based on physical effect, these play
little part in the following section. Why do we distinguish between such
terms? Because we must try to avoid a system like 4.7.2 with zeroes on the
diagonal of the matrix. Since these terms will be linearized differently, it is
important to make a distinction between them. Systems with zeroes on the
diagonal are much more likely to result in unstable systems, as there is an
increased chance that the matrix E∗ will be singular. Now, it is important
to note that as we rewrite the Laplacian and turbulent transport-terms in
the equation, these equations change sign (see 4.5).

Note that is common to use the words ’explicit’ for a term which uses
old values and ’implicit’ for terms which uses new values. We will continue
to use the term ’old’ and ’new’ for variables, as we think these terms are
clearer for an uninitiated reader. We must also note that the rule of thumb
is that using implicit or ’new’ values is best for stability, but that we have
to use caution concerning the diagonal, as noted above.

We define ’source terms’ as terms which physically add or remove en-
ergy and which work only at the point. It is true that the convective and
turbulent terms also add or remove energy from one point, but this energy
should theoretically be added at some other point and these terms are al-
ways dependent on nearby points through space derivatives. In our case this
means terms involving the production tensor P and the ε-terms in the case
of equations for k, ε and R. We see that in the case of the R-equations,
contributions from P will always lie on the diagonal. Assuming a positive
value for the production, we then have a system where all terms except the
production will have equal sign. This means that without the production
term, chances are good for getting a non-zero diagonal. With it on the diag-
onal, however, we have a real risk of entries with the value of zero. As such,
it is very important for stability to move the production to the right-hand
side of the equation, that is f∗ in 4.7.2. We must then only use old values
for P.

Looking at the ε-terms, the opposite applies. As these terms will be
negative, we would like to have them on the diagonal. In the equation for
R this is done by simply using old values for k and ε. For the k-equation,
this is usually done by using an old value for ε and multiplying by the new
k, then dividing by the old k. Further, Mikael Mortensen has found that
there in an increase in stability if we discretize the ε-part in a ’half-implicit,
half-explicit’-manner. We then rewrite:

43

ν∇2k − u · ∇k +
1

2
tr(P)−ε+∇ · (CµTR · ∇k) = 0

⇓

ν∇2k − u · ∇k +
1

2
tr(P)−

(
edε+ (1− ed)

k

k
ε

)
+∇ · (CµTR · ∇k) = 0

(4.9.2)

Where ed is a constant, 0.5 in all our cases. In this case we get some stability
from the avoidance of a zero diagonal AND using new values for ε.

The convective term has a rather common scheme, with a very good
physical basis. Convecting velocity is always the velocity at the last itera-
tion step, making the term linear. This is justified by the fact that to make
sure that the convection does not remove or add energy, the convecting ve-
locity field must be divergence-free. Since the second of the Navier-Stokes
equations makes sure that any velocity found from a system of these equa-
tions is divergence free, we use a convecting velocity from an old iteration.
For more details, see article on convection in [12]. This is of course a moot
point, as we must always use an ’old’ value for the velocity, since the solver
for the velocity field is uncoupled from our solver.

Concerning the scales T and L, we see that to evaluate them as func-
tions of new values would add a large amount of nonlinearity to the system.
Looking at the equations, there seems to be no term where the scaling con-
stants should be more important than some other variable. This, coupled
with the fact that these constants are based on modeling and not on any
physical phenomena, would seem to make it reasonable to evaluate them
using values from the previous iteration.

Looking at the turbulent transport, we can see that it seems most appro-
priate to use the new value of the property being ’transported’ while using
old values for the ’turbulent convection’ (ie, the Reynolds Stresses in the
term).

Concerning the kF-term, which does not fit our earlier categories, it is
obvious that this is important for our model. We see that when this term
is using new values, it will never be on the main diagonal. In this case,
we don’t need to regard it with this demand in mind. How this term is
linearized is only a problem when k − ε is coupled with F. In this case it
seems more proper to use an old value for k, and solve for F. In all other
cases we have chosen to use new values, since we see no immediate problem
with this.

44

4.10 Equations on vector form and linearized

Following our conclusions from the previous sections, we have the following
discretizations, with an underline denoting an ’old’ value:

ν∇2R− u · ∇R +

see below︷︸︸︷
kF +P− ε

k
R +∇ · (CµTR · ∇R) = 0

ν∇2k − u · ∇k +
1

2
tr(P)−

(
edε+ (1− ed)

k

k
ε

)
+∇ · (CµTR · ∇k) = 0

ν∇2ε− u · ∇ε+
C∗ε1tr(P)

2T
−
C∗ε2ε

T
+∇ ·

(
CµT

σε
R · ∇ε

)
= 0

L2∇2F− F +
φh

k
+

2

T
A = 0

(4.10.1)

where

P = −R · ∇u− (R · ∇u)T (4.10.2)

As mentioned previously, the kF-term is dependent on how the system is
coupled. It will either be kF if F is coupled with R, or kF if they are
uncoupled.

4.11 Different schemes for φhij

Up until this point, we have not addressed the specific form of φhij . This is
because this term is not strictly a part of the Elliptic Relaxation model, and
we wanted to keep the model as general as possible during the derivation.
But for testing, we need a model φhij to test with. We have decided to use
the LRR-IP and SSG models (described in [13] and [15] respectively). The
LRR-IP is a rather simple model, where:

φhij = −CR
2k

T
aij − CP

(
Pij −

Pll
3
δij

)
(4.11.1)

which when linearized and in vector form becomes:

φh = −CR
2k

T
A− CP

(
P− tr(P)

3
I

)
(4.11.2)

The first term here is implicit, as we see that it will not add to the diagonal,
so using new values should increase stability.

45

Another model, which is much more accurate, is the SSG model:

φhij = −(C1ε− C∗1 tr(Pij))aij + C2ε(aikakj −
1

3
amnamnδij)

+(C3 − C∗3 (amnamn)
1
2)kSij + C4k(aikSjk + ajkSik −

2

3
amnSmnδij)

+C5k(Wikakj +Wjkaki)

(4.11.3)

This equation can be written on vector form as:

φh = − (C1ε− C∗1 tr(P))A + C2ε

(
A ·A− 1

3
(A : A)I

)
+
(
C3 − C∗3 (A : A)

1
2

)
kS + C4k

(
A · S + S ·A− 2

3
(A : S)I

)
+C5k

(
W ·A−A ·W

) (4.11.4)

Lacking a reference for implementation of this term, we had to experiment
with the terms with regards to linearization. The results of this is discussed
in chapter 5.

4.12 2D-simplification and symmetric tensors

FEniCS has one major disadvantage with respects to our system: It can
only support 2D meshes. As such, we will be unable to test for 3D flows.
However, this is no big problem, as the Elliptic Relaxation model is suffi-
ciently untested in FEM to keep 2D results interesting. Another problem
we encountered, which has not been resolved by the FEniCS developers, is
a bug stopping us from creating coupled function spaces with symmetric
tensors, which are need for a system of coupled R and F. As we are unable
to address this directly, our code must solve with four entries in R and F,
and set the off-diagonal entries to be equal after each iteration. This way
we keep the symmetry after each iteration, but it is important to note that
the solver could assign different values and this could be a cause of instabil-
ity. However, this is a moot point as a mixed symmetric function space is
impossible. It will also use more time and require more memory, but this is
of less consequence for our work.

4.13 Implementation of boundary conditions

CBC.RANS already includes code for implementing the boundary condition
on ε, so we will not cover that. To set up our boundary conditions for Fij ,
we consider the following system:

46

N = span {t,n} and S = span {e1, e2} (4.13.1)

Where n and t are unit vectors respectively normal and tangential to the
wall. We then have the following transformation rule:

AN = [t,n]−1
S AS [t,n]S (4.13.2)

Where the AN denotes a generic matrix/tensor in the N coordinate system
with entries aij . If we write this out fully for 2D, we have:

AN =

[
n2 −n1

n1 n2

] [
a11 a12

a12 a22

] [
n2 n1

−n1 n2

]

=

[
n2

2a11 + n2
1a22 − n1n2(a12 + a21) n1n2(a11 − a22) + n2

2a12 − n2
1a21

n1n2(a11 − a22) + n2
2a21 − n2

1a12 n2
2a11 + n2

1a22 + n1n2(a12 + a21)

]
(4.13.3)

We have the following boundary condition:

FN =

[
10Cunun −8Cutun
−8Cutun −20Cunun

]
(4.13.4)

Where we adopt the notation C = ν2

εy4
for brevity. This now gives us:

[
n2 −n1

n1 n2

] [
f11 f12

f12 f22

] [
n2 n1

−n1 n2

]
=

[
10CRnn −8CRtn
−8CRtn −20CRnn

]
(4.13.5)

⇓[
n2

2f11 + n2
1f22 − n1n2(f12 + f21) n1n2(f11 − f22) + n2

2f12 − n2
1f21

n1n2(f11 − f22) + n2
2f21 − n2

1f12 n2
2f11 + n2

1f22 + n1n2(f12 + f21)

]
=[

10C
(
n2

2R11 + n2
1R22 + n1n2(R12 +R21)

)
−8C

(
n1n2(R11 −R22) + n2

2R12 − n2
1R21

)
−8C

(
n1n2(R11 −R22) + n2

2R21 − n2
1R12

)
−20C

(
n2

2R11 + n2
1R22 + n1n2(R12 +R21)

)]
(4.13.6)

Though it seems complicated, this equation is simple to construct with inner
products, and has been implemented in the different codes in Wall.py in
CBC.RANS, provided in the last appendix.

One important thing to notice is that we have chosen to use the ’y-
definition’ of the fij-boundary condition, for the reasons explained in chapter
3. Since the wall distance is constant for each node, we compute it at the
start of each run by using the Eikonal equation [17].

47

4.14 The different schemes for coupling

As mentioned in the section on CBC.RANS, we will be unable to construct
a fully coupled system, as CBC.RANS always uncouples the Navier-Stokes
equations from the turbulent model equations. However, there are still sev-
eral possible schemes for coupling our equations. They are as follows:

(1) ER FullyCoupled k-ε, Reynolds stresses and fij fully coupled
(2) ER 2Coupled k-ε coupled, Reynolds stresses and fij coupled
(3) ER 3Coupled k-ε coupled, Reynolds stresses and fij uncoupled

We have implemented these three schemes in CBC.RANS and the names for
them follow the conventions for naming turbulence solvers in CBC.RANS.
They are all subclasses of the class ER, which holds the basic variables used
by all versions of our system.

The reason that k and ε are always coupled is because of the stability of
the boundary condition for ε. This boundary condition will create a large
amount of instability when it is based on old values of k. Since we concern
ourselves with Reynolds stresses and φij , we see no reason to argue with
this approach. It is also no perceivable benefit to solve with F coupled with
k and ε with R alone (this reasoning will prove to be justified in the next
chapter).

Further, if we assume the unknowns are stored in a vector on the form
[k εRF]T , a quick look at the equations show that the matrix for a fully
coupled system will take the following form: KE KER KEF

RKE R RF
FKE FR F

 =

 KE 0 0
0 R RF
0 FR F

 (4.14.1)

The righthand part of this equation stems from the fact that we can see
that there are no implicit contributions from the equations for k and ε in
the equations for R and F, and vice versa. This is because in the lineariza-
tion process we put priority on terms involving the terms the equations
was supposed to model. As such, there is little lost when decoupling with
the scheme ER 2Coupled. We think it is a good assumption that the pre-
cision lost in ER 2Coupled is more than made up by the faster iterations,
so in the end ER 2Coupled will use less time in reaching a solution than
ER FullyCoupled and be practically just as stable.

Based on the fact that a fully coupled scheme is the most stable, scheme
1 should be the most stable, followed by 2, and 3 should be fastest (but
possibly very unstable).

How the matrices and vectors in these schemes will look should be ap-
parent from the previous sections. Instead of writing all three here, an
interested reader should consult the appendices as they should be easy to
read in the code. They can be found at the end of each of the subclasses.

48

4.15 Avoidance of negative values

As we know from previous chapters, some of our unknowns cannot have
negative values. This holds for k, ε, u2 and v2. However, sometimes an
iteration will set these to negative values, and this must not be allowed to
happen. Negative values of these variables will quickly create instabilities
and might create convergence towards an unphysical solution. To fix this
we have included a check which sets all values for these variables which are
negative equal to 10−12, that is to say slightly above zero. This check is
done after each iteration step, in the update-method.

4.16 The function Cε1

CBC.RANS uses a common rewriting of the model constant Cε1, in which
it is a nondimensional function:

Cε1 = 1.4

(
1 + Cεd

√
k

max(10−10,R : nn)

)
(4.16.1)

Where n is the normal vector of the closest wall. Note that this means
that the tensor nn is constant except where there is an equal distance to
the closest wall, where it is zero. However, we have not encountered large
problems with this, as this will almost never happen with an even number
of nodes. The maximum is there to prevent the divisor from becoming zero.
We see that for channel flow, this gives us:

Cε1 = 1.4

(
1 + Cεd

√
k

max(10−10, v2)

)
(4.16.2)

Note that since Cεd is very small, this only has an effect when k is much
larger than v2 (ie, the near-wall) and works to increase the production of ε
in this region.

4.17 Interaction with NSSolver

We have up until now not mentioned how our ER-schemes interact with the
NSSolver. As mentioned previously, CBC.RANS allows manipulation of the
viscosity and body forces. The modified version of the first Navier-Stokes
equation used by CBC.RANS reads:

Du

Dt
= −1

ρ
∇p+∇ · ([ν + νT])∇u) + f (4.17.1)

Where νT is some eddy viscosity, and f are the body forces, generally zero.
Now, we generally want to have an eddy viscosity as it adds to stability

49

(following the same reasoning as in our linearization). f has little impact on
stability, as it in an explicit term on the right-hand side. As such removing
the eddy viscosity might be counterproductive. We have instead modified
our f in the following way:

f∗ = f −∇ · (νT∇u−R) (4.17.2)

Mikael Mortensen proposed the eddy viscosity

νT =
Cν
T

R : nn (4.17.3)

Note that in a channel, this means that:

νT =
Cµ
T
v2 (4.17.4)

And it is an attempt to capture this behavior for a general geometry that
lead to Mortensen’s proposed model. We will not mention this model in the
results but we will note here that instabilities never start in the NSSolver,
which means that at that in our work this modification has not been a
problem.

4.18 Model constants and Reτ

Up until this point we have not given specific values to our model constants.
This is simply because we want to keep our explanations as flexible as pos-
sible. However, for our computation the values are all taken from their
respective articles, and we have reproduced them in the code and in the
nomenclature list.

There is also the matter of the dynamic similitude of our computations.
All CBC.RANS turbulence problems takes the turbulent Reynolds number
Reτ as input. This number is the ratio between half channel width times
friction velocity u∗ (from 2.6) and the viscosity. This is rather unimportant
for our computational stability since it justs sets values to fit a certain ratio.
The reader should consult chapter 4 in [7] for more information on Reτ . In
CBC.RANS the friction velocity is arbitrarily set to 0.05 and the channel
width is alway 2, so for our computations this means:

Reτ =
u∗H

ν
⇒ ν =

0.05

Reτ
(4.18.1)

These numbers are important for interpreting the values on the axes of plots
in chapter 5. One should note that the value for u∗ is used to compute the
viscosity and decide the profile for channel flow. In more complex geometries
the parameter Reτ is only used for setting the viscosity and inflow/outflow
profile.

It is important to note that all this means that a given model might
not give the same bulk velocity Re for a given Reτ as another model, so
comparison between different models should keep this in mind.

50

4.19 Mesh resolution near walls

It should be clear at this point that an increase in mesh resolution close
to walls would be desirable with our current model. Indeed, this is almost
always the case in turbulence modeling, and CBC.RANS accounts for this
by using a node distribution which sets the distance between nodes to be
much shorter close to a wall. The basic mesh in CBC.RANS is the FEniCS
Rectangle-domain, usually set to be a rectangle [0, 1] × [−1, 1] with walls
along y = −1 and y = 1. The nodes are then moved closer to the wall as an
’arctan-distribution’. If yi is the y-coordinate for a given node, it is given a
new value y∗i following this formula:

y∗i =
arctanπyi
arctanπ

(4.19.1)

This means that there will be a significantly finer mesh resolution near walls.
For more complicated meshes, CBC.RANS takes this new rectangle mesh
and performs a second transformation to turn it into the problem geometry.

4.20 Initial guesses

Our system is now almost complete, there is just more part missing: Which
values to use as the values of x0, what we call the ’initial guess’. This is very
important, as an initial guess close to the solution will use few iterations to
reach it, and has a smaller chance of instabilities caused by strange values
(like negative values for nonnegative variables). The initial guess is handled
in CBC.RANS by the TurbProblem without input, though in a rough man-
ner. All complicated geometries begin by setting the entire domain in the
main flow direction to the profile for a 2D channel, squeezed or stretched
to fit the given cross section. This profile is obtained from a saved file
created after finding the solution to the channel geometry in channel.py.
channel.py sets the initial guess as x0 = 0 and this is a very bad initial
guess. However, we will be able to get results, as the next chapter will show.

4.21 Error estimates

To see if our iterations are approaching the solution, we need an error es-
timate. This is done in the normal way by looking at the residual of 4.7.1.
As such we can se that the error/residual r for a given iteration is given as:

r(xn) = ‖E(xn) · xn − f(xn)‖ (4.21.1)

We can see that if xn approaches the solution to 4.7.1, r(xn) approaches
zero.

51

4.22 Running our code

Up until now, we have not mentioned HOW to run CBC.RANS. CBC.RANS
works best when used in the Ipython environment [3]. When in this envi-
ronment and the /turbproblems/-folder, a simple run is done by writing:

run test --p channel --vd 2 --n ER 2Coupled --m LRR-IP --Nx 6

--Ny 120 --max iter 100 --wu 0.6 --wt 0.4 --Ret 395.

This will compute the flow field for a 2D channel with 6 nodes in the x
(flow-vise) direction and 120 in the y-direction. It will run to 100 iterations,
and θ is 0.6 for the NSSolver and 0.4 for ER 2Coupled. The pressure gra-
dient and viscosity is computed to fit with a turbulent Reynolds Number
Reτ = 395.

4.23 Reading the code

When writing code, it is desirable to be able to be able to discern the
nature (scalar, vector or tensor) of a variable by simply looking at it’s name.
Unfortunately, this is very difficult to accomplish when working with simple
text editors. As such, we have not tried to include a notation on vectors, as
the only vector is the unchangeable u. We have however tried to distinguish
between scalars and tensors by adding the suffix -ij to them. This explains
why R is referred to in the code as Rij. Note also that ε has been renamed
e, for obvious reasons.

We have included the code we have written as appendices, but due to
the large number of indents in some of the lines and the restrictions on
color pages, we will not advice the reader to consult these pages. Instead,
they should access the CBC.RANS Launchpad site [2] and view the code
online (go to the ’Code’ tab, then ’Browse the source code’). The basic color
formatting used by Launchpad makes the code very readable online, much
more so than the appendices in this text. In addition the reader will be
able to access the other parts of the framework, which we cannot include as
appendices (as this would take up 50+ pages).

52

Chapter 5

Results

5.1 Goals and limitations

Before discussing my results, it should be pointed out that the major goal
of this work was implementation and stability. As such, most of the time
has been spent trying to find stable solutions for complicated geometries
than comparing channel flow results to DNS data. This has in some ways
led to failure as much time has been used trying to get convergence without
success. Therefore, the goal here cannot be much more than to describe the
results qualitatively. As such, I am more concerned with the shape of curves
than their exact values, insofar these values make physical sense (as it will
be seen, sometimes they do not). This is also the reason for the somewhat
lackluster graphs and plots, as I have not had the time to learn how to
manipulate the .vtk files produced by FEniCS.

5.2 Comparison with DNS data

I have compared my results with the DNS data in [14]. The results in that
book are for a bulk velocity Reynolds number of 13,750. Since the code
computes the mean velocity, the results do not have the same bulk velocity
Reynolds number for each solution. But if an average velocity across the
channel of around 0.8 times the maximum value of U is assumed, one gets
a Reynolds number between 11,000 and 15,000 (these are rough estimates,
it is realistic to expect a Reynolds number around 13,000). Although this
means one cannot directly compare the results with the data in [14], the
Reynolds numbers are close enough to be able to use them for a qualitative
analysis. The variables have therefore not been scaled or changed. This
might mean that the results are difficult to compare with other results, and
I apologize for this.

The y-axis has also been marked in ’y plus’ wall units for plots of sections
of the flow near the wall. This is to make the plots more readable to students

53

of turbulence modeling. Since this is a very minor use of wall units, it felt
unnecessary to include a section on wall units and refer instead to [7]. For
reference, y+ = 40 equals y = −0.9 and y+ = 0 equals y = −1 in these
plots.

5.3 Lack of convergence with ER 3Coupled

Of the three schemes outlined at the end of the previous chapter,
ER 3Coupled is unusable. The scheme is highly unstable, to the extent
that it seems impossible to find a solution. Even with a very small (∼0.05)
relaxation parameter θ, the solver eventually becomes unstable and never
converges. I found that a small θ would avoid some of the instabilities (by
observing at which iteration number the solver diverges), but not all. It
is possible that the scheme is stable for an incredible small θ or very good
initial values, but this is a moot point as one of the more coupled solvers
will converge faster.

The most probable cause for this instability is the boundary conditions
for F for the same reasons that a system with decoupled k and ε will be
unstable, as the boundary condition is mathematically very similar. Since
F and R have a set of 3 such boundary conditions there is good reason to
believe that this is the case.

For the remainder of the text, the results will be with ER 2Coupled
and ER FullyCoupled. These will give the same solution, but differences in
convergence will be noted where necessary.

5.4 Results with LRR-IP

(This section distinguishes between LRR-IP with and without Elliptic Re-
laxation. For all later sections, any reference to LRR-IP implies the ER
version.)

Of the models for the homogeneous redistribution tensor, I easily got
results with LRR-IP in channel flow. Although good results in channel
flow have already been achieved with several models and even with Elliptic
Relaxation [8], these have not been with FEM. These result are also a nice
justification for the ER modification of homogeneous model, as will be shown
shortly. Since the SSG model is much more complicated, I will try to show
simple properties of ER with LRR-IP.

To compare with a homogeneous version, I simply removed the Laplacian
term from the equation for F. The other terms in that equation are kept,
as this restores the original system before ER modification, though with
the φ∗ij-modification described in chapter 3. The only modification from the
standard LRR-IP model is then the use of the boundary conditions for F,
but as these are developed without any relation to Elliptic Relaxation they

54

should not pose a problem in the physical sense. A version with Dirichlet
boundary conditions gives an almost identical solution, which backs up this
statement. But because they are potentially inappropriate for the LRR-IP
model, it is important to note that one should not consider these results as
those the LRR-IP model is expected give. That is to say, this is a examina-
tion of what the Laplacian term in the ER-modification does, not a direct
comparison between LRR-IP and LRR-IP with ER.

Figure 5.1: Plots of LRR-IP velocity without (left) and with ER (right)

Initially, one can see from the results that both versions produce re-
sults which seem reasonable. The values of k and ε around y = 0 are very
similar, which is to be expected as the ER version approaches the homo-
geneous model. The unmodified LRR-IP produces a mean velocity profile
very similar to the standard k − ε implemented in CBC.RANS.

The simplest difference between the two is the mean flow profile. With-
out ER the profile is much closer to the y2-curve of the laminar solution,
while the ER solution is much closer to the desired ’slug’ shape as seen in
DNS and experiments. This effect is tied in with the greatly increased pro-
duction of k and u2 close to the wall, since ∂yU is much steeper with ER.
This is helped by the fact that the ER modification reduces the negative f11

close to the wall, decreasing the magnitude of the other stresses near the wall
since less energy is transfered from u2 to uv and v2. These factors combined
lead to the almost double maximum value of u2 and the 50% increase in
maximum k. These higher values decrease much faster away from the wall,
leading to similar values in the middle of the stream for both versions (with
some differences, see below). From this it seems reasonable to assume that
the ER modification works fairly well, as the mean velocity profile seems
appropriate and the general distribution of the Reynolds stresses roughly fit
with DNS data [14]. There are however three very interesting differences,
which concern ε near the wall, the difference between u2 and v2 and the value
of uv. The first of these is encouraging, the two latter are more troubling.

55

Figure 5.2: k (m2/s2) and ε (m2/s3) for LRR-IP without ER

Concerning the first, it is seen that without ER the curve of ε is simple
and strongly increasing close to the wall (see fig. 5.2). This is a common
behavior in many models, but not exactly correct. It is possible to observe
that very close to the wall, one in fact gets an area where ε decreases before
it again grows (see fig. 5.3). What is remarkable is that that by adding
the ER modification to the LRR-IP model (which has no such behaviors
of ε)this behavior occurs! This is even more encouraging as the ER model
or any other part of the model has not developed with approximating this
behavior in mind. That this behavior then appears in the ER version would
seem to indicate that the ER modification is in some way modeling near-
wall flow more correctly. It is a very simple proof of concept for the initial
assumption that making the redistribution tensor elliptic would better model
the physical effects in the near-wall region.

As to the difference between u2 and v2 (se fig. 5.4 and 5.5), I must make
an educated guess as to the source of the difference. Whereas u2 is signifi-
cantly higher than v2 in the unmodified version, the ER version predicts a
u2 which is smaller than v2. The former is understandable as there is signif-
icant production of u2 away from the wall due to ∂yU not being zero. The
latter ER version behavior is more difficult to explain. One reason is clearly
the reduction in production away from the wall. A reduced production will
naturally make the equations for u2 and v2 much more similar. With ER

56

Figure 5.3: k (m2/s2) and ε (m2/s3) for LRR-IP with ER

the model predicts a larger ε in the area between the near-wall and the
middle of the flow, which should also work towards reducing the Reynolds
stresses away from the wall, making them more equal. However, this does
not explain why u2 becomes smaller than v2 Regardless of cause, I found
it interesting that whereas the homogeneous LRR-IP overpredicts u2 in the
middle of the flow, when modified with ER it underpredicts it.

If the u2 difference was disconcerting, the uv difference is very disturb-
ing. Before this can be discussed fully, one of the results from 2.6 must
be repeated. If one assumes ∂yU , it was found in 2.6.3 that the behavior
uv = u2

∗y should be seen away from the wall. In this case, it means the be-
havior uv = 0.0025y. It is clearly seen that the unmodified LRR-IP version
has this behavior. However, the modified version does not. In fact, it seems
that it has the behavior uv = 1

2u
2
∗y.

This is very confusing. Since both versions use the same code, an error
in constants should have shown up in the non-ER version too. Further, as
the results with SSG will show, there does not seem to be a general problem
with code. If this was a problem with any other variable than uv I could
have easily blamed this on a bad model and moved on, but that Reynolds
stress should follow 2.6.3 exactly. Saying the system has converged to an
unphysical solution also seems somewhat dubious. The other variables in
the system take reasonable, if not correct values. Also, the velocity profile

57

Figure 5.4: Reynolds Stresses (m2/s2) for LRR-IP without ER

Figure 5.5: Reynolds Stresses (m2/s2) for LRR-IP with ER

58

is almost the same as for the SSG model. A very wrong uv should have
given a different velocity profile. I was unable to find the error responsible
for this, and the lack of explanation for this behavior must be left as the
biggest failure of this work.

There is one last point to note about computation of these results. Both
are computed with Ny = 400 and the ER 2Coupled scheme, and relaxation
parameter 0.6 for the Navier-Stokes solver and 0.4 for the turbulence solver.
The non-ER model converged in 79 iterations (1424s), while the ER model
used 112 iterations (2350s). It seems reasonable to assume that the difference
in number of iterations is based on the suitability of the initial guess and
that more iterations are needed to get the exact shape near the wall with
ER.

5.5 Results with SSG

I was unable to get any results with the SSG model without good initial val-
ues, as both schemes proved highly unstable even with very small (∼0.01)
relaxation parameters. However, I observed that a smaller relaxation pa-
rameter (for both the N-S and turbulence solver) would delay divergence
and even show signs of convergence for a number of iterations before di-
verging. Here the problem is not the ER modification, as runs without the
Laplacian term proved equally unstable. There are several possible reasons
for numerical stability, but they will wait until after discussing the results
which I got with a more cautious approach.

To remove the problem with initial guesses being bad, the result of the
LRR-IP model was used as an initial guess, with very small (0.05) relaxation
parameters. This yielded results, but only after a great amount of time: The
resulting run converged after 1205 with ER 2Coupled (8h, 40mins). With a
larger relaxation parameter it did not converge. From this, I feel confident
in concluding that the SSG model is highly sensitive to initial guesses and
relaxation parameter.

Looking at the Reynolds stresses in figure 5.6, the SSG solution seems
to fix most of the problems with LRR-IP. In the near-wall region the SSG
solution has very similar results. There is a difference in the magnitude of
u2 and k with an increase at the maximum close to the wall of roughly 15%.
The SSG model also produces the near-wall change in ε. There is no region
where v2 is larger than u2, but the two Reynolds stresses are almost equal
at y = 0. It can be seen that the solution clearly has the behavior uv = u2

∗y
away from the wall. This is all very encouraging. Another thing to note is
that max(u2) ' 7u2

∗, which is roughly the desired result.

Summing up, the SSG solution fits very well with the DNS data in [14].
I would have liked to compare my results with those in [8], but the authors
have there made a plot of φij , not fij , which makes it difficult to compare

59

Figure 5.6: Reynolds Stresses (m2/s2) for SSG

different ER models. My values for kF look very similar, but it would be
much more interesting to examine the values of fij directly, as they would
show potential differences much clearer. I have included several near-wall
plots of both SSG and LRR-IP in appendix A, so that the reader might
consult them for further investigation.

5.6 SSG instabilities

My theory is that the instabilities experienced with SSG stem from the fact
that φh in the SSG model is almost wholly explicit. Luckily, this is one
of the strengths of the CBC.RANS-framework, since linearization is easily
changed. However, several simple variants with implicit linearizations did
not bear fruit. The only conclusion I could reach was that the instability
was not caused by the last (’C5’) term, as setting all C’s equal to zero except
for C5 resulted in a stable system.

As to the exact causes for the instabilit

· Linearization

· Initial guess

· Mesh

60

· Solver algorithm

· FEM

Of these, linearization and initial guesses have already been mentioned. I do
not believe that the mesh should be a problem with a reasonable resolution
(Ny > 100), but it is possible that the ER modification of SSG creates
results which are unattainable with a too coarse mesh, so I do not disregard
it outright.

Concerning the solver algorithm, I believe that a more complicated al-
gorithm might work better. However, I am unable to change this facet of
CBC.RANS and do not have sufficient competence to devise a better solu-
tion. There is a possibility that a more advanced solving algorithm than
Picard Iteration would be more stable, though in this regard the boundary
conditions for ε and fij create problems. For example, the Newton-Raphson
method is very easy to implement in FEniCS, but does not work with these
variable boundary conditions. Another might be the fact that if the system
was fully coupled with the velocity-solver, many of the terms in the SSG
model could be set as implicit with regards to the velocity.

I am then left with the possibility that the instabilities stem from some
problem with using a system designed for FVM or FDM in a FEM frame-
work. As previously mentioned, there is much skepticism in the CFD com-
munity regarding the use of FEM. I do not disregard the possibility that
there are effects in a FDM/FVM-system which are not properly handled by
naively implementing it in FEM. However, it seems too simple to disregard
FEM out of hand. These FEM effects could probably be handled by ad-
vanced methods developed for FEM. As before, I must leave this question
open due to lack of knowledge.

5.7 Results with the diffusor geometry

I have made several attempts at getting my code to work with the diffusor
geometry, after Mikael Mortensen got convergence with a coarse mesh us-
ing LRR-IP [10]. In the week before finishing this thesis, I was successful,
because I detected an error which had previously led to instabilities. Two
figures have been provided of the solution, but I have not been able to com-
pare it with other data, and as such all I can say is that the solution does
not look unphysical. I will now try to explain the error which prevented
convergence.

As mentioned before, the Reynolds stresses in the RANS equations ap-
pear in the term:

−∂kukui = −∇ ·R (5.7.1)

Which in channel flow means:

−∂yvu (5.7.2)

61

Figure 5.7: Velocity component U (m/s) for LRR-IP in diffusor

With symmetric tensors, this is the same as ∂yuv, but the code is not working
with symmetric tensors (see 4.12). Note also that the equation in 4.11.1,
with our linearization, allows for a solution in which R is asymmetric. I
assumed the most correct solution to this problem was setting uv = vu,
since the latter was the most important term. But this was wrong. It
seems that to instead set vu = uv makes the system more stable. This was
not a problem for channel flow (though changing it did reduce the number
of iterations needed for convergence). Although I can offer no definitive
explanation, I think the problem lies in the way FEniCS handles the div-
operator. In common notation we have

∇ ·R = ∂kRki (5.7.3)

Whereas the assumption in FEniCS is that the operator works on the latter
index, that is:

div(R) = ∂kRik (5.7.4)

If this is correct, then uv is the more important variable. This is just an
error in implementation, which was unfortunately fixed to late. However, it
should not be a reason for instabilities with SSG, as the set of equations for

62

Figure 5.8: uv (m2/s2) for LRR-IP in diffusor

SSG must be symmetric since φh is symmetric (since it only uses old values,
which are set to be symmetric).

It is important to note that this problem is one which will disappear
as soon as mixed function spaces of symmetric tensors become available
in FEniCS (which should not be that far away). My problem was specif-
ically caused by the fact that there is very little mention in the FEniCS
documentation about tensors, so while they are implemented, there is little
documentation of how the package works with tensors. This then causes
problems when the user assumes one notation and FEniCS is in fact using
another.

In any case this is a proof that the code works, but the solution is
probably not usable for comparison with DNS data, since it is reasonable
to assume that the results will have the same problems as those in channel
flow. This proof of convergence is important, however, as it proves that
there is nothing fundamentally wrong with the code.

It is important to note that with this geometry the initial values for the
first iteration is the channel profile stretched to fit a given cross section, and
this puts a limitation on how coarse the mesh can be. Solutions for channel

63

flow with Ny < 60 are not physical solutions. Or rather, they do not capture
the correct near-wall behavior, and converge towards a solution which does
not resemble DNS data. These solution tend to result in a flow profile which
has the correct ’slug’ shape but with a a significantly lower maximum U .
As such, one must consider the ER model to be unsuitable for a mesh with
fewer than 100 nodes for a given cross section (in most cases this means Ny
> 100). Here 100 is an arbitrary limit, as I did not try to find the exact
limit for this behavior. Convergence is possible with a coarser mesh, but
I am erring on the side of caution. I also observed that at Ny = 100 the
channel flow profile is mostly correct. It is in my opinion necessary with Ny
> 120 for good results, but at least the solution resembles DNS data for Ny
= 100. There is of course the possibility that the problem stems from the
fact that the channel flow profile is a bad initial guess, but my only other
choice would be to compute Reynolds Stresses from a eddy-viscosity model.
There is little reason to believe that this initial guess will not also be far
from the solution sought by the solver.

It is possible that some of the issues with convergence for SSG model
are relevant with convergence on this mesh, but again my lack of sufficient
training in numerical analysis stops further investigation. As such, I must
leave this as something of a mystery for future researchers to solve.

5.8 The apbl geometry

It was the original goal of this thesis to compute results for the apbl geome-
try [16] with SSG. However, as the preceding part of this chapter has shown,
I met many problems with much simpler geometries. My few attempts at
computing the flow field in apbl have failed, probably for the same reasons
as with the diffusor. It is my belief that a scheme which removes the insta-
bilities found in SSG with the diffusor will work on the apbl domain.

The next chapter will discuss what conclusions can be drawn from these
results.

64

Chapter 6

Conclusions

6.1 Successes

The previous chapter might give the impression that I have not achieved
much in my work with implementing ER, so I would like to reiterate the
following results which I feel are noteworthy:

� I have implemented Elliptic Relaxation for a general 2D framework,
which can be easily extended to 3D when that becomes available in
FEniCS. This is proof that it is possible to implement complicated
DRSM turbulence models in FEM.

� This implementation properly captures effects close to the wall (the
ε-squiggle), reinforcing the justification and assumption at the heart
of the Elliptic Relaxation method.

� I have shown that the CBC.RANS-framework supports complicated
DRSM-models, which reinforces the claim that CBC.RANS is a flexible
and highly useful framework for numerical research into turbulence
modeling.

� The LRR-IP code converged even with a very bad initial guess after
very short time, though the solution had several problematic issues.
But if nothing else, this can serve as a cheap (in terms of time) and
’almost correct’ initial guess for other ER models.

� The LRR-IP code converged for the more complicated diffusor geom-
etry, proving that the code works for a general geometry.

� The SSG code converged to a seemingly good solution for channel flow,
which serves as a proof of concept.

� I have investigated the stability of the different coupled schemes pos-
sible, identified several problems with my approach and found room
for improvement.

65

Though the current implementation in CBC.RANS is unable to find solu-
tions for complex problem geometries, convergence with channel flow give
an indication that implementing Elliptic Relaxation in FEM should be pos-
sible. It is important to remember that the current implementation is of the
most naive sort, and many of the problems might have surprisingly simple
fixes. For example, changing Cε1 from a constant to a function greatly in-
creases the stability of the LRR-IP model, and this modification adds close
to nothing in time cost. I think it is quite possible that a collection of simple
fixes might be all that is needed to make the system converge.

For the remainder of this short chapter, I think it is most useful for me
to ponder the failures which were touched upon in chapter 5, as they are
clear indicators of possible areas of improvement.

6.2 Failures

The failure to get convergence for complex geometries and the errors in the
solution for LRR-IP leave much to be desired of the code. It seems reason-
able to think that as these equations have been implemented successfully in
FDM, a FEM code should work. This must then be recognized as a failure
on my part. I also recognize the fact that I am not that knowledgeable
when it comes to experimental/DNS data, but have assumed this to be a
symptom of lack of experience in the field of turbulence modeling.

6.3 Lack of numerical analysis

At the beginning of my work on this thesis, I had no experience in imple-
menting systems more complicated than the wave equation in 2D. Coming
from the last class to receive basic programming courses at the university
in Java, I had to acquaint myself with Python, Finite Elements and numer-
ical methods for Navier-Stokes. This was by far the biggest challenges in
this work, as I had a much stronger background with regard to theoretical
turbulence modeling. Understanding the FEniCS package proved initially
difficult because the documentation was written for a readership with a dif-
ferent background and with a different focus than what I was used to. As
such, the biggest part of the work done to complete this thesis is entirely
hidden from the reader, since the CBC.RANS code is deceptively short.
But to arrive at that short code, significant understanding of FEM and how
FEniCS uses it was required. CBC.RANS represents, however, a very robust
and useful framework when understood correctly, and once properly under-
stood the implementation process was surprisingly fast (after, of course,
some debugging).

It seems clear to me that a stronger background in numerical analysis
would be required to investigate the convergence problems with the SSG

66

model and the complicated geometries, and maybe the possibility of finding
more exact stability estimates. It is also quite probable that other numerical
methods which I am unaware of could be used to speed up the convergence
rate.

6.4 The critique of FEM

I do not intend to throw myself into the debate over the usefulness of FEM for
CFD except to again note that this work should prove encouraging, even if it
was not greatly successful, for further implementation of DRSMs in FEM. It
seems to me, however, that the articles I have read on turbulence modeling
([8], [7], [15]) tend to omit matters of implementation, which could be an
indication that the authors do not consider such things to be important.
That the same community then disregards FEM as useful for CFD is in
my opinion somewhat perplexing. But at the same time the arguments
presented in [12] seem to sidestep entirely the problem of turbulence, having
little to no mention of turbulence modeling in a work on numerical methods
for fluid flow.

The polarization of this debate and the clear partition of research seems
to me to be detrimental to the CFD community. Both approaches clearly
produce results, and an approach which combines the methods could pos-
sibly lead to greater productivity. This work should show that to solve
complicated computational problems like modeling Elliptic Relaxation, both
knowledge of numerical analysis and turbulence modeling is needed. And for
a user well-versed in FEM and turbulence modeling, FEniCS and CBC.RANS
represent powerful tools for numerical experimentation with complex prob-
lems.

6.5 The Matter of Uniqueness of Solution

One nagging problem brought to light by the convergence with coarse meshes
and the uv-behavior with LRR-IP is the possibility of multiple solutions to
the equations. This poses a twofold problem. Firstly, it is difficult to know
if the solution is unphysical or just a correct bad approximation at first
glance. This is not a critical problem, but it means that all results must
be closely scrutinized before accepting them, requiring that one must have
results to compare with. The second more serious issue is: Assuming one
of the possible solutions represents the wanted physical solution, one would
need an initial guess as close as possible to that desired solution. Both parts
of this problem create a sort of ’chicken and egg’ situation. To be sure the
solution is the correct one, the researcher needs access to either a very close
initial guess or data of the wanted solution. This is well illustrated with
the LRR-IP and the SSG results. If the LRR-IP result is an unphysical

67

solution, then it seems reasonable to assume that to get the right solution
an initial guess closer is needed, like the SSG solution. But the SSG solution
was obtained using the LRR-IP solution! And we could only assert that the
SSG solution was correct by comparing it with DNS data. This twofold
problem must be addressed before the model can be used to predict results,
as it currently must be compared to a known solution.

I understand that this is more or less an unsolvable problem, as the proof
of uniqueness of solution for the Elliptic Relaxation system is unlikely to be
found before the same for the Navier-Stokes equations.

6.6 Future work

The preceding sections have hopefully outlined possible areas of future inves-
tigations. It is my hope that my work and results can be used as a stepping
stone for more substantial results regarding implementation of DRSMs in
FEM.

68

Bibliography

[1] http://fenicsproject.org/.

[2] https://launchpad.net/cbc.rans.

[3] http://ipython.scipy.org/moin/.

[4] NASA EP-89. 1971. http://history.nasa.gov/SP-4103/p529.jpg.

[5] Daly, B., and Harrow, F. Transport equations of turbulence. Phys.
Fluids 13 (1970), 2634–2649.

[6] Durbin, P. A. Near-wall closure modelling without ’damping func-
tions’. Theoretical Computational Fluid Dynamics 3 (1991), 1–13.

[7] Durbin, P. A., and Reif, B. A. P. Statistical Theory and Modeling
for Turbulent Flows. John Wiley & Sons, 2001.

[8] Durbin, P. A., and Reif, B. A. P. Closure Stategies for Turbu-
lent and Transitional Flows. Cambridge University Press, 2002, ch. 4,
pp. 127–152.

[9] Hoffman, J., and Johnson, C. Computational Turbulent Incom-
pressible Flow. Springer, 2007.

[10] Langtangen, H. P., Mortensen, M., and Myre, J. CBC.RANS
a new flexible, programmable software framework for computational
fluid dynamics. In Konferanse i beregningsorientert mekanikk (Mekit11)
(2011).

[11] Langtangen, H. P., Mortensen, M., and Wells, G. N. A
FEniCS-based programming framework for modeling turbulent flow by
the reynolds-averaged navier-stokes equations. Advances in Water Re-
sources (2011).

[12] Mardal, Logg, and Wells, Eds. Automated Scientific Computing.
Springer, 2010. https://launchpad.net/fenics-book.

69

[13] P.Jones, W., and E.Launder, B. The prediction of laminarization
with a two-equation model of turbulence. International Journal of Heat
Mass Transfer 15 (1972), 301–314.

[14] Pope, S. B. Turbulent Flows. Cambridge University Press, 2000.

[15] Speziale, C. G., Sarkar, S., and Gatski, T. Modelling the
pressure-strain correlation of turbulence: an invariant dynamical sys-
tems approach. Journal of Fluid Mechanics 227 (1991), 245–272.

[16] Stanislas, M., Foucaut, J. M., and Kostas, J. Investigation of
near wall turbulence structure of an APG TBL using double SPIV.
Laboratoire de Mecanique de Lille.

[17] Tucker, P. G. Differential equation-based wall distance computation
for DES and RANS. Journal of Computational Physics 190 (2003),
229–248.

[18] White, F. M. Viscous Fluid Flow. McGraw Hill, 2006.

70

Appendix A

Near-wall graphs

Figure A.1: Velocity (m/s) for SSG

71

Figure A.2: k (m2/s2) and ε (m2/s3) for LRR (top) and SSG (bottom)

72

Figure A.3: Reynolds Stresses (m2/s2) for LRR (top) and SSG (bottom)

73

Figure A.4: F (s−1) for LRR-IP (top) and SSG (bottom)

74

Appendix B

CBC.RANS-code

B.1 Turbsolver-subclass ER

This is the subclass of Turbsolver which holds all common scales, variables
and derived properties for an ER system.

au th o r = ”Jorgen Myre <jorgenmy@math . u io . no>”
d a t e = ”2011−05−14”
c o p y r i g h t = ”Copyright (C) 2011 ” + au tho r
l i c e n s e = ”GNU GPL ve r s i on 3 or any l a t e r v e r s i on ?”

”””

K−Eps i lon /Reynolds−s t r e s s turbu lence models

”””
from TurbSolver import *

from Eikonal import Eikonal
from cbc . rans . common . Wall import QWall #Need to make new wall−

f unc t i on to match system

c l a s s ER(TurbSolver) :
”””
Base c l a s s f o r ER turbu lence models
NOTE: Ri j and F i j should be s to r ed as va r i ab l e s , not DQs,

un l i k e in normal model
”””

de f i n i t (s e l f , system composit ion , problem , parameters) :
A segregated system o f two coupled systems :
parameters [’ space ’] [’ Rij ’] = TensorFunctionSpace
parameters [’ space ’] [’ F i j ’] = TensorFunctionSpace
s e l f . dim = problem . NS problem . mesh . geometry () . dim ()
When symmetric t en s o r s i s p o s s i b l e :
#parameters [’ symmetry ’] [’ Rij ’] = d i c t (((i , j) , (j , i))
f o r i in range (s e l f . dim) f o r j in range (s e l f . dim)

i f i > j)
#parameters [’ symmetry ’] [’ F i j ’] = d i c t (((i , j) , (j , i))
f o r i in range (s e l f . dim) f o r j in range (s e l f . dim)

75

i f i > j)
TurbSolver . i n i t (s e l f ,

system compos i t ion=system composit ion ,
problem=problem ,
parameters=parameters)

de f d e f i n e (s e l f) :
””” d e f i n e der ived quan t i t i e s f o r ER model .”””
V, NS = s e l f .V[’ dq ’] , s e l f . Turb problem . NS so lver #

Short forms
DQ, DQ NoBC = DerivedQuantity , DerivedQuantity NoBC
NS.V[’ SS ’] = TensorFunctionSpace (s e l f . Turb problem .

NS problem .mesh ,
s e l f . prm [’ family ’] [’ Rij

’] , s e l f . prm [’ degree
’] [’ Rij ’])

NS . schemes [’ de r ived quan t i t i e s ’] = [
DQ NoBC(NS, ’ S i j ’ , NS . S , ” ep s i l o n (u) ” , d i c t (u =NS.

u) , bounded=False , apply=’ pro j e c t ’) ,
DQ NoBC(NS, ’Wij ’ , NS .V[’ SS ’] , ”0 . 5* (grad (u) −

grad (u) .T) ” , d i c t (u =NS. u) ,
bounded=False)]

s e l f . S i j = NS. S i j
s e l f . Wij = NS. Wij
s e l f . i , s e l f . j , s e l f .m, s e l f . l = i , j , Index (2) , l
s e l f . dim = V. c e l l () . d
s e l f . Ai j = s e l f . R i j * (0 . 5/ s e l f . k) − 1 . / 3 .* s e l f . d i j
ns = vars (s e l f)
A33 = − (A11 + A33) = − t r (Ai j) , A i jA j i = inner (Aij ,

Ai j) + A33**2 = inner (Aij , Ai j) + t ra c e (Ai j) **2
s e l f . schemes [’ de r ived quan t i t i e s ’] = [

DQ NoBC(s e l f , ’T ’ , V, ”max (k * (1 . / e) , 6 .* s q r t (nu
* (1 . / e))) ” , ns) ,

DQ NoBC(s e l f , ’ L ’ , V, ”CL*max (Ceta *(nu**3/ e)
** (0 . 25) , k ** (1 . 5) * (1 . / e)) ” , ns) ,

DQ NoBC(s e l f , ’ Ai j ’ , NS . S , ” R i j * (0 . 5/ k) − 1 . / 3 .*
d i j ” , ns , bounded=False) ,

DQ NoBC(s e l f , ’ P i j ’ , s e l f .V[’ Rij ’] , ”− dot (Ri j ,
grad (u) .T) − dot (grad (u) , R i j .T) ” , ns ,

bounded=False) ,
#DQ NoBC(s e l f , ’ Ce1 ’ , V, ”1 .3 + 0 . 2 5 / (1 . + (0 . 15* y/

L) **2) **4” , ns , bounded=True) ,
DQ NoBC(s e l f , ’ Ce1 ’ , V, ” 1 . 4 * (1 . + Ced* s q r t (k /max

(1 . e−10, inner (Ri j , outer (ni , n i))))) ” , ns ,
bounded=True) ,

DQ (s e l f , ’ nut ’ , V, ’Cmu*(inner (Ri j , outer (ni , n i)
)) *T ’ , ns)

]
i f s e l f . Turb problem . prm [’ Model ’] == ’LRR−IP ’ :

s e l f . schemes [’ de r ived quan t i t i e s ’] += [
DQ NoBC(s e l f , ’ PHIi j ’ , s e l f .V[’ Rij ’] , ”−CR* (1 . /

T) *2 .* Aij *k \
− C2*(P i j − 1 . / 3 .* t r (P i j) *

76

d i j) ” , ns , bounded=False)
]

e l i f s e l f . Turb problem . prm [’ Model ’] == ’SSG ’ :
s e l f . schemes [’ de r ived quan t i t i e s ’] += [

DQ NoBC(s e l f , ’ PHIi j ’ , s e l f .V[’ Rij ’] , ”−(Cp1*
e + Cp1s *0 .5* t r (P i j)) *Aij \

+ Cp2* e *(dot (Ai j , A i j) −
1 ./3* (inner (Aij , A i j)+
t r (A i j) **2) * d i j) \

+ (Cp3 − Cp3s* s q r t (inner (
Ai j , A i j) + t r (A i j)
**2)) *k * S i j \

+ Cp4*k *(dot (Ai j , S i j) +
dot (S i j , A i j) − 2 ./3*
i nne r (Ai j , S i j) * d i j) \

+ Cp5*k *(dot (Wij , A i j) −
dot (Ai j , Wij)) ” , ns ,
bounded=False)]

i n s e r t Ri j and ” ant i−s t a b i l i z a t i o n ”−term in to f ,
s im i l a r to s e t t i n g nu = nu + nut

#NS. f = s e l f . Turb problem . NS problem . body fo rce () − div (
s e l f . R i j − 2 .* s e l f . nut * s e l f . S i j)

NS . c o r r e c t i o n = s e l f . R i j − 2 .* s e l f . nut * s e l f . S i j # For
t e s t i n g us ing i n t e g r a t i o n by par t s . Used with

Steady Coupled 5

TurbSolver . d e f i n e (s e l f)

de f model parameters (s e l f) :
”””Parameters f o r the ER model .”””
model = s e l f . Turb problem . prm [’ Model ’]
i n f o (’ S e t t i ng parameters f o r %s ER model ’ %(model))
f o r dq in [’ T ’ , ’ L ’ , ’ nut ’] :

Spec i f y p r o j e c t i o n as d e f au l t
(remaining DQs are use formula by de f au l t)
s e l f . prm [’ apply ’] [dq] = s e l f . prm [’ apply ’] . get (dq , ’

p ro j e c t ’)

s e l f . model prm = d i c t (
Cmu nut = Constant (0 . 0 9) ,
Ce1 = Constant (1 . 4 4) ,
Ced = Constant (0 . 0 45) ,
Ce2 = Constant (1 . 9) ,
s igma e = Constant (1 . 3) ,
s igma k = Constant (1 . 0) ,
Cp1 = Constant (3 . 4) ,
Cp1s = Constant (1 . 8) ,
Cp2 = Constant (4 . 2) ,
Cp3 = Constant (0 . 8) ,
Cp3s = Constant (1 . 3 0) ,
Cp4 = Constant (1 . 2 5) ,
Cp5 = Constant (0 . 4) ,

77

Ceta = Constant (8 0 . 0) ,
CL = Constant (0 . 2 5) ,
Cmu = Constant (0 . 2 2) ,
e d = Constant (0 . 5) ,
CR = Constant (1 . 8) ,
C2 = Constant (3 . / 5 .)

)
s e l f . d i j = Id en t i t y (s e l f .V[’ dq ’] . c e l l () . d)
s e l f . d i c t . update (s e l f . model prm)

de f create BCs (s e l f , bcs) :
Compute d i s t anc e to nea r e s t wa l l
s e l f . d i s t ance = Eikonal (s e l f .V[’ dq ’] , s e l f . boundar ies)
s e l f . y = s e l f . d i s t anc e . y
DerivedQuantity NoBC (s e l f , ’ ni ’ , VectorFunctionSpace (

s e l f . Turb problem . NS problem .mesh ,
s e l f . prm [’ fami ly ’] [’ dq ’] , s e l f . prm

[’ degree ’] [’ dq ’]) ,
” grad (y) / sq r t (inner (grad (y) , grad (y

))) ” ,
d i c t (y=s e l f . y) , bounded=False ,

apply=’ pro j e c t ’)
s e l f . t i = Function (VectorFunctionSpace (s e l f . Turb problem

. NS problem .mesh ,
s e l f . prm [’ fami ly ’] [’ dq ’] , s e l f . prm

[’ degree ’] [’ dq ’]))
N = s e l f . t i . v ec to r () . s i z e () /2
s e l f . t i . vec to r () [:N] = s e l f . n i . vec to r () [N :]
s e l f . t i . v ec to r () [N :] = − s e l f . n i . vec to r () [:N]

s e l f . a t tach boundary funct i ons (bcs)
bcu = {}
f o r name in s e l f . system names :

bcu [name] = []

f o r bc in bcs :
f o r name in s e l f . system names :

V = s e l f .V[name]
i f bc . type () in (’ Ve l o c i t y In l e t ’ , ’Wall ’) :

i f ha sa t t r (bc , ’ func ’) :
i f i s i n s t a n c e (bc . func , d i c t) :

add BC(bcu [name] , V, bc , bc . func [
name])

e l s e :
add BC(bcu [name] , V, bc , bc . func)

e l s e :
i f bc . type () == ’Wall ’ : # Defau l t i s

ze ro on wa l l s
i f i s i n s t a n c e (V, FunctionSpace) :

func = Constant (1 e−12)
e l i f i s i n s t a n c e (V, (

MixedFunctionSpace ,
VectorFunctionSpace

)) :

78

n = 0
f o r i in xrange (0 , (V.

num sub spaces () or 1)) :
n = n + (V. sub (i) .

num sub spaces () or
1)

”””
func = Constant ((1 e−12,) *V. c e l l

() . d)
i f V. num sub spaces () > 2 :

#func = Constant ((1 e−12,)
*8)

#func = Constant ((1 e−12,) *V
. num sub spaces () *V. sub
(0) . num sub spaces ())

”””
func = Constant ((1 e−12,) *n)

e l i f i s i n s t a n c e (V,
TensorFunctionSpace) :
func = Express ion (((’ 1 . e−12 ’ ,) *

V. c e l l () . d ,) *
V. c e l l () . d)

e l s e :
r a i s e NotImplementedError

add BC(bcu [name] , V, bc , func)
e l i f bc . type () == ’ Ve l o c i t y In l e t ’ :

r a i s e TypeError (’ expected func f o r
Ve l o c i t y In l e t ’)

e l i f bc . type () in (’ ConstantPressure ’ , ’ Outlet ’)
:
This bc could be weakly en fo rced
bcu [name] . append (bc)

e l i f bc . type () == ’ Per iod ic ’ :
add BC(bcu [name] , V, bc , None)

e l s e :
i n f o (”No as s i gned boundary cond i t i on f o r %s
−− sk ipp ing . . . ”
%(bc . c l a s s . name))

re turn bcu

B.2 ER-subclasses

These are the subclasses of ER which holds the solver scheme and lineariza-
tions.

au th o r = ”Jorgen Myre <jorgenmy@math . u io . no>”
d a t e = ”2011−02−22”
c o p y r i g h t = ”Copyright (C) 2011 ” + au tho r
l i c e n s e = ”GNU GPL ve r s i on 3 or any l a t e r v e r s i on ?”

”””

79

ER turbu lence model
The two systems (k and ep s i l o n) and (Ri j and F i j) are

i n d i v i d u a l l y so lved

”””
from ER import *

from cbc . rans . common . Wall import QWall

c l a s s ER FullyCoupled (ER) :

de f i n i t (s e l f , problem , parameters) :

ER. i n i t (s e l f ,
system compos i t ion =[[’ k ’ , ’ e ’ , ’ Rij ’ , ’ F i j

’]] ,
problem=problem ,
parameters=parameters)

de f d e f i n e (s e l f) :
ER. d e f i n e (s e l f)
s e l f . schemes [’ keRi jF i j ’] = eva l (s e l f . prm [’

t ime in t eg ra t i on ’] + ’ k eR i jF i j ’ +
s t r (s e l f . prm [’ scheme ’] [’

keRi jF i j ’])) (s e l f ,
s e l f . system compos i t ion

[0])

de f create BCs (s e l f , bcs) :
Set r e gu l a r boundary cond i t i on s
bcu = ER. create BCs (s e l f , bcs)
Set wa l l f un c t i on s
f o r bc in bcs :

i f bc . type () == ’Wall ’ :
bcu [’ keRi jF i j ’] . append (QWall [’ F i j 3 ’] (bc , s e l f . y

, s e l f . nu (0) , s e l f . k eR i jF i j , s e l f . n i))
bcu [’ keRi jF i j ’] [− 1] . type = bc . type

re turn bcu

Updates s to r ed v a r i a b l e s be f o r e s o l v i n g next part o f the
system

def s o l v e i n n e r (s e l f , max i ter=1, max err=1e−7, update=
lambda : None ,

l ogg ing=True) :
t o t a l e r r o r = ””
f o r name in s e l f . system names :

err , j = s o l v e n on l i n e a r ([s e l f . schemes [name]] ,
max i ter=max iter , max err=

max err ,
update=update , l ogg ing=logg ing)

s e l f . s o l v e d e r i v e d q u a n t i t i e s ()
t o t a l e r r o r += er r

s e l f . t o t a l numbe r i t e r s += j
return t o t a l e r r o r

80

c l a s s KERIJFIJBase (TurbModel) :
de f update (s e l f) :

N = s e l f .V. sub (0) . dim ()
dim = 2
xa = s e l f . x . array ()
”””Make k and e p o s i t i v e ”””
xa [0 : 2 *N] = maximum(1 . e−12, xa [0 : 2 *N])
”””uu , vv and ww are >= 0 . Off d i agona l s are not .”””
s t a r t = 2*N
fo r i in range (dim) :

stop = s t a r t + N
xa [s t a r t : stop] = maximum(1 . e−12, xa [s t a r t : stop])
s t a r t = stop + N*dim # unsymmetric

xa [3*N:4*N] = xa [4*N:5*N]
xa [7*N:8*N] = xa [8*N:9*N]

s e l f . x . s e t l o c a l (xa)

c l a s s S t eady keR i jF i j 1 (KERIJFIJBase) :
de f form (s e l f , k , e , v k , v e , k , e , P i j , nu , u , Ce1 ,

Ce1 , Ce2 ,
Cmu, e d , sigma e , nut , Rij , Ri j , v Ri j ,
Fi j , F i j , v F i j , Ai j , Aij , PHIi j , T , L ,

**kwargs) :
Fk = nu* i nne r (grad (k) , grad (v k)) *dx \

+ inner (dot (u , grad (k)) , v k) *dx \
− i nne r (0 .5* t r (P i j) , v k) *dx \
+ (e* e d + k * (1 . / k) * e * (1 . − e d)) *v k*dx \
+ inner (Cmu*T *dot (Ri j , grad (k)) , grad (v k)) *dx
#+ nut * i nne r (grad (v k) , grad (k)) *dx

Fe = nu* i nne r (grad (e) , grad (v e)) *dx \
+ inner (dot (u , grad (e)) , v e) *dx \
− i nne r (0 .5*Ce1 * (1 . / T) * t r (P i j) , v e) *dx \
+ Ce2 * (1 . / T) *e* v e *dx \
+ inner (Cmu*T * (1 . / s igma e) *dot (Ri j , grad (e)) ,

grad (v e)) *dx
#+ nut * (1 . / s igma e) * i nne r (grad (v e) , grad (e)) *dx

Fr = nu* i nne r (grad (Ri j) , grad (v Ri j)) *dx \
+ inner (dot (grad (Ri j) , u) , v R i j) *dx \
− i nne r (k *F i j , v R i j) *dx \
− i nne r (P i j , v R i j) *dx \
+ inner (Ri j * e * (1 . / k) , v R i j) *dx \
+ inner (Cmu*T *dot (grad (Ri j) , R i j) , grad (v Ri j)

) *dx
#+ nut * i nne r (grad (Ri j) , grad (v Ri j)) *dx

Ff = inner (grad (F i j) , grad (L **2* v F i j)) *dx \
+ inner (F i j , v F i j) *dx \
− (1 . / k) * i nne r (PHI i j , v F i j) *dx \
− (2 . / T) * i nne r (A i j , v F i j) *dx

81

re turn Fk + Fe + Fr +Ff

au t h o r = ”Jorgen Myre <jorgenmy@math . u io . no>”
d a t e = ”2011−02−22”
c o p y r i g h t = ”Copyright (C) 2011 ” + au tho r
l i c e n s e = ”GNU GPL ve r s i on 3 or any l a t e r v e r s i on ?”

”””

ER turbu lence model
The two systems (k and ep s i l o n) and (Ri j and F i j) are

i n d i v i d u a l l y so lved

”””
from ER import *

from cbc . rans . common . Wall import QWall

c l a s s ER 2Coupled (ER) :

de f i n i t (s e l f , problem , parameters) :

ER. i n i t (s e l f ,
system compos i t ion =[[’ k ’ , ’ e ’] , [’ Rij ’ , ’

F i j ’]] ,
problem=problem ,
parameters=parameters)

de f d e f i n e (s e l f) :
ER. d e f i n e (s e l f)
s e l f . schemes [’ ke ’] = eva l (s e l f . prm [’ t ime in t eg r a t i on ’]

+ ’ ke ’ +
s t r (s e l f . prm [’ scheme ’] [’ ke

’])) (s e l f ,
s e l f . system compos i t ion

[0])
s e l f . schemes [’ R i jF i j ’] = eva l (s e l f . prm [’

t ime in t eg ra t i on ’] + ’ R i jF i j ’ +
s t r (s e l f . prm [’ scheme ’] [’

R i jF i j ’])) (s e l f ,
s e l f . system compos i t ion

[1])

de f create BCs (s e l f , bcs) :
Set r e gu l a r boundary cond i t i on s
bcu = ER. create BCs (s e l f , bcs)
Set wa l l f un c t i on s
f o r bc in bcs :

i f bc . type () == ’Wall ’ :
bcu [’ ke ’] . append (QWall [’ ke ’] (bc , s e l f . y , s e l f . nu

(0)))
bcu [’ ke ’] [− 1] . type = bc . type
bcu [’ R i jF i j ’] . append (QWall [’ F i j 2 ’] (bc , s e l f . y ,

s e l f . nu (0) , s e l f . ke , s e l f . n i))
#bcu [’ R i jF i j ’] . append (QWall [’ F i j 2 ’] (bc , s e l f . y ,

s e l f . nu (0) , s e l f . ke))

82

bcu [’ R i jF i j ’] [− 1] . type = bc . type
re turn bcu

Updates s to r ed v a r i a b l e s be f o r e s o l v i n g next part o f the
system

def s o l v e i n n e r (s e l f , max i ter=1, max err=1e−7, update=
lambda : None ,

l ogg ing=True) :
t o t a l e r r o r = ””
f o r name in s e l f . system names :

err , j = s o l v e n on l i n e a r ([s e l f . schemes [name]] ,
max i ter=max iter , max err=

max err ,
update=update , l ogg ing=logg ing)

s e l f . s o l v e d e r i v e d q u a n t i t i e s ()
t o t a l e r r o r += er r

s e l f . t o t a l numbe r i t e r s += j
return t o t a l e r r o r

c l a s s KEBase(TurbModel) :
de f update (s e l f) :

”””This makes k=1e−10 on wa l l s . ”””
bound (s e l f . x , minf=1e−10)

c l a s s RIJFIJBase (TurbModel) :
de f update (s e l f) :

”””uu , vv and ww are >= 0 . Off d i agona l s are not .”””
N = s e l f .V. sub (0) . sub (0) . dim ()
dim = 2
xa = s e l f . x . array ()
s t a r t = 0
f o r i in range (dim) :

stop = s t a r t + N
xa [s t a r t : stop] = maximum(1 . e−12, xa [s t a r t : stop])
s t a r t = stop + N*dim # unsymmetric

xa [N:2*N] = xa [2*N:3*N]
xa [5*N:6*N] = xa [6*N:7*N]

s e l f . x . s e t l o c a l (xa)

c l a s s Steady ke 1 (KEBase) :
de f form (s e l f , k , e , v k , v e , k , e , Ri j , P i j , nu , u ,

Ce1 , Ce1 , T , Ce2 ,
Cmu, e d , sigma e , nut , **kwargs) :

Fk = nu* i nne r (grad (k) , grad (v k)) *dx \
+ inner (dot (u , grad (k)) , v k) *dx \
− i nne r (0 .5* t r (P i j) , v k) *dx \
+ (e* e d + k * (1 . / k) * e * (1 . − e d)) *v k*dx \
+ inner (Cmu*T *dot (Ri j , grad (k)) , grad (v k)) *dx
#+ nut * i nne r (grad (v k) , grad (k)) *dx

Fe = nu* i nne r (grad (e) , grad (v e)) *dx \
+ inner (dot (u , grad (e)) , v e) *dx \

83

− i nne r (0 .5*Ce1 * (1 . / T) * t r (P i j) , v e) *dx \
+ Ce2 * (1 . / T) *e* v e *dx \
+ inner (Cmu*T * (1 . / s igma e) *dot (Ri j , grad (e)) ,

grad (v e)) *dx
#+ nut * (1 . / s igma e) * i nne r (grad (v e) , grad (e)) *dx

return Fk + Fe

c l a s s S t eady R i jF i j 1 (RIJFIJBase) :
de f form (s e l f , Rij , R i j , v Ri j , k , e , P i j , nu , u , nut ,

Fi j , F i j , v F i j , Ai j , Aij , PHIi j , Cmu, T , L ,
**kwargs) :

Fr = nu* i nne r (grad (Ri j) , grad (v Ri j)) *dx \
+ inner (dot (grad (Ri j) , u) , v R i j) *dx \
− i nne r (k *F i j , v R i j) *dx \
− i nne r (P i j , v R i j) *dx \
+ inner (Ri j * e * (1 . / k) , v R i j) *dx \
+ inner (Cmu*T *dot (grad (Ri j) , R i j) , grad (v Ri j)

) *dx
#+ nut * i nne r (grad (Ri j) , grad (v Ri j)) *dx

Ff = inner (grad (F i j) , grad (L **2* v F i j)) *dx \
+ inner (F i j , v F i j) *dx \
− (1 . / k) * i nne r (PHI i j , v F i j) *dx \
− (2 . / T) * i nne r (A i j , v F i j) *dx

return Fr + Ff

au t h o r = ”Jorgen Myre <jorgenmy@math . u io . no>”
d a t e = ”2011−05−14”
c o p y r i g h t = ”Copyright (C) 2011 ” + au tho r
l i c e n s e = ”GNU GPL ve r s i on 3 or any l a t e r v e r s i on ?”

”””

ER turbu lence model
The three systems (k and ep s i l o n) , (Ri j) and (F i j) are

i n d i v i d u a l l y so lved

”””
from ER import *

from cbc . rans . common . Wall import QWall

c l a s s ER 3Coupled (ER) :

de f i n i t (s e l f , problem , parameters) :
A segregated system o f three coupled systems :
parameters [’ space ’] [’ Rij ’] = TensorFunctionSpace
parameters [’ space ’] [’ F i j ’] = TensorFunctionSpace
s e l f . dim = problem . NS problem . mesh . geometry () . dim ()
parameters [’ symmetry ’] [’ Rij ’] = d i c t (((i , j) , (j , i))

f o r i in range (s e l f . dim) f o r j in range (s e l f . dim) i f
i > j)

parameters [’ symmetry ’] [’ F i j ’] = d i c t (((i , j) , (j , i))

84

f o r i in range (s e l f . dim) f o r j in range (s e l f . dim) i f
i > j)

ER. i n i t (s e l f ,
system compos i t ion =[[’ k ’ , ’ e ’] , [’ Rij ’] , [’

F i j ’]] ,
problem=problem ,
parameters=parameters)

de f d e f i n e (s e l f) :
ER. d e f i n e (s e l f)
s e l f . schemes [’ ke ’] = eva l (s e l f . prm [’ t ime in t eg ra t i on ’]

+ ’ ke ’ +
s t r (s e l f . prm [’ scheme ’] [’ ke ’])

) (s e l f ,
s e l f . system compos i t ion

[0])
s e l f . schemes [’ Rij ’] = eva l (s e l f . prm [’ t ime in t eg ra t i on ’]

+ ’ R i j ’ +
s t r (s e l f . prm [’ scheme ’] [’ Rij

’])) (s e l f ,
s e l f . system compos i t ion

[1])
s e l f . schemes [’ Fi j ’] = eva l (s e l f . prm [’ t ime in t eg ra t i on ’]

+ ’ F i j ’ +
s t r (s e l f . prm [’ scheme ’] [’ F i j

’])) (s e l f ,
s e l f . system compos i t ion

[2])

de f create BCs (s e l f , bcs) :
Set r e gu l a r boundary cond i t i on s
bcu = ER. create BCs (s e l f , bcs)
Set wa l l f un c t i on s
f o r bc in bcs :

i f bc . type () == ’Wall ’ :
bcu [’ ke ’] . append (QWall [’ ke ’] (bc , s e l f . y , s e l f . nu

(0)))
bcu [’ ke ’] [− 1] . type = bc . type
bcu [’ Fi j ’] . append (QWall [’ Fi j ’] (bc , s e l f . y , s e l f .

nu (0) , s e l f . ke , s e l f . R i j))
bcu [’ Fi j ’] [− 1] . type = bc . type

re turn bcu

Updates s to r ed v a r i a b l e s be f o r e s o l v i n g next part o f the
system

def s o l v e i n n e r (s e l f , max i ter=1, max err=1e−7, update=
lambda : None ,

l ogg ing=True) :
t o t a l e r r o r = ””
f o r name in s e l f . system names :

err , j = s o l v e n on l i n e a r ([s e l f . schemes [name]] ,

85

max iter=max iter , max err=
max err ,

update=update , l ogg ing=logg ing)
s e l f . s o l v e d e r i v e d q u a n t i t i e s ()
t o t a l e r r o r += er r

s e l f . t o t a l numbe r i t e r s += j
return t o t a l e r r o r

c l a s s KEBase(TurbModel) :
de f update (s e l f) :

”””This makes k=1e−10 on wa l l s . ”””
bound (s e l f . x , minf=1e−10)

c l a s s RIJBase (TurbModel) :
de f update (s e l f) :

”””uu , vv and ww are >= 0 . Off d i agona l s are not .”””
N = s e l f .V. sub (0) . dim ()
dim = s e l f .V. c e l l () . d
xa = s e l f . x . array ()
s t a r t = 0
f o r i in range (dim) :

stop = s t a r t + N
xa [s t a r t : stop] = maximum(1 . e−12, xa [s t a r t : stop])
s t a r t = stop + N*(dim − 1 + i) # Symmetric

s e l f . x . s e t l o c a l (xa)

c l a s s FIJBase (TurbModel) :
de f update (s e l f) :

””” F i j should not be bounded anywhere , but kept here as
p l a c eho ld e r .”””

pass

c l a s s Steady ke 1 (KEBase) :
de f form (s e l f , k , e , v k , v e , k , e , Ri j , P i j , nu , u ,

Ce1 , T , Ce2 ,
Cmu, e d , **kwargs) :

Fk = nu* i nne r (grad (k) , grad (v k)) *dx \
+ inner (dot (u , grad (k)) , v k) *dx \
− i nne r (t r (P i j) , v k) *dx \
+ (k *e* e d + k* e * (1 . − e d)) * (1 . / k) *v k*dx \
+ inner (Cmu*T *dot (Ri j , grad (k)) , grad (v k)) *dx

Fe = nu* i nne r (grad (e) , grad (v e)) *dx \
+ inner (dot (u , grad (e)) , v e) *dx \
− i nne r (Ce1 * (1 . / T) * t r (P i j) , v e) *dx \
+ Ce2 * (1 . / T) *e* v e *dx \
+ inner (Cmu*T *dot (Ri j , grad (e)) , grad (v e)) *dx

return Fk + Fe

c l a s s Steady Ri j 1 (RIJBase) :
de f form (s e l f , Rij , R i j , v Ri j , k , e , F i j , P i j , nu , u ,

T , Cmu, **kwargs) :

86

i , j , l , m = i nd i c e s (4)
Fr = nu* i nne r (grad (Ri j) , grad (v Ri j)) *dx \

+ inner (dot (grad (Ri j) , u) , v R i j) *dx \
− i nne r (k * F i j , v R i j) *dx \
− i nne r (P i j , v R i j) *dx \
+ inner (Ri j * e * (1 . / k) , v R i j) *dx \
+ inner (Cmu*T *dot (grad (Ri j) , R i j) , grad (v Ri j))

*dx

return Fr

c l a s s S t eady F i j 1 (FIJBase) :

de f form (s e l f , Fi j , v F i j , k , Ai j , PHIi j , T , L , Cmu, **

kwargs) :
Ff = (L **2) * i nne r (grad (F i j) , grad (v F i j)) *dx \

+ inner (F i j , v F i j) *dx \
− (1 . / k) * i nne r (PHI i j , v F i j) *dx \
− 2 . * (1 . / T) * i nne r (A i j , v F i j) *dx

return Ff

B.3 Implementation of boundary conditions

This is the classes for boundary conditions for the different systems, which
are normally found in the Wall.py file in the CBC.RANS package.

c l a s s FIJWall 1 (Wal l funct ion) :
”””Wall−BC fo r uncoupled F i j ”””
””” Set F11 = −0.5*F22 imp l i c i t l y , F22 = −20*(v**2/y**4) *vv/e

and F12 = −8*(v**2/y**4) *uv/e e x p l i c i t l y .”””
de f i n i t (s e l f , bc , y , nu , ke , Ri j) :

Wal l funct ion . i n i t (s e l f , y . f unc t i on spac e () , bc)
s e l f . y = y . vec to r ()
s e l f .N = len (s e l f . y)
s e l f . nu = nu
s e l f . ke = ke . vec to r ()
s e l f . R i j = Ri j . vec to r ()
i f not (l en (s e l f . ke) == 2* s e l f .N) :

i n f o (’Warning ! Only works when func t i on space o f
Eikonal i s equal to eps i l on ’)

de f apply (s e l f , * args) :
”””Apply boundary cond i t i on to t en s o r s .”””
aro = array (l i s t (s e l f . v e r t i c e s on boundary) , ’ I ’)
a r i = array (l i s t (s e l f . v e r t i c e s i n s i d e bounda r y) , ’ I ’)
f o r var in args :

i f (i s i n s t a n c e (var , Matrix)) :
var . ident (aro)
var . ident (a r i)
var . ident (aro + s e l f .N)
var . ident (a r i + s e l f .N)

87

var . ident (aro + 2* s e l f .N)
var . ident (a r i + 2* s e l f .N)
Set F11 = −0.5*F22 approaching boundar ies
f o r i in s e l f . v e r t i c e s i n s i d e bounda r y :

c o l = array ([i + 2* s e l f .N] , ’ I ’)
va l = array ([0 . 5])
var . setrow (i , co l , va l)
var . apply (’ ’)

#var [i , i + 2* s e l f .N] = 0 .5
f o r j in s e l f . v e r t i c e s on boundary :

i = s e l f . bnd to in [j]
c o l = array ([i + 2* s e l f .N] , ’ I ’)
va l = array ([0 . 5])
var . setrow (j , co l , va l)
var . apply (’ ’)
#var [j , i + 2* s e l f .N] = 0 .5

i f (i s i n s t a n c e (var , Vector)) :
var [aro] = 0 .
var [a r i] = 0 .
#Set F i j = − (8 or 10) *nu**2/y**4*Rij

#f o r v2f s e t s eps = max(1 e−3, e) , maybe do that here too ?
f o r j in s e l f . v e r t i c e s on boundary :

i = s e l f . bnd to in [j]
var [j + s e l f .N] = −8.*(s e l f . nu**2/ s e l f . y [i]**4) * s e l f

. R i j [i+s e l f .N] * (1 . / s e l f . ke [i +s e l f .N])
var [j + 2* s e l f .N] = −20.*(s e l f . nu**2/ s e l f . y [i]**4) *

s e l f . R i j [i +2* s e l f .N] * (1 . / s e l f . ke [i +s e l f .N])
f o r i in s e l f . v e r t i c e s i n s i d e bounda r y :

var [i + s e l f .N] = −8.*(s e l f . nu**2/ s e l f . y [i]**4) *
s e l f . R i j [i+s e l f .N] * (1 . / s e l f . ke [i +s e l f .N])

var [i + 2* s e l f .N] = −20.*(s e l f . nu**2/ s e l f . y [i
]**4) * s e l f . R i j [i +2* s e l f .N] * (1 . / s e l f . ke [i +
s e l f .N])

c l a s s FIJWall 2 UNSYMMETRIC2(Wal l funct ion) :
”””Wall−BC fo r Ri j and F i j coupled ”””
””” Set F11 = −0.5*F22 imp l i c i t l y , F22 = −20*(v**2/y**4) *vv/e

and F12 = −8*(v**2/y**4) *uv/e e x p l i c i t l y .”””
de f i n i t (s e l f , bc , y , nu , ke , n i) :

Wal l funct ion . i n i t (s e l f , y . f unc t i on spac e () , bc)
s e l f . y = y . vec to r ()
s e l f .N = len (s e l f . y)
s e l f . nu = nu
s e l f . ke = ke . vec to r ()
s e l f . n i = ni . vec to r ()
i f not (l en (s e l f . ke) == 2* s e l f .N) :

i n f o (’Warning ! Only works when func t i on space o f
Eikonal i s equal to eps i l on ’)

de f apply (s e l f , * args) :
”””Apply boundary cond i t i on to t en so r s .”””
aro = array (l i s t (s e l f . v e r t i c e s on boundary) , ’ I ’)
a r i = array (l i s t (s e l f . v e r t i c e s i n s i d e bounda r y) , ’ I ’)

88

N = s e l f .N
nn = s e l f . n i
f o r var in args :

i f (i s i n s t a n c e (var , Matrix)) :
Just keep these because they s e t everyth ing to

zero except
the d iagona l that i s over loaded anyway
var . ident (aro + 4*N)
var . ident (a r i + 4*N)
var . ident (aro + 5*N)
var . ident (a r i + 5*N)
var . ident (aro + 6*N)
var . ident (a r i + 6*N)
var . ident (aro + 7*N)
var . ident (a r i + 7*N)

f o r i in s e l f . v e r t i c e s i n s i d e bounda r y :
colF = array ([i + 4*N, i + 5*N, i + 6*N, i +

7*N] , ’ I ’)
colR = array ([i , i + N, i + 2*N, i + 3*N] , ’

I ’)
n1 = nn [i]
n2 = nn [i + N]
t1 = n2
t2 = −n1
valn = array ([n1*n1 , n1*n2 , n2*n1 , n2*n2])

nn [0 , 0] , nn [0 , 1] , nn [1 , 0] , nn [1 , 1]
va l t = array ([t1 * t1 , t1 * t2 , t2 * t1 , t2 * t2])

t t [0 , 0] , t t [0 , 1] , t t [1 , 0] , t t [1 , 1]
va lnt = array ([n1* t1 , n2* t1 , n1* t2 , n2* t2])

nt [0 , 0] , nt [0 , 1] , nt [1 , 0] , nt [1 , 1]
va l tn = array ([t1 *n1 , t2 *n1 , t1 *n2 , t2 *n2])

tn [0 , 0] , tn [0 , 1] , tn [1 , 0] , tn [1 , 1]

#pr in t ’ valn ’ , i , valn
#pr in t ’ va l t ’ , i , v a l t
#pr in t ’ va lnt ’ , i , va lnt
#pr in t ’ va l tn ’ , i , va l tn

Ftt = −0.5*Fnn
var . setrow (i + 4* s e l f .N, colF , va l t + 0 .5*

valn)

Fnt = −8*(nu**2/y**4) *Rnt/e
vv = 8 .* (s e l f . nu**2/ s e l f . y [i]**4) * (1 . / s e l f .

ke [i +s e l f .N])
var . setrow (i + 5* s e l f .N, colR , vv* va lnt)
var . setrow (i + 5* s e l f .N, colF , va lnt)
Ftn = −8*(nu**2/y**4) *Rtn/e
var . setrow (i + 6* s e l f .N, colR , vv* va l tn)
var . setrow (i + 6* s e l f .N, colF , va l tn)

Fnn = −20*(nu**2/y**4) *Rnn/e
vv = 20 .* (s e l f . nu**2/ s e l f . y [i]**4) * (1 . / s e l f .

89

ke [i +s e l f .N])
var . setrow (i + 7* s e l f .N, colR , vv*valn)
var . setrow (i + 7* s e l f .N, colF , valn)
var . apply (’ ’)

f o r j in s e l f . v e r t i c e s on boundary :
i = s e l f . bnd to in [j]
colF = array ([j + 4*N, j + 5*N, j + 6*N, j +

7*N] , ’ I ’)
colR = array ([i , i + N, i + 2*N, i + 3*N] , ’

I ’)
n1 = nn [i]
n2 = nn [i + N]
t1 = −n2
t2 = n1
valn = array ([n1*n1 , n1*n2 , n2*n1 , n2*n2])

nn [0 , 0] , nn [0 , 1] , nn [1 , 0] , nn [1 , 1]
va l t = array ([t1 * t1 , t1 * t2 , t2 * t1 , t2 * t2])

t t [0 , 0] , t t [0 , 1] , t t [1 , 0] , t t [1 , 1]
va lnt = array ([n1* t1 , n2* t1 , n1* t2 , n2* t2])

nt [0 , 0] , nt [0 , 1] , nt [1 , 0] , nt [1 , 1]
va l tn = array ([t1 *n1 , t2 *n1 , t1 *n2 , t2 *n2])

tn [0 , 0] , tn [0 , 1] , tn [1 , 0] , tn [1 , 1]

Ftt = −0.5*Fnn
var . setrow (j + 4* s e l f .N, colF , va l t + 0 .5*

valn)

F12 = −8*(nu**2/y**4) *Rnt/e
vv = 8 .* (s e l f . nu**2/ s e l f . y [i]**4) * (1 . / s e l f .

ke [i + N])
var . setrow (j + 5*N, colR , vv* va lnt)
var . setrow (j + 5*N, colF , va lnt)
var . setrow (j + 6*N, colR , vv* va l tn)
var . setrow (j + 6*N, colF , va l tn)

Fnn = −20*(nu**2/y**4) *Rnn/e
vv = 20 .* (s e l f . nu**2/ s e l f . y [i]**4) * (1 . / s e l f .

ke [i +N])
var . setrow (j + 7*N, colR , vv*valn)
var . setrow (j + 7*N, colF , valn)
var . apply (’ ’)

i f (i s i n s t a n c e (var , Vector)) :
var [aro + 4*N] = 0 .
var [a r i + 4*N] = 0 .
var [aro + 5*N] = 0 .
var [a r i + 5*N] = 0 .
var [aro + 6*N] = 0 .
var [a r i + 6*N] = 0 .
var [aro + 7*N] = 0 .
var [a r i + 7*N] = 0 .

c l a s s FIJWall 3 UNSYMMETRIC(Wal l funct ion) :

90

”””Wall−BC fo r f u l l y coupled ER system”””
”””Wall−BC fo r e , Ri j and F i j coupled ”””
””” Set F11 = −0.5*F22 imp l i c i t l y , F22 = −20*(v**2/y**4) *vv/e

and F12 = −8*(v**2/y**4) *uv/e e x p l i c i t l y .”””
de f i n i t (s e l f , bc , y , nu , keRi jF i j , n i) :

Wal l funct ion . i n i t (s e l f , y . f unc t i on spac e () , bc)
s e l f . y = y . vec to r ()
s e l f .N = len (s e l f . y)
s e l f . nu = nu
s e l f . ke = keR i jF i j . vec to r ()
s e l f . n i = ni . vec to r ()
i f not (l en (s e l f . ke) == 2* s e l f .N) :

i n f o (’Warning ! Only works when func t i on space o f
Eikonal i s equal to eps i l on ’)

de f apply (s e l f , * args) :
”””Apply boundary cond i t i on to t en s o r s .”””
aro = array (l i s t (s e l f . v e r t i c e s on boundary) , ’ I ’)
a r i = array (l i s t (s e l f . v e r t i c e s i n s i d e bounda r y) , ’ I ’)
N = s e l f .N
nn = s e l f . n i
f o r var in args :

i f (i s i n s t a n c e (var , Matrix)) :
Just keep these because they s e t everyth ing to

zero except
the d iagona l that i s over loaded anyway
var . ident (aro + N)
var . ident (a r i + N)
var . ident (aro + 6*N)
var . ident (a r i + 6*N)
var . ident (aro + 7*N)
var . ident (a r i + 7*N)
var . ident (aro + 8*N)
var . ident (a r i + 8*N)
var . ident (aro + 9*N)
var . ident (a r i + 9*N)

f o r i in s e l f . v e r t i c e s i n s i d e bounda r y :

colE = array ([i] , ’ I ’)
valE = array ([−2.* s e l f . nu/ s e l f . y [i] * * 2])
var . setrow (i + s e l f .N, colE , valE)

colF = array ([i + 6*N, i + 7*N, i + 8*N, i +
9*N] , ’ I ’)

colR = array ([i + 2*N, i + 3*N, i + 4*N, i +
5*N] , ’ I ’)

n1 = nn [i]
n2 = nn [i + N]
t1 = n2
t2 = −n1
valn = array ([n1*n1 , n1*n2 , n2*n1 , n2*n2])

nn [0 , 0] , nn [0 , 1] , nn [1 , 0] , nn [1 , 1]
va l t = array ([t1 * t1 , t1 * t2 , t2 * t1 , t2 * t2])

91

tt [0 , 0] , t t [0 , 1] , t t [1 , 0] , t t [1 , 1]
va lnt = array ([n1* t1 , n2* t1 , n1* t2 , n2* t2])

nt [0 , 0] , nt [0 , 1] , nt [1 , 0] , nt [1 , 1]
va l tn = array ([t1 *n1 , t2 *n1 , t1 *n2 , t2 *n2])

tn [0 , 0] , tn [0 , 1] , tn [1 , 0] , tn [1 , 1]

#pr in t ’ valn ’ , i , valn
#pr in t ’ va l t ’ , i , v a l t
#pr in t ’ va lnt ’ , i , va lnt
#pr in t ’ va l tn ’ , i , va l tn

Ftt = −0.5*Fnn
var . setrow (i + 6* s e l f .N, colF , va l t + 0 .5*

valn)

Fnt = −8*(nu**2/y**4) *Rnt/e
vv = 8 .* (s e l f . nu**2/ s e l f . y [i]**4) * (1 . / s e l f .

ke [i +s e l f .N])
var . setrow (i + 7* s e l f .N, colR , vv* va lnt)
var . setrow (i + 7* s e l f .N, colF , va lnt)
Ftn = −8*(nu**2/y**4) *Rtn/e
var . setrow (i + 8* s e l f .N, colR , vv* va l tn)
var . setrow (i + 8* s e l f .N, colF , va l tn)

Fnn = −20*(nu**2/y**4) *Rnn/e
vv = 20 .* (s e l f . nu**2/ s e l f . y [i]**4) * (1 . / s e l f .

ke [i +s e l f .N])
var . setrow (i + 9* s e l f .N, colR , vv*valn)
var . setrow (i + 9* s e l f .N, colF , valn)
var . apply (’ ’)

f o r j in s e l f . v e r t i c e s on boundary :
i = s e l f . bnd to in [j]

colE = array ([i] , ’ I ’)
valE = array ([−2.* s e l f . nu/ s e l f . y [i] * * 2])
var . setrow (j + s e l f .N, colE , valE)

colF = array ([j + 6*N, j + 7*N, j + 8*N, j +
9*N] , ’ I ’)

colR = array ([i + 2*N, i + 3*N, i + 4*N, i +
5*N] , ’ I ’)

n1 = nn [i]
n2 = nn [i + N]
t1 = −n2
t2 = n1
valn = array ([n1*n1 , n1*n2 , n2*n1 , n2*n2])

nn [0 , 0] , nn [0 , 1] , nn [1 , 0] , nn [1 , 1]
va l t = array ([t1 * t1 , t1 * t2 , t2 * t1 , t2 * t2])

t t [0 , 0] , t t [0 , 1] , t t [1 , 0] , t t [1 , 1]
va lnt = array ([n1* t1 , n2* t1 , n1* t2 , n2* t2])

nt [0 , 0] , nt [0 , 1] , nt [1 , 0] , nt [1 , 1]
va l tn = array ([t1 *n1 , t2 *n1 , t1 *n2 , t2 *n2])

tn [0 , 0] , tn [0 , 1] , tn [1 , 0] , tn [1 , 1]

92

Ftt = −0.5*Fnn
var . setrow (j + 6* s e l f .N, colF , va l t + 0 .5*

valn)

F12 = −8*(nu**2/y**4) *Rnt/e
vv = 8 .* (s e l f . nu**2/ s e l f . y [i]**4) * (1 . / s e l f .

ke [i + N])
var . setrow (j + 7*N, colR , vv* va lnt)
var . setrow (j + 7*N, colF , va lnt)
var . setrow (j + 8*N, colR , vv* va l tn)
var . setrow (j + 8*N, colF , va l tn)

Fnn = −20*(nu**2/y**4) *Rnn/e
vv = 20 .* (s e l f . nu**2/ s e l f . y [i]**4) * (1 . / s e l f .

ke [i +N])
var . setrow (j + 9*N, colR , vv*valn)
var . setrow (j + 9*N, colF , valn)
var . apply (’ ’)

i f (i s i n s t a n c e (var , Vector)) :
var [aro + s e l f .N] = 0 .
var [a r i + s e l f .N] = 0 .
var [aro + 6*N] = 0 .
var [a r i + 6*N] = 0 .
var [aro + 7*N] = 0 .
var [a r i + 7*N] = 0 .
var [aro + 8*N] = 0 .
var [a r i + 8*N] = 0 .
var [aro + 9*N] = 0 .
var [a r i + 9*N] = 0 .

93

