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Chapter 1

Introduction and
Preliminaries

1.1 Introduction

The topic of this master’s thesis is the notion of a completely positive matriz,
which is a matrix that can be decomposed as

A= BBT,

where B is an elementwise nonnegative matrix. Completely positive matrices
have arisen in some situations in economic modelling and appear to have some
applications in statistics, and they are also the dual cone of the cone of copositive
matrices, which has been studied some in connection with quadratic optimisa-
tion (see as an example [6]). In this thesis, however, we are interested in the
completely positive matrices as a theoretical object in and of themselves.

It is immediately apparent that a completely positive matrix is symmetric
and nonnegative, and it is also clear that it must be positive semidefinite. Pos-
itive semidefinite and nonnegative matrices are known as doubly nonnegative
matrices, and form a convex cone. The completely positive matrices also form a
cone, but it turns out to be strictly contained in the cone of doubly nonnegative
matrices.

The main problem concerning completely positive matrices is that it is not
known how to test for membership in the completely positive cone. Several
sufficient results are known, but the literature concerning necessary criteria
seems a lot sparser. In this thesis we set before us three tasks:

1. We will give an overview of some central results concerning completely
positive matrices.

2. The nonnegative diagonally dominant matrices are known to be com-
pletely positive. We will consider whether this is a piece of information
from which we can learn more.

3. We will study some algorithms that attempt to determine whether or not
a doubly nonnegative matrix is completely positive.



The first item will be the topic of Chapter 2, the second will be dealt with
in Chapter 3 while the third will be the topic of Chapters 4 and 5. As such,
Chapter 2 will contain theorems I have found elsewhere, while Chapters 3-5 will
mainly be my own work unless otherwise noted (it seems like most research on
completely positive matrices follows different paths than we will endeavour to
do in this thesis).

Before we can begin with these three tasks, however, we wish to make clear
the theory we are building on and the notation we use.

Nearly all the results in this first chapter will be known to any reader (In
particular the first few sections can be skimmed, they only serve to establish
notation, but nothing in this chapter is very advanced), and most can be found
in any book on elementary finite-dimensional linear algebra, like [11], though we
also use some results concerning convexity. The book [3], which is specifically
about complete positivity, also covers much of the material, for the same reason
we do — the definitions in this chapter are useful in the study of completely
positive matrices. We obviously cannot restate all the theory we build on from
first principles, so we simply provide definitions and theorems where warranted,
and assume familiarity with some notions we do not define here!, because they
are not so much in the core of our theory. We will usually not go into proofs in
this chapter.

Except where otherwise noted, the material in Sections 1.2-1.5 and 1.8 can
be found in [3], while the material in Sections 1.6 and 1.7 can be found in [9].
Section 1.9 references [16], and Section 1.10 references [17].

1.2 Numbers, vectors and matrices

As is usual, we denote the real numbers by R and the natural numbers by N.
We will never have need for complex numbers in this thesis, so all matrices,
matrix spaces, vectors, vector spaces and numbers will be implicitly assumed to
be real unless otherwise stated. We also assume all vectors are column vectors
unless otherwise stated. If S is a finite set, we let | S| denote the size, or number
of elements, of the set (we will not need to talk about the size of infinite sets).

For any positive integer n we let R™ denote the vector space of real column
vectors of size n. Vectors will usually be denoted by boldface letters, like so: x.
The elements of some x € R™ will be referred to as =1, zs, ..., z,. We will have
occasion to refer to the nonnegative orthant of R™, denoted by R’}, consisting
of those vectors that are elementwise nonnegative, i. e.:

RY ={xeR":z; >0fori=1,...,n}.

If x € R}, we say that x is nonnegative, and we write x > 02.
A set of vectors {vi,...,v,} in some vector space is said to be linearly
independent if the vector equation

O0=a1vi+...+arvi

IParticular examples include linear vector spaces, subspaces, convergence, gradients, con-
vex functions and so forth.

2By a boldface zero, we mean a vector of all zeroes that has the appropriate dimension.
The dimension is usually clear from context, so for notational simplicity we do not resolve the
ambiguity of 0 by adding subscripts or the like.



with ai,...,ar appropriate scalars only has the solution a; = ... = a; = 0.
A combination of vectors of this kind is known as a linear combination. If V.
is some linear vector space and S a set of vectors in V such that all vectors
in V can be written as a linear combination of vectors in S, we say that S is
a spanning set for V. The set obtained from S by taking all possible linear
combinations of vectors in S is denoted SpanS. A spanning set that is also
linearly independent is known as a basis. The number of vectors needed in a
basis for a space is known as its dimension, is independent of the basis chosen,
and it is known that R™ has dimension n.

Beyond 0 we will also use the notation 1,, for a vector in R™ whose elements
are all ones, and we will denote the standard basis in the same space by e; for
i=1,...,n, that is, e; is a vector consisting of all zeroes, except for position 1,
where there is a 1.

For positive integers m, n we let R”*™ denote the space of m x n real matri-
ces. If m or n are 1 then R™*"™ is a space of row or column vectors, respectively.
The space RT"™" is defined in the obvious way as the nonnegative orthant of
R™*™  Matrices will be denoted by capital letters, like so: A. We denote the
(4,7)-th element, the element in row ¢ and column j, of a matrix A by a;;, or
occasionally A;;. If necessary, for instance when referring to an element like the
one in position (¢ 4 1,7 + 2) of a matrix A, we will use a comma, so we write
@i+1,i+2 as opposed to a;11,42 (which would be ambiguous). R™*" has dimen-
sion mn. The rank of a matrix is defined as the largest number of columns in
it we can choose while forming a linearly independent set.

The transpose of a matrix A will be denoted by AT. If A = AT then A is
called a symmetric matrix. The set of symmetric nonnegative n X n matrices
will be denoted by S%. If a;; > 0 for all 7, j we say that A is nonnegative, writing
A> 03

We will assume the common definition of matrix multiplication, and mul-
tiplication of a matrix with a vector, where an m X n-matrix transforms an
n-dimensional vector into an m-dimensional one. When writing A* for some &,
we mean the product A¥ = AAA ... A with k matrices in total — note that this
is only defined if A is square.

The Hadamard product, denoted by a o, is defined by (Ao B); ; = A; ;B ;,
that is, componentwise multiplication. If A is a matrix, we let A®*) denote the
k-th Hadamard power of A, for k > 1.

1.3 Special types of matrices

The elements of a square matrix A in the positions (¢,¢) for some i are known
as the diagonal elements of the matrix. A square matrix D is called a diagonal
matrix if the only nonzero elements of D are the diagonal elements. If each of the
diagonal elements is strictly positive, D is known as a positive diagonal matrix
(Note that D % 0, since all off-diagonal elements are 0). If we let dy,...,d, be
the diagonal elements of D, we sometimes write D = diag(dy, ...,d,). A special

3This is another zero-related abuse of notation, where we let O be the matrix of all zeroes
of appropriate dimension. Again, usually the context makes it clear which zero matrix is
meant, so we do not bother resolving this ambiguity.



positive diagonal matrix is the identity matrix I = diag(1,1,...,1)*. This has
the property that A = Al = A for A and I of appropriate dimension.

A special kind of matrix is the diagonally dominant matrix. A matrix A =
[aij]} j—, is diagonally dominant if the following holds:

n
i > E a;; fori=1,...,n.
k=1, ki

We will return to diagonally dominant matrices several times throughout this
thesis.

If P is a square (0,1)-matrix with exactly one nonzero element (which is
consequently 1) in each row and in each column, we call P a permutation matrix.
Multiplying a matrix from the left by P corresponds to permuting the order of
the rows in said matrix, while multiplying from the right permutes the columns.
If we multiply from the left by P and from the right by P7 we get a matrix in
which the columns and rows have been permuted in the same way.

If a matrix has the property that all the values above the diagonal are zero,
it will be called lower triangular. We define upper triangular in the obvious way,
and if a matrix is either we say it is triangular.

To any square matrix A we associate a matrix M(A) of the same dimensions
called the comparison matriz. It is defined by setting its (7, j)-th element to be
—|A;;| if i # j and |A;j| if ¢ = j. It can be shown that if a comparison matrix
is positive semidefinite (see section 1.5) there exists a positive diagonal matrix
D such that DM (A)D is diagonally dominant. We shall have use for this result
in Chapter 2.

1.4 Euclidean vector spaces and norms

If V is an n-dimensional vector space with an inner product denoted by (-, -)
and defined by

for viw € V, (v, w) = vjwy + vowa + ... + vpwy,

we say it is a Fuclidean vector space. The inner product induces the norm of
any vevV,

Vil = v (v,v) =

Using this, we can also talk about the angle # between two vectors v,w € V:

0 = —1 <V’ W>

= COS .
[vllwll

Thus far we have assumed the elements of a Euclidean vector space are column
vectors (basically, that we are in R™) — we will also be using matrix spaces. In
that case we can write the inner product somewhat more succinctly, though it
is still the same idea of adding up the elements that are in the “same positions”

4We will, as with the zero matrix, rarely bother to specify the size of I — it will be clear
from context.



multiplied together. The trace of a matrix A, denoted tr A, is the sum of its
diagonal elements. We see that if A, B € R"*"™,

(A,B) = tr (ABT)

defines an inner product satisfying the same properties as the one above. In
both cases, we have a Euclidean vector space. The norm induced by this inner
product, called the Frobenius norm, is denoted by || - ||r. We note also that
elements in R™*™ can, as vectors, as well be considered to be in R™™ — this is
a property we will make use of later.

Using the definitions of angle and norms we can define orthonormal sets of
vectors. If {vq,... vy} is a set of vectors such that for all ¢, ||v;|| = 1, and for
all 4,j with ¢ # j, (v, v;) =0, then we say that the vectors are orthonormal.

We will have some cause to talk about isometries. A linear isometry is a
map from one Euclidean vector space to another which preserves angles and
vector lengths. It is a fact that any linear isometry (on a finite-dimensional
space) can be represented by an orthogonal matrix U, that is a matrix such
that UUT = UTU = I (this is equivalent to the columns and rows of U being
sets of orthonormal vectors). For us the importance of these isometries is that
they preserve inner products.

If vi,...,v, is some set of vectors in a Euclidean vector space, we define the
Gram matriz A = Gram(vy,...,v,) by A;; = (v;, v,). Note that in particular,
a Gram matrix is symmetric, and if the greatest angle between any two vectors
is at most 7/2, it is also nonnegative.

Going back to the norm, we will have some use for the so-called p-norms,
namely the 1-norm and the co-norm. They are defined for any vector x € R"

as follows:
n 1/p
x|, = (Z |$i|”> : (1.1)
i=1

The uniform norm is obtained by letting p tend to infinity, and we often simply
say that we let p = co. It is defined by

I%|lcc = max{|z;| :i=1,...,n}. (1.2)

To make clear what it does we will usually say || - ||l;maz instead of || - ||oo, as
there is no difference in our finite-dimensional spaces. Matrix spaces are also
vector spaces, and when we need norms on matrix spaces, we will often use these
vector norms basically by pretending the matrix is a column vector obtained by
stacking its columns on top of each other.

In any finite-dimensional space all norms are equivalent, which means (for
our purposes) that they give convergence in the same situations, so when we
are discussing convergence later we can choose norms only according to which
is easier to compute.

1.5 Positive semidefinite matrices
We will be using positive semidefinite matrices a good deal. In this section, we

define them and note some basic properties. We will not have need for all of
these, but there is no harm in stating them all — the verbosity of the theorem



in this section does illustrate that the class of positive semidefinite matrices is
well understood, as opposed to the class we are studying.

In many applications, quadratic forms come up. A quadratic form is an
expression of the form x” Ax for some symmetric matrix A, and it is obviously
a polynomial in 1, xa, ..., x,. Often, one needs to know when a quadratic form
takes nonnegative values. We say that a matrix A such that the associated
quadratic form is nonnegative for all x is positive semidefinite. There are a
number of different characterisations of positive semidefiniteness, but we will
only use a few, so we do not bother mentioning the others here.

Theorem 1.5.1. Let A be an n X n symmetric matriz. Then the following are
equivalent:

1. A is positive semidefinite.

2. Any eigenvalue of A is nonnegative.

3. There exists a lower triangular n x n-matriz L such that A = LL".
4. There exists some n X k-matriz B such that A = BBT.

5. There exists a k-dimensional Fuclidean vector space V' and vectors
Vi,...,Vn €V such that A = Gram(vy,...,v,).

6. There exist k vectors by, ...,br € R™ such that A = Zle bisz.
It is a fact that in the above results, k is equal to the rank of A.

The set of positive semidefinite n x n matrices will be referred to as PSD,,.
For us, the three last characterisations will be the most useful. The following
properties are also well-known — we reference [13] for a particular source. They
are all obvious to see using the representations in Theorem 1.5.1.

Theorem 1.5.2. If A is positive semidefinite and of order n, the following
holds.

1. |aij| € $(ay +aj;) fori=1,...,n—1,j=1i+1,...,n.
2. lay| < \Jagajj fori=1,....n—1,j=i+1,....,n.

3. max; j |a;;| = max; a;;.

4. a3 = 0= a;; = aj; =0 for any fized ¢ with j =1,...,n.

In time, we will see that positive semidefinite matrices are an important
superset of the set of completely positive matrices, the topic of this thesis. For
now, we make note that there exists an effective algorithm for verifying positive
semidefiniteness, namely semi- Cholesky factorisation, see for example [13] again,
although this is found in most texts dealing at all with numerical linear algebra.
This obtains a decomposition of the matrix into a lower triangular matrix (item
3 in Theorem 1.5.1), proving positive semidefiniteness. It will only fail to do so
if the matrix is not positive semidefinite. The algorithm is well known, so we
do not reproduce it here. It runs in O(n?) time — we will define what this is in
Section 1.10.

10



1.6 Convexity, cones and dimension

Throughout this section, V' will be assumed to be some finite dimensional Eu-
clidean space. We will use R” to make the results easier to read, but the notions
in this section also hold for R™*™ and it is that space we shall apply them to
later.

A set C C V is convex if x,y € C implies that for any 0 < A <1, Ax+ (1 —
Ay € C. It is reasonably easy to see that this is the same as requiring, for any
set X1,...,Xm €C, > Nx; €CHE Y0 A =1and A\; >0 for all 5. A set C
isa coneif, for all x € C, ax € C'if a > 0. A set C is then a convex cone if for
any a,b € RT and x,y € C we know that ax + by € C. The only convex sets
we will be considering are convex cones. We will never use non-convex cones,
so sometimes we will simply say cone instead of convex cone.

Proposition 1.6.1 (Convex cones). Let S be a set and let x1,...,X;m € S.
Then S is a convex cone if and only if for any A1, ..., A\, € Ry we have that

i Aix; € S.
=1

Further, for any finite set S = {x;}; C R™ we can form the set

C = {Z)\ixi:)\l,...,)\meRJr}.
=1

The set C is the smallest convexr cone containing S, and we will denote it by
cone S.

The latter part of this proposition will prove useful later. The big advantage
it affords is when S is explicitly known, in which case Proposition 1.6.1 says
that we often only have to prove properties for the elements in S as opposed to
any element. The set S is referred to as the generating set of the cone cone S,
and the elements of S are referred to as generators.

A cone is often talked about in terms of its extreme rays. An extreme ray
of a cone C is a set of the form {Ax: A € Ry, x € C'} with the property that if
X = %(y + z) with y,x € C then both y and z are nonnegative multiples of x,
that is, they are themselves in the set.

An example of an important cone is the one of doubly nonnegative matri-
ces, that is, matrices that are both nonnegative and positive semidefinite. The
cone of doubly nonnegative n x n matrices is denoted by DNN,,. It is obvi-
ously a cone, and it is contained in S% (which is also a cone), since all positive
semidefinite matrices are symmetric.

For any convex set in R™ we can define a notion of dimension, but first we
need the notion of affine independence. In a Euclidean vector space V' a set of

vectors vy, ..., vy is affinely independent if, for any set of scalars A1, ..., Ay € R,
Zle Aiv; = 0 and Zle A; = 0 imply that Ay = ... = Ay = 0. It can be proved
that the condition of affine independence is equivalent to requiring that the
vectors vo — vy,..., Vg — v are linearly independent.

Definition 1.6.2 (Dimension of a subset of R™). The dimension of a set S C R"™
s the maximal number of affinely independent points in S minus 1.

11



This definition of dimension coincides with the standard definition of di-
mension with regards to linear subspaces, and it should be easy to see that in
a convex cone it is equivalent to the maximal number of linearly independent
vectors we can find (Take some linearly independent points in the cone and
adjoin to them the origin, if necessary after translating the cone).

1.7 Hyperplanes, halfspaces and polyhedra

The results in this section remain general, but it is easier to describe them in
R", and so we will do that®. A hyperplane in R" is a set of the form {x €
R™ : (x,y) = a} for some y € R",;a € R. A halfspace is a set of the form
{x € R": (x,y) < a} for some y € R",a € R. Any halfspace is a convex set,
and a set which is a finite intersection of halfspaces is known as a polyhedron,
which clearly is a convex set. In particular, a (convex) cone C' which is such that
C = cone S for some finite set S, is a polyhedron, and is known as a polyhedral
cone. This is the kind of cone we will mostly be working with.

It can be shown that a set is a polyhedron if and only if it is defined by a
set of linear inequalities, and so for any polyhedron P we can find a matrix A
and a vector b such that

P={xeR": Ax < b}.

Note that the representation need not be unique: Some of the rows in A may
be redundant. For instance, consider the following.

ot Yoefi)

The second inequality here clearly follows from the first, and so it is redundant.
A system of inequalities that contains no redundant inequalities is said to be
irredundant.

Further, we define a face of a polyhedron P as a subset F' with the following
property: If x € P and we can write x as a convex combination of two points
x1,x9 € F then it follows that © € F. Any convex set is a face of itself,
being convex, and so is the empty set by convention, but most sets will contain
nontrivial faces — an example of (usually) nontrivial faces are the extreme rays
we defined in Section 1.6. A facet is a nontrivial face of maximal dimension,
that is, if P is a polyhedron and F' is a face, then F' is a facet if and only if
dim F =dim P — 1.

The reason we care about facets is that they help us find minimal linear
systems defining a polyhedron, which is to say systems without redundant in-
equalities. Assume P is a polyhedron, in which case it is described by some
number of inequalities. We assume each of them are non-redundant, which in
particular means that each of them are sometimes fulfilled with equality. The
set for which there is equality in an inequality is known as an exposed face, and
it is easy to see that it is actually a face. It is shown, for example in [14], that

5In particular, it is easier to describe a linear inequality system in R™, because we can
simply say Ax < b. If we wished to study matrix spaces we would have to introduce more
cumbersome notation here. Later in the thesis, though, we will always be applying these
results to matrix spaces in practice.

12



for a polyhedral cone all faces are exposed faces. An inequality whose related
exposed face is a facet is known as a facet-defining inequality.

The following three theorems cover what we need to know about the situa-
tion, and they can be found in [14]. In all three, we let P = {Ax <b:x € R"}
be a polyhedron in the space R™.

Theorem 1.7.1. If P has full dimension in the space (dim P = n) and the
system Ax < b is irredundant, then every inequality in the system defines a
facet.

Theorem 1.7.2. If P has full dimension and the system Ax < b is irredundant,
then it is the unique minimal representation of P as the solution set of a system
of linear inequalities (up to multiplying any inequality by a scalar).

Theorem 1.7.3. If P has full dimension the system Ax < b is irredundant if
and only if, for any two inequalities from the system a;x < b; and a;x < b
there exists an element xg € P such that one inequality holds with equality and
the other does not.

Together Theorems 1.7.1-1.7.3 will let us find minimal defining inequality
systems in Chapter 3.

Now we define a special kind of convex cone, which will illustrate why facets
are useful.

Definition 1.7.4 (Simplicial cones). A simplicial cone is a finitely generated
cone C = cone S such that S is a set of linearly independent vectors. Clearly
we must have dim C' = |S].

An important property of simplices and simplicial cones is the following
(This result and the next one are well known, but the proofs are our own).

Proposition 1.7.5 (Unique representation in simplicial cones). A point x in a
simplicial cone C' has a unique representation as a nonnegative combination of
the generators of K.

Proof. We will use simplicial cones more, so we prove the result for these. The
proof for simplices is essentially the same.

Assume the generators are vy, ..., v and assume x € C. Then x can be
written as a nonnegative combination of the generators with weights A;. Assume
we can write it as another nonnegative combination with weights p;, and such
that A\; # u; for at least one j. Then clearly

k

k k
O=x-x=» Nvj— > pvi=y (A~ p)vj.
j=1 j=1

j=1

Since there is at least one j such that A; — u; 7# 0 this is a contradiction of the
assumption that the generators are linearly independent, and so we cannot have
two different nonnegative combinations for one particular point x. O

We can now show why simplices and simplicial cones are useful — their facets
are easy to find.

Theorem 1.7.6 (Facets of simplicial cones). Any facet F' of a simplicial cone
C = cone S is of the form F = cone(S\{y}) wherey € S.

13



Proof. Assume F is of the form F = cone(S\{y}). Clearly F C C, and F
itself is a simplicial cone with dim F = dim K — 1. If x1,x, € C are such
that for some A € (0,1) the point z = (1 — A\)x3 + Axz € F then z has a
unique representation as a nonnegative combination of elements in S\{y} by
Proposition 1.7.5. x; and x5 are in C, and as such they both have unique
representations as nonnegative combinations of elements in S. Let p; be the
coefficient of y in the representation of x; and let pus be the coefficient of y in
the representation of x5. Then we see that z can be written as a combination
of elements in S with the coefficient of y equal to

(1= Np1 + Ape.

Both p; and ps are nonnegative, so the only way this can be zero is if they
too are both zero. If the coefficient is not zero, then z is not in F' by linear
independence of S. From this it follows that both x; and x5 are in F', and so
F is a face, and by our earlier observation of its dimension, F' is a facet.

Now assume F' is a facet of C. All elements in C' are nonnegative combi-
nations of elements in .S, so all elements in F must be so too. It follows from
this that F' must contain at least some of the generators in S, as F' is a facet.
Assume [ is the index set corresponding to all the generators contained in F'.
F thus contains cone({v; : ¢ € I}). If F = cone({v; : ¢ € I}) then dim F = |I|
so by assumption |I| = |S| — 1, which means F' is of the postulated form.

Now assume instead that F' is larger than cone({v; : ¢ € I}). Then there
is some x € F' which is not a nonnegative combination of the generators with
indices in I. This means x is a nonnegative combination of some larger set of
generators, which by the assumption of F' being a facet means that they too
should be in F. This contradicts our definition of I above, and so F' cannot be
larger than the cone. O

The significance of this last result is that any facet of a simplex contains
exactly k — 1 generators, and they also describe the facet completely. What
this means, again, is that any facet-defining inequality holds with equality in
precisely k — 1 generators, and the other way around, a valid inequality that
holds with equality in precisely k — 1 generators must be facet-defining (Recall
that the set of points for which a valid inequality holds with equality is a face).
In Chapter 3 we will use this theorem to find a generating set for the cone of
nonnegative diagonally dominant matrices.

1.8 Some graph theory

In the study of completely positive matrices it will be useful to apply some
graph theory. We restate the notions we will use here for convenience.

Definition 1.8.1 (Graphs and subgraphs). A graph is a tuple G = (V, E, I),
where the set V is called the vertex set of the graph (and its elements are called
vertices), the set E is called the edge set of the graph (and its elements are
called edges), and I is a function taking any edge to some set consisting of two
vertices (or possibly just one). If I(e) = {u,v} for e € E,u,v € V, we say that
e is the edge from u to v, or the other way around from v to u, as a set has no
ordering. Thus our graphs are undirected. We assume that I is injective, so no
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two edges are the same. An edge consisting of only one vertex, say w, will be
thought about as an edge from wu to u, and referred to as a loop.

In an abuse of notation we will often not bother talking about the function I
at all, and instead refer to an edge as a tuple (u,v). It will implicitly be assumed
that (u,v) = (v,u), so no confusion should arise.

A subgraph Go of G is a tuple Go = (Vo, Eo,I|g,). Here Vo CV, Ey C E
and I|g, denotes the restriction of I to Ey. We also require that every edge
e € Ey is between two vertices in Vjy, so the subgraph actually is a graph.

Let v be a vertex in V for some graph G. Removal of a vertex is a process
for obtaining a subgraph. If we remove v we get the subgraph whose vertex set
is V'\ {v}, and whose edge set consists of all edges in E except those with v as
one of their endpoints.

In a graph G a path is a sequence whose first and last elements are vertices,
every other element is a vertex, and the elements in between are edges between
the two adjacent vertices. In a graph where the vertices are represented by
letters a path could for instance be a, (a,b),b, (b,d),d. This is referred to as a
path from a to d. A path that is not valid is for instance a, (z, d), ¢, as the edge
is not from one of the vertices to the other.

A connected graph is a graph such that from every vertex there is at least
one path to every other vertex (we consider a graph consisting of one vertex,
as well as the empty graph, to be connected). A vertex such that its removal
would cause a connected graph to no longer be connected is known as a cut
vertex. A block of a graph is a subgraph which contains no cut vertices and is
not properly contained in any other subgraph containing no cut vertices.

A cycle is a connected graph in which every vertex is incident to precisely two
edges. For any given positive integer n there is only one cycle (up to relabeling
and reordering of vertices) that contains n vertices, and it is referred to as C,,
where n is called the order of the cycle. A cycle of odd order is called an odd
cycle, while a cycle of even order is called an even cycle. A complete graph is
a graph with every possible edge in its edge set, except for loops. A complete
subgraph is sometimes called a clique.

For a general symmetric n x n matrix A we define the graph of A by letting
V = {1,2,...,n} and letting {i,j} € E if and only if i # j,A4;; # 0. In
other words, the graph is entirely dependent on the zero patterns in the non-
diagonal entries. Since the matrices are symmetric no ambiguity arises from the
definition. Conversely, a matriz realisation of a graph G is a matrix A such that

G(A) = G.

1.9 Linear programming and mathematical op-
timisation

We will use linear programming (LP) later in this thesis. It is hopeless to provide
anything resembling a short introduction to such a vast subject, so we satisfy
ourselves with stating the most fundamental of notions, see for example [16] for
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more. A linear program is an optimisation problem of the following form:

minimise ¢ x

subject to Ax <b (1.3)
x>0

where we assume x € R™, and ¢ € R™,b € R"” and A € R™*"™ are given.

There are several available algorithms for solving linear programs with vary-
ing time signatures (See Section 1.10), and linear programs are essentially solv-
able “efficiently”, which is to say in reasonable time compared to the size of
the problem. Notable algorithms are the simplex algorithm (of which there
are several variants) and the interior-point methods (of which, again, there are
several).

For more general minimisation (or maximisation) problems, the situation is
more difficult. However, some methods have shown themselves to be valuable,
and we will use a so-called steepest descent method in Chapter 5.

1.10 Big O-notation

In this thesis we will discuss some algorithms for determining whether or not
a given matrix is completely positive. We will make some mention of an al-
gorithm’s efficiency, which is in general a complicated subject. Here we will,
following [17], define what so-called big-O notation is, so there will be no con-
fusion about what we mean when we say that an algorithm is “good” or “bad”.

Assume we have some function f whose domain is the natural numbers.
Then we say that f(n) = O(g(n)) for some g(n) if there exist positive constants
¢ and ng such that f(n) < cg(n) for all n > ng. The proper way to think of the
definition is that the function f(n) will eventually be dominated by a function
of the form g(n), possibly after scaling. If f(n) is some polynomial of degree k,
for instance, the ¥ term will eventually dominate it, and so in those cases we
say that the polynomial is O(n*).

We do not introduce this notation because we intend to perform detailed
studies of runtime characteristics in this algorithm, but in general we wish to
make it clear what we mean when we say that one algorithm is better than
another. When we say an algorithm is O(g(n)) we mean that the time it takes
in the worst case is bounded by this expression, where n is the size of our input
(for example, the number of variables in an optimisation problem). When we
say that one algorithm is better than another, we mean that it runs faster than
the other on comparable inputs, which means that one algorithm is bounded in
the big-O sense by a function that takes smaller values than is the other.

An algorithm which is O(g(n)) with g(n) a polynomial is known as a poly-
nomial-time algorithm. In general, no polynomial-time algorithm is known for
determining complete positivity, and the question of whether such an algorithm
exists is to the present author’s knowledge unsolved.
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Chapter 2

Completely Positive
Matrices

With preliminary definitions and results out of the way, we can move on to the
first proper part of this master’s thesis. In this chapter we will define completely
positive matrices and attempt to provide an overview of some of the central
results in the field. These are all known, and many are taken from [3], but the
organisation is largely our own (we heavily emphasise the cone properties of the
set of completely positive matrices), and we have provided our own examples as
well as clarifying some of the proofs.

Throughout we will try to recall that our primary purpose here is to detail
what is known about when a matrix is completely positive. The cone of com-
pletely positive matrices does have some intrinsic interest too, as we discussed
in Section 1.1, but that is, as we said, not the topic of this thesis. Through the
entire chapter we will assume n is some fixed positive natural number.

2.1 Completely positive matrices

The results in this section, except where otherwise noted, are found in [3].
We begin by defining what we mean when we say that a matrix is completely
positive.

Definition 2.1.1 (Complete Positivity). If A € ST can be decomposed as
A=BBT
where B € RiXk for some k, we say that A is completely positive. We will

call such a decomposition a completely positive decomposition. The set of com-
pletely positive n X n-matrices is denoted by CP,,.

An example of a completely positive matrix along with its factorisation is
{2 5] B {1 1 0} 1 g
5 38 3 2 5 0 5
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There are two other easily obtained characterisations of complete positivity.
Consider the following, where b; is the i-th column of B:

bl &
A=BB"=[b; by -+ by |:|=> bb]. (2.1)
bf i=1

It should be obvious that any matrix that has a completely positive decom-
position A = BBT can also be written as A = Ele b;b! with b; > 0 for
i=1,...,k by defining the b; as in (2.1). This latter way of writing A is known
as a rank 1 representation®.

We could also partition B into rows, obtaining yet an equivalent definition.
Assume A has a completely positive decomposition A = BB”. Then observe
the following, where b7 is the i-th row of B:

bf (b1,b1) - (b1,by)
A=BBT = | : [El oo bp| = : : . (22
This last matrix is expressed more succinctly as Gram(gl, e ,En) In this way

we see that an equivalent condition for complete positivity is that A is the

Gram matrix of nonnegative vectors, specifically vectors in Rﬁ. We recall from

Theorem 1.5.1 that any positive semidefinite A € S™ can be written as the

Gram matrix of n vectors in R™, but these may or may not be nonnegative.
We summarise these equivalent conditions in the following proposition:

Proposition 2.1.2 (Complete Positivity redux). The following three are equiv-
alent for some n X n matriz A:

1. A= BBT for some B € Rk,

2. A:Zleb,»br where b; >0 fori=1,... k.

3. A:Gram(f)l,...,gn) with b; ER’j fori=1,...,n.

From a computational viewpoint, note that none of the three conditions
seem to be particularly much more useful than the others. The third one,
however, offers a new perspective on complete positivity. We follow this train
of thought for a short while. If A = Gram(vy,...,v,) with v; € R™, complete
positivity of A is really equivalent to asking whether there exists some k and
an isometry T : R™ — RF such that T'v; € Ri for all 4. Put more informally, A
is completely positive if the vectors it is a Gram matrix of can be rotated into
the nonnegative orthant of some space which is possibly of higher dimension.
Since this is a somewhat important result, we take a moment to prove it. The
following proposition is found in [18], as is the proof, which we have clarified
quite a bit.

1Technically a rank 1 representation as commonly used does not require that the factors be
nonnegative, but we will only be using rank 1 representations of completely positive matrices,
so we implicitly assume they are nonnegative.
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Proposition 2.1.3. If A € 8" is positive semidefinite and has two factorisa-
tions
A=BB" =cc” (2.3)

where B,C € R™F for some k, there exists an orthogonal matriz U € RF*F
such that CT = UBT.

Proof. Let b; be the i-th column of BT, and let ¢; be the i-th column of C7T.
Now let I C {1,...,n} be such that the set {b; : i € I'} is a basis for the space
Span(by,...,b,). Define a linear transformation S : Span(b,...,b,) — R¥ by
Sb; = c; for all ¢ € I. This will then, trivially, have the property that Sb; = c;
fori=1,...,n. From 2.3 we know that for all ¢, j we have

Q5 = <b¢,bj> = <Ci,Cj> = <sz,Sb]>

Accordingly, S preserves lengths and angles, so S is a linear isometry. We can
expand the domain of S outside Span(by,...,b,) without losing this property,
so the expanded function 7 is a linear isometry on RF. Linear isometries on
finite-dimensional spaces can be represented by orthogonal matrices, and the
result follows.

We note that it works the other way too: If CT = UBT with U orthogonal,
CcCT = BUTUBT = BBT = A. O

Corollary 2.1.4. If A€ DNN,,, it can be represented as
A = Gram(vy,..., V),

where v; € R™ fori=1,...,n. Then A € CP,, if and only if there exists some
k and a linear isometry T : R™ — R* such that for Tv; € Ri fori=1,...,n.

We can use this corollary to turn the question of complete positivity on its
head, so to speak. Namely, given a set of vectors in some Euclidean vector space
(here R™) which is such that their inner products are nonnegative, does there
exist some other Euclidean vector space (here R¥) such that the vectors can be
isometrically embedded in the nonnegative orthant of the latter? The answer is
yes if and only if the Gram matrix of the vectors is completely positive. Formu-
lating the question in this way we obtain one possible motivation for studying
complete positivity of a matrix beyond the ones we mentioned in Section 1.1.

We have established what positive matrices are, as well as a few different
formulations of the condition. We now try to place the set CP,, in the “matrix
universe”, as it were. Keep in mind from Section 1.5 that a matrix A having
a decomposition A = BBT where B € R™** is equivalent to A being positive
semidefinite. Definition 2.1.1 only adds the stipulation B > 0, so all completely
positive matrices are positive semidefinite. Further, by construction they are
nonnegative, so all completely positive matrices are doubly nonnegative. Unfor-
tunately, doubly nonnegative matrices that are not completely positive do exist
— we will return to this later, for now the reader is asked to take it on faith. We
have the following relation, where the inclusion is strict.

Proposition 2.1.5. For any natural number n, CP, C DNN,.

A consequence of Proposition 2.1.5 is that some properties of positive semi-
definite matrices carry over. The following is then a corollary of Proposition
2.1.5 and Theorem 1.5.2:
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Corollary 2.1.6. If A is completely positive and of order n, the following holds.
1. a;; < Yagy +ayy) fori=1,....n—1,j=i+1,...,n.
2. aij < \Jazaj; fori=1,....n—1,j=1+1,...,n.
3. max; ; a;; = max; ;.
4. a3 =0=a;; =aj;; =0 for any fired i with j =1,...,n.

We recall that DNA, is a convex cone, and we might ask ourselves if the
set CP,, has the same property. First, observe the following.

Lemma 2.1.7. The sum of completely positive matrices is completely positive.

Proof. Using the rank 1 representations of the matrices involved, this is trivial.
O

Lemma 2.1.8. If A€ CP, and o € R} then aA € CP,.

Proof. Since A = BBT where B > 0, aA = (8B)(8B)T where 8 = /a is
nonnegative because « is nonnegative, and so B is a nonnegative matrix, thus
proving complete positivity of aA. O

Now we can prove the result we promised earlier, which is our first result of
real significance.

Theorem 2.1.9. CP,, is a closed convex cone.

Proof. The convex cone part is easy — it is a direct consequence of Lemma 2.1.7
and Lemma 2.1.8. What remains is to prove closedness.

Assume {A4;}72; is a sequence in CP,, that converges to some matrix A =
[aijmj:l- We will show that A must also be in CP,,. Being completely positive,

each A; must be a Gram matrix of a set of vectors gt,h . ftv)tm. We consider
what happens on the diagonal. Since the sequence converges to A, clearly

tliI{}O<bt,i, bt,i> = tlgglo ||bt,z'||2 = Qqj.

We start by considering ¢ = 1. A convergent sequence is bounded, and since
{lIbs.1]12}52, is bounded, the sequence {|b;1]/}$2, is bounded, which means
{b:1}$2, is bounded by definition. Any bounded sequence has a convergent

subsequence, so we can find some vector l~)1 and a subsequence indexed by the
indices ts with _ _

lim bts,l = bl.

S—r00
By construction, it follows that <l~31, Bl> = ay1. We can proceed by considering
the sequence l~3t572, and it should be clear to the reader that using the exact same
procedure again we can obtain a new reindexing ¢,, such that Btswl converges

to by and by, o converges to some limit by. We can proceed in this manner

until we have found limits Bl, . ,Bn with the property that, for all ¢, a; =
(b;, b;). It should also be clear that by construction, a;; = (b;,b;). Then

A= Gram(f)l, e Bn) Furthermore, every b, is a limit of nonnegative vectors,
and so is itself nonnegative. Thus, A fulfills condition 3 in Proposition 2.1.2,
and is completely positive. O
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Cones are often described in terms of their extreme rays, as mentioned in
Section 1.6. In, for instance, [10], the following result is given:

Lemma 2.1.10. The extreme vectors of CP,, are the matrices in the set
BErt={xx" :x € R} }.

The extreme rays are then obtained from this set by identifying matrices that
are scalar multiples of each other.

Proof. By condition 2 in Proposition 2.1.2, obviously
CP.,, C conv(Ext).

Furthermore, if A € Ext, it can only be written as a convex combination of
two other elements of Ext if they are in fact multiples of A. From this we
can conclude that the set in the lemma is in fact the set of extreme vectors of

CP,. O

There is one important cone which is contained within the cone of completely
positive matrices. Recall from Chapter 1 that a diagonally dominant matrix is
a matrix A = [a;;]}';,_; such that

n
Q5 > E a;; fori=1,...,n.
k=1,k#i

holds. Note that if we wish to require nonnegativity as well, the only inequalities
we have to add are

ai;; >0fori=1,....n—-1,j=i+1,...,n,
under the assumption that A is symmetric.

Proposition 2.1.11. The set of all matrices in ST that are diagonally domi-
nant, denoted hereafter by DD, is a convexr cone.

Proof. This is, essentially, obvious. Note that diagonal dominance and non-
negativity is obviously retained when scaling by a nonnegative real number.
Furthermore, diagonal dominance is defined in terms of linear inequalities, so
any nonnegative sum of matrices satisfying these inequalities will also satisfy
them, thus proving the cone property. O

We can now prove the following theorem.
Theorem 2.1.12. For all n, DD,, € CP,,.

Proof. Assume A = [a;;]7,_, € DD,. Let D; be the matrix e;e] for i =
1,...,n and let E;; be (e; +e;)(e; +e;)T fori=1,...,n—1,j >i. Finally, let

Ty = Qi — E aij.

J#i
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This number is nonnegative by the condition of diagonal dominance. All the
matrices D; and E;; are completely positive by construction, and it should also
be readily apparent that

n n—1 n
A= ZriDi + Z Z a;i B ,
i=1

i=1 j=i+1

so A is a completely positive matrix, being a sum of completely positive matrices
with nonnegative weights. O

Could it be that every completely positive matrix is diagonally dominant?
No, consider the following matrix, which is in CP3, but not in DDs:

11 1] [t
11 1| =1t 1 1]. (2.4)
11 1] |1

This shows that there are completely positive matrices that are not in the cone
of diagonally dominant matrices. Thus, our chain of reasoning shows that for
any positive integer n,

DD,, C CP, C DNN, C SI. (2.5)

All the above inclusions are strict. We have not explicitly mentioned the last
one, but it is obvious provided we simply break one of the necessary conditions
in Theorem 1.5.2. As an example consider the following matrix:

el

Simple inspection shows that this is not a positive semidefinite matrix, but it is
certainly symmetric and nonnegative, thus proving our claim.

A few simple facts about CP,, remain to be proved. First, we can obtain some
if-and-only-if conditions for complete positivity by considering certain symmet-
ric matrix products.

Lemma 2.1.13. If A is an n xn completely positive matriz, and C is an m xXn
nonnegative matriz, then CACT is completely positive.

Proof. Assume A = BBT,B > 0. then CACT = (CB)(CB)T. O
Lemma 2.1.14. Let A be an n x n matriz. Then the following hold:

1. If P is an n X n permutation matriz, then A is completely positive if and
only if PAPT is completely positive.

2. If D is a positive diagonal n X n matriz, then A is completely positive if
and only if DAD is completely positive.

Proof. Note that in both cases, one implication follows immediately from Lem-
ma 2.1.13. We prove the other implications.

1: Assume PAPT = BBT. Since P is a permutation matrix, PPT = PTP =
I, so we multiply from the left by P” and from the right by P. Then we get that
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A= PTBBTP = (PTB)(PTB)T, which is a completely positive decomposition
of A.

2: Assume DAD = BBT. Assume the diagonal elements of D are di, . .., d,.
Since D is a positive diagonal matrix, these are all positive, and so

diag(1/dy,...,1/d,) = D"

exists and is positive diagonal. Now we multiply by D! from both sides, ob-
taining A = D'BBTD~! = (D!'B)(D~'B)”, which is a completely positive
decomposition of A. O

In the lead-up to Theorem 2.1.9 we showed that the set CP,, is closed under
addition and multiplication by nonnegative scalars. In fact we can expand
slightly upon this.

Lemma 2.1.15. The m-th power of an n X n completely positive matriz A is
completely positive for any m.

Proof. 1f m is even, m = 2t for some ¢, so A™ = (A")? = (A*)(A")T, which is a
completely positive decomposition. If m = 2t + 1, A™ = (A*)A(AH)T, and the
result follows from lemma 2.1.13. O

For any polynomial f(z) = ay,2™ + @pm_12™ 1 + ...+ a12 + ag with domain
R, we can define a polynomial with domain R™**" by letting f(X) = a,, X™ +
Am—12™ 4. .. +a1 X +agl,, where all of the matrix powers are defined because
the matrices are square. We can now state the following corollary.

Corollary 2.1.16. If f(x) is a real polynomial with nonnegative coefficients
and A is completely positive, then f(A) is also completely positive.

Proof. This is a direct consequence of Lemma 2.1.8, Lemma 2.1.7 and Lemma
2.1.15. O

This concludes our preliminary investigation of complete positivity.

2.2 Further results

Earlier we said that CP,, is strictly contained in DNN,,. If one tries to prove
this, say, by finding a small matrix that is doubly nonnegative yet not completely
positive, one quickly runs into trouble, as none readily appear. This is seen in
the following theorem. As in the previous section, we draw from [3] throughout
except where otherwise mentioned. We have clarified some of the proofs.

Theorem 2.2.1. Forn < 4, DNN,, =CP,,.
We will prove this by proving the cases n = 1,n = 2,n = 3 separately (we
do not have room for the proof of the case n = 4, it can be found in [3] for the

interested reader).

Lemma 2.2.2. If A € DNN, has rank 1, A € CP,,.
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Proof. If A has rank 1 it can be written as bb” for some column vector b € R™.
Then, since A is nonnegative, simple inspection of the elements in bb” shows
that all the elements of b must have the same sign. If they are all nonnegative,
we are done. If not, they are all nonpositive, and in that case A = (=b)(—b7®)
is a completely positive decomposition of A. O

Note that Lemma 2.2.2 is quite a bit stronger than we needed to prove that
DNN1 = CP; (which we could really have done merely by taking a square root),
but this more general form is interesting — that all rank 1 doubly nonnegative
matrices are completely positive is better than one might expect.

Lemma 2.2.3. If A € DNN,, has rank 2, A € CP,,.

Proof. Since A has rank 2, it follows from Theorem 1.5.1 that A is the Gram ma-
trix of n vectors in R2. If the angle between any of the two vectors were greater
than 7 the inner product between those would be negative, so the maximal
angle has to be 5. Thus we could pick the two vectors that are farthest from
each other, and rotate them into Ri. In this rotation all the other vectors also
end up in the nonnegative quadrant, and as it is a rotation their inner products
are not changed, and we have obtained a representation of A as a Gram matrix

of nonnegative matrices, thereby proving that A is completely positive. O

Again, this is quite a bit stronger than we needed to prove that DN N3 =
CP3. We could hope that the Gram matrix-based approach from the two pre-
ceding two lemmas remained viable for higher ranks, but unfortunately it soon
gets more complicated — as we shall see in Section 2.4 we cannot, in general,
hope to remain in a space of the same dimension when isometrically embedding
the Gram vectors in a positive orthant. The next proof only works for matrices
of order 3.

Lemma 2.2.4. If A € DN'N3, then A € CPs.

Proof. If A has rank 1 or 2, the result follows from the previous two lemmas.
Otherwise we can assume A is the Gram matrix of three vectors in R3, and
that they are all linearly independent, which is to say, they are not in the same
plane, and all of them are nonzero.

So let A = Gram(vy, va, vs) and let S = Span{vy, va}. Let v4 be the orthog-
onal projection of vs onto S and let v§ = vs — v;. Note that by the definition
of orthogonal projections,

<V37v1>v + <V3,V2>

/
Vo = 1
3 <V1,V1> <V2,V2>

V2,
so the matrix Gram(vy,va,v%) is completely positive with rank 2.

We could now use the Gram-Schmidt procedure? to obtain an orthonormal
basis E' = {by, bz} for S, with the property that the coordinate vectors [v1]g,
[ve]g and [v§]g are nonnegative, and by = v1/||v1|. Let bs = v3/||vs||. Then
E’ = {by, by, b3} is an orthonormal basis for R® with [v;]g >0 for i = 1,2,3,
which was what we needed to find. O

2This is detailed in most elementary texts on linear algebra, and we assume the reader is
familiar with it.
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It is possible to construct a similar proof for a 4 x 4-matrix that is doubly
nonnegative, the main idea is showing that it suffices to consider a matrix with
at least one zero, and then consider which graphs it can have (see Section 1.8).
We will not include the proof here, but it can be found in [3] (in which there is
both an algebraic and a geometric version).

So with the little note that we left out a small part of the proof, we consider
Theorem 2.2.1 proved. A simple example of a matrix in CP3 is

8 3 1
A=13 5 4
1 4 5

This matrix was originally obtained by computing

1 3 2 1 -1 0
A=| -1 0 2 30 1,
0 -1 2 2 2 2

but this is not a completely positive factorisation. Nevertheless, as the matrix
is in DN N3, it must be in CP3. In this case, we are lucky — a simple Cholesky
factorisation shows us that if we let

2.8284 0 0
B = [1.0607 1.9865 0 ,
0.3536 1.8415 1.2181

then A = BBT (disregarding rounding errors). The proofs given in connection
with Theorem 2.2.1 do suggest algorithms (in fact the proofs can be written out
more directly, in an algebraic fashion, but we felt the geometric approach was
more interesting), so for small matrices the question of complete positivity is
solved.

Theorem 2.2.1 does imply slightly more than it seems to say. Consider, for
example, a matrix where the only nonzero elements are blocks on the diagonal,
with all blocks being smaller than 4 x 4 — this is clearly a completely positive
matrix if and only if every block is completely positive, which they are if and only
if they are doubly nonnegative. Admittedly this situation is a little contrived,
and in general we must look for more robust relations. Note, however, that the
“algorithm” we suggested just now depends on the zero pattern of the matrix.
As it turns out, there is more to say about the connection between zero patterns
and complete positivity, and we will talk about that in Section 2.3.

For now, we will move on to another interesting result, due to [18] (the proof
is also taken from there, the result is Theorem 2 in the article). The proof uses
the notion of a dual cone. If C is a cone in some Euclidean space V, its dual
cone C* is a cone in the same space, defined by:

C*={yeV:{y,x)>0forall xeC}.

We can now state and prove our result.

Theorem 2.2.5. Let A € DNN,,, then A = BBT with B € R™**, where
k = rank(A). Let C be the cone generated by the columns of BT (that is, the
rows of B, but we will treat them as column vectors). Then A € CP,, if and
only if there exist m nonzero vectors x1,...,Xy, € C* such that

xx? 4+ + megl =1 (2.6)
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Proof. First, suppose there exist vectors such that 2.6 holds. Then
A=BBT =BIB" = B(xix] + ...+ xmx5)BT.
Now, this is easily seen to be equal to
A= (Bx1)(Bx1)T + ... + (Bxp)(Bxn)7,

and since each x; is in the dual cone generated by the rows of B, it follows
that Bx; > 0 for i« = 1,...,m, and therefore this is a completely positive
representation of A, thereby proving sufficiency.

Now we wish to prove that the condition is necessary, assume A € CP,.
Then there exists some nonnegative n X m-matrix £ for some m such that
A = EET. By assumption, A has another factorisation as A = BBT where the
number of columns in B is equal to the rank of A — let us call it k. Now, in
general E will have more columns than B, but not less (See Section 2.4), so let
us modify B by putting By = [B O] where the zero matrix has dimensions
n X (m — k) such that By and F have the same number of columns. Now,

A=EE" = BBl |E e RY*"™, By € R"™™,

and using Proposition 2.1.3, there exists some orthogonal matrix U such that
ET = UBT. We write U as a block matrix so that the parts of U match up
with B, that is:
T B"

UBT = (U, U {O],
where U; € R™*F Uy € R™*(m=Fk)  Then it follows that ET = U;BT. Since
UTU = I by definition, UL U; = I,,. Let x; be the i-th column of U (alter-
nately, the i-th row of Uy as a column vector). Then this means that

T T
X1X] + . XXy, = Iy

All we need to prove is that these vectors are in the dual of the cone generated
by the rows of B. Since E7 = U; BT, E = BU{', and since E is nonnegative
each x; has a nonnegative inner product with every row of B, thus proving this
last statement. O

In the entire thesis, this is the only alternate characterisation of completely
positive matrices that we will present — all other results are either sufficient or
necessary, but not both. Unfortunately, as we see, the equivalent characterisa-
tion does not on the surface of it appear simpler to use in practice: How do
we determine whether the identity matrix is contained in the dual cone of the
columns of BT? Nevertheless, it is certainly an interesting theorem.

Finally, we will prove one more condition that has to do with complete
positivity — this time it is a sufficient one. The theorem as well as its proof are
in [3]. Recall from Chapter 1 that the comparison matrix M(A) of A is the
matrix defined by
[Aij|ifi=,

M(A)i; = {

—|A;;| otherwise.

Theorem 2.2.6. If A is symmetric and nonnegative and M(A) is positive
semidefinite, A is completely positive.

26



Proof. If M(A) is positive semidefinite, there exists a positive diagonal matrix
D such that DM (A)D is diagonally dominant — we mentioned this fact without
proof in Section 1.3. The absolute values in the elements of M(A) are the same
as the ones in A, and by this DAD is diagonally dominant, and by assumption it
is symmetric and nonnegative. Hence DAD is completely positive by Theorem
2.1.12, and by Lemma 2.1.14 it follows that A is completely positive. O

In the next section we shall see that there is a certain situation in which the
condition of Theorem 2.2.6 is necessary as well as sufficient. It depends on the
zero pattern of the matrix.

2.3 Complete positivity and graph theory

In this section we investigate the connection between a matrix, its graph, and
complete positivity. As with so many of the other things we talk about, this
has been covered in [3], and the results in this section are from there, as well as
the proofs.

The best way to see that graph theory is useful to us is by example. By a
triangle-free graph we mean a graph that contains no triangles, that is, cycles
of order 3.

Theorem 2.3.1. If A is completely positive and G(A) is triangle-free, M(A)
s positive semidefinite.

Proof. Consider a rank 1 representation of A, which we can get by complete
positivity:

k
A=) "bb.
=1

Obviously any b; will give rise to a clique in the graph of A, and since any
clique of size three or larger will contain a triangle none of these can be larger
than two. This means that none of the b; can have a support larger than 2.
Now, for every i such that | suppb;| = 1 let d; = b;, while for every ¢ such that
| supp b;| = 2 let d; be obtained from b; by changing the sign of one of the two
elements in the support. Then it should be obvious that

k
M(A) =) d,d],
i=1

and this is enough to prove that M(A) is positive semidefinite according to
Theorem 1.5.1. O

The significance of Theorem 2.3.1 is in relation to Theorem 2.2.6. Put to-
gether they give us the following corollary:

Corollary 2.3.2. If A is symmetric and nonnegative and G(A) is triangle-free,
A is completely positive if and only if M(A) is positive semidefinite.
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As an example, consider the following matrix, which is nonnegative and
symmetric:

(2.7)

N

I
OO O = =
SO o N
SO = Wwo o
N~ OO
=N O OO

The graph of this matrix is

This is a triangle-free graph, so checking M (A) for positive semidefiniteness will
suffice to decide whether or not A is completely positive. However,

1 -1 0 0 0770
-1 2 0 0 0[]0

o121} 0 0 -3 1 0][1]=-1, (2.8)
0 0 -1 1 —2||2
0 0 0 -2 4|1

which means that M (A) is not positive semidefinite, and so A is not completely
positive. Keep in mind that this is one of those rare cases in which we can say
conclusively that a matrix is not completely positive.

We make a small note before moving on: The graph of a matrix (as we
use the term) is entirely dependent on its zero pattern outside the diagonal.
Therefore, Theorem 2.3.1 appears to be a result concerning the zero pattern of
the matrix A. A closer look at the proof is warranted, however, for the proof
only depends on the zero pattern of the matrix B in the completely positive
decomposition A = BBT. Consider the following matrix:

2 1 1 1 1 0]t 10
A=1|1 2 1| =1 0 1| |1 0 1|=BB". (2.9)
11 2 01 1/]0o 1 1

This is a completely positive matrix by construction, and its graph is a triangle
— 80 it certainly is not triangle-free. However, the proof of Theorem 2.3.1 would
go through for this matrix, as each of the columns in B at most have two nonzero
elements. The reason, presumably, why the theorem is not given for this case
in [3] is that we are looking for conditions under which a matrix is completely
positive, and this slightly more encompassing condition presupposes knowledge
of the completely positive decomposition, while the triangle-free condition only
requires knowledge of the matrix we are examining.

We have already seen that studying the graph of a matrix can provide us
with some information about whether or not the matrix is completely positive.
As it turns out, a lot more can be said than what we have mentioned thus far.

Definition 2.3.3. A graph G is said to be completely positive if every doubly
nonnegative matriz realisation of G is completely positive.
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In the rest of the chapter we will assume implicitly that all matrix realisations
are doubly nonnegative.

The main result as concerns completely positive graphs is the following — by
a long odd cycle we mean a cycle of odd length greater than 4.

Theorem 2.3.4. A graph G is completely positive if and only if it does not
contain a long odd cycle.

Proving this result is quite a bit of work — it is shown in detail (and in more
than one way) in [3]. Here, we will restate the intermediate results as lemmas,
and how to combine them to prove Theorem 2.3.4 will hopefully be clear. In
the interest of saving space and maintaining focus on the ideas, we only sketch
the thrust of the proof for the various results.

Lemma 2.3.5. A graph that contains a long odd cycle is not completely positive.

Sketch of proof. For any odd n greater than 3, define the n x (n — 1)-matrix
B = [b]{75 by by = Lfori=1,...,n—1, bigy; = Lfori=1,...,n—2
and finally b,; = (—=1)"*! for i = 1,...,n — 2, and leave all other elements
as zero. Then the matrix A = BB is positive semidefinite by construction,
nonnegative, and its graph is a long odd cycle. Since it does not contain any
triangles, it is completely positive if and only if M(A) is positive semidefinite
according to Corollary 2.3.2, and inspection shows that this is not the case.
This shows that a graph is not completely positive if it is a long odd cycle,
and if we pick an arbitrary graph G containing one, we can pick a matrix
realisation of G such that the submatrix corresponding to the long odd cycle
is A from before. We can then create a sequence such that every element in
the sequence has G as its graph, and which converges to a matrix whose only
nonzero elements are the ones in the long odd cycle. Since this latter matrix
is not completely positive, and the cone CP, is closed by Theorem 2.1.9, there
must be some element in the sequence that is in DAA,,, but not in CP,,. Since
this element by construction is a matrix realisation of G, G is not a completely
positive graph, and we are done. O

This proves one part of our result, namely that graphs containing long odd
cycles are not completely positive. The next part is essentially a consideration
of what kinds of graphs do not contain long odd cycles, and then a piece-by-
piece proof that they are all completely positive. We also need a result that
glues them together, which is the following.

Lemma 2.3.6. If a graph G is such that G = G1 U G2 where G1 and G2 only
have one vertex in common (which would be a cut vertex) and Gy and Go are
completely positive, then G is completely positive.

Sketch of proof. In this case, when we pick some matrix realisation of G, we
know it is a Gram matrix. We can divide the Gram vectors into three sets,
two of which are orthogonal sets, and such that the final set is one single vector
which corresponds to the one vertex that is common to the two parts of the
graph. The rest of the proof is a technical exercise in which a particular space is
created in which we can construct a nonnegative set of Gram vectors that give
the same matrix as the one we started with, relying mainly on projection and
direct sums of spaces. O
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Using Lemma 2.3.6 repeatedly the question of complete positivity of any
graph becomes a question of complete positivity of its blocks. What kinds are
there?

Lemma 2.3.7. In a matriz G that does not contain a long odd cycle, every
block is either bipartite, T,, or the complete graph on 4 vertices.

Sketch of proof. This is a fairly straightforward proof by contradiction — if the
block has more than 4 vertices, it must be either bipartite or 7). If it is not,
two cycles of length greater than 3 can be found such that one is precisely one
step longer than the other, and so one of them must be a long odd cycle. O

Now, the three kinds of blocks must be considered.
Lemma 2.3.8. The following three types of graphs are all completely positive:
1. The complete graph on 4 vertices.
2. T, for any n.
3. Any bipartite graph.

Sketch of proof. The first result is a direct corollary of Theorem 2.2.1. We noted
there that the final part of the proof (for n = 4) depends slightly on graph theory,
so if the reader is concerned about cyclical reasoning it may be reassuring to be
reminded that there is a proof of the theorem which is entirely algebraic, see
[3].

Proving the other two results is fairly immediate as well, the graph structure
in both cases makes rather strict demands on their matrix realisations, and it
is mostly an algebraic exercise. The proof for T;, depends on the use of Schur
complements, while the proof for bipartite graphs depends on proving that the
comparison matrix is positive semidefinite. O

Finally, we see that Theorem 2.3.4 follows immediately from Lemmas 2.3.5,
2.3.6, 2.3.7 and 2.3.8, thus concluding our sketch of its proof.
We consider a small example. Let S be the following set of vectors in R®:

1 0 1 0 0 0
-1 0 0 -5 0 0
0 1 1 0 0 0
S — 0 9 0 ] 0 I 1 9 2 9 4 (2.10)
0 0 0 1 3 0
0 0 0 -2 0 -1
Now define the following matrix.
201 5 0 0
011 0 0 O
112 0 0 O
A=Gram$ = 500 30 5 6 (2.11)
00 0 5 13 8
000 6 8 17

This matrix is not (to our knowledge) the Gram matrix of nonnegative vectors,
M (A) is not positive semidefinite, and while A is doubly nonnegative, it is too
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large to apply Theorem 2.2.1. We note that it is relatively sparse, however, and
seems to have a certain block diagonal-like property. The graph of A looks like
this:

The main object of interest here is that the graph does not contain any long
odd cycles. Thus, since A is doubly nonnegative, it follows from Theorem 2.3.4
that A must be a completely positive matrix. This proves that the theorem
does give us something. It is not evident from the presentation we have given,
but the proofs of Theorem 2.3.4 are in fact constructive, so using the theory we
could construct a completely positive decomposition of the matrix A should we
so wish.

We note that there is much more to say about the relationship between
graphs and completely positive matrices, but we shall let the matter lie here —
Theorem 2.3.4 seems to be by far the most striking product of this part of the
theory.

2.4 CP-rank

Something we have hinted at before is that in general the matrix B in a com-
pletely positive decomposition will have more columns than its relative in a
positive semidefinite decomposition. This is not in the core of our thesis, but
we state some of the most important results without proof. The results are
again taken from [3] except where otherwise noted.

Definition 2.4.1. Let A be an n X n completely positive matriz. The minimal
k such that A = BBT for some B € RQL_X’“ is called the cp-rank of A. The
cp-rank of A is denoted by cp-rank A.

Our first result is the following important one.
Proposition 2.4.2. For any completely positive matriz A,

cp-rank A > rank A.

This is self-evident — if the cp-rank could be less than the rank, it would
mean the rank of A was actually smaller than we had assumed, see Theorem
1.5.1.

The next result is also trivial — simply consider the completely positive rank
1 representations of the matrices involved.

Proposition 2.4.3. If A and B are both in CP,,

cp-rank(A + B) < cp-rank A + cp-rank B.
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In Section 2.1 we showed that the property of complete positivity is invariant
under certain transformations. The next two results show that cp-rank also
plays rather nicely with these.

Proposition 2.4.4. If S is a nonsingular matriz with a nonnegative inverse
and SAST is completely positive, A is also completely positive and

cp-rank A < cp—rank(SAST) (2.12)

We mention the next result because it concerns precisely the type of opera-
tions we considered in Lemma 2.1.14.

Proposition 2.4.5. Let A be a completely positive matriz, D be a positive
diagonal matriz and P be a permutation matrixz. Then

cp-rank A = cp-rank DAD = cp-rank PAPT.
The final, and most striking, theorem in this section is taken from [1].

Theorem 2.4.6. If A is completely positive and has rank r > 2, then

1
cp-rank A < w

— 1.
Further, for any such rank r, there exists a completely positive matriz with rank
r and cp-rank w — 1, in other words, the bound is tight.

The reader may recall that in proving Theorem 2.2.1 we mentioned that the
process of obtaining a completely positive decomposition of a small matrix can
be made explicit through an algebraic proof, and when following said proof it
turns out that for any small matrix A that is completely positive we can find
a square matrix B > 0 such that A = BBT. Therefore, in general, we cannot
always find a matrix of order n with cp-rank equal to % — 1. It has been

conjectured that the cp-rank of of matrices of order n is bounded by "72, but to
the author’s knowledge this has not been proved.

2.5 Summary and comments

The theory of completely positive matrices is extensive, perhaps surprisingly so,
and it would be impossible to go over it all here. Besides, [3] already exists,
which is a very good book covering much of the theory that had been published
up until its writing in 2006. Our aim, as mentioned, has only been to cover the
most important results in the theory, either because they are interesting in and
of themselves or because they may prove useful to us later on.

We summarise the chapter informally in the following little list, hopefully
providing a useful overview of the theory we have covered.

e A matrix A is completely positive if it can be written as A = BB”, where
B > 0. Equivalently, A is completely positive if it can be written as a
sum of nonnegative symmetric rank 1 matrices, or as the Gram matrix of
nonnegative vectors.
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e If A has rank r, the minimal number of columns in B is bounded above
by @ — 1, and is called the cp-rank of A. In a rank 1 representation,
this same number bounds the minimal number of rank 1 matrices, while
in a Gram matrix representation, it bounds the minimal dimension of the
space we find the Gram vectors in. The cp-rank is bounded below by the

rank.

e The set of completely positive matrices, denoted CP,,, is a closed convex
cone which is properly contained in the set of doubly nonnegative matrices,

DNN .

e We have shown a couple of ways of deciding whether or not a matrix A
in DNN,, is completely positive:

1. If A is diagonally dominant, A is completely positive.
2. If n < 4, A is completely positive.

3. If M(A) is positive semidefinite, A is completely positive. If G(A) is
triangle-free, this is also sufficient.

4. If G(A) is a graph with no long odd cycles, A is completely positive.

Note that all of these tests actually do give us the completely positive
representation. Technically, we might include Cholesky factorisation in
this list, but in general we can rarely hope that the Cholesky factor is
nonnegative, so this is not a very good test.

Some results that are interesting, but we have not mentioned, include [12],
in which Theorem 2.4.6 is obtained through the use of linear programming and
the simplex algorithm and [4], in which matrices that can be written as BBT
where B is a matrix consisting only of zeroes and ones are studied as a form
of complete positivity. Results similar to those for small completely positive
matrices are discovered, and there too the problem proves more difficult for
matrices of order 5 or greater.

One very interesting result is in [2], in which an algorithm for determining
the CP-rank of a matrix is given. This algorithm will return oo if the matrix is
not completely positive, so this is in fact a proper test for complete positivity.
Unfortunately, it requires something in the order of O((n2)”3) operations, so
it is hardly practical. It does, however, encouragingly serve to show that the
problem of complete positivity is not entirely unsolvable.

In the next chapter we will see if we can obtain some interesting conclusions
from the relation DD,, € CP,,, which we showed in Section 2.1.
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Chapter 3

Expansions of the
Diagonally Dominant Cone

3.1 Preliminaries

Throughout this chapter we will be using results from Sections 1.6 and 1.7. In
those sections we usually stated the results for spaces of vectors, because that
is easier to explain, but in this chapter we shall be using the results on spaces
of matrices. The generalisation is obvious — R™*™ and R"™™ are topologically
the same space.

Theorem 2.1.12 says that DD,, C CP,. One good thing about the cone
DD, is that testing for membership is quick — we merely have to verify n linear
inequalities, each in n variables, which means the process is O(n). Perhaps
it would be possible to find a larger cone than DD, which is still contained
in CP,? The test for membership (which will involve verifying some number
of inequalities) might even be quick. Searching for such a cone will be the
overarching aim in this chapter.

In order to accomplish our goal, we will first obtain the generators of CP,,,
then add to them some more completely positive generators, and finally go the
other way again, obtaining the defining linear inequalities of the cone defined
by this larger set of generators. As long as all the generators are completely
positive, the entire cone is, by Lemmas 2.1.7 and 2.1.8. According to Theorems
1.7.1-1.7.3 we can obtain the unique minimal inequality system by looking for
facet-defining inequalities (DD, is already full-dimensional in the space S%,
so when expanding it we will certainly retain full-dimensionality). Note that
while any cone we study in this fashion will be completely positive, much rests
upon whether or not we can explicitly describe the linear inequality system —
otherwise we can hardly claim to understand our expanded cone all that well.

Before we begin, we make some preliminary observations. Throughout the
chapter we will let n be an arbitrary positive integer. Given n we define the set

T=A{(i,j):i=1,...,n—=1,5=i+1,...,n}

Assume C' is some cone in the space 8. Then a linear inequality for C' is of
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the form

Z Q5T S «, (31)
i,j=1
where X = [z;5]7',—; € C is an arbitrary matrix. If (3.1) holds for all X € C, it
is valid for C. Now, since every matrix in C is symmetric, x;; = x;; holds for
all (¢,7) € Z. Then any inequality of the form (3.1) can be written as

n
Zan‘xn‘ + Z (aij +aji)rij < a.
i=1

(i,9)€T

Thus, when obtaining linear inequalities for a cone consisting of symmetric
matrices it suffices to consider those where a;; = 0 for all (i, ) € Z. Sometimes
it will be easier to write an inequality in terms of z;; where j > 7 rather than
245, we shall do this without comment — there is no problem as long as we don’t
use both z;; and x;; at the same time.

Another thing which is important to observe is that we are only looking for
inequalities that are sometimes fulfilled with equality. If

n
E a3 % + E AijTi; <
i=1

(i,5)€Z

is a valid inequality for C' we recall that the face it defines is the set

n
Zaiixii + Z QijTi5 = Q' XeC
i=1

(1,7)€ZT

Then, if X is contained in the face defined by the inequality, we know that
X = 10+ 32X. Since we need the set to be a facet it must follow that both
O and 2X are contained in the face. This is only fulfilled if « = 0. We have

altogether shown the following little proposition.

Proposition 3.1.1. If C C S} is a convex cone, any valid inequality for C
that defines a face is of the form

n
E aiiTi; + g a;jzi; < 0.
i=1

(i,.5)€T

The coefficients a;; fori=1,...,n we will often refer to as the diagonal coeffi-
cients, for the obvious reason.

We can now move to our first order of business — determining the generators

of DD,,.

3.2 Generators of the diagonally dominant cone

Recall our definition of the cone DD,, in connection with Theorem 2.1.12, as well
as the defining inequality set. At that time, we did not speak of the generators
of this cone, but as mentioned this is what we turn to now. The result in this
section is known — it follows directly from Proposition 1 in [8], but the proofs are
our own, and serve partly to prove the result, partly to illustrate the technique
we intend to apply in some other cases later.
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Theorem 3.2.1. Let n be a fized positive integer, and define the following three
sets:

Slz{eieiT:izl,...,n},

Sy ={(ei +ej)(e;+e;)" : (i,5) € I},
S =5 US,.

Then DD,, = cone S.

There are many ways of proving this — one is directly, by showing that all the
matrices above are diagonally dominant, observing that diagonal dominance is
retained when taking linear combinations, and then showing that any nonnega-
tive diagonal dominant matrix can be decomposed as a sum of the matrices in
S (as we did in the proof of Theorem 2.1.12). This approach is less useful to
us here, however, as it is not so easy to generalise to a more complicated gen-
erator set. We will prove Theorem 3.2.1 in two ways. The first proof depends
upon the fact that cone S is a simplicial cone, and is provided to illustrate the
fundamentals of the proof strategy we use.

Proof using simplicial cone properties. Assume X = [a:ij]ﬁjzl is an arbitrary
matrix in cone S. According to 3.1.1 a valid face-defining inequality is then of

the form
n
Zaiixn + Z a;ijzij < 0.
i=1 (iD)ez

We consider what validity means as applied to the generators. First, from the
generators in S; we see that for any i = 1,...,n,

ay; < 0.

From the generators in Ss we see using symmetry that for (i, j) € Z the following
must hold:
a;; + Qi + Q4 S 0.
This means that
ajj < —ai; — ajj.

Now, we are looking for facet-defining inequalities. To be specific, we want
the set of elements in cone S for which the inequality holds with equality to be
a facet. S is a set of @ linearly independent vectors, so cone .S is simplicial,
and this in turn means that the inequality must hold with equality in all but

one of the generators, see Proposition 1.7.5. Having equality in a generator in
S1 implies that for some ¢ we have

Qi = 0.
Equality in a generator in Sy implies that for some (i, ) € Z we have
A5 = —Q4; — Ajj-

Since a4; and aj; are nonpositive, this means that either all three coefficients in
this sum are zero or a;; is positive.
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We can now obtain all facet-defining inequalities simply by choosing which
of the inequalities will not hold with equality and seeing what we get. First, let
i be some fixed integer with 1 < i < n. Assume a;; # 0, which means a;; < 0.
Without loss of generality we can assume a;; = —1. Now we must have equality
in all the other generators, so no other diagonal coefficients can be nonzero.
Further, for any j > i we have that

Qj; + Q55 = 0<:>a¢j =1,

and for j < ¢ we similarly have that a;; = 1. This satisfies all the requirements
for being a facet-defining inequality, and so we know that we have found a
facet-defining inequality

i—1 n
Ti = g Tji + E Tij.
i=1

j=i+1
Recall that X is symmetric, so xy; = zy for all k,l. Using this we can write

the inequality as
n
Tij > Z Tij.

=1
This works for any i, and we have found all the facet-defining inequalities we
will find from the first type of generators.

Now, we consider what it would mean to have strict inequality for one of the
generators in Sy. By the preceding discussion we know that all diagonal coef-
ficients are zero, and we also know that their negatives bound the off-diagonal
coeflicients above, so the off-diagonal coefficients must now be nonpositive. Es-
sentially, the only possible option is to choose some (i,j) € Z and let a;; < 0,
while leaving all other coefficients equal to zero. Since we can scale we can
assume a;; = —1, and we get the following facet-defining inequalities:

Lij > 0 for (Z,_]) el.

These are all the facet-defining inequalities we obtain from the second set of
generators, and since we have no further inequalities we have found them all.
The inequalities that are facet-defining for cone S are then precisely the ones we
used to define DD,, in Chapter 2, and so the theorem follows. O

We see that as long as we are working with a simplicial cone, finding the
defining linear inequality system is straightforward. As such we could create a
multitude of cones by replacing some generators in the generating set of DD, in
such a fashion that they remain linearly independent. It does not seem like any
obvious candidates would be much more interesting than DD,,, however, and
we would rather expand the cone. In that case we cannot retain the simplicial
cone property, so we step through the proof again without directly using this
property, thus showing how we intend to obtain linear inequality systems for
our expanded cones.

Alternate proof of Theorem 38.2.1. Assume X = [a:ij]ﬁjzl is an arbitrary matrix
in cone S. According to 3.1.1 a valid face-defining inequality is then of the form

n
E Qi + g aijrij < 0.
i=1

(1,7)€T
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Like in the previous proof we can draw the conclusions

ai; <0fori=1,...,n.

;5 < —aj; — Qjj for (’L,j) el

Again, we observe that a facet must have dimension % — 1. Observe that
for (4,7) € Z we can set a;; < 0 and let all the other coefficients be equal to
zero. Scaling so a;; = —1 we obtain the inequality

This satisfies the conditions for being a valid inequality. Considering the gener-
ating set S we see immediately that this inequality is satisfied with inequality
in all but one of the generators in S, and by inspection that set is linearly in-
dependent, and so the face defined by our inequality has dimension @ -1
meaning it is a facet. Facets of this kind will be called trivial facets.

Now assume some linear inequality defines a nontrivial facet F'. If it is the
case for F' that there is some (4, ) € Z such that z;; = 0 for all X € F, then
F is contained within a trivial facet, and cannot be a facet. Thus, F' must hold
with equality in all the generators in Ss. This is our crucial observation, and it
means that for all (¢, 5) € Z it must be true that

)

aij = —(ai + ag;).

We see that this gives us a linear system of equalities which is already solved
in terms of the free variables, which are the diagonal coefficients. Thus, the
solution set is a subspace spanned by the vectors in which

aii = —1ai; =1(j >1),a; =1(j <1),

fori=1,...,n. As a;; > 0 from the generators in S; any solution of the above
inequalities is a nonnegative linear combination of the vectors illustrated above,
meaning the system describes the cone entirely, and it is clear that it is also
irredundant. This means that according to Theorem 1.7.1 we have found all the
facets. O

3.3 Expanding DD,

We are armed with knowledge of the generators of DD,,, and we can move on to
the second part of our plan — adjoining more generators. There are two obvious
ways in which to do this. The first is to add generators with more basis vector
terms, the second is to change the weights. We will consider each in turn.
First, however, let us consider more carefully what it means to test for
membership in a cone. A convex cone can be described in several ways, and
we are describing our cones in terms of their generators and their facet-defining
inequalities. If W is some set of k matrices, the following linear program can be
used in determining membership of cone W, assuming we are given some matrix
X:
minimise 0
subject to X = Ele \iW; (3.2)
Ai>0 for i=1,....k

39



As mentioned in Section 1.9, there exist efficient (in the big-O sense) algorithms
to solve this problem — linear programming algorithms will determine whether
or not the problem has a solution at all, which is equivalent to X € coneW.
This test, however, does not provide much insight into how a cone “looks” as a
geometric object, and perhaps a system of inequalities, as is the case with DD,,,
might sometimes prove easier to compute. It certainly seems worthwhile to at
least try. Presently we will consider some different strategies as far as expanding
the cone DD,, with more generators go, and see whether we get a nice system
or not.

A computer program we will be using is PORTA, a program written by
Thomas Christof and Andreas Loebel!. PORTA is a program that converts
representations of convex sets from a representation in terms of their genera-
tors to a representation in terms of inequalities (i.e. halfspaces) and back —
internally it uses some sort of Fourier-Motzkin algorithm-based approach, but
we are not really concerned with how it works. PORTA does not work well for
high-dimensional cones (in our case, we are looking at cones of matrices, and
beyond matrices of about order 8 it rarely manages to deal with the systems),
but we will use it to generate working hypotheses about how a cone’s defining
system of inequalities is structured, and then see if we can prove them.

3.4 Triple diagonal cone

We are generalising the diagonally dominant cone. One fairly obvious way of
doing this is by adding a term generated by three vectors, that is, by including
the following set among the generators:

{(ei—i—ej—i—ek)(ei—i—ej—i—ek)T i=1,...,n=2,j=14+1,...,n—1k=j+1,...,n}

Unfortunately, when investigating with PORTA, this set turns out to have ever-
increasing complexity in its inequalities, and not in a very nice way. We will
not consider this cone further in the thesis.

Instead we try to see if we can gain something from limiting the generator
set somewhat. Instead of including the entire set just described, we pick only
the “triple” elements that are right on the diagonal. We state explicitly what
we mean.

Definition 3.4.1. Let
S) ={eel,i=1,...,n},
Sy = {(ei—i—ej)(ei—&—ej)T,i:17...,n—1,j:i+17...,n},
Sy ={(e;+eit1 +eir2)(e; +eiy1+e2) 1i=1,...,n—2},
S=51US2US8;.

Then C = cone S shall be called the big triple diagonal cone.

We see that this cone is generated by a subset of the generators in our first
attempt at a definition, so we might at least hope that this turns out to be
simpler.

1At the time of this writing, it was available at
http://www2.iwr.uni-heidelberg.de/groups/comopt /software/PORTA /.
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When using PORTA to observe some inequality sets for this cone, the system
turns out to be quite complex still. Before moving on, then, we make one more
assumption that might make analysis easier. Assume X € C. Then if z;; > 0 for
j > 142, it must follow that a generator in Sy was used to cover that particular
element, and as there is only one such generator for each such element, then we
know what its weight must be when writing X as a combination of generators.
Therefore, we can define

X' =X - Z xij(ei+ej)(ei+ej)T.
(4,3),3>1+2

The only nonzero elements in X’ are those for which |i — j| < 3. We define the
following cone.
Definition 3.4.2. Let

Sy ={eeli=1,...,n},

S2 = {(el + ei-‘rl)(ei + ei+l)T7i = 17 cees = 1}a

53 = {(ez + e¢+2)(e¢ + ei+2)T,i = ]., ceeyn— 1},

Sy = {(el +ei+1 + ei+2)(ei +ei41 + eiJrQ)T i=1,....n— 2},

S=5USUS3U 8.
Then we define the triple diagonal cone 7D,, = cone S.

We see that X is in the big triple diagonal cone if and only if X’ is in the
triple diagonal cone, so we will consider the inequality systems generated for
the triple diagonal cone. It is clearly not a simplicial cone, and we expect it to
be more complicated than DD,,. We consider some examples generated using
PORTA. Note that here we assume implicitly that z;; = 0if j > i+ 2.

3.4.1 Examples

If n = 2, the cone we describe is just DDy, so we ignore that trivial case, and
begin by considering the cone 7Ds. Note that there are quite a few inequali-
ties. We have written the PORTA-generated output as succinctly as possible,
hopefully without becoming overly obtuse.

1. 255 >0fori=1,2,j=4+1,...,3.
2. x11 = T12, T11 2> T13-

Top 2> T12, T2 2 T23-

33 2 T13, Z33 = T23.

T11 + T23 2> T12 + T13.

Tog + X13 = X12 + T23.

A

r33 + X12 > X13 + T23.

Thus far, the pattern looks clean and simple, but we must consider the cone
also for larger n in order to get a good feel for it. We look at 7Dy:
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1.y >0fori=1,...,3, =i+ 1,i+2.
2. T11 > T12, T11 > T13.

Tog = X23.

- w

33 2 T23.

o

T44 = X23, T44 = Xo4.
T2 2 T12 + T13.
T33 > 13 + T34.

T11 + X23 2> x12 + T13.

© ® N>

Zoo + X13 = T12 + Tas.

10. x9o + T34 > x93 + T34.

11. x33 + 12 > x13 + X23.

12. w33 + o4 > x23 + T34.

13. x4q4 + T23 = T4 + T34.

14. x22 + 713 + T34 > T12 + T23 + Tog.

15. 33 + 212 + ®2q > 13 + T23 + T34.

16. z11 + T44 + 23 > T12 + T13 + T24 + T34.

Some distinctions become apparent here. Consider the inequalities 6 and 7,
which have no analogue for x1; and x44, as well as the set of inequalities 8-13,
which exhibits the same sort of different treatment of certain diagonal elements.
The reason is that in 7D,,, all elements are not equal: Every diagonal element
is covered by one generator in S7, one in S; and one in S3. However, z1y
and x,,, are in general covered by one generator in Sy, while x99 and xp_1 51
are covered by two. Here, we have no more diagonal elements, but in general
Z33,...,Tn—2n—2 are covered by three elements from S,. Since the elements of
the matrices are different in this sense, the system is much more complicated
than it might be otherwise — for instance, when analysing DD,, we saw that
all diagonal elements were “equal” in terms of the generators covering them, as
were the off-diagonal ones.

Finally, 7Ds, in which x33 is one of those diagonal elements which will
dominate when n increases — the kind covered by three generators in Sy:

1. 2wy >0fori=1,...,4, j=i+1,i+2.
2. 11 2 T19, Z11 2 13-

3. Tao > To23.

4

. T4 = X34

ot

Ts5 > T35, Ts5 > Tg5.

6. 22 > x12 + T24.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

33 > T13 + T34

33 2> T13 + T35.

T44 2 To4 + T45.

T11 + T23 = T12 + T13.

Too + 13 2> T12 + T13-

Too + T34 2> Toz + Tog.

T33 + Toq4 2> Toz + T34.

T4 + T2z 2> Tag + T34.

T4q + T35 2> T34 + Tgs5.

Ts5 + T34 2> T35 + T45.

T2 + T13 + T34 = T12 + 23 + Tog.

33 + T12 + T24 > T13 + XT23 + T34.

33 + Toq + Ty5 2> Toz + T34 + T35-

T4q + To3 + T35 2> Tog + T34 + Ty5.

T11 + T44 + T2z 2> T12 + T13 + Tog + T34,

Too + Tss + Tog = Tog + Tog + T35 + Tys.

33 + Toq4 + T12 + T45 > T13 + Toz + X34 + T35.
T11 + Ta4 + T3 + T34 > T12 + T13 + Tog + T34 + T45.

Tog + X5 + T13 + T34 > X12 + T23 + Tog + T35 + Tas.

We are starting to see that there is some structure to the system. It seems
that most of the inequalities that are facet-defining and valid for the elements
at one order stay for the next, but there is a definite sense that the new ones
in each step are more complicated than they were last time. The number of
inequalities for small n is indicated in the following little table:

Number of inequalities

12
22
36
54
75
99

OO ULk w3
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As we see, there is a definite tendency towards increasing growth here, and as
we saw above not only does the number of inequalities grow, but their complexity
grows as well. If we tried to find all facet-defining inequalities much as we tried
to find the ones for DD, in the second proof of 3.2.1 we would easily find that
the trivial facets are the same as in that case, and that for a general facet we
must have

a; <0fori=1,...,n,
Qi S —Q4; — Qjj for ¢ = 1,,77,71,]:Z+1,Z+2,] S’ﬂ,

Qi i1 + Qiivo + Gip1i42 < —04 — Qig1i+1 — QG242 fori=1,...,n —2.
Further we must have equality for at least one generator with x;; > 0 for j > 1.
This corresponds to equality in one of the two last types of inequalities above.
However, choosing which will hold is very complex, and depends on whether we
choose to include generators in S3US3 or Sy in our facet, and to make a long story
short we have been unable to come up with a nice way of structuring the proof
— the number of possibilities balloons quickly, and our exhibited inequalities do
not quite suggest any tempting theories as to the structure of the set of facets.

We shall instead turn our attention to another manner in which DD,, can be
expanded, hoping that it will prove more tractable.

3.5 Another expansion

Our last approach ran into some difficulties, and one in particular was that the
number of generators per element was not constant, which ultimately had its
roots in the fact that some generators had supports of different sizes than the
others. One way of expanding the diagonally dominant cone and keeping to
generators with nice support is to define the following set:

Cr = cone{(re; + se;)(re; +se;)’ : (i,j) € Z,r e N,s € N;r + s < k}
With k = 2, this is simply DD,,. We try to set £ = 3 and see what we can
prove. Using PORTA again we obtain the following explicit systems, which will
suggest to us a hypothesis.

3.5.1 Examples
The cone when n = 2 is determined by the following inequalities:
1. z15 > 0.
2. 2wy > w1 for i =1,2.
3. 2z + xj; > 3xig for ¢, € {1,2} with i # j.
When n = 3, the basic inequalities are
1. z;j>0fori=1,2and j=i+1,...,3.
2. 2y > 22:1’,@# z fori=1,...,3.

For all choices of 4, j, k € {1,2,3} and i, j, k different, the following inequalities
also play a part in determining the cone:
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4y + 2w > 6z + 225 + Tj.
2x + Tjj + Tik > 3:L‘ij + 3z + 2{,Cjk.

2@ + 2055 + gk > 4wy + 3Tk + 3Tk

A

4z + 2x55 + g > 6245 + 4xi + 325k

When n = 4 things start to get more complicated. The two most basic kinds
of inequalities here are

1.5 >0fori=1,...,4and j=7+1,...,n.
2. 2x; zzi:Lk#ixik fori=1,...,4.

For all choices of i,j,k,1 € {1,2,3,4} with 4, j, k,{ different, the following in-
equalities are also valid:

3. 4wy + 2155 > 6245 + 248 + 225 + x5k + 2500

dxi; + 2255 + 2xpp > 6255 + 6x4 + 44k + 220 + T + T

4y + 4wy + 2w > 82y + 64k + 6255 + 224 + 225 4+ Ty

2245 + X5 + Tk + Ty 2> 3T + 3Tk + x4y + 225, 4 235 + 2.
2245 + 2255 + Tpk + Ty > 4w + 3w+ 3Ty + 3Tk + 3T 4 23y,
2245 + 2255 + 2Tk + xy 2> 4wy + 4wy + 3wy + 4 + 3T + 3Ty

© % N o oo

4y + 2w55 + g + 2y > 6245 + 4wy + 4xy + 3T + 3T + 23y
10. 4z + 2255 + 2248 + xy 2> 6245 + Oy + 4y + 48 + 325 + 3T
11. day; +4aj; + 2ap, + 2y > 8wy + 624, + 625 + daa + 4o + 32
12. 8wy +4xj; + 2w + 1y > 12345 + 8x4 + 624 + 6255 + 4y + 32p0.
13. 8z + 4xj; + 2xpi > 12241, + 84y + 625, + 4y + 275, + Thy-

Note above that PORTA works pretty hard to make all the constants be integers.

Our first observation is that we have far more inequalities here. PORTA gives
up beyond n = 5, but we sum up the number of inequalities in the following
little table:

n Number of inequalities
2 5

3 24

4 144

5 1065

This is a very large number of inequalities, and so it seems unlikely that we shall
gain a more efficient test in the O(g(n)) sense than the one linear programming
techniques could furnish us with, but we might still obtain insight into the
structure of the cone by finding the linear system describing it, and so we shall
soldier on. While this system is in general much larger than the one describing
the previous cone it is much simpler in the way it treats its variables, and so we
hope to find something here.
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3.5.2 Analysis

The key insight when analysing the systems we have just seen is that the di-
agonal coefficients are all powers of 2 — and since we can scale the inequalities
without losing anything, we can go farther: the smallest diagonal coefficient can
be assumed to be 1, and then all the other diagonal coefficients take their values
in a set of consecutive powers of 2 starting with 1. There also seems to be some
relation between the diagonal coefficients and the coefficients of the off-diagonal
elements as well, though it is not, on the surface of it, as clear.

This system has many of the features we were missing in the last one, and
we will be more successful in our analysis here. The proof is rather long, so we
have tried to leave out those details which are easy to see while retaining the
main thrust of the arguments. First, we need a definition.

Definition 3.5.1 (Doubling chains). Let S be some vector of k real numbers.
We shall call S a doubling chain if there exists an ordering ~v1,...,7vx of the
elements of S such that

’Yj:2pj71 fOTjZQ,...,I{i,

where p; is either equal to pj_1 or pj_1+1, p1 =0 and pr, > p1 +1. A set of
one element is obviously a doubling chain, and we shall refer to these as trivial
doubling chains.

Examples of doubling chains include: (1,2,4,8), (1,2,2,2) and (2,4,4,8). In
particular, note that in our exhibited inequalities earlier the nonzero diagonal
coeflicients always form a single doubling chain. This is what we are aiming
to prove: That the facet-defining inequalities are derived by setting the diag-
onal coeflicients either to zero or to some doubling chain, and choosing the
off-diagonal coefficients in some sensible manner, where we shall give meaning
to “sensible” later.

Now, let n € N be given. We remind the reader that we have defined
T=A{(i,j):i=1,...,n—=1,7=1i+1,...,n}. We define the four sets

o Sy ={eel :i=1,...,n},

o Sy ={(eit+ej)eit+e;):(i,5) €I},

o S5 ={(e; +2ej)(e; +2e;)" : (i,5) € I},
o Sy =1{(2¢; +ej)(2¢; +e;)T: (i,j) € I},

and we let C3 = cone(S; U Sy U S3U Sy). From Proposition 3.1.1 we know that
any candidate for a facet-defining inequality can be written on the form

n
E @i + g a;jzi; <0
=1

(i,4)€T

By virtue of being a superset of DD,,, Cs is a full-dimensional cone in the space
of n X m symmetric matrices. This means, see Theorems 1.7.1-1.7.3, that if we
can find all the facet-defining inequalities we will have found the unique minimal
system of inequalities defining of Cs.

Validity of an inequality means, in particular, that it is valid in the various
generators. We can use this to conclude that the following relations must hold
for the coefficients in a valid inequality.
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Validity in Si: a; <O0fori=1,...,n.

Validity in So: a;; < —a;; — aj; for (4,7) € Z.
Validity in Ss: a;; < %(—an‘ — 4ajj) for (i,j5) € L.
Validity in Sy a;; < 2(—4a;; — aj;) for (i,5) € T.

Of course, by linearity an inequality that holds in the generators must also
hold for the entire cone, so this is a necessary and sufficient criterion for being a
valid inequality. A generator is obviously included in the face defined by such an
inequality if and only if its corresponding constraint above holds with equality.

We have thus far obtained several pieces of information about our facet-
defining inequalities and our cone. We summarise our findings in a little lemma
for easy reference.

Lemma 3.5.2. C5 is a convex cone of dimension w, so facets of C3 have
dimension w —1. Furthermore, any face-defining inequality for Cs is of the
form

n

Zaiixii + Z ai;xi; <0, (3.3)

i=1 (i,J)€T

where X € Cs. Concerning the coefficients in (3.3) we know the following four
facts:

ai; <0 fori=1,...,n.
aij < —ay; — ajj for (3,5) € L.
1
aij < 5(—ais — day) for (i,j) € T (3.4)

1 -
aij < 5 (~4aii —az;) for (i,) € I.

Furthermore, the face F' defined by a face-defining inequality is the convex cone
generated by the generators whose corresponding inequalities in (3.4) hold with
equality.

So far we have spoken much about facets, but not actually found any. We
rectify this presently. Consider the following inequality, where (i, j) € Z:

The corresponding face is the set {X € C3 : z;; = 0}. Considering the generators
in S7US5 contained in this set, it is clear that it has dimension at least % -1,
and it is equally clear that it cannot have higher dimension (there are not enough
nonzero elements in a matrix contained in this facet). From this we see that
we have found a facet, and in future we will refer to facets of the type (3.5) as
trivial facets.

Now assume we have some face-defining inequality with a;; = 0 for i =
1,...,n. Then for all (i,7) € Z, a;; <0, and we see that any such inequality is
implied by the trivial facet-defining inequalities. We have thus found all valid
inequalities for C3 with all diagonal coefficients zero.

When we wish to move on to inequalities in which the diagonal coefficients
are nonzero we need to know which of the three bounds on a;; in Lemma 3.5.2
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is the tightest. We show this in all generality (Keep in mind that as a;; < 0 for
all i, — Q4 2 0)

Lemma 3.5.3. Assume o, € Ry. We consider the following three numbers
computed from them:

S(dat B),a+ 5, 3 (a+49)
Out of these three, the smallest one is
o J(da+p) ifa< ip.
s a+fif38<a<2p.
o s(a+4p) if28<a.

Note that if a« = 28 or a = %B two of the numbers attain the minimum at the
same time.

Proof. Assume % (4a + 3) is the smallest. This means that

%(4a+5)ﬁa+ﬁ, %(4a+ﬂ)§%(a+4,ﬁ).

Sorting both of those, we see that they are equivalent to

1
aggﬁu Oé<B.

The second inequality is implied by the first, since «, 3 > 0. The necessary
condition o < % [ is also sufficient.
Assume « + (3 is the smallest. This means that

1 1
04+5§§(404+5)7 0¢+»3§§(04+43)-
Sorting again, we see that these are equivalent to

Again these necessary conditions are also sufficient.
Finally, assume % (a + 4/3) is the smallest. This means that

S48 < S(ath),  (atdf)<atp

Sorting this out, we see that we must have
f<a, 28<a.

The first condition is implied by the second, and again the necessary condition
28 < « is also sufficient. O
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Now we can at last get to work on facet-defining inequalities with nonzero
diagonal coefficients. Assume F is a facet defined by some inequality

n
E @i + E aijij < 0.
i=1

(1,7)€T

If, for some (i,j) € Z, F contains no generator with x;; # 0, then 2;; =0 is a
true equality for the set F'. Accordingly, F' is contained within the corresponding
trivial facet, and as such is not a facet. Therefore we know F' must contain some
generator with x;; > 0. This means that (at least) one of the bounds on a;; in
Lemma 3.5.2 must hold with equality, and so we are justified in setting a;; to
be equal to the smallest of the three right-hand sides. Using Lemma 3.5.3 to
determine which that is, we obtain the following corollary.

Corollary 3.5.4 (Off-diagonal coefficients in facets). Assume we have a facet-
defining inequality

n
Z ;i T + Z (aij + aji)xij <0.
=1

(i,9)€Z

Then the following must be true for all (i,5) € Z:

1 1
Qi = min {2(—4aii — ajj), —Qi5 — Qjj, 5(—61”‘ — 4ajj)} . (36)

The minimum is
[ %(—4&1‘1* — ajj) Zf —Qi; < —%ijj.
® —ay; — ajj if—%ajj < —aiy < —2ajj.
o %(—a“- — 4ajj) ’Lf —QCij < — Qi

As such, nontrivial facet-defining inequalities are uniquely determined by the
coefficients of the diagonal elements of X. This will make things a lot easier for
us?.

It is time to find more facets. It will be easier to also treat the case of only one
nonzero diagonal coefficient by itself. Assume for some i that a;; < 0, and that
a;j; =0 for all j # 4. Let (¢/,j") € Z. Since we are looking for facets, Corollary
3.5.4 applies, and all the nondiagonal coefficients are uniquely determined (they
are —%an‘ if either ¢/ = ¢ or j/ = 4 and zero otherwise).

So what is the dimension of the determined face? Well, the face contains
every generator in S7 except eieiT, and every a;; is chosen so as to provide at least
one generator with x;; # 0 — it is clear that all of these are linearly independent
as their supports do not overlap, so we have at a minimum w — 1 linearly
independent generators, meaning that the dimension is at least this much, and
since the face cannot have larger dimension this must in fact be the dimension
of the face, meaning it is a facet. Given that facet-defining inequalities with at
least one nonzero diagonal coefficient are uniquely determined by the coefficients

2This did not hold in the triple diagonal cone.
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on the diagonal by Corollary 3.5.4, there are no other facet-defining inequalities
with just one nonzero diagonal coefficient.

Now we can at last consider a general facet-defining inequality. It is time
to consider facet-defining inequalities with more than one nonzero coefficient on
the diagonal. Henceforth, all off-diagonal coefficients are assumed to be chosen
in accordance with Corollary 3.5.4. If not, they cannot possibly be facets and
as such they are not interesting.

We wish to show that in any such inequality, the nonzero coefficients form
a doubling chain. The basic idea is to take a face-defining inequality in which
they do not and show that all the generators of that face are contained within
a face defined by an inequality in which they do. This shows that the second
face contains the first, and so only the second can possibly be a facet. The
important point in the proofs to come is that the generators (excepting those
in S71) contained in a face where the off-diagonal coefficients are chosen in this
way obviously depend entirely upon which minimum is attained in (3.6). As
such, when we go from an inequality in which the coefficients are not a doubling
chain to one in which they are we only need to show that the minima attained
in (3.6) do not change, and we are done.

Lemma 3.5.5. Let F' be a face defined by an inequality
Zaiixii + Z a;jzi; <0,
i=1 (4,4)€T

where at least two of the coefficients on the diagonal are nonzero. If there exists
some a;; such that

1
—0ii # — 5055, ~Gii 7 —205;
are true for all j # 1, F' is not a facet.

Proof. Let i be as stated, and define the set
1 .. .
M =q—5aj;:5 710 U{=2a5;:j#1i}.
Assume the set {x € M : © < —a;;} is nonempty. Let

a=max{r € M :z < —ay}

Now consider the face-defining inequality obtained by setting a;; = a;; for j # i,
a;; = « and choosing the off-diagonal coefficients according to Corollary 3.5.4.
We call the face defined by this new equality F'. We propose that F/ C F. Since
we have changed the relationship only between a;; and other diagonal elements,
we know that only the generators involving e; can have changed from F’ to F.
Now, let k # i.

o If —a;; < —%akk, then o < —%akk, and nothing has changed.

o If —a;; > f%akk and a < f%akk, then f%akk e{zeM:z<—a;}, and
the assumed relation contradicts our choice of o as the maximum of the
set.
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o If —a;; > —2ap;, and o < —2aky, then —2ap, € {x € M : z < —a;;}, and
the assumed relation contradicts our choice of a as the maximum of the
set.

We conclude that every generator which is contained in F’ is also contained in
F. Further, since —a;; is now either double or half of another diagonal coefficient
we have more generators in F' than F’. This means that F’ cannot possibly be
a facet.

Now, if {x € M : © < —a;;} is empty, it should be clear that we can instead
define the set {x € M : & > —a;;} and perform the proof in an entirely similar
fashion choosing the minimum of this set instead, so we are done. O

A different formulation of Lemma 3.5.5 is that in a facet-defining inequality,
every diagonal coefficient is contained in some doubling chain composed of di-
agonal coefficients. We are almost there — our initial conjecture was that they
are all contained in a single doubling chain. We prove that if they are not we
do not have a facet. The next proof uses the same strategy once again.

Lemma 3.5.6. Assume we have a face-defining inequality F' in which not all
the diagonal coefficients are in a single doubling chain. Then F' is not a facet.

Proof. Assume —a;; is the smallest diagonal coefficient in absolute value. From
Lemma 3.5.5 we know —a,; is contained in a doubling chain, call it D. Let R be
the set containing all diagonal coeflicients not contained in D. Then R consists
of one or more doubling chains, call them D;,..., Dy. Let

1
M:{Qm:xED}U{Q:U:xED}.

For every D; let d; be the smallest element in the doubling chain, and let
a; = max{x € M : x < d;}. Since we assumed that —a;; is the smallest
diagonal coefficient o; is well-defined. Clearly it is the case that for all j there
exists some ; > 1 such that d; = B;a;.

Now let

f = min{f;}.

Let F be the face defined by the inequality obtained from the inequality defining
F’ by scaling every coefficient in R by % while still picking the off-diagonal
coefficients according to Corollary 3.5.4. We need to show that we have lost no
generators.

Assume —ay € R. Then —ayy is in some doubling chain, say D;. Then
there is some m’ such that —agr = 2m/dj. Since d; = Bjoy it follows that
—Qpp = 2mlﬁjaj. Since a; € D, there is some m such that —agr = —2""3;a4;.
We observe that by the definition of 3, %’ > 1 (the fraction equals one if D; is
the chain for which the minimum was attained when choosing 3. Let —as; be
an arbitrary element in D. Then there is some r such that —ay; = 2"a;;.

o If —ap, < —%att, then —%akk < —apr < —%att, and nothing has changed.

o If —ay, > —%am then m > r—1, and since —%akk = —%Qmaii > —2"a;;

it follows that —%akk > —%att.
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o If —apr > —2ay, then m > r+1, and since —%akk = —%2"‘(1“- > —2"ay;,

*%akk > —2ay.

We have shown that whichever minimum was used to choose the coefficient
akt in the inequality defining F” still holds with equality when making the same
choice in our new inequality, and so F' must contain all the generators contained
in F', and the result follows. O

So far we have shown that we can assume all the facet-defining inequalities
are either the trivial ones, the uniquely determined ones with only one nonzero
diagonal coefficient, or the ones determined by letting the nonzero diagonal
elements be a doubling chain. We have not yet seen, however, whether these
are all facets or not.

Theorem 3.5.7 (The facets of C3). The facet-defining inequalities of Cs are all
the face-defining linear inequalities for which the nonzero diagonal coefficients
(if any) form a doubling chain.

Proof. From our discussion and Lemmas 3.5.5 and 3.5.6 we know that all the
facets are found among these inequalities. We only need to prove that they do
not imply each other, the rest follows from Theorem 1.7.1.

Assume two face-defining inequalities of C3 do not have the same zero di-
agonal coefficients. Then in one of them, call it Fj, there is some a;; = 0 and
such that the corresponding coefficient in the other, say F5, is not zero. Then
Fy contains e;e!, and F» does not, thus satisfying 1.7.3. We only need to show
that we can find such an element also if two of our inequalities have the same
zero diagonal coefficients.

Assume F; and Fy are two faces with at least two nonzero diagonal coeffi-
cients and with the same zeroes on the coefficient diagonal. Then, since they
are not the same inequality, their nonzero diagonal coefficients are not the same,
nor are they scalar multiples of one another. Since this is the case there exists
some (4, j) such that in the inequality defining Fy, —a;; = —2a;;, while in the
inequality defining F5 this is not true. That means that F; contains the gener-
ator (4e; + e;)(4e; + e;)T while F» does not, and so we fulfill the criterion in
Theorem 1.7.3.

This concludes our proof. O

Since Cs is full-dimensional we have not only found all the facet-defining
inequalities, but we also know by Theorem 1.7.2 that they make up the unique
minimal system defining C3 — and we see that PORTA did get it right when
we applied it to obtain examples back in Section 3.5.1. It may be interesting
to note that we can always describe the cone Cs3 in terms of inequalities with
integer coefficients as a consequence of this theorem and Corollary 3.5.4.

Note also that while we would like to provide an example of a matrix in Cs
which is completely positive that we could not know was completely positive
before now, we would have to make it be of order at least 5, and verify an absurd
amount of inequalities in order to show that it was in Cs, so we have opted not
to do this.
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3.6 Conclusion

We considered two convex cones contained within CP,,. One, the triple diagonal
cone, we did not manage to handle, but for the other, C3, we determined a fairly
nice description of the defining minimal system. That the test for inclusion in
C3 and by extension CP,, this system provides is comparatively efficient seems
unlikely — the number of required inequalities grows very fast. There are cer-
tainly at least 2™ doubling chains of a given length, and any distinct ordering
gives rise to a unique facet-defining inequality.

It seems like the argument could be extended to cones Cy with & > 3 too,
but as we already have so many inequalities we have not attempted this here —
the cones are not likely to get nicer to work with.
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Chapter 4

Linear Programming Tests

Thus far we have largely considered the completely positive cone from a theo-
retical perspective. In Chapter 2 we considered several of the more important
results in the field, while in Chapter 3 we attempted to exploit the fact that
CP,, is a cone to obtain a new test for complete positivity — in this we had some
success, but the fact remains that in Lemma 2.1.10 we saw that if we want to
obtain the entire cone of completely positive matrices we have to use an infinite
set of generators. Considering the trouble we had already with a somewhat
large finite set this does not seem like it will be a useful way of thinking if we
are looking for a more general approach.

In this chapter, then, we will turn to numerical algorithms and attempt to
find some that explicitly create a completely positive decomposition of some
given matrix. As no explicit descriptions of the cone CP,, are known, the exact
approach is out. We must instead turn to approximation. The general problem
of determining complete positivity is of course a quadratic one, but linear pro-
gramming has often turned out to be very useful even in problems that are not
in themselves linear, and in this chapter we will, inspired by [15], see if we can
use linear programming to approach the matter.

4.1 A general algorithm

The basic idea in this chapter is this: Assume we are given a matrix A € DNN,.
Then,

1. Pick a matrix Xq € R™** for some k, preferrably so that A is at least
somewhat close to XoX{ .

2. Using some algorithm  : R?** — R™** for choosing, we let X; = Q(Xj),
and we construct €2 in such a way that X; X 1T is closer to A than XOXg
was.

3. We repeat step 2, obtaining a sequence Xy, X1, Xs,... until we have
reached some maximum number of iterations or X;1; ~ X; (so we are
reaching a stationary point of some sort).

4. If our final matrix Xy is such that A ~ Xy X% we conclude that A € CP,,.
Otherwise, the test hasn’t succeeded.
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Note that since we are attempting to exhibit the completely positive factorisa-
tion explicitly, there is no danger of false positives (excepting round-off error
issues, which we do not intend to go into in this thesis).

There are several vague points in the above outline. The two most important
ones for us are how X is chosen, and what we pick € to be. Of course, if we
have no algorithm we have nothing, so our first order of business will be to
describe two algorithms. Both will work the same way: We alternate between
solving two linear programming problems and hope we get somewhere. The
difference will be in their objective functions.

4.2 Alternating approximations

As mentioned, we cannot write the problem of complete positivity as a linear
programming problem in an exact manner. However, assume that instead of
trying to find an X with A = X X7 we try to find B € R?**, C € RE*" such
that the matrices A — BC, B — CT are in some sense small. If we let By be a
given matrix and solve said problem for C, call the computed matrix Cy, then
solve the problem for B again, calling the solution B, and repeating, we will
obtain a sequence of matrices By, B1, ... that hopefully exhibit some form of
convergence. We make the procedure explicit.

Assume f(A, B,C) where A € S}, B € RﬁXk, C e R’f" is a function taking
values in R4 and the property that

f(A,B,C)=0< A=DBC and B=C". (4.1)

Assume we are given some matrix A and an initial value By. For k = 0,1, ...
define C by
Ok = arg min f(A7 Bka C)a
CeRE*™
and for k =1,..., define By by
B =arg min f(A,B,Ck_1).
BeRr "

Above we take arg min to mean the value for which the minimum is attained.
Obviously any solution of the above with f(A, B,C) = 0 will be a completely
positive decomposition, which is what we are resting on throughout.

Before we can try implementing this, we need to come up with some choices
of f. We are going to investigate two at first.

421 o

Consider the following linear problem, where the values m, n, a;; and b;; are
assumed to be given:

minimise T

subject to >ty fori=1,...,n,5=1,...,m
T2 S fori=1,...,n,7=1,....n
tij Zbij_cji fori:l,...,n,j:l,...,m (MC)
tij Zle'fbij forizl,...,n,jzl,...,m
Sij > @ij— >y biger; fori=1,....nj=1,...,n
Sij Zzz;lbikckj—aij for i = ,...,n,jzl,...,n
cij =0 fori=1,...,m,j=1,...,n
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Keeping in mind that || - ||;az is the maximum element of a matrix (in absolute
value), we see that (MC) is a linearisation! of the following problem:

minimise max {||B — CT | maz |A — BC||maz}- (4.2)
CERIXTL
Similarly, we could assume a;; and c¢;; are given, and consider the following
problem:

minimise r

subject to 1 > fori=1,...,n,j=1,...,m
T > 85 fori=1,...,n,5=1,...,n
tij Zbij_cji fori:l,...,n,j:l,...,m
tij zcji_bij fori:l,...,n,j:l,...,m (MB)
Sij zaij—zz;lbikckj fOI"’L':L...,’rL,j:l,...,TL
Sij > Yo bikerj—a;; fori=1,....nj=1,...,n
bi; >0 fori=1,...,n,j=1,...,m
This is a linearisation of the following problem:
minimise max {||B — C7|l;maz, | A — BC|lmaz}- (4.3)
BER:XWL
Now we can define f,q, for any given n,m:
fmaa:(AyBy C) = maX{HB - CTHmawv ||A - BC||ma7;}7 (4 4)

where A € R™*", B € R}*™,C € R["*".

Note that, being the maximum of two norms, f,,q. takes values in R,. We also
need the following property:

Lemma 4.2.1. f,,., satisfies (4.1).

Proof. If A = BC and B = C7 it follows that ||A — BC|lmaz = |Onllmaz = 0
and |B — CT|| = ||On.m|lmaz = 0, and so

f(A4,B,C) =max{0,0} = 0.
If, on the other hand, f,q..(A, B,C) =0, then
max{|[B = C7 mazs |4 = BClmas} = 0,
and since the two norms are nonnegative, being norms, it follows that both of

them must be zero, and from the properties of norms it follows that B — CT =
Onm, A— BC = O,,, and we are done. 0O

We see that f,q.. as defined satisfies the conditions needed to be used as
the basis for alternating approximations. Further, the two arg min-problems we
need to solve are modelled linearly above, as (MB) and (MC).

1 An equivalent problem which is linear.
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4.2.2  f,

The function in this section is similar to the last one, but not entirely alike.
Consider the following linear problem, where the values m, n, a;; and c¢;; are
assumed to be given.

minimize 22321 tij + Z:]n:l Sij
subjectto tij zbijfcji fOri:17...,TL,j:1,...7m
tij chi_bij fOI‘Z.:].,‘..,TL,j:].,...,m
Sij = ij — > pey bikCrj fori=1,...,n,5=1,....,n
Sij Zzzlzlbikckj—aij fOI"Z':1,...,7’1,,]':1,...7
cij =0 fori=1,....m,j=1,...,n
(LC)
Keeping in mind that the norm || - ||; on the matrix space is the sum of absolute

values of elements in the given matrix, we see that (LC) is a linearisation of the
following problem:

minimise |B — CT||y + |4 — BC||;,C € R7™™.

Again we explicitly show the other problem too, assuming m, n, a;; and b;;
are given:

minimize 22;21 tij + EZ’;L:I Sij
subject to tij Zbij—cji fori:l,...,n,j—l, .,m
tij chifbij fOri:17...,TL,j—1, ,m
Sij > Qij — D opeq bikChj fori=1,...,n,j=1,...,n
Sij = >y bikCrj — aij fori=1,...,n,5=1,....,n
bi; >0 fori=1,....m,j=1,...,n
(LB)
This is a linearisation of the following problem:
minimise |B — C”||y + ||A — BC||;, B € R*™.
The definition of f; is likely obvious now:
le(A7B,C):HB*CTH1+HA*BOH17 (45)

where A € R™*" B € R*™,C € R"*".

Being a nonnegative sum of norms, f;; is a function taking values in R;. We
again prove that it has the required property.

Lemma 4.2.2. f1; satisfies (4.1).

Proof. If A = BC and B = C7 it follows that ||[A — BC||; = ||O,]l1 = 0 and
| B —CT|| = ||Onmll1 =0, and so

fr1(A, B,C) = max{0,0} = 0.
If, on the other hand, fr1(A4,B,C) =0, then
IB—CTlL+]lA - BC| =0,

and since the two norms are nonnegative, being norms, it follows that both of
them must be zero, and from the properties of norms it follows that B — CT =
On.m, A — BC = O, and we are done. O
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4.3 The little details

As we mentioned there are some matters beyond the choice of algorithm that
require attention before we can try to implement them. We will not prove
convergence of the algorithms, for reasons that will become obvious.

4.3.1 Initial guesses

Earlier we said we would need some initial guess Xy (or By, as our notation in
the previous section would have us call it). We shall see that the choice certainly
does seem to matter. In general, we will let k = @ — 1 (see Section 2.4)
so that we are not in danger of using too few columns in X, (In fact, we will
almost certainly be using far too many, but the results concerning this are not
conclusively proven). We will attempt three different choice strategies, all of

which are simple.
Ones guess We can let X be a matrix consisting of all ones.

Diagonal guess Define X so that all elements on the diagonal are correct in
Xng, i. e. Qi3 = (XQXQ);‘,; for i = 17 N

Random guess We will also consider letting the initial matrix be entirely ran-
dom — this will serve as a sort of check on our other strategies, by helping
us determine whether they are helpful at all or not.

Of course, other methods of guessing may be available, but the ones here
are at least different enough that they should let us see the impact of the initial
value on the algorithms (if there is such an impact). The obvious way of defining
the diagonal guess is the one we have used. Let A be given, and set

Qg . .
iy =4 /— fori=1,...,n,j=1,...,m.
m

m

m
s
T i
(XX); = E TikTik = g o= i
k=1

k=1

Now we see that

This is what we have used throughout the present chapter as our diagonal guess.

4.3.2 Generating test cases and measuring error

We have described our algorithms, shown that they will eventually converge, and
determined our initial values. Only a few things remain before we can investigate
the algorithms in practice. First, we must discuss how we will determine that an
algorithm has worked. Keep in mind that even if the algorithm finds B, C' such
that A = BC it may not be the case that BBT = A, and in general we might
expect that BC is closer to A than BBT is. We obviously need to measure the
error of BBT as an approximation to A, and we have chosen to use relative
Frobenius error, which seems to be a widely used measure. The relative error
we will use is defined as such:

|A— BB |
€(A,B) = —————
4B) ="l
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When later in the chapter we mention measured error, this is what we mean.
As A, B are often clear from context we will usually refer to this simply as e.

Note also that as we are interested in actual completely positive decompo-
sitions and not simply good approximations, we need € to converge to 0. If
it does not, the algorithm is useless to us, and if it does not approach 0 fast
enough the algorithm is not very useful either. We will test every algorithm in
this chapter for a maximum of 100 iterations, primarily because we only have
access to an average computer, and even at an order of just 4 computing 100
iterations (which means solving 200 LP problems) takes a while. Also, if the
algorithm appears to be stopping completely before then, we break off early. We
define this as having the maximal elementwise difference in absolute value of
the matrix By, — By be smaller than 10710, This is a very harsh requirement,
but these algorithms sometimes take very small steps in between larger ones,
and so we wish to be very sure we are not breaking off too early.

With error measurement sorted out, only one issue remains: What shall we
test the algorithms on? Since they are all constructive, we need not fear false
positives, so we only need to investigate whether they at least sometimes verify
complete positivity of some matrix that we know is completely positive.

Precisely what kind of completely positive matrices are the “typical” ones
in the cone CP,, is a rather difficult question to answer, so we shall instead
work with a simple answer that is only somewhat satisfactory. We create a
completely positive matrix by letting B be a random nonnegative matrix of the
right dimensions, then setting A = BBT. Then we “forget” B and make our
guesses independently. In this way, we know that all the matrices we are testing
are completely positive, but we can not know that this will give us a uniformly
random distribution of matrices in CP,,. With no other options readily available,
however, this is what we will use.

For the sake of examples we will pick B to be a random nonnegative integer
matrix with integers in the range 0-9. This may seem like it influences the
algorithms too much, but some experiments suggest that the algorithm performs
roughly the same by letting B simply be random, so we will stick to this picking
strategy. We will “cheat” a little when making our random guess by letting
the random numbers be in the same range, with the aim that if the random
guess turns out to work well we will invent some other method which does not
presuppose knowledge of the solution.

4.4 Results of alternating approximation

At this point we have made clear the way in which we intend to implement
the algorithms we intend to test. They have been implemented in Java using
IBM Ilog Concert Technology to call upon functions that solve linear programs
quickly. The actual implementation is straightforward, and we shall not go into
the details. Instead we move straight on to considering the results we obtain.
We note that we have not always been able to test the algorithms on as many
cases as we’d like, but we have at every step provided as many tested matrices
as possible, making at least a few thousand per algorithm.
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Table 4.1: Max-approximation data

Guess type n  Avg. ¢ Min. € Max. € Avg. iters Test cases

Ones 4 9.19 7.28e-5 171.62 60 1000
6 38.73  2.20e-4 825.30 87 500

10 174.29 0.01 3322.72 100 250

15 2791.85 0.32 25416.12 100 50

Diagonal 4 11.12 1.13 154.14 46 1000
6 55.64 9.44e-4 784.53 81 500

10 156.26 0.01  4194.14 99 250

15 2217.26 22.65 14800.03 100 50

Random 4 0.34 4.28 74.69 42 1000
6 0.03 1.32e-4 0.86 97 500

10 0.04 0.003 0.09 100 250

15 0.07 0.01 0.15 100 50

4.4.1 Results using f,.»

First, we investigate what happens when using f,., as previously detailed —
we will refer to this as max-approximation. The results we have gathered are
summarised in Table 4.1. Before we start discussing the results, note that as the
average number of iterations increases the number becomes less reliable since
we always stop after 100.

We see that none of the three initial guess strategies seem to work all that
well for max-approximation (In fact, they are all quite bad except for a rare few
cases in which they seem to get lucky). Observe that for small n the algorithm
is often capable of halting before 100 iterations, but as n increases we lose this
property. We also observe that as expected the ones guess becomes worse as
the dimension increases, but so does the diagonal guess, which we had hoped
would stay closer.

Out of the three, the random guess by far performs best, but while the errors
it obtains are not large, they are not yet small — the algorithm could conceivably
perform better if we had the computing power to perform more iterations, but
in truth running 100 iterations of the algorithm for a matrix of order 15 already
takes several minutes. Thus we can hardly expect that the algorithm performs
well in general, and we note that it often breaks off early at a solution with a
somewhat large error, indicating that even if we could test it further it does not
seem like it will commonly get there at all, rather stabilising some way off.

Before moving on we will consider a particular example, which clearly il-
lustrates the weakness of our algorithm. In this case n = 4 and the algorithm
terminated after 20 iterations, with an objective value of roughly 31, and a
measured error of about 0.92. The matrix A was

90 50 70 43
o0 128 74 28
70 T4 268 127|°
43 28 127 143
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but the computed product BB after we stopped was

[2.47 050 0.69 0.07
0.50 4.65 0.69 0.00
0.69 0.69 30.31 13.20|°
10.07 0.00 13.20 15.43

BBT =

and this is just awful. To compare directly, the original matrix Bopiginal Was

Boriginal =

O O O
SO O N
S W o
~N o N
Ul © = =
N W
= ==
o o O W
O N Ww o

while its computed replacement in this case was

0.90 0.58 0.00 0.58 0.58 0.58 0.00 0.58 0.00
0.00 0.00 0.00 0.00 0.29 0.00 2.06 0.58 0.00
0.00 0.00 3.36 0.00 0.00 0.00 0.00 1.19 4.19
0.00 0.13 3.93 0.00 0.00 0.00 0.00 0.00 0.00

By =

However, the computed product BC' the algorithm obtained was

121.43 36.78 46.39  11.57
27.75 96.57 42.57  0.00

44.38 42.57 236.57 95.57
11.57 0.00 101.78 111.57

BC =

We see that this is much better (while, unfortunately, still rather bad), and
herein lies the trouble with max-approximation: The difference between B and
C doesn’t have to be very large in order for BBT to be very different from
BC, which is what keeps tripping up this particular algorithm. Also, as we are
only measuring the maximal error out of many matrix elements, the algorithm
changes its guesses little per step, as there is little incentive to do more. There-
fore, we easily get stuck on local minima that are far from the best solution,
and we conclude that the max-approximation algorithm does not do the job.

4.4.2 Results using [,

We refer to this kind of approximation as L1-approximation. Our results are
summarised in Table 4.2.

Here too the random guess performs best, and we also observe that the
algorithm appears to converge much faster. However, it often seems to converge
to a point that is far from optimal. The main issue is that the weighting is
somewhat off — the algorithm will decrease its objective function quickly by
reducing the difference A — BC, while B — C”? counts for much less.

We consider an example of using the diagonal guess before we move on. In
this case n = 4, the objective function upon halting was roughly 67.7, and the
error was about 0.67. The matrices involved are shown below.

228 116 251 185
116 272 243 252
251 243 401 308
185 252 308 347

A:
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Table 4.2: L1l-approximation data

Guess type n  Avg. ¢ Min. ¢ Max. ¢ Avg. iters Test cases
Ones 4 1.00 0.49 7.50 4 1000
6 1.07 0.73 7.37 7 500

10 1.21 0.68 10.99 12 250

15 0.98 0.88 2.65 9 100

Diagonal 4 0.47 0.04 19.39 15 1000
6 1.12 0.65 12.18 8 500

10 0.24 0.06 0.70 74 250

15 0.12 0.06 0.29 98 100

Random 4 0.38 0.02 5.14 9 1000
6 0.20 0.03 0.55 36 500

10 0.08 0.01 0.25 84 250

15 0.04 0.8e-2 0.08 99 100

6.12 0.00 2.32 256 12.99
0.14 298 549 8.64 6.20

2.06 0.00 14.84 5.31
21.12 0.00 0.00 0.00

549 6.61 598 1284 11.69 4.86 0.00 15.53 3.75

7.84 8.65 6.21 12.82 10.74

470.78 159.71
159.71 598.12
491.60 336.28
260.78 353.50

6.12 0.14
0.00 2.98
232 5.49
256 7.73
C=|594 536
2.06 6.29
0.00 0.00
4.65 0.00
531 0.00

228 116
116 272
251 243
185 252

BBT =

BC =

5.45 2.68 0.00 2.78

491.60 260.78
336.28  353.50
680.72 459.89
459.89 499.42

5.49
6.61
5.98

7.93 4.63

2.98
4.86
0.00
7.72
3.75

251
243
401
308

7.84]
8.65
6.21

6.44
5.26
2.68
0.11
2.78)

185
252
308
347

From the above we see that the algorithm actually performs a nonnegative
matrix factorisation perfectly in this case, but after reaching this point there is
comparatively so little to gain by reducing the difference B — C7 as opposed to
an eventual gain in the difference A— BC, and so the algorithm in this case, too,
gets stuck at a non-optimal solution which is somewhat off from what we were
hoping for. Before we give up entirely on linear programming-based approaches
we will try to weight the terms a little against each other and see if we obtain

better results.

63



Table 4.3: Weighted L1-approximation data

Q n  Avg. e Min. ¢ Max. € Avg. iters Test cases
0 4 0.87 0.75 0.92 2 1000
6 0.94 0.93 0.95 2 500
10 0.84 0.83 0.85 5 250
15 0.94 0.94 0.94 10 100
05 4 0.21 0.05 0.47 3 1000
6 0.09  0.3e-2 0.21 29 500
10 0.11 0.04 0.23 57 250
15 0.05 0.02 0.10 94 100
2 4 0.44 0.14 1.14 1 1000
6 0.43 0.23 0.62 1 500
10 0.42 0.35 0.49 1 250
15 0.41 0.37 0.44 1 100

4.4.3 Results using f, 11
We define f, 11 by

far1(A,B,C) =a|B—CT|, + ||[A — BC||x,

where A € R™*" B e R*™,C e R, o € Ry (4.6)

We intend to use this as the basis for an alternating approximation in a manner
that is entirely analoguous to the way we used fr1. All the rest regarding errors
and convergence remains the same as it was. We test this algorithm using the
diagonal guess, as the random guess we have been using is not entirely honest.
We investigate a few different values of a, see Table 4.3.

The gist of what we are seeing is that the idea is not all bad — it does seem
to provide slightly better approximations — but it is not so good that we quite
get good solutions either. It is difficult to say what a ought to be if we want
good results, and we will leave the trail here, hoping for better results in the
next chapter.

4.5 Conclusion

We have investigated several algorithms based on linear programming, hoping
to uncover a test for complete positivity. Sadly, none of them have been great
successes, though they do exhibit some of the features one would expect. The
best guessing strategy we have found is to let the matrix be a random matrix
that is likely to get close, but even this does not appear to work very well with
our algorithms.

Therefore we have not in this chapter gone into finding some way of making
such a random matrix without foreknowledge of its approximate range, nor
have we attempted to provide a proper proof of the algorithms’ convergence —
it seems like a waste of the reader’s time given that they do not actually exhibit
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the properties we need — but we do note that they all exhibited convergent
behaviour in practice.

In the next chapter we shall implement an algorithm based on the descent
method — thus we will remain on the mathematical optimisation track, but we
are leaving linearity of the objective function behind.
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Chapter 5

Descent Method

The approach of chapter 4 failed us. In general, we saw some success at solving
NMF-type problems, but nothing like real success at approaching the problem
of complete positivity. The main problem was that we could not get B = CT
emphasised enough without losing emphasis on A = BC. In this chapter we
will instead attempt to use a so-called steepest descent method to approach the
issue, in which we will always be working with X X as an approximation to A,
rather than the approach of having two matrices in the previous chapter. The
algorithm and its convergence properties are taken from the excellent book [7].

5.1 The descent method algorithm

The algorithm we will be using is described as follows. Assume we are given a
function fa(X) such that fa(X) = 0 if and only if A = XX7T.

1. Choose a starting guess X € R}*™.

2. The descent direction is chosen to be —V f4(X), which is the direction of
steepest descent.

3. A step size u > 0 is chosen such that f4(X — uVfa(X)) < fa(X).

4. We define the new starting point as X — uV f4(X) and begin again from
step 2. If some stopping criterion is satisfied we quit, if not we return to
step 2 and continue from there.

It should be obvious what the above algorithm does. We pick a step direction
which is known to be the one in which the function value decreases fastest, then
obtain a step length such that we actually decrease the function value, then we
repeat this process.

The above described algorithm is not complete, however, and in particular
we need to make explicit what it means to pick a step size u. In general,
the descent direction defines a ray {X — tVX : ¢t > 0}, and we are looking
for the minimizer of f along that ray. Solving the problem explicitly is often
difficult, however, so instead a good heuristic is usually used. These issues are,
as mentioned, more clearly described in [7], and from that book we take the
idea of using backtracking line search. This is defined in the following manner.
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Given a descent direction AX for f at some X, let a € (0,0.5),8 € (0, 1),
define t to be equal to 1. For as long as

f(X +tAz) > f(X) +atV(z) Az

holds, redefine t by t := §t. This builds on a first-order Taylor approximation,
and it is known to converge. We will use = 0.1 and 8 = 0.3 in our algorithm.

5.2 Steepest descent

Before we can attempt implementing the algorithm we must determine our
function f4(X) and its properties. We assume n is some positive integer, A €
R!*™ and m is another integer, in general equal to n("+l) -1

So, we assume A = [a;]};_; and X = [Xj;]70. We assume X > 0. Now
we can define the following function(Recall the definition of the Frobenius norm
in Section 1.4):

fa(X) = A - XXT|[3.

Of course, if we can find an X with f4(X) = 0 we have proved complete
positivity of the matrix A, and for all completely positive matrixes A such an
X must exist by definition, and so A is completely positive if and only if there
exists an X such that f4(X) = 0. For this reason we will study f4.

First a note on computation, for algorithmic purposes. We see that

i1 o Tim i1 ot Tnl
T . . . . . .
XX = : . : : - : )

Tnl e Tnm Tim e Tnm

from which it follows that the (i,7)-th element of X X7 is

m

XXT szkxﬂg

Using this we can write out f4 in terms of the matrix elements, obtaining the
expression

fa(X) = Z( lekx]k>. (5.1)

If we want to compute fa by way of vector operations, the following is a simple
formulation:

fa(X)=17(A-XX")o(A- XXM,

In general, f4 is hard to visualise because there are very many variables.
We would very much like to show how the function looks in at least one case,
though, so let us consider a rank 1 completely positive matrix,

B
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If we let n = 2, m = 1 we can look for X € R2X!, In this case we can actually

write out the function fg4, letting X = B] :

fa(X) = (25— 222 — 8xy — 8y? + zt + 22%y% + y4)2 .

We use this to create an illustration, letting x,y € [0,10]. See figure 5.1 for
an illustration of how it looks. What we can take away from this is that the
function does not immediately appear to be very “ugly”, as it were. It instead
appears to be rather nice and smooth, with the function taking the smallest
values around the area in which the elements of X are such that their products
are approximately right for A, and increasing quite rapidly when we leave that
area. This is encouraging.

Figure 5.1: Ilustration of f4.

5.2.1 f, is not a convex function

Convexity is a very important property for functions to have in any kind of
minimization situation (we assume the reader is familiar with convex functions).
Unfortunately, f4 is not a convex function, at least not in general. We give a
short example to prove that this may not be true. Assume n = 2 and m = 1.
Then X is a 2-by-1 matrix, and for the sake of example we can assume only the
first element of A is nonzero. Further, assume the second element in X is zero,
and call the first one x. This corresponds to inspecting f4 for convexity along
a line (or ray, given our domain requirements).
So, if > 0, the function is

fa(@) = (a11 — 22)? + (a12 — 0)® + (ag1 — 0)? + (azs — 0)?

4 2 2 2 2 2
=z" —2a112” +aj; +ajy +ay +a.
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Technically, this is the restriction of f4(X) to the ray in the space R?*! where
211 > 0,291 = 0, but we understand what we mean by f4(z). Now we will show
that this function is not always convex. It is easy enough to see. Recall that a
function on R is only convex if its double derivative is always nonnegative. In

the case above,
11

A(ZL‘) = 12$2 —aiy,

and we could for instance assume a1; = 12, meaning that the function is negative
for all z € [0,1). From this it follows that f4(z) is not, in general, convex, and
then it follows that f4(X) is not convex, and so we cannot assume in general
that our objective function is convex — and in fact we shall see later that there
are in general several solutions of f4(X) = 0 in the nonnegative orthant.

5.2.2 The gradient of f4

We want to compute the gradient of f4, and for the sake of completeness we try
to find a nice formula for it. f4 is a function on a matrix space, and we define
the gradient of f4 as if it were a function on a vector space, “pretending” our
matrices have been vectorised. We compute the gradient explicitly, element by
element, then summarise our findings at the end of this section.

We begin by considering the component form of f4 (see (5.1)):

n m 2
fa(X) = Z (aij - inkffjk> .
k=1

ij=1

Now, let r, s be fixed integers with 1 <r <n, 1 < s <m. Then

(VIA),, = o fa(X)
a n m 2
S e e
Trs =1 k=1
m 2
i,j=1 rs k=1
n m m
ij=1 k=1
n m m 8
=2 Z (aij — inkxjk> (— Dz xikxjk>
3,j=1 k=1 k=1
= -2 Zn: ajj — imikxjk zm: il‘ikxjk
~ 0Ty
4,j=1 k=1 k=1

Now consider the term 8 ~ Tk k- If neither 7 nor j are equal to r, this term
is zero. We split mtothethreecasesz—rj #Zrii#£r,j=randi=j=r.
In any case the term is nonzero only when k = s, and we compute the nonzero
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terms of the above sum as follows:

i=mrjFEr: —2 Z ((arj - Z%k%‘k) (Z ajxrkxjk>>
k=1 k=1 "T"¢

J=1,j#r
==2 > (“M‘ - Zmrkxjk)(xjs)> (5.2)
J=1j#r k=1
= -2 Z Tjs (arj - Zwrkx]’k> )
J=1j#r k=1

) ) n m m a
iFrj=r: =2 Y ((flir - inerk> ( 8$ierk>>
i=1,i#r k=1 k1 9Trs
=—2 ) ((air -3 xierk> (m)) (5.3)
k=1

i=1,i#r
n m
=-2 E Tis air—g TikTrk | »
i=1,i#r k=1

m m 9
{ :] =Tr: -2 (arr - Z xrkzrk> (Z Oz xrerk>
1 rs

k=1

m

=—4 (arr - Zxrerk> (mrs) (54)
k=1

= —2T, <arr - Zxrkirrk> — 2z (arr - Zxrk:xrk) .

k=1 k=1

The reason for splitting the last case (5.4) into two as we did above is to illustrate
that it fits into the two previous sums in such a way that we can remove the
stipulations j # 7 in (5.2) and ¢ # r in (5.3). Then writing this element of the
gradient simply as the sum of the expressions we then obtain:

n m n m
(Vfa(X)), = =2 wjs (arj -3 mrkxjk) —2> @i (am« -y mimk> :
j=1 k=1 i=1 k=1

Note that since A is by assumption a symmetric matrix a,; = ay,. for all t. Now,
the two sums above are over the same range, so we combine them into one sum,
and we get the following expression, where we also interchanged the order of
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factors in the product in the rightmost sum above:

(Vfa(X)),s = -2 Z (xts (art - Z xrkxm> + Tt <art - Z mrkxtk>>
=—4 Z Tesare + 4 Z Tts Z TrkTik
t=1
= —4Zartxts + Zwts (XXT)N

AX rs Z XXT xts
=1

4AX)rs +4((XXT) X)), =4 ((XXT - A) X)),

and so we can conclude that

Via(X)=4(XX" - A) X.

5.2.3 Summary of f4

We take a moment to sum up the properties of the function f4. They were all
explained above.

Proposition 5.2.1 (Properties of f4). 1. The function fa can be computed
either through matriz operations according to the formula

fa(X) =1 (A-XXT)o(A- XXT)1,,
or more directly in terms of the elements using the equivalent formula
2
fA(X) Z < Z$Zk$]k> .
7,7=1

2. Its gradient Vfa can be computed either directly with matriz operations

as
VFa(X) = 4(A - XXT)X,

or by calculating each element (r, s) individually using the formula

(Vha(x _4<th5 (Zxrkxtk ))

3. fa is not a convex function.

5.3 Results using the steepest descent method
We have described the steepest descent algorithm as it is explained in [7]. We

will not go into implementation details, as they are hopefully obvious from the
previous exposition. However, we note that if we try to implement this directly
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Table 5.1: Projection descent algorithm with random initial guess

Tolerance n Avg. € Min. € Max. ¢ Avg. iters Test cases
1e-08 4 4.73e-09 8.67e-10 2.28e-08 331 1000
6 3.99e-09 1.75e-09 1.40e-08 347 1000

10 6.96e-09 2.36e-09 1.20e-08 513 1000

15 7.38e-09 3.58e-09 1.01e-08 650 500

20 4.23e-09 2.92¢-09 5.78e-09 596 500

le-10 4 4.78e-11 8.05e-12  2.26e-10 441 1000
6 4.03e-11 1.87e-11 1.07e-10 461 1000

10 7.05e-11 2.35e-11  1.32e-10 690 1000

15 7.36e-11 2.94e-11 1.03e-10 869 500

20 4.23e-11  2.83e-11 5.81e-11 788 500

le-12 4 8.73e-13 1.11e-13  3.97e-10 530 1000
6 4.00e-13 1.51e-13  9.77e-13 577 1000

10 6.87e-13  2.28e-13  1.13e-12 848 1000

15 7.35e-13  3.04e-13  1.13e-12 1100 500

20 4.20e-13  2.93e-13  5.98e-13 995 500

we will see that the results are unsatisfactory, for we have not yet discussed how
to maintain the nonnegativity of X in every step. There are several possible
approaches to this, but the one we have had the most success with is simply
projecting it on the nonnegative orthant after each iteration, which is to say that
we shall set the negative elements of X to be equal to 0. This is mentioned in [5]
as a strategy that is often used in similar algorithms (in particular, algorithms
for nonnegative matrix factorisation) to avoid going outside the nonnegative
orthant.

We generate random matrices as in the previous chapter, though instead of
random integers between 0 and 9 we are using random floating point numbers
between 0 and 1000, to alleviate any uneasiness about our “testing space” being
too small. We also measure error as in the previous chapter, and we end the
iteration when the change in X; per iteration becomes smaller than some given
tolerance §, according to the condition

HXz - Xi71||ma:1: < 57

which seems as good as any other and has the advantage that it is easy to use.

Both our so-called ones choice and diagonal choice methods from last chapter
are completely unusable in this situation. The reason for this lies with the
gradient we found. In both the ones guess and the diagonal guess the columns
are all identical, and our algorithm will preserve this property throughout all
iterations. This is useless, as we obviously cannot expect the matrix A to be
representable as a sum of linearly dependent rank 1 matrices. Therefore, out of
the previously tried initial values, only the random guess remains as a possibility,
and we investigate that first. We still “cheat” in the same way, though. See
Table 5.1.

We observe that we use far more iterations with this method, but on the
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other hand they are much quicker — an approximation with several thousand
iterations here is still faster than one using 100 in the previous chapter. Second,
the method seems to work, remarkably. By lowering our target tolerance we
can even get better results than we are, but it seemed prudent to compare our
algorithms as similarly as possible, and with a smaller tolerance we would be
approaching the limits of machine precision, which we are not going to consider
here. We conclude for the moment that this algorithm does seem like it may be
useful in determining complete positivity.

One thing remains unsaid, however. We have cheated in our initial guess;
we know that the random matrix is in roughly the right range. We wish to
exhibit a different initial guess choice that does not depend on this. We do this
by picking a random nonnegative matrix and scaling the rows such that they
match on the diagonal, in a mixture of the diagonal and the random guess. Let
A € RY™™ be given and let X’ € R}™™ be some randomly chosen matrix, and
let

that is, §; is the norm of the i-th row in X’. Let the numbers on the diagonal
be defined by letting

d; = Y0
8i
Now define X = DX’, and consider the product XX7. The i-th diagonal
element of this product is

(XX)f; = (DX'X"'D)y; = %@f = aj;.

1
Thus, this scaling ensures that our initial guess is correct for the diagonal ele-
ments.

In Table 5.2 we see the results we obtain. We can certainly claim they
appear to be as good as the unmodified random guess, and so we have obtained
an algorithm that presupposes no particular knowledge of the solution to work
yet is still very good. The short summary of our situation is that the projection
gradient method is empirically a success. It gives a correct, positive answer for
all of our randomly generated completely positive matrices, and it does so in
a reasonable timeframe for small matrices (on the average computer this was
tested on, the computation for the 500 matrices of order 20 took less than ten
minutes).

One example is warranted. We pick a small one. In this example we used a
tolerance of 10712, set n = 4 and concluded after 313 iterations. The computed
error at this point was 1.99e-13, which is enough that we will call this successful
convergence. The original B matrix was

O = ©
TN OO
O = O O
= 00 =~ ©
O J O =
© 0o O O
[SUREN BN e
oNr~ o
co O O N
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Table 5.2: Projection descent algorithm with modified initial guess

Tolerance n Avg. € Min. € Max. ¢ Avg. iters Test cases
1e-08 4  4.45e-11  5.00e-12  1.69e-10 276 1000
6 4.23e-11 6.11e-12  9.95e-11 254 1000
10 4.16e-11 2.07e-11 6.68e-11 482 1000
15 4.26e-11 2.55e-11  6.52e-11 571 1000
20 4.51e-11  9.49e-12  7.61e-11 357 500
le-10 4 1.09e-11 9.42e-14  1.05e-08 351 1000
6 4.11e-13  5.03e-14 1.16e-12 318 1000
10 4.10e-13  2.41e-13 7.81e-13 606 1000
15 4.22e-13  2.92e-13  6.54e-13 718 500
20 4.53e-13 3.85e-14  8.06e-13 447 500
le-12 4 4.57e-15 6.04e-16 2.16e-14 434 1000
6 4.07e-15 5.94e-16 1.08e-14 371 1000
10 4.05e-15 2.33e-15  7.68e-15 724 1000
15 4.21e-15 2.51e-15 6.55e-15 856 500
20 4.51e-15 7.86e-16  7.92e-15 534 500
This gives us
390 273 261 316
e 273 309 169 268
261 169 281 192
316 268 192 423

The computed completely positive decomposition A = X X7 had (after round-

ing)

7.04
2.15
9.87
0.18

5.27  2.36
414 6.24
6.26 2.70
10.06 8.33

6.80 6.56 9.33
9.70 1.83 2.99
0.85 0.71 5.97
9.60 7.01 3.30

7.93
2.51
4.30
9.32

7.93
11.45
4.35
2.55

2.20
2.16
7.93
2.63

The difference A — X X7 is very small, so we do not include it here. We do note
that we have not found the completely positive decomposition we started with,
but that is no surprise, for as we have said earlier we can not expect that there

is only one.

It may be of interest to consider a matrix which is known not to be completely
positive as well. We do not have many results which give us non-completely pos-
itive yet doubly nonnegative matrices, but in the discussing following Corollary
2.3.2 we showed that the matrix

N
Il
cCoo R =

S oo N

O = W oo

N == OO
oo oo



is not completely positive. With a tolerance of 107'2 our algorithm stabilises
at a matrix X such that

0 0 0
0 0 0
3.02 094 0.03
094 1.19 191
0.03 191 4.04

xxT =

O OO~
OO O N

The relative Frobenius error in this case is 0.038. It does seem like we managed
to get somewhat close, but obviously we did not quite get there (and it would
be a great surprise if we did!).

5.4 Conclusion

At this point we would very much like to offer the reader some proof of con-
vergence, or failing that, an indication as to which corner cases the algorithm
does not work for. Unfortunately, however, we have not been able to find a
completely positive matrix the algorithm does not work for, nor have we been
able to prove that it will work in general®.

It does seem like the algorithm we have exhibited will in general be somewhat
efficient. Recalling 1.10 we note that matrix multiplication is known to be
polynomial-time, and it is easy enough to compute a bound on the backtracking
line search (sooner or later, we will suffer underflow in an implementation),
so the main issue is determining the number of iterations we need. That we
have not been able to do — it would be tantamount to providing a convergence
analysis, and as mentioned we have not been able to do this.

Therefore we must be careful about what we say, for we can not know that
this works in general. What we do know is that if the algorithm in this chapter
stops with a Frobenius error that is small in some sense (depending on what we
are doing with the matrices) we feel that we can say the matrix is completely
positive. The algorithm will not provide false positives. Further, we can state
that we have seen that the algorithm works well for a few thousand matrices?,
though their randomness in the space DD,, is not entirely clear. Nevertheless,
we have created a test that at least works in some cases.

LGiven the difficulties involved in determining complete positivity of a matrix this seems
like it is a little much to hope for.

20f which only a few were shown to be completely positive by the sufficiency-type results
in Chapters 2 and 3.
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Chapter 6

Conclusion

In the introduction we stated that we were going to do three things. We have
done all three. After covering the main points of the theory in Chapter 2,
we moved on in Chapter 3 to considering various ways of enlarging the cone
of nonnegative diagonally dominant matrices. In particular, we tried two ap-
proaches, one of which did not work, and one which did, thus obtaining a class
of completely positive matrices we could determine membership of in an explicit
manner.

In the final two chapters, we investigated various algorithms for providing
inexact tests of complete positivity. The alternating minimisation approach of
Chapter 4 did not provide us with much we can use, but the projection descent
method of Chapter 5 did indeed work very well for the cases we tested.

Some interesting questions suggested by the work we have done are:

e Are there other extensions of DD,, which could work? We proved that Cs
worked fine, and the proof seems like it could generalise somewhat and
work for C4 and perhaps even higher, though how much use it will be is
perhaps dubious.

e The projection descent method seems to work, but many small questions
remain here:

How well does it work? We provided only empirical evidence that it
was a good algorithm in some cases.

— For which completely positive matrices does it work?

For which completely positive matrices does it not work?

Will it even always converge at all? If not, can it be modified so it
does?

— What is a good heuristic for choosing a starting point? Our modified
random guess works reasonably well, but better heuristics may be
possible.
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