
Espen Volnes

Distributed Stream Processing:
Performance Evaluation and
Enhanced Operator Migration

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics

Faculty of Mathematics and Natural Sciences

2024

© Espen Volnes, 2024

Series of dissertations submitted to the

Faculty of Mathematics and Natural Sciences, University of Oslo

No. 2717

ISSN 1501-7710

All rights reserved. No part of this publication may be

reproduced or transmitted, in any form or by any means, without permission.

Cover: UiO.

Print production: Graphic center, University of Oslo.

Abstract

With the advent of the Internet of Things (IoT), billions of devices will
be interconnected, leading to a dramatic increase in data traffic on the
Internet. These devices, ranging from high-capacity servers to highly
constrained sensors, create a diverse ecosystem with varying processing
capacities and requirements. Addressing this surge, distributed stream
processing systems (DSPS) aim to process data where it originates,
instead of storing all data in centralized databases. DSPSs filter,
aggregate, join, and transform incoming data. However, the distributed
nature of these systems complicates the evaluation of such systems.
Another challenge lies in the management of state during operator
migration, as not all state elements are equally important. The field
of distributed stream processing also lacks a common language and
platform, making it difficult to compare or build on existing systems.

The first key contribution of this dissertation is developing software
tools to enhance the evaluation of DSPSs, introducing simulation tools
for easier prototyping and benchmarking of existing systems. We have
developed the experimental framework Expose to be tailored for real-
world DSPS evaluation. This is implemented with real-world DSPSs,
as well as being integrated with the DSPS simulator DCEP-Sim to
further streamline simulation definition and execution. Significant
enhancements to the DCEP-Sim simulator are introduced, encompassing
simulation models for query processing operator functionality, processing
delays, and operator migration mechanisms. The query processing
operators include join, aggregation, filter, group by, and select. Given
the requirements for simulation of delay in discrete event simulators,
introducing simulation delay for each processed tuple is crucial to mirror
real-world systems and avoid potential network saturation.

The second key contribution of this Thesis addresses the critical DSPS
functionality of operator migration. Operator migration is explored in a
comprehensive tutorial, which offers a consolidated view of the current
state-of-the-art and setting the groundwork for novel contributions. Two
novel migration mechanisms are introduced that address issues that
are relevant for geo-distributed DSPSs. The Travel Light migration
mechanism combines operator migration with load shedding to prioritize
the most important states when the migration might not complete entirely,
or not all the state is important. The migration mechanism Lazy Migration
offers a latency mode that minimizes the downtime for operators during
migration and a utility mode that maximizes the utility of the migrated
state, in cases where the migration might not fully finish.

The performance evaluation tools developed in this dissertation are
successfully employed to analyze and compare the efficiency of Lazy
Migration against three state-of-the-art solutions: Megaphone, Rhino,
and Meces, highlighting the effectiveness of Lazy Migration in the
case of the aggregation and join operators. This evaluation indirectly
underscores the robustness and utility of both Expose and DCEP-Sim.

i

Abstract

Med Internet of Things (IoT) vil milliarder av enheter kobles sammen,
noe som fører til en dramatisk økning i datatrafikken på Internett. Disse
enhetene, alt fra servere med høy kapasitet til svært begrensede sensorer,
skaper et mangfoldig økosystem med varierende behandlingskapasitet
og krav. For å adressere denne økningen, har «Distributed Stream
Processing Systems (DSPS)» som mål å behandle data der de kommer
fra, i stedet for å lagre alle data i sentraliserte databaser. En DSPS
utfører operasjoner som «filter», «join», «group by» og «aggregation».
Den distribuerte naturen til disse systemene kompliserer imidlertid
evalueringen av slike systemer. En annen utfordring ligger i styringen av
tilstand under operatormigrasjon, da ikke alle elementer som tilstanden
består av er nødvendigvis like viktige. DSPS’er mangler også et felles
språk og plattform, noe som gjør det vanskelig å sammenligne eller
bygge på eksisterende systemer.

Det første nøkkelbidraget til denne avhandlingen er å utvikle pro-
gramvareverktøy for å forbedre evalueringen av DSPS’er, og introdusere
simuleringsverktøy for enklere prototyping og benchmarking av eksis-
terende systemer. Vi har utviklet det eksperimentelle rammeverket Ex-
pose for å være skreddersydd for DSPS-evaluering i den virkelige verden.
Dette er implementert med DSPS’er i den virkelige verden, i tillegg til å
være integrert med DSPS-simulatoren DCEP-Sim for å strømlinjeforme
simuleringsdefinisjon og utførelse ytterligere. Betydelige forbedringer
av DCEP-Sim-simulatoren er introdusert, som omfatter simuleringsmod-
eller for å behandle spørringer, introdusere behandlingsforsinkelser og
støtte flere typer operatormigrasjonsmekanismer. Spørringsbehandlings-
funksjonaliteten inkluderer «join», «aggregation», «filter», «group by»
og «select» operatorene. Gitt kravene til simulering av forsinkelse i
diskrete hendelsesimulatorer, er det avgjørende å introdusere simuler-
ingsforsinkelse for hver behandlet tuppel for å speile virkelige systemer
og unngå potensiell nettverksmetning.

Det andre nøkkelbidraget til denne avhandlingen tar for seg den
kritiske DSPS funksjonaliteten operator-migrasjon. Operator-migrasjon
utforskes i en omfattende veiledningsartikkel, som gir et konsolidert
syn på den nåværende «state-of-the-art» og legger grunnlaget for
nye bidrag. To nye migrasjonsmekanismer er introdusert som tar for
seg problemer som er relevante for geo-distribuerte DSPS’er. Travel
Light-migrasjonsmekanismen kombinerer operator-migrasjon med «load
shedding» for å prioritere de viktigste tilstandene til operatorene når
migrasjonen kanskje ikke kan fullføres helt, eller ikke hele tilstanden er
viktig. Migrasjonsmekanismen Lazy Migration tilbyr en latensmodus som
minimerer nedetiden for operatorer under migrasjon og en utilitarisk
modus som maksimerer nytten av den migrerte tilstanden, i tilfeller der
migrasjonen kanskje ikke kan fullføres.

Ytelsesevalueringsverktøyene som er utviklet i denne avhandlingen
er vellykket brukt for å analysere og sammenligne effektiviteten til

ii

Lazy Migration med tre toppmoderne løsninger: Megaphone, Rhino
og Meces, og fremhever effektiviteten til Lazy Migration når det gjelder
aggregation og join operatorer. Denne evalueringen understreker
indirekte robustheten og nytten til både Expose og DCEP-Sim.

iii

Acknowledgements

This thesis is submitted in partial fulfillment of the requirements for the
degree of Philosophiae Doctor at the University of Oslo. The research
presented here was conducted at the University of Oslo, under the
supervision of Professor Thomas Plagemann and researcher Dr. Stein
Kristiansen.

The thesis comprises six papers, arranged in chronological order based
on when they were initiated. The papers are preceded by an introductory
chapter that relates them to each other and provides background information
and motivation for the work. Each of the papers is a joint work with multiple
co-authors, including Thomas Plagemann, Vera Goebel, Stein Kristiansen,
Boris Koldehofe, Morten Lindeberg, and Øystein Dale.

First and foremost, I’d like to express my profound gratitude to my main
supervisor, Thomas Plagemann. Most of the papers were only possible due to
the stimulating discussions we had together. Your guidance and insights have
been invaluable. I also want to thank my co-supervisor Stein Kristiansen.
Your assistance in the first half of my Ph.D. work laid the foundation for my
subsequent endeavors, and I’m grateful for the expertise you provided before
departing from the university. Vera Goebel deserves my thanks for always
helping to make concepts easier to understand, in both the papers and the
writing of this Thesis. I also want to thank Boris Koldehofe for his help with
our operator migration research papers. Your expertise and perspective
have enriched our joint endeavors.

Our research group has seen several changes throughout my Ph.D. work,
and I am grateful for the lunches we have spent together. Thank you Morten,
Konstantinos, Maik, Marta, He, Farzan and Tallal. I want to extend a special
thank you to Maik for being helpful almost to a fault, always ready to talk
about an issue or spend time to solve a problem.

Lastly, I want to thank my family for their consistent support. And to
my partner Ingrid, thank you for your encouragement and belief in my
endeavors.

Espen Volnes
Oslo, February 2024

v

List of Papers

Paper I

Espen Volnes, Stein Kristiansen, and Thomas Plagemann. 2021. Improving
the accuracy of timing in scalable WSN simulations with communication
software execution models. Computer Networks, volume 188, 2021, 107855.
doi:10.1016/j.comnet.2021.107855

Paper II

Espen Volnes, Stein Kristiansen, Thomas Plagemann, Vera Goebel, and
Morten Lindeberg. 2019. Modeling the Software Execution of CEP in
DCEP-Sim. In Proceedings of the 13th ACM International Conference on
Distributed and Event-based Systems (DEBS ’19). Association for Computing
Machinery, New York, NY, USA, 244–247. doi:10.1145/3328905.3332508

Paper III

Espen Volnes, Thomas Plagemann, Vera Goebel, and Stein Kristiansen.
2020. EXPOSE: Experimental performance evaluation of stream processing
engines made easy. Technology Conference on Performance Evaluation
and Benchmarking. Cham: Springer International Publishing, 2020.
doi:10.1007/978-3-030-84924-5_2

Paper IV

Espen Volnes, Thomas Plagemann, and Vera Goebel. 2023. To Migrate or
not to Migrate: An Analysis of Operator Migration in Distributed Stream
Processing. IEEE Communications Surveys & Tutorials (under minor
revision).

Paper V

Espen Volnes, Thomas Plagemann, Boris Koldehofe, and Vera Goebel. 2022.
Travel light: state shedding for efficient operator migration. In Proceedings
of the 16th ACM International Conference on Distributed and Event-Based
Systems (DEBS ’22). Association for Computing Machinery, New York, NY,
USA, 79–84. doi:10.1145/3524860.3539638

vii

List of Papers

Paper VI

Espen Volnes, Thomas Plagemann, Vera Goebel, and Boris Koldehofe.
2023. Lazy Migration: Just-In-Time State Migration For Distributed Stream
Processing. Submitted to VLDB (September 2023).

viii

ix

Abbreviations

API Application Programming Interface.

CCA Clear Channel Assessment.

CEP Complex Event Processing.

CSE Communication Software Execution.

CSV Comma-Separated Values.

DAG Directed Acyclic Graph.

DCEP Distributed Complex Event Processing.

DS Downstream Nodes.

DSP Distributed Stream Processing.

DSPS Distributed Stream Processing System.

FSM Functional Service Model.

GUI Graphical User Interface.

HAR Human Activity Recognition.

HIRQ Hardware Interrupt.

HM Handover Manager.

IFP Information Flow Processing.

IMU Inertial Measurement Unit.

IoT Internet of Things.

IPAQ IP layer packet queue.

NH New Host.

NLP Natural Language Processing.

xi

Abbreviations

OH Old Host.

PID Process ID.

QoS Quality of Service.

RPI Raspberry Pi.

RQ Research Question.

RSD Relative Standard Deviation.

SBON Stream-Based Overlay Network.

SEM Service Execution Model.

SLA Service-Level Agreement.

SPE Stream Processing Engine.

SUT System Under Test.

TOSSIM TinyOS SIMulator.

TPS Tuples Per Second.

US Upstream Nodes.

VANET Vehicular Ad Hoc Network.

WSN Wireless Sensor Network.

YAML YAML Ain’t Markup Language.

xii

Contents

Acknowledgements v

List of Papers vii

Contents xiii

List of Figures xvii

Listings xix

List of Tables xix

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 3
1.3 Research Methods . 3
1.4 Contributions . 5
1.5 Outline . 7

2 Background 9
2.1 Distributed Stream Processing Systems 9
2.2 Adaptation of DSPSs . 12
2.3 Performance Evaluation 13
2.4 Modeling and Simulating 15

3 Overview of Research Papers 19
3.1 Paper I . 20
3.2 Paper II . 20
3.3 Paper III . 21
3.4 Paper IV . 22
3.5 Paper V . 23
3.6 Paper VI . 24

4 DCEP-Sim 2.0 27
4.1 Limitations of DCEP-Sim 27
4.2 Query Processing . 28
4.3 Operator Migration . 34
4.4 Communication . 38

xiii

Contents

4.5 Expose . 38
4.6 Conclusions & Future Work 45

5 Conclusion 47
5.1 Answering the Research Questions 47
5.2 Summary of Contributions 49
5.3 Critical Assessment . 50
5.4 Future Work . 51

Bibliography 53

Papers 62

I Improving the accuracy of timing in scalable WSN simula-
tions with communication software execution models 63
I.1 Introduction . 64
I.2 Related Work . 67
I.3 Modeling Methodology . 68
I.4 Design . 69
I.5 Evaluation . 79
I.6 Conclusion . 91
I.7 Appendix . 92
References . 92

II Modeling the Software Execution of CEP in DCEP-Sim 99
II.1 Introduction . 99
II.2 Modeling CEP . 100
II.3 Event processing in T-Rex 102
II.4 Demonstration . 104
References . 107

III EXPOSE: Experimental Performance Evaluation of Stream
Processing Engines Made Easy 109
III.1 Introduction . 109
III.2 Design . 112
III.3 Use-Case: NEXMark Benchmark 118
III.4 Related Work . 123
III.5 Conclusion . 124
References . 125

IV To Migrate or not to Migrate: An Analysis of Operator
Migration in Distributed Stream Processing 127
IV.1 Introduction . 127
IV.2 Distributed Data Stream Processing 138
IV.3 A Conceptual Model of Operator Migration 142

xiv

Contents

IV.4 Migration Mechanisms . 154
IV.5 Migration Decision . 166
IV.6 Empirical quantification of core concepts of migration . . 184
IV.7 Reflections and Future Directions 193
IV.8 Conclusions . 195
IV.9 Acknowledgments . 196
References . 196

V Travel light: state shedding for efficient operator migration211
V.1 Introduction . 211
V.2 Background . 213
V.3 Problem Statement . 214
V.4 Approach . 215
V.5 State partitioning . 217
V.6 Partial state selection . 218
V.7 Analysis . 219
V.8 Conclusion and Future Work 222
References . 223

VI Lazy Migration: More Efficient Migration With State
Shedding and Prioritized Migration 225
VI.1 Introduction . 225
VI.2 Terminology and key concepts 228
VI.3 Related Work . 230
VI.4 Just-In-Time State Provisioning 233
VI.5 Implementation . 238
VI.6 Evaluation . 245
VI.7 Discussion . 251
VI.8 Conclusion . 252
References . 253

Appendices 257

A Expose GUI Queries in YAML Format 259
A.1 Full Expose Configuration in YAML Format 259
A.2 Grouped Aggregation Query in YAML Format 263
A.3 Non-equijoin Query in YAML Format 264
A.4 Join Followed By Grouped Aggregation Query in YAML

Format . 265

xv

List of Figures

1.1 Venn diagram detailing the topics of the papers in this Ph.D.
Thesis . 7

3.1 Relationship between the papers 19

4.1 Operator class diagram . 29

4.2 Migration mechanism class diagram 36

4.3 Partial state class diagram . 37

4.4 Integration of DCEP-Sim with the Expose experimental frame-
work . 39

4.5 Grouped aggregation query in GUI 41

4.6 Join query in GUI . 41

4.7 Join followed by grouped aggregation query in GUI 42

I.1 ns-3 simulation with a CSE model 70

I.2 Trace tuple format (a) used to compress two CSE events (b) to
a single trace tuple (c). 73

I.3 Process of tracing a real mote. 73

I.4 Summary of the TinyOS packet forwarding process with packets
being processed in gray. 74

I.5 Forwarding app network stack 75

I.6 Relationship between trace tuples and the software execution
model . 78

I.1 Example of decompressing trace to CSE events 78

I.7 Metrics and models used to evaluate the CSE model and their
place in the packet forwarding process. 80

I.8 Models used in the simulations. 81

I.9 Intra-OS delay comparison between real mote and ns-3 with
the CSE model at 40 pps. 82

I.10 Intra-OS and end-to-end delay depending on the packet size . 83

I.11 Variation in the IPAQ fill-level affecting the intra-OS delay. . . 85

I.12 The forwarding rate when sending packets at various packet
rates. 86

I.13 Timer issue when emulating in Cooja/MSPSim. 90

I.14 124-byte packets sent as fast as possible with initial backoff in
TinyOS enabled, and no packets are dropped. 91

I.2 CSE events to signatures conversion 93

xvii

List of Figures

II.1 Demonstration overview. 100
II.2 Flow diagram of event processing in T-Rex. 103
II.3 Distribution of processing delays in T-Rex when processing two

types of events with a two-state query deployed. 105
II.4 Netanim screenshot from the simulation playback. 106
II.5 Transmission and processing delay in DCEP-Sim (54 Mbit/s

data-rate) . 107

III.1 Workflow of performing an experiment with Expose 115

IV.1 Overview of operator placement 129
IV.2 Paper structure . 136
IV.3 Concepts of migration . 143
IV.4 Single-track migration algorithms 145
IV.5 Parallel-track migration algorithms 146
IV.6 Migration decision-making . 149
IV.7 Legend for the migration mechanism illustrations in Figure

IV.8–IV.12 . 156
IV.8 Moving state (according to [124]) 157
IV.1 Single-track moving state . 158
IV.9 Parallel-track window-recreation algorithm (according to [42]) 159
IV.2 Window-recreation . 159
IV.10 Parallel-track state-recreation algorithm (according to [42]) . . 160
IV.3 State-recreation . 160
IV.11 Checkpoint-assisted single-track mechanism (according to [28]) 164
IV.4 Checkpoint-assisted single-track 164
IV.12 Checkpoint-assisted parallel-track algorithm (according to [149]) 165
IV.5 Checkpoint-assisted parallel-track 166
IV.13 Popularity of metrics for modeling migration cost and place-

ment benefit, shown by usage frequency 169
IV.14 Popularity of metrics for measuring migration cost and place-

ment benefit, shown by usage frequency 169
IV.6 All-at-once state movement . 185
IV.7 Partial state movement . 185
IV.15 Evaluation scenario . 188

V.1 Example VANET scenario . 215
V.2 Migration with state shedding in six steps 216
V.3 Internal state of operators . 218
V.4 Simulation results where (a) and (b) use Qpm1, (c) uses Qpm2,

and (d) uses Qpm3 . 221

VI.1 State partitioning model . 230
VI.2 Just-In-Time state migration example 235

xviii

VI.3 Operator graph with essential and unessential attributes . . . 237

VI.4 Migration plan algorithm . 241

VI.5 State movement priority for stateful operators 242

VI.6 Legend for all experiments . 249

VI.7 Experiment results part 1 . 250

VI.8 Experiment results part 2 . 251

Listings

4.1 Vertices and edges to represent simple distributed stream
processing query . 44

II.1 Query to detect fire (Query 1). 105

II.2 Signature of partial model. 106

III.1 NEXmark experiment instructions 119

III.2 NEXMark Query 4 with sliding window in Siddhi 120

III.3 NEXMark Query 4 with tumbling window in Flink 120

III.4 NEXMark Query 4 with sliding window in Esper 121

III.5 NEXMark Query 4 template . 121

V.1 Queries used in the simulations 219

VI.1 Three queries: a join timed aggregation and a join followed by
a timed aggregation operator 247

A.1 Expose configuration in YAML format 259

A.2 Grouped aggregation query in YAML format 263

A.3 Non-equijoin query in YAML format 264

A.4 Join followed by grouped aggregation query in YAML format . 265

List of Tables

1.1 Overview of how each paper contributes to address specific
research problems . 6

4.1 Improvements of DCEP-Sim 1.0 during this Ph.D. work 28

I.1 Comparison of transmission (Tx) and intra-OS delays when
sending packets of variable sizes. 65

I.2 Difference between batch and continual tracing 74

I.3 Description of the model-centered tracepoints 77

I.4 Description of the evaluation-centered tracepoints 77

xix

List of Tables

I.5 Experiment and simulation parameters (R+S includes both a
real-world experiment and its simulation, and S only includes
simulation). 81

I.6 Results from the simulations in Experiment 4. 88
I.7 Comparison of execution time of a real mote, an emulated

Cooja/MSPSim mote (extrapolated data) and the CSE model in
ns-3. 88

I.8 Goodput experiment with and without CSE model. 89

III.1 SPE tasks . 114
III.2 Experiment tasks . 115
III.3 Tracepoints . 116
III.4 TPS and RSD when NEXMark runs on Intel Xeon five times. . 122
III.5 TPS and RSD when NEXMark runs on an RPI five times. 122
III.6 TPS when Flink has deployed Query 4 from NEXMark and runs

on Intel Xeon five times with a different number of CPU cores
and queries. 123

IV.1 Summary of related surveys and comparison with this tutorial (T) 131
IV.2 Overview of studies on the categories of operator migration . 135
IV.3 Goals of migration and the overlap in studies in the area . . . 135
IV.4 Glossary of Terms . 137
IV.5 Input before migration . 141
IV.6 Input after migration . 141
IV.7 Output with stateless migration 141
IV.8 Output with stateful migration 141
IV.9 Modeling techniques and algorithms for performing decision-

making in operator migration 167
IV.10 Goals of optimization grouped by the goal of migration 168
IV.11 Overview of papers on migration decisions, covering deploy-

ment environment, migration goals, and metrics used for mi-
gration cost and benefit . 171

IV.12 Proactive migration prediction techniques 182
IV.13 Parameters of the use case . 189
IV.14 Placement score and amortization time parameters for each

specific run in the use case . 189
IV.15 Results of the use case . 190
IV.16 Server specification . 191
IV.17 Results of all-at-once moving state experiment 192
IV.18 Partial moving state experiment results 192

VI.1 Summary of different operator migration mechanisms 232
VI.2 Summary of Migration Mechanisms for Timed Aggregation and

Join Operators . 243

xx

List of Tables

VI.3 Relationship between parameters and evaluation metrics . . . 246

xxi

Chapter 1

Introduction

With the rise of the Internet of Things (IoT), billions of devices are now
connected to the Internet, producing vast amounts of data. These devices
generate immense volumes of data every moment, necessitating robust
processing systems. Distributed Stream Processing Systems (DSPS) are at
the forefront of this, analyzing real-time data to extract valuable insights.
Cloud computing has further amplified the efficiency and affordability
of deploying novel services. By centralizing resources in large data
centers, it allows service providers to lease rather than purchase equipment,
and strategically position themselves closer to both data producers and
consumers.

Using the cloud model of sending all data to data centers is not scalable
for IoT, due to the amount of data that needs to be processed. Therefore,
Fog computing promises the distribution of computing resources, all the
way from centralized data centers to the edge of the Internet with the data
producers and consumers [9].

DSPSs are usually deployed in data centers, requiring all data to be sent
to them. This occurs even when initial filter operations reveal data that does
not match the filter criteria. A straightforward way to distribute DSPSs is to
prioritize Quality of Service (QoS) when placing filter operators. By doing so,
these operators can be strategically positioned directly at the data producer
nodes, enabling source filtering.

The rapid expansion and distribution of DSPS queries have inevitably
led to significant QoS challenges, including the heterogeneity of hardware
resources and the spatial distances between them. Addressing these
challenges requires an effective means of conducting geo-distributed
experiments. However, a gap exists in the current DSPS landscape since
many of these systems are designed with centralization in data centers in
mind.

Adapting to changing QoS conditions is more challenging with geo-
distributed DSPSs. A node might fail or the network connection quality
might be reduced, causing the system to perform sub-optimally. In a data
center, the primary concern is not necessarily the placement of the query
operators, but how resources are allocated to them. By effectively scaling
up, down, in, or out, and ensuring a balanced load, the QoS can be upheld.
In a geo-distributed system, the complexity increases with various factors,
including the possibility that a migration may not be successfully completed.
With the added complexity of geo-distribution, advanced operator migration

1

1. Introduction

mechanisms are essential to ensure optimal system performance.
Given the challenges of geo-distribution, simulations serve as a valuable

tool before deploying solutions on real-world systems. Simulators such
as DCEP-Sim [66] offer a controlled experimental environment, ensuring
consistent results and replicability. They provide a way to fine-tune
parameters and evaluate various scenarios, proving essential for testing
innovative algorithms for operator placement and migration.

The intricacies involved in geo-distributing DSPS queries, coupled with
the essential requirement for effective experimentation, highlight the
inadequacies of traditional methods. Although simulations emerge as a
viable alternative, the limitations of existing tools and frameworks pose
additional challenges.

1.1 Problem Statement

With the rise of large-scale DSPS applications, arises the urgent need for
frameworks that can support them, especially given the challenges and
resource-intensive nature of deploying these applications in real-world
settings. These challenges have motivated us to explore the potential
of realistic DSPS simulation as an alternative to real-world experiments.
Despite the existence of DCEP-Sim, one of the few dedicated DSPS simulators,
it currently operates more as a prototype, lacking many core DSPS
functionalities. Therefore, we aim to bridge these gaps, with an emphasis
on supporting distributed stream processing operator execution, adaptation
mechanisms, and the execution of complex DSPS experiments. In particular,
we aim to address the following problems (P):

• P1: In the era of distributed stream processing and fog computing, a
multitude of heterogeneous devices, ranging from powerful servers
to highly resource-constrained sensors, collaborate to process and
manage data. Accurately reflecting the performance of these diverse
devices in discrete event simulators like DCEP-Sim becomes a crucial,
yet non-trivial task. The difficulty is compounded when dealing with
resource-constrained devices, whose limited capabilities require unique
consideration in simulations. Understanding and modeling such a
varied landscape of devices is essential to accurately simulate DSPSs.

• P2: In the growing field of distributed stream processing, there is
a lack of standardized terminology and unified platforms, making it
challenging to compare and build upon different solutions. Decisions
regarding operator migration, which is a disruptive and complex
mechanism, often rely on basic thresholds, lacking comprehensive
exploration. The existing literature does not adequately investigate the

2

Research Questions

balance between "when" migration is warranted, "why" it is necessary,
and "how" it should be conducted. This absence of standardization and
understanding hinders innovation, collaboration, and the development
of new solutions, limiting the expansion of state-of-the-art techniques
in distributed stream processing.

• P3: In DSPSs, operator migration mechanisms often fail to account
for the differing importance of state elements, instead focusing on
completing the migration process as swiftly as possible. In DSPSs,
while load shedding is commonly used to handle overload scenarios,
the optimization of migration mechanisms for these situations remains
crucial. The challenge lies in developing more adaptive migration
mechanisms that align with the actual requirements of the system,
recognizing the differing importance of various state elements, and
employing techniques that expand the state-of-the-art in these complex
and volatile contexts.

1.2 Research Questions

Each of these three research problems highlights a topic that we address
in this Thesis. These problems are broad and there is not just one way
of solving them. Therefore, we narrow in on the problems by deriving a
research question (RQ) for each research problem.

• RQ1: Is it feasible to accurately model the timing behavior of DSPSs in
a discrete event simulator like DCEP-Sim?

• RQ2: How can we identify and incorporate common tasks across
different DSPSs and complex event processing (CEP) systems in a
manner that allows for fair, realistic, and replicable performance
evaluation?

• RQ3: How can an adaptation mechanism for DSPSs work well in geo-
distributed environments while minimizing disruptions during operator
migration?

1.3 Research Methods

To address our research questions, it is important to pick the right methods.
The methods we choose shape how we collect and understand our data. We
have picked methods that help us get clear and meaningful answers to our
questions [31].

3

1. Introduction

• Literature review: This Thesis has an overarching theme of address-
ing a lack of unified terminology and systems for comparing and study-
ing DSPSs and algorithms. Therefore, a significant amount of effort has
been put into studying the literature to make an attempt to understand
the state-of-the-art and conceptualizing it. This approach is more com-
prehensive than a traditional systematic literature review, aiming to
provide deeper insights beyond the standard encyclopedic knowledge.
The outcome is a more holistic and rigorous understanding of DSPSs,
laying the groundwork for future research in this domain.

• Algorithmic Design: Addressing the complex challenge of operator
migration in DSPSs, this research method involves investigating
existing migration strategies to identify their strengths and weaknesses.
Building upon this foundational knowledge, new and more efficient
algorithms are conceptualized and formulated.

• Performance modeling: The processing delay of DSPSs can be
represented through various modeling techniques, each offering
different levels of accuracy. These models are often derived by tracing
actual systems to capture their run-time behavior. The complexity of
integrating these models into a simulator varies, depending largely on
the depth and intricacy of the models.

• Iterative Development and Testing: Implementing new features in
a system encompasses the continuous cycle of designing, implement-
ing, testing, refining, and re-testing. For this Thesis, it includes the
development and iterative refinement of query processing functional-
ities, migration mechanisms, and processing delay models. Through
continuous testing and feedback loops, these components are honed to
meet the desired functionality and performance benchmarks within the
DSPS environment.

• Experimental evaluation: For the evaluation of processing delay
models, query processing features and migration mechanisms, real-
world or simulation experiments are conducted that represent real-
world scenarios. For real-world experiments, it necessitates setting
up multiple DSPSs and coordinating them, while for simulation-
based experiments, we define, configure, and execute multiple
simulation configurations. Obtaining results and visualizing them is
also an essential aspect of performing real-world and simulation-based
experiments.

4

Contributions

1.4 Contributions

To address the research questions, we used the research methods to make
significant practical contributions to the field. These are detailed in six
published papers. Below, we outline each of these contributions (C).

• C1: We created a tracing framework for resource constrained wireless
sensor networks (WSN) devices, and demonstrated the accuracy
of processing delay models of WSN devices that are based on the
methodology by Kristiansen et al. [42].

• C2: We showed that it is possible to apply the methodology by
Kristiansen et al. [42] to modeling DSPSs, and identified obstacles
for creating comprehensive models.

• C3: We identified the common tasks of DSPSs and created an
application programming interface (API) based on these tasks.

• C4: We created a framework for performing distributed stream
processing experiments, applying C3. The experiments can be defined
in an easy way and executed on any DSPS that implements the API.

• C5: We created a conceptual model of operator migration that can be
used to understand the state-of-the-art in a more collected way, using
both new and existing terminology. This conceptual model was used
to survey the literature for studies that present migration mechanisms
and perform migration decisions.

• C6: We combined load shedding and operator migration in Travel Light
[78] to enable operator migration when the state is too big or the
connection too poor. By giving higher priority to some partial states
than others, the most important partial states can be moved. The rest
of the states are dropped.

• C7: We extended the original DCEP-Sim [66] to DCEP-Sim 2.0 with
an implementation of DSPS operators and an operator migration
mechanism that exploits knowledge of the state to more efficiently
handle stateful operators such as join and sliding window timed
aggregation operators.

• C8: Through the successful implementation and evaluation of Lazy
Migration, the capabilities and extended functionalities of both
Expose and DCEP-Sim 2.0 are demonstrated. This highlights their
practical applicability and efficiency in distributed stream processing
applications.

5

1. Introduction

Table 1.1 offers a structured representation of the relationship between
the six papers associated with the Ph.D. work and the three problems they
address, which are P1, P2, and P3. In this overview, Paper I addresses
problem P1 with contribution C1. Meanwhile, Paper II also focuses on
problem P1 but introduces contribution C2. Shifting focus to problem P2,
Paper III provides contributions C3 and C4. Paper IV further contributes
to problem P2 with C5. Problem P3 is explored by Paper V, which offers
contribution C6, and Paper VI, which adds contributions C7. Paper VI also
contributes to problem P2 with C8.

Paper/Problem P1 P2 P3
Paper I C1
Paper II C2
Paper III C3,C4
Paper IV C5
Paper V C6
Paper VI C8 C7

Table 1.1: Overview of how each paper contributes to address specific
research problems

Figure 1.1 describes the three main topics of the Ph.D. Thesis: operator
migration, DSPS simulation, and DSPS evaluation. It also shows the overlap
between the topics and the relevance of the papers to the topics. Paper I is
mainly about modeling the processing delay of IP-forwarding in resource-
constrained WSN devices that can be used DSPS simulation. Paper II is
about modeling the processing delay of real-world DSPS systems in DCEP-
Sim [66], and therefore intersects DSPS simulation and DSPS evaluation.
Paper III introduces an experimental framework that makes running DSPS
experiments easier, which makes it relevant for DSPS evaluation. Paper
IV introduces a conceptual model about operator migration and does a
tutorial on the topic of operator migration. Moreover, it includes real-
world experiments that compare different operator migration mechanisms.
Therefore, Paper IV involves both operator migration and DSPS evaluation.
Paper V and Paper VI both introduce new operator migration mechanisms,
which are implemented and evaluated in DCEP-Sim. Therefore, they combine
operator migration with DSPS simulation. Chapter 4 introduces DCEP-Sim
2.0, which combines all three topics in that it discusses all the work that
has been done on DCEP-Sim. This categorization acts orthogonal to the
problems, research questions and contributions, and presents a different
angle to the works in this Ph.D. Thesis. Later in Chapter 3, we take a closer
look at the connection between these topics and papers.

6

Outline

Figure 1.1: Venn diagram detailing the topics of the papers in this Ph.D.
Thesis

1.5 Outline

This Thesis is based on two major parts. Part I gives a general introduction to
the Thesis and presents material that is not contained in the research papers
that form Part II. Chapter 2 describes the background knowledge that is
needed to understand the contributions of this dissertation. The background
includes a presentation of DSPS, adaptation in DSPSs, performance
evaluation of DSPSs, and modeling and simulation of DSPS. Chapter 3
describes the research papers that are included in the dissertation, and
how they are connected. A general overview of each paper is described, in
addition to a discussion about the relevance of the paper to the Thesis.
Chapter 4 details the extensions made to DCEP-Sim, which facilitated
the research presented in Paper V and Paper VI. This chapter includes
significant contributions to the dissertation that are unpublished, due to
the lack of available time. Chapter 5 answers the research questions that
were presented in this introduction in detail, describes future directions
and concludes the summary of the included papers. Part II consists of six
chapters, one for each of the included research papers. In Appendix A, we
have collected configuration files from DCEP-Sim 2.0 that are too detailed to
be included in the text.

7

Chapter 2

Background

This chapter aims to give the reader an understanding of the problems that
are faced in this dissertation. As the topic revolves around distributed stream
processing, we first start out with background on DSPSs. One of the main
challenges that such systems face is that the workload for the system may
vary significantly, causing the system to potentially be underprovisioned or
overprovisioned at any time during execution. Therefore, DSPSs actively
optimize execution through adaptations, with operator migration being one
of the core mechanisms of these adaptations. Operator migration is explored
extensively in this Thesis and is therefore an important topic to investigate.
Further, performance evaluation of such systems is also an important topic
that we study in this Thesis. Finally, modeling and simulation of DSPSs is
explained and discussed.

2.1 Distributed Stream Processing Systems

A DSPS is a system that continually processes data tuples using different
kinds of operators. Operators include filter, group by, join, aggregation,
pattern-matching, and more. It can be used in IoT and Smart * applications
where data is produced by possibly thousands of devices, and data needs
to be processed on a large scale. These systems must be reliable, efficient,
and be able to meet the demand of the data producers and consumers at any
given time.

Numerous DSPSs exist, including but not limited to Storm1, Flink [10],
Esper2, Siddhi [67], and T-Rex [17]. For a more comprehensive list, please
refer to the survey by Isah et al. [32]. Apache Beam3 is a system that
provides a unified interface to existing stream processing systems, where
each supported system needs a runner that represents the integration
between Beam and a given system.

2.1.1 System Model

A data stream is an unbounded sequence of tuples that are continuously
generated over time [11]. It is denoted as S = t1, t2, t3, ..., where ti represents
the ith tuple in the stream. For example, a data stream that represents

1https://storm.apache.org
2https://www.espertech.com/esper
3https://beam.apache.org

9

2. Background

stock market prices could be denoted as S = t1, t2, t3, ..., where ti =
(symbol, AAPL), (price, 150.23), (time, 2022-02-14 10:30:00), representing
the stock symbol, price, and timestamp of the ith price update in the stream.

A tuple is an ordered list of attribute-value pairs that represents a single
unit of data. It is denoted as a set of key-value pairs, where the keys represent
the attribute names and the values represent the corresponding attribute
values. For example, a tuple that represents a person’s information could be
denoted as (name, John), (age, 30), (gender, male). Instead of including the
attribute names in the tuples, a data stream expects the incoming tuples to
follow a schema, and thus, the attributes are inferred.

A query in a DSPS is a function that processes one or more input data
streams and produces an output stream based on defined criteria. It is
represented as Q(S), where S denotes the input data stream and Q is the
defining function. In DSPSs , the logic and the computational functions to
analyze and transform data streams are given in form of operators, e.g., filter,
join, group by, aggregation, and pattern-matching operators. The operators
are commonly organized in a data flow graph, called the operator graph. The
operator graph models dependencies between operators and data sources in
receiving and producing tuples from and to specific streams. The operators
are executed on hosts of the distributed infrastructure. They can also be
dynamically migrated between hosts to meet the performance requirements
of the application or react to other changes, such as failures.

Nodes in a DSPS can be static or mobile, and have one or more of the
following roles:

• Data producer: Examples of this include sensors that convert analog
signals into data tuples, often with a fixed sampling rate, and software
monitors that might create data tuples at a dynamic rate. Crucially, the
DSPS must be able to process all tuples produced by these sources.

• Data consumer: These are nodes that request a service, and typically
have some QoS requirement, such as a bound of the tuple latency.

• Operator host : These nodes execute at least one operator and
contribute to event forwarding in the operator network, i.e., map the
input events (from upstream nodes) of the operators they execute to
output events, and forward them to downstream nodes in the operator
network.

Data stream processing operators may be stateful or stateless. For
instance, when joining two data streams, arriving tuples are placed in a
data window, where they remain and can be joined until they expire and are
removed from the window. When aggregating state, such as counting words,
we are typically interested in creating an aggregate per key. In concurrent
systems, each key produces output separate from other keys, and as such,

10

Distributed Stream Processing Systems

these aggregates can be produced by different processes. Therefore, it is
common to parallelize such queries, and execute some keys on one host and
other keys on another host, in a cluster.

2.1.2 Complex Event Processing

CEP is a technology that performs data stream processing to derive higher
level events, also called business events [45]. Instead of simply filtering,
joining or aggregating tuples, CEP introduces specialized pattern-matching
operators. These operators can recognize and interpret sequences of events
that meet certain conditions, representing them as a distinct event type.
CEP can be applied to do anomaly detection on credit card transactions, to
uncover credit card fraud. CEP queries can be used to interpret a higher level
event called SuspiciousTransactions, based on a set of regular transaction
events [20]. Most CEP systems have traditional DSPS features, but with
more finely grained operators that can look at event sequences.

CEP can be considered as a layer on top of distributed stream processing,
as it is in Apache Flink [10]. Flink has a CEP layer that uses distributed
stream processing, but allows for more advanced pattern-matching operators
that use non-deterministic finite automata for internal state, based on [2].
These patterns are similar to regular expression operators, and can be
used to find a specific number of tuples that fulfill a given set of conditions.
Thereafter, the query can produce a complex event that can trigger higher-
level events. This makes CEP able to express many more types of queries
compared to DSPSs, where the number of possible queries is limited to
filtering, joining, aggregating, and transforming the data streams.

2.1.3 Heterogeneity of Systems

Heterogeneity is a big overarching challenge in this Ph.D. Thesis when
trying to evaluate, compare, and model systems that might use different
terminology to indicate the same functionality. The reason for this
heterogeneity is two-fold. First, DSPSs have evolved over the last two
decades from two branches [18]: the database community and the publish-
subscribe community. As such, the terminology and concepts that are used
differ. Cugola et al. [18] described a unified model that is called Information
Flow Processing (IFP) as a way to overcome this obstacle. However, this
model was intended to highlight the similarities between these communities,
and not meant to be adopted and replace existing views.

The second reason for heterogeneity is due to the lack of a common
standard, which means that new systems have little reason to adopt the
language of existing systems. Apache Storm describes a data producing
node as a sprout, and a data processing node as a bolt. In CEP, a query is
typically called a pattern, which is different from queries in DSPSs in that

11

2. Background

patterns are more finely grained and tunable than DSPSs. In T-Rex [17],
incoming tuples build sequences of tuples, and a tuple may contribute to
multiple sequences, triggering zero or more matches.

2.2 Adaptation of DSPSs

Operator migration and load shedding are adaptation mechanisms employed
by DSPSs to deal with unsustainable conditions for DSPSs.

2.2.1 Load Shedding

Load shedding is an established mechanism for operator execution to react
to overload situations, e.g., as originally proposed for the data stream
management system Aurora [1, 69]. In overload scenarios, part of the
workload for an operator is dropped to stabilize the system. Most of the
literature describes solutions where input tuples are dropped [5, 15, 21–23,
39, 59, 63, 69]. For aggregation operators, the goal is to minimize the
relative error of the calculated aggregate. For join operators, the goal is
to drop those tuples that, during their remaining time in the window, join
with the fewest tuples. Another method is to drop windows [68] internally,
which reduces the number of produced aggregates instead of reducing the
accuracy of the aggregates. In pattern-matching operators, dropping input
tuples is likely to distort the results completely, because individual tuples
can determine whether a sequence fulfills a pattern or not. In such cases,
a different state-based load shedding mechanism that drops partial states
from the operator is a better option. In CEP systems, the state is often
materialized as partial matches. A partial match might or might not result in
a complex event. If the likelihood of the partial match in producing output
is low, the entire sequence of tuples might be dropped. This is done for the
pattern-matching operator in a few recent works [14, 64, 80, 81]. As a result
of load shedding, the consistency may be invalidated, but the accuracy and
usefulness of the query may remain high.

2.2.2 Operator Migration

Operator migration is a mechanism for exchanging operators between hosts
in the DSPS. It requires organizing the state transfer between the old and new
host and reorganizing the flow of data streams. A major objective of current
operator migration procedures is to ensure consistency, i.e., to ensure the
migration of the entire state completes and the resulting migration has no
impact on the operator results.

Approaches for performing operator migration can be classified according
to their stream management during the state transfer, i.e., in a single track
or parallel track [82]. In single-track migration, the tuples of upstream

12

Performance Evaluation

operators are buffered (at the upstream node, new host, or old host).
Therefore, the migration procedure results in a temporary downtime during
the handover between the new and old host until all upstream tuples and
operator state are transferred consistently.

Parallel-track migration algorithms are able to migrate state without
operator downtime by upstream nodes sending tuples to the old and new
host. Either the old host continues its executions until the state transfer
has been completed or the old host gradually moves state to the new host.
These algorithms require temporary duplication of input streams and good
connectivity. Under high system dynamics, e.g., slow communication links
and drastically reduced bandwidth, these mechanisms can significantly
reduce the performance of the DSPS. Migration mechanisms can also split
the state into multiple parts, e.g., by key [26, 30] or into static and dynamic
state [19, 55].

Paper IV of this dissertation [74] consists of a tutorial of operator
migration, and also discusses when migration is worth it or not. Please
refer to this tutorial for an in-depth description of operator migration.

2.3 Performance Evaluation

Performance evaluation within the domain of DSPSs is a complex task,
necessary for the continual refinement and optimization of these systems.
As the scale, complexity, and heterogeneity of DSPS continue to expand,
the ways for assessing their performance must also evolve. The necessity
of evaluating aspects such as throughput, latency, resource utilization, and
fault tolerance is heightened by the real-time demands placed upon DSPS
across various application domains. These evaluations provide insights that
drive enhancements, not only to individual system components but to the
overall orchestration and efficiency of the DSPS. Tracing and measuring
these factors require sophisticated techniques that can capture the intricate
interplay between system elements, account for contextual variables, and
deliver precise, actionable insights.

2.3.1 Benchmarks

In order to evaluate DSPSs fairly and comprehensively and free from bias, we
have to rely on existing benchmarks that describe application areas, datasets
and queries that are representative of distributed stream processing in
general. A benchmark should describe a relevant application area, a varied
and realistic dataset, and a comprehensive set of queries that can be used to
stress different types of DSPSs and compare them fairly.

Multiple benchmarks and benchmark tools for stream processing exist
in the literature [29, 38]. One of the earliest works introduced is the Linear
Road benchmark [4], which can be used to simulate traffic in motor highways.

13

2. Background

Systems may then achieve an L-rating that is a measure of their supported
query load. Although Linear Road is relatively old, it is still implemented
for new systems like Apache Flink [28], and for DSPSs written in P4 to run
on ASICS [33]. Other benchmarks include [16, 29, 35, 44, 57, 61]. These
benchmarks have in common that they are mainly meant for heavyweight
DSPSs such as Apache Storm, Apache Samza, Apache Spark and Apache
Flink.

NEXMark Benchmark Suite

NEXMark [70] is a widely recognized benchmark suite tailored for stream
processing systems, particularly to evaluate their capabilities and perfor-
mance under varying conditions. Originating from the realm of database
systems, the suite is designed to model a real-time online auction system,
featuring complex event streams representing bids, auctions, and people.
Central to NEXmark is its suite of queries, each designed to stress different
aspects of a stream processing system, such as windowed joins, event-time
aggregation, and pattern-matching. These queries provide comprehensive
coverage, testing scenarios that these systems may encounter in real-world
applications. NEXmark, with its diverse set of queries, offers valuable
insights into the performance of DSPSs. However, to ensure a complete
understanding of system performance, it is essential to complement it with
other benchmarks and real-world datasets.

2.3.2 Experimentation

Running experiments with DSPSs is cumbersome, due to the complexity of
running distributed experiments, lack of a standard for DSPSs, and lack
of experimental frameworks. Running distributed experiments is in and
by itself a complex task, because of the unpredictability of running and
synchronizing multiple machines. This makes it hard to replicate results,
which makes it hard to obtain insights from running the experiments. With
the lack of a common standard for DSPSs, it is hard to compare them. They
use different APIs, different terminology and architectures, and emphasize
different concepts.

Few experiment frameworks for DSPSs exist that aim at providing a
user-friendly experience. The PEEL experiment framework is one of them
[8]. It enables users to define experiments, execute them, and repeat them.
Runtime logs from the running systems are collected, and so the experiments
can be used to benchmark systems. Their experiment definitions need special
treatment for each DSPS. FINCoS [51] is another experiment framework,
which is an extended version of the benchmarking framework in [50]. They
enable users to use their own datasets and can communicate with different
DSPS engines.

14

Modeling and Simulating

The unification of the use of DSPS is an ongoing effort. A Stream
SQL standard is recently proposed in [6] and is in the process of being
implemented for existing DSPSs. Apache Beam4 is a framework that attempts
to unify DSPSs by providing a unified interface for writing distributed stream
processing applications.

2.3.3 Tracing and Measuring

In the evolving landscape of DSPSs, ensuring accurate and comparable
performance metrics is a complex matter. Various systems offer different
metrics and tools to trace run-time performance, yet the heterogeneity
in these tools poses significant challenges. While metrics such as tuple
processing time, input rate, output rate, selectivity, and backpressure are
generally agreed-upon, their precise definitions can differ subtly across
systems. Such disparities pose challenges for the analysis, making fair
comparisons challenging.

Systems like Flink [10] come equipped with built-in metric tools, offering
users insights into the performance of the application and QoS. These tools,
while undeniably valuable, often tailor their metrics to the internal design
and architecture of the system. If relied upon exclusively, these metrics
might not present a comprehensive view, potentially missing certain aspects
of the performance of the DSPS. While built-in tools might highlight if the
system performance has deteriorated or improved relative to a previous time
frame, they offer little insight into how the DSPS performs in an absolute
sense or in comparison to its peers.

2.4 Modeling and Simulating

The final topic of this background addresses the modeling and simulation
of DSPSs. Proper modeling requires a comprehensive understanding of
the fundamental operations of the DSPS, including query processing and
adaptation, as well as the capability for performance evaluation. In this
thesis, we primarily use DCEP-Sim as our simulation platform. However, the
original version of this platform demonstrated significant shortcomings in
these aforementioned areas.

2.4.1 Discrete Event Simulation

Discrete event simulation provides a method for modeling the evolution of
a system over time. Unlike continuous simulation, which processes events
throughout the entire time-frame, discrete event simulation focuses on events
at specific moments when the system undergoes changes. This approach

4https://beam.apache.org

15

2. Background

allows the use of a global clock, with each event assigned a specific execution
time. Such events are then placed into a priority queue, ensuring that the
next event to be processed is the earliest one. Notably, while time progresses
between events, it remains static during the execution of each event, setting
discrete event simulation apart from hardware emulators.

A significant application of discrete event simulation is for the simulation
of network communication. Tools like ns-3 [58], OMNeT++ [72], and OPNET
[13] leverage discrete event simulation, focusing on the logical aspects of
communication and do not model the physical elements involved in data
transmission. Instead, they efficiently schedule the sending and receiving of
packets based on factors like bandwidth availability and packet size.

2.4.2 Simulators

The field of fog and edge computing simulation has witnessed the develop-
ment of numerous simulators that primarily model generic services. Exam-
ples include CloudSim [25], iFogSim [27], iFogSim2 [46], EdgeCloudSim [65],
FogNetSim++ [56], and others. These tools largely emphasize interactions
between edge, fog, and cloud nodes using generic services, rather than the
specialized operators vital for data stream processing. Singh et al. [62]
study the simulation and emulation tools for fog computing, and conclude
that iFogSim [27] is the most popular simulator and EmuFog [49] is the most
popular emulator for fog computing.

Simulation of DSPS is a practical and simple way of trying out applications
and topologies before applying them in real-world systems. If a company
plans to deploy a DSPS for data collection, transformation, and monitoring,
they benefit from understanding what the workload might become and how
many hardware resources might be necessary. They also benefit from testing
correctness of data stream queries in an isolated and simulated environment.
One of the strongest benefits of a simulator over a real-world DSPS is
that it can easily replicate executions using the same dataset as previously.
Monitoring the behavior of a simulated distributed system is much simpler
than monitoring a real distributed system. Research has been performed for
decades on the topic of monitoring distributed systems [34, 41, 43, 47, 48,
60, 79], and it is still no easy task, even with modern and more user-friendly
systems.

In DSPS simulation, DCEP-Sim [66] and ECSNeT++ [3] are two
prominent tools. While ECSNeT++ is built upon OMNeT++, and therefore,
inherits network simulation functionality, it primarily simulates an abstract
representation of operator processing tasks. Each operator in ECSNeT++ is
defined through parameters like selectivity and productivity ratio. In contrast,
DCEP-Sim embeds an authentic DSPS system in a simulation framework.

16

Modeling and Simulating

DCEP-Sim 1.0

Implemented on top of the ns-3 network simulator [58], DCEP-Sim was
designed to streamline evaluations of Distributed CEP systems. Its
architecture allows for the simulation of distributed experiments within
one program that runs on a single CPU thread. This design not only
simplifies evaluations, but also enables concurrent simulations under varied
scenarios. By utilizing the object aggregation feature of ns-3, the simulator
can seamlessly integrate new selection or placement policies without altering
the existing classes.

While DCEP-Sim embodies significant promise for DSPS simulations, its
initial version, DCEP-Sim 1.0, exhibits several shortcomings. Its foundational
architecture and modules, though in place, offer limited functionality in
areas like placement, adaptation, and query processing. Dynamic placement
and adaptation are rudimentary, and the query processing operators are
restricted to basic CEP operations like AND and OR. For comprehensive
evaluations, there is a need to incorporate advanced DSPS features. Without
these features, the scope of the simulator remains constricted to a few
specialized cases. Given this gap in current simulation tools, this dissertation
aims to enhance DCEP-Sim [66] in version DCEP-Sim 2.0 (see Chapter 4).

17

Chapter 3

Overview of Research Papers

This Thesis is composed of six papers. Each paper is listed below,
accompanied by an explanation of its relevance to the Thesis. Figure 3.1
describes the relationship between the papers and shows their topic area.
The papers are either centered around performance modeling and evaluation,
or operator migration. To start, Paper I [73] and Paper II [77] are about
modeling the temporal behavior of resource-constrained WSN devices and
DSPSs, respectively. Paper III [75] describes an experimental framework
that can be used to run real-world DSPS experiments. We later apply this to
DCEP-Sim, and details of this are described in Chapter 4. Paper IV [74] lays
the foundation for us to understand and compare existing operator migration
mechanisms. It also enabled us to extend DCEP-Sim 1.0 with advanced
operator migration mechanisms to DCEP-Sim 2.0. Therefore, Paper IV and
DCEP-Sim 2.0 became the foundation for Paper V [78] and Paper VI [76].
Paper VI [76] also took significant inspiration from Paper V with the state
shedding mechanism that it presents.

V: Travel light VI: Lazy Migration

Chapter 4: DCEP-Sim 2.0

I: TelosB II: Demo III: Expose

Conceptual model of operator migration & operator state implementation

Operator Migration

Performance Modelling
and evaluation

Used for evaluation

1

1

2
3

Modelling processing delay 2 Evaluation toolset

IV: Operator Migration Tutorial

Figure 3.1: Relationship between the papers

19

3. Overview of Research Papers

3.1 Paper I

Title: Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

Authors: Espen Volnes, Stein Kristiansen and Thomas Plagemann

Status: Espen Volnes, Stein Kristiansen, and Thomas Plagemann. 2021.
Improving the accuracy of timing in scalable WSN simulations with
communication software execution models. Computer Networks, volume
188, 2021, 107855. doi:10.1016/j.comnet.2021.107855

Abstract: Emerging infrastructure-less network architectures such as WSNs
consist of devices that perform packet processing in software. General-
purpose network simulators do currently not possess models to simulate the
intra-node delay of such devices. For example, a TelosB mote with TinyOS
spends seven ms on processing packets with a size of 36 bytes and fifteen
ms on packets of 124 bytes. The core problem addressed in this work is
that simulation does not include such delays, and therefore, the results are
inaccurate. To overcome this problem, we create a communication software
execution model of TelosB that accounts for its temporal behavior to enable
more accurate WSN simulations in the ns-3 simulator. A challenge is to create
a tracing framework for TinyOS that can be used to accurately and reliably
trace the behavior of a very resource-constrained system. By analyzing the
software execution of TelosB running TinyOS in the emulator Cooja/MSPSim
and on a real device, we discover discrepancies in the temporal behavior. The
evaluation of our model shows that it is scalable and accurate; the simulated
intra-OS delay deviates at most 5% from the intra-OS delay in the real mote.
When we include the model in simulations, the forwarding capacity of a mote
is decreased by 36%. The WSN community can use this model for more
realistic simulations, and future WSN mote models will be easier to make
with it as a foundation.

Relevance for the Thesis: This paper provides DCEP-Sim with simulation
models that can be used to simulate accurately the processing delay of
resource-constrained nodes. This way, it helps to answer RQ1. Such models
are crucial for two reasons: for the system to function properly without
overflowing queues, and to reflect the heterogeneous environment that
DSPSs often operate in, with many kinds of devices with different capacities.

3.2 Paper II

Title: Demo: Modeling the Software Execution of CEP in DCEP-Sim

20

Paper III

Authors: Espen Volnes, Stein Kristiansen, Thomas Plagemann, Vera Goebel,
and Morten Lindeberg

Status: Espen Volnes, Stein Kristiansen, Thomas Plagemann, Vera Goebel,
and Morten Lindeberg. 2019. Modeling the Software Execution of CEP in
DCEP-Sim. In Proceedings of the 13th ACM International Conference on
Distributed and Event-based Systems (DEBS ’19). Association for Computing
Machinery, New York, NY, USA, 244–247. doi:10.1145/3328905.3332508

Abstract: DCEP-Sim facilitates simulation of distributed CEP where the
latency and bandwidth limitations in the network are well reflected, but it
currently lacks models to simulate the temporal behavior of event processing.
In this demonstration, we use a modeling methodology to model the software
execution of a CEP system called T-Rex. We instrument and trace T-Rex to
parameterize a software execution model that is integrated into DCEP-Sim.
Furthermore, we use this instance of DCEP-Sim to run simulations and see
how significant the processing delay introduced by the model is compared to
the transmission delay.

Relevance for the Thesis: This paper partially answers RQ1 with regard to
modeling the temporal behavior of DSPSs and was crucial in highlighting the
need for DSPS experiment frameworks. We constructed detailed processing
delay models for both Siddhi and T-Rex. However, due to space constraints,
only the T-Rex model is presented in this paper. Although we were successful
in applying the modeling methodology by Kristiansen et al. [42] to model
the temporal behavior of DSPSs in the DCEP-Sim simulator, there are some
limitations. Originally, this methodology was applied to IP forwarding, and
since DSPS behavior is significantly more complex, there are many more
possible behaviors. The modeling methodology is based on obtaining traces,
which means we need to trace all the scenarios that we want to reflect in
the models. This includes for DSPSs all kinds of queries and datasets. This
requires an experimental framework that enables us to perform distributed
experiments in an easy way, which is what Paper III is about.

3.3 Paper III

Title: EXPOSE: Experimental Performance Evaluation of Stream Processing
Engines Made Easy

Authors: Espen Volnes, Thomas Plagemann, Vera Goebel, and Stein
Kristiansen

Status: Espen Volnes, Thomas Plagemann, Vera Goebel, and Stein

21

3. Overview of Research Papers

Kristiansen. 2020. EXPOSE: Experimental performance evaluation of stream
processing engines made easy. Technology Conference on Performance
Evaluation and Benchmarking. Cham: Springer International Publishing,
2020. doi:10.1007/978-3-030-84924-5_2

Abstract: Experimental performance evaluation of stream processing
engines (SPE) can be a great challenge. Aiming to make fair comparisons
of different SPEs raises this bar even higher. One important reason for this
challenge is the fact that these systems often use concepts that require
expert knowledge for each SPE. To address this issue, we present Expose,
a distributed performance evaluation framework for SPEs that enables a
user through a declarative approach to specify experiments and conduct
them on multiple SPEs in a fair way and with low effort. Experimenters
with few technical skills can define and execute distributed experiments
that can easily be replicated. We demonstrate Expose by defining a set
of experiments based on the existing NEXMark benchmark and conduct a
performance evaluation of Flink, Beam with the Flink runner, Siddhi, T-Rex,
and Esper, on powerful and resource-constrained hardware.

Relevance for the Thesis: This paper is important for this Thesis because
it contributes to answering RQ2. Expose laid the foundation for how the
distributed experiments are conducted in the subsequent papers. The API
it provides makes it easy to express on a high level what is done in an
experiment or algorithm. The experiment framework makes it easy to define
and execute distributed experiments, and therefore, none of the remaining
papers would be possible without it. This paper focused on real-world
distributed experiments, but we later applied the concepts of Expose to DCEP-
Sim because it makes it easier to define and run simulations. Conveniently, an
experiment configuration that was initially designed and executed in a real-
world environment required only the addition of network link information to
be compatible with DCEP-Sim. Moreover, although Paper IV is a tutorial and
survey paper, Expose tasks are used to model existing migration mechanisms
and in experiments for demonstrating different migration mechanisms.

3.4 Paper IV

Title: To Migrate or Not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

Authors: Espen Volnes, Thomas Plagemann and Vera Goebel

Status: Espen Volnes, Thomas Plagemann, and Vera Goebel. 2023. To
Migrate or not to Migrate: An Analysis of Operator Migration in Distributed

22

Paper V

Stream Processing. IEEE Communications Surveys & Tutorials (under minor
revision).

Abstract: One of the most important issues in distributed data stream
processing systems is using operator migration to handle highly variable
workloads cost-efficiently and adapt to the needs at any given time on
demand. Operator migration is a complex process involving changes in the
state and stream management of a running query, typically without any data
loss, and with as little disruption to the execution as possible. This tutorial
aims to introduce operator migration, explain the core elements of operator
migration, and provide the reader with a good understanding of the design
alternatives used in existing solutions. We developed a conceptual model
to explain the fundamentals of operator migration and introduce a unified
terminology, leading to a taxonomy of existing solutions. The conceptual
model separates mechanisms, i.e., how to migrate, and policy, i.e., when
to migrate. This separation is further applied to structure the description
of existing solutions, offering the reader an algorithmic perspective on
various design alternatives. To enhance our understanding of the impact of
various design alternatives on migration mechanisms, we also conducted an
empirical study that provides quantitative insights. The operator downtime
for the naïve migration approach is almost 20 times longer than when
applying an incremental checkpoint-based approach.

Relevance for the Thesis: This paper is fundamental for the operator
migration part of this Thesis. It identifies existing operator migration
mechanisms, how they work and when operator migration is usually
triggered. Since operator migration is a core feature of DSPSs, this
work helps to answer RQ2. Papers V and VI would not be possible, if
this paper did not highlight the state-of-the-art migration mechanisms and
highlight limitations in them. Moreover, this paper contrasts the migration
mechanisms with the migration goal and investigates when migration is
worth it.

3.5 Paper V

Title: Travel Light - State Shedding for Efficient Operator Migration

Authors: Espen Volnes, Thomas Plagemann, Boris Koldehofe, and Vera
Goebel

Status: Espen Volnes, Thomas Plagemann, Boris Koldehofe, and Vera Goebel.
2022. Travel light: state shedding for efficient operator migration. In
Proceedings of the 16th ACM International Conference on Distributed and

23

3. Overview of Research Papers

Event-Based Systems (DEBS ’22). Association for Computing Machinery,
New York, NY, USA, 79–84. doi:10.1145/3524860.3539638

Abstract: Operator migration is a crucial concept to adapt event processing
systems to dynamic changes. When the placement of a stateful operator
changes, the operator state must be migrated to the new host. However,
operator state size and time constraints can make it impossible to migrate
the operator without severe Quality of Service (QoS) degradation. As a relief,
we propose to perform state shedding in such a situation. The core idea
of state shedding is to partition the operator state, assign a utility to each
partial state, and use the utility and size of each partial state to identify the
most useful partial states that can be migrated in a given time frame. Thus,
state shedding can maintain a substantially higher QoS with a lower impact
on query results than state-of-the-art solutions targeting consistent state at
the old and new host. In this paper, we define this novel approach and in a
simulation environment evaluate state shedding in migration scenarios with
pattern-matching queries.

Relevance for the Thesis: This paper is significant for this Thesis since
it connected the two major contributions of this Thesis. First, it applies
the operator migration concepts from Paper IV to create a novel migration
mechanism that is the first of its kind, addressing RQ3. Previous migration
mechanisms aimed to transfer all state, while Travel Light migrates the
state in order of expected utility, ensuring that the most important state
is migrated in case the migration cannot be fully completed. Second, in
order to evaluate Travel Light, we needed to extend DCEP-Sim with query
processing features and integrate it with Expose, thus making significant
steps towards DCEP-Sim 2.0.

3.6 Paper VI

Title: Lazy Migration: Just-In-Time Fragmented State Migration For
Distributed Stream Processing

Authors: Espen Volnes, Thomas Plagemann, Vera Goebel and Boris
Koldehofe

Status: Espen Volnes, Thomas Plagemann, Vera Goebel, and Boris Koldehofe.
2023. Lazy Migration: Just-In-Time State Migration For Distributed Stream
Processing. Submitted to VLDB (September 2023).

Abstract: Operator migration is an essential adaptation mechanism in
distributed stream processing systems. The main challenge is how to

24

Paper VI

perform adaptations without disruption of the system, i.e., to minimize
the experienced latency for the data consumers and to ensure that the data
consumers get the correct data. Existing solutions, on the other hand, only
focus on minimizing the latency caused by input tuples waiting in queue,
which is different from output tuple latency. To do this, we present Lazy
Migration, an operator semantic aware migration mechanism that applies
the lazy evaluation technique to migrate the necessary state when it is
necessary. The mechanism schedules migration of parts of the state at
different times, depending on when the operators need them. We introduce
two migration modes within Lazy Migration. The first mode, minimizing
latency, schedules the migration of state fragments at distinct times based
on operator requirements, ensuring the necessary state is migrated exactly
when it’s needed. The second mode, maximizing utility, incorporates a
utility-based approach for prioritizing state migration. Each partial state
is assigned a utility value based on its anticipated future demand, with
the initial migration order determined accordingly. For instance, a tuple
expected to join with numerous others is assigned a higher utility. The
migration mechanism is evaluated in a simulation environment in many
different contexts.

Relevance for the Thesis: This paper is important for this Thesis on
multiple levels. It extends DCEP-Sim with a framework for implementing and
using several state-of-the-art migration mechanisms, creating DCEP-Sim 2.0.
This paper relies on the previous works in terms of experimental framework
(Paper III), operator migration concepts (Paper IV), and the initial operator
migration implementation and other extensions to DCEP-Sim (Paper V). This
paper applies the contributions from these papers and shows their relevance
in a broader perspective.

25

Chapter 4

DCEP-Sim 2.0

This chapter describes the extensions of the DCEP-Sim [66] simulator. To
distinguish between the original published version DCEP-Sim 1.0 and the
extended version, we call the extended version DCEP-Sim 2.0. As such, it
is an important contribution in this Thesis, and we have made it publicly
available1.

We intended to publish DCEP-Sim 2.0, but this was not possible due
to the limited time frame of this Ph.D. work. The extensions to DCEP-
Sim 1.0 are essential for providing a platform for the implementation and
evaluation of operator migration mechanisms, which are relevant for Paper
V [78] and Paper VI [76]. Without DCEP-Sim 2.0, the operator migration
mechanisms would have to be implemented in a real-world system, which
would substantially increase the workload, in addition to making it difficult
to compare our work and the results with the state-of-the-art solutions.

4.1 Limitations of DCEP-Sim

One of the major challenges of DSPSs and distributed CEP systems in a fog
computing environment is the heterogeneity of the systems. The physical
resources vary in terms of capacity, reliability, and connectivity with the other
nodes in the network. DCEP-Sim simulates the connectivity aspects fairly
well because it is built on top of the network simulator ns-3. The originally
published version of DCEP-Sim 1.0 by Starks et al. [66] laid the architectural
foundation, but some important aspects are missing. In particular, the
processing capacity of nodes is ignored entirely, which results in simulations
that cannot distinguish between a weak sensor mote and a powerful cloud-
based device. Worse yet, ns-3 is a discrete event simulator where processing
tasks do not take any time at all. Any time aspect must be explicitly added
during the simulation. This aspect is crucial for a simulator because one
of its motivations is to simulate the amount of resources necessary for an
application and to assess the costs. Other limiting aspects are the query
processing operators, only offering the AND and OR operators of CEP. A real
DSPS system usually offers many more operators, including filter, group by,
join, pattern-matching, aggregation, and select.

DCEP-Sim has been changed significantly throughout this Thesis, each
extension opening up new opportunities for research. Table 4.1 summarizes
these improvements and which papers were relevant for which changes.

1https://github.com/espv/dcep-sim

27

4. DCEP-Sim 2.0

Parameter Research paper Before After

Processing delay
simulation

I [73], II [77] None Processing tuples
in an operator
takes time and
occupies limited
hardware re-
sources

Experimental
framework

V [78], VI [76] None Expose

Adaptations V [78], VI [76] None All-at-once, Rhino,
Megaphone,
Meces, and Lazy
Migration

Query functional-
ity

II [77], V [78], VI
[76]

AND/OR Join (equijoin and
non-equijoin), fil-
ter operator, select
operator, time-
based and tuple-
based aggregation,
pattern-matching,
and group by

Table 4.1: Improvements of DCEP-Sim 1.0 during this Ph.D. work

DCEP-Sim has been used in Paper I [73], Paper II [77], Paper V [78] and
Paper VI [76]. Expose was not added to DCEP-Sim for the Expose paper [75]
because we explored real-world scenarios. Later on, we realized that it was
a very good framework to use with DCEP-Sim, in Papers V [78] and VI [76].

4.2 Query Processing

In order to add query processing to DCEP-Sim, a new module was created
in ns-3 called stream-processing. The module contains code for the DSPS
operators and the resource manager of the simulation nodes. A StreamQuery
object consists of one or more objects that are subclasses of the Operator
class. The Operator subclasses that we have implemented are shown in
Figure 4.1. The abstract Operator class defines two primary methods for
query processing: process(Ptr < TupleWrapper > input_tuple), which each
subclass of Operator must implement, and emit(Ptr < TupleWrapper >

output_tuple), which is implemented by the abstract Operator class. The
process method is called to process input_tuple and emit is called when the
operator produces a tuple that will be emitted. If an Operator is connected
to a parallelized subsequent operator, it may have multiple output Operator
objects. With the availability of multiple CPU cores in the node, performance

28

Query Processing

Figure 4.1: Operator class diagram

can be enhanced, allowing for more efficient concurrent processing.

4.2.1 Data Stream Processing Operators

At their core, distributed stream processing operators transform incoming
data streams through specific, predefined actions. Ideally, given their
defined behaviors, these operators should be straightforward to implement.
Despite their seemingly straightforward nature, the execution environment
presents complexities. In a typical DSPS, numerous operators are often active
simultaneously, competing for limited hardware resources. Allocating these
resources efficiently, especially in terms of scheduling available threads, is a
significant challenge that goes beyond basic implementation. We focus on
implementing the most common DSPS operators:

• Filter operator: Screens incoming tuples based on predefined criteria.
Only tuples that meet the criteria are emitted; all others are discarded.

• Group by operator: Categorizes incoming tuples based on specified key
attributes, forming distinct groups. Each group consists of tuples that
share the same key values. Depending on the subsequent operations,
results derived from each group (e.g., aggregates) are emitted.

• Select operator: Forms a new tuple based on specific attributes from
the incoming tuples and emits the newly formed tuple.

• Join operator: Takes tuples from two data streams and joins them based
on a specific predicate. Tuples from Stream S1 are compared with those
within the window of Stream S2, and any matches are emitted.

29

4. DCEP-Sim 2.0

• Aggregation operator: Aggregates values of incoming tuples based on
a defined key and attributes within a specified window. The aggregated
results are emitted according to the emission policy of the operator,
which might be time-based or event-based (e.g., upon the arrival of
new tuples).

• Pattern-matching operator: Looks for patterns in sequences of tuples,
identifying sequences that match a predefined pattern, similar to the
function of regular expressions in textual data. Whether an incoming
tuple completes, breaks or continues a sequence depends on how the
tuple aligns with the tuples in the sequence.

For DSPS operators, there are two main aspects that we must model: (1)
processing delay and (2) operator logic.

Processing delay

There are many ways of modeling the processing delay of data stream
processing operators, with different levels of complexity. Integrating
processing delay into the query processing of DCEP-Sim is not just about
realism; it is functionally essential. Given that DCEP-Sim operates in the
networked environment of ns-3, processing delay helps prevent overflowing
queues and buffers. For instance, if an experiment produces thousands of
tuples adding up to 10 megabytes, sending this data all at once via TCP
without any processing time can lead to queues overflowing and data being
lost. This highlights the need for simulating processing delay, especially
when conducting complex DSPS and CEP experiments.

Therefore, it was decided to model the processing delay in three ways:
(1) uniform, (2) state-dependent and (3) realistic processing delay models.
With uniform processing delay models, each operator takes the same amount
of time to process a tuple, regardless of how much state is built up. With
state-dependent models, an operator may take longer time to process a tuple
when more state has been built up. With realistic processing delay models,
the processing delay comes from simulation of the system, and making these
models requires tracing real-world systems.

In Paper I and II, our ambition was to create realistic processing delay
models. However, as the focus of the Ph.D. work shifted towards operator
migration, it became less necessary to have realistic processing delay.
In Paper V and VI, it was more important that the different migration
mechanisms that were compared experienced the same processing delay,
than for the processing delay to be accurate. Therefore, we opted for the
uniform processing delay models in Paper V and VI.

However, we aspired to create processing delay models that strike
a balance between realism and scalability, and this is where the state-
dependent processing delay models come in. These models are inspired

30

Query Processing

by complexity theory, in that they mainly describe how the run-time of the
operators scale with the state. In order for the models to yield a specific
processing delay, each operator has a weight associated with it. For a
stateless operator, i.e., that does not have any state, the weight represents
the full processing delay for each incoming tuple. For a stateful operator,
the processing delay may increase as the operator state builds up. In this
chapter, we explore how these models can be realized.

Operator logic

In the following section, we describe each DSPS operator that we introduced
earlier. We provide a pseudocode algorithm that represents from a high level
the process method that the operators implement. In addition, we provide a
state-dependent processing delay function that shows how the processing
delay might increase as the state within the operator accumulates.

Select
The select operator is a stateless operator that forms a new tuple based on
specific tuple attributes of the input tuple. The pseudocode for the process

method of the select operator is shown in Algorithm 1.

Algorithm 1 Pseudocode of the process method of the select operator
procedure Select(tuple)

selectedTuple← ExtractAttributes(tuple, attributes)
emit(selectedTuple)

end procedure

The processing delay function can be modeled as a constant, using the
weight wtselection where each tuple takes the same amount of time to be
processed:

D(S(ts1)) = wtselection (4.1)

Filter
The filter operator is a stateless operator that screens incoming tuples based
on predefined criteria. If a tuple meets the criteria, it is emitted; otherwise,
it is discarded. Algorithm 2 shows the pseudocode for the process method of
the filter operator.

Algorithm 2 Pseudocode of the process method of the filter operator
procedure Filter(tuple)

if condition(tuple) then
emit(tuple)

end if
end procedure

31

4. DCEP-Sim 2.0

The processing delay function can be modeled as a constant, expressed
by the weight wtfilter, each tuple taking the same time to be processed:

D(F (ts1)) = wtfilter (4.2)

Group by
The group by operator is a stateful operator that categorizes tuples into
distinct groups and subsequently emits them. The purpose of these groups
is to enable the query to produce results for distinct groups of tuples, given
a set of key attributes. For instance, a query that aggregates a certain value
might group on the city attribute of the data stream, and thus, produce
aggregate values for each city. Algorithm 3 shows the pseudocode for the
process method of the group by operator.

Algorithm 3 Pseudocode of the process method of the group by operator
procedure GroupByOperator(tuple)

key← ExtractKey(tuple, groupFields)
if key not in groupMap then

groupMap[key]← CreateEmptyGroup()
end if
AddToGroup(groupMap[key], tuple)

end procedure

Incoming tuples can be mapped to a key using a hash-based data structure.
This means that the processing delay does not increase with the number of
groups. While creating a new group may momentarily elevate the processing
delay, such instances are anticipated to be less frequent than processing
tuples that belong to existing groups. Therefore, the processing delay
function can be represented by the weight wtgroupby as:

D(G(tkeys)) = wtgroupby (4.3)

Join
The join operator is a stateful operator that pairs tuples from a stream,
S1, with those in a designated window of another stream, S2, based on a
predicate θ as represented by:

S1 ▷◁θ S2 (4.4)

The algorithmic complexity of a join operator can vary significantly
depending on the implementation. In the specific scenario of an equijoin
operator, the aim is to pair tuples with identical attributes. This can be
efficiently modeled using a hash table. The join predicate attribute serves
as the key for this hash table. In this case, the pseudocode for the process

method of the equijoin operator can be modeled by Algorithm 7. It is worth
noting that non-equijoins can introduce greater complexity due to varied join

32

Query Processing

Algorithm 4 Pseudocode of the process method of the equijoin operator
procedure Join(tupleA)

window← getCorrespondingWindow(tupleA)
matchingTuples← window.getTuples(tupleA.joinPredicateAttribute)
for each tupleB in matchingTuples do

emit(Combine(tupleA, tupleB))
end for

end procedure

predicates. To keep the presentation clear and concise, we have chosen to
present the more straightforward equijoin operator.

For an equijoin operator that employs a hash table, access to the matches
is on average constant. As such, the processing delay scales with the number
of matches, as shown in the following processing delay function:

D(J(ts1)) =
windows2∑

ts2

wtjoin ∗ match(ts1, ts2) (4.5)

Where wtjoin is the weight used for the operator, windows2 is the window
that the incoming tuple ts1 can join with, and match(ts1, ts2) returns 1 if there
is a match, and 0 if not.

Aggregation
The algorithmic complexity of the aggregation operator is influenced by
its implementation, similar to the join operator. Specifically, for window-
based aggregation, there are two primary approaches for maintaining the
operator state: retain tuples and compute aggregations on-demand as output
tuples are produced, or maintain partial aggregates that are updated when
tuples arrive. In this Thesis, we adopt the second method of keeping partial
aggregates that are updated by incoming tuples.

If the data stream is grouped with a group by operator, the operator
produces an aggregate per key. The exact moment when output tuples are
formed and emitted depends on the emission policy of the operator, e.g.
time-based or event-based. The pseudocode for the process method of this
aggregation operator is shown in Algorithm 5.

Algorithm 5 Pseudocode of the process method of the aggregation operator
procedure Aggregate(tuple)

key← tuple.groupAttribute
for each partialAggregate in aggregates[key] do

partialAggregate.value← aggregationFunction(partialAggregate.value, tuple.value)
if shouldEmit(partialAggregate) then

emit(partialAggregate)
end if

end for
end procedure

Given the partial aggregate-based state implementation, the processing
delay function can be modeled as being linear with regard to the number of

33

4. DCEP-Sim 2.0

partial aggregate results to update for each incoming tuple:

D(A(t)) = wtaggregation ∗ (sizewindow/jumpwindow) (4.6)

Where wtaggregation is the weight used, sizewindow is the size of the window,
jumpwindow is the window jump, and sizewindow/jumpwindow is the number
of partial aggregate results that each incoming tuple updates.

Pattern-matching
The pattern-matching operator is a stateful operator that identifies tuple
sequences that match a specified pattern. Although various implementations
are possible, our focus is on patterns that resemble regular expressions. The
pseudocode for the process function of this operator is shown by Algorithm
6.

Algorithm 6 Pseudocode of the process method of the pattern-matching
operator

procedure PatternMatch(tuple)
for each eventSequence in sequences do

eventSequence.append(tuple)
if isMatch(eventSequence) then

emit(constructResult(eventSequence))
sequences.remove(eventSequence)

else if breaksPattern(eventSequence) then
sequences.remove(eventSequence)

end if
end for
if startsNewPattern(tuple) then

newSequence← createNewSequence(tuple)
sequences.append(newSequence)

end if
end procedure

The processing delay of this operator scales with the number of tuple
sequences that the tuple may contribute to, and the complexity of the pattern,
as shown in the following processing delay function:

D(P (t)) =
∑

sequencei

wtpattern ∗ C(sequencei) (4.7)

Where the summation iterates over all sequences relevant to tuple t,
C(sequencei) gives the complexity of the pattern of sequencei as a floating
point number within a range [1, n], and wtpattern is the weight for the operator.

4.3 Operator Migration

DSPSs and CEP systems have a variable workload, like any distributed
system. Depending on the complexity of the operators, quantity of state
and input load, the need for hardware resources varies. Moreover, the
network may at times become saturated or nodes may fail. Therefore, it is

34

Operator Migration

impossible to configure such a system in a way where it will never benefit
from changes in hardware resources or geographical location. As such, an
integral mechanism of DCEP-Sim is to handle adaptations, and this topic is
one of the main topic of this Ph.D. Thesis, with three of the six publications
revolving around this topic.

The originally published work by Starks et al. [66] had laid the foundation
in terms of architecture, but had no adaptation mechanism implemented and
tested. Before it is meaningful to implement adaptation mechanisms, actual
query processing must take place. The complexity starts when attempting
to migrate stateful operators, and various adaptation mechanisms exploit
assumptions that can be made when migrating various stateful operators.
Rhino [19], for instance, migrates the full state of operators with no downtime.
While this state is being migrated, the system continues running and state
changes that happen during the migration are migrated as an incremental
checkpoint afterward. The amount of new state depends on the operator
type and the amount of tuples that have been processed. Rhino’s method is
versatile, but for certain operators, like aggregations, its performance may
suffer if the entire state is updated during the initial migration phase.

On the other hand, Megaphone [30] and Meces [26] employ a more
specialized approach. They segment the state into micro-batches based on
keys, with Megaphone operating on both the old and new hosts, transitioning
in stages to minimize downtime. Meces reroutes all tuples to the new host,
and enables the new host to fetch the state that incoming tuples need.

Both Megaphone and Meces excel with operations that have a direct
relationship between incoming tuples and state, like equijoin. An equijoin
operator joins data streams with a specified set of attribute values, whereas
non-equijoin operators can look at a range of values. Challenges arise with
non-equijoin operations, as they might require Megaphone to keep tuples on
both the old and new hosts, or cause Meces to issue numerous fetch requests
due to slight value variations.

Paper VI uses all the previous topics for the implementation and
evaluation of the evolved DCEP-Sim implementation. Expose helps this
by being able to define benchmarks and executions. Finally, adaptations
are implemented, with either full or variable consistency, depending on the
requirements and context.

It was very important to extend DCEP-Sim with the ability to allow for
different migration mechanisms to be implemented, considering the focus
of adaptations in distributed CEP in this Ph.D. Thesis. Figure 4.2 shows the
classes that were made to represent the migration mechanisms that were
implemented during the Ph.D. Thesis. In the original DCEP-Sim, there were
no functionality in place for this, only the idea of having different policies
that made it possible to define how adaptations should be performed. It was
essential that the most important migration mechanisms could be expressed

35

4. DCEP-Sim 2.0

Figure 4.2: Migration mechanism class diagram

in DCEP-Sim, with most of the supported operators, as illustrated in Figure
4.1. The goal then became to enable users to conduct adaptations with a
specified migration mechanism, and extend the simulator with new migration
mechanisms.

A crucial concept of the state-of-the-art migration mechanisms is the idea
of partial state. Partial state is the concept of splitting the full state into
smaller parts that can be migrated independently. In order to model this, an
abstract class called PartialState was made, that represents a component
that can be migrated. Figure 4.3 shows all subclasses of this class. Each class
counts as a state that can be migrated independently. Different migration
mechanisms use different ways of prioritizing state and migrating it.

The implementation of distributed stream processing operators is a
prerequisite for the implementation of migration mechanisms. The reason
why is that migration mechanisms are all about exploiting opportunities
for more efficient operator migration. If the operator state implementation
is merely hypothetical, there is not sufficient detail to fully understand or
express how migration mechanisms can be performed.

Therefore, with the operator execution implemented, two methods
opened up for the migration of any distributed stream processing operator:
ExtractState and ImportState. ExtractState copies the state of an operator
on the old host to a container that is sent to the new host, and ImportState
is executed on the new host to copy this state into the new operator. These
two methods serve as the fundamental methods for implementing migration
mechanisms.

36

Operator Migration

Figure 4.3: Partial state class diagram

The migration controller is the node that is performing the migration from
one node to one or more other nodes. The controller invokes the ExtractState
method on all the operators, and places the states to move in an order that
complies with the migration mechanism that is applied. It also disables
the operator execution on the old host according to when the migration
mechanism specifies it. This can vary, e.g., some state might be sent before
the operator is shut down.

In Lazy Migration [76], five state queues were defined, each playing
a crucial role in the migration mechanism: preamble state, critical state,
fetch state, deadline state, and normal state. For a detailed explanation of
these state queues, as well as the fundamental ExtractState and ImportState
methods, readers are referred to [76]. Within this work, it is demonstrated
how these queues were sufficient to express migration mechanisms such
as Lazy Migration’s minimize latency mode, maximize utility mode, Rhino
[19], Megaphone [30], Meces [26], and the standard All-at-once migration
mechanism.

37

4. DCEP-Sim 2.0

4.4 Communication

Communication in DCEP-Sim is done using the models provided by ns-3.
Originally, DCEP-Sim only supported UDP. To enable adaptation that might
require the migration of gigabytes of state, we had to enable TCP support.

While TCP is a standard transport protocol, it is not trivial to make it
work in a robust way in ns-3. Despite the large amount of models in ns-3, it
falls short in areas crucial for transmitting large data volumes. For instance,
the TCP library lacks helper functions for sending large payloads, making
the simultaneous receipt of payloads from multiple nodes more complex.
A partially received packet header requires merging with the subsequent
packet for complete reading. Debugging such problems, even within the
controlled environment of ns-3, proves challenging. Ns-3 also has limitations
when it comes to monitoring packet activities. If a packet goes missing, using
the available tools to trace it is impossible. Therefore, if the system is not
optimized for the intended load, operators might produce fewer tuples than
anticipated, making it difficult to discern between query processing errors
and communication issues.

4.5 Expose

Expose was originally designed as a framework for performing distributed
stream processing experiments in real world scenarios. However, it was
clear that there were features in Expose that could be applied to other
scenarios. The API that defines high-level tasks could be used in production
environments for making changes to the environment. The tasks can be used
to communicate between live systems, directing each other. Furthermore, it
can be used to manage simulations in DCEP-Sim, and this was a good way to
improve the usability of DCEP-Sim. By extending the Expose configuration
with network characteristics of the nodes in the simulation and detailed query
definition features, Expose was expressive enough to define fully-fledged
DCEP-Sim simulations.

Figure 4.4 shows the relationship between Expose and DCEP-Sim. Expose
takes care of setting up the simulation environment, e.g., the node topology
and communication links. Each node connects with a router, and this way,
each node can reach the other nodes in two hops. Expose orchestrates
the overarching simulation events such as query deployment and data
transmission, while DCEP-Sim performs the discrete event simulation, and
thus simulates the dynamics of packet transmission and reception as well as
performing the query processing.

38

Expose

Figure 4.4: Integration of DCEP-Sim with the Expose experimental
framework

4.5.1 Query definition

After adding detailed query definition features to DCEP-Sim, the challenge
was to make an intuitive interface for the user to define such queries. There
are generally four ways of doing this:

• programming language API,

• SQL-like language,

• natural language, or

• graph-based with a Graphical User Interface (GUI) editor.

In order to make the best choice, the query definition should fulfill the
following criteria:

• Cr1: Should be easy for a non-expert to use.

• Cr2: Must not add steps to the experiment execution.

• Cr3: Must make it straightforward to configure the processing pipeline.

Cr1 is desirable because the intention with DCEP-Sim is to make it easier
to run distributed experiments. If the configuration of the simulations is
too challenging, it will make it less viable for most users. Cr2 is necessary
because the experiment configuration should be possible to change without
recompiling the code. Cr3 is essential because we want to be able to
configure how the data pipeline in the DSPS query works, without arbitrary
rules or query optimization causing changes in it.

39

4. DCEP-Sim 2.0

Programming language API

A programming language API for defining queries in DSPSs is quite common,
and is similar to how databases are accessed and queried from programs
using an object-relational mapping framework such as SQLAcademy for
querying MySQL in Python.

DSPSs like Apache Flink [10] offer a programming language interface
to write queries from code. For instance, a timed aggregation query can be
written as:

// specify table program

Table auctions = tableEnv.from("Auction");
Table bids = tableEnv.from("Bid");

// Perform join, tumbling window, and aggregation
Table result = bids

.join(auctions)

.where($("Auction.id").isEqual($("Bid.auction")))

.window(Tumble.over(lit(7).days()).on($("Bid.proctime")).as("weekWindow"))

.groupBy($("Bid.auction"), $("weekWindow"))

.select($("Bid.auction"), $("Bid.price").avg().as("avg_price"));

The problem with this approach is that it requires compilation of the code,
which violates criterion Cr2. Programming also often requires an expert-user,
because different systems are written in different languages. Therefore, this
approach violates criterion Cr1.

SQL-like language

The second option is to define an SQL-like language for defining SQL queries,
similar to what is offered by most of the DSPS systems that are discussed in
this dissertation. A timed aggregation query can then be defined as:

select A.id, max(B.price)
from Auction A
join Bid b on B.auction = A.id
group by A.id, tumble(1 week)

The benefit of this approach is that it is a fully declarative way of defining
DSPS queries. The downside is that while SQL queries explain what data
the user wants, the user cannot decide how it is done. Meaning, the
resulting operator graph might vary depending on the query optimization
rules. Therefore, this violates criterion Cr3. For a normal user, this is helpful
because it can help improve the performance of the query. In our system,
however, it is important that we can decide the data pipeline explicitly.

40

Expose

Figure 4.5: Grouped aggregation query in GUI

Figure 4.6: Join query in GUI

Natural language

Natural language processing (NLP) has been studied with regard to query
processing [7, 24, 36, 37, 40, 52–54, 71], but with a focus on converting
natural language text to SQL queries. Meaning, it has the same problem
as using an SQL-like language has: that it is not easy to define exactly how
the distributed stream processing operators should be connected. Meaning,
NLP can be used to define what data you want, but not exactly how it is done.
Therefore, it violates criterion Cr3.

Graph-based with GUI editor

With a GUI, the user can define operator graphs visually using a drag-and-
drop system. Such a system is easy for a non-expert to use (Cr1), does not
add steps to the experiment execution (Cr2), and the processing pipeline is
straightforward and easy to change (Cr3). This means that all the criteria
are fulfilled, and therefore, we use this approach.

Figures 4.5, 4.6 and 4.7 represent queries as visualized in the GUI, but
where minor aesthetic enhancements have been made for clarity. The text
in the vertices is just for visually representing its contents. The user can
click on the vertices to view and edit parameters of the operators. Figure 4.5
shows a query where a stream is grouped and aggregated. Figure 4.6 shows
a query that joins two streams. Figure 4.7 shows a query where two streams
are first joined, before they are grouped and aggregated. In all queries, the
results are printed out, which is usually done on the sink nodes. Appendix A
shows what these queries look like stored in the YAML format that Expose
has in its configuration. Listing A.4 shows the query from Figure 4.5, Listing
A.3 shows the query from Figure 4.6, and Listing A.4 shows the query from
Figure 4.7.

41

4. DCEP-Sim 2.0

Figure 4.7: Join followed by grouped aggregation query in GUI

4.5.2 Simulation setup

To integrate DCEP-Sim with Expose, DCEP-Sim needs to set up the
simulations entirely from the YAML configuration file provided by the user.
An example configuration file is shown in Listing A.1. Here, we see definition
of stream schemas (denoted by stream-definitions), experiments, datasets,
queries (denoted by spequeries), results creation (denoted by plots), and
network configuration.

DCEP-Sim must interpret each of these components to correctly set up
the simulations. The schema definitions are necessary in order to understand
the contents of the datasets and the input and output of queries. Therefore,
the ’stream-id’ is utilized when transmitting datasets as data streams in
experiments and when defining the input and output of stream processing
queries.

Schema definition

A schema definition specifies the attributes present in a tuple, their types,
and their order. The supported types are:

• int,

• long,

• timestamp,

• string,

• double, and

• float.

Internally, there are only three core types: long, string, and double. int
and timestamp are interpreted as long, and float is interpreted as double.
Each node maps the schemas upon start of the experiments, to ensure that
they can interpret incoming tuples of all schemas.

Experiment

An experiment is structured as a sequence of tasks set to be executed on
specific nodes. Each task is directed to a designated node and is then

42

Expose

managed by that node’s Expose wrapper. In real-world scenarios using
Expose, every participating DSPS must have its respective Expose wrapper.
For our integration of DCEP-Sim and Expose, we have created a compatible
Expose wrapper. The Expose wrapper implements all tasks that should be
possible to perform in a DCEP-Sim experiment. This includes manual tasks
such as sending a dataset as a data stream, deploying queries and performing
adaptations. Furthermore, it includes automatic tasks that are issued by the
DSPS during simulation, e.g., adding stream schemas, ending experiment,
and tasks used for communication between nodes during adaptation.

The experiment configuration is also used to determine which nodes take
part in the experiment. This way of defining the node composition comes
from reverse-engineering the original Expose’s way of waiting to execute the
experiment until all nodes have registered. Instead of waiting to execute the
experiment, the coordinator uses the list of nodes to find out which nodes to
initialize.

Dataset

The dataset tag describes the file location of a dataset that can be parsed
and sent as a data stream. The supported types are currently YAML and CSV,
where CSV offers superior performance.

Query

As discussed previously, we decided to develop a GUI-based solution, where
the user defines operator graphs explicitly, connecting the operators with
arrows, to indicate the data pipeline flow. Each query has a set of input
operators, indicating the incoming data streams, and an output operator for
indicating the end of the query. This information needs to be converted to
the YAML format, which can then be interpreted by DCEP-Sim’s C++ code.
There are two key pieces of information in an operator graph: the vertices
(operators), and edges (data flow). The vertices define the operator type and
parameters, and the edges define the connections between the operators,
i.e., where to send the output of an operator.

Take the very simple example SQL query:

select B.price, B.auction
from Bid

This can be represented in YAML using three operators and two edges.
Each operator has a name, type and a set of parameters. The type of operator
can be input, select, filter, join, output, etc. The set of parameters is operator-
dependent, e.g., a list of fields in the select operator, the filter predicate for
the filter operator, etc. Each edge has a stream name, an input operator with
the "from" tag, and an output operator with the "to" tag.

43

4. DCEP-Sim 2.0

Listing 4.1: Vertices and edges to represent simple distributed stream
processing query

operators :
− name: Output 0

type : output
parameters : {stream−id : −1}

− name: Select 0
type : select
parameters :

f ie lds : [B. price , B. auction]
− name: input 0

type : input
parameters : {stream−id : 3, al ias : B}

edges:
− stream: Bid

from: {name: input 0}
to : {name: Select 0}

− stream: OutputQuery
from: {name: Select 0}
to : {name: Output 0}

Plots

The plots tag can be used to define what kind of metrics the users want to
collect from the simulations. Specifically, it configures DCEP-Sim to trace
a certain type of measurements, which later on can be used to calculate
the specified metrics. Given that distributed stream processing is a highly
complex application with many possible things to measure and trace, it is
infeasible to collect all results. Moreover, we want the Expose configuration
to be all that a user needs to configure in order to configure experiments,
and collecting measurements is a critical aspect of conducting experiments.
Therefore, these plot tags are a good way of reducing the complexity of
running the simulations. Examples of metrics include input tuple latency,
window emission delay, window aggregation accuracy, and more.

Network configuration

The network configuration tag in the YAML file defines the bandwidth and
latency between the nodes in the experiment. These are crucial pieces of
information that affect the behavior of the experiments. A higher bandwidth
increases the maximum rate at which tuples or operator state can be
transmitted over the network. If the bandwidth is too high, the nodes
may get saturated with tuples or state, causing overload on nodes. If it is too
low, it could cause the network to get saturated, leading to loss of data.

Topology configuration is done in DCEP-Sim in a simplified manner. When
the nodes have been discovered, a star network is created, which means that
each node is connected to a router. This ends up with a star pattern where
the router is in the middle. This way, each node is connected to each other
through the router.

44

Conclusions & Future Work

4.6 Conclusions & Future Work

One of the ambitions in this dissertation was to publish an extended version
of the DCEP-Sim paper that consists of accurate processing delay models
that are based on real-world DSPSs such as Esper2, Flink [10], Siddhi [67],
or T-Rex [17]. To achieve this, we would need to methodically measure the
processing time performance in a real-world system that could be applied to
the DSPS operators in DCEP-Sim. The problem is that the more complex a
system becomes, the harder it is to model.

Therefore, the later works Paper V and VI of the Thesis applied uniform
processing delay models, where an operator takes the same amount of time
to process any tuple, regardless of how much state an operator has built up.
We also introduced the concept of state-dependent models, where processing
times may vary based on the accumulated state of the operator. These models
hold potential for a realistic approach that is promising for future research.

For DCEP-Sim to truly mirror real-world DSPSs, its execution model must
also be precise. Achieving this is no simple task, particularly with more
advanced DSPSs. Whereas some systems such as Siddhi can run in a simple
library mode with a single thread for the execution, advanced DSPSs such as
Flink have a complex execution framework that manages many threads. In
Flink, a Flink program is deployed to the JobManager, which is managed by
resource frameworks like YARN, and then deployed to worker nodes called
TaskManager’s. Each job is managed by a JobMaster, and multiple jobs can
execute in one Flink cluster, each managed by a JobMaster. To which extent
these entities affect the performance of the system is not trivial to understand.
Therefore, extensive experimental research needs to be conducted to learn
more. However, we have laid a foundation with the papers provided in this
dissertation that can be used to explore this matter further.

2https://www.espertech.com/esper

45

Chapter 5

Conclusion

This dissertation has focused on enabling configurable, replicable and
scalable DSPS experiments, and to expand the state-of-the-art to perform
adaptations in DSPSs with new migration mechanisms that can deal with geo-
distribution and unstable scenarios with lower bandwidth than centralized
cloud scenarios.

5.1 Answering the Research Questions

In this section, we delve into a discussion on how the research questions are
comprehensively addressed within the scope of this dissertation.

RQ1: Is it feasible to model accurately the behavior of DSPSs
in a discrete event simulator like DCEP-Sim?

We found that it is feasible to model some aspects of DSPSs behavior, notably
concerning forwarding devices and query processing, within a discrete event
simulator like DCEP-Sim. However, given the intricate nature of DSPSs, it
became clear that a comprehensive experimental framework is essential
for both creating and critically evaluating these models. This realization
naturally paved the way for the formulation of RQ2.

As we extended the query processing functionality with more query
processing operators, we settled for uniform processing delay models that
add a specific amount of delay each time a tuple is processed, which
only depends on the operator type. Without any such delay, the network
links overflow almost immediately. Scaling up the experiments with larger
workloads and higher speed networks would lead to network saturation, if
operators received or produced tuples at too high frequency, compared to
the processing delay. Therefore, throughout the rest of the dissertation, the
uniform processing delay models were used.

RQ2: Can common tasks and adaptation mechanisms be
identified across different DSPSs and CEP systems, and be
used to fairly compare and evaluate these systems through
realistic experiments?

Answering RQ2 required a deep understanding of the literature, in addition
to existing systems and frameworks.

47

5. Conclusion

The practical problem of executing distributed experiments in a simple
way was answered with Expose [75]. We identified a common set of tasks
that are generally executed during a DSPS experiment. This includes tasks
for deploying DSPS queries, setting up the stream topology, sending datasets
as data stream, and more.

One of the core features of DSPSs is the adaptation mechanisms, and we
explore this in Paper IV, that is a tutorial and survey of operator migration
[74]. This paper defines a conceptual model of operator migration that can
be used to understand the different types of migration mechanisms that exist,
and also the motivations for performing operator migration.

By answering RQ2, it was possible to identify gaps in the literature with
respect to migration mechanisms in geo-distributed environments.

RQ3: How can an adaptation mechanism for DSPSs work well
in geo-distributed environments while minimizing disruptions
during migration?

With RQ3, we aimed to investigate how operator migration mechanisms can
be made to work more efficiently in geo-distributed environments. We saw
an opportunity for new migration mechanisms that can work even when the
migration cannot be fully completed. In geo-distributed environments, the
network might degrade or nodes may fail. When nodes are geo-distributed,
it introduces challenges that can affect the reliability of the network and
complicate node management. One common way that DSPSs deal with
overload scenarios is that they apply load shedding and drop incoming tuples
to reduce the load. By combining load shedding and operator migration, we
developed Travel Light [78], a migration mechanism that sends the operator
state in descending order of usefulness. The most important state is sent
first, which ensures that even if the operator migration must end prematurely,
the system can continue on the new host with the most useful parts of the
operator state.

Another improvement to operator migration mechanisms was developed
after realizing that operators do not necessarily need all the state to be able
to process tuples. We then recognized the potential to migrate the operator
state based on the order required by the incoming tuples during migration.

The positive results from the evaluation of Travel Light in Paper V
[78] and Lazy Migration in Paper VI [76] are a clear reflection of their
well-constructed design and functionality. These outcomes emphasize the
robustness and versatility of Expose and DCEP-Sim, demonstrating their
viability and accuracy in the realm of distributed stream processing.

48

Summary of Contributions

5.2 Summary of Contributions

This Thesis has made several key contributions in the domain of DSPSs. In
this section, we highlight these core advancements:

• C1: We made a tracing framework for resource constrained WSN
devices that can trace the systems in low workload settings with
high timestamp accuracy, and high workload settings with reduced
timestamp accuracy. The low workload settings mode was used to
create accurate processing delay models, based on the modeling
methodology by Kristiansen et al. [42], and the high workload setting
was used to evaluate the accuracy of the models in terms of packet loss
simulation.

• C2: We created detailed processing delay models of the Siddhi and T-
Rex DSPS systems, based on the modeling methodology by Kristiansen
et al. [42]. In this process, we discovered limitations to DCEP-Sim, and
the need for more advanced experimentation frameworks, that can be
used to obtain data for the creation of such processing delay models.

• C3: We identified a set of common tasks that are executed by DSPSs in
experiments and general execution. These include setting up stream
topology, setting nodes as sink nodes, deploying DSPS queries, sending
datasets as data streams, block until a specified number of tuples have
been received, and more.

• C4: A framework for performing distributed stream processing
experiments was created. Experiments are defined in a human readable
and declarative way, by using YAML. A coordinator node starts up
with an experiment definition, and each system that is included in the
experiment must implement the API described by C3. The coordinator
parses the tasks from the experiment and issues them to the correct
node.

• C5: We created a conceptual model of operator migration to consol-
idate understanding of the state-of-the-art, using a mix of new and
established terminology. This conceptual model was used to survey
the literature on operator migration, both with respect to how the
migration is done (migration mechanisms), and what triggers it (mi-
gration decisions). We did a quantitative evaluation of the conceptual
model through a migration decision use case and operator migration
experiments, that showed that advanced migration mechanisms can
migrate 62 times bigger state, and 19 times faster.

• C6: We introduced state shedding as a strategy to manage operator
migrations in event processing systems when full state transfers might

49

5. Conclusion

degrade QoS. This technique partitions the operator state and assigns
utilities to prioritize the migration of the most valuable parts within a
given time frame. Our simulations with pattern-matching queries show
that state shedding sustains higher QoS and has less impact on query
results compared to traditional migration approaches.

• C7: We introduced Lazy Migration, an operator semantic aware
migration mechanism for DSPSs. This innovative mechanism optimizes
operator state management based on its semantics, like window extents
for aggregation or tuple lists for joins. Lazy Migration has two distinct
modes: the latency mode, which harnesses window semantics to
strategically migrate state partitions reducing output latency, and the
utility mode that schedules partial state migrations prioritizing the most
crucial states. Through extensive experimentation and comparison with
state-of-the-art solutions, using various join and aggregation use-cases,
we have shown the distinct advantages of Lazy Migration over other
prevalent migration strategies.

• C8: Through the successful implementation and evaluation of Lazy
Migration, the capabilities and extended functionalities of both
Expose and the DCEP-Sim are demonstrated. This highlights their
practical applicability and efficiency in distributed stream processing
applications.

Additionally, this Thesis made an effort to provide the research community
with open source code of each project that we developed.

5.3 Critical Assessment

This work attempts to solve the described problems in the best way, but we
acknowledge that there are limitations, like in all research. The topic is very
broad and complex, and modeling such systems is a non-trivial task. Our
approach has been systematic and deliberate, but there are ways that would
have improved the investigation and results. First, developing use cases that
are based on actual queries and workloads that are observed in real-world
situations where data stream processing is done. If we had, e.g., three such
use cases that are created in collaboration with companies, we could create
benchmarks that are more realistic. However, the difficulty of developing
such use cases and doing collaboration with companies is high. Companies
cannot collect any data from their systems that relates to customers without
analyzing the ethical issue in detail. Moreover, the general difficulties of
collecting, understanding and cleaning real data is a significant challenge in
experimental research.

The decision to utilize DCEP-Sim [66] as the evaluation platform for Lazy
Migration [76] was a carefully considered one. DCEP-Sim offers a controlled

50

Future Work

environment to conduct experiments with replicable results (with ease).
However, its representation of real-world systems is somewhat constrained
due to its simplistic processing delay models and restricted scalability. The
scalability concern primarily stems from the inherent limitations of ns-3 [58],
the underlying foundation for DCEP-Sim. ns-3 runs its detailed simulation
models, simulating every aspect of packet transmission, in a single-threaded
manner. This approach contrasts with real-world distributed systems where
nodes can not only forward packets and process tuples concurrently but
also operate several processes in parallel, leveraging the capabilities of each
CPU core. In DCEP-Sim, this single-threaded restriction is a significant
limitation. To navigate around this during our experiments, we executed
multiple simulations simultaneously, thus exploiting the multi-core capability
of our testbed. However, this strategy introduced a new challenge: RAM
became a significant bottleneck. Despite having a substantial amount of
RAM (377 GB) at our disposal, we had to oversee memory consumption,
ensuring that concurrently running simulations, even of a relatively modest
scale, did not overwhelm the memory capacity of the system.

5.4 Future Work

This dissertation opens up for several possible future work topics, and we
explore two important topics in this section: extensions to DCEP-Sim and the
integration of DCEP-Sim in a real-world DSPS to function as a digital twin.

5.4.1 DCEP-Sim extensions

DCEP-Sim can be extended in multiple ways to reflect real-world conditions
more realistically. In mobile settings, energy consumption is an important
consideration. If the simulated setting includes mobile devices, DCEP-Sim
should use energy consumption models that drain the battery of devices
when data is received and transmitted, as well as when data is processed by
the DSPS.

Ns-3, the network simulator that DCEP-Sim is built on, supports energy
models for simulating the energy usage of radio devices. In order to use these
models to simulate the energy consumption of data transmission, DCEP-Sim
would have to use wireless communication.

Modeling the energy usage of a DSPS processing tuples is harder, since it
requires new energy models. The energy models would have to consider the
energy consumption when the device is inactive, and when it is processing
tuples. There are multiple ways of doing this. The easiest way is to consume
a specified amount of energy for each millisecond that the device processes
a tuple. This type of model can then be evaluated by comparing it with
real-world measurements. A more advanced way would be to model the
hardware of the device, such that the time that it takes to process tuples

51

5. Conclusion

is based on clock cycles, and each clock cycle consumes a certain amount
of energy. This type of cycle-accurate energy model has been explored by
Chang et al. in [12].

5.4.2 Digital twin

A digital twin is a simulated system that reflects a real-world constituent in a
way to help perform critical decisions.

DCEP-Sim 2.0 is meant to be a simulator that simulates the most
important aspects of DSPSs, including making adaptation decisions when
it benefits the DSPS the most. One way to apply DCEP-Sim could be to
embed it in a real-world DSPS, feed predicted data traffic into DCEP-Sim,
run simulations, and extract the adaptation decisions that were predicted to
improve the performance. These adaptation decisions can then be scheduled
in the real-world system before the adversary conditions are faced that
demand a change.

This requires a few significant changes and enhancements to DCEP-
Sim. First, it requires realistic data traffic models for producing data. The
data produced must reflect the real-world scenario in order to have value.
However, it is unrealistic to aim for fully accurate traffic generation models
that can predict the future. Instead, the query processing of DCEP-Sim can
be modified to work with approximated data instead of actual data tuples. In
this case, data tuples would have a certain size and data stream ID, but not
have actual attribute values. Predicting unique attribute values is impossible,
as they can vary significantly. The problem is that operators like filter and
join in DSPSs require specific attribute values in order to determine whether
to produce output tuples or not.

The solution to this problem is to modify the query processing of DCEP-
Sim to a mode where query operators such as filter and join emit tuples
based on statistical selectivity. The real-world system collects statistics
on how many tuples pass the filter, and are joined with other tuples, and
pass this to DCEP-Sim. DCEP-Sim then simulates with these statistics to
determine how many tuples to produce in the conditional operators. This
way, the traffic generator models only have to know how many tuples are
expected, and not detailed attribute values. Several considerations would
need to be addressed in order to apply statistics to aid DCEP-Sim. How
frequently should the real-world system update the statistics to keep the
simulation relevant? What level of variance in the data would render the
statistics outdated? How would potential anomalies or outliers be handled?

In conclusion, this Thesis pushed forward the state-of-the-art in tools for
performance evaluation of DSPS and operator migration, and opened up for
further research challenges.

52

Bibliography

[1] Abadi, D. et al. “Aurora: a data stream management system”. In:
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. 2003, pp. 666–666.

[2] Agrawal, J. et al. “Efficient pattern matching over event streams”. In:
Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. 2008, pp. 147–160.

[3] Amarasinghe, G. et al. “ECSNeT++: A simulator for distributed
stream processing on edge and cloud environments”. In: Future
Generation Computer Systems vol. 111 (2020), pp. 401–418.

[4] Arasu, A. et al. “Linear road: a stream data management benchmark”.
In: Proceedings of the Thirtieth international conference on Very
large data bases-Volume 30. VLDB Endowment. 2004, pp. 480–491.

[5] Babcock, B., Datar, M., and Motwani, R. “Load shedding for
aggregation queries over data streams”. In: Proceedings. 20th
international conference on data engineering. IEEE. 2004, pp. 350–
361.

[6] Begoli, E. et al. “One SQL to Rule Them All-an Efficient and
Syntactically Idiomatic Approach to Management of Streams and
Tables”. In: Proceedings of the 2019 International Conference on
Management of Data. 2019, pp. 1757–1772.

[7] Bhadgale, A. M., Gavas, S. R., and Goyal, P. “Natural language to SQL
conversion system”. In: International Journal of Computer Science
Engineering and Information Technology Research vol. 3, no. 2
(2013), pp. 161–166.

[8] Boden, C. et al. “PEEL: A framework for benchmarking distributed
systems and algorithms”. In: Technology Conference on Performance
Evaluation and Benchmarking. Springer. 2017, pp. 9–24.

[9] Bonomi, F. et al. “Fog computing and its role in the internet of things”.
In: Proceedings of the first edition of the MCC workshop on Mobile
cloud computing. 2012, pp. 13–16.

[10] Carbone, P. et al. “Apache flink: Stream and batch processing in a
single engine”. In: Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering vol. 36, no. 4 (2015).

53

Bibliography

[11] Castro Fernandez, R. et al. “Integrating Scale out and Fault Tolerance
in Stream Processing Using Operator State Management”. In:
Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’13. New York, New York, USA:
Association for Computing Machinery, 2013, pp. 725–736.

[12] Chang, N., Kim, K., and Lee, H. G. “Cycle-accurate energy consump-
tion measurement and analysis: Case study of ARM7TDMI”. In: Pro-
ceedings of the 2000 international symposium on Low power elec-
tronics and design. 2000, pp. 185–190.

[13] Chang, X. “Network simulations with OPNET”. In: Proceedings of the
31st conference on Winter simulation: Simulation—a bridge to the
future-Volume 1. 1999, pp. 307–314.

[14] Chapnik, K., Kolchinsky, I., and Schuster, A. “DARLING: data-aware
load shedding in complex event processing systems”. In: Proceedings
of the VLDB Endowment vol. 15, no. 3 (2021), pp. 541–554.

[15] Chi, Y. et al. “Loadstar: A load shedding scheme for classifying data
streams”. In: Proceedings of the 2005 siam international conference
on data mining. SIAM. 2005, pp. 346–357.

[16] Chintapalli, S. et al. “Benchmarking streaming computation engines:
Storm, flink and spark streaming”. In: 2016 IEEE international
parallel and distributed processing symposium workshops (IPDPSW).
IEEE. 2016, pp. 1789–1792.

[17] Cugola, G. and Margara, A. “Complex event processing with T-REX”.
In: Journal of Systems and Software vol. 85, no. 8 (2012), pp. 1709–
1728.

[18] Cugola, G. and Margara, A. “Processing Flows of Information: From
Data Stream to Complex Event Processing”. In: ACM Comput. Surv.
vol. 44, no. 3 (June 2012), 15:1–15:62.

[19] Del Monte, B. et al. “Rhino: Efficient management of very large
distributed state for stream processing engines”. In: Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data. 2020, pp. 2471–2486.

[20] Fülöp, L. J. et al. “Predictive complex event processing: a conceptual
framework for combining complex event processing and predictive
analytics”. In: Proceedings of the fifth Balkan conference in informat-
ics. 2012, pp. 26–31.

[21] Gedik, B. et al. “Adaptive load shedding for windowed stream
joins”. In: Proceedings of the 14th ACM international conference
on Information and knowledge management. 2005, pp. 171–178.

54

Bibliography

[22] Gedik, B., Wu, K.-L., and Philip, S. Y. “Efficient construction of
compact shedding filters for data stream processing”. In: 2008 IEEE
24th International Conference on Data Engineering. IEEE. 2008,
pp. 396–405.

[23] Gedik, B. et al. “A load shedding framework and optimizations for
m-way windowed stream joins”. In: 2007 IEEE 23rd International
Conference on Data Engineering. IEEE. 2007, pp. 536–545.

[24] Ghosh, P. K., Dey, S., and Sengupta, S. “Automatic sql query formation
from natural language query”. In: International Journal of Computer
Applications vol. 975 (2014), p. 8887.

[25] Goyal, T., Singh, A., and Agrawal, A. “Cloudsim: simulator for cloud
computing infrastructure and modeling”. In: Procedia Engineering
vol. 38 (2012), pp. 3566–3572.

[26] Gu, R. et al. “Meces: Latency-efficient Rescaling via Prioritized State
Migration for Stateful Distributed Stream Processing Systems”. In:
2022 USENIX Annual Technical Conference (USENIX ATC 22). 2022,
pp. 539–556.

[27] Gupta, H. et al. “iFogSim: A toolkit for modeling and simulation of
resource management techniques in the Internet of Things, Edge and
Fog computing environments”. In: Software: Practice and Experience
vol. 47, no. 9 (2017), pp. 1275–1296.

[28] Hanif, M., Yoon, H., and Lee, C. “Benchmarking tool for modern
distributed stream processing engines”. In: 2019 International
Conference on Information Networking (ICOIN). IEEE. 2019, pp. 393–
395.

[29] Hesse, G. et al. “Senska–Towards an Enterprise Streaming Bench-
mark”. In: Technology Conference on Performance Evaluation and
Benchmarking. Springer. 2017, pp. 25–40.

[30] Hoffmann, M. et al. “Megaphone: Latency-conscious state migration
for distributed streaming dataflows”. In: Proceedings of the VLDB
Endowment vol. 12, no. 9 (2019), pp. 1002–1015.

[31] Holz, H. J. et al. “Research Methods in Computing: What are they, and
how should we teach them?” In: Working group reports on ITiCSE
on Innovation and technology in computer science education. 2006,
pp. 96–114.

[32] Isah, H. et al. “A survey of distributed data stream processing
frameworks”. In: IEEE Access vol. 7 (2019), pp. 154300–154316.

[33] Jepsen, T. et al. “Life in the fast lane: A line-rate linear road”. In:
Proceedings of the Symposium on SDN Research. 2018, pp. 1–7.

55

Bibliography

[34] Joyce, J. et al. “Monitoring distributed systems”. In: ACM Transactions
on Computer Systems (TOCS) vol. 5, no. 2 (1987), pp. 121–150.

[35] Karimov, J. et al. “Benchmarking distributed stream data processing
systems”. In: 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE. 2018, pp. 1507–1518.

[36] Kate, A. et al. “Conversion of natural language query to SQL
query”. In: 2018 Second International Conference on Electronics,
Communication and Aerospace Technology (ICECA). IEEE. 2018,
pp. 488–491.

[37] Kaur, S. and Bali, R. S. “SQL generation and execution from natural
language processing”. In: Int. J. Comput. Bus. Res (2012), pp. 2229–
6166.

[38] Kiatipis, A. et al. “A Survey of Benchmarks to Evaluate Data Analytics
for Smart-* Applications”. In: arXiv preprint arXiv:1910.02004
(2019).

[39] Kleiminger, W., Kalyvianaki, E., and Pietzuch, P. “Balancing load in
stream processing with the cloud”. In: 2011 IEEE 27th International
Conference on Data Engineering Workshops. IEEE. 2011, pp. 16–21.

[40] Kombade, C. et al. “Natural language processing with some abbrevia-
tion to SQL”. In: International journal for research in applied science
and engineering technology vol. 8, no. 5 (2020), pp. 1046–1048.

[41] Korableva, O. N., Kalimullina, O. V., and Kurbanova, E. “Building the
Monitoring Systems for Complex Distributed Systems: Problems and
Solutions.” In: ICEIS (2). 2017, pp. 221–228.

[42] Kristiansen, S., Plagemann, T., and Goebel, V. “A methodology to
model the execution of communication software for accurate network
simulation”. In: ACM Transactions on Modeling and Computer
Simulation (TOMACS) vol. 26, no. 1 (July 2015), pp. 1–31.

[43] Kufel, Ł. “Tools for distributed systems monitoring”. In: Foundations
of Computing and Decision Sciences vol. 41, no. 4 (2016), pp. 237–
260.

[44] Lu, R. et al. “Stream bench: Towards benchmarking modern dis-
tributed stream computing frameworks”. In: 2014 IEEE/ACM 7th In-
ternational Conference on Utility and Cloud Computing. IEEE. 2014,
pp. 69–78.

[45] Luckham, D. “A Brief Overview of the Concepts of CEP”. In: Carbon
vol. 45 (2007), p. 15.

[46] Mahmud, R. et al. “iFogSim2: An extended iFogSim simulator for
mobility, clustering, and microservice management in edge and
fog computing environments”. In: Journal of Systems and Software
vol. 190 (2022), p. 111351.

56

Bibliography

[47] Mansouri-Samani, M. and Sloman, M. “Monitoring distributed
systems”. In: IEEE network vol. 7, no. 6 (1993), pp. 20–30.

[48] Mansouri-Samani, M. and Sloman, M. Monitoring distributed systems:
A survey. Citeseer, 1992.

[49] Mayer, R. et al. “Emufog: Extensible and scalable emulation of
large-scale fog computing infrastructures”. In: 2017 IEEE Fog World
Congress (FWC). IEEE. 2017, pp. 1–6.

[50] Mendes, M. R., Bizarro, P., and Marques, P. “A framework for
performance evaluation of complex event processing systems”. In:
Proceedings of the second international conference on Distributed
event-based systems. 2008, pp. 313–316.

[51] Mendes, M. R., Bizarro, P., and Marques, P. “FINCoS: benchmark
tools for event processing systems”. In: Proceedings of the 4th
ACM/SPEC International Conference on Performance Engineering.
2013, pp. 431–432.

[52] Naik, B. B. et al. “An SQL query generator for cross-domain human
language based questions based on NLP model”. In: Multimedia Tools
and Applications (2023), pp. 1–24.

[53] Narhe, A. et al. “SQL Query Formation for Database System using
NLP”. In: International Journal of Engineering Research and vol. 8
(2019).

[54] Norouzifard, M., Davarpanah, S., Shenassa, M., et al. “Using
natural language processing in order to create SQL queries”. In:
2008 International Conference on Computer and Communication
Engineering. IEEE. 2008, pp. 600–604.

[55] Ottenwälder, B. et al. “MCEP: A mobility-aware complex event
processing system”. In: ACM Transactions on internet technology
(TOIT) vol. 14, no. 1 (2014), pp. 1–24.

[56] Qayyum, T. et al. “FogNetSim++: A toolkit for modeling and
simulation of distributed fog environment”. In: IEEE Access vol. 6
(2018), pp. 63570–63583.

[57] Rabl, T. et al. “The vision of BigBench 2.0”. In: Proceedings of the
Fourth Workshop on Data analytics in the Cloud. 2015, pp. 1–4.

[58] Riley, G. F. and Henderson, T. R. “The ns-3 network simulator”. In:
Modeling and tools for network simulation. Ed. by Wehrle, K., Güneş,
M., and Gross, J. Berlin, Heidelberg: Springer, 2010, pp. 15–34.

[59] Rivetti, N., Busnel, Y., and Querzoni, L. “Load-aware shedding in
stream processing systems”. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems.
2016, pp. 61–68.

57

Bibliography

[60] Schwiderski, S. Monitoring the behaviour of distributed systems.
Tech. rep. University of Cambridge, Computer Laboratory, 1996.

[61] Shukla, A., Chaturvedi, S., and Simmhan, Y. “RIoTBench: An IoT
benchmark for distributed stream processing systems”. In: Concur-
rency and Computation: Practice and Experience vol. 29, no. 21
(2017), e4257.

[62] Singh, S. P. et al. “Simulation and emulation tools for fog computing”.
In: Recent Advances in Computer Science and Communications
(Formerly: Recent Patents on Computer Science) vol. 15, no. 3 (2022),
pp. 315–322.

[63] Slo, A., Bhowmik, S., and Rothermel, K. “hSPICE: state-aware event
shedding in complex event processing”. In: Proceedings of the
14th ACM International Conference on Distributed and Event-based
Systems. 2020, pp. 109–120.

[64] Slo, A., Bhowmik, S., and Rothermel, K. “State-Aware Load Shedding
from Input Event Streams in Complex Event Processing”. In: IEEE
Transactions on Big Data (2020).

[65] Sonmez, C., Ozgovde, A., and Ersoy, C. “Edgecloudsim: An environ-
ment for performance evaluation of edge computing systems”. In:
Transactions on Emerging Telecommunications Technologies vol. 29,
no. 11 (2018), e3493.

[66] Starks, F., Plagemann, T. P., and Kristiansen, S. “DCEP-Sim: An Open
Simulation Framework for Distributed CEP”. In: Proceedings of the
11th ACM International Conference on Distributed and Event-based
Systems. DEBS ’17. Barcelona, Spain: ACM, 2017, pp. 180–190.

[67] Suhothayan, S. et al. “Siddhi: A second look at complex event pro-
cessing architectures”. In: Proceedings of the 2011 ACM workshop
on Gateway computing environments. 2011, pp. 43–50.

[68] Tatbul, N. and Zdonik, S. “Window-aware load shedding for aggre-
gation queries over data streams”. In: VLDB. Vol. 6. 2006, pp. 799–
810.

[69] Tatbul, N. et al. “Load shedding in a data stream manager”. In:
Proceedings 2003 vldb conference. Elsevier. 2003, pp. 309–320.

[70] Tucker, P. et al. NEXMark—A Benchmark for Queries over Data
Streams DRAFT. Tech. rep. Technical report, OGI School of Science
& Engineering at OHSU, Septembers, 2008.

[71] Uma, M. et al. “Formation of SQL from natural language query
using NLP”. In: 2019 International Conference on Computational
Intelligence in Data Science (ICCIDS). IEEE. 2019, pp. 1–5.

58

Bibliography

[72] Varga, A. “OMNeT++”. In: Modeling and tools for network simulation.
Springer, 2010, pp. 35–59.

[73] Volnes, E., Kristiansen, S., and Plagemann, T. “Improving the
accuracy of timing in scalable WSN simulations with communication
software execution models”. In: Computer Networks vol. 188 (2021),
p. 107855.

[74] Volnes, E., Plagemann, T., and Goebel, V. “To Migrate or not to
Migrate: An Analysis of Operator Migration in Distributed Stream
Processing”. In: IEEE Communications Surveys & Tutorials (in
revision) (2023).

[75] Volnes, E. et al. “EXPOSE: Experimental Performance Evaluation of
Stream Processing Engines Made Easy”. In: Technology Conference
on Performance Evaluation and Benchmarking. Springer. 2020,
pp. 18–34.

[76] Volnes, E. et al. “Lazy Migration: Just-In-Time Fragmented State
Migration For Distributed Stream Processing”. In: 2023.

[77] Volnes, E. et al. “Modeling the Software Execution of CEP in DCEP-
Sim”. In: Proceedings of the 13th ACM International Conference on
Distributed and Event-based Systems. 2019, pp. 244–247.

[78] Volnes, E. et al. “Travel light: state shedding for efficient operator mi-
gration”. In: Proceedings of the 16th ACM International Conference
on Distributed and Event-Based Systems. 2022, pp. 79–84.

[79] Zhang, X., Freschl, J. L., and Schopf, J. M. “A performance study
of monitoring and information services for distributed systems”. In:
High Performance Distributed Computing, 2003. Proceedings. 12th
IEEE International Symposium on. IEEE. 2003, pp. 270–281.

[80] Zhao, B. “Complex event processing under constrained resources
by state-based load shedding”. In: 2018 IEEE 34th International
Conference on Data Engineering (ICDE). IEEE. 2018, pp. 1699–1703.

[81] Zhao, B., Hung, N. Q. V., and Weidlich, M. “Load shedding for complex
event processing: Input-based and state-based techniques”. In: 2020
IEEE 36th International Conference on Data Engineering (ICDE).
IEEE. 2020, pp. 1093–1104.

[82] Zhu, Y., Rundensteiner, E. A., and Heineman, G. T. “Dynamic plan
migration for continuous queries over data streams”. In: Proceedings
of the 2004 ACM SIGMOD international conference on Management
of data. GSCC: 0000194. 2004, pp. 431–442.

59

Bibliography

60

Papers

Paper I

Improving the accuracy of timing
in scalable WSN simulations with
communication software
execution models

Espen Volnes, Stein Kristiansen, Thomas Plagemann

Published in Elsevier Computer Networks, April 2021, volume 188, DOI:
10.1016/j.comnet.2021.107855.

I

Abstract

Emerging infrastructure-less network architectures such as WSNs
consist of devices that perform packet processing in software. General-
purpose network simulators do currently not possess models to simulate
the intra-node delay of such devices. For example, a TelosB mote with
TinyOS spends seven ms on processing packets with a size of 36 bytes
and fifteen ms on packets of 124 bytes. The core problem addressed in
this work is that simulation does not include such delays, and therefore,
the results are inaccurate. To overcome this problem, we create a
communication software execution model of TelosB that accounts for
its temporal behavior to enable more accurate WSN simulations in the
ns-3 simulator. A challenge is to create a tracing framework for TinyOS
that can be used to accurately and reliably trace the behavior of a
very resource-constrained system. By analyzing the software execution
of TelosB running TinyOS in the emulator Cooja/MSPSim and on a
real device, we discover discrepancies in the temporal behavior. The
evaluation of our model shows that it is scalable and accurate; the
simulated intra-OS delay deviates at most 5% from the intra-OS delay in
the real mote. When we include the model in simulations, the forwarding
capacity of a mote is decreased by 36%. The WSN community can use
this model for more realistic simulations, and future WSN mote models
will be easier to make with it as a foundation.

63

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

I.1 Introduction

Network simulators are typically used to test and evaluate networks and
communication protocols. Users expect that these simulators produce
accurate results concerning the functional protocol behavior and temporal
behavior of executing the protocols. The temporal behavior can be divided
into two groups: (1) transmission delay when packets are sent in between
nodes and (2) intra-node delay when intermediate nodes forward packets.
This paper explores intra-OS delay, the part of intra-node delay that is caused
by the communication software execution (CSE). General-purpose network
simulators differ from emulators and real testbeds in that they use high-level
models that facilitate scalability, extensibility, and the analysis of models.
These models accurately simulate transmission delay and queuing delay, but
ignore software execution times on the assumption that they are comparably
insignificant, which is the case for high-speed Internet routers that consist
of efficient and specialized hardware. These models become significantly
inaccurate, however, when applied in scenarios where that assumption
does not hold, e.g., with highly resource-constrained forwarding devices in
wireless sensor networks (WSNs).

A WSN is a network that consists of wireless sensor nodes (motes)
that collect useful information for various applications [27, 46]. Examples
include monitoring of the environment for hazardous events [21], health
monitoring of patients [31], military applications [12], automated traffic
control systems [23], underwater applications [26], agricultural applications
[41], medical applications [38], motion tracking of people [50], and more.
Many useful application areas for WSNs are yet to be deployed in real
scenarios. Therefore, high-level simulation is an excellent first step in the
direction of deploying a WSN application.

We show in this paper that using general-purpose network simulators
to simulate forwarding nodes in WSNs should be accompanied by CSE
models for simulating the delay caused by intermediate devices, because
they add a significant delay to the total end-to-end delay. For example, Table
I.1 describes the transmission delay (Tx delay) and intra-OS delay of an
intermediate mote that forwards packets of various sizes. Intra-OS delay is
the amount of time that the OS spends processing the packets. The table
shows intra-OS delay readings from three different intermediate motes: a
TelosB mote emulated with Cooja/MSPSim [14, 39, 51], a real TelosB mote
and a simulated mote in the discrete-event network simulator ns-3 [42].
The intra-OS delay caused by a real TelosB mote that runs TinyOS (called
T inyOS/T elosB) is substantial for two reasons. First, it is much higher than
the transmission delay. Second, the intra-OS delay varies greatly with the
packet size; the delay for the largest packet is more than twice as much as
for the smallest packet. Since ns-3 does not simulate packet processing in
the node, the intra-node delay is 0 ms for all packet sizes. Consequently,

64

Introduction

ignoring intra-OS delay results in inaccurate simulation of end-to-end delay
in ns-3.

Intra-OS delay
Packet size Tx delay Cooja/MSPSim Real TinyOS/TelosB ns-3

36 bytes 1.3 ms 5.65 ms 7.1 ms 0 ms
57 bytes 2 ms 6.9 ms 9.2 ms 0 ms
76 bytes 2.5 ms 7.9 ms 10.7 ms 0 ms
120 bytes 4 ms 10 ms 14.8 ms 0 ms

Table I.1: Comparison of transmission (Tx) and intra-OS delays when sending
packets of variable sizes.

The discrepancy in end-to-end delay between the end-to-end delay from
a real T inyOS/T elosB system versus an emulated mote in Cooja/MSPSim in
Table I.1 demonstrates that accurate software execution simulation of a
system is not trivial. MSPSim fails to simulate this crucial aspect even
though it executes the same code as the real system does. We describe
later that the reason for the inaccuracy is that transferring data between the
radio transceiver and the main memory is inaccurate in MSPSim. Cooja is a
network simulator designed for Contiki OS, but with the help of an emulator
such as MSPSim [15] also runs the code of other OSs such as TinyOS [14, 39,
51]. Another issue with emulators such as MSPSim is that they are several
orders of magnitude less scalable than general-purpose network simulators
such as ns-3, as we show in Section I.5. Therefore, they might be more
practical for simulating WSNs that might contain several thousand motes.

ns-3, along with all popular high-level network simulators such as
OMNET++ and OPNET, do not simulate the intra-OS delay, which leads
to a lower accuracy. Therefore, we seek to improve the accuracy of WSN
simulations in ns-3. We do this by creating and integrating a CSE model
of the WSN system T inyOS/T elosB into ns-3. This model adds processing
delay to the simulation by delaying the execution of existing models by the
appropriate amount. Additionally, the model includes packet and service
queues which can have limited capacity. An overflowed queue may result in
packet loss. Depending on the load on the system and size of the packets,
the delay can vary. As a result, the model may increase the accuracy of
the simulated end-to-end delay, jitter, and packet loss. Our goal is that the
model reflects the behavior of a real mote reasonably well. In heterogeneous
simulations where nodes have different capacity, such a model might have a
significant impact on applications, because the slower nodes might not keep
up with the network traffic. Moreover, since the processing delay (shown in
Table I.1) is so significant, a reasonably accurate CSE model of a WSN system
will vastly increase the accuracy of the simulations when the alternative is

65

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

no model at all.
Although there exist cycle accurate simulators for many hardware

platforms that can accurately simulate the timing of software execution, they
are generally too computationally complex for large-scale network simulation.
In addition, they lack the high-level abstractions necessary to efficiently set
up, run, and analyse large scale network simulations. In other words, there is
a lack of simulation tools to close the gap between very accurate simulation
of individual computers, and very scalable network simulation. An increasing
amount of new and emerging network technologies, like sensor networks and
Internet of Things (IoT), require such tools for accurate network simulation.
Closing this gap requires a trade-off between accuracy on one hand, and
scalability and high-level abstractions on the other. A central modeling
challenge is the large heterogeneity of software and hardware employed in
such networks, and the fact that network simulators fundamentally are not
designed to be extended with such models.

We use a modeling methodology defined by Kristiansen et al. [29] that
describes how to use traces from real systems to create reusable software
execution models. They only have to be created once, and can afterward
easily be used by others for simulations. This methodology has previously
been used to model the CSE of hand-held mobile devices, i.e., Galaxy Nexus,
Google Nexus One, and Nokia N900 [9, 29]. In this work, we model a much
more resource-constrained device, i.e., a TelosB mote that runs the TinyOS
operating system. T inyOS/T elosB is a relevant system to model for several
reasons. First, since it is a low-power system and has a CPU frequency
of only 4MHz, the software execution delay is much more significant than
in many other systems. Second, the straightforward single-threaded and
single-core nature of the system indicates that the system can be accurately
simulated using simpler models. Finally, WSN is a relevant type of network
that is becoming ubiquitous with the advent of the IoT. The model is used to
validate the methodology and may be used by others to improve the accuracy
of their own ns-3 simulations. We hope the software execution model can be
of value to IoT researchers by facilitating more realistic simulations.

The contributions of this work comprise:

1. an analysis of the temporal behavior of the communication software in
a TelosB mote running TinyOS,

2. a comparison of the execution in a real system, an emulated mote, and
ns-3,

3. a tracing framework that overcomes the challenges caused by the very
low amount of memory on the mote,

4. the analysis and instrumentation of T inyOS/T elosB to trace its temporal
behavior,

66

Related Work

5. a CSE model based on traces and its integration in ns-3, and

6. an evaluation of the CSE model.

This paper is an extended version of the conference paper in [48]. It
includes a new experiment for evaluating the accuracy of the model. We
extend Experiment 1 to additionally compare the execution times of the
packet processing in an emulated mote using Cooja/MSPSim. Furthermore,
we include an additional experiment for evaluating the accuracy of the model.
Finally, everything is explained more in detail, including the motivations for
the model and contributions such as the tracing framework, analysis of the
communication software, model creation, and evaluation.

The remainder of the paper is structured as follows. In Section I.2, the
related work is discussed. In Section I.3, the modeling methodology is
presented. In Section I.4, the tracing framework is explained, we analyze
the communication software of T inyOS/T elosB, and show how we derive the
model from the traces. In Section I.5, we evaluate the model, and in Section
I.6, we conclude the paper.

I.2 Related Work

Tracing the temporal behavior of TinyOS is discussed several times in the
literature.

In [20], a lightweight tracing framework is presented that enables
tracing of behavioral and timing events in TOSSIM. In [19], the same
authors present an improved tracing framework called LIMOW for tracing
real devices. With LIMOW, trace tuples are transmitted over the radio.
We use serial communication because the radio is used as part of the
application that we trace, and it is important for us that the tracing affects
the application behavior minimally. Moreover, instrumentation with LIMOW
is semi-automatic to minimize the changes that need to be done to a traced
application, where we use a selective and coarse-grained instrumentation
approach. Thus, tracing any location in the TinyOS code with our framework
is easy to do. In [43], a generic and efficient logging framework called
TinyLTS is presented as an alternative to ad-hoc tracing frameworks. The
primary evaluation criteria used in the paper is flexibility and ease-of-use,
whereas we need low tracing delay and storage overhead. Since our tracing
framework is made only for the purpose of model creation and evaluation
and must, therefore, incur minimal overhead, we instead use a specialized
solution.

Several software execution delay modeling methodologies exist in the
literature aside from the one we use, with varying degrees of accuracy,
scalability, and modeling effort.

67

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

In [3], a methodology to create high-level models of network devices
is presented, which requires little knowledge about the system’s internals.
The modeling methodology we use is different because it requires a deep
understanding of the modeled system and thus has a higher modeling effort,
but also results in more realistic models. In [35], an approach to model
the intra-node delay of resource-constrained network nodes is presented
and used in [4] to create models to simulate delay caused by networking
software in the NAPI and NIC drivers in Linux. Their framework does not
appear to support the simulation of branching in intra-node behavior based
on the value of state variables, which ours does. Moreover, their framework
appears to involve a manual creation of the model followed by calibration
based on real measurements, whereas our methodology describes how to
generate models automatically from traces. A simulation tool called RTNS is
presented in [40] that can simulate communication and intra-node delays of
WSN devices. It consists of an integration of the general-purpose network
simulator ns-2 with the real-time OS simulator RTSim, both of which are
discrete-event simulators. RTNS models can not be parameterized to reflect
any given real device, while our methodology explains how to derive models
from traces captured on real systems.

I.3 Modeling Methodology

We use the methodology defined by Kristiansen et al. [29], which enables
modelers to make the above mentioned trade-off in a flexible manner. It
is based on a set of general, high-level abstractions and events definitions
that facilitate the modeling of a wide range of device-types, which can be
extended when necessary for new types of software and hardware. While
the modeling of an entire OS stack requires quite a lot of modeling effort,
the models are inherently modular and each sub-model (called Software
Execution Models, SEM) need only to be created once, after which they can
be re-used and re-combined in arbitrary ways for subsequent simulations.
The models are defined using high-level statements similar to those used
in a programming language, facilitating low-effort studies of the impact of
modifications, where re-parametrization and alternative compositions of the
network stack impact results. The methodology defines a highly flexible
mechanism to map SEM onto protocol models in existing network simulators
to endow these protocol models with the timing behaviour of real software
implementations. Crucially, this mechanism is network simulator agnostic,
i.e., it works with any discrete event simulator provided with a well-defined
extension.

The methodology defines a step-by-step approach to derive from a real
device a trace-based CSE model that can be executed in a discrete-event
simulator such as ns-3. Including a CSE model in an ns-3 simulation improves

68

Design

the accuracy of packet delay and packet loss. Packet delay gets simulated
more accurately because we add intra-OS delays. As packets queue up inside
the node due to intra-OS delay, packet queues may become full and cause
packet loss.

We perform five steps to create the model. First, the software is
instrumented to capture all relevant temporal behaviors, which requires
a tracing framework for TinyOS and an analysis of the communication
software of TinyOS. Second, the software is traced with different packet
sizes to capture how the processing times change with the packet size. Third,
we verify the correctness of the traces. Fourth, the traces are converted
into services that together represent the temporal behavior of the modeled
system, and are placed in a device file. Fifth, the accuracy of the model is
assessed. The model’s ability to simulate latency and packet loss is evaluated
by comparing its latency and packet loss to a real mote at low and high packet
rates, respectively. Therefore, models created with this methodology are
designed to simulate both latency and packet loss accurately, even though
we only collect traces at a low packet rate to create the model.

The device file is parsed to create Service Execution Models (SEMs).
SEMs model individual portions of software execution. These can be executed
inside a model of their execution environment in a discrete-event simulator.
When we run the SEMs in the simulator, they introduce the delay based on
the observed temporal behavior of the service during the tracing. It can still
be the case that an SEM is inaccurate, which is why one should compare the
behavior of the SEM with a real device to see if they have similar behavior
when run. An SEM is either invoked by another SEM or from existing
protocol models, which are called Functional Service Models (FSMs). FSMs
first invoke SEMs, for instance, when a transceiver model receives a packet,
and the SEM invokes another FSM through triggers defined in the SEMs.

Figure I.1 describes a step-by-step process on how the CSE model is
executed in discrete-event simulators. It starts with the simulator setting up
the execution environment that executes the CSE model (1). The execution
environment then parses the device file and sets up all events that represent
the CSE (2). Afterward, the simulator invokes FSMs (3) that invoke SEMs
set up by the execution environment (4). As the simulation goes on, triggers
in the SEMs invoke FSMs (5). SEMs trigger FSMs and FSMs trigger SEMs
until the packet forwarding is finished. Hence, the execution of FSMs is
delayed by alternating between executing FSMs in the protocol model and
SEMs in the CSE model.

I.4 Design

In this section, the design of our methods and the model is described. First,
the choice of simulator and system to model are explained. Second, the

69

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

Figure I.1: ns-3 simulation with a CSE model

design of a mote tracing framework to capture the intra-OS delay and
forwarding rate of a real TelosB mote is presented. Third, the analysis
of the communication software of T inyOS/T elosB is described. Finally, we
explain how we create the model.

I.4.1 Choice of Simulator and Modeled System

The model we create is based on a TelosB mote that runs TinyOS. It is
currently supported for the ns-3 network simulator. Below, we outline our
reasons for choice of system and simulator.

I.4.1.1 OS

TinyOS is one out of many OSs that are used in WSNs. Other examples
of OSs include MANTIS [5], Contiki OS [11], Nano-RK [16], MansOS [45],
LiteOS [7] and RIOT-OS [2]. TinyOS is minimalistic and can be executed on
resource-constrained devices. Furthermore, it is event-driven, has a RAM
footprint of only 400 bytes, is single-threaded, and there is no scheduler
preemption [32]. TinyOS does offer a library called TOSThreads that enables
some high-level multi-threading features described in [28], but it is not used
in this work. Additionally, heap memory does not exist, which means all data
is stored statically with no temporary memory allocation. TinyOS 2.1.2.1 is
the version of TinyOS that we model.

Although TinyOS has been around since 1999, it is still used in recent
research literature [1, 37]. We argue that the specific operating system
used is not as important for the temporal behavior of such motes as
the choice of hardware is. That is because the components of the mote
become the bottleneck, rather than the OS code itself. Examples are the
speed of transferring data between the radio transceiver’s queues and the
main memory of the mote, and copying data from places within the main
memory. These operations are primarily limited by the hardware components
themselves. Therefore, most of the delay caused by processing is expected
to be seen in other WSN OSs.

70

Design

nesC is the programming language in which TinyOS and its applications
are written [18]. It is a subset of the C programming language with some
extra features, such as three new types of functions: events, commands, and
tasks [17]. Events can be viewed as software/hardware interrupts or callback
functions, commands as regular functions and tasks as deferred procedure
calls.

I.4.1.2 Mote

The TelosB mote, also called Tmote Sky, is an open-source platform that can
be used to measure light, humidity and temperature [34]. TelosB is often the
mote used to run WSN OSs such as TinyOS, and is therefore a natural pick
for TinyOS. TelosB is also a popular mote that can run resource-constrained
WSN OSs such as MansOS, Mantis, Contiki OS, Nano-RK and TinyOS [13,
36]. RIOT-OS cannot run TelosB because it has a too high memory footprint
[6].

I.4.1.3 Simulator

Since WSNs may contain thousands of nodes, we choose the scalable discrete-
even network simulator ns-3. Other alternatives include OMNET++ [47]
and Opnet [49]. As we shall see later, emulators such as MSPSim are
several orders of magnitude less scalable than these network simulators, and
real-world experiments are several orders of magnitude less scalable than
emulators. One might ask why we do not choose TOSSIM (TinyOS SIMulator)
[33], which is a well-known discrete-event simulator for simulating TinyOS
applications. The reason is that our goal is not specifically to simulate
TinyOS, but rather to enable WSN nodes to be simulated accurately that may
coexist with other, more powerful, devices. TOSSIM cannot easily be used in
conjunction with models of other systems, and so we use a general-purpose
simulator.

I.4.2 Tracing Framework

Minimizing the memory usage and the time it takes to trace events (tracing
delay) is essential, especially since TelosB only has 10kB of RAM and 4MHz
CPU as compared to 256MB—1GB of RAM and 256MHz—1.2GHz CPU in the
previously modeled devices (i.e., Google Nexus One, Nokia N900, and the
Galaxy Nexus).

Accurate timestamps are required to measure the processing delays on
a real device. When collecting traces to create the model, the packet rate
is kept low so that the mote can process one packet at a time to avoid non-
deterministic behavior affecting the delay measurements. If the number of
tracepoints is relatively small, storing the trace tuples in RAM is possible.

71

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

When measuring the forwarding rate, on the other hand, the packet rate must
be high, which makes it impossible to store tuples in RAM. However, we do
not need to store accurate timestamps when measuring the forwarding rate
because we only need to know the percentage of packets that are dropped.
Since tracing the mote at high packet rates results in many trace tuples in a
short period, we cannot store the tuples in RAM. Therefore, we developed
two tracing methods: (1) batch tracing that is used to measure intra-OS
delay where we store trace tuples with accurate timestamps in RAM until it
fills up, and (2) continual tracing that is used to capture the forwarding rate
at high packet rates without interruption.

The tracing framework is used in three steps. The first step is to capture
the execution delays of the OS services in the communication software of
T inyOS/T elosB. These traces are used to create the CSE model. The second
step also involves capturing such execution delays, but at a less detailed
level to evaluate the accuracy of the model for simulating intra-OS delay. The
final step is to capture the forwarding rate when the mote processes packets
at high packet rates to evaluate the accuracy of the model for simulating
packet loss.

We minimize memory consumption of trace tuples by compressing them
on the mote and later decompressing them to CSE events. These CSE
events describe the communication software execution behavior of the traced
system, based on concepts that are defined in the modeling methodology.
After the CSE events are decompressed, they are used to create the CSE
model. Significantly reducing the size of the 32-byte CSE events is not trivial
because it requires knowledge about what data in CSE events is inferable.
For instance, we can infer the Process ID (PID) of TinyOS because it is
single-threaded. We have found that the only data needed for each trace
tuple in TinyOS is a 1-byte tracepoint ID (0–255) and a 4-byte timestamp, as
illustrated by Figure I.2a. Therefore, the CSE events in Figure I.2b can be
compressed and traced as a single trace tuple, as displayed in Figure I.2c.
This compression reduces the memory consumption of each trace tuple from
32 bytes to 5 bytes and reduces the number of tuples to trace since they can
represent several CSE events. Note that if the memory consumption needs to
be kept low in multithreaded and multicore systems, the tracepoint ID would
need to be partitioned such that some bits can identify which thread and
CPU core recorded the trace tuple. For instance, in a dual-core system where
two threads run on each core to process packets, one bit in the tracepoint
ID identifies the CPU core, one bit identifies the thread running, and the
remaining six bits (0–63) identifies which exact tracepoint is executed.

Batch and continual tracing differ in memory consumption and the way
trace data is transmitted to the connected PC. Conceptually, both methods
perform tracing as illustrated in Figure I.3. Batch tracing involves storing
tuples in RAM until the buffer is filled up with 700 trace tuples. When the

72

Design

Figure I.2: Trace tuple format (a) used to compress two CSE events (b) to a
single trace tuple (c).

buffer is full, the tracing is paused, and the trace tuples are transmitted over
serial communication to the PC connected by USB. Continual tracing involves
transmitting tracepoint IDs immediately using serial communication to the
listening PC, which listens for 1-byte tracepoint IDs and adds a timestamp to
each tracepoint ID to complete the trace tuple. Both methods are efficient,
but batch tracing has accurate timestamps and limited buffer size, whereas
continual tracing has less accurate timestamps and can be used to trace
TelosB for arbitrarily long periods.

Figure I.3: Process of tracing a real mote.

The metrics used to evaluate the tracing framework are tracing delay and
memory consumption. The tracing framework must be efficient and enable
us to capture all the necessary information to be able to use the modeling
methodology to create a sufficiently accurate CSE model.

73

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

Table I.2 sums up the difference between batch and continual tracing.
With batch tracing, timestamp accuracy is high, the memory consumption
is five bytes, and it takes 20 µs to trace an event. Furthermore, the number
of tuples the mote can keep in memory is 700. With continual tracing,
timestamp accuracy is low, the memory consumption is one byte, and it takes
40 µs to trace an event. Since the trace tuples are transmitted immediately
using serial communication, there is no limit to how many events can be
traced without interruption.

Tracing type Delay # events Timestamp accuracy

Batch tracing 20 µs 700 High
Continual tracing 40 µs No limit Low

Table I.2: Difference between batch and continual tracing

I.4.3 Analysis and Instrumentation of TinyOS

Our analysis of the communication software execution in TinyOS shows that
the functional part of the packet processing can be described as a receiving
and sending activity with two queues, as illustrated in Figure I.4. In the
illustrated instance, eight packets (shown in gray) are processed. Data
received by the transceiver is placed in the 128-byte CC2420 receive (Rx)
queue. The receiving activity writes the packet from the Rx queue to RAM,
performs a routing table lookup, and places the packet into the IP layer
packet queue (IPAQ) which has a capacity of three packets. The sending
activity takes a packet from the IPAQ and forwards it. These processing
activities can only handle one packet each at a time, most likely to keep the
memory consumption low and the OS as simple as possible.

Figure I.4: Summary of the TinyOS packet forwarding process with packets
being processed in gray.

74

Design

I.4.3.1 Forwarding application

Figure I.5 contains an overview of the network stack used by the application.
Mote A sends a packet using UDP for the transport layer, IPv6 and 6LoWPAN
for its network-layer protocols, and IEEE 802.15.4 for MAC sublayer and PHY.
The CSE model does not simulate 6LoWPAN fragmentation of packets, but
it can be considered in future work. Combined, the headers in the packets
sent by Mote A have a size of 36 bytes, and 38 bytes when adding the two
CRC bytes. Further, when results are presented, figures distinguish between
UDP payload size and packet size. A UDP payload size of zero bytes means a
packet size of 36 bytes.

Figure I.5: Forwarding app network stack

The application uses IPv6 which by default requires devices to send
ICMPv6 packets and the CC2420 driver requires acknowledgment of packets.
Both ICMPv6 packets and acknowledgment packets are disabled because
only a simple packet forwarding scenario is modeled. Clear Channel
Assessment (CCA) is implemented in two ways on the mote. The first is
a backoff timer in TinyOS that makes the mote wait a random amount of
time before sending packets to avoid collisions. The second is a feature that
the CC2420 radio chip implements to prevent packets from being sent if it
senses that the medium is not clear [10]. The radio chip’s CCA functionality
is kept enabled, but the backoff timer is disabled because the random backoff
time causes unwanted variation in intra-OS delay. These two modifications
are made to simplify the forwarding process and do not affect our results.

I.4.3.2 Packet forwarding flow

When a packet is received, a hardware interrupt event is executed in the
CC2420 driver. Only one packet can be written into RAM at a time, and
awaiting packets get processed once the current one is finished with the

75

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

receiving part. If the driver is ready to process a new packet, it starts writing
the packet into memory. When the entire packet is written into RAM, the
driver checks the last byte of it to see if the CRC check succeeded (a check
performed by the CC2420 radio chip). If it fails, the mote drops the packet
and starts reading the next one. If it succeeds, task receiveDone_task is
posted to run later, which sends the packet to the upper layer protocols and
hands it over so that the next packet can be processed. First, a duplication
check drops previously received packets. Next, the packet is sent to the
layer handling 6LoWPAN.

The 6LoWPAN adaptation layer decompresses the packet header before
it sends the packet to the code handling packet forwarding. As the IP layer
finds out that the packet is destined for another mote, it finds the route from
Mote B to C. If less than three packets are waiting to be sent, the packet is
placed in IPAQ. Otherwise, the packet is dropped. At this point, the receiving
part ends, and now the next packet can be written to memory.

sendTask starts the sending part, and its job is to prepare a packet
enqueued into the IPAQ to be sent to its destination, which is Mote C in this
case. If no packet is currently being sent or awaiting acknowledgment, the
packet will be processed and is sent to the lower layers. The sending part of
the CC2420 driver writes the packet to the transmit (Tx) queue of CC2420.
When the packet is written to the Tx queue, a hardware interrupt is raised,
and the transceiver sends the packet. Once the transceiver has finished
sending the packet, the packet is removed from IPAQ, and the next packet
can be transmitted or received.

I.4.3.3 Instrumentation

We instrument the communication software of T inyOS/T elosB to capture the
temporal behavior of the software execution. When creating and evaluating
the model, we use two different instrumentation configurations called
model- and evaluation-centered instrumentation. In the model-centered
instrumentation, the trace captures which services are called, how long they
execute, and the events within services and their time of occurrence. In
TinyOS, the latter events occur when packets are enqueued into the IPAQ and
when the radio chip is ready to attempt to transmit a packet. The tracepoints
described in Table I.3 are used to collect the traces for model creation. In the
evaluation-centered instrumentation, the focus is on measuring the intra-OS
delay and packet forwarding rate. By instrumenting the five places in Table
I.4, we capture when packets are received, sent, and dropped.

According to Cooja/MSPSim, only 98 microseconds of the packet
processing is not caused by software processing on the MCU. Those 98
microseconds occur between the radio transceiver receiving the packet, and
the OS being notified that a packet has been received. In that time, the

76

Design

Function What is captured

task-scheduler Before running task
task-scheduler After running task

All six hardware interrupts Start of interrupt
All six hardware interrupts End of interrupt

receiveDone_task Enqueuing packet into IPAQ
attemptSend Transceiver attempting to send packet

Table I.3: Description of the model-centered tracepoints

Function What is captured

readDone #1 (HIRQ-2) Receiving new packet
readDone #3 (HIRQ-4) Drop packet due to failed CRC check
receiveDone_task Drop packet due to full IPAQ
writeDone (HIRQ-5) Transceiver attempting to send packet

Table I.4: Description of the evaluation-centered tracepoints

transceiver does some pre-processing like adding RSSI, CRC, and FCF data
to the received packet [25].

I.4.4 Model Creation

In this section, the creation of the CSE model is described. Traces gathered
from running Mote B at a low packet rate are used to create the model. We
develop a protocol model for TelosB in ns-3 and place the CSE model in a
device file that is parsed by an execution environment to add the temporal
behavior of the CSE of T inyOS/T elosB to the simulation. After having collected
the traces, the remaining steps of the modeling methodology to create the
CSE model are:

• Analyze the traces to determine if they are accurate.

• Decompress the traces to CSE events.

• Convert the CSE events into signatures.

• Create a TelosB model in ns-3 that uses the CSE model to simulate the
packet forwarding.

• Create a simulation program in ns-3 that uses the TelosB model to
forward packets.

A trace might be inaccurate and contain inconsistencies that must be
found through analyzing the trace. The trace used to create the CSE model

77

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

is collected at a low packet rate, and so the same events are expected in
the forwarding application every time a packet is processed. Even if the
packet rate is high, the code in TinyOS spends about the same amount of
time each time it is executed. As such, the processing times should be similar
when tracing. If they are not, it might be because of an error. Occasionally,
a timestamp in a tuple is incorrect, e.g., lower than that of trace tuples
preceding it. To identify this kind of error and related tracing errors, we
use a tool that outputs the maximum, average, median and minimum time
differences between two tracepoint IDs, and all the various time differences
sorted by the number of occurrences.

Figure I.6 illustrates the relationship between trace tuples and the
software execution model. Each trace tuple represents one or more CSE
events. The trace generated by Mote B is decompressed to CSE events by a
script that maps tracepoint IDs to CSE events. The script parses the trace
file tuple by tuple and injects the timestamp for each CSE event. An example
of this is in Listing I.1. The resulting list of CSE events is written to an output
file, which is used as input to the automatic analysis script.

1 1..*
1..*

1
1..*11..*1

Trace tuple <5 bytes>

Trace ID <1 byte>
Timestamp <4 bytes>

CSE Event <32 bytes>

SignatureSEMCSE model

Figure I.6: Relationship between trace tuples and the software execution
model

321451 5
321455 2
321462 1
|

Decompresses to
↓

SRVENTRY 0 0 321451 0 0 0 service 0
QUEUECOND 0 0 321455 0 0 0 service notempty
PKTQUEUE 0 0 321455 0 0 0 service 0
SRVEXIT 0 0 321462 0 0 0 service 0

Listing I.1: Example of decompressing trace to CSE events

The analysis script takes the CSE events as input and generates the
signatures for the CSE model as output, as displayed in Listing I.2 in the
appendix. The signatures themselves are similar to function definitions and
can invoke each other as long as the invoked signature is defined above

78

Evaluation

the caller, as in the C programming language. One file is created for each
signature, and each SEM consists of one or more signatures, depending on
the presence of queue or state conditions. A queue condition such as the one
in Listing I.2 causes two different signatures to be defined. The execution
environment parses the signature to create a single SEM with branching
points in the places where the conditionals are found. The upper signature
is called if packet_queue is not empty and the lower one if it is. When all
signatures are generated, the most significant part of the CSE model is
created.

I.4.4.1 Device File

Our T inyOS/T elosB device file includes settings for, e.g., a byte queue, a packet
queue, one thread, one service queue, a CPU and several callback triggers.
The byte queue represents the Rx queue of the radio chip, which has a limit
of 128 bytes. The packet queue is analogous to the IPAQ, has a capacity of
three packets, and follows a tail-dropping policy. As mentioned above, the
CPU runs at 4MHz. The thread models the scheduler in TinyOS and executes
services from the service queue. The Tx byte queue of the radio chip does not
need to be modeled because it never overflows in our forwarding application.
All these settings are manually configured and are based on the analysis of
the CSE of TinyOS in Section I.4.3.

I.4.4.2 Packet Processing Flow

The final task in creating the CSE model is to write the TelosB FSMs and
integrate them with the other models. In our case, the CC2420 transceiver
model is connected to the CSE model. When a packet to be forwarded is
received by the transceiver, the CSE model delays the forwarding and passes
it to the transceiver model when it has finished processing it.

Packets can be dropped in the CSE model for three reasons. First, due to
Rx queue overflow, which causes the radio chip to stop receiving incoming
packets until the queue has been flushed. Second, after having written the
entire packet into memory and the packet has a bad CRC checksum. Third,
when the IPAQ is full. The first two are unlikely to occur in our case when
the CC2420 CCA feature is enabled. Usually, packet loss occurs due to IPAQ
overflow.

I.5 Evaluation

Five experiments are conducted to evaluate the model. They are used
to assess the accuracy, scalability, and the significance of including the
execution times in simulations. Conceptually, the testbed for the experiments
comprises three motes in which packets are generated by Mote A and sent to

79

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

Mote C via Mote B. Practically, we only need Mote A and Mote B to perform
the experiments since acknowledgments are disabled, which means that
Mote C never sends any information to Mote B.

Figure I.7 shows the models and metrics used to evaluate the accuracy
and scalability of the CSE model in the context of the packet forwarding
process. In an ns-3 simulation where transmission of packets is only
performed with the CC2420 transceiver model, the full end-to-end delay
only consists of the transmission delay and around 98 µs of preprocessing
delay caused by the transceiver.

Figure I.7: Metrics and models used to evaluate the CSE model and their
place in the packet forwarding process.

Table I.5 summarizes the parameterization of experiments with real motes
(R) and simulation experiments (S). Experiments 1–3 regard the accuracy of
the model, and therefore, include a real-world experiment and its simulation
with the CSE model. Experiments 4–5 are simulated only where Experiment
4 deals with the scalability and Experiment 5 with the impact of including
or excluding the CSE model in a simulation. The packet size we use for
Experiments 1–3 varies between the minimum and maximum packet sizes,
and for Experiments 4–5, we only use the largest packet size. A slow data
rate means that each packet is processed one at a time with no contention.
In Experiment 3, we vary between 40 and 150 pps for different packet sizes.
In Experiment 5, we vary between 63 and 101 kbps.

For all simulations, we use the network simulator ns-3 [22]. While ns-3
offers many models for running the experiments, we make use of a small
subset of these. Aside from Experiment 4, all experiments have one instance
of the CSE model for the forwarding node. The source and destination nodes
do not run the CSE model. The topology for these experiments can be seen

80

Evaluation

Exp Goal Type Pkt size Data-rate Metric Varies

1 Accuracy R+S 36–124 b Slow Intra-OS delay Packet size
2 Accuracy R+S 36–124 b Slow Intra-OS delay IPAQ fill-level
3 Accuracy R+S 36–124 b 40–150 pps Throughput Packet rate,

packet size
4 Scalability S 124 b Slow Execution time,

RAM usage
packets, simula-
tion time, # nodes

5 Impact S 124 b 63–101 kbps Forwarding ca-
pacity difference

Data-rate

Table I.5: Experiment and simulation parameters (R+S includes both a real-
world experiment and its simulation, and S only includes simulation).

in Figure I.8. The CSE model is connected to the ns-3 Node model through
ns-3’s object aggregation feature. Packets that are sent are instances of
the ns-3 Packet model. For transmission of packets, Experiments 1–4 use
a simplified CC2420 transceiver model we developed that offers the same
temporal behavior as a real CC2420 radio, but without the lower-level details
of communication. In Experiment 5, we use the CC2420 transceiver model
from [24].

Figure I.8: Models used in the simulations.

I.5.1 Accuracy

In Experiments 1–3, we run real-world experiments to capture the behavior
of a real mote performing IP forwarding. Thereafter, we run simulations with
the CSE model to observe how accurate it is. In the real-world experiments,
Mote A runs a forwarding application TinyOS. It sends packets with IP
destination address of Mote C and frame (link-layer) address destination of
Mote B. Mote B receives them and has a manually inserted route to Mote C.

In Experiment 1, we assess the accuracy of the model in simulating intra-
OS delay by comparing the intra-OS delay of the simulation model and a real
mote at low packet rate. We perform batch tracing of the temporal behavior
of Mote B while it performs packet forwarding, which means it keeps trace
tuples in main memory. In the real-world experiment, Mote B forwards 256

81

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

packets with 12 different sizes. Afterward, the same packet sequence is
forwarded by the simulation model.

Figure I.9, Figure I.10a, and Figure I.10b contain the results from
Experiment 1 from different perspectives. Figure I.9 illustrates the results of
Experiment 1, where the intra-OS delays of a real mote and the CSE model
are compared for varying packet sizes. Since TinyOS timers are "binary" with
respect to one second [8] and the intra-OS delays in TinyOS are measured
with a microsecond timer, there are 1048 milliseconds per second in the
figure. The lines overlap nearly perfectly, and the simulated intra-OS delay
deviates at most 5% from the intra-OS delay in the real mote, which shows
that the model is highly accurate. The results only show one run because
the intra-OS delay is a deterministic function of the packet size.

Figure I.9: Intra-OS delay comparison between real mote and ns-3 with the
CSE model at 40 pps.

Figure I.10a shows that the intra-OS delay (y-axis) increases linearly with
the packet size (x-axis) for a real mote, the CSE model, and an emulated
Cooja/MSPSim mote. Note that the intra-OS delay is not "binary" as in
Figure I.9. The same line represents the real mote and CSE model because
their data is indistinguishable. Furthermore, one can see how different an
emulated Cooja/MSPSim node behaves compared to a real mote and the CSE
model. Cooja/MSPSim starts with 14% and ends with 30% less intra-OS delay
than the real mote and CSE model. These results illustrate how inaccurate
the temporal behavior of Cooja/MSPSim is compared to the CSE model and
the real mote.

Figure I.10b shows more results from Experiment 1, where we measure

82

Evaluation

how the end-to-end delay increases with the packet size. The packet size (x-
axis) affects the total end-to-end delay (y-axis) for a real mote, the CSE model,
the CC2420 transceiver model, and an emulated Cooja/MSPSim node. All
lines increase linearly with the packet size. The transmission delay includes
the time it takes for Mote A to send packets to Mote B, and for Mote B
to send packets to Mote C. These results demonstrate how significant the
processing delay is compared to the transmission delay in T inyOS/T elosB.

Figure I.10: Intra-OS and end-to-end delay depending on the packet size

In Experiment 2, we investigate how much the fill-level (the number of
packets in a queue) of the IPAQ affects intra-OS delay. The queue has a

83

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

maximum capacity of three packets, and packets are enqueued into it a bit
more than halfway through the forwarding process. Variations in intra-OS
delay in TinyOS are due to queuing and packet size. We enqueue the same
packet three times in the IPAQ instead of once to measure the queuing time
while other packets are processed before it. Additionally, we observe how
long the receiving and sending parts of the CSE are. The same tracepoints as
in Experiment 1 are used to measure the intra-OS delay, and it is calculated
in the same way. Additionally, the ns-3 simulation reproduces the real-world
experiment in the same way as in Experiment 1 by using the trace from the
real mote, except that now each packet is enqueued into the IPAQ three
times. The intra-OS delay of the CSE model and real mote can be compared
for the different IPAQ fill-levels 0–2 to assess the accuracy of the CSE model.

Figure I.11 contains the results of Experiment 2; it compares the variation
in intra-OS delay for different IPAQ fill-levels for a real mote with that of the
simulated CSE model. Same as in Figure I.9, there are 1048 milliseconds
per second because of the "binary" timers in TinyOS [8]. The intermediate
Mote B receives 25 packets of variable sizes at a low packet rate, each with
a sequence number (x-axis). One can distinguish between the delay before
enqueuing the packet into the IPAQ (receiving part) and afterward (sending
part). The intra-OS delay is almost identical in the real mote and the CSE
model, the same as in Experiment 1.

The intra-OS delay for a packet that is placed in an empty IPAQ only
consists of the processing delay caused by executing the receiving and
sending parts once; the same receiving and sending parts as can be seen
in Figure I.4. When a packet has to wait in the IPAQ for one packet, the
intra-OS delay is the same as when the IPAQ is empty plus the processing
delay of sending the enqueued packet. When the IPAQ fill-level is two, the
intra-OS delay consists of the processing delay when the IPAQ is empty plus
the intra-OS delay of sending two enqueued packets.

In Experiment 3, we assess the accuracy of the model in simulating
packet loss by comparing the forwarding rate of the model to a real mote
when forwarding packets at high packet rates. Since high packet rates
can yield erratic behavior, we make the mote forward many more packets
than in Experiment 1. More specifically, the mote forwards 256 packets
for several combinations of packet size and packet rate, and each point on
the line denotes the percentage of successfully forwarded packets among
these 256. In the ns-3 simulation, we reproduce the real-world experiment
by using the same packet generation logic. Unlike Experiment 1 and 2, Mote
B in Experiment 3 performs continual tracing, mentioned in Section I.4.2,
which means it transmits tracepoint IDs to the host PC each time a trace
event occurs. The reason is that continual tracing is much faster than batch
tracing since the tracing mote does not add a timestamp (see Table I.2). The
timestamps added to the trace tuples by the host PC are not sufficiently

84

Evaluation

Figure I.11: Variation in the IPAQ fill-level affecting the intra-OS delay.

accurate to be used to reproduce the experiment in ns-3. Therefore, the
experiment is not trace-driven, which means that the CSE model will not
send packets at the exact same times in the ns-3 simulation. Consequently,
the results are not expected to be identical for the model and real mote.

Figures I.12a (UDP payload size 24 bytes) and I.12b (UDP payload size
80 bytes) illustrate the results from Experiment 3. Figure I.12a shows that
packets start to drop heavily around 120 packets per second and in Figure
I.12b at around 80 packets per second. The reason for the big difference is
that larger packets require more processing than smaller ones, and therefore
fewer packets can be processed per second before packets start to drop.
The figure includes only results for the case that Mote A is not in saturation
mode and sends at least 90% of the target packet rate. The results that
are included are adjusted for the actual packet rate. While the curves for
the model and mote do not entirely overlap, the same trends are seen in
both of them, which means the model can approximate the behavior of CSE
reasonably well even when the device is saturated.

Experiment 1, 2, and 3 demonstrate that the model can simulate intra-
OS delay and packet loss with high accuracy. One of the reasons for the
high accuracy is that TelosB’s MCU MSP430 has no memory cache, which
means that memory access times are deterministic. Another reason for the

85

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

Figure I.12: The forwarding rate when sending packets at various packet
rates.

86

Evaluation

high accuracy is that TinyOS is a much simpler operating system than the
previously modeled mobile variations of Linux. Please note, these results
clearly demonstrate that the model which is based on low packet rate traces
simulates rather precise when packet loss starts under high packet rates.

Furthermore, Experiment 3 confirms that if Mote A sends packets at a
high rate to C via B, Mote B eventually drops packets because of a full IPAQ.
Note that only Mote A sends packets to B, which means that a mote that
needs to send many packets must deliberately restrict transmission rate to
avoid packet loss in the intermediate mote. That does not happen when
using unmodified TinyOS because it includes an initial backoff feature that
causes a random waiting time before sending each packet.

I.5.2 Scalability of Model

In Experiment 4, the scalability of the model is assessed by measuring the
time required to complete a simulation run with various parameter settings in
four runs1. First, the number of packets that a single node forwards is varied.
This parameter is the most important and likely to have the greatest effect
on the simulation execution time. Second, the number of simulated seconds
a single node is idle is varied. Varying this parameter should not result in
a significant increase in simulation execution time. The final parameter is
the number of nodes that are included in the simulation. For this parameter,
we perform two runs: one where the nodes process a single packet each,
and another where the nodes spend ten million simulated seconds being idle.
That way, we can uncover any added simulation time that is caused merely
by increasing the number of nodes. The experiment is conducted on a PC
with 4.2GHz quad-core CPU (Intel i7-7700k) running Ubuntu 16.04 LTS.

Table I.6 lists the results from Experiment 4 regarding the simulation
execution time. The scalability experiment shows that one node can forward
60,000 packets in five seconds, one node can be idle for 5 billion simulated
seconds in less than half a second, 100,000 nodes can each be idle for ten
million simulated seconds in 134 seconds, and 10,000 nodes can forward
a packet each in 45.5 seconds. Additionally, we measured the memory
consumption of installing 100,000 nodes and found that they consume 11.6
GB RAM. Moreover, Table I.7 compares the simulation execution times of
Cooja/MSPSim and ns-3, where the data from the Cooja/MSPSim mote is
extrapolated from a 263-second long simulation. It shows that ns-3 is up
to six orders of magnitude faster than Cooja/MSPSim when idle nodes are
simulated.

WSNs can contain up to thousands of nodes, and since we can simulate
thousands of nodes processing thousands of packets in a matter of seconds

1In all runs, ns-3 is compiled with the g++/gcc optimization flag "-O3", which reduces the
simulation execution time substantially.

87

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

nodes # packets Simulated seconds Execution time

1 60,000 Until completion 5.00 sec
1 0 5 ∗ 109 0.28 sec

100,000 0 107 134.00 sec
10,000 1 per node Until completion 45.50 sec

Table I.6: Results from the simulations in Experiment 4.

Real mote Cooja/MSPSim CSE model

1+e6 sec 263 sec 22.5 ms
1+e7 sec 2630 sec 24.5 ms
1+e8 sec 26300 sec 39.8 ms
1+e9 sec 263000 sec 178 ms
6+e9 sec 1578000 sec 1 sec

Table I.7: Comparison of execution time of a real mote, an emulated
Cooja/MSPSim mote (extrapolated data) and the CSE model in ns-3.

using commodity hardware with 16GB RAM, we can conclude that our models
are sufficiently scalable for WSN simulations. Compared with the evaluation
of the previous models in [9, 29], the scalability remains similar.

I.5.3 Impact of Model

In Experiment 5, the impact of the model is assessed by replicating an
experiment conducted by Igel et al. in [24] and comparing the results with
and without the CSE model. The topology is the same as in Experiment 1
and 2, and the goodput is measured. In this case, goodput means the rate at
which packets are received by Mote C, where the bit-rate includes packet
headers. Four runs are executed with 124-byte packets with or without the
CSE model. The run without the CSE model is the same as the original
experiment. In Run 1, Mote A sends packets at the highest packet rate
without packet loss when the CSE model is excluded. In Run 2, the data
rate is the same as in Run 1, but the CSE model is included. In Run 3, Mote
A sends packets at the lowest packet rate with packet loss when the CSE
model is included, and Run 4 has the highest packet rate without packet loss
with the CSE model 2.

Table I.8 contains the results of Experiment 5. By adding the CSE model,
the data rate must be decreased from 100kbps (Run 1) to 64kbps (Run 4)
to prevent any data from being lost. That means our model starts to drop

2These thresholds are determined by measuring the forwarding rate in ns-3 with and without
the CSE model at many different packet rates

88

Evaluation

packets at 65kbps (packet size 124 bytes), while just the CC2420 transceiver
model starts dropping packets at 101 kbps. This 36% decrease in forwarding
capacity demonstrates that our model enables significantly more accurate
simulations.

Run CSE model included Data-rate % forwarded

1 No 100kbps 100%
2 Yes 100kbps 56%
3 Yes 65kbps 87%
4 Yes 64kbps 100%

Table I.8: Goodput experiment with and without CSE model.

I.5.4 Discussion

We argue that CSE models are needed to simulate the temporal behavior of
WSN devices accurately in ns-3, with Table I.1 as motivation. The results
in Figure I.10b support this claim, i.e., the end-to-end delay with the real
mote is significantly larger than indicated by the CC2420 transceiver model
alone. Furthermore, Experiment 5 replicates a goodput experiment initially
conducted in [24], and the goodput reduces by 36% when including the
CSE model. The significant reduction shows that the intra-OS delay is
non-negligible, demonstrating the need for CSE models.

This CSE model is more impactful than the previous models because the
modeled device is more computationally constrained. TelosB is a single-core
device and TinyOS a single-threaded OS. Furthermore, TelosB does not use
a cache for faster memory access, the CPU speed of TelosB is constant at
4MHz, and TinyOS does not use optimization techniques in the instrumented
drivers that can cause variable temporal behavior either. Previously modeled
devices [9, 30] are much more complex.

The accuracy of the CSE model is high. There is almost no difference
between the CSE model and real mote in the tested scenarios. Several
aspects of the device are modeled and assessed in experiments: (1) intra-OS
delay, (2) variation in delay due to packet size, (3) variation in delay due to
IPAQ fill-level, and (4) packet loss.

A discovery we made is that the processing stages during the IP-
forwarding that take the most time to execute are three stages: (1) when
transferring packets from the radio transceiver to main memory, (2) when
copying the packet from the driver of the radio transceiver to the IPAQ, and
(3) when copying the packet from the IPAQ to the radio transceiver. The
delay is mostly bound by hardware limitations. For Points 1 and 3, the delay
is mostly bound by the time it takes to copy data back and forth between
the radio transceiver. For Point 2, the delay is mostly bound by the read and

89

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

write speeds of the main memory. What we can deduce from this analysis is
that TinyOS is not responsible for the high intra-OS delay or the variance in
it. If TelosB runs Contiki OS, it will most likely also exhibit the same behavior.
Therefore, the model can most likely be used to represent other WSN OSs
than TinyOS.

During emulation with Cooja/MSPSim, we discovered some issues: two
bugs and inaccurate execution times of two processing stages. The first bug
is that the microsecond clock on TelosB displays approximately four times
larger value than it should be when compared to both the millisecond clock
and the Cooja simulation clock, seen in Figure I.13. The microsecond time
does neither correspond with the millisecond time nor the Cooja/MSPSim
simulation time. The second bug is that the CC2420 CCA feature does not
work. When the channel is not clear, packets are still sent, which causes
collisions. The inaccurate execution times occur in the processing stages
when transferring packets between the radio transceiver and main memory.
As mentioned above, these processing stages are the ones that takes the
longest time to execute on a real mote. These processing stages are too short
compared to a real mote, which is the main reason why the Cooja/MSPSim
intra-OS delays in Figure I.10 are different from the real mote and CSE
model. Only two bytes are transferred in each transaction, and so a slightly
inaccurate processing time estimation will result in a large gap as the packet
size increases.

Figure I.13: Timer issue when emulating in Cooja/MSPSim.

The mote does not get saturated with the initial CCA backoff enabled
because the motes have sufficient time to process incoming packets while
waiting to transmit packets. Figure I.14 shows the intra-OS delay for 124
bytes packets that are sent from Mote A to C as fast as possible with initial
backoff enabled. As a result of the backoff, no packets are dropped, and the
intra-OS delay is much higher than it would if the initial backoff were disabled.
If the backoff were disabled, this exact scenario would result in packet loss.
The need for this backoff to prevent packet loss demonstrates how resource-
constrained TelosB is, and also motivates the need for a software execution
model.

The tracing framework described in Section I.4.2 is used to capture the
CSE behavior of T inyOS/T elosB and proves to be flexible, efficient with low

90

Conclusion

Figure I.14: 124-byte packets sent as fast as possible with initial backoff in
TinyOS enabled, and no packets are dropped.

tracing delay and memory consumption for each trace tuple. It is flexible
because of the two methods of tracing, namely, batch and continual tracing.
The former enables saving trace tuples with accurate timestamps in RAM
until it is full and the latter enables tracing for arbitrarily long periods, albeit
with less accurate timestamps. If someone attempts to model another WSN
device in the future, the same design can be reused.

As opposed to previously created CSE models, the TelosB mote requires
compression of traces because it only has 10kB RAM in total with
approximately 3.5kB available when the OS and forwarding application
are installed. After the traces are collected, they are decompressed to CSE
events. Two benefits of this way of tracing are that (1) we can focus entirely
on tracing efficiently without worrying about the meaning of the traces
and (2) a single trace tuple can be converted to several CSE events, which
means even less tracing delay and memory consumption. Additionally, the
compressed trace can be analyzed more easily since it is simpler, which can
reveal errors that occur during execution.

I.6 Conclusion

With this paper, we create a CSE model of T inyOS/T elosB that adds realistic
temporal behavior to simulations of packet forwarding in ns-3. First, a
tracing framework is created and used to capture the temporal behavior
of the CSE of T inyOS/T elosB running on the real device. The framework is
used both for creating and evaluating the model. Our results show that our
model is accurate; the simulated intra-OS delay deviates at most 5% from the
intra-OS delay in the real mote. The model is also scalable; we can simulate

91

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

IP-forwarding of 60,000 packets in five seconds, and 100,000 nodes can be
simulated with 11.6 GB RAM. Finally, the model has a significant impact
on the simulation results; including the T inyOS/T elosB CSE model requires a
reduction of 36% in data rate to prevent packet loss. The code developed
and used for this work is available in [44].

An important insight we gained with this work is that most of the delay
in the system and variance in delay stems from hardware limitations. As
a result, we expect to observe a similar temporal behavior in other OSs
than TinyOS. This work indirectly functions as an evaluation of the modeling
methodology’s application on WSN systems. A benefit of creating models of
different types of systems is that these models can be used as a template for
other systems in the same domain. For instance, the T inyOS/T elosB CSE model
can be used to create a future Contiki/T elosB CSE model and T inyOS/MIKAz

CSE model.
For future work, we consider modeling other operating systems such as

Contiki OS that runs on TelosB, to see how Contiki OS differs in execution.
Moreover, we are interested in modeling different hardware such as MIKAz
that runs TinyOS, to see how TelosB and MIKAz differ. With these new
models, we can also use the model from this paper to assess the accuracy
of retargeting models to represent different hardware or operating systems.
If the accuracy of the retargeted models is sufficiently high, further models
might be created without going through the entire modeling process again.
We also have plans to automate the instrumentation step of the methodology,
which would simplify the modeling process significantly. Additionally, we are
looking into using the same modeling methodology to model the software
execution of other types of applications, such as complex event processing.

Acknowledgments

We thank Dr. Anuscha Igel and Prof. Dr. Reinhard Gotzhein for kindly
providing us with code for the CC2420 transceiver model from [24].

I.7 Appendix

References

[1] Amjad, M. et al. “TinyOS-new trends, comparative views, and
supported sensing applications: A review”. In: IEEE Sensors Journal
vol. 16, no. 9 (2016), pp. 2865–2889.

[2] Baccelli, E. et al. “RIOT OS: Towards an OS for the Internet of Things”.
In: 2013 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). Apr. 2013, pp. 79–80.

92

References

SRVENTRY 0 0 100000 0 0 0 service x
QUEUECOND 0 0 100004 packet_queue packet_queue 0 service notempty
PKTQUEUE 0 0 100004 packet_queue packet_queue 0 service x
SRVEXIT 0 0 100011 0 0 0 service x

SRVENTRY 0 0 200000 0 0 0 service x
QUEUECOND 0 0 200004 packet_queue packet_queue 0 service empty
SRVEXIT 0 0 200011 0 0 0 service x

|
Converts to
↓

SIGSTART
NAME service
PEU cpu
RESOURCES cycles normal
FRACTION 100% 1940 1940

0 START
x PROCESS 4 0
x QUEUECOND packet_queue packet_queue notempty
x DEQUEUE PKTQUEUE 0 packet_queue
x PROCESS 7 0
0 STOP

SIGEND

SIGSTART
NAME service
PEU cpu
RESOURCES cycles normal
FRACTION 100% 1940 1940

0 START
x PROCESS 4 0
x QUEUECOND packet_queue packet_queue empty
x PROCESS 7 0
0 STOP

SIGEND

Listing I.2: CSE events to signatures conversion

[3] Begin, T. et al. “High-level approach to modeling of observed system
behavior”. In: Performance Evaluation vol. 67, no. 5 (2010), pp. 386–
405.

[4] Beifuß, A. et al. “A study of networking software induced latency”.
In: 2015 International Conference and Workshops on Networked
Systems (NetSys). Mar. 2015, pp. 1–8.

[5] Bhatti, S. et al. “MANTIS OS: An Embedded Multithreaded Operating
System for Wireless Micro Sensor Platforms”. In: Mob. Netw. Appl.
vol. 10, no. 4 (Aug. 2005), pp. 563–579.

[6] Bloessl, B. et al. “Low-cost interferer detection and classification
using TelosB sensor motes”. In: ACM SIGMOBILE Mobile Computing
and Communications Review vol. 16, no. 4 (2013), pp. 34–37.

[7] Cao, Q. et al. “The LiteOS Operating System: Towards Unix-Like
Abstractions for Wireless Sensor Networks”. In: 2008 International

93

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

Conference on Information Processing in Sensor Networks (ipsn
2008). Apr. 2008, pp. 233–244.

[8] Cory Sharp, Martin Turon, David Gay. “TEP 102: Timers”. In: ().

[9] Dale, Ø. “Modeling, analysis, and simulation of communication
software execution on multicore devices”. MA thesis. 2016.

[10] David Moss, Jonathan Hui, Philip Levis and Jung Il Choi. “TEP 126:
CC2420 Radio Stack”. In: (2007).

[11] Dunkels, A., Gronvall, B., and Voigt, T. “Contiki - a lightweight and
flexible operating system for tiny networked sensors”. In: 29th Annual
IEEE International Conference on Local Computer Networks. Nov.
2004, pp. 455–462.

[12] Ðurišić, M. P. et al. “A survey of military applications of wireless
sensor networks”. In: 2012 Mediterranean conference on embedded
computing (MECO). IEEE. 2012, pp. 196–199.

[13] Elsts, A. and Selavo, L. “Improving the Usability of Wireless Sensor
Network Operating Systems.” In: FedCSIS Position Papers. 2013,
pp. 89–94.

[14] Eriksson, J. et al. “COOJA/MSPSim: Interoperability Testing for
Wireless Sensor Networks”. In: Proceedings of the 2Nd International
Conference on Simulation Tools and Techniques. Simutools ’09. Rome,
Italy: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2009, 27:1–27:7.

[15] Eriksson, J. et al. “Mspsim - an extensible simulator for msp430-
equipped sensor boards.” In: : 2007.

[16] Eswaran, A., Rowe, A., and Rajkumar, R. “Nano-RK: an energy-
aware resource-centric RTOS for sensor networks”. In: 26th IEEE
International Real-Time Systems Symposium (RTSS’05). Dec. 2005,
10 pp.–265.

[17] Gay, D. et al. nesC 1.1 language reference manual. 2003.

[18] Gay, D. et al. “The nesC Language: A Holistic Approach to Networked
Embedded Systems”. In: SIGPLAN Not. vol. 38, no. 5 (May 2003),
pp. 1–11.

[19] Hammad, M. and Cook, J. “Lightweight Deployable Software Monitor-
ing for Sensor Networks”. In: 2009 Proceedings of 18th International
Conference on Computer Communications and Networks. Aug. 2009,
pp. 1–6.

[20] Hammad, M. and Cook, J. “Lightweight Monitoring of Sensor
Software”. In: Proceedings of the 2009 ACM Symposium on Applied
Computing. SAC ’09. Honolulu, Hawaii: ACM, Jan. 2009, pp. 2180–
2185.

94

References

[21] Hart, J. K. and Martinez, K. “Environmental sensor networks: A
revolution in the earth system science?” In: Earth-Science Reviews
vol. 78, no. 3-4 (2006), pp. 177–191.

[22] Henderson, T. R. et al. “Network simulations with the ns-3 simulator”.
In: SIGCOMM demonstration vol. 14, no. 14 (2008), p. 527.

[23] Hussian, R. et al. “WSN applications: Automated intelligent traffic
control system using sensors”. In: Int. J. Soft Comput. Eng vol. 3,
no. 3 (2013), pp. 77–81.

[24] Igel, A. and Gotzhein, R. “A CC2420 Transceiver Simulation Module
for ns-3 and its Integration into the FERAL Simulator Framework”.
In: ().

[25] Instruments, T. 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF transceiver.
2006.

[26] Jouhari, M. et al. “Underwater wireless sensor networks: A survey
on enabling technologies, localization protocols, and internet of
underwater things”. In: IEEE Access vol. 7 (2019), pp. 96879–96899.

[27] Kandris, D. et al. “Applications of wireless sensor networks: an up-
to-date survey”. In: Applied System Innovation vol. 3, no. 1 (2020),
p. 14.

[28] Klues, K. et al. “TOSThreads: Thread-Safe and Non-Invasive Preemp-
tion in TinyOS”. In: ACM, Nov. 2009.

[29] Kristiansen, S., Plagemann, T., and Goebel, V. “A methodology to
model the execution of communication software for accurate network
simulation”. In: ACM Transactions on Modeling and Computer
Simulation (TOMACS) vol. 26, no. 1 (July 2015), pp. 1–31.

[30] Kristiansen, S., Plagemann, T., and Goebel, V. “Extending network
simulators with communication software execution models”. In:
2013 Fifth International Conference on Communication Systems
and Networks (COMSNETS). IEEE. 2013, pp. 1–10.

[31] Kristiansen, S. et al. “Event modeling and processing to simplify
real-time analysis of physiological signals”. In: (2017).

[32] Levis, P. et al. “TinyOS: An operating system for sensor networks”.
In: Ambient intelligence (2005). Ed. by Weber, W., Rabaey, J. M., and
Aarts, E., pp. 115–148.

[33] Levis, P. et al. “TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications”. In: Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems. SenSys ’03.
Los Angeles, California, USA: ACM, 2003, pp. 126–137.

[34] Memsic Inc. “TelosB Datasheet”. In: ().

95

I. Improving the accuracy of timing in scalable WSN simulations with
communication software execution models

[35] Meyer, T. et al. “Extensible and realistic modeling of resource con-
tention in resource-constrained nodes”. In: 2013 International Sympo-
sium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS). July 2013, pp. 1–9.

[36] Modium, D. K. and Kolla, K. P. “ENHANCING REAL TIME CAPABILI-
TIES OF NANO-RK FOR TELOSB PLATFORM”. In: ().

[37] Musaddiq, A. et al. “A survey on resource management in IoT
operating systems”. In: IEEE Access vol. 6 (2018), pp. 8459–8482.

[38] Neves, P., Fonsec, J., and Rodrigue, J. “Simulation tools for wireless
sensor networks in medicine: a comparative study”. In: Int. Jt. Conf.
Vol. 2. Jan. 2007, pp. 111–114.

[39] Osterlind, F. et al. “Cross-Level Sensor Network Simulation with
COOJA”. In: Proceedings. 2006 31st IEEE Conference on Local
Computer Networks. Nov. 2006, pp. 641–648.

[40] Pagano, P. et al. “Simulating Real-Time Aspects of Wireless Sensor
Networks”. In: EURASIP Journal on Wireless Communications and
Networking vol. 2010, no. 1 (Dec. 2009), p. 107946.

[41] Pierce, F. and Elliott, T. “Regional and on-farm wireless sensor
networks for agricultural systems in Eastern Washington”. In:
Computers and electronics in agriculture vol. 61, no. 1 (2008), pp. 32–
43.

[42] Riley, G. F. and Henderson, T. R. “The ns-3 network simulator”. In:
Modeling and tools for network simulation. Ed. by Wehrle, K., Güneş,
M., and Gross, J. Berlin, Heidelberg: Springer, 2010, pp. 15–34.

[43] Sauter, R. et al. “TinyLTS: Efficient network-wide Logging and Tracing
System for TinyOS”. In: 2011 Proceedings IEEE INFOCOM. Apr. 2011,
pp. 2033–2041.

[44] Stein Kristiansen, Espen Volnes. CSE Modeling Framework. 2018.

[45] Strazdins, G., Elsts, A., and Selavo, L. “MansOS: easy to use, portable
and resource efficient operating system for networked embedded
devices”. In: Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems. 2010, pp. 427–428.

[46] Thakur, D. et al. “Applicability of wireless sensor networks in preci-
sion agriculture: A review”. In: Wireless Personal Communications
vol. 107, no. 1 (2019), pp. 471–512.

[47] Varga, A. “OMNeT++”. In: Modeling and tools for network simulation.
Springer, 2010, pp. 35–59.

96

References

[48] Volnes, E., Kristiansen, S., and Plagemann, T. P. “Communication
Software Execution Model of a WSN Device for More Accurate
Simulation in Ns-3”. In: Proceedings of the 11th International
Conference on Computer Modeling and Simulation. ICCMS 2019.
North Rockhampton, QLD, Australia: ACM, 2019, pp. 184–189.

[49] Xinjie Chang. “Network simulations with OPNET”. In: WSC’99. 1999
Winter Simulation Conference Proceedings. ’Simulation - A Bridge to
the Future’ (Cat. No.99CH37038). Vol. 1. Dec. 1999, 307–314 vol.1.

[50] Zhou, H. and Hu, H. “Human motion tracking for rehabilitation—A
survey”. In: Biomedical signal processing and control vol. 3, no. 1
(2008), pp. 1–18.

[51] Österlind, F. A Sensor Network Simulator for the Contiki OS. Tech.
rep. 2006:05. SICS, 2006, p. 40.

97

Paper II

Modeling the Software Execution
of CEP in DCEP-Sim

Espen Volnes, Stein Kristiansen, Thomas Plagemann, Vera
Goebel, Morten Lindeberg

Published in Proceedings of the 13th ACM International Confer-
ence on Distributed and Event-based Systems, June 2019, DOI:
10.1145/3328905.3332508.

II

Abstract

DCEP-Sim facilitates simulation of distributed CEP where the latency and
bandwidth limitations in the network are well reflected, but it currently
lacks models to simulate the temporal behavior of event processing.
In this demonstration, we use a modeling methodology to model the
software execution of a CEP system called T-Rex. We instrument and
trace T-Rex to parameterize a software execution model that is integrated
into DCEP-Sim. Furthermore, we use this instance instance of DCEP-
Sim to run simulations and see how significant the processing delay
introduced by the model is compared to the transmission delay.

II.1 Introduction

Simulation of distributed complex event processing (DCEP) is an efficient
way of testing different topologies, queries, and workloads. It can be used to
estimate the requirements for the DCEP infrastructure and is a much cheaper
alternative to real-world experiments. Moreover, reproducing results is much
simpler with simulation. For these reasons, DCEP-Sim is created [7]. DCEP-
Sim extends the network simulator ns-3, which ensures that it simulates the
network communication using validated models.

An essential aspect of DCEP that DCEP-Sim has been unable to simulate
is the delay caused by software execution. The time that a node spends
processing an event differs depending on the type of event, the number of
queries that are deployed onto a node, query parameters, and complexity.
Without this feature, the simulation will assume that all nodes in the network
have the same processing capacity. Moreover, DCEP-Sim will overestimate

99

II. Modeling the Software Execution of CEP in DCEP-Sim

Figure II.1: Demonstration overview.

the throughput and underestimate the total end-to-end delay caused by
network and event processing.

The inability to distinguish between weak and powerful nodes may limit
the realism of the operator placement mechanism. Some operator placement
algorithms will place partial queries near the data source to reduce energy
consumption [6]. However, a class of networks called fog networks typically
places central processing in powerful data centers and weak data source
nodes at the edge, e.g., Raspberry Pi or sensor motes [8]. In this case,
complex queries might need to be placed further from the source where
the processing capacity is sufficient. With a software execution model, the
operator placement algorithm will be able to take into account both the
processing capacity of nodes and proximity to data sources.

Developing simulation models for the execution time of DCEP is a
challenging task, and in this demonstration, we show a case that it is possible
to create such models, how this is done, and how simulation results can
be improved. In particular, we demonstrate the creation and simulation
of a software execution model of the T-Rex CEP system [1] running on
a Raspberry Pi 3 B. To perform the demonstration steps in Figure II.1,
we apply the software execution modeling methodology from [5] on CEP.
This methodology has previously only been used to model processing by IP-
forwarding. Therefore, the first obstacle is to determine the most significant
factors that affect the temporal behavior of CEP systems.

II.2 Modeling CEP

In this section, we briefly explain the modeling methodology to enable the
reader to understand better what we show in the demonstration. Additionally,
we describe the considerations to take when applying the methodology to
the T-Rex CEP system.

II.2.1 Modeling Methodology

The modeling methodology in [5] has previously been used to model IP-
forwarding of four different mobile systems. These models have been
made for the network simulator ns-3, which DCEP-Sim extends. Moreover,
the models are trace-based, which means that we execute the software in
multiple contexts while tracing it, and use that data to generate the models.

100

Modeling CEP

Technically, the models are simulator agnostic, but they require an execution
environment specific to a simulator that is based on the principles of the
methodology.

Multiple factors affect the execution time of software:

• type of hardware,

• speed of CPU,

• operating system used,

• programming language of the software, and

• execution behavior.

All these factors motivate the need for a software execution model that
is tailored to combinations of hardware, operating system, and software.
On the other hand, if two different operating systems or sets of hardware
have been demonstrated to have similar run-time behavior, a model can
be reconfigured slightly to represent a new system, thus avoiding the full
modeling process.

These models introduce processing delay to discrete event simulators by
delaying (in simulated time) the execution of specific functions in the models.
This delay is introduced by replacing a regular function call with a callback
that is executed after we have introduced processing delay.

The methodology describes the following steps to create a model:

• instrument the software to model,

• trace the temporal behavior of the system in multiple contexts to get
an accurate representation of the system,

• investigate the traces to make sure that the system has been
appropriately instrumented,

• create the model based on the traces, and

• evaluate the model.

II.2.2 Use Case: T-Rex

We model the software execution of T-Rex, a prototype pub/sub CEP server
system. T-Rex is chosen for two reasons. First, Cugola and Margara made
T-Rex [1] and defined CEP concepts [2] on which DCEP-Sim is based. Second,
the system is more straightforward than modern stream-processing engines
in terms of programming language, system architecture and properties like
reliability, fault tolerance and quality of service. In addition to CEP, these
systems handle everything from batch operations to machine learning [4].

101

II. Modeling the Software Execution of CEP in DCEP-Sim

Our model supports queries that expect sequences of two events, in
addition to different types of constraints on these events. Value constraints
are used to filter events based on attribute values. A window constraint in
T-Rex means that an event that follows another must arrive no later than
a certain number of milliseconds. These operators are chosen because
they represent the most common use of CEP: to detect patterns in event
sequences.

The performance of CEP systems is significantly affected by the temporal
behavior of software during its execution, including the factors listed in
Section II.2.1. Based on our experiments and the evaluation of T-Rex in [1],
the factors that may affect the execution behavior of T-Rex notably include:

• size of the event packet,

• size of the input queue of T-Rex,

• number and type of constraints in queries,

• number of queries,

• number of expected events in a query,

• type of operators used in the queries,

• number of utilized CPU cores, and

• number of subscribers of a given event.

These factors must be considered separately by instrumenting and tracing
to capture the processing delay of T-Rex. To which extent they affect the
temporal behavior can only be found through run-time analysis.

II.3 Event processing in T-Rex

T-Rex utilizes all CPU cores on the server to maximize CPU utilization during
query processing. By default, the program spawns two threads for each CPU
core: we name them the event and query threads. The event thread handles
incoming events and the query thread performs query processing according
to a set of queries for which it is responsible. This means if the number of
events processed at the same time equals or exceeds the number of utilized
cores, T-Rex utilizes all the event threads. If the number of deployed queries
is higher or equal to the number of utilized cores, T-Rex utilizes all the query
threads.

Figure II.2 illustrates how these threads work together to process
incoming events. First, an incoming packet is handled by the event thread
in the first available CPU core. The thread checks if the event matches any
constraint in any of the standing queries. If a constraint is fulfilled, the

102

Event processing in T-Rex

Data source

Receive packet

Unmarshal event

Check which constraints the event fulfills

Wake cores

Process queries Process queries Process queries Process queries

Converge cores

Send events to subscribers

Subscriber Subscriber Subscriber

Wake core 2

Core 1 Core 2 Core 3 Core 4

Send event Send event Send event

Figure II.2: Flow diagram of event processing in T-Rex.

thread writes it into the shared memory of the thread that handles the said
query. After constraint checking, the incoming event is handled by the query
threads in all the CPU cores. The query threads loop through their queries
and check if the event proceeds on any existing event sequence. If an event
sequence matches a query, the complex event is produced, and potential
cleanup is done to free memory. Finally, the event thread sends the incoming
atomic event and any potential complex events that were generated to the
subscribers of these events.

The time that T-Rex spends processing these tasks depends on factors
like those mentioned in Section II.2.2. For instance, each constraint takes
a certain amount of time to process. Also, the processing time depends
on whether the type of the constraint is a string, integer or float. If more
than one core is utilized, multiple packets can be received and processed at
the same time, and queries can be processed in parallel. The simulation of
two models with different configurations yields different temporal behaviors.
Consequently, the effect of the variables on the temporal behavior of T-Rex
must be understood before they can be modeled.

103

II. Modeling the Software Execution of CEP in DCEP-Sim

II.4 Demonstration

We demonstrate in this section the steps of creating and simulating a CEP
model of a Raspberry Pi 3 B that executes T-Rex. We lock the Pi’s CPU
frequency to 600 MHz (by default varies between 600 and 1200 MHz)
because our model can currently not vary its CPU frequency during run-time
realistically. The demonstration steps are illustrated in Figure II.1. In a
test scenario, the Pi is traced while executing an instrumented version of
T-Rex. These traces are then analyzed to verify that T-Rex is adequately
instrumented. Afterward, the model is created or updated based on these
traces. Finally, we simulate DCEP-Sim with the software execution model to
observe how the transmission delay compares to the processing delay that is
introduced by the model.

II.4.1 Model Creation

We trace an instrumented version of T-Rex with tracepoints at the entry and
exit points of the incoming events. A test scenario in T-Rex that utilizes
one CPU core is executed locally instead of distributively to avoid network
overhead and increase replicability. Listing II.1 contains Query 1, a two-state
fire detection query that is written in the Tesla event specification language
[3]. We deploy it to T-Rex, and send the two expected events in order one
at a time. The query expects a humidity event with humidity less than
25%, followed by a temperature event with a temperature above 45 ◦C. The
temperature event must arrive not more than 5 seconds after the humidity
event. The ’Consuming’ clause dictates that these events cannot trigger
more than one complex event. Afterward, all other event sequences that
include these events are deleted.

The histogram in Figure II.3 shows a bimodal processing delay distribu-
tion (two peaks) after tracing T-Rex with only two tracepoints in the code
placed before and after the processing of individual events. Events #1 and
#2 are sent in order to trigger the complex event. We can see how the
processing delay for an event differs depending on whether the event is
number one (Event #1) in the query or the event triggering the complex
event (Event #2). Keep in mind that Event #1 and #2 might as well be
identical; the reason why Event #2 takes longer time to process than Event
#1 is that the final event prompts T-Rex to create a complex event, which
causes more processing to occur. According to the modeling methodology,
this instrumentation is incomplete until we reach a unimodal distribution
(one peak) [5].

Unimodal processing delay distributions can be reached by instrumenting
all the conditional branching statements and loops that we know have a
differing temporal behavior depending on workload and queries. When
we analyze and plot the processing delay distributions for each processing

104

Demonstration

Listing II.1: Query to detect fire (Query 1).
Assign 10 => Temp, 11 => Humidity , 12 => Fire
Define Fire (area : string , temp: f loat)
From Temp(value > 45) and
last Humidity ([string] area = Temp. area , perc < 25)
within 5000 from Temp
Where area := Temp. area , temp := Temp. value
Consuming Temp, Humidity

Figure II.3: Distribution of processing delays in T-Rex when processing two
types of events with a two-state query deployed.

stage with proper instrumentation, each plot should have one peak. Even
though the distributions are unimodal, a system can still be improperly
instrumented if the set of workloads in which the system is traced is too
low. Modeling a system is, therefore, an iterative process that requires us
to revisit instrumentation, tracing, updating model and simulation multiple
times. For the rest of the demonstration, we use an already sufficiently
instrumented T-Rex.

When T-Rex is traced, the model is created or updated. Creating the
model includes specifying the number of threads, CPU cores, and the model’s
integration with the simulator. Listing II.2 illustrates the signature of a partial
model within the software execution model that represents a traced service
in T-Rex. It has a processing stage that takes 5000 CPU cycles to execute.
When the simulator executes this processing stage, it delays the simulation
by 5000/f seconds, where f signifies the CPU frequency of the model. This
delay can be updated based on traces.

II.4.2 DCEP-Sim

We run DCEP-Sim with the software execution model to see its impact on
temporal behavior. The topology for the simulation consists of four nodes, as
illustrated by the screenshot in Figure II.4 from the simulation animation tool
NetAnim from ns-3. Node Asource and Node Bsource generate events every 10

105

II. Modeling the Software Execution of CEP in DCEP-Sim

Listing II.2: Signature of partial model.
SIGSTART
NAME process_received_packet
PEU cpu
RESOURCES cycles normal
FRACTION 100% 1 1

0 START
x PROCESS 5000 0
x CALL check−constraints
0 STOP

SIGEND

Figure II.4: Netanim screenshot from the simulation playback.

ms and send them to the third node Ccep, which acts as the T-Rex processing
node. All complex events that are generated by Ccep are transmitted to the
fourth node Dsink. We deploy the DCEP-Sim equivalent of Query 1 to Node
Ccep. Both data sources generate sensor data: Node Asource generates data
from a thermometer and Node Bsource from a humidity sensor. The events
from Node Asource and Node Bsource correspond to Event #2 and #1 in Query
1, respectively. The simulation is executed five times with the same events
being generated but with one to five queries deployed to Node Ccep.

We measure and compare two types of delays: the transmission from
the data source nodes to Node Ccep and processing delays from Node Ccep.
Ns-3 already provides transmission delay through its network models. Our
model provides processing delay to the simulation. The measurements from
DCEP-Sim are illustrated in Figure II.5. The x-axis shows the number of
deployed queries and the y-axis denotes the delay in µs. The figure has three
lines. The first lines illustrates the time taken to transmit both Event #1
and #2 being from one node to another. The second and third lines show
the amount of time Node Ccep spends processing Event #1 and #2 with the
model, respectively. We can see how the delays for the second and third
lines correspond to the first and second peaks of Figure II.3 when x equals 1,
which means the model simulates the processing delay of Event #1, Event

106

References

1 2 3 4 5

25
50

100

150

200

250

300

Number of deployed queries

D
e
la

y
(µ

s)

Tx delay for Event #1 & #2

Proc delay for Event #1

Proc delay for Event #2

Figure II.5: Transmission and processing delay in DCEP-Sim (54 Mbit/s
data-rate)

#2, and a single instance of Query 1 accurately. These results highlight how
significant the processing delay can be compared to the transmission delay.

The processing delay introduced by the model is several times higher
than the transmission delay from ns-3. Also, the processing delay varies
significantly depending on the number of queries deployed to Node Ccep

and whether the event is the first in a sequence or the one triggering
a complex event. This results in a variable and higher end-to-end delay
and may result in a decrease of the maximum throughput. If the model
utilized more than one CPU core, the difference in delay when increasing
the number of queries would be smaller. The processing delay becomes
particularly important to simulate if a simulated network is a heterogeneous
mix of devices with different processing capabilities. Then we can include
multiple different software execution models depending on the processing
capability of the nodes. Consequently, weak nodes can get overloaded and
drop packets because of the added processing delay, which is an effect that
would otherwise be lost without the model.

References

[1] Cugola, G. and Margara, A. “Complex event processing with T-REX”.
In: Journal of Systems and Software vol. 85, no. 8 (2012), pp. 1709–
1728.

107

II. Modeling the Software Execution of CEP in DCEP-Sim

[2] Cugola, G. and Margara, A. “Processing Flows of Information: From
Data Stream to Complex Event Processing”. In: ACM Comput. Surv.
vol. 44, no. 3 (June 2012), 15:1–15:62.

[3] Cugola, G. and Margara, A. “TESLA: A Formally Defined Event Speci-
fication Language”. In: Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems. DEBS ’10. Cam-
bridge, United Kingdom: ACM, 2010, pp. 50–61.

[4] Dayarathna, M. and Perera, S. “Recent Advancements in Event
Processing”. In: ACM Comput. Surv. vol. 51, no. 2 (Feb. 2018), 33:1–
33:36.

[5] Kristiansen, S., Plagemann, T., and Goebel, V. “A methodology to
model the execution of communication software for accurate network
simulation”. In: ACM Transactions on Modeling and Computer
Simulation (TOMACS) vol. 26, no. 1 (July 2015), pp. 1–31.

[6] Starks, F. and Plagemann, T. P. “Operator placement for efficient
distributed complex event processing in MANETs”. In: 2015 IEEE
11th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). Oct. 2015, pp. 83–90.

[7] Starks, F., Plagemann, T. P., and Kristiansen, S. “DCEP-Sim: An Open
Simulation Framework for Distributed CEP”. In: Proceedings of the
11th ACM International Conference on Distributed and Event-based
Systems. DEBS ’17. Barcelona, Spain: ACM, 2017, pp. 180–190.

[8] Yi, S., Li, C., and Li, Q. “A Survey of Fog Computing: Concepts,
Applications and Issues”. In: Proceedings of the 2015 Workshop on
Mobile Big Data. Mobidata ’15. Hangzhou, China: ACM, 2015, pp. 37–
42.

108

Paper III

EXPOSE: Experimental
Performance Evaluation of
Stream Processing Engines Made
Easy

Espen Volnes, Thomas Plagemann, Vera Goebel, Stein
Kristiansen

Published in Technology Conference on Performance Evaluation and Bench-
marking, August 2020, DOI: 10.1007/978-3-030-84924-5_2. III

Abstract

Experimental performance evaluation of stream processing engines (SPE)
can be a great challenge. Aiming to make fair comparisons of different
SPEs raises this bar even higher. One important reason for this challenge
is the fact that these systems often use concepts that require expert
knowledge for each SPE. To address this issue, we present Expose, a
distributed performance evaluation framework for SPEs that enables a
user through a declarative approach to specify experiments and conduct
them on multiple SPEs in a fair way and with low effort. Experimenters
with few technical skills can define and execute distributed experiments
that can easily be replicated. We demonstrate Expose by defining a set
of experiments based on the existing NEXMark benchmark and conduct
a performance evaluation of Flink, Beam with the Flink runner, Siddhi,
T-Rex, and Esper, on powerful and resource-constrained hardware.

III.1 Introduction

Distributed Stream Processing Engines (SPE) process tuples at potentially
high rates, perform filter operations, aggregation operations, and derive
higher-level events. These are performed without the need to store the tuples
persistently. Such systems are becoming more and more relevant for an
increasing number of applications, ranging from classical financial services
to sensor-based smart-* systems. As such, stream processing becomes

109

III. EXPOSE: Experimental Performance Evaluation of Stream Processing
Engines Made Easy

highly relevant for fog networks where Big Data processing shifts from only
occurring at resourceful data centers to access points closer to data sources.
That means data is processed on resource-constrained systems close to the
client and in resourceful data centers. This diversity in terms of applications
and processing environments implies that the age of ”one size fits all” has
ended for SPEs [23]; and naturally leads to a large number of different SPEs,
all with their particular strength and weaknesses. These include SPEs aimed
towards data centers for high concurrency, throughput, and integration
possibilities, like Apache Flink, Esper Enterprise Edition, and Apache Storm,
as well as SPEs suitable for relatively resource-constrained systems, like
the library versions of Siddhi and Esper. Furthermore, there are different
types of SPEs, including Data Stream Management Systems, Complex Event
Processing (CEP) systems, and Big Data processing systems.

With many SPEs available, each with its own qualities, choosing the
correct one for a given application is a challenge. Benchmarks might
help, but there are limitations in the existing SPE benchmarks, and a given
benchmark might not reflect the needs for a particular application and its
processing environment. Comparative experimental performance evaluation
would be the best foundation, but these require expert knowledge for all
involved SPEs to achieve a fair comparison. Furthermore, experiments
require a lot of effort, including configuration management, workload
generation, and monitoring to gather performance numbers. Experimenting
with distributed SPEs is even more complex. To overcome these challenges,
we present in this paper a framework to simplify experimental performance
evaluation of distributed SPEs, called Expose. Before we describe the
fairness aspect in more detail, we briefly identify other use cases for Expose:
(1) researchers that develop new SPE (mechanisms) and want to compare
them with state-of-the-art solutions, (2) developers that want to identify
bottlenecks in SPEs, (3) users that want to understand the impact of different
processing environments on the performance of an SPE, and (4) committees
that want to define benchmarks.

While heterogeneity in SPEs is an important reason to perform compara-
tive experiments, it is also the main reason why it is difficult to do. Different
SPEs use different abstractions, concepts, and lack a definite standard. An
expert for one system might not integrate another system as well in an ex-
periment. This can lead to unfairness and bias, and a system might perform
best because the developer knows it the best, not because it is best for the
application. Ideally, we would like to run experiments by using for all SPEs a
common set of concepts like ”Deploy queries,” ”Define data stream,” ”Add
sink for a stream,” which are all implemented in the different SPEs.

To the best of our knowledge, no existing work provides such a generic
interface for executing complex distributed SPE experiments. Apache Beam
and the standardization initiative in [3] aim for a unified interface for SPEs

110

Introduction

and other data management systems, but lack support for experimental
performance evaluation of SPEs. The PEEL experiment framework [4]
provides users with the ability to define experiments with less effort than
normal, but each SPE still needs to be treated in a different way when
defining experiments. Moreover, PEEL does not enable the user to configure
the distribution of the SPEs. Multiple microbenchmarks exist that address
individual stream processing operators, but they do not test SPEs on
application level and lack distribution.

We aim to reduce the workload when defining and executing distributed
SPE experiments through a declarative approach. Our proposal is a
framework for defining distributed SPE experiments and automating the
execution of the experiments. The same experiment definition can be
executed with all supported SPEs. A user can utilize any dataset for
transmitting tuples and define schemas to be used in experiments. Moreover,
the user can choose to trace new metrics and events of interest, which can,
for example, be used to create new benchmarks. Stream topologies can be
set up in the same way for all supported SPEs, regardless of whether the
SPE system internally uses the publish/subscribe or data source and data
sink abstractions.

The core of Expose is an API based on a set of SPE tasks. These are used
to define the experiments with commands like "Add Query 5 to Node 2," "Wait
until the stream has ended on Node 2," and "Send Dataset 2 as a stream on
Node 1." To support a new SPE in Expose, we expect experts to implement a
"wrapper" for the SPE that supports these commands. This limited one-time
effort should allow for fairness since an expert should be able to implement
it in the best possible way. Through this declarative approach, non-experts
with a basic understanding of SPE concepts are able to define complex
distributed experiments, including the performance metrics of interest. The
experiments are automatically executed, and the results are prepared for
the experimenter. A summary of our contributions is as follows:

• framework for evaluating and comparing distributed SPEs in a fair and
replicable way,

• declarative API for the execution of SPEs,

• implementation of the API in five SPE systems (Flink [5], Beam [1],
Siddhi [24], Esper [8], and T-Rex [7]),

• open-source repository that contains the code, available at GitHub1,

• implementation of a well-known SPE benchmark in Expose, and

• execution of the benchmark on the supported SPEs.

1GitHub repository available at https://github.com/espv/expose

111

III. EXPOSE: Experimental Performance Evaluation of Stream Processing
Engines Made Easy

The paper is structured as follows. Section III.2 presents the framework.
In Section III.3, we demonstrate the use of the framework. Section III.4
discusses related works, and Section III.5 concludes the paper.

III.2 Design

The main innovation introduced by Expose is the ability to define simple
distributed SPE experiments with multiple SPEs. The output of the systems
is homogeneous and thus directly comparable. The experimenter does not
need to know the internal workings of these systems, but must rather define
experiments as a list of tasks to be executed on the specified node in the
experiment, each of which represents one SPE instance or cluster in the
experiment topology. Examples of tasks are adding a node as next hop for a
given stream, deploying SQL queries, and streaming a dataset to the next
hops. How these tasks are executed on each specific SPE is up to a "wrapper"
that is implemented by an expert in that SPE.

The target user for Expose is anyone with an interest in conducting a
performance evaluation of SPEs. Benchmarks are great for performance
evaluation, but new ones are always needed because they often have a
narrow focus [14]. The downside of benchmarks is that they are rigid and
require all stakeholders to agree that the benchmark provides meaningful
results [9]. Sometimes, custom benchmarks or performance evaluations are
preferable, which requires a way of defining, changing, and executing them.
Our goal is to give the user the ability to easily define and execute their own
performance evaluation such that they can gain with a low effort the type of
results and insights they are interested in. They can select custom datasets,
measurements, and parameters to use for the evaluation, and set up the
stream topology with an arbitrary number of nodes.

III.2.1 Experiments

An SPE experiment is a clearly defined execution of SPEs that uses an
experiment definition as input and gives performance results as output.
The experiment definition includes all information needed to execute the
experiment. Therefore, the experiments are repeatable. In order to use
different SPEs in the experiments, Expose works in a declarative way. The
experimenter decides what tasks should be executed, but not how. We
remove the need for the experimenter to understand the specifics of the
SPE. To make the experiment definition human-readable, we use the YAML
configuration format.

If the output from SPEs is system-independent, analysis of the results and
comparison among the systems becomes much more feasible. To achieve
this, it is necessary to implement or reuse a minimalistic tracing module for
each SPE that can be used to trace arbitrary events in the code. The reason

112

Design

to do this instead of using the SPE’s internal runtime logs is to ensure that
the output trace is in the same format for every SPE. The SPE expert adds
tracepoints, each with its own ID, and then the experimenter can activate or
deactivate tracepoints in experiments. Therefore, the experiment definition
should specify not only the tasks to be executed, but also what events are
traced during the experiment.

The lack of a standardized query language for SPEs is well known and
resulted, for example, in the popular Apache Beam and "One SQL" [3]
standardization initiative. Apache Beam can imply performance penalties
ranging from factor 4 to 58, depending on the SPE and operators being
used [11]. This work is focused on performance evaluation that results in
reliable performance numbers. As such, it is important that the solution is
lightweight with minimal impact on the performance evaluation and support
tasks that are necessary to perform experiments and to deliver quite reliable
performance numbers. Therefore, we do not build upon Beam, but instead
create an independent solution that can evaluate all kinds of SPEs, including
unifying systems such as Beam.

For any experiment, the SQL queries, stream schemas, and datasets need
to be given in the experiment definition. Each element of the experiment
definition is SPE-agnostic except for the SQL queries. Even though the
SPEs support an SQL-like language, their syntax may be completely different
from each other, and the same features might not be supported in all SPEs.
The SPE wrappers can translate small variations in syntax, but translating
complex SQL queries without any performance penalty is outside the scope
of this paper.

On the other hand, we can define SPE tasks, which are common across
all SPEs. Examples are "send dataset as a stream," "add next hop for stream
ID," and "deploy SQL query." These tasks are materialized as an API that
each SPE wrapper implements. The SPE tasks are defined based on an
analysis of the SPEs that we study in this paper. As such, the set of tasks
might not be comprehensive, but it is sufficient to describe a wide variety
of distributed stream processing experiments. To create an SPE wrapper,
the SPE expert maps the tasks to the SPE by using the special functionality
offered by the SPE. That way, we preserve the unique capabilities of the
SPEs while enabling different SPEs to run the same experiments.

In Table III.1, we list all SPE tasks that are needed for the experiments.
We distinguish between tasks that are manual and explicitly added to the
experiment definition by the experimenter and tasks that are automatically
issued by the SPE wrapper. The SPE tasks describe how to set up or expand
stream topologies with addNextHop. Stream schemas can be added with
addSchemas. SQL queries can be deployed on the specified node with
deployQueries and removed with clearQueries. The runtime environment
can be started with startRuntimeEnv and stopped with stopRuntimeEnv.

113

III. EXPOSE: Experimental Performance Evaluation of Stream Processing
Engines Made Easy

SPE tasks Manual Description

addNextHop Yes Add next hop to a stream
deployQueries Yes Deploy specified query a given num-

ber of times
startRuntimeEnv Yes Start runtime environment
stopRuntimeEnv Yes Stop runtime environment
setParallelism Yes Set desired level of parallelism for

processing tuples
sendDsAsStream Yes Convert dataset to stream, and send

it to all next hops
clearQueries Yes Remove all existing queries
writeStreamToCsv Yes Write tuples from stream to file
addSchemas No Add stream schemas
startExperiment No First task executed by SPEs in the

experiment
endExperiment No Final task executed by SPEs in the

experiment

Table III.1: SPE tasks

The level of parallelism can be set with setParallelism. Streaming datasets
to the next hops can be done with sendDsAsStream, realistically using
timestamps from the tuples, as fast as possible, or with an arbitrary rate.
Tuples from a stream can be written to file using writeStreamToCsv.

In addition to the SPE tasks, experiments require another class of tasks
called experiment tasks, listed in Table III.2. These tasks are necessary for
the execution of experiments, most of which are automatically issued to the
SPE nodes by the coordinator. Examples of experiment tasks include looping
through a sequence of tasks a given number of times and waiting until no
tuple has been received in a number of milliseconds.

Distribution is required in most SPE applications, but it makes exper-
imentation more complex. It is not trivial to ensure that the tasks in the
experiments are executed in the correct order, at the correct time, and by
the correct node. Moreover, we need to decide what entity is responsible for
deciding which node executes which task and when. To support distributed
experiments and give the experimenter full control of the end-to-end data
stream pipeline, we introduce a coordinator, as illustrated in Figure III.1.
m SPE nodes participate in this experiment, each of which is an instance of
an SPE or an SPE cluster. Arbitrarily many SPE nodes can run on a single
machine. The coordinator has an overview of these nodes and is the entity
that issues tasks to them. The tasks in the experiment definition must denote
which node should execute the task. We introduce the node ID to make the
experiment definitions fully reusable and avoid specifying IP addresses and
port numbers in the experiment definition. During the start phase of an

114

Design

Experiment task Manual Description

traceTuple Yes Custom-defined tracepoint
retEndOfStream Yes Task that returns from the SPE when

no tuples have been received for a
specified number of milliseconds

loopTasks Yes Coordinator task to loop through a
sequence of tasks a given number of
iterations

setNidToAddress No Coordinator broadcasts mapping from
node ID to address when new SPE
instance/cluster registers

addTpIds No Setup task to let SPEs know which
tracepoints should be active

startExperiment No First task executed by SPEs in the
experiment

endExperiment No Final task executed by SPEs in the
experiment

Table III.2: Experiment tasks

Figure III.1: Workflow of performing an experiment with Expose

experiment, each SPE node registers with the coordinator and provides their
node ID and port on which the other nodes can reach them. The coordinator
then broadcasts the mapping from node ID to the IP address and port to the
rest of the SPE nodes. This way, all SPE nodes know how to transmit tuples
to the next hop, and the coordinator knows to which address to transmit
tasks. As such, the end-to-end pipeline can be specified in the experiment
definition without low-level details such as IP addresses and port numbers
that are dependent on the particular execution environment of an SPE.

The experimenter starts the coordinator and SPE nodes, either manually
or through a reusable script. Each SPE node is started with the coordinator’s
address and uses it to connect to the coordinator’s TCP server. Therefore,
the SPE nodes can be on the same machine as the coordinator, on a different
machine in the same local area network, or anywhere else, as long as the

115

III. EXPOSE: Experimental Performance Evaluation of Stream Processing
Engines Made Easy

coordinator is accessible. The coordinator and the SPE instances/clusters
can, for instance, be started remotely with software such as Ansible [13], in
which commands can execute remotely on another server. The experimenter
only needs to install the SPEs and provide the Ansible node names in the
script. These tasks can be done by someone with limited technical skills.

III.2.2 Measurements and Analysis

The overall goal of Expose is to get performance numbers from executing
SPE experiments. This section explains how Expose supports the analysis
and comparison of results. The analysis is based on the output execution
traces from the SPEs. Two types of trace events are captured, listed in Table
III.3: processing and state events. Processing events are used to calculate
throughput and execution time. Examples of these include tracing when a
tuple is received and when it is finished processing. With state events, we
can calculate the execution time and throughput with respect to, e.g., the
number of deployed queries or the size of the windows. Examples of state
events include when a query is deployed, when all queries are cleared and
when a new data sink or data source is added.

Tracepoint names Type

Start experiment State
Receive Tuple Processing
Finished Processing Tuple Processing
Deploy Query State
End of stream State
Increase number of sources State
Increase number of sinks State

Table III.3: Tracepoints

The processing and state trace events can be used to visualize and
represent the results in various ways. The processing events are used to
calculate the performance metric, and the state events are used to calculate
the control parameter. In a 2D graph, one would typically see the value of the
performance metric on the y-axis and the control parameter on the x-axis.

III.2.3 SPE Wrapper

In this section, we address three challenges to overcome when attempting to
create an SPE wrapper to include in Expose. They are (1) to implement the
task API, (2) implementing a communication module between the wrapper
and the coordinator, and (3) implementing a tracing module for the wrapper.
The task API consists of the methods listed in Tables III.1 and III.2. The main
challenge involves mapping the SPE tasks to the functionality offered by the

116

Design

SPE. For instance, setting the next hop for streams in Esper, Siddhi, and T-Rex
involves transmitting the produced tuples to the recipients within a method
call, whereas in Beam and Flink, it requires setting up the data pipeline
before the runtime environment has started. When tuples are produced,
they are automatically transmitted to the next hops. How to deploy SQL
queries depends completely on the abstractions and data structures used in
the SPE. Sending a dataset as a stream is challenging to implement because
most SPEs have their own way of ensuring that the tuples conform to the
schemas. Moreover, how tuples are sent to the next-hop nodes depends on
which connector is used by the SPE, e.g., TCP or Kafka. When the API is
implemented, the SPE wrapper can execute experiments, but only locally.

To enable the SPE to participate in distributed experiments, we need the
communication module between the wrapper and the coordinator. At startup,
the coordinator waits for SPE nodes to register by contacting its TCP server.
The wrapper is provided the address information to the coordinator, and the
communication module establishes a connection with the coordinator. This
module starts an infinite loop where it waits for tasks to execute from the
coordinator. When it receives one, it calls the corresponding method in the
wrapper with the provided arguments. After the task is finished executing,
it replies to the coordinator with the return value and waits for another
task to execute. The communication pattern between the SPE wrappers and
the coordinator is the same, regardless of the SPE. Therefore, Expose can
execute experiments with different SPEs. This module can also be entirely
reused for a new SPE if it is written in the same programming language as a
previous SPE.

The final component to implement in an SPE wrapper is the tracing
module. This module is required to be able to record and retrieve results
from the experiments. The most important requirement for this module is
that all the SPEs that participate in the experiment have a similar module
that causes minimal overhead to the experiments. As with the communication
module, this module can be reused if the SPE is written in the same language
as another SPE with a ready wrapper.

We have created SPE wrappers for Siddhi 5.0.0, Esper 8.3.0, T-Rex, Flink
1.9.1, and Beam 2.21.0. Siddhi, Esper, Flink, and Beam are Java-based
SPEs, whereas T-Rex is a C++-based SPE. Beam is by itself not an SPE, but
a system that gives a unified SPE interface and can be used to execute a
variety of SPE engines, such as Flink and several other SPEs. We choose in
the experiments later to run it with the Flink runner, which we call Beam
Flink, to investigate the performance difference between it and Flink.

117

III. EXPOSE: Experimental Performance Evaluation of Stream Processing
Engines Made Easy

III.3 Use-Case: NEXMark Benchmark

The goal of this section is to demonstrate that (1) Expose can be used to
evaluate and compare various SPEs, (2) how easy it is to perform such
experiments, and (3) that we can define benchmarks with Expose with low
effort. To achieve this, we have on, the one hand, implemented wrappers for
Flink, Beam, Esper, Siddhi, and T-Rex, and on the other hand, implemented
an experiment definition for a well-known and accepted benchmark called
NEXMark [25]. The benchmark describes a set of eight queries that process
data from three schemas: Person, Auction, and Bid. We implement all the
queries in addition to a passthrough query that only selects and forwards
Bid tuples, which comprise 92% of the dataset. Each query is used in one
experiment. Below, we describe the queries:

0. Passthrough: forwards all Bid tuples.

1. Currency Conversion: uses a user-defined function to convert the Bid
prices from dollar to euro.

2. Selection: filters Bid tuples based on auction ID.

3. Local Item Suggestion: a join between Auction and Person tuples with
predicates on the Person.state and Auction.category.

4. Average Price for a Category: the average price of auction categories.

5. Hot Items: the auction with the most Bid tuples is selected.

6. Average Selling Price By Seller: the average price of the auction items
of each seller is selected.

7. Highest Bid: the Bid tuple with the highest price is selected.

8. Monitor New Users: Person tuples are joined with Auction tuples that
were received within 12 hours of each other.

We execute the benchmark on two different servers: a powerful Intel
Xeon server with 48GB RAM and two Intel Xeon Gold 5215 SP CPUs with ten
cores, each running at 2.50GHz, and a weak Raspberry Pi 4 B+ (RPI) with a
Broadcom BCM2711 CPU that has four cores running at 1.5GHz, with 4GB
RAM. The experiment topology consists of three SPE instances: the data
driver that produces the tuples, the system under test (SUT) that processes
the tuples according to the deployed query, and the sink node that receives
all the produced tuples. The data driver and sink run on the same hardware
as the coordinator, and the SUT runs on either the Intel Xeon server or the

118

Use-Case: NEXMark Benchmark

RPI. This way, the SUT is completely isolated and is not affected by Expose or
the other SPEs. NEXMark leaves the size of the dataset open, but it provides
a dataset generator that enables us to generate datasets of different sizes.
We use a dataset with size 1,000,000 tuples for the Intel Xeon server, and
the RPI uses 40,000 tuples. In some of the queries, the memory consumption
increases for each incoming tuple. Thus, the small amount of RAM available
on the RPI makes it impossible for the RPI to process a larger dataset.

The experiment instructions used for all the queries are given in Listing
III.1, where only query_id and output_stream_id differ for each query.
Each SPE runs the experiment for all its supported queries and requires no
changes to the experiment instructions. The experiment is started by setting
up the data stream topology with addNextHop, i.e., set Node 2 as a recipient
of the streams in the dataset, and Node 3 as the recipient of the output
stream from the query. After the topology is set up, a loop with ten iterations
starts where the dataset is sent as a stream in each iteration. From the
traces, we calculate the throughput of each SPE and query as the average
number of tuples per second (TPS) and the relative standard deviation (RSD).
Only the final five iterations in the loop are used for these calculations; the
first five iterations serve as a warmup to enable any runtime optimizations
to activate, which can have a significant effect on performance in Java.

Listing III.1: NEXmark experiment instructions

Set Node 1 to send Auction , Bid and Person to Node 2
− {task : addNextHop, arguments: [1 , 2] , node: 1} # Person stream
− {task : addNextHop, arguments: [2 , 2] , node: 1} # Auction stream
− {task : addNextHop, arguments: [3 , 2] , node: 1} # Bid stream
Set Node 2 to send output stream to Node 3
− {task : addNextHop, arguments: [output_stream_id , 3] , node: 2}
Deploy query to Node 2
− {task : deployQueries , arguments: [query_id , 1] , node: 2}
Stream the dataset ten times
− {task : loopTasks , node: coordinator , arguments: [10 , [

{task : startRuntimeEnv , node: 2},
{task : startRuntimeEnv , node: 3},
{task : sendDsAsStream, arguments: [8] , node: 1},
{task : retEndOfStream, node: 3, arguments: [2000]},
{task : traceTuple , node: 2, arguments: [200, []]} ,
{task : stopRuntimeEnv , node: 2},
{task : stopRuntimeEnv , node: 3}]]}

Not all the SPEs support the necessary query processing functionality
for these specific queries. Therefore, even though all the SPE wrappers
support the same tasks, some SPEs do not run all the queries. For instance,
T-Rex is a CEP system that only supports Query 0. Beam does not support
joining streams without special window constructs, and so, it does not run
Queries 3, 4, 6, and 8. Moreover, Query 6 requires the ability to group
output by a key and then limit the number of tuples in each group to ten
tuples, which is not supported by the SQL language of any of the SPEs.
Therefore, we modify Query 6 to look at all the tuples instead, for all the
SPEs. Queries 4–6 define sliding windows over multiple aggregations, which

119

III. EXPOSE: Experimental Performance Evaluation of Stream Processing
Engines Made Easy

is only supported in Flink. The problem is that performing aggregations over
aggregations, such as calculating the average of several maximum values,
requires the ability to invalidate outdated tuples. A newly received tuple
might replace an old maximum, and so, the old tuple should be removed from
the average. As far as we know, only Flink supports this feature among the
SPEs. Therefore, Siddhi and Esper perform a variation of the queries using
tumbling windows instead of sliding windows, which does not require this
feature. A tumbling window version of Query 4–6 for Flink and Beam is not
possible either because of their limited support for tumbling windows using
an external timestamp and so cannot execute them. Therefore, we have a
sliding and tumbling window version of Query 4–6.

Listings III.2, III.3, III.4 and III.5 show the implementations of Query 4
for Siddhi, Flink and Esper, in addition to the template query. Notice how the
implementations are completely different, as the SPEs do not (1) support the
same query processing functionality, and (2) use different syntax among each
other. In particular, Siddhi implements this query as three separate queries,
where the output from the first query is used as input to the second, and
the output from the second query is used for the third. Esper implements
it as two queries where the output from the first query is used as input
to the second, and Flink implements it as a single query with a subquery.
Siddhi requires three queries because it must separate the (1) join between
Auction and Bid from (2) the maximum aggregation that uses the tumbling
window, and (3) the average aggregation. With Esper, we can combine the
first two queries and only have to separate the last average aggregation.
Flink supports subqueries, and therefore performs the maximum aggregation
in the subquery and the average aggregation in the top-level of the query.
Beam also supports the syntax of the query that Flink uses, but it has limited
support with regard to joining streams, and therefore, we do not execute
this query with Beam. T-Rex also has no support for this query. This issue
of different SQL languages and query processing features illustrates the
challenge with comparing SPEs, and thus, why Expose requires each SPE
explicitly to have its version of a given query in the experiment definition.

Listing III.2: NEXMark Query 4 with sliding window in Siddhi

from Bid#window. time(999 years) as B
join Auction#window. time(999 years) as A on A. id == B. auction
select B.dateTime , B. price , A. category , B. auction , A. expires
insert into MQ4_1;

from MQ4_1#window. externalTimeBatch(dateTime , 1 min) [dateTime < expires]
select max(price) as final , category group by auction , category
insert into MQ4_2;

from MQ4_2#window. time(999 years)
select avg(f inal) as price , category group by category
insert into OutQuery4;

Listing III.3: NEXMark Query 4 with tumbling window in Flink

120

Use-Case: NEXMark Benchmark

select avg(f inal) , category
from (select MAX(B. price) AS final , A. category from Auction A, Bid B

where A. id=B. auction and B.dateTime2 < A. expires2
group by A. id , A. category) Q

group by category

Listing III.4: NEXMark Query 4 with sliding window in Esper

insert into MQ4_2
select max(B. price) as final , A. category as category
from Auction#time(999 min) A, Bid#ext_timed_batch (dateTime , 1 min) B
where A. id = B. auction and B.dateTime < A. expires
group by B. auction , A. category ;

insert into OutQuery4
select avg(f inal) as price , category
from MQ4_2
group by category ;

Listing III.5: NEXMark Query 4 template

select Istream(avg(Q. f inal))
from (select Rstream(max(B. price) as final , A. category)

from Auction A [rows unbounded] , Bid B [rows unbounded]
where A. id=B. auction and B.dateTime < A. expires and

A. expires < current_time
group by A. id , A. category) Q

group by Q. category ;

III.3.0.1 Results

Tables III.4 and III.5 contain the results from running NEXMark on Intel Xeon
and RPI, respectively. In Queries 4–6, we distinguish between two versions:
T stands for tumbling window, and S stands for sliding window. The SPEs
run the benchmark on a single CPU core because the SPEs have a varying
degree of concurrency support. An SPE like Flink is made for scalability,
whereas the library versions of Esper and Siddhi are not. Kafka is used for
communication between nodes in Flink and Beam, and therefore, also runs
on a single core. The queries that cannot execute on the SPEs have empty
table cells. Beam Flink means that Beam is executed with the Flink runner.

Flink performs the best among the SPEs in almost all queries, by a
significant factor. One explanation might be that Flink has the most advanced
processing environment out of all the SPEs. Flink’s aggregation queries
produce many fewer output tuples compared to the other SPEs, which
positively affects the throughput. In contrast, Beam Flink has the worst
performance in all cases. Beam Flink has a throughput between 6 and 73
times lower on the RPI, and between 2 and 11 times lower on the Intel Xeon
server. These results seem to correspond with previous results from [11],
in which Beam has a slowdown factor of between 4 and 58 times compared
to Flink. The reason for the lower throughput might be a combination of
overhead caused by Beam’s attempt to be compatible with many SPEs and

121

III. EXPOSE: Experimental Performance Evaluation of Stream Processing
Engines Made Easy

Query Beam Flink Flink Siddhi T-Rex Esper
TPS RSD TPS RSD TPS RSD TPS RSD TPS RSD

0 26.3k/s 0.69% 68.7k/s 8% 34k/s 0.51% 20.9k/s 0.15% 29.4k/s 0.61%
1 25.7k/s 0.61% 68.6k/s 7.7% 34.5k/s 0.45% — — 32.4k/s 0.84%
2 81.3k/s 0.49% 197.6k/s 6.2% 58.5k/s 1.4% — — 46.8k/s 1.5%
3 — — 184k/s 10.4% 56k/s 1.4% — — 47.1k/s 2.2%

4 (T) — — — — 585.7/s 0.62% — — 26.4k/s 15.9%
4 (S) — — 103.6k/s 6.8% — — — — — —
5 (T) — — — — 59.6k/s 1.48% — — 30.2k/s 16.8%
5 (S) 15.4k/s 0.25% 107.8k/s 11.6% — — — — — —
6 (T) — — — — 549.2/s 0.89% — — 30.9k/s 20%
6 (S) — — 107.1k/s 7.2% — — — — — —

7 12.7k/s 0.2% 134.1k/s 16.1% 59.3k/s 1.2% — — 34.7k/s 9.2%
8 — — 184.4k/s 16.5% 25.9k/s 0.67% — — 47k/s 3.6%

Table III.4: TPS and RSD when NEXMark runs on Intel Xeon five times.

Query Beam Flink Flink Siddhi T-Rex Esper
TPS RSD TPS RSD TPS RSD TPS RSD TPS RSD

0 679.9/s 1.6% 5k/s 8.8% 3.9k/s 0.44% 10.6k/s 0.56% 2.8k/s 0.8%
1 678.3/s 2.8% 4.1k/s 8.1% 3.9k/s 0.21% — — 2.9k/s 0.47%
2 2.9k/s 3.3% 28.3k/s 5.4% 8k/s 0.43% — — 7.6k/s 0.77%
3 — — 37.1k/s 27.3% 7.7k/s 0.88% — — 7.4k/s 1.9%

4 (T) — — — — 2.1k/s 0.98% — — 6.4k/s 1.9%
4 (S) — — 10.8k/s 13.5% — — — — — —
5 (T) — — — — 7.8k/s 0.34% — — 6.5k/s 6.1%
5 (S) 235.4/s 1.1% 9.8k/s 16.6% — — — — — —
6 (T) — — — — 2.1k/s 1.7% — — 5.7k/s 6.7%
6 (S) — — 11.5k/s 13% — — — — — —

7 236.2/s 1.2% 17.3k/s 11.3% 7.5k/s 0.65% — — 6.4k/s 4.9%
8 — — 34.6k/s 22.5% 7.1k/s 0.5% — — 7.1k/s 1.8%

Table III.5: TPS and RSD when NEXMark runs on an RPI five times.

different policies regarding emission rate. However, more investigation is
required to find out the reason why.

Noticeably, Queries 4 and 6 on Siddhi have a low throughput that is
even higher on the RPI than the Intel Xeon server. The reason for the poor
performance of those queries is that they perform joins on many tuples, with
which Siddhi seems to perform poorly. Moreover, the Intel Xeon server uses
a much larger dataset than the RPI. The first tuples require only around 2
microseconds processing time, but as the number of tuples in the windows
increases, the final tuples require around 2.3 milliseconds of processing time
each on the Intel Xeon server.

In Table III.6, we scale the number of CPU cores that Flink and Kafka
utilize and the number of queries deployed to Flink. The query is the same
as Query 4 from the above tables. As we can see, the performance degrades
much faster when running only one CPU core versus ten, as the number
of queries increases. Even with one query deployed, running on multiple

122

Related Work

CPU cores increases the throughput from 110,900 tuples per second to
185,800 tuples per second. As the number of queries increases, the number
of produced tuples also increases, which are forwarded to the sink node.
Therefore, the throughput decreases for two reasons: the processing or
networking capacity is overloaded.

CPU cores 1 query 2 queries 5 queries 10 queries 15 queries 20 queries
1 110.9k/s 73.3k/s 36.3k/s 18.8k/s 13.2k/s 9.3k/s
10 185.8k/s 177.3k/s 134.2k/s 63.5k/s 47.7k/s 28.3k/s

Table III.6: TPS when Flink has deployed Query 4 from NEXMark and runs
on Intel Xeon five times with a different number of CPU cores and queries.

III.4 Related Work

Few experiment frameworks for SPEs exist that aim at providing a user-
friendly experience. The PEEL experiment framework is one of them
[4]. It enables users to define experiments, execute them, and repeat
them. Runtime logs from the running systems are collected, and so the
experiments can be used to benchmark systems. However, they do not have
a homogeneous input and output as we do. Their experiment definitions
need special treatment for each SPE. Although the SPE-specific code for all
SPEs is placed in the same experiment definition, it is not obvious that the
SPEs will run the same tasks, as it is in our case. Moreover, their experiment
definitions are programs written in Scala, which require significantly more
effort than writing experiment definitions with Expose. Our result analysis
is flexible with regard to the traced and varied parameters because of the
tracing module that the SPEs must implement. In contrast, PEEL relies on
the logs from the SPEs, making it harder for the SPEs to trace the same data.

FINCoS [20] is another experiment framework, which is an extended
version of the benchmarking framework in [19]. They enable users to
use their own datasets and can communicate with different SPE engines.
However, it does not support automation of performance evaluations, which
is a key feature of Expose. Moreover, since only Esper is mentioned to
be supported, it is hard to determine the effort required to create a new
"wrapper," whereas we have focused our efforts on simplifying this process.
FINCoS does not appear to support arbitrary stream topologies; each node
is either a data driver (data source), the SUT, or data sinks. Expose enables
the experimenter to control the stream topology freely in the experiment.
Nodes can be set to forward or redirect streams to an arbitrary number of
nodes.

Multiple benchmarks and benchmark tools for stream processing exist
in the literature [12, 17]. One of the earliest works introduced is the Linear

123

III. EXPOSE: Experimental Performance Evaluation of Stream Processing
Engines Made Easy

Road benchmark [2], which can be used to simulate traffic in motor highways.
Systems may then achieve an L-rating that is a measure of their supported
query load. Although Linear Road is relatively old, it is still implemented for
new systems like Apache Flink [10], and for SPEs written in P4 for ASICS
[15]. Other benchmarks include [6, 12, 16, 18, 21, 22]. These benchmarks
have in common that they are mainly meant for heavyweight SPEs such as
Apache Storm, Apache Samza, Apache Spark and Apache Flink. In contrast,
we consider the more lightweight SPEs that are relevant in fog networks and
which might be sufficient for, e.g., Internet of Things applications.

The unification of the use of SPE systems is an ongoing effort. A Stream
SQL standard is recently proposed in [3] and is in the process of being
implemented for existing SPEs. Apache Beam is a framework that attempts
to unify SPEs by providing a unified interface for writing SPE applications.
It performs a task similar to Expose in that Expose unifies the definition and
execution of distributed experiments, and Beam unifies the execution model
of the SPEs.

III.5 Conclusion

We present in this work a framework that simplifies the definition and
execution of distributed SPE experiments. A set of experiments can be
defined in an experiment definition file, and the same experiment definition
can be used to execute different SPEs, which makes comparisons of multiple
SPEs easier. Combined with our design choice that experts implement the
SPE wrappers and the fact that we add only a very thin software layer on top
of the SPEs, Expose achieves fair treatment of SPEs. This prevents bias from
experimenters that are experts in one class of SPEs and novices in others.

To demonstrate the ease with which experiments can be defined and
executed, we create an experiment definition that describes a well-known
benchmark called NEXMark using Expose. Then we run it with Flink,
Beam Flink, Siddhi, T-Rex, and Esper on a powerful server and a resource-
constrained Raspberry Pi 4. The experiment definition is concise, reusable,
and can be changed by a user to suit their particular needs.

For future work, we aim at adding the ability to decentralize the
coordination of nodes, which means that nodes can issue tasks to other
nodes. That way, we can test out time-critical algorithms and variations
between them. An example of this is operator migration algorithms in
distributed CEP. For that to be possible, the SPE wrappers must be extended
with more tasks, such as the ability to move query state between nodes and
stopping and buffering streams.

124

References

References

[1] Apache Beam. https://beam.apache.org. [Online; accessed 6-August-
2020].

[2] Arasu, A. et al. “Linear road: a stream data management benchmark”.
In: Proceedings of the Thirtieth international conference on Very
large data bases-Volume 30. VLDB Endowment. 2004, pp. 480–491.

[3] Begoli, E. et al. “One SQL to Rule Them All-an Efficient and
Syntactically Idiomatic Approach to Management of Streams and
Tables”. In: Proceedings of the 2019 International Conference on
Management of Data. 2019, pp. 1757–1772.

[4] Boden, C. et al. “PEEL: A framework for benchmarking distributed
systems and algorithms”. In: Technology Conference on Performance
Evaluation and Benchmarking. Springer. 2017, pp. 9–24.

[5] Carbone, P. et al. “Apache flink: Stream and batch processing in a
single engine”. In: Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering vol. 36, no. 4 (2015).

[6] Chintapalli, S. et al. “Benchmarking streaming computation engines:
Storm, flink and spark streaming”. In: 2016 IEEE international
parallel and distributed processing symposium workshops (IPDPSW).
IEEE. 2016, pp. 1789–1792.

[7] Cugola, G. and Margara, A. “Complex event processing with T-REX”.
In: Journal of Systems and Software vol. 85, no. 8 (2012), pp. 1709–
1728.

[8] Esper. http://www.espertech.com/esper. [Online; accessed 6-August-
2020].

[9] Folkerts, E. et al. “Benchmarking in the cloud: What it should,
can, and cannot be”. In: Technology Conference on Performance
Evaluation and Benchmarking. Springer. 2012, pp. 173–188.

[10] Hanif, M., Yoon, H., and Lee, C. “Benchmarking tool for modern
distributed stream processing engines”. In: 2019 International
Conference on Information Networking (ICOIN). IEEE. 2019, pp. 393–
395.

[11] Hesse, G. et al. “Quantitative Impact Evaluation of an Abstraction
Layer for Data Stream Processing Systems”. In: 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS).
IEEE. 2019, pp. 1381–1392.

[12] Hesse, G. et al. “Senska–Towards an Enterprise Streaming Bench-
mark”. In: Technology Conference on Performance Evaluation and
Benchmarking. Springer. 2017, pp. 25–40.

125

III. EXPOSE: Experimental Performance Evaluation of Stream Processing
Engines Made Easy

[13] Hochstein, L. and Moser, R. Ansible: Up and Running: Automating
Configuration Management and Deployment the Easy Way. " O’Reilly
Media, Inc.", 2017.

[14] Huppler, K. “The art of building a good benchmark”. In: Technology
Conference on Performance Evaluation and Benchmarking. Springer.
2009, pp. 18–30.

[15] Jepsen, T. et al. “Life in the fast lane: A line-rate linear road”. In:
Proceedings of the Symposium on SDN Research. 2018, pp. 1–7.

[16] Karimov, J. et al. “Benchmarking distributed stream data processing
systems”. In: 2018 IEEE 34th International Conference on Data
Engineering (ICDE). IEEE. 2018, pp. 1507–1518.

[17] Kiatipis, A. et al. “A Survey of Benchmarks to Evaluate Data Analytics
for Smart-* Applications”. In: arXiv preprint arXiv:1910.02004
(2019).

[18] Lu, R. et al. “Stream bench: Towards benchmarking modern dis-
tributed stream computing frameworks”. In: 2014 IEEE/ACM 7th In-
ternational Conference on Utility and Cloud Computing. IEEE. 2014,
pp. 69–78.

[19] Mendes, M. R., Bizarro, P., and Marques, P. “A framework for
performance evaluation of complex event processing systems”. In:
Proceedings of the second international conference on Distributed
event-based systems. 2008, pp. 313–316.

[20] Mendes, M. R., Bizarro, P., and Marques, P. “FINCoS: benchmark
tools for event processing systems”. In: Proceedings of the 4th
ACM/SPEC International Conference on Performance Engineering.
2013, pp. 431–432.

[21] Rabl, T. et al. “The vision of BigBench 2.0”. In: Proceedings of the
Fourth Workshop on Data analytics in the Cloud. 2015, pp. 1–4.

[22] Shukla, A., Chaturvedi, S., and Simmhan, Y. “RIoTBench: An IoT
benchmark for distributed stream processing systems”. In: Concur-
rency and Computation: Practice and Experience vol. 29, no. 21
(2017), e4257.

[23] Stonebraker, M. and Çetintemel, U. “" One size fits all" an idea whose
time has come and gone”. In: Making Databases Work: the Pragmatic
Wisdom of Michael Stonebraker. 2018, pp. 441–462.

[24] Suhothayan, S. et al. “Siddhi: A second look at complex event pro-
cessing architectures”. In: Proceedings of the 2011 ACM workshop
on Gateway computing environments. 2011, pp. 43–50.

[25] Tucker, P. et al. NEXMark—A Benchmark for Queries over Data
Streams DRAFT. Tech. rep. Technical report, OGI School of Science
& Engineering at OHSU, Septembers, 2008.

126

Paper IV

To Migrate or not to Migrate: An
Analysis of Operator Migration in
Distributed Stream Processing

Espen Volnes, Thomas Plagemann, Vera Goebel

Under minor revision in IEEE Communications Surveys & Tutorials.

IV

Abstract

One of the most important issues in distributed data stream processing
systems is using operator migration to handle highly variable workloads
cost-efficiently and adapt to the needs at any given time on demand.
Operator migration is a complex process involving changes in the state
and stream management of a running query, typically without any data
loss, and with as little disruption to the execution as possible. This
tutorial aims to introduce operator migration, explain the core elements
of operator migration, and provide the reader with a good understanding
of the design alternatives used in existing solutions. We developed a
conceptual model to explain the fundamentals of operator migration
and introduce a unified terminology, leading to a taxonomy of existing
solutions. The conceptual model separates mechanisms, i.e., how to
migrate, and policy, i.e., when to migrate. This separation is further
applied to structure the description of existing solutions, offering the
reader an algorithmic perspective on various design alternatives. To
enhance our understanding of the impact of various design alternatives
on migration mechanisms, we also conducted an empirical study that
provides quantitative insights. The operator downtime for the naïve
migration approach is almost 20 times longer than when applying an
incremental checkpoint-based approach.

IV.1 Introduction

Distributed stream processing (DSP) has been researched for more than 20
years, and is becoming ubiquitous in application domains where real-time
decision-making is essential [96], like the Internet of Things (IoT), fraud,
and anomaly detection, smart cities [39], and autonomic systems. DSP is

127

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

a useful technology whenever there is too much data to store all of it, and
when the data is only valuable shortly after it is generated. Deep learning
can be applied to facilitate analytics on streaming data in IoT [98]. Industry
4.0 is a term that means the fourth generation of the industrial revolution
and applies stream processing to do data collection, analysis, storing and
querying [121].

DSP is currently used by companies that need to process and analyze
billions of events every day. For example, the popular stream processing
engine Apache Flink [16] is used by Alibaba, AWS, Comcast, Ebay, Huawei,
Lyft, Uber, Zalando, and many more companies, to perform real-time
processing [1]. Another indicator of the wide use and importance of stream
processing is that most cloud vendors offer support for deploying managed
stream processing pipelines [34], and a sign of its future relevance is the
estimated economic impact of the IoT industry, estimated to be between $3.9
trillion and $11.1 trillion a year by 2025, around 11% of the global economy
[92].

Stream processing engines (SPE) come in several flavors, are deployed in
different environments (i.e., cloud, fog, edge, in-network), and perform data
stream management, real-time stream analytics, event stream processing,
and complex event processing (CEP). The common denominator in all these
systems is that data arrive continuously (generally as tuples) from multiple
sources, and need to be processed as soon as they arrive (in memory) to
enable immediate decision-making. Thus, the response time must be short,
even in case of large loads.

SPEs take queries as input and compile them into operator graphs. In
the simple example in Figure IV.1 the query at the top of the figure is
compiled to an operator graph with two data producing operators (Auction
and Bid stream), a join operator, and a data consuming operator (Section
IV.2.3 builds on this simple example and gives further details). Operator
graphs are directed acyclic graphs (DAGs), as illustrated in Figure IV.1, that
represent the logical execution of a query, which includes the operators
(i.e., state management of subqueries) and the dependencies between them
(i.e., stream management) represented as vertices. If these operators are
mapped to several physical hosts and form an overlay network, a DSP system
is established. Incoming data tuples to an operator are processed, e.g.,
by filtering and joining as in Figure IV.1, or transforming, aggregating, or
running a user-defined function.

A key requirement for DSP is the ability to handle system dynamics, like
changes in workload, resource availability, and mobility. Operator migration
is the key mechanism for handling such changes. The four primary goals
that motivate different operator migration solutions are: (1) to re-balance
uneven distribution of computational tasks across nodes (load balancing),
(2) adapting the amount of allocated resources to increasing or decreasing

128

Introduction

Join

Stream A

Stream B

Consumer

Network nodes

Operator placement

Operator graph

Network node Stream processing engine

Figure IV.1: Overview of operator placement

workload (elasticity), (3) maintaining system operability even in the presence
of hardware failure and other faults (fault tolerance), and (4) maintaining
or optimizing the Quality of Service (QoS). Operator migration entails (1)
state management to move the state of the operator from an old host to a
new host, and (2) stream management to change data stream routing in
the overlay network. Decisions on when to migrate the data and where
to migrate them to are key aspects of operator migration. The potential
approaches to state management, stream management, and decision-making
as well as their combinations result in a large design space for operator
migration algorithms.

This tutorial aims to give the reader a good understanding of (1) the
need for operator migration, (2) the core elements of operator migration, (3)
the design of existing solutions, and (4) how design decisions can impact
the performance of operator migration solutions. To this end, we develop
a conceptual model that captures the fundamental components of operator
migration, i.e., the components on which all solutions are based and their
relationships. This model provides a unified terminology and is used to
establish a taxonomy of existing solutions. Based on this, we describe the

129

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

main existing operator migration solutions.
Operator migration introduces some form of cost, like freeze time during

migration or increased resource consumption to move the state of the
operator. Keeping these costs low is a core requirement in the design
of operator migration algorithms. Furthermore, during decision-making, it
is important to balance the costs of migration against its benefits. There
is a general awareness of this trade-off, but surprisingly, few studies have
explicitly described how costs and benefits are considered in the migration
algorithm and decision-making. Therefore, we place particular emphasis
on costs and benefits in our analysis of work in this area. We structure the
description of existing solutions into two parts:

• Mechanisms: How does the operator migration work, and which
mechanisms are used?

• Policies: When should operator migration be performed, and how is
the migration decision executed?

In addition to this functional view of operator migration, we perform an
empirical study to gain and mediate quantitative insights into different
operator migration and decision models. The aim is to illustrate the
quantitative effect of different design decisions. This empirical quantification
demonstrates the advantage of a comprehensive migration model beyond the
contribution of the literature. We use Apache Flink [16] and Siddhi [129], two
operator migration algorithms, and apply part of the NEXMark benchmark
[134] as workload to measure the run-time performance.

IV.1.1 Tutorial Novelty and Contributions

To the best of our knowledge, this tutorial represents the first comprehensive
effort to explain operator migration mechanisms and related decision-making
in data stream processing systems. There exists a short description of a
tutorial given in 2014 [46] by Heinze et al. However, due to space limitations
the published version of the tutorial cannot be comprehensive and it can not
capture developments after 2014. Therefore, this tutorial is unique in its
scope and contribution to the current state of knowledge on the topic.

There is a range of surveys that cover operator migration [12, 13, 21,
51, 55, 65, 74, 111, 120, 133, 137] to a certain extent. However, all these
surveys have a broader scope than this tutorial and do therefore not explore
operator migration in corresponding depth and detail. For example, none
of these surveys presents a type of framework for operator migration like a
taxonomy or a conceptual model, and none of the surveys provides a unified
terminology for operator migration. This tutorial distinguishes itself by
presenting different types of operator migration algorithms in detail and

130

Introduction

the relationship between the cost and benefit of migration, the decision to
migrate, and the migration algorithm. Furthermore, the surveys do not give
the reader an insight into the quantitative impact of certain design decisions
for operator migration.

Table IV.1 characterizes related surveys with respect to their focus area
as well as the questions of whether:

1. any kind of framework, like a taxonomy or a conceptual model for
operator migration is provided;

2. details of the decision-making process are given, such as the goal of
migration, the performance of migration, and the cost of migration;

3. the survey methodology;

4. the deployment environment is considered in the discussion of existing
solutions;

5. the paper uses some experimental investigations to demonstrate and
quantify the effect of different design decisions.

Pa
pe

rs

Fo
cu

s
ar

ea

Fra
m

ew
or

k
fo

r op
er

at
or

m
ig

ra
tio

n

Det
ai

ls
of

m
ig

ra
tio

n
de

ci
si
on

M
et

ho
do

lo
gy

Dep
lo

ym
en

t

Exp
er

im
en

t

[65] Placement for Internet-Scale stream processing No Partially Explanatory Yes No
[55] Elastic stream processing in the cloud No No Enumerative & explanatory No No
[51] Stream processing optimizations No No Enumerative & explanatory No Yes
[133] State management in big-data processing systems No No Enumerative & explanatory No No
[111] Adaptation of stream processing No No Enumerative No No
[120] Parallelization and elasticity in stream processing No Yes Enumerative & explanatory Yes No
[74] Resource management and scheduling in stream processing No Yes Enumerative & explanatory Yes No
[13] Geo-distributed big-data analytics No No Enumerative & explanatory Yes No
[21] Runtime adaptation of stream processing No Yes Enumerative & explanatory Yes No
[137] Self-adaptation on parallel stream processing No No Enumerative Yes No
T Operator Migration in stream processing Yes Yes Enumerative & explanatory Yes Yes

Table IV.1: Summary of related surveys and comparison with this tutorial (T)

Lakshmanan et al. [65] focused on operator placement and reconfigura-
tions for Internet-scale data stream systems. They distinguished between
reconfiguration solutions based on where the change is made: either in
the network, data, or flow graph. Moreover, different triggers for migra-
tions were studied, such as thresholds, constraint violations, and periodic
re-evaluations. However, they did not investigate the different varieties of
operator migration in any detail. Hummer et al. [55] focused on elasticity in
the cloud, which can be achieved through event reordering and prioritiza-
tion, load shedding, deferred processing, and operator migration. They also

131

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

investigated the state in different types of windows and how these have to
be migrated in case of a scaling operation. Moreover, the cost of migration
is also problematized, i.e., that performing a scaling operation costs time
that might adversely affect the performance of the system. Similarly, Röger
et al. [120] investigated elasticity and parallelization in stream processing.
Operator migration is in this context one method to achieve elasticity, but
details about operator migration mechanisms and migration decision-making
are not given.

Hirzel et al. [51] cataloged different types of stream processing
optimizations, including operator graph optimizations, operator placement,
load balancing, state sharing, batching, load shedding, and several more.
Operator migration is relevant for load balancing and operator placement,
but the paper’s aim is too broad to describe migration in the detail targeted
in this tutorial. Microbenchmarks with InfoSphere Streams are used to
demonstrate the profitability of the optimization, but operator migration is
not experimentally investigated.

To et al. [133] studied state management in stream processing systems,
with a focus on big data cloud-based systems. They investigated existing
ways of representing state in the system, optimizing performance, and
provide insights into various state management techniques. Operator
migration, elasticity and load balancing are three of the 18 concepts of
state management that are presented.

Similarly, Assunção et al. [12] explored migration in relation to stream
processing and edge computing. They provided informative summaries of
multiple generations of DSP systems and analyzed existing work on elasticity
to adapt resource allocation to handle the workload of stream processing
services. Operator migration is one of many means for elasticity and the
inner workings of operator migration are not analyzed and described in
detail.

Liu et al. [74] presented a taxonomy of resource management and
scheduling in DSP. Operator migration and state management are not
explored in the paper, as it is assumed that the mechanisms have been
studied and are provided by the state-of-the-art systems. On the other hand,
the decision-making process is investigated in depth.

Qin et al. [111] defined a taxonomy for different live reconfigurations in
SPEs. This includes 17 types of adaptations, including operator migration,
load balancing, and scaling. However, this tutorial investigates these three
issues as fundamentally being similar types of adaptations. Furthermore,
the survey [111] is of pure enumerative nature and does not aim to
explain how operator migration works. Similarly, Cardellini et al. [21]
presented a survey on run-time adaptations. They studied the methodological
and architectural approaches for adaptation control and differentiate 14
adaptation mechanisms. Their presentation of adaptation goals includes a

132

Introduction

popularity analysis of metrics used for adaptation. In Section IV.5 of this
tutorial, the metrics used by papers is discussed in depth. Bergui et al.
[13] surveyed geo-distributed frameworks, some of which are described
in this tutorial. Moreover, they discussed several challenges pertaining to
geo-distributed data analytics, where operator migration plays only a minor
role in some of the solutions.

Vogel et al. [137] presented a systematic literature survey of self-
adaptation mechanisms of parallel stream processing. Operator migration
is not explored in this paper, but a conceptual framework is proposed that
includes adaptation goals and decision-making. The scope is much broader
than this tutorial, and can therefore not go into the same depth in the related
topics.

The main contributions of this tutorial are as follows:

• We propose a conceptual model of operator migration that provides a
unified terminology and leads to a taxonomy of operator migration.
Moreover, this model facilitates the development of new operator
migration solutions.

• We describe the main works on operator migration and analyze not
only current stream management and state management solutions
(i.e., mechanisms), but also emphasize a cost-benefit analysis of the
migration decision (i.e., policies).

• We perform an experimental study involving two migration algorithms
on Apache Flink and Siddhi to gain insight into the quantitative aspects
of operator migration.

IV.1.2 Literature search methodology

The conceptual model of operator migration has been created in an iterative
manner using the existing works in the literature. The focus has been to
select the works that describe their migration mechanism in detail, or how
the migration decisions are made.

We have searched for existing literature in the most popular search
engines, e.g., Google Scholar and Web of Science. The searches have
included DSP and many keywords that relate to operator migration, elasticity,
load balancing and fault tolerance. We have included works in the tutorial
that have a substantial contribution to migration mechanisms or migration
decision-making. This search is not straightforward, since sometimes,
operator migration might be applied in a way where it is not the main
contribution. Moreover, while some works categorize operator migration
as a specific subset of big data adaptation techniques [111], our tutorial
takes a broader perspective. It presents operator migration not as a specific

133

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

adaptation, but as a crucial mechanism that enables other key features of big
data adaptation, including load balancing, elasticity, QoS and fault tolerance.

Many works exist on migration of services in Multi-access Edge
Computing (MEC) [24, 30, 35, 54, 82, 83, 85, 91, 102, 105, 117, 136, 141,
143, 144, 155, 156]. One of the core features of MEC is the ability to offload
heavy tasks to a host with more resources or better conditions for completing
the task [84]. The entities to migrate may be virtual machines (VM) [102],
containers [82, 83] or Virtual Network Functions [155]. The methods
proposed in these papers may also be applicable to operator migration
when it comes to deciding when and where to migrate, which is discussed in
Section IV.5. However, the migration mechanisms that have been developed
specifically for DSP and described in Section IV.4, are different from the ones
used when migrating services, since operators in DSP are more fine-grained.
The migration entity is not an entire application, but rather an internal state.
Whereas the entire service must be at the new host until the service can
be restarted in the case of MEC, certain optimizations can be made in DSP,
depending on what type of stateful operator is migrated.

Table IV.2 lists the studies considered in this work that form the
foundation of the conceptual model. It classifies them according to the
environment of their deployment and the goal of migration, which are
important factors for the migration decision and placement. The most
common deployment environments for DSP are cloud, fog, and edge networks.
Cloud has been used to classify data center applications that might handle
very high throughputs, and can scale the systems both horizontally and
vertically to handle variable traffic loads. The pay-as-you-go business
model makes the hardware provisioning easier [122]. The concepts of
fog and edge are relatively new terms that seem similar, but have some
significant differences. Edge computing often focuses on offloading heavy
tasks from local resource-constrained devices to either a close base station
or a data center [79]. With edge computing, heavy tasks, like deep learning
computation and videogames, can be executed using edge devices such as
smartphones and laptops [146]. Fog is an extension of the cloud in which
the computing tasks of an application are distributed on multiple devices,
including end devices, edge resources, and the cloud itself [99, 153]. As
such, clients may send most information to a server close to them instead of
a centralized data center to reduce energy consumption, congestion on the
Internet, and response times for clients.

Table IV.3 lists the goals of migration and the overlap between studies
in the area in terms of percentage. For instance, 40% of the studied papers
on elasticity also consider load balancing. This is a common combination,
because load balancing can be used after performing a scaling operation to
redistribute the load. Few fault tolerance-based solutions describe migration
mechanisms, but it is natural that fault tolerance overlaps with load balancing

134

Introduction

Category Sub-category Papers

Deployment env. Cloud [15, 17, 19, 22, 28, 32, 33, 36, 38,
41, 45, 48, 52, 53, 56, 57, 66, 69, 73,
75, 76, 78, 86–88, 90, 93, 94, 118,
124, 131, 140, 142, 150, 154, 157,
158]

Fog [9, 18, 50, 60, 106, 113–115, 119,
145]

Edge [14, 23, 61, 72, 80, 101, 103, 104,
151, 159]

Migration goal Load balancing [12, 15, 25–28, 32, 33, 36, 42, 43,
56, 66, 68, 69, 76, 77, 81, 86, 88, 93,
101, 113, 114, 124, 131, 135, 140,
142, 145, 150, 154, 159]

Elasticity [17, 18, 25, 26, 28, 38, 41–43, 47,
48, 52, 56, 60, 68, 69, 72, 77, 78, 87,
93, 100, 119, 130, 149, 152, 154]

Fault tolerance [14, 28, 57, 72, 94, 142, 149]
QoS [19, 26, 28, 50, 60, 61, 71, 73, 77,

78, 80, 87, 90, 103, 104, 106, 108,
114, 115, 135, 145, 158]

Table IV.2: Overview of studies on the categories of operator migration

Migration goal Load balancing Elasticity QoS Fault tolerance

Load balancing 100% (33/33) 33% (11/33) 18% (6/33) 6% (2/33)
Elasticity 40% (11/27) 100% (27/27) 22% (6/27) 11% (3/27)
Fault tolerance 28% (2/7) 42% (3/7) 14% (1/7) 100% (7/7)
QoS 27% (6/22) 27% (6/22) 100% (22/22) 4% (1/22)

Table IV.3: Goals of migration and the overlap in studies in the area

or elasticity as they are often cloud-based solutions, and steps to restore
the number of states of a node are similar to those of a scale-in operation.
Approaches that use QoS constraints on operators to determine when to
migrate, often also use load balancing. This is because a clear sign that
workload rebalancing is necessary is when the QoS guarantees of an operator
have been violated.

IV.1.3 Tutorial structure

Figure IV.2 sketches the structure of this tutorial, i.e., the sections and some
of their content, and identifies the three core parts of the tutorial. Section
IV.2 describes some basic concepts of distributed data stream processing.
The first core part introduces in Section IV.3 a conceptual framework for
operator migration. The two main concerns of operator migration, i.e., to

135

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

move the operator state from one host to another host and to decide whether
to migrate, structure the conceptual model as well as the other two core
parts of the tutorial. Sections IV.4 and IV.5 form the second part of the
tutorial. The aim of this part is to explain to the reader how the concepts are
applied in existing research works to design operator migration algorithms
(Section IV.4) and to perform migration decisions (Section IV.5). The third
part, i.e., Section IV.6, follows a “hands-on” approach and aims to give the
reader quantitative insights gained through empirical investigations. On
the one hand, decision models for operator migrations are developed and
analyzed through a use-case study, and on the other hand, two different
operator migration algorithms are implemented, and their performance is
analyzed through experimentation.

IV Migration Algorithms

- Single-track moving state

- Window recreation

- State-recreation

- ………..

V Migration Decision

- Trigger

- Cost

- Benefit

- ……..

III Conceptual Model

Migration algorithms Migration decision

Single-track Parallel track Trigger Cost Benefit

VI Empirical quantification of core concepts

Migration algorithms

- All-at-once

- Partial state movement

- Migration experiments

Decision models

- Use case analysis

VII Reflections and future directions

VIII Conclusions

I Introduction

C
o

n
c
e
p

tu
a
l

E
x

is
ti

n
g
 w

o
rk

s
E

m
p

ir
ic

a
l

in
si

g
h

ts

II Distributed Data Stream Processing

Figure IV.2: Paper structure

To ensure that readers from various backgrounds have a clear and unified
understanding of the key terms used in this tutorial, we provide a glossary
of critical terms in Table IV.4. These terms are integral to the discussion and
understanding of migration algorithms, state management, and other aspects

136

Introduction

covered in this paper. The glossary covers terminology that is prevalent in
the context of DSP systems, offering definitions aimed at beginners in the
field. Readers are encouraged to familiarize themselves with these terms for
a comprehensive understanding of the subsequent sections.

Table IV.4: Glossary of Terms

Term Definition
Data stream A continuous flow of data, typically consisting

of a sequence of data tuples that can be
processed in a streaming fashion, without the
need to store everything in memory.

Downstream node A node that receives data tuples from other
nodes in a stream processing topology.

Elasticity The ability to adaptively scale computational
resources up, down, out or in, according to
real-time needs.

Load balancing Distributing computational tasks evenly across
available nodes to avoid bottlenecks and maxi-
mize resource usage.

Migration trigger An event or set of conditions that triggers
operator migration.

Operator state The temporary storage of historical data and
intermediate results by an operator, essential
for producing accurate processing outcomes.

Proactive migration Triggering operator migration in anticipation
of potential issues or changes in system re-
quirements, rather than in response to them.

QoS (Quality of Service) A set of performance metrics, such as latency,
bandwidth, and availability, that the system
aims to optimize.

Reactive migration Triggering operator migration in response to
current system conditions, such as failures or
performance degradation.

SPE operator A computational element that processes data
streams, e.g., transforming, filtering, aggre-
gating or joining the data.

Tuple latency The time it takes for a data tuple to be
processed or moved through the system.

Upstream node A node that sends data tuples to other nodes
in a stream processing topology.

In summary, the tutorial first introduces a conceptual model, presents
and discusses afterwards design choices of existing works, and demonstrates
in the last part the impact of particular design choices through empirical

137

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

studies. The tutorial is completed through some reflections and discussion
of future directions in Section IV.7 and the conclusions in Section IV.8.

IV.2 Distributed Data Stream Processing

IV.2.1 Data Stream Processing

Data stream processing deals with continuous processing of data tuples. The
system model applied in this tutorial is based on [22].

A data stream is an unbounded sequence of tuples that are continuously
generated over time. It is denoted as S = t1, t2, t3, ..., where ti represents
the ith tuple in the stream. For example, a data stream that represents
stock market prices could be denoted as S = t1, t2, t3, ..., where ti =
(symbol, AAPL), (price, 150.23), (time, 2022-02-14 10:30:00), representing
the stock symbol, price, and timestamp of the ith price update in the stream.

A tuple is an ordered list of attribute-value pairs that represents a single
unit of data. It is denoted as a set of key-value pairs, where the keys represent
the attribute names and the values represent the corresponding attribute
values. For example, a tuple that represents a person’s information could be
denoted as (name, John), (age, 30), (gender, male). Instead of including the
attribute names in the tuples, a data stream expects the incoming tuples to
follow a schema, and thus, the attributes are inferred.

A query is a function that processes a data stream and returns a result
based on some criteria. It is denoted as Q(S), where S is the input data
stream and Q is the function that defines the query. For example, a query
that computes the average of a stream of numbers could be denoted as
Q(S) = (1/n) ∗

∑
ni = 1xi, where n is the number of elements in the stream,

xi is the ith element in the stream, and
∑

is the summation operator.

Nodes in an operator network can be static or mobile, and have one or
more of the following roles:

• Data producer: Examples of this include sensors that convert analog
signals into data tuples, often with a fixed sampling rate, and software
monitors that might create data tuples at a dynamic rate. Crucially, the
operator network must be able to process all tuples produced by these
sources for further processing.

• Data consumer: These are nodes that request a service, and typically
have some QoS requirement, such as less than a given tuple latency.

• Operator host : These nodes execute at least one operator and
contribute to event forwarding in the operator network, i.e., map the
input events (from upstream nodes) of the operators they execute to

138

Distributed Data Stream Processing

output events, and forward them to downstream nodes in the operator
network.

Data stream processing queries may be stateful or stateless. The focus
of this paper is on the stateful queries. For instance, when joining two
data streams, one tuple arrives before the other, and is placed within a
data window, where it will remain until it expires and is deleted. When
aggregating state, such as counting words, we are typically interested in
creating an aggregate per group/key. In concurrent systems, each key
produces output separate from other keys, and as such, these aggregates
can be produced by different threads/processes. Therefore, it is common to
parallelize such queries, and execute some keys on one host and other keys
on another host, in a cluster.

Numerous data stream processing systems exist, including but not
limited to Storm [2], Flink [16], Esper [31], and Siddhi [129]. For a more
comprehensive list, please refer to the survey by Isah et al. [58]. In Section
IV.6, we run real-world experiments with Siddhi and Flink. As these systems
are difficult to execute, there have been efforts to simplify the interface for
running such systems. Apache Beam [3] is a system that provides a unified
interface to existing stream processing systems, where each supported
system needs a runner that represents the integration between Beam and
a given system. Expose [138] is a stream processing evaluation framework
that provides an easy interface for running distributed experiments with any
distributed stream processing system that has a wrapper, that implements
an API that represents the core functionality of the system. There is also
an interest in simulating these systems, and efforts have been made in
DCEP-Sim [128] and ECSNeT++ [11].

When it comes to simulation of fog and edge computing that model more
generic services, with mobility and service migration, there has been a
range of simulators, including, CloudSim [40], iFogSim [44], iFogSim2 [89],
EdgeCloudSim [125], FogNetSim++ [110], IoTSim-Edge [59], MobFogSim
[109], YAFS [67], PureEdgeSim [95], IoTNetSim [123], SatEdgeSim [147],
and IoTSim-Osmosis [10]. These simulators, however, do not focus on data
stream processing, and are often more focused on the interactions between
edge, fog, and cloud nodes, and using generic services, instead of specific
operators, which are necessary in data stream processing.

IV.2.2 Initial placement

A DSP can be considered to be a set of collaborating SPEs that form an
overlay network to process queries over data streams. Consider Figure
IV.1 as an example of such an application. SPEs run on network nodes that
provide the computational and networking resources for the DSP overlay.
The objective of the initial operator placement is to distribute the processing

139

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

of a query over network nodes such that the goals of the system can be met
as adequately as possible [20]. The first step is to transform a query into an
operator graph. An operator graph can be modeled as a DAG in which the
operators derived from the query are represented as vertices. The placement
of these operators in a network, i.e., finding appropriate network nodes to
host the operators, is typically driven by an objective function. Such an
objective function typically includes (contradicting) criteria of optimization,
like low latency of event delivery, low resource consumption (e.g., bandwidth
and energy), reliability, and fault tolerance. Typically, a placement function
is used to calculate a placement score based on the criteria of optimization.
To find the optimal placement is usually an NP-hard problem [20], and
heuristics are often used to find close to optimal solutions.Both centralized
and decentralized versions of operator placement can be used to establish
an operator network, and are generally implemented as an overlay for the
DSP.

DSP is performed in a dynamic context involving variable workload,
resource availability, and possibly mobility. As such, initial placement might,
after some time, become sub-optimal and the operator network should be
adapted by migrating one or several operators to a new host.

IV.2.3 Naïve Migration Example

To illustrate the challenges of state migration, we go through the simple
example introduced in Figure IV.1. Consider a data stream processing
application that involves three entities: the data producers, the operator
hosts, and the data consumers. The data producers may include sensor
nodes that produce data. This data is sent to the operator hosts to process
the tuples, i.e., to transform, filter, aggregate, and join the data. Data with a
specific schema is called a data stream. Different data streams have different
attributes in them.

In this simple naïve migration example, a node gets overloaded and has
to migrate stateful operators to another node. We use a join query that joins
all Bid events with their corresponding Auction event. This query is based
on the NEXMark benchmark [134], and is also applied in Section IV.6 for the
empirical quantification of the conceptual model. As Auction tuples arrive,
they are stored as part of the state in the join operator until expiration. In
this way, incoming Bid tuples can be matched against Auction tuples.

select A.id, B.amount
from Auction A
join Bid B on B.auction = A.id

In Table IV.5, four Auction tuples are described that are sent before the
migration starts. Table IV.6 lists the Auction and Bid tuples that are sent
after the migration. If no state is migrated, the output will only be one tuple,

140

Distributed Data Stream Processing

Table IV.5: Input before migration

Stream Attribute 1 Attribute 2

Auction id: 1 name: Mona Lisa
Auction id: 2 name: The Scream
Auction id: 3 name: Salvator Mundi
Auction id: 4 name: Orange Marilyn

Table IV.6: Input after migration

Stream Attribute 1 Attribute 2 Attribute 3

Bid Auction: 2 amount: 105M bidder: 7
Auction id: 5 name: Spring
Bid Auction: 3 amount: 400M bidder: 4
Bid Auction: 1 amount: 800M bidder: 12
Bid Auction: 4 amount: 190M bidder: 1
Bid Auction: 5 amount: 70M bidder: 4

Table IV.7: Output with stateless migration

Stream Attribute 1 Attribute 2

Output Auction: 6 bid: 70M

Table IV.8: Output with stateful migration

Stream Attribute 1 Attribute 2

Output Auction: 2 Bid: 105M
Output Auction: 3 Bid: 400M
Output Auction: 1 Bid: 800M
Output Auction: 4 Bid: 190M
Output Auction: 5 Bid: 70M

shown in Table IV.7. If the Auction tuples from before the migration are
migrated, the output will be IV.8. The reason why so many more tuples are
produced after the migration when Auction tuples are migrated is that the
incoming Bid tuples find a matching Auction tuple to join with. Without them
being migrated, only the new Auction tuple with id 5 can be joined with.
This is a simple example that shows the necessity of state migration. The
migration mechanisms that are introduced in Section IV.3.1, and described
more extensively in Section IV.4, face the same problem of making the
operator state available on the new host, such that the operators produce
the correct output.

141

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

IV.3 A Conceptual Model of Operator Migration

We establish a conceptual model of operator migration to capture the
basic concepts and elements on which consensus has been achieved in
the literature, and form a unified terminology for operator migration. For
the understanding and the design of operator placement, it is important to
separate between mechanism and policy. There are two major concerns for
operator migration mechanisms: (1) stream management to stop, buffer,
redirect, and start streams; and (2) state management to establish the
current state of the operator at the new operator host, which may require
moving the state from the old host to the new one, and starting a replica
for the operator on the new host before the state transfer is finished. All
algorithms require some stream management functions, such as stop, start,
buffer, and redirect. State management stands apart due to the multitude
of design alternatives it presents. For example, one could choose to move
the entire state at once or incrementally. Furthermore, it is possible to
execute the operator exclusively at one host during migration, or to do so
in parallel on multiple hosts. The policy is implemented in the operator
migration decision component that needs to determine whether and when
to migrate an operator. This involves several steps. Migration decisions
first require a trigger for when to make a migration decision and then
a placement mechanism to determine the placement that yields the best
performance. The cost of the migration must be weighed against its benefit.
The policy must determine the degree to which the migration decision should
be proactive (e.g., before a host becomes overloaded) or reactive (e.g.,
when a host is overloaded). The more proactive a migration decision is, the
higher uncertainty it has. The more reactive a decision is, the higher cost of
migration it has.

Figure IV.3 illustrates the concepts and building blocks that make up
migration algorithms. It also highlights the relevant decision-making
processes, outlines the properties of state management mechanisms in
migration, and presents the associated costs of migration. Migration cost
is important for migration mechanisms and migration decisions, because
every migration mechanism introduces some form of costs and the migration
decision needs to take the costs into account to determine whether it is
worthwhile to migrate. This relationship between the migration mechanism
and the migration decision makes the migration cost a core element of the
conceptual model. The state management node describes the dimensions of
migration mechanisms that are explored in this tutorial.

The remaining structure of this section directly reflects the structure
of Figure IV.3, i.e., a detailed discussion of the components and design
alternatives for migration mechanisms is given in Section IV.3.1, followed by
an overview of the common cost parameters in Section IV.3.2, and, in Section
IV.3.3, the migration decision.

142

A Conceptual Model of Operator Migration

Migration
Migration mechanism

Stream management

Stop

Start

Buffer

Redirect

State management Consistency

Checkpoint-assistance

Concurrency mode

State mobility

Directness

Migration cost

Migration decision

Trigger

Placement

Cost vs. benefit

Proactive vs. reactive

Figure IV.3: Concepts of migration

IV.3.1 Migration mechanism

The two major concerns of migration mechanisms are state management
and stream management. State management is relevant for operators that
derive their output based on multiple tuples, e.g., looking for a sequence
of tuples using CEP, joining streams, or aggregating tuples over windows
[133]. The state can be thought of as tuples. The internal state of the
operator is, in practice, typically optimized to include only the necessary
information for the given operator, such as the given aggregate value for the
extent of a window, or as a finite state machine in CEP. In addition to such
stateful operators, there exist also stateless operators, like filter and map.
These operators do not require state because they process each input tuple
independently. Therefore, operator migration distinguishes itself markedly
from VM migration, where the entire VM must be transferred to the new
host. While some solutions to operator migration, such as the MCEP [103],
do include VM migration, VM migration is not addressed in this tutorial. The
simplest method of operator migration for a stateful operator is to move it to

143

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

the new host and replay all necessary historical tuples from the upstream
nodes [64]. This technique is used in current publish-subscribe systems, such
as Kafka [4], to achieve fault tolerance in stream processing systems like
Flink [16]. Using this technique also makes it possible to migrate the data
to a different stream processing system, which is usually not possible when
extracting the state from the system, because the internal state is system
specific. However, as the state can become very large, it is often undesirable
to replay all tuples. Therefore, this tutorial focuses on operator migration
techniques that extract the state from the stream processing system and
move it to the new host.

The purpose of state management in operator migration is to establish, at
the new host, an operator with the state of the operator at the old host when
switching the processing from the old host to the new host. In a moving state
algorithm, the old host extracts the state of the operator and sends it to the
new host. Some algorithms do not need to perform this task, either because
they manage stateless operators, e.g., filter operators, or because the old
and the new host can schedule a seamless handover of the operator. In a
parallel-track algorithm, originally a term used by Zhu et al. [160], both the
old and new hosts receive the same tuples for some time during migration.
The handover from the old to the new host is carried out gradually such
that the downtime of the operator is minimized. The cost of this approach is
that upstream nodes must send twice as many tuples during some part of
the migration. A parallel-track algorithm with moving state is called state-
recreation, and one without moving state is called window-recreation. These
terms are inspired by StreamCloud [42]. In a single-track algorithm, the
upstream nodes send tuples either to the old host or to the new host.

Stream management deals with notifying upstream and downstream
nodes of changes made to the DSP overlay. Typically, nodes have to update
their routing table to reflect the new topology at the upstream node, and
this results in a redirection of the outgoing stream to the new operator host.
To prevent tuples from getting lost when the operator is down, streams
might be stopped and tuples need to be buffered. There are three locations
at which tuples can be buffered: upstream nodes, the old host, and the
new host. The tasks of redirecting streams, stopping streams, buffering
streams, and restarting streams are coordinated among the hosts involved
through control messages. Both centralized and decentralized coordination is
possible. As such, there are several design options that can be implemented
for a particular operator migration solution.

For presentation purposes, the taxonomy is divided into two parts: single-
track algorithms (Figure IV.4) and parallel-track algorithms (Figure IV.5).
In single-track algorithms, each tuple is processed either on the old host
or the new host, but not both, at any given time. This means that even if
an operator is active on both hosts during the migration, each individual

144

A Conceptual Model of Operator Migration

tuple is processed exclusively on one host or the other. In contrast, parallel-
track algorithms involve tuples being processed on both the old and new
hosts simultaneously during the migration period, meaning the same tuple
is processed on both hosts.The small text in brackets under some of the
categories denotes a term for the given type of algorithm. For instance, a
pause-drain-resume algorithm is a single-track algorithm without moving
state, and a parallel-track algorithm with moving state is a state-recreation
algorithm. The most basic operator migration algorithm is a pause-drain-
resume algorithm, and works only with stateless operators or in cases where
some state inconsistency is permitted. The operator to migrate is first started
on the new host while the old host is also running it. Then upstream nodes
redirect their output streams from the old to the new host. After this, the
old host can stop the execution of the operator. Since no state needs to be
moved, migration occurs without any downtime. A few control messages
must be sent (1) from the controller to the old host, (2) from the old host to
the new host, and (3) from the old host to the upstream nodes. As there is no
downtime for the operator, any delay caused by these messages is negligible.

Single-track

Stateless
(pause-drain-resume)

Moving state

Direct

All-at-once
Checkpoint-assisted

[22]

No Checkpoint-assist
(Standard moving state)

[56, 113, 124, 150, 159, 160]
[17, 25, 26, 48, 68, 80, 88]

Partial state

[53]

Indirect

All-at-once

[37]

Partial

Loose consistency
(State shedding)

[139]

Strict consistency
Checkpoint-assisted

[28, 86]

Figure IV.4: Single-track migration algorithms

When state must be moved and a single-track is used, the operator has
some downtime. Specifically, tuples can neither be processed on the old nor
the new host while the state is in transmission. In this process, tuples from
the upstream nodes must be buffered before the new host can process them.
The buffering can be carried out on the upstream nodes, the old host, or the
new host. In many cases, tuples can be received after query processing has
been stopped. These tuples need to be forwarded from the old host to the
new host.

Partial state movement involves splitting the state to be migrated into
several parts and moving these parts to the new host while the operator
is still processing on the old host. This approach avoids having to stop
operator processing for the entire state transfer. If the state is periodically

145

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

Parallel-track

Moving state
(State-recreation)

Direct

All-at-once state

[42]

Indirect

Partial state

Checkpoint-assisted

[149]

No Checkpoint-assistance

[88, 104]

Stateless
(Window-recreation)

[42, 80, 88, 107, 160]

Figure IV.5: Parallel-track migration algorithms

checkpointed and distributed on different nodes, this is called checkpoint-
assisted migration, and can substantially reduce or eliminate the downtime
of the operator. Either the entire state already exists on the new host or an
incremental checkpoint is extracted before the operator shuts down, and
then sent to the new host. While the last checkpoint is sent to the new
host, the operator stops for a much shorter time compared to sending the
entire checkpoint at once. A single-track moving state solution can never
avoid downtime. This is the reason why parallel-track solutions have been
developed.

Parallel-track algorithms differ from single-track algorithms in a funda-
mental way. They can achieve zero downtime, but at the cost of running the
old and new hosts with duplicate input streams and, sometimes, duplicate
output streams [149]. A moving-state parallel-track algorithm performs
state-recreation, which means that the new host receives the state from the
old host while also receiving the same tuples as it does from upstream. A
parallel-track algorithm without state migration performs window-recreation,
which means that the new host receives the same tuples as the old host until
the old tuples expire and they both have the same tuples in their windows.
At this point, the upstream nodes redirect their streams to the new host, and
it takes over without the tuples being buffered or any waiting time.

Most of the existing works assume fully consistent state for the operator
migration. This means that before and after the migration, the internal
state of the operators looks like it would if there was no migration, except
that some state might arrive in different order. No state is lost. This is an
important principle for adaptive stream processing systems; that adaptations
occur transparently to the data producers and consumers. In a recent work
[139], however, state shedding is presented as the idea of performing a
migration where the most important partial states are migrated, and some

146

A Conceptual Model of Operator Migration

less important partial states are dropped if the total state is too big to migrate.
This is meant to be used in volatile cases where the system fails unless an
adaptation is done quickly.

An important motivation for establishing the terminology and building
blocks in Figure IV.4 and IV.5 is that existing work has described the
same concepts by different names. For instance, what Zhu et al. [160]
called parallel-track is described as window-recreation in StreamCloud [42],
smooth migration in Enorm [88], and the seamless minimal state in TCEP
[80]. In StreamCloud, a different algorithm called state-recreation is also
parallel-track, but also involves moving state. In contrast to parallel-track,
single-track with moving state is called disruptive migration in Enorm [88]
and Pause & Resume in [46] because it leads to downtime, as opposed
to smooth migration that eliminates downtime. Instant migration [88] is
single-track migration without moving state. Checkpoint-assisted algorithms
have been described in [28, 86, 149]. A characteristic of these algorithms is
that a minimal state needs to be sent during migration.It should be noted
that what is considered state differs among different systems. Therefore,
what is considered partial state or all-at-once state might differ. TCEP has
a fine-grained migration algorithm that moves during operator migration
the entire tuple state all at once, but since the entire operator consists of
multiple elements where the tuple state is just part of it, it is not considered
a partial state movement algorithm.

IV.3.2 Migration cost

Operations performed as part of state management and stream management
lead to two classes of the cost of migration, related to resource consumption
and temporal aspects. The temporal costs are caused by the fact that the
operator is not operational during state extraction, state serialization, state
movement, state deserialization, and runtime initialization. The bandwidth
required to move the state from the old to the new host is the most commonly
considered resource in resource-aware geo-distributed cases [13]. The
computational requirements of extracting the state from the old host and
the messages needed to coordinate stream management are more commonly
considered in centralized data centers. Stream management messages
may also have an impact on the operator downtime, e.g., streams from
upstream nodes need to be stopped and no events should arrive at the
operator until they have been redirected and started again. The operator is
further suspended during state extraction at the old host, moving the state
from the old to the new host, and installing it at the new host.

Two metrics are used to assess temporal cost: freeze time and latency
spikes. Freeze time quantifies the duration for which an operator cannot
work, i.e., freeze time = tstart - tstop, where tstop is the point in time when
the old host stops the operator and tstart is when the new host resumes it.

147

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

Latency spikes quantify the increased latency of event delivery caused by a
non-working operator. It is often approximated by the time needed for state
movement, which is the duration for which the state is in transit between
the old and the new host, i.e., state movement time = treceive - tsend, where
tsend is the time at which the old host starts sending the state, and treceive

is the time at which the new host has received the entire state. The state
movement time depends on the size of the state and the available bandwidth
between old and new host. Thus, state size can be seen as related to the
costs of both resources and time. Existing research is largely concerned with
the tuple delay of a placement [159], but tuple latency caused by migration
has not been given the same priority.

It should be noted that latency spikes reflect the cost much better than
freeze time since it is possible for the operator not to produce any event
during the freeze period. Examples of such a case are incoming events
during this period that do not match the pattern that can trigger the operator
to produce an event, or if a tumbling window implemented by the operator is
much larger than the migration time such that all delayed incoming events
can be processed on the new host before the window expires.

From the descriptions of the different types of algorithms above, it is
easy to see that they differ in the cost of migration. Operator downtime or
the latency of the output tuple can be considered a reasonable definition of
the cost of migration for single-track state movement algorithms. However,
for parallel-track algorithms, this definition of cost can result in excessively
frequent migrations, as it typically results in a value close to zero. Therefore,
it is necessary to define the cost of migration in such a way that the
migrations do not become too frequent.

With parallel-track, operator replicas need to be executed during
migration, and upstream nodes must send duplicate streams to the old
and new hosts. They may also take a significant amount of time to execute
when using window-recreation [42], which, in addition to using operator
replicas during this time, might result in a significant increase in monetary
costs. Therefore, it makes sense to consider the monetary cost when using
parallel-track algorithms.

IV.3.3 Migration decision

To perform the migration decision several steps are necessary (see Figure
IV.6). First, the decision process needs to be triggered. Then, a better
placement has to be selected. The cost and benefits of a migration to the
host must be estimated and compared in order to determine whether it is
worthwhile to migrate.

Most studies have handled migration as part of an adaptation mechanism,
where the goal is to improve execution or recover it in case of node failure.
Regularly collected metrics can be used to indicate the need for an adaptation.

148

A Conceptual Model of Operator Migration

Migration

execution

To Migrate or Not to

Migrate

Statistics

manager

Sec III-C

 Migration check

 Benefit

Cost
Decision

Migration

 trigger

Sec III-A

Migration

mechanism

Sec II-B

Placement

module

Possible placements

Figure IV.6: Migration decision-making

Recent surveys have focused on adaptation mechanisms [34, 111], while
this tutorial focuses on operator migration. Migration is usually the most
costly aspect of an adaptation, and this perspective can be useful for better
understanding adaptations. Even though adaptations differ in some aspects,
they share major parts in terms of cost.

IV.3.3.1 Migration goal

This section describes four of the most common goals of migration: load
balancing to distribute the load evenly on the available nodes, elasticity
to efficiently leverage computational resources, fault tolerance to ensure
that the DSP system can continue processing in the event of failures, and
improving the QoS. This is not a comprehensive set of migration goals but
it constitutes the main categories. For instance, security can be another
reason for making adaptation changes. However, the general migration
goal is to improve performance of the system. For instance, a DDOS attack
might cause a migration, but this would also be addressed using QoS as the
migration goal.

While all goals of migration can be applied to any deployment environ-
ment, the solutions with load balancing and elasticity are mainly aimed at
cloud-based DSP systems and executed within a single data center, whereas
QoS optimization is normally carried out when an operator undergoes back-
pressure and needs an adaptation to improve the QoS, which can happen in
any deployment environment. While migration is relevant for fault tolerance,
few solutions describe it as a mechanism to facilitate reliable execution.
Instead, solutions often use an upstream rollback approach [64] that replays

149

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

to the new host tuples that are part of the failed operator. Below, we analyze
all the goals of migration except fault tolerance.

QoS-driven migration is employed to enhance the system’s QoS. Crucial
QoS metrics in operator migration include bandwidth, availability, latency,
throughput, and more. For instance, to maintain the goal of low latency
in mobile settings, the system works to position the operators close to the
data producer. This can be seen as a broad optimization problem, with the
objective of maximizing the selected QoS metrics, as depicted in Equation
IV.1. Later, in Section IV.5, we delve into which of these metrics are frequently
taken into account.

max
n∑

i=1
QoS(i) (IV.1)

Another important parameter in mobile settings is energy preservation
for resource-constrained nodes [23, 127]. In a cluster setting, the goal is
often to ensure that the nodes are not overloaded and that the latency of the
tuple is not too high. If the latency of an operator increases significantly, it
might be migrated to a node that can provide lower latency.

The basic goal of migration is to improve the QoS. Most solutions are more
specific about the goal of migration because finding the optimal solution is
usually an NP-hard problem [20], which is unfeasible to solve for networks
of most sizes. A simpler approach is to add constraints to the operator. If the
operator cannot fulfill these constraints, it must be relocated. This is typically
a much more scalable solution that looks for a placement that is good enough,
instead of looking for the optimal solution. It is a push-based manner of
letting the coordinator know when the operator needs to be relocated. It
should be noted that constraints or thresholds are also often used to achieve
the other goals of migration. One characteristic of QoS-based migration is
that it is mainly related to the migration of individual operators.

Load balancing is a necessity in distributed streaming systems, because
the workload might vary significantly over time, leading to unbalanced
distributions of state over the processing nodes. The coordinator should
monitor the resource usage on the nodes to ensure that neither the network
nor the CPU resources become bottlenecks for the performance of the
operators. If resource usage on the nodes is unbalanced, the coordinator
moves some of the tasks among the nodes. If these are stateful processes,
the tasks to be moved must be paused, moved, and restarted on the new
node. Load balancing-driven migration differs from QoS-based migration in
the sense that the data consumers do not necessarily benefit much from the
balancing, and in that multiple operators are usually migrated through load
balancing. However, the decision on when to perform load balancing and
where to migrate operators must still take into account the same concerns

150

A Conceptual Model of Operator Migration

as for constraint violation, i.e., whether the cost of migration is worth the
benefit of the new placement.

Load balancing is typically modeled as a resource scheduling problem,
where the goal is to distribute the load as evenly as possible. For instance,
minmax the latency on the nodes [131], as shown in Equation IV.2.

min (max l(Gi)) (IV.2)

Elasticity refers to adding or removing operator replicas that facilitate
parallel processing (also called operator scaling). For instance, a query with
stateful windows that are grouped by a key can be run in parallel in multiple
threads, where each thread is responsible for a subset of the keys. Four
scaling operations are commonly used:

• Scale up: Create a new process and migrate some partitions of existing
threads to it.

• Scale down: Migrate all partitions of a thread to the other threads and
shut it down.

• Scale out : Create a new worker to which some threads can be moved.

• Scale in: Remove a worker and move its threads to existing workers.

In a cloud setting, the scaling out of a streaming system means adding
more servers to a cluster. The streaming system then automatically decides
which operators to move to it and potentially scale up. Scaling in means
the opposite: A server is removed from the cluster. First, all the server’s
operators are moved to other servers and some scale-down operations might
be performed. Scaling in and out can be modeled as special cases of load
balancing. When scaling out, a new container or VM is started on a new
machine, which is then added to a load balancing pool. The load balancer can
then use this new machine for load balancing. When scaling in, a machine is
eliminated from the load balancing pool, and at least its own state must be
migrated to the other nodes.

IV.3.3.2 Triggers

To determine whether migration should be performed, it is necessary to
compare the current placement with an alternative placement to estimate
the benefits of migration. If these benefits are significantly greater than the
costs, migration is beneficial. However, the calculation of a new placement,
its benefits, and the related costs might require a non-negligible amount of
resources. As such, the naïve approach to scheduling a migration decision
with a fixed frequency might be too costly. Instead, some form of context

151

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

awareness needs to be supported to detect changes in the system (e.g.,
related to workload, resource availability, or mobility) that indicate that
there might be a good chance of determining a better placement. The
relevance of such changes is generally implied by the goal of migration.
Monitoring the runtime system is an important task to detect such changes.
The DSP system can also perform some book-keeping, like the number of
operators a node hosts, and trigger a migration decision if a threshold is
reached.

A simple trigger is a constraint or threshold. For instance, load balancing
systems may make balancing decisions when the load imbalance of the
systems is above a certain threshold. For elasticity-based solutions, checks
on whether to scale in or out are similarly performed using thresholds. If
the system has a balanced load and its use is still above a given threshold,
the system might decide to scale out. If the utilization is below a threshold,
the system can scale in. If an operator has latency constraints that are not
fulfilled, the coordinator can be notified that migration must occur. The
coordinator can either be the node hosting the operator in a decentralized
solution or a centralized controller in a data center. In all scenarios, a unit
collects metrics from the runtime system in order to make a decision.

IV.3.3.3 Timing decision

Migration decisions can be made reactively or proactively. In the former case,
a system migrates when the given situation calls for a change to be made,
such as when QoS guarantees for an operator are not fulfilled. Proactive
migration decisions rely on predictions about future changes that require
migrations.

In several cases, the need for migration scales with its cost. For instance,
if the migration is triggered when the tuple rate exceeds a limit and causes
QoS violations, more tuples are affected by operator downtime when the
need for migration is more pressing. In other words, the more pressing
the need to migrate is, the higher the cost of migration is. If a node is
over-provisioned, and cannot handle a higher input rate for a given operator,
the operator benefits from being migrated to another node. If this situation
is detected when the input rate is already too high, a potential migration
results in latency spikes for the affected tuples. However, if it is possible to
predict that the tuple rate will increase, one can reduce the cost of migration
by proactively migrating before the tuple rate becomes too high.

The cost-benefit analysis for making migration decisions is not trivial as
the cost of migration is a one-time investment and the benefit from better
performance is accumulated over time. When confronted with dynamic
surroundings in stream processing scenarios, it makes sense to consider a
given placement only for a given amount of time. This time can be regarded
as the horizon for which predictions are made. Migration decisions are then

152

A Conceptual Model of Operator Migration

made in such a way that the new placement amortizes cost during that time.
As such, this time horizon is called amortization time. The notion of working
with a limited future horizon for making optimization decisions is also used
in model predictive control (MPC), and has been applied by De Matteis et al.
[26] to make proactive scaling decisions.

The higher the number of tuples that are impacted, the more the
migration option is penalized. However, the number of tuples impacted
is an estimate that depends on the accuracy of the prediction. It is possible
to assume that tuples are sent evenly across the time window of the horizon,
in a single burst, as fast as possible, or a mix between the two. To make
such predictions, it is necessary to collect metrics from upstream nodes to
determine the density of distribution of the transmitted tuples.

IV.3.3.4 Cost versus benefit

Once the decision process has been initiated, it is necessary to determine
a better placement and relate its benefits to the costs of the migration
to determine whether to migrate [55]. One clear approach to calculating
a new placement is to re-run the original placement algorithm with the
same objective function. Some of the data needed for calculating a new
placement might be available from the monitoring component that triggers
the migration decision. In most cases, additional live data must be collected,
where this represents a substantial part of the overhead of making the
migration decision.

The gain in performance owing to a new placement is generally reflected
in the output of the objective function of the old placement versus that
of the new placement [20, 23, 126]. By optimizing the objective function
during placement, a new placement that delivers the best performance is
identified. The problem with simply migrating to the host with the best
performance is that the cost of migration might be so high that it is not
worth migrating. It might be that a sub-optimal placement is preferred in
terms of the objective function owing to a lower migration cost, or maybe
that no migration is worth it at all. What makes the comparison of cost and
placement performance challenging is that they are not directly comparable.
On the one hand, multiple, possibly contradicting, metrics can be used to
determine cost and performance. On the other hand, the cost of migration
is a one-time investment while the performance of a placement represents
how a placement performs over a certain amount of time. The placement
performance continuously increases the overall benefit as long as there are
no changes in the system. As such, there is a need to distinguish between
the benefits of placement and migration. The benefit of placement simply
expresses the difference in placement scores between a new host and the
given host, while the benefit of migration is calculated based on (1) the cost
of migration, (2) the placement performance, and (3) the amortization time.

153

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

Three common ways to avoid excessively frequent migrations have been
discussed by Lakshmanan et al. [65]: (1) A threshold to ensure that the
score of the new placement is significantly better than that of the current
placement. (2) If the QoS guarantees of an operator are violated, it triggers a
migration, which means that migrations are performed only when necessary.
(3) Periodic re-evaluation of the objective function where the interval is
set to be reasonably high. In a more recent example, Buddhika et al. [15]
regularly calculated interference scores of operators that describe the need
for migration, and migrated them to a node where they were subjected to
less interference. However, neither Lakshmanan et al. [65] nor Buddhika
et al. [15] performed an explicit cost-benefit analysis. This is of interest
to us not only to avoid excessively frequent migrations, but to understand
why migration is worth it in some cases and not in others based on its
costs and benefits. Suppose a placement is an improvement over the given
placement. In that case, we want to be able to state exactly why the migration
is worth performing (or not) in a meaningful and understandable way. The
amortization of the cost of migration is a simple goal to understand as long
as one weighs the one-time cost of migration against the benefit of the
continuous performance of the new placement, but this deliberation is often
not presented explicitly in existing works.

IV.4 Migration Mechanisms

In this section and Section IV.5, we present an overview of existing literature
on operator migration. Specifically, we examine the design of current
migration strategies, with a focus on those that assume full consistency
of the operator state.

As the volume and velocity of data have increased with the emergence
of big data [7], the simple single-track moving state algorithm has become
inadequate. Specialized and innovative solutions that provide no downtime
and solutions that leverage fault tolerance mechanisms, such as periodically
performed back-ups, have been designed. We explore the state-of-the-art
migration algorithms and provide a historical perspective on innovations
proposed.

Migration mechanisms are characterized by their state and stream
management. This involves executing certain tasks, such as redirecting,
buffering, pausing streams, and moving states between nodes. Moreover, it
is important to specify whether these tasks can be executed in parallel and
where it is most beneficial to execute them. The most important properties
identified in Section IV.3.1 are whether the algorithms require state migration
and how this is performed, and whether they are single-track or parallel-
track. Most of the investigated migration mechanisms can be derived from
these properties. For instance, some mechanisms are centralized, and rely

154

Migration Mechanisms

on a coordinator, such as [28, 42, 124], whereas others are decentralized
and initiate migration on the operator host, e.g., [104, 113]. In some cases,
multiple dependent migrations are planned and performed in sequence, but
the details of managing multiple migrations are not presented in this tutorial.
Examples of such algorithms include load balancing, where many keys of an
operator may be moved to a new location, and when an operator graph is
distributed geographically and several operators are migrated, e.g., in TCEP
[80].

The most fundamental mechanisms are single-track without state
migration, single-track with state migration, and parallel-track without state
migration, i.e., window-recreation. These mechanisms were introduced
together by Zhu et al. [160] and were later applied to the SPE CAPE [118].
The authors discussed the steps of migration and cost models of the different
mechanisms. They called them moving state, parallel-track, and pause-
drain-resume migration mechanisms. Using the terminology established in
Section IV.3, the moving state mechanism is single-track moving state, the
parallel-track mechanism is parallel-track without state migration, and the
pause-drain-resume mechanism is single-track without state migration. The
paper by Shah et al. [124] forms the basis for load balancing, and presented a
means of repartitioning keys in a key-value-partitioned operator state, which
is relevant for cluster-based systems. We characterize this mechanism as a
single-track moving state algorithm, but in which the operators are already
running on the destination node. In contrast to some studies, for instance
by Qin et al. [111], we do not consider state movements in load balancing
and operator migration to be fundamentally different, and posit that only
the entities being migrated are different, i.e., keys are moved instead of
operators. In load balancing, the entities being migrated are often a set of
keys and their associated states, whereas in operator migration, the entities
are usually an operator and its associated state.

IV.4.1 Mechanism descriptions

This section describes the relevant mechanisms in a concise and systematic
manner. Since details of what happens in migration mechanisms are typically
omitted from research papers, our descriptions may deviate to some extent
from the original implementations of the migration mechanisms considered.
For the most significant variations of these mechanisms, we show how
migration is performed using a figure that illustrates the topology of stream
processing and the communication between nodes. Please refer to the legend
in Figure IV.7 for the description of symbols that are used in this section
to describe the migration mechanisms. The following types of nodes are
used: old host (OH), new host (NH), upstream nodes (US), and downstream
nodes (DS). The upstream node and downstream node can both represent
one or more nodes, but for the sake of simplicity, only one of them is shown

155

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

in the figures. Each figure is accompanied by an enumerated description
of the steps of the relevant algorithm on the right-hand side, and each step
is provided in the figure to facilitate the understanding of the algorithm.
Furthermore, we show in subsequent listings the contents of the control
messages sent to provide the reader with a kind of computational viewpoint
of the involved nodes. Since the control messages comprise the tasks that
must be executed by the nodes, there is a natural correspondence to the
steps listed in the figure.

Start forwarding data stream

Stop forwarding data stream

Regular data stream

State migration

OH

DS

US

NH

C

State

n

n

Old host

Downstream node

Upstream node

New host

Coordinator

State

Control message

Other message

Old host’s checkpoint

New host’s checkpoint

Figure IV.7: Legend for the migration mechanism illustrations in Figure
IV.8–IV.12

Control messages used for migration are typically embedded into the
data streams. These tell the nodes that a migration will be performed, and
might be used for other coordination tasks. In some solutions, this message
is sent only to the old or the new host; in other solutions, it is sent to the old
and the new host, or to upstream nodes, old and new hosts, and downstream
nodes. There may be many reasons for notifying different nodes about
migration, such as updating the view of where key partitions are maintained,
and routing streams. We describe only a subset of control messages for each
mechanism, and they describe the essential tasks that should be executed to
perform stream and state management tasks. In the illustrations, the control
messages are shown in blue whereas the other messages are shown in red.
In addition to the visual representation of the topology and messages sent
among nodes, the essential tasks to execute during migration are shown in a
listing. The first blue control message from the coordinator, which features
in step one of each algorithm, is shown in this listing. All other control
messages represent subsequent steps in the algorithm that are described in
the first blue control message.

156

Migration Mechanisms

IV.4.2 Standard moving state

The standard moving state mechanism (see Figure IV.4 and IV.5) uses direct
state movement between the old and the new hosts, and the entire state is
sent all at once. Aside from moving the state, migration requires changing the
stream routing. Figure IV.8 shows the steps involved in the standard moving
state algorithm developed by Shah et al. [124]. They proposed an operator
called Flux that can adapt the state partitioning of the pipelines of dataflow
using a state movement algorithm. Other state movement mechanisms
largely follow the same steps, but they might vary in their approach to
stream management or in the roles assigned to specific nodes.

OH

DS

US

NH

C

4

1
1

State

3

6
2 5

1. Coordinator forwards
control message to the
old and new host

2. Old host pauses up-
stream

3. Upstream stops sending
to old host

4. Old host migrates state
to new host

5. New host resumes the
upstream

6. Upstream starts sending
to new host

Figure IV.8: Moving state (according to [124])

Our interpretation of the moving state mechanism’s blue migration
control message from Step 1 in Figure IV.8 is described in Listing IV.1.
The upstream nodes buffer, stop, and redirect streams from the old host
to the new host. Following this, the task of migrating the state from the
old host to the new host is issued to the old host, after which the streams
are resumed. Instead of stopping the upstream nodes, other solutions [28,
42] redirect streams from the upstream nodes to the new host. The new
host buffers the streams and starts to process them when the state from the
old host has been received and installed. Other solutions send the control
message to the old host instead of the upstream nodes [113], or even to the
new host [56]. The benefit of this class of migration mechanisms is that it is
straightforward and simple, but the downside is that it may cause significant

157

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

downtime.

ControlMessage(OH
ControlMessage(Upstream

BufferStreams(Streams(query))
StopStreams(Streams(query))
Redirect (Streams(query) , OH, NH)
ControlMessage(OH, MoveState(query , NH))
Resume(Streams(query))))

Listing IV.1: Single-track moving state

IV.4.3 Parallel-track

There are two types of parallel-track mechanisms: state-recreation and
window-recreation mechanisms. The difference between them is that state-
recreation involves moving state and window-recreation does not. The
completion time for a state-recreation algorithm is proportional to the state
size, whereas for a window-recreation algorithm, it is proportional to the
window size [42]. Zhu et al. [160] introduced the window-recreation parallel-
track migration mechanism. Gulisano et al. [42] presented both a window-
recreation and a state-recreation mechanism, and Ottenwalder et al. [104]
performed state-recreation migrations based on changes in mobility. Madsen
et al. proposed a direct window-recreation mechanism in Enorm [88] and a
checkpoint-assisted state-recreation mechanism in [86]. ChronoStream [149]
performs a checkpoint-assisted state-recreation migration of state slices to
provide horizontal elasticity. UniMiCo [107] (uninterruptable migration of
continuous queries) is a direct window-recreation algorithm that can handle
both time-based and tuple-based window semantics.

StreamCloud’s [42] state-recreation and window-recreation mechanisms
are shown in Figure IV.9 and Figure IV.10. In both mechanisms, a handover
between the old and new hosts is scheduled using a timestamp. In window-
recreation, the handover is performed in a way such that the old host empties
its windows and the new host fills them in parallel, resulting in a smooth
handover. For this purpose, the upstream nodes send tuples to both the old
and new hosts. In state-recreation, the old host sets the handover timestamp
immediately before serializing and transmitting the state to the new host.
Any subsequent tuples with a timestamp lower than the handover timestamp
are processed by the old host, and the other tuples are processed by the new
host. Operator downtime can be avoided here if the handover timestamp
is set to a time after the new host is expected to have received the state
and started its execution. When the state is received by the new host, it
processes all tuples it receives from the upstream nodes in parallel with the

158

Migration Mechanisms

old host, but produces only tuples caused by input tuples with a timestamp
higher than the handover timestamp.

OH

DS

US

NH

C

3

5

1

2 2

4

1. Coordinator injects control message

2. Upstream forwards control message

3. Upstream starts sending to NH

4. OH sends EndOfReconfiguration to US

5. US stops forwarding to OH

Figure IV.9: Parallel-track window-recreation algorithm (according to [42])

Our interpretation of the window-recreation mechanism for the blue
migration control message from Step 1 in Figure IV.9 is described in Listing
IV.2. The control message is sent by the coordinator to the upstream nodes.
From there, it is forwarded to the old host, which schedules the takeover
time for the new host and sends it to the upstream nodes. From then on, the
upstream nodes send tuples to both the old and the new hosts. The new host
processes the same tuples as the old host, but does not produce any tuple
until the old host has stopped processing.

Our interpretation of the state-recreation mechanism for the blue
migration control message from Step 1 in Figure IV.10 is described in Listing
IV.3. The control message is sent by the coordinator to the upstream nodes.
This algorithm requires slightly greater coordination between the old and
the new host than in case of window-recreation, because the old host must
move its state to the new host, and the latter needs to know the takeover
time. These classes of migration mechanisms have as benefit that they may
result in zero downtime for the operators, but at the expense of overhead
when duplicating the data streams and maintaining two copies of the stream

ControlMessage(Upstream
ControlMessage(NH,

StartQuery(query))
ControlMessage(OH

ControlMessage(Upstream,
Schedule(RemoveNextHop(Streams(query) , OH)

TakeoverTime(query))
AddNextHop(Streams(Upstream) , NH))))

Listing IV.2: Window-recreation

159

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

OH

DS

US

NH

C

3

5

6

1

2 2

State

4

1. Coordinator injects control message

2. Upstream forwards control message

3. Upstream starts sending to NH

4. OH sends EndOfReconfiguration to US

5. OH migrates state to NH

6. Upstream stops sending to OH

Figure IV.10: Parallel-track state-recreation algorithm (according to [42])

processing system. Window-recreation requires no state transfer, but at
the expense of increasing the total migration time, which in a pay-as-you-go
scenario increases the monetary cost of running the system.

ControlMessage(Upstream
ControlMessage(OH

ControlMessage(NH,
StopStreams(OutputStreams(query))
StartQuery(query)
Schedule(TakeoverTime(query)

StartStreams(Streams(query))))
ControlMessage(Upstream,

Schedule(RemoveNextHop(Streams(query) , OH) ,
TakeoverTime(query))

AddNextHop(Streams(Upstream) , NH)))
MoveState(query , NH))

Listing IV.3: State-recreation

IV.4.4 Indirect state movement

Gedik et al. [37] described an indirect state migration mechanism for load
balancing that has been used as the basis in several studies [17, 26, 69].
They proposed an operator that outputs to multiple replicas partitioned by
keys, called a splitter, that can decide to change the distribution of the keys,
which requires state migration between replicas. Moreover, they introduced
a two-phase approach to migration: donate and collect. In the donate phase,
the state to be migrated is moved from the old host’s in-memory store to a
backing store. In the collect phase, the new host retrieves the state from the
backing store. This method was subsequently used by Cardellini et al. [17]
and Li et al. [69] to implement features of elasticity in migration in Apache

160

Migration Mechanisms

Storm. The drawback of this method is that streams from the upstream
nodes are paused during execution. De Matteis et al. [25, 26] defined a
similar state migration mechanism. However, their implementation contains
a number of improvements, e.g., the splitter can send new tuples during
state movement instead of blocking until migration is complete.

In the donate phase of the mechanism proposed by Gedik et al. [37],
replicas place the state to be moved into packages, one for each replica
that takes over the state. The data are moved away from the in-memory
store of the replicas to a backing store. A vertical barrier is used across
the replicas to ensure that they do not progress to the next phase until all
packages have been donated. In the collect phase, the replicas check the
backing store for any packages that contain the state that they take over and
restore it. Following this, a horizontal barrier is used to prevent the splitter
from sending any tuples until the migration process has been completed.

The benefit of the two-phase approach is that it involves an API where
an operator simply requires implementing methods to extract the state, and
sends it to a backing store instead of requiring intricate communication
among operators. Moreover, it can use existing fault tolerance mechanisms
that periodically create checkpoints of states for the backing store.

IV.4.5 Partial state movement

With partial state movement, the state is partitioned and each partition is
moved individually, to minimize operator downtime. MigCEP [104] is an
algorithm designed for frequent migrations to minimize downtime. The state
is split up into two parts: immutable and mutable. An immutable or static
state includes the operator and, possibly, databases whose data have not
changed during migration. A mutable state consists of tuples that are being
processed in the operator.

A further improvement involves sending the last incremental checkpoint
of the state to the new host before the operator goes down. This is the case
in ChronoStream [149] and Rhino [28], where the state is split before the
operator is migrated, and an incremental checkpoint that includes the new
state after the first part has been extracted. This can be seen as analogous
to the immutable and mutable states described in MigCEP [104].

Megaphone [53] is a state migration technique for migrating many keys
in an efficient way to minimize latency spikes. In this case, the state is split
into many equal-sized parts. Each causes some downtime for the system.
However, while the total migration time increases, the spikes due to tuple
latency are substantially reduced compared to sending the entire state all
at once. However, the Megaphone mechanism introduces some additional
overhead to operators during non-rescaling periods. Another state migration
technique called Meces [41] may improve upon Megaphone by being more
lightweight and prioritizing the migration of partial states that are needed by

161

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

incoming tuples. A newly received tuple that requires a given partial state
fetches it from the old host, instead of waiting for it in a larger batch, or
relying on complex synchronization mechanisms. The commonality between
Megaphone and Meces is that they are only beneficial with operators where
the state is split up into many keys, e.g, word count with words as keys,
equijoin operators, or other aggregation operators with keys.

Fragkoulis et al. [34] distinguished between all-at-once and continuous
state movements, which are classified in this tutorial as all-at-once and
partial state movements, respectively. Megaphone, Rhino, and ChronoStream
are characterized in this tutorial as exemplars of partial state movement,
while Fragkoulis et al. categorized Megaphone as using continuous state
movement, and Rhino and ChronoStream as using all-at-once state movement.
The reason for this difference is that ChronoStream and Rhino rely on
distributed checkpoint replication, and need only to send the state that has
been built up since the last checkpoint. In this tutorial, migration is further
divided by distinguishing between solutions that use distributed checkpoint
replication and those that do not. Megaphone and Meces do not use it, and
send the entire state directly from the old host to the new host, whereas
ChronoStream and Rhino depend on distributed checkpoint replication. If
Rhino and ChronoStream do not use distributed checkpoint replication, this
means that the initial checkpoint is sent from the old host to the new host
instead of existing on the new host already. Therefore, using partial state
movement is not necessarily an indication that multiple states are sent during
migration.

State shedding combines load shedding and operator migration in a way
that demands fine-grained migration [139]. Each partial state is assigned a
utility based on how important it is, similar to how it is done in load shedding.
The most important partial states are then migrated, whereas the least useful
partial states may be dropped. The primary advantage of state shedding
is the ability to prioritize the migration of critical states. However, it does
require calculating the utility of partial states, which can be challenging to
predict.

IV.4.6 Distributed checkpoint replication

Some solutions leverage fault tolerance mechanisms to improve the
scalability and performance of migration using periodically updated, and
distributed and replicated checkpoints of the state of stream processing.
Since these algorithms use checkpoint solutions that may already exist, they
are called checkpoint-assisted algorithms. If the target of migration is a host
that already contains the state, a migration algorithm can be as simple as
one that loads the checkpoint in memory and replays the upstream tuples to
the new host. This requires exactly-once guarantees, as provided by pub-sub
systems such as Kafka [4]. A parallel-track algorithm can work similarly, but,

162

Migration Mechanisms

instead of stopping the old host before replaying tuples on the new host, both
the old host and the new host run until the latter takes over. In this process,
output tuples need to be filtered to remove duplicate tuples. ChronoStream
[149] uses distributed checkpoint replication to implement a parallel-track
algorithm, Rhino [28] to realize a single-track algorithm, and the proposal of
Madsen et al. [86] to carry out both. The algorithms often also use partial
state movement when updating checkpoint replicas to send as little state as
possible.

Del Monte et al. [28] introduced a checkpoint-assisted single-track
migration mechanism called Rhino that can migrate state sizes of up to
terabytes 15 times faster than the state-of-the-art solutions (as of 2020) by
using incremental checkpointing. Their algorithm is shown in Figure IV.11.
Most of the state is sent before the old host is stopped. Afterward, it sends
an incremental checkpoint that represents a change in the original state.
In this way, only tuples that arrive after migration has started need to be
migrated in the incremental checkpoint. This algorithm is a cluster-based
migration mechanism that is executed by a handover manager (HM). The
HM informs all workers about the migration and about what will happen, by
injecting a control message into the source streams (inspired by Chi [90]).
Afterward, the source nodes are redirected. When the old host has received
a control message on all of its incoming streams, it sends the state to the new
host. The green box indicates the state repository for the old host, while the
yellow box indicates the state repository for the new host. The intermediary
hosts, including the old and the new host, send control messages to their
next hop nodes. When the nodes have completed their tasks, including the
redirection of streams and the migration of state, they acknowledge the HM.
The migration is complete when all nodes have acknowledged the HM.

Our interpretation of the checkpoint-assisted moving state algorithm’s
blue migration control message from Step 1 in Figure IV.11 is described in
Listing IV.4. The control message is issued to the upstream nodes, which
forward a control message to all downstream nodes. We describe tasks
that the old host might be assigned. The main difference between this
algorithm and the standard moving state algorithm is that most of the state
is assumed to be on the new host before the migration starts. As such,
when the state is moved, it is moved using the partial state movement task
MoveIncrementalState instead of MoveState.

Wu et al. proposed ChronoStream [149], a checkpoint-assisted state-
recreation migration algorithm that provides horizontal elasticity, as
illustrated in Figure IV.12. The states of all tasks on a node are periodically
backed up and sent to the other nodes. As a result, migration only involves
updating a subset of the backed-up state, which significantly reduces the
number of states to be moved. This process is split into four phases:
migration preparation, state rebuilding, dataflow rerouting, and resource

163

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

OH

DS

US

NH

C

6

3

4

5

1

2 2

State

1. Coordinator injects control mes-
sage

2. Upstream forwards control mes-
sage

3. Upstream stops forwarding to
the OH

4. Upstream starts forwarding to
the NH

5. OH stops processing and mi-
grates incremental checkpoint to
NH

6. NH loads existing checkpoint
and incremental checkpoint, and
starts processing

Figure IV.11: Checkpoint-assisted single-track mechanism (according to [28])

Bootstrapping
ControlMessage(OH, ReplicateCheckpoint (NH))

Migration
ControlMessage(Upstream

ControlMessage(NH,
BufferStreams(NH, Streams(query))
StopStreams(NH, Streams(query)))

ControlMessage(OH,
Redirect (Streams(query) , OH, NH)
MoveIncrementalState(query , NH)
ControlMessage(NH, StartStreams(Streams(query)))

))

Listing IV.4: Checkpoint-assisted single-track

164

Migration Mechanisms

release. The first phase sets up a container for the operator on the destination
node if this has not been done already. In the second phase, the new host
fetches the operator’s state locally or remotely and rebuilds it, and notifies
the master node when finished. The green box indicates the state repository
for the old host, while the yellow box indicates the state repository for the
new host. The third phase involves the master telling the data sources
to send tuples to the new host as well, including any tuple that is not
included in the state that the new host received. At this point, the new host
participates in the processing and produces the same tuples as the old host,
and duplicate output tuples are filtered out by downstream operators based
on the sequence numbers of the tuples. Finally, the controller tells the old
host to release the resources such that the new host is the only node running
the operator.

OH

DS

US

NH

C

2
State

3

6

15

4

1. Coordinator tells NH to upgrade
slice

2. NH fetches state

3. New host start processing

4. Controller tells upstream nodes
to re-forward tuples

5. Controller tells OH to release
resources

6. Old host stops processing

Figure IV.12: Checkpoint-assisted parallel-track algorithm (according to
[149])

Our interpretation of the checkpoint-assisted parallel-track mechanism
for the blue migration control message from Step 1 in Figure IV.12 is
described in Listing IV.5. The main difference between the parallel-track
checkpoint-assisted mechanism and a non-checkpoint-assisted mechanism is
that the immutable state is sent or made available on the new host before
any downtime occurs.

Checkpoint-assisted migration mechanisms can greatly reduce operator
downtime, providing a significant performance boost in cases where fault
tolerance features are already established. However, if the system does not
already have checkpointing functionality, it must be added.

165

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

Bootstrapping
ControlMessage(OH, ReplicateCheckpoint (NH))

Migration
ControlMessage(US, AddNextHop(Streams(query) , NH)

RemoveNextHop(Streams(query) , OH))
ControlMessage(NH,

ControlMessage(OH, MoveImmutableState(query , NH)))
ControlMessage(OH, StopQuery(query))

Listing IV.5: Checkpoint-assisted parallel-track

IV.5 Migration Decision

We review the elements of migration decision-making including the calcula-
tion of the costs and benefits of migration. There are existing surveys that
go into depth of what methods are used for decision-making [74], and that
is not the purpose of this tutorial. We introduce some migration decision
methods and describe which metrics are used to base migration decisions on,
and what measurements are done in evaluations. This gives a picture of the
struggle of making decisions on incomplete data, because the consequences
of a migration choice are not known until it is done.

IV.5.1 How to make migration decisions

To start out, we give a small introduction to the topic of how to make
migration decisions. We can split this problem in two phases: the problem
definition phase and the problem solution phase. The problem definition
defines mathematically what is the goal of the system, e.g., to minimize
load imbalance, latency and maximize throughput. Thereafter, the problem
solution involves some way to achieve this. Re-placement or re-scheduling
of operators on different nodes or CPU cores is an NP-hard problem. Some
works [20, 60] solve the problem using an Integer Linear Programming (ILP)
solver such as gurobi [5] or CPLEX [6]. However, they do not scale well since
they require a global view of the network. Operator scaling, on the other
hand, is a problem about minimizing the amount of instances to operators
while upholding the QoS guarantees [62].

In Table IV.9, we summarize a selection of the studied papers that
contribute to the modeling techniques, algorithms, and decision-making
strategies for operator migration. For each paper, we highlight the specific
problem being addressed, the applied algorithm or technique, and the
approach to decision-making.

The proposed solutions typically use heuristics, which are approximate
methods that are designed to quickly find a solution that is close to optimal.
These heuristics often involve using specific algorithms that are tailored

166

Migration Decision

Table IV.9: Modeling techniques and algorithms for performing decision-
making in operator migration

Paper Refer-
ence

Problem Algorithm/Technique Decision-Making

Cardellini et al.
[20]

Re-placement or re-scheduling
of operators

ILP solver (Gurobi) Minimize load imbalance, la-
tency; Maximize throughput

Jonathan et al.
[60]

Re-placement or re-scheduling
of operators

ILP solver (CPLEX) Minimize load imbalance, la-
tency; Maximize throughput

Pietzuch et al.
[108]

Optimization of network usage Relaxation (Heuristic) Minimize the network usage of
a query

Buddhika et al.
[15]

Load balancing Prediction rings
(Heuristic)

Reduce interference that nega-
tively impacts performance

Gedik et al.
[36]

Load balancing Scan, redist, readj
(Heuristics)

Balance the mapping from key
to server

Hochreiner
[52]

Resource scaling Threshold-based
heuristic

Scale resources up or down
based on CPU utilization

to the particular optimization problem at hand. For example, a common
objective in migration is to minimize the latency of data tuples or maximize
the rate at which data tuples are processed.

Pietzuch et al. [108] define a stream-based overlay network (SBON) that
uses a placement and adaptation algorithm called Relaxation. Relaxation
is a heuristic algorithm that minimizes the network usage of a query. The
overlay network consists of a cost space with three latency dimensions (each
direction), and one load dimension. The latency dimensions constitute the
latency space, and physical nodes are placed in this space such that the
distance between nodes represents the communication latency.

Buddhika et al. [15] present a heuristic algorithm for load balancing
where the goal is to reduce interference that negatively impacts the
performance of stream processing performance. A construct called
prediction rings is applied that predicts the future resource usage of stream
processing computations, and these are used to calculate the interference
score. Thereafter, the goal is to move stream processing computations to
the nodes with the least interference. If the interference score exceeds
a predefined threshold, the operator is migrated to a node with less
interference.

Gedik et al. [36] introduced three heuristic partitioning algorithms to
perform load balancing, namely scan, redist and readj. The job of the
partitioning functions is to make sure that the mapping from key to server
is balanced. These have in common that they apply the same metrics for
making the decisions and have the same end-goal, but have different ways of
achieving it.

Hochreiner [52] proposed a platform for elastic stream processing, called
PESP, which uses heuristics with predefined thresholds to make scaling
decisions. Specifically, when the CPU utilization of the system exceeds a
certain threshold, PESP scales up the resources to handle the increased
workload. Conversely, when the CPU utilization drops below a certain

167

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

threshold, PESP scales down the resources to avoid overprovisioning.

IV.5.2 Parameters

We first provide an overview of the parameters of optimization, and the cost
and benefit metrics used in existing work (see Table IV.10 and the pie charts
in Figure IV.13 and IV.14. We then describe (1) how cost values are modeled
and measured, (2) approaches for optimization to increase benefits, and (3)
reactive and proactive methods. The figure and table show similar results to
Figure 8 by Cardellini et al. in [21], but here we go more in depth of how the
metrics are used.

Even though there are many different definitions of the parameters of
optimization, they are often related. Therefore, we group them in Table IV.10
into six categories: network performance (e.g., bandwidth, bandwidth latency
product), tuple performance (e.g., tuple latency, tuple rate), load, costs of
migration, monetary costs, and energy usage. Since the goal of migration
is important for optimization, we differentiate between the categories of
parameters of optimization in research according to the goals of migration.
The most prominent goal is load balancing, and load is the most commonly
used optimization parameter. While monetary cost is not commonly used
as optimization parameter, migration is often used to avoid the need for
over-provisioning and, thus, indirectly reduces monetary costs.

Parameter Migration goal Papers

Tuple performance Load balancing [15, 56, 76, 77, 145]
Elasticity [26, 38, 43, 48, 56, 72, 75, 77, 100,

119, 152, 157]
QoS [60, 77]

Network performance Load balancing [66, 145]
Elasticity [154]
QoS [19, 50, 61, 103, 104, 108, 115, 145,

158]
Load Load balancing [15, 32, 36, 56, 66, 76, 77, 114, 131,

142, 145, 150, 159]
Elasticity [18, 26, 43, 52, 56, 77, 78, 154]
QoS [50, 61, 77, 78, 108, 114, 158]
Fault tolerance [57]

Migration costs Load balancing [32, 36, 66, 114, 142]
Elasticity [18, 26, 43, 154]
QoS [61, 71, 114]

Monetary costs Elasticity [52, 75, 119, 154]
QoS [19, 50]

Energy usage Load balancing [101]

Table IV.10: Goals of optimization grouped by the goal of migration

168

Migration Decision

Figure IV.13: Popularity of metrics for modeling migration cost and
placement benefit, shown by usage frequency

Figure IV.14: Popularity of metrics for measuring migration cost and
placement benefit, shown by usage frequency

169

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

Figure IV.13, IV.14 and Table IV.11 give an overview of the metrics used
to define the modeled and measured costs of migration, and the modeled
and measured benefit of migration. Table IV.11 catalogs each paper by the
specific environment for migration, the goal of migration, the cost models,
the benefits, and actual costs and benefits measured. This table offers
a quick reference to understand how various researchers have modeled
and evaluated their solutions. When a metric is used for modeling the
migration cost or placement benefit, it means that it is part of an equation
that is typically applied to decision-making. This may include attempts at
calculating the current system state, or predicting future system state doing
proactive migration decisions. Ideally, the measured and modeled metrics
should be identical, but they are not. One reason for this mismatch is, that it
is much easier to measure values for certain metrics, than to use them for
decision-making, like tuple latency and tuple rate. Kalavri et al. [62] discuss
how the observed tuple rates may not be good for doing decision-making,
because what is really interesting is to know the capacity of a system, or the
"true" tuple rate. Values for costs and benefits need to be estimated for each
migration decision, whereas values of the evaluation metrics are measured
during migration. The mismatch between the modeled cost and the benefit,
and the measured evaluation metrics might also help to complement future
migration decisions and the assessment of migration using further metrics.
The most commonly used parameters to determine the cost of migration are
the migration time and state size, and few systems use more precise cost
parameters, such as latency spike and performance penalty. While some
approaches, such as [66], are listed in Table IV.10 for performing placement
optimization based on the cost of migration, they are notably absent from
Table IV.11 because these approaches do not use any specific metric to
describe the cost of migration.

IV.5.3 Migration cost

Accurately defining the cost of migration is essential for making the correct
migration decisions. It can be manifested as increased resource consumption
and any kind of degradation of execution, such as decreased throughput
or increased tuple latency. Table IV.11 indicates that it is more common to
measure the cost of migration than it is to model it for making migration
decisions.

The vast majority of solutions use migration-specific metrics to model the
cost, as opposed to metrics that are used for measuring the benefit of the
adaptation. Tuple processing performance is used in many cases to model
and measure benefit, but very few approaches have used it to calculate the
cost of migration. Heinze et al. [48] modeled and predicted tuple latency as
part of the cost of migration, by using the predicted input rate, migration

170

Migration Decision

T
a
b

le
IV

.1
1

:
O

ve
rv

ie
w

o
f

p
a
p

e
rs

o
n

m
ig

ra
ti

o
n

d
e
ci

si
o
n

s,
co

ve
ri

n
g

d
e
p

lo
ym

e
n

t
e
n

vi
ro

n
m

e
n

t,
m

ig
ra

ti
o
n

g
o
a
ls

,
a
n

d
m

e
tr

ic
s

u
se

d
fo

r
m

ig
ra

ti
o
n

co
st

a
n

d
b

e
n

e
fi

t

P
a
p

e
r

D
e
p

lo
y
m

e
n

t
e
n

vi
ro

n
m

e
n

t
M

ig
ra

ti
o
n

g
o
a
l

M
o
d

e
le

d
m

ig
ra

ti
o
n

c
o
st

M
e
a
su

re
d

m
ig

ra
-

ti
o
n

c
o
st

M
o
d

e
le

d
p

la
c
e
m

e
n

t
b

e
n

e
fi

t
M

e
a
su

re
d

b
e
n

e
fi

t
o
f

m
ig

ra
ti

o
n

[1
4

]
E

d
g

e
F
a
u

lt
to

le
r-

a
n

ce
M

ig
ra

ti
o
n

ti
m

e
,
S

ta
b

i-
li

za
ti

o
n

ti
m

e
[1

5
]

C
lo

u
d

L
o
a
d

b
a
la

n
c-

in
g

#
M

ig
ra

ti
o
n

s
T

u
p

le
la

te
n

cy
,

T
u

p
le

ra
te

,
R

e
so

u
rc

e
u

sa
g

e
T

u
p

le
la

te
n

cy
,

T
u

p
le

ra
te

,
R

e
so

u
rc

e
u

sa
g

e
[1

7
]

C
lo

u
d

E
la

st
ic

it
y

S
ta

te
si

ze
,

M
ig

ra
ti

o
n

ti
m

e
T

u
p

le
la

te
n

cy
,

R
e
-

so
u

rc
e

u
sa

g
e

[2
0

]
T

u
p

le
la

te
n

cy
,

T
u

p
le

ra
te

[1
8

]
F

o
g

E
la

st
ic

it
y

T
u

p
le

la
te

n
cy

R
e
so

u
rc

e
u

sa
g

e
T

u
p

le
la

te
n

cy
,

T
u

p
le

ra
te

[1
9

]
C

lo
u

d
Q

o
S

M
ig

ra
ti

o
n

ti
m

e
T

u
p

le
la

te
n

cy
,

M
ig

ra
-

ti
o
n

ti
m

e
,

M
o
n

e
ta

ry
co

st
s

T
u

p
le

la
te

n
cy

,
M

o
n

e
-

ta
ry

co
st

s
M

o
n

e
ta

ry
co

st
s

[2
6

]
L

o
a
d

b
a
la

n
c-

in
g

,
E

la
st

ic
it

y,
Q

o
S

T
u

p
le

la
te

n
cy

,
R

e
-

so
u

rc
e

u
sa

g
e
,

#
M

ig
ra

ti
o
n

s

T
u

p
le

ra
te

[2
7

]
L

o
a
d

b
a
la

n
c-

in
g

T
u

p
le

ra
te

T
u

p
le

ra
te

[2
8

]
C

lo
u

d
L

o
a
d

b
a
la

n
c-

in
g

,
E

la
st

ic
it

y,
F
a
u

lt
to

le
r-

a
n

ce
,

Q
o
S

T
u

p
le

la
te

n
cy

,
T

u
p

le
ra

te
,

R
e
so

u
rc

e
u

sa
g

e
T

u
p

le
la

te
n

cy
,

R
e
-

so
u

rc
e

u
sa

g
e

[3
3

]
C

lo
u

d
L

o
a
d

b
a
la

n
c-

in
g

S
ta

te
si

ze
T

u
p

le
ra

te

[3
2

]
C

lo
u

d
L

o
a
d

b
a
la

n
c-

in
g

S
ta

te
si

ze
S

ta
te

si
ze

R
e
so

u
rc

e
u

sa
g

e
T

u
p

le
la

te
n

cy
,

T
u

p
le

ra
te

[2
2

]
C

lo
u

d
M

ig
ra

ti
o
n

ti
m

e
[3

7
]

T
u

p
le

ra
te

,
R

e
so

u
rc

e
u

sa
g

e
[3

6
]

C
lo

u
d

L
o
a
d

b
a
la

n
c-

in
g

S
ta

te
si

ze
S

ta
te

si
ze

R
e
so

u
rc

e
u

sa
g

e

[3
8

]
C

lo
u

d
E

la
st

ic
it

y
M

ig
ra

ti
o
n

ti
m

e
,
S

ta
b

i-
li

za
ti

o
n

ti
m

e
M

ig
ra

ti
o
n

ti
m

e
T

u
p

le
la

te
n

cy
,

T
u

p
le

ra
te

T
u

p
le

la
te

n
cy

,
T

u
p

le
ra

te
,

R
e
so

u
rc

e
u

sa
g

e
[4

1
]

C
lo

u
d

E
la

st
ic

it
y

N
e
tw

o
rk

u
sa

g
e
,

R
e
-

so
u

rc
e

u
sa

g
e
,

M
ig

ra
-

ti
o
n

ti
m

e

T
u

p
le

la
te

n
cy

,
T

u
p

le
ra

te

[4
2

]
L

o
a
d

b
a
la

n
c-

in
g

,
E

la
st

ic
it

y
S

ta
te

si
ze

,
M

ig
ra

ti
o
n

ti
m

e

171

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

T
a
b

le
IV.1

1
:

(C
o
n

tin
u

e
d

)

P
a
p

e
r

D
e
p

lo
y
m

e
n

t
e
n

viro
n

m
e
n

t
M

ig
ra

tio
n

g
o
a
l

M
o
d

e
le

d
m

ig
ra

tio
n

c
o
st

M
e
a
su

re
d

m
ig

ra
-

tio
n

c
o
st

M
o
d

e
le

d
p

la
c
e
m

e
n

t
b

e
n

e
fi

t
M

e
a
su

re
d

b
e
n

e
fi

t
o
f

m
ig

ra
tio

n
[4

3
]

L
o
a
d

b
a
la

n
c-

in
g

,
E

la
sticity

M
ig

ra
tio

n
tim

e
T

u
p

le
la

te
n

cy,
T

u
p

le
ra

te
,

R
e
so

u
rce

u
sa

g
e

[4
5

]
C

lo
u

d
T

u
p

le
la

te
n

cy
[4

8
]

C
lo

u
d

E
la

sticity
T

u
p

le
la

te
n

cy
T

u
p

le
la

te
n

cy,
R

e
-

so
u

rce
u

sa
g

e
T

u
p

le
ra

te

[4
9

]
T

u
p

le
ra

te
T

u
p

le
ra

te
,

R
e
so

u
rce

u
sa

g
e

[5
0

]
F

o
g

Q
o
S

M
o
n

e
ta

ry
co

sts
M

o
n

e
ta

ry
co

sts
R

e
so

u
rce

u
sa

g
e
,
M

o
n

-
e
ta

ry
co

sts
T

u
p

le
la

te
n

cy,
R

e
-

so
u

rce
u

sa
g

e
,

A
va

il-
a
b

ility,
M

o
n

e
ta

ry
co

sts
[5

2
]

C
lo

u
d

E
la

sticity
R

e
so

u
rce

u
sa

g
e
,
M

o
n

-
e
ta

ry
co

sts
M

o
n

e
ta

ry
co

sts

[5
3

]
C

lo
u

d
R

e
so

u
rce

u
sa

g
e
,

M
i-

g
ra

tio
n

tim
e

T
u

p
le

la
te

n
cy,

R
e
-

so
u

rce
u

sa
g

e
[5

6
]

C
lo

u
d

L
o
a
d

b
a
la

n
c-

in
g

,
E

la
sticity

S
ta

te
size

M
ig

ra
tio

n
tim

e
S

tre
a
m

d
u

p
lica

tio
n

,
T

u
p

le
ra

te
,

R
e
so

u
rce

u
sa

g
e

[5
7

]
C

lo
u

d
F
a
u

lt
to

le
r-

a
n

ce
M

ig
ra

tio
n

tim
e

R
e
so

u
rce

u
sa

g
e

[6
0

]
F

o
g

E
la

sticity,
Q

o
S

M
ig

ra
tio

n
tim

e
M

ig
ra

tio
n

tim
e
,
S

ta
b

i-
liza

tio
n

tim
e

L
in

k
b

a
n

d
w

id
th

,
T

u
-

p
le

la
ten

cy,
T

u
p

le
ra

te
T

u
p

le
la

te
n

cy,
L

o
a
d

sh
e
d

d
in

g
[6

1
]

E
d

g
e

Q
o
S

R
e
so

u
rce

u
sa

g
e
,

E
n

-
e
rg

y
u

sa
g

e
[6

6
]

C
lo

u
d

L
o
a
d

b
a
la

n
c-

in
g

R
e
so

u
rce

u
sa

g
e

[6
8

]
L

o
a
d

b
a
la

n
c-

in
g

,
E

la
sticity

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

,
R

e
so

u
rce

u
sa

g
e

[7
6

]
C

lo
u

d
L

o
a
d

b
a
la

n
c-

in
g

S
ta

te
size

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

,
R

e
so

u
rce

u
sa

g
e

T
u

p
le

la
te

n
cy

[7
3

]
C

lo
u

d
Q

o
S

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

,
R

e
so

u
rce

u
sa

g
e
,

L
o
a
d

sh
e
d

d
in

g
[7

2
]

E
d

g
e

E
la

sticity,
F
a
u

lt
to

le
r-

a
n

ce

T
u

p
le

ra
te

T
u

p
le

la
te

n
cy

172

Migration Decision

T
a
b

le
IV

.1
1
:

(C
o
n

ti
n

u
e
d

)

P
a
p

e
r

D
e
p

lo
y
m

e
n

t
e
n

vi
ro

n
m

e
n

t
M

ig
ra

ti
o
n

g
o
a
l

M
o
d

e
le

d
m

ig
ra

ti
o
n

c
o
st

M
e
a
su

re
d

m
ig

ra
-

ti
o
n

c
o
st

M
o
d

e
le

d
p

la
c
e
m

e
n

t
b

e
n

e
fi

t
M

e
a
su

re
d

b
e
n

e
fi

t
o
f

m
ig

ra
ti

o
n

[7
1

]
Q

o
S

#
M

ig
ra

ti
o
n

s
T

u
p

le
ra

te
[7

5
]

C
lo

u
d

#
M

ig
ra

ti
o
n

s
T

u
p

le
ra

te
M

o
n

e
ta

ry
co

st
s

[7
7

]
L

o
a
d

b
a
la

n
c-

in
g

,
E

la
st

ic
it

y,
Q

o
S

T
u

p
le

la
te

n
cy

,
R

e
-

so
u

rc
e

u
sa

g
e

T
u

p
le

ra
te

[7
8

]
C

lo
u

d
E

la
st

ic
it

y,
Q

o
S

M
ig

ra
ti

o
n

ti
m

e
T

u
p

le
ra

te
T

u
p

le
ra

te
,

R
e
so

u
rc

e
u

sa
g

e
T

u
p

le
la

te
n

cy
,

T
u

p
le

ra
te

,
R

e
so

u
rc

e
u

sa
g

e
[8

0
]

E
d

g
e

Q
o
S

#
C

o
n

tr
o
l

m
e
ss

a
g

e
s,

M
ig

ra
ti

o
n

ti
m

e
S

ta
te

si
ze

,
M

ig
ra

ti
o
n

ti
m

e
T

u
p

le
la

te
n

cy

[8
1

]
L

o
a
d

b
a
la

n
c-

in
g

R
e
so

u
rc

e
u

sa
g

e
,

M
i-

g
ra

ti
o
n

ti
m

e
[8

6
]

C
lo

u
d

L
o
a
d

b
a
la

n
c-

in
g

M
ig

ra
ti

o
n

ti
m

e
T

u
p

le
la

te
n

cy
,

M
ig

ra
-

ti
o
n

ti
m

e
[8

8
]

C
lo

u
d

L
o
a
d

b
a
la

n
c-

in
g

M
ig

ra
ti

o
n

ti
m

e
T

u
p

le
la

te
n

cy
,

T
u

p
le

ra
te

,
M

ig
ra

ti
o
n

ti
m

e
[8

7
]

C
lo

u
d

E
la

st
ic

it
y,

Q
o
S

S
ta

te
si

ze
[9

4
]

C
lo

u
d

F
a
u

lt
to

le
r-

a
n

ce
M

ig
ra

ti
o
n

ti
m

e
M

ig
ra

ti
o
n

ti
m

e

[1
0

0
]

E
la

st
ic

it
y

T
u

p
le

ra
te

[1
0

1
]

E
d

g
e

L
o
a
d

b
a
la

n
c-

in
g

E
n

e
rg

y
u

sa
g

e

[1
0

4
]

E
d

g
e

Q
o
S

B
a
n

d
w

id
th

d
el

a
y

p
ro

d
-

u
ct

[1
0

3
]

E
d

g
e

Q
o
S

B
a
n

d
w

id
th

d
el

a
y

p
ro

d
-

u
ct

[1
0

8
]

Q
o
S

#
M

ig
ra

ti
o
n

s
R

e
so

u
rc

e
u

sa
g

e
N

e
tw

o
rk

u
sa

g
e
,

T
u

p
le

la
te

n
cy

[1
1

3
]

F
o
g

L
o
a
d

b
a
la

n
c-

in
g

#
M

ig
ra

ti
o
n

s,
#

C
o
n

-
tr

o
l

m
e
ss

a
g

e
s

173

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

T
a
b

le
IV.1

1
:

(C
o
n

tin
u

e
d

)

P
a
p

e
r

D
e
p

lo
y
m

e
n

t
e
n

viro
n

m
e
n

t
M

ig
ra

tio
n

g
o
a
l

M
o
d

e
le

d
m

ig
ra

tio
n

c
o
st

M
e
a
su

re
d

m
ig

ra
-

tio
n

c
o
st

M
o
d

e
le

d
p

la
c
e
m

e
n

t
b

e
n

e
fi

t
M

e
a
su

re
d

b
e
n

e
fi

t
o
f

m
ig

ra
tio

n
[1

1
4

]
F

o
g

L
o
a
d

b
a
la

n
c-

in
g

,
Q

o
S

#
M

ig
ra

tio
n

s
T

u
p

le
la

te
n

cy,
T

u
p

le
ra

te
,

R
e
so

u
rce

u
sa

g
e

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

[1
1

5
]

F
o
g

Q
o
S

#
M

ig
ra

tio
n

s,
#

C
o
n

-
tro

l
m

e
ssa

g
e
s

[1
1

9
]

F
o
g

E
la

sticity
T

u
p

le
la

te
n

cy,
M

o
n

e
-

ta
ry

co
sts

M
o
n

e
ta

ry
co

sts

[1
1

8
]

C
lo

u
d

M
ig

ra
tio

n
tim

e
[1

2
4

]
C

lo
u

d
L

o
a
d

b
a
la

n
c-

in
g

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

[1
3

1
]

C
lo

u
d

L
o
a
d

b
a
la

n
c-

in
g

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

,
R

e
so

u
rce

u
sa

g
e

T
u

p
le

la
te

n
cy

[1
3

0
]

E
la

sticity
T

u
p

le
la

te
n

cy,
T

u
p

le
ra

te
,

M
ig

ra
tio

n
tim

e
[1

3
5

]
L

o
a
d

b
a
la

n
c-

in
g

,
Q

o
S

#
M

ig
ra

tio
n

s,
#

C
o
n

-
tro

l
m

e
ssa

g
e
s

[1
4

5
]

F
o
g

L
o
a
d

b
a
la

n
c-

in
g

,
Q

o
S

N
e
tw

o
rk

u
sa

g
e
,

R
e
-

so
u

rce
u

sa
g

e
N

e
tw

o
rk

u
sa

g
e
,

R
e
-

so
u

rce
u

sa
g

e
[1

4
0

]
C

lo
u

d
L

o
a
d

b
a
la

n
c-

in
g

S
ta

te
size

M
ig

ra
tio

n
tim

e

[1
4

2
]

C
lo

u
d

L
o
a
d

b
a
la

n
c-

in
g

,
F
a
u

lt
to

le
ra

n
ce

S
ta

te
size

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

,
M

ig
ra

tio
n

tim
e

R
e
so

u
rce

u
sa

g
e

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

[1
4

9
]

E
la

sticity,
F
a
u

lt
to

le
r-

a
n

ce

M
ig

ra
tio

n
tim

e
T

u
p

le
la

te
n

cy,
T

u
p

le
ra

te

[1
5

0
]

C
lo

u
d

L
o
a
d

b
a
la

n
c-

in
g

M
ig

ra
tio

n
tim

e
R

e
so

u
rce

u
sa

g
e

[1
5

2
]

E
la

sticity
M

ig
ra

tio
n

tim
e
,
S

ta
b

i-
liza

tio
n

tim
e

T
u

p
le

ra
te

[1
5

1
]

E
d

g
e

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

,
R

e
so

u
rce

u
sa

g
e

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

[1
5

4
]

C
lo

u
d

L
o
a
d

b
a
la

n
c-

in
g

,
E

la
sticity

M
ig

ra
tio

n
tim

e,
M

o
n

e-
ta

ry
co

sts
M

ig
ra

tio
n

tim
e

T
u

p
le

la
te

n
cy,

R
e
-

so
u

rce
u

sa
g

e
M

o
n

e
ta

ry
co

sts

[1
5

7
]

C
lo

u
d

T
u

p
le

ra
te

T
u

p
le

la
te

n
cy,

T
u

p
le

ra
te

,
R

e
so

u
rce

u
sa

g
e

[1
5

9
]

E
d

g
e

L
o
a
d

b
a
la

n
c-

in
g

S
ta

te
size

T
u

p
le

la
te

n
cy

[1
5

8
]

C
lo

u
d

Q
o
S

R
e
so

u
rce

u
sa

g
e

[1
6

0
]

M
ig

ra
tio

n
tim

e

174

Migration Decision

time, and time before queued events can be processed. The tuple latency is
defined in Equation IV.3.

latSpike(op) = pauseT ime(op) + delayproc(op) − delayarrival(op) (IV.3)

No solution was provided to model the tuple rate, because it is much
easier to measure tuple processing performance than to predict it, when it
comes to the cost of migration. Operator downtime is an indicator of spikes
in latency but also depends on the tuple rate, because only those tuples
that are supposed to be processed during operator downtime are affected.
As we discuss later, several solutions have been proposed to model and
predict the future tuple rate in a DSP. These predictions can be leveraged to
make migration decisions. However, none of the existing solutions take into
account the cost of migration in terms of reduced tuple rate.

The migration time and the size of the state to be moved are the most
common costs of migration metrics. Migration time is typically calculated as
a function of state size, bandwidth, and latency. In environments where the
bandwidth and latency are stable, such as within data centers, the state size
is often interchangeable with migration time. In most cases, the migration
time is assumed to be easy to model and no calculation for it is given. Some
solutions can migrate multiple operators at a time, and thus define the
migration time as the maximum time it takes to move any of the operators
[19, 60]. Cardellini et al. [19] used a data center-based solution to define the
operator downtime based on the type of adaptation made, size of the state to
be moved, and the round-trip delay between the nodes and the computational
resources. WASP [60] is a wide area network solution that defines the time
it takes to move an operator based on the state size and bandwidth between
links, the latter of which is significantly more limited and variable in a wide
area network than a data center. Using the migration time, WASP [60] makes
the decision of where to migrate by solving a minmax problem by minimizing
the slowest migration: minmax(|states1|

B
s2
s1

), where Bs2
s1 represents the available

bandwidth from site s1 to s2 and |states1| represents the size of the state on
the old host (s1).

Zhu et al. [160] focused on the time needed for each step of migration,
such as the time spent cleaning the accumulated tuples, state matching,
moving the state, and recomputing it.

In Elysium [78], migration time is defined as: Rstate + Rrestart + Rqueue,
where Rstate is the time it takes to send the state, Rrestart is the time it takes
to restart the topologies, and Rqueue is the time it takes to process the tuples
that were received and queued up during Rstate + Rrestart.

Ma et al. [81] defined a migration cost model: cost = (t2 − t1) × (i2 − i1),
where t2−t1 is the migration time, and i2−i1 is the difference in performance
between the new host and the old host. The logic is that migration decisions
need to make a trade off between the migration cost and benefit. If the new

175

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

host has significantly better performance than the old host, it might be worth
to do the migration, even though the migration takes a long time.

Using state size as the cost of migration is among the easiest ways of
defining cost because it requires only looking at the size of the state to
be migrated. The solutions that we analyzed that use state size as cost
metric are all cloud-based, which makes sense since data centers feature
a high and stable bandwidth between nodes, in contrast to geo-distributed
environments. The state size is frequently used as part of the objective
function when making migration decisions [36, 56] as part of a constraint to
prevent costly solutions from being selected [87], and can even be the only
criterion to minimize when making load balancing decisions [32, 33].

Luthra et al. [80] used the number of control messages during migration
as part of the definition of the cost of migration. This parameter is significant
because if nodes have to wait for acknowledgments for these messages, the
total migration time then depends on the distance between nodes. When the
cost of migration is defined in terms of migration time, only the time taken
to move the state is generally included in the equation, and might result in
an inaccurate view of the cost.

The bandwidth delay product is a measure of how much data can be sent
in a given duration. As part of the cost of migration, it represents the amount
of data that can be sent when a migration is underway. The more tuples
that can be sent, the higher is the cost of migration, and the less desirable a
migration is. MigCEP [103, 104] uses the average bandwidth delay product
during migration as its cost. This represents the utilization of the network
due to migration.

The monetary costs of migration have been modeled by Zacheilas et al.
[154] and Hiessl et al. [50]. VISP [50] distinguishes between the enactment
cost of a placement, which is the cost of running the current topology, and
the migration cost, which is the cost of making a change.

Enactment cost:
Cop(x) =

∑
i∈Vdsp

∑
u∈V

i
res

Cuxi,u (IV.4)

Migration cost:

Cmig(x) =
∑

i∈Vdsp

∑
u∈V i

res

∑
u∈V i

res

C(i, u, v)xprev
i,u xi,v (IV.5)

where Vdsp represents the operators, Vres represents the compute nodes,
xi,v represents the placement of operator i ∈ Vdsp on the new host v ∈ Vres,
and xprev

i,u represents the placement of operator i ∈ Vdsp on the old host u ∈ Vres.

Considering both the enactment cost and the migration cost makes it
possible to assess whether the long-term cost savings from scaling down

176

Migration Decision

to fewer instances exceed the short-term cost of migration, leading to a
reduction in the frequency of migrations.

IV.5.4 Benefit

To explore the optimization goals of different migration solutions, we begin
by examining the most important metrics used to assess the benefits of
migration. The benefit of migration is based on performance in terms of
the placement, amortization time, and the cost of migration (as explained
in Section IV.3.2). This is either explicitly defined or implicit in the decision-
making, where the goal is to maximize performance in terms of the placement
and minimize the cost of migration.

One could argue that all goals of optimization are relevant to all goals of
migration. However, some are more tightly coupled than others. For instance,
load balancing involves using the load of a system to make balancing
decisions. QoS solutions, on the contrary, are not bound specifically to
any goal of optimization. Elasticity-based solutions aim to minimize resource
usage while maintaining the QoS. In other words, they use as few resources
as possible for an application, and trigger a scaling operation when the load
is above or below a given threshold. Fault tolerance-based solutions involve
migrations when nodes fail and the operators must be migrated to new or
existing nodes.

Network performance as a goal of optimization means using the quality
of the network links to determine performance in terms of placement.
Important metrics in this context include the bandwidth between links in
the overlay topology, the latency between nodes, and the bandwidth delay
product. Tuple processing performance in query processing is the most
popular indicator of the quality of an adaptation, as shown by the number
of studies that have measured the benefit of migration in terms of tuple
latency or rate. If a node is overloaded in a data center, the latency of the
tuple might exceed acceptable levels, leading to QoS violations. A long
migration time might temporarily worsen performance, but if the general
gain in performance outweighs the degradation, the migration is considered
worth it. The load of a system is an important goal of optimization that makes
it possible to run as many operators on a node as it can handle, and to make
changes when the workload is above or below a given threshold. The cost
of migration is essential to consider when making migration decisions to
avoid excessively frequent migrations and ensure that the benefit of the new
placement outweighs the cost of migration. When the cost of migration is
used to calculate its benefit, the result is the modeled benefit of migration.
Monetary cost can be useful as a goal of optimization to make a tradeoff
between the cost of resources and the performance of the system.

177

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

IV.5.4.1 Network

In decentralized fog and edge computing solutions, network usage as well
as bandwidth and latency between links are crucial metrics. Pietzuch et al.
[108] developed an overlay network that can make network-aware placement
and migration decisions. Parameters, like the latency and bandwidth of
overlay links and the load on nodes are used as criteria of optimization when
placing and migrating operators. Rizou et al. [115] implemented a similar
method that converges to the optimal placement in fewer migrations than
the solution by Pietzuch et al [108].

IV.5.4.2 Tuple performance

Being able to analyze streaming data as soon as it arrives and to react
immediately to certain patterns in the data is one of the core motivations
for SPEs. Therefore, tuple performance is of significant importance.
Furthermore, in a resource-constrained environment, tuple latency can
be an indicator of energy consumption and the goal to minimize latency can
implicitly lead to energy reduction. For most existing approaches, the goal
of migration directly or indirectly involves improving performance. Most
elasticity-based and load balancing-based solutions are cluster-based, and
are more concerned with the load on the system than the bandwidth of or
latency between links.

The tuple rate of a data stream can be used to detect backpressure, i.e.,
when the input rate is higher than the processing rate. This can be used
as an indicator of the load on the nodes, and to calculate the variance in
load. For instance, Buddhika et al. [15] proposed a methodology to reduce
the interference between stream processing operators using migration. To
achieve this, the interference score of an operator is calculated, where the
higher the score is, the greater the need is for migration. This interference
score is based on the prediction of future packet load. Similarly, the WASP
system [60] relies on the expected input and output rates of an operator
instead of merely on the observed rates. Repantis et al. [114] defined latency
constraints on the operators and used tuple latency to determine when an
operator must be migrated.

Tuple latency is a common constraint to have on the operator perfor-
mance. If the latency constraints are not kept, it causes the system to scale
out or perform load balancing. Röger et al. [119] studied the relationship
between latency constraints and monetary costs. In particular, the lower the
latency constraints are, the more instances a system needs to run, and thus,
the more costly the operation is. As such, the optimization problem is:

178

Migration Decision

min
∑

cu∈path

cost(cu, latency)

∀paths
∑

cu∈path

latency(cu) <= e-to-e latency bound
(IV.6)

IV.5.4.3 Load

Unsurprisingly, all load balancing solutions use either load as a parameter
when making decisions or tuple performance to model load. One method is
to minimize the variance in load between nodes in a cluster [36]. In this case,
a coordinator monitors the load on the system nodes and, when a balancing
decision has to be made, selects the configuration with the least variation
in load. This might, however, require expensive migrations of large loads
among many nodes, and redistributing loads that are not the cause of the
imbalance. Another method is to trigger a load balance when the imbalance
has crossed over a given threshold to re-balance the load to at least below a
given threshold [36]. In other words, load balancing is used as a constraint.
In this case, the goal is to minimize the cost of migration by redistributing
the minimum amount of load to achieve an acceptable load balance. This
method achieves an acceptable load balance while moving the smallest load.

Resource usage can mean multiple metrics that relate to the system’s
workload. It can be the number of threads assigned to the operators,
as described in the work by Xu et al. [151]. Alternatively, it can also
be understood in terms of the CPU queue state of a computing node, as
illustrated by Sun et al. [131]:

lcn,[ts,te] =
∑

vi∈Vcn,[ts,te]

nvi,cn,[ts,te], (IV.7)

where nvi,cn,[ts,te], indicates the number of tuples of operator vi during [ts, te],
and vi ∈ Vcn,[ts,te]. The load is then partially based on the tuple rate, and
later used as a constraint in a minmax load balancing optimization problem.

Elasticity-based solutions increase or reduce the number of resources
used by an application based on its variable workload. If a cluster is
overloaded after load balancing, this is a sign that the system should scale
out [77]. In decentralized fog-based solutions, the load of a system is not
known beforehand, and therefore, there might be a tradeoff between latency
and load. Pietzuch et al. [108] introduced a cost space model in which
a topology of systems is constructed based on the latency and bandwidth
between nodes as well as the load on systems. If the load of a system is
large, the relevant node appears farther in the cost space when mapping an
operator graph to a physical topology, and thus is less likely to be selected.

179

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

IV.5.4.4 Monetary costs

In the cloud model, followed by the fog and edge models, users mostly pay
based on usage. Users can allocate a certain amount of resources and scale
out or in whenever more or less resources are needed, to keep the resource
usage cost low. A complicated issue in this case is balancing the monetary
costs with the benefits of improved placement. None of the load balancing
solutions use monetary cost as an optimization criterion. This makes sense
as the load balancing problem involves evenly distributing the load over a
fixed amount of resources, whereas elasticity can increase or reduce the
amount of resources. In terms of hardware resources, there is nothing to
optimize as they are already paid for. The monetary cost of moving states
during migration can thus be minimized. Typically, this is implicitly done by
designing the objective function to minimize the number of state that need
to be moved. Elasticity-based solutions require a tradeoff between resource
usage and monetary costs [18, 52, 154]. An elastic solution might use a
threshold for the load to determine when to scale out. However, deciding
when to scale in might be more complex, considering that it requires a
certain downtime for the worker to be removed.

IV.5.4.5 Costs of migration

Any type of migration introduces some costs. However, this does not mean
that a migration always affects the QoS. If no tuples arrive during the
downtime of the operator no tuples will be affected and neither the QoS.
Most studies aim to prevent the cost of migration from affecting the QoS
by implicitly minimizing the number of migrations, their frequency, or their
magnitude. Zhou et al. [158] emphasized the need to minimize the time
needed for query migration but did not describe a means of implementing
this in their solution. Lombardi et al. [78] defined the cost of migration in
terms of the time it takes to perform different steps but did not attempt to
minimize it. The cost of migration can be minimized by either using single-
objective optimization [32, 36, 60, 142], or simple additive weighting (SAW)
with multiple objectives [18, 19, 56, 61, 66]. If only the cost of migration
is minimized, constraints have to be placed on the quality of the placement
to ensure that the selected placement is acceptable. With load balancing,
minimizing the cost of migration while maintaining constraints on the load
imbalance is a good way to ensure a balanced load that minimally affects the
performance of the system.

Minimizing the number of migrations is a similar goal to minimizing the
cost of migration. Repantis et al. [114] proposed a hotspot alleviation-based
solution with the goal of minimizing the number of migrations that leads
to an acceptable QoS for the operators. Rizou et al. [115] implemented a
similar relaxation algorithm to the one in [108], and showed that it requires

180

Migration Decision

fewer migrations before converging to the optimal placement and fewer
control messages. The easiest way to prevent needless migrations is to use a
threshold that ensures that they are beneficial. Load balancing systems
commonly use thresholds of load imbalance to ensure that the load is
redistributed only when the load imbalance is above a certain threshold.
A different type of threshold targets the migration itself to ensure that its
benefit is worth its cost. Pietzuch et al. [108] proposed a method that
migrates data only when the benefit in terms of network capacity is higher
than a threshold based on the cost of migration.

Using the cost of migration as a goal of optimization means penalizing
a placement alternative based on it. Even if a placement is better than
the given placement, it might not be preferred because the cost of the
reconfiguration is too high. In load balancing-based approaches, the cost of
migration is commonly minimized but most often as an implicit goal rather
than as part of the objective function. The goal is generally to achieve an
acceptable load distribution as quickly as possible, and the redistribution
itself constitutes the highest cost. The cost of migration can be minimized
while maintaining a balanced load [32]. The number of migrations can
be minimized while fulfilling QoS requirements [114]. Another way is to
maximize the improvement in a query plan and divide the improvement in
performance by the cost of migration [66]. Load balancing decisions can be
made with cost of migration in mind in multiple ways [36]: minimizing the
cost of migration with load balancing as a constraint, keeping the cost of
migration as a constraint while minimizing the load imbalance, or combining
load and cost of migration to minimize both.

In elasticity-based approaches, the cost of migration is often considered
in the same way as in load balancing because scaling can be considered
to be an extension of load balancing. Zacheilas et al. [154] minimized the
monetary costs of computational resources, the cost of migration, and the
cost of missing tuples. In this approach, a tradeoff is made between the
cost of resources, the cost of missing tuples, and the migration time. A
reinforcement learning-based approach was used in [18] that minimizes the
cost of reconfiguration, the performance penalty due to QoS constraints, and
the cost of resources for using the computational resources.

IV.5.5 Proactive migration decisions

Current migration solutions generally use reactive approaches to make
migration decisions. That means migration is a reaction to a certain trigger-
event that happened. For instance, a migration might be triggered if a node
is overloaded and QoS guarantees are violated, such as when the tuple
latency increases excessively. In contrast, proactive migration is performed
before a trigger-event happens. This means that the trigger-event needs to

181

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

be predicted, typically based on historical monitoring data. Most proactive
solutions predict whether the node can sustain the workload.

In Table IV.12, we summarize the studied papers that contribute with
proactive decision-making strategies for operator migration. For each paper,
we highlight the specific prediction approach and its key idea.

Paper Ref-
erence

Prediction Ap-
proach

Key Idea

Repantis et
al. [114]

Linear Regression Uses incoming tuple rate to predict
QoS violations

Lohrmann
et al. [77]

Queuing Models Develops a predictive latency model
for scaling decisions using queuing
models and Kingman’s formula

Zacheilas et
al. [154]

Gaussian Pro-
cesses

Estimates load and expected latency
for scaling decisions

Liu et al.
[75]

Extended Gaussian
Processes

Uses the upper confidence bound al-
gorithm to search for optimal config-
uration for bottleneck operators

Wang et al.
[140]

Incremental Learn-
ing

Predicts resource usage in real-time
to choose a configuration that mini-
mizes CPU and memory resources

De Matteis
et al. [26]

Model Predictive
Control (MPC)

Predicts optimal scaling decisions

Buddhika et
al. [15]

Prediction Rings Forecasts the interference score to
predict system overload

Lombardi et
al. [78]

Tuple Rate A proactive scaling mode that pre-
dicts the input load over a specific
horizon to make scaling decisions.

Cardellini et
al. [18]

Reinforcement
Learning

Applies reinforcement learning to de-
cide when to perform scaling opera-
tions

Liu et al.
[73]

Load Prediction Predicts the load of operators as
the number of tuples they need to
process during a prediction horizon

Jonathan et
al. [60]

Operator Input
and Output Rate
Estimation

Uses expected input and output rates
for load estimation

Lindeberg et
al. [70]

Window State
Monitoring

Uses knowledge of the window state
for migration scheduling

Geldenhuys
et al. [38]

Multiple Regres-
sion and Time
Series Forecasting

Predicts future workloads for near-
optimal scaling decisions

Table IV.12: Proactive migration prediction techniques

There are many ways to model or estimate the metrics described above.

182

Migration Decision

The classical way is to collect some measurements from possible migration
hosts and formulate an optimization problem using, e.g., ILP, and then
attempt to solve it. This is done by Cardellini et al. in [19, 20].

Some solutions predict the adaptability of QoS violations [77, 114].
Repantis et al. [114] used linear regression and the incoming tuple rate to
predict QoS violations of the end-to-end execution time. They predicted QoS
violations to prevent them. Lohrmann et al. [77] built a predictive latency
model using queuing models and Kingman’s formula [63] to make scaling
decisions.

Zacheilas et al. [154] estimated the load and expected latency of Esper
to make scaling decisions by using Gaussian processes [112] because they
can help to estimate the uncertainty in predictions. However, this method
has a cubic computational complexity due to the use of matrix inversion. Liu
et al. [75] used the extended Gaussian Processes upper confidence bound
algorithm to search for the optimal configuration for bottleneck operators for
modeling the service capacity. Wang et al. [140] predicted resource usage in
real time to choose the configuration that can minimize CPU and memory
resources while fulfilling QoS guarantees. This is done using incremental
learning techniques based on Weka [148] and MOA [97]. De Matteis et al.
[26] used MPC to predict optimal scaling decisions, called the future horizon.
Buddhika et al. [15] used prediction rings to forecast the interference score
that expresses the degree to which a system is expected to be overloaded.
Lombardi et al. [78] used a reactive and a proactive mode for making scaling
decisions in their Elysium system. In the reactive mode, the tuple rate is
used as the basis for decisions, and in the proactive mode, the input load is
predicted over a certain time, called the prediction horizon.

In [18], a reinforcement learning approach is applied to decide when to
perform scaling operations. Liu et al. [73] predicted the load of operators
as the number of tuples that operators need to process during a prediction
horizon. In WASP [60], the expected input and output rates of the operators
are estimated as an alternative to backpressure monitoring for estimating
load. Backpressure is weaker as it is based on the observed load instead
of the actual workload, and this may lead to less accurate adaptation
decisions [62]. A composition of reactive, proactive, and delayed migrations
was presented in [70]. The results of this empirical study indicated that
knowledge of the window state can be used to schedule a migration when
the state is minimal (i.e., after completing a tumbling window, as in [80]), or
when no output tuple is affected by the migration.

The Phoebe system [38] predicts future workloads as a way to make
near-optimal scaling decisions. This is done using models for predicting the
end-to-end latency of tuples and recovery time of the system. The end-to-
end latency model uses multiple regression and clustering for estimating
latencies of scaleouts and workload rates. The recovery time model bases its

183

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

predictions on multistep-ahead time series forecasting [132] of the expected
workload rate over time and a regression model for predicting the maximum
processing capacity of the system.

IV.6 Empirical quantification of core concepts of
migration

The previous two sections have given the reader an understanding of
how operator migration works and which design choices for migration
mechanisms and decisions have been investigated in existing works. The aim
of this section is to complement the understanding of the functional aspects
of operator migration with some insights into the impact of design decisions
on the performance of operator migration. Therefore, we first define two
direct moving state migration algorithms: (1) one that uses partial state
movement, and (2) another that sends the entire state at once. They are
defined in an abstract way such that they can be implemented in different
SPEs, and we have decided to implement them in the two popular SPEs
Apache Flink and Siddhi. We define decision models to determine when and
where to migrate the data. We conducted a real migration experiment to
analyze the migration algorithms based on the NEXMark benchmark [134].
We show a use case of the decision models for migration to illustrate their
effect on decision-making.

IV.6.1 Migration algorithms

The difference between the partial state movement algorithm and the all-at-
once state movement algorithm is that the former splits the state into a large
static state and a small dynamic state. The static state is transmitted while
the operator is still running and processing tuples, followed by the extraction
of the dynamic state. As such, static state transmission involves little or no
overhead in query processing, and constitutes only one additional step in
the algorithm. Note that a partial state movement algorithm might split the
state into more than two parts, such as in Megaphone [53] and Meces [41].

We use the algorithms described in Section IV.4 as basis. In particular,
we divide the algorithms into functions that are executed by different nodes
participating in the network according to their roles. When moving the state,
the old host provides the next hops for the query. Thus, there is no need to
add them explicitly in these tasks. These tasks follow a similar format to
that used in Expose [138], which is a framework and toolset for efficiently
defining and executing DSP experiments. Wrappers for different SPEs are
provided such that all SPEs support a common set of tasks. Expose has been
extended with additional tasks to enable operator migration.

184

Empirical quantification of core concepts of migration

Listings IV.6 and IV.7 describe the tasks we use to define the all-at-
once state movement algorithm and the partial state movement algorithm,
respectively. They differ slightly from similar algorithms in Section IV.4 in
some respects, such as the ways in which streams are managed. It is possible
to send a batch of tasks to upstream nodes, as in Flux [124], to the new
host as in [56], and to the old host as in [113]. The difference between the
all-at-once state movement and partial state movement algorithms is that
the latter involves sending the current state of the query before the operator
is paused, achieving the same effect as in checkpoint-assisted solutions.

ControlMessage(OH
ControlMessage(NH,

RequestMigration(query),
BufferStreams(Streams(query))
StopStreams(Streams(query)))

ControlMessage(Upstream,
Redirect(Streams(query), OH, NH))

MoveState(query, NH)
AddNextHop(Streams(query), NH))

Listing IV.6: All-at-once state movement

ControlMessage(OH
ControlMessage(NH,

RequestMigration(query),
BufferStreams(Streams(query))
StopStreams(Streams(query)))

MoveImmutableState(query, NH)
ControlMessage(Upstream,

Redirect(Streams(query), OH, NH))
MoveIncrementalState(query, NH)
AddNextHop(Streams(query), NH))

Listing IV.7: Partial state movement

Implementation To facilitate the migration of any moving state operator,
an SPE needs to be able to extract the runtime state and the load state.
This feature is supported in different ways by Siddhi and Flink. In Siddhi,
the state is loaded from the runtime system into a byte array, and requires
that the entire state is available in memory. As such, there are limitations
on how large the state can be. On the contrary, Flink writes the state as a
set of checkpoint files, each of which does not exceed a configurable size.
Therefore, the state to migrate with Flink can be larger than in Siddhi. The
implementation of the other tasks, including BufferStreams, StopStreams,
ControlMessage, AddNextHop and the rest, is supported through simple
tasks defined in the SPE wrapper in Expose [138].

185

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

The standard moving state algorithm is implemented in Flink and Siddhi,
but only Flink supports partial state movement since this requires the ability
to split a given state into a large, immutable state and smaller incremental
checkpoints. This feature is supported by one of the state backends in Flink
called RocksDB [116]. Flink with RocksDB is also used for the checkpoint-
assisted algorithm in Rhino [28], which uses partial state movement. Another
benefit of RocksDB is that it does not store the entire state in memory while
the system is running, but instead writes it to file and minimizes its size
based on multiple criteria.

IV.6.2 Decision models

As discussed in Section IV.5, there are many different ways of making
the migration decision. Our solution is to make the decision process as
transparent and meaningful as possible by optimizing the QoS. The goal is to
maximize the performance of a placement while penalizing it based on the
cost of migration, which varies for different nodes and is zero for the current
host. In this way, it is clear why a new placement is selected over the old
one, for reasons other than simply that the old host is over-provisioned or
the new placement delivers better performance.

The amortization time (at) varies depending on the reliability of a
placement score for the operator on a given host. If the placement score is
stable over time, the amortization time increases since it is less likely that
the placement becomes suboptimal shortly after the migration. For instance,
a mobile node might have less consistent placement score than a server
located in a data center, and as such, it is even more important that the
migration is worth the cost of it.

at(h, op) = minat + (maxat − minat)/100 ∗ (100 − rsdp(h, op)) (IV.8)

where rsdp(h, op) expresses the relative standard deviation (RSD) of the
historical placement scores of operator op on host h.

When defining the cost of migration, operator downtime alone is not
sufficient, because it does not reveal how many tuples, if any, are affected by
the downtime. Therefore, we use the tuple rate during the migration as a
foundation for the cost of migration. Since the data sink waits for tuples from
the operator, we consider the number of expected output tuples PTout(at, op)
that are affected by the migration to calculate its cost. Buddhika et al. [15],
Phoebe [38] and Liu et al. [75] describe tuple prediction methods that can
be applied here.

PTout(at, op) = PTin(at, op) ∗ Sel(op) (IV.9)

where PTin(at, op) is the predicted number of input tuples for operator op

during amortization time at and Sel(op) is the selectivity of operator op, which

186

Empirical quantification of core concepts of migration

could for instance be a join, pattern-matching operator or an aggregation
operator.

The cost of migration can be calculated as the operator downtime divided
by the amortization time. Since we focus on output tuples from the query, the
cost of migration C(op, oh, nh) is defined as the ratio of the predicted output
tuples (PTout(mt(oh, nh, op)) from a query during migration to the output
tuples predicted from it during the amortization time (PTout(at(nh, op))).

C(op, oh, nh) = wc ∗ PTout(mt(oh, nh, op))
PTout(at(nh, op)) (IV.10)

The cost has a weight associated with it, meaning that the system can
dynamically change how much the cost of migration matters based on the
selected policy. If wc is set to one, this suggests that the performance of
a placement should be reduced in proportion to the number of tuples that
are received during operator downtime. If wc is set to 1.5, the placement is
penalized further. This makes sense as buffered tuples may take some time
to process, during which time no new tuples may be processed.

Given the amortization time, the benefit of the migration Bm(op, oh, nh)
of a placement is its finite performance penalized by the cost of migration,
instead of it being a general placement score. Of two placements with the
same migration cost, the one with the higher placement score is selected.
The only difference arises when two placements have different costs of
migration, for instance, when comparing the given placement with zero cost
of migration with another placement that requires a migration. The benefit
of migration can be calculated as:

Bm(op, oh, nh) = P (nh, op) ∗ (1 − C(op, oh, nh)) (IV.11)

where P (nh, op) is the estimated placement score for the new host nh running
operator op.

The above functions show how the migration decisions are made.
Migration checks are periodically performed by calculating the placement
score. Following this, the benefit of the migration of placements is calculated
by penalizing the placement score based on the cost of migration. We define
M(oh, phs, op) as the potential host with the maximum benefit for the given
operator. This host is selected as the future host for the operator, and
triggers migration if it is not the given placement.

M(oh, phs, op) = max
ph∈phs

B(oh, ph, op) (IV.12)

IV.6.3 Empirical evaluation

We quantitatively analyzed the proposed decision models for migration
through a use case and our migration algorithm through experiments. The

187

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

goal was to show the usefulness of incorporating the cost of migration into
the process. We considered a use case for the decision models, because it
makes the analysis and discussion of the results easier. On the other hand,
implementing and running the migration algorithms on SPEs is necessary to
understand the impact of migration.

Figure IV.15 illustrates our evaluation scenario: Figure IV.15a shows the
operator graph used for both the use case and the migration experiment,
and Figure IV.15b shows the DSP overlay topology. The mapping from the
operator graph to the physical topology is demonstrated using the decision
models in Section IV.6.3.1, and an experiment involving the migration of
state from the join operator on one node to another is described in Section
IV.6.3.2.

Join

Data sink

A

Upstream

B

Upstream

select P.id A.itemName A.reserve
from Auction A
join Person P on P.id = A.seller

(a) Operator graph

D

Suboptimal host

C

Old host

F

Data sink

E

Optimal host

A

Upstream

B

Upstream

(b) DSP overlay topology

Figure IV.15: Evaluation scenario

IV.6.3.1 Decision model use case

The decision models for migration were assessed in this use case. They
were applied using a prediction model oracle with 100% accuracy to make
migration decisions. We expect that the migration time can be predicted
based on periodically updated topological information and network statistics.
By using knowledge of the number of tuples sent in the time window and

188

Empirical quantification of core concepts of migration

the migration time, we can predict the total end-to-end latency of the tuples
during a given time window. The parameters of the use case are provided in
Table IV.13. We considered two source nodes A and B, three potential hosts
C, D, and E, and a sink node F.

Parameter name Parameter value
Amortization time 5 s

Bandwidth C< − >D 200 mbit/s
Bandwidth C< − >E 100 mbit/s
Bandwidth D< − >E 100 mbit/s

Bandwidth Leader< − >Hosts 200 mbit/s
Latency between all links 1 ms

Control message size 168 bytes
Migration cost (C) 0
Migration cost (D) 0.1
Migration cost (E) 0.5

Table IV.13: Parameters of the use case

Results Table IV.15 shows the results of the use case for the configurations
given in Table IV.13 and the run-specific parameters are provided in Table
IV.14, including amortization time and placement scores for the potential
hosts. These scores would in a real-world system be calculated based on
the expected performance of a node that runs the system. Node E has the
best P score in all runs, as illustrated in Figure IV.15, which means it is the
best candidate for running the operator. However, the cost of migration, as
indicated in Table IV.13, shows that Node E has five times higher migration
cost than migration to Node D, which leads to Node E only being preferred
when the cost is ignored (M (NCM)), and Node C and D are preferred when
the cost is considered (M (CM)). The previously described equations are
used along with the at and P scores to define the benefits of the potential
placements, and the preferred host is selected based on M.

Run at P (C) P (D) P (E)
1 1000 1.5 1 2.7
2 2000 1.6 1.6 2.5
3 3000 1.4 2.5 3
4 4000 1.7 2.8 2.9

Table IV.14: Placement score and amortization time parameters for each
specific run in the use case

Since the P score was stable for Node E, and was significantly better than
that for Node C, a decision policy may decide to dynamically increase the

189

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

Run Bm (C) Bm (D) Bm (E) M (CM) M (NCM)
1 1.5 0.85 1.35 C E
2 1.6 1.36 1.25 C E
3 1.4 2.125 1.5 D E
4 1.7 2.38 1.45 D E

Table IV.15: Results of the use case

amortization time for nodes that had demonstrated their stability in terms of
the predicted P score. On the contrary, Node D has a significantly variable
P score, which increased above that of Node C with a value of 1.6 in the
second row, but yielded a lower benefit of migration of 1.36, and was not
selected as the new host. With a score of 2.5 that was reduced to 2.125 given
the migration cost, it beat the given host, and was selected as the new host.

IV.6.3.2 Migration experiment

In this experiment, we demonstrated two migration algorithms by analyzing
and comparing their execution results in two different SPEs, with one SPE
limited to a single algorithm. The all-at-once state movement runs were
used to send 100,000, 1,000,000, and 5,000,000 tuples. The partial state
movement runs were used to send between 1,100,000 and 300,100,000
tuples. The noticeable differences in the number of migrated tuples
between the all-at-once and partial state movement runs were a result of the
limitations in the SPE’s state backends, as explained in further detail below.
The additional 100,000 tuples with partial state movement were sent during
migration, and were part of the dynamic state to be sent. The experiment
used a simplified version of the topology in Figure IV.15b in two ways. First,
there was only one upstream node. Second, there were only two hosts: the
old and the new host.

The experiment tested the cost of migration by varying the size of the
state to be moved. For runs of the partial state movement, the number of
tuples that were migrated during static state migration and dynamic state
migration were varied. The dataset of the NEXMark stream processing
benchmark [134] was used in the experiment. NEXMark is based on an
auction scenario, where three streams are used: a Person, a Bid, and an
Auction item stream. For this experiment, only one of the queries was used,
one that joined the Person and Bid streams. We used this query because a
join query makes it easier to test the migration algorithm and adjust the size
of the state to migrate. One can simply send a given number of tuples of the
first stream, migrate it to the new host, and send a single tuple of the second
stream to the new host. If this triggered the correct number of output tuples
to be produced, the migration was considered to have been successful.

190

Empirical quantification of core concepts of migration

Four processes with different roles were used in the experiment: a data
producer node, an operator host running the operator to be migrated, a
new host that contained the operator after migration, and the data sink that
consumed the output tuples of the operator. We used two machines for the
experiment, one for the old host, and the other to run the data producer,
data consumer, and new host. The machines were connected via Ethernet
cable in a local area network. The specifications of the machines are shown
in Table IV.16. In the experiment, the data producer generated a certain
amount of Auction tuples that were sent to the old host. The state was then
migrated to the new host, and the data producer sent a single Person tuple
that joined with all the Auction tuples to trigger the same number of output
tuples to be sent to the data sink as Auction tuples that were sent prior to
the migration. The query we used was a modification of NEXMark’s [134]
Query 8. Originally, this query does not select the itemName of the auction,
but chooses the person’s name. Each Auction tuple was augmented with 1
kB of a randomized string to increase the size of the state to be migrated.

OS CPU RAM Description
Ubuntu 20.04.2 Intel Xeon Gold 5215 2.50 GHz 125 GB Old host
Ubuntu 18.04.4 Intel Core i7-7800X 3.50 GHz 377 GB New host, data producer, data sink, Expose coordinator

Table IV.16: Server specification

In all runs, we counted the number of tuples that were migrated, the state
size, the state extraction time, the state transfer time, and the state loading
time. For the partial state movement algorithm, the same parameters were
used for the static and dynamic states. The state to be migrated ranged
from 1 to 300 GB. However, Siddhi has a limit of 1 GB because it extracts
the entire state into a single byte array, whereas Flink’s state backend
RocksDB splits the state into multiple files. RocksDB is used in both the
all-at-once approach and partial state migration approach, but where all-at-
once disables incremental checkpointing and partial state migration enables
it. When migrating all-at-once with Flink, the maximum state that could be
migrated is 5 GB, because the checkpoints fail at larger states. It is unknown
why this issue occurs. It would be possible to run Flink with all-at-once
migration with incremental checkpoints, but then it would be the same as
the partial state migration, except where the state transfer of the static state
is added to the freeze time.

Results Tables IV.17 and IV.18 show the experimental results of the all-at-
once state movement algorithm and the partial state movement algorithm,
respectively. Siddhi and Flink migrated operator states of different sizes
depending on the query and the number of tuples that were processed.

The state transfer times of Siddhi and Flink were similar because they
used similar implementations of the TCP socket. Siddhi performed slightly

191

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

SPE # Tuples State size State extraction State loading State transfer Freeze time
Siddhi 100,000 100 MB 2.8 s 1.76 s 0.94 s 3.6 s
Siddhi 1,000,000 1 GB 21.3 s 13.6 s 9 s 43.9 s
Flink 100,000 100 MB 270 ms 2.3 s 1.1 s 3.6 s
Flink 1,000,000 1 GB 3.3 s 20.3 s 11.6 s 35.2 s
Flink 5,000,000 5 GB 19.8 s 77.4 s 52.8 s 150 s

Table IV.17: Results of all-at-once moving state experiment
SPE Tuple count (S) Tuple count (D) Size (S) Size (D) State extraction (S) State extraction (D) State loading Transfer (S) Transfer (D) Freeze time
Flink 1,000,000 100,000 1 GB 113 MB 76 ms 149 ms 1.77 s 11.6 s 111 ms 2 s
Flink 5,000,000 100,000 5.2 GB 376 MB 363 ms 528 ms 3 s 57.2 s 4.3 s 7.8 s
Flink 25,000,000 100,000 26.1 GB 3 GB 23.3 s 1 s 8.6 s 4.35 min 30 s 39.6 s
Flink 50,000,000 100,000 52.2 GB 2.74 GB 15.4 s 1.2 s 16.8 s 8.67 min 27 s 45 s
Flink 100,000,000 100,000 104.5 GB 239 MB 618 ms 911 ms 63.8 s 17.47 min 2.5 s 67.2 s
Flink 200,000,000 100,000 208.8 GB 279 MB 61.2 s 18 s 7.7 min 35.1 min 2.6 s 8 min
Flink 300,000,000 100,000 313.3 GB 4.9 GB 31.7 s 16 s 13.1 min 52.5 min 53.3 s 14.3 min

Table IV.18: Partial moving state experiment results

better, because Flink had to read the checkpoint from multiple files, and
state transfer was executed in parallel with reading the files. State extraction
appeared to scale relatively poorly for both Siddhi and Flink with the all-
at-once state movement algorithm, but with the partial moving state, Flink
had a significantly lower state extraction overhead. Moreover, state loading
using partial state movement was much faster than without it. Note that
these results do not represent the general performance of the SPEs, but
the outcomes for a specific join query that was used for a specific system.
Another query might have yielded different results. For instance, this query
was very write heavy and the Auction tuples were made to be larger in
size than the benchmark normally defines. In this case, the partial state
movement algorithm performed better in all respects.

One might think that the all-at-once state movement algorithm would
have had faster state loading as it has a monolithic checkpoint, but this
was not the case. We think this result is obtained because the incremental
checkpointing uses RocksDBs native checkpoint files whereas Flink’s full
snapshot approach iterates through the RocksDB state and creates its own
files. RocksDB is designed to be efficient, and performs indexing to increase
its efficiency. This benefit was lost in the full snapshot approach.

If we assume that the number of tuples that were received during the
freeze time arrived at a fixed rate, the average additional tuple latency as a
result of the migration would be equal to half the freeze time. The maximum
additional tuple latency would be approximately equal to the freeze time and
the minimum was close to zero. The number of affected tuples could vary
significantly, ranging from zero to hundreds of thousands per second.

The partial state movement algorithm performed much better than the
all-at-once algorithm in terms of freeze time, almost 20 times less freeze time
for the partial state movement algorithm versus the all-at-once movement
algorithm when the state to migrate was around 5 GB. There are two reasons
for the performance gain. First, using the incremental checkpointing led
to lower state loading times. Second, most of the state was moved before

192

Reflections and Future Directions

the operator was shut down. This difference in performance was especially
significant when considering how similar the algorithms were in terms
of how they were described in Listings IV.6 and IV.7. Only one task was
added to Listing IV.7, which was to migrate the immutable state before the
streams were redirected by the upstream nodes. This leads to the important
conclusion that the literature can benefit from a common language when
defining or using a migration algorithm. Exactly what tasks are executed
during the migration, in particular, those that increase the freeze time, can
be described using, e.g., the concepts of the migration model in Section IV.3.

Table IV.18 shows that the size of the dynamic state in the partial state
movement runs was unpredictable. For instance, when 25 million tuples
were migrated, the size of the dynamic checkpoint containing 100k tuples
was 3 GB, whereas it was only 279 MB for 200 million tuples. However, the
actual size of the 100k tuples remained around 100 MB across all runs. This
could be attributed to the fact that we disabled RocksDB compaction after
extracting the static state. Had we kept the compaction enabled, the final
incremental checkpoint would have potentially merged with the static state,
resulting in a new set of state files that would be incompatible with the ones
sent to the new host.

IV.7 Reflections and Future Directions

The historical development in operator migration, from the early single-
track moving all-at-once state migration solutions to checkpoint-assisted
partial state movement and parallel-track solutions without state movement,
has been driven by the deployment of SPEs to the cloud environment, and
improvements to them to achieve fault tolerance and dynamic scalability.
The core ideas to achieve this are related to resource availability and state
management. Cloud environments provide large amounts of computational
resources (even though at different scales), and their servers are intercon-
nected with low-latency high-bandwidth networks. This allows to execute
operators in parallel to improve migration performance at the cost of higher
resource utilization. Early single-track migration solutions treat the state
as a single large binary object as such there is no other way to migrate the
entire state all-at-once.

More advanced state management solutions allow to partition the
state which in turn leads to more design options for migration solutions.
Checkpointing, distinguishing between immutable and mutable state, and
prioritization of state partitions are examples for partition mechanisms. The
more advanced solutions, e.g., based on prioritization, consider the semantics
of the state to determine which piece of the state should be migrated first
to improve the migration performance. Very recent approaches follow the
idea of prioritization to perform state shedding, which reduces the size of

193

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

the state to be migrated at the cost of inconsistency between the state at the
old and new host. Another way to reduce the state size is to schedule the
migration. Based on these insights on how to improve operator migration
for cloud-based environments it is reasonable to expect that such solutions
might also work well in fog environments.

However, in fog environments that are geo-distributed, the connections
between hosts have substantially lower available bandwidth and higher
latencies that can impact the cost and benefit of operator migration, and
require adapted migration mechanisms. The periodic checkpointing and
replication of checkpoints are used in some cluster-based SPEs to facilitate
fault tolerance and fast migrations, but it is not always feasible to replicate
and distribute checkpoints, especially in resource constrained IoT devices.
For future in-network processing solutions with mobile platforms, e.g.,
advanced crowd-sensing.

It is clear that the smaller the size of the data to be migrated is, the less
energy is consumed. Therefore, scheduling operator migration at a point in
time when the state is small or even zero is important. This can be achieved,
for example, by delayed migration by waiting until a tumbling window is
emptied [103], and through proactive migration. Another alternative is to
allow for some inconsistent state, i.e., not the entire state is migrated to the
new host. In some cases, aggregation operators can be moved without the
state, resulting in zero freeze time. Alternatively, load shedding techniques
can be applied to send some of the state, or components of it can be assigned
a priority such that only the most important state is migrated, while the less
significant part of it is omitted. However, a thorough investigation of the
pros and cons of reactive, delayed, and proactive migrations in different
environments with different workloads and guarantees of consistency is still
elusive.

Another gap in research is an analysis and comparison of stream
management techniques. Several aspects are important for such an
investigation: (1) the sequence of tasks like the stopping, buffering,
redirecting, and starting of streams, (2) the locations where streams are
buffered, (3) the delivery semantics, i.e., at least once, at most once, exactly
once as well as ordered or out-of-order delivery, and (4) tasks related to
buffer management and transport protocols.

The quality of decision-making on migration depends on the data available
to calculate its cost and benefit, as well as the freshness of the data. The
continuous collection and dissemination of monitoring data in DSP can be
expensive. Efficient monitoring solutions, and leveraging other sources
of monitoring data that are, for example, used for network and system
management have the potential to reduce the overall cost of DSP and ensure
good decision-making.

Leveraging historical data to perform predictions with advanced statistics

194

Conclusions

or modern machine learning solutions, as is done for traffic prediction in
network management [8] and data prediction in wireless sensor networks
[29], is another subject that deserves more attention in research. Some
studies have already explored proactive migration techniques, as discussed
earlier in the paper, but further investigation into this area remains necessary.
Both proactive migration and the use of amortization time in the cost model
require some form of prediction. The oxymoron of operator migration, i.e.,
that the need for migration occurs when the cost of migration is high, can be
avoided with proactive migration. Furthermore, proactive migration can be
used to schedule a migration when the state is still small in size. However,
both traffic and data patterns might be changing during the deployment of
DSP systems, and appropriate and efficient online learning solutions need to
be investigated for operator migration.

One promising research direction is to further explore the application
of DSP in MEC scenarios. While many previous works have focused on the
migration of services, most of them have assumed an all-at-once migration
approach. It is worth investigating how partial state migration, state
shedding, parallel-track, and distributed checkpoint replication algorithms
can be adapted to the more challenging and geo-distributed MEC settings.
Specifically, how can these migration mechanisms affect decision-making and
change the frequency of migration, compared to the all-at-once approach?

A key challenge in MEC scenarios is the significant increase in migration
time due to limited bandwidth and variable hardware resources among
potential operator hosts. Therefore, we need to investigate how different
migration mechanisms can be applied in such settings, especially in low-
bandwidth scenarios where these mechanisms could have the largest benefits.
For example, a parallel-track migration mechanism might be a good fit
for MEC, as it splits the data streams into one for migration and one for
processing. This allows for normal processing to occur while the migration
is ongoing, resulting in a smooth handover without discernible downtime.
Alternatively, we could consider using the partial state migration approach
Megaphone, which could be particularly useful in low-bandwidth scenarios.
In contrast, within data centers, these mechanisms may not be necessary,
because migration times are significantly lower due to high bandwidth.

IV.8 Conclusions

DSP is becoming increasingly important for handling data with high velocity
and large variety. The variety is caused by data from different sources and
over time as well as other system dynamics, e.g., resource availability, require
adapting DSP accordingly. Operator migration is the mechanism for keeping
the DSP in an "optimal" configuration over its lifetime. However, operator
migration is a complex task that can be solved in many different ways,

195

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

i.e., there are many design alternatives for operator migration. Which of
those alternatives are a good choice depends on factors like the deployment
environment, the system goal, workload, etc.

To enable the reader to gain a good understanding of how operator
migration works and the design space for it, we introduced a conceptual
model of operator migration based on the largest common denominator in
the literature to establish a common and unified terminology and taxonomy.
In the model, we separated clearly mechanism and policy, i.e., migration
mechanism and migration decision. For the latter we placed emphasis on
its costs and benefits. The description of existing solutions shall provide
the reader with an overview on existing solutions and further foster the
understanding of the design alternatives from an algorithmic viewpoint.
We complemented this with an empirical study to give the reader some
quantitative insights into the impact of different design alternatives for
migration mechanisms (i.e., all-at-once and partial state movements), and
the impact of the choice of data stream processing system (i.e., Siddhi and
Apache Flink). We demonstrate how the freeze time for the naïve all-at-
once migration approach is almost 20 times longer than when applying an
incremental checkpoint-based partial state migration approach that is based
on Rhino [28].

IV.9 Acknowledgments

This work was supported by the Parrot Project (Research Council of Norway,
IKTPluss, 311197). The authors thank Fabrice Starks and Stein Kristiansen
for insightful discussions on mechanisms of operator migration, and Boris
Koldehofe for reviewing and commenting on an earlier version of the
manuscript.

References

[1] https://flink.apache.org/powered-by. [Online; accessed 27-February-
2023].

[2] https://storm.apache.org. [Online; accessed 26-February-2023].

[3] https://beam.apache.org. [Online; accessed 26-February-2023].

[4] https://kafka.apache.org. [Online; accessed 5-July-2021].

[5] https://www.gurobi.com. [Online; accessed 23-January-2023].

[6] http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer. [Online; accessed 23-January-2023].

[7] Abadi, D. et al. “The Beckman report on database research”. In:
Communications of the ACM vol. 59, no. 2 (2016), pp. 92–99.

196

References

[8] Abbasi, M., Shahraki, A., and Taherkordi, A. “Deep learning for
network traffic monitoring and analysis (ntma): A survey”. In:
Computer Communications (2021).

[9] Ahmad, Y. et al. “Network Awareness in Internet-Scale Stream
Processing.” In: IEEE Data Eng. Bull. vol. 28, no. 1 (2005), pp. 63–69.

[10] Alwasel, K. et al. “IoTSim-Osmosis: A framework for modeling and
simulating IoT applications over an edge-cloud continuum”. In:
Journal of Systems Architecture vol. 116 (2021), p. 101956.

[11] Amarasinghe, G. et al. “ECSNeT++: A simulator for distributed
stream processing on edge and cloud environments”. In: Future
Generation Computer Systems vol. 111 (2020), pp. 401–418.

[12] Assuncao, M. D. de, Silva Veith, A. da, and Buyya, R. “Distributed
data stream processing and edge computing: A survey on resource
elasticity and future directions”. In: Journal of Network and Computer
Applications vol. 103 (2018), pp. 1–17.

[13] Bergui, M., Najah, S., and Nikolov, N. S. “A survey on bandwidth-
aware geo-distributed frameworks for big-data analytics”. In: Journal
of Big Data vol. 8, no. 1 (2021), pp. 1–26.

[14] Brettlecker, G. and Schuldt, H. “Reliable distributed data stream
management in mobile environments”. In: Information Systems
vol. 36, no. 3 (2011), pp. 618–643.

[15] Buddhika, T. et al. “Online scheduling and interference alleviation for
low-latency, high-throughput processing of data streams”. In: IEEE
Transactions on Parallel and Distributed Systems vol. 28, no. 12
(2017), pp. 3553–3569.

[16] Carbone, P. et al. “Apache flink: Stream and batch processing in a
single engine”. In: Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering vol. 36, no. 4 (2015).

[17] Cardellini, V., Nardelli, M., and Luzi, D. “Elastic stateful stream
processing in storm”. In: 2016 International Conference on High
Performance Computing & Simulation (HPCS). IEEE. 2016, pp. 583–
590.

[18] Cardellini, V. et al. “Decentralized self-adaptation for elastic data
stream processing”. In: Future Generation Computer Systems vol. 87
(2018), pp. 171–185.

[19] Cardellini, V. et al. “Optimal operator deployment and replication
for elastic distributed data stream processing”. In: Concurrency and
Computation: Practice and Experience vol. 30, no. 9 (2018), e4334.

[20] Cardellini, V. et al. “Optimal operator replication and placement
for distributed stream processing systems”. In: ACM SIGMETRICS
Performance Evaluation Review vol. 44, no. 4 (2017), pp. 11–22.

197

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

[21] Cardellini, V. et al. “Run-time Adaptation of Data Stream Processing
Systems: The State of the Art”. In: ACM Computing Surveys (CSUR)
(2022).

[22] Castro Fernandez, R. et al. “Integrating Scale out and Fault Tolerance
in Stream Processing Using Operator State Management”. In:
Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’13. New York, New York, USA:
Association for Computing Machinery, 2013, pp. 725–736.

[23] Chatzimilioudis, G. et al. “A novel distributed framework for opti-
mizing query routing trees in wireless sensor networks via optimal
operator placement”. In: Journal of Computer and System Sciences
vol. 79, no. 3 (2013), pp. 349–368.

[24] Chen, M. et al. “A Dynamic Service Migration Mechanism in Edge
Cognitive Computing”. In: ACM Trans. Internet Technol. vol. 19, no. 2
(Apr. 2019). GSCC: 0000161 Place: New York, NY, USA Publisher:
Association for Computing Machinery.

[25] De Matteis, T. and Mencagli, G. “Keep calm and react with foresight:
Strategies for low-latency and energy-efficient elastic data stream
processing”. In: ACM SIGPLAN Notices vol. 51, no. 8 (2016), pp. 1–
12.

[26] De Matteis, T. and Mencagli, G. “Proactive elasticity and energy
awareness in data stream processing”. In: Journal of Systems and
Software vol. 127 (2017), pp. 302–319.

[27] Dedousis, D., Zacheilas, N., and Kalogeraki, V. “On the fly load
balancing to address hot topics in topic-based pub/sub systems”. In:
2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE. 2018, pp. 76–86.

[28] Del Monte, B. et al. “Rhino: Efficient management of very large
distributed state for stream processing engines”. In: Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data. 2020, pp. 2471–2486.

[29] Dias, G. M., Bellalta, B., and Oechsner, S. “A survey about prediction-
based data reduction in wireless sensor networks”. In: ACM Comput-
ing Surveys (CSUR) vol. 49, no. 3 (2016), pp. 1–35.

[30] Dupont, C., Giaffreda, R., and Capra, L. “Edge computing in IoT
context: Horizontal and vertical Linux container migration”. In: 2017
Global Internet of Things Summit (GIoTS). GSCC: 0000093. IEEE.
IEEE, 2017, pp. 1–4.

[31] Espertech. Esper – Complex Event Processing. https://www.espertech.
com/esper. [Online; accessed 26-February-2023]. Sept. 2022.

198

References

[32] Fang, J. et al. “Distributed stream rebalance for stateful operator
under workload variance”. In: IEEE Transactions on Parallel and
Distributed Systems vol. 29, no. 10 (2018), pp. 2223–2240.

[33] Fang, J. et al. “Parallel stream processing against workload skewness
and variance”. In: Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing. 2017,
pp. 15–26.

[34] Fragkoulis, M. et al. A Survey on the Evolution of Stream Processing
Systems. 2020. arXiv: 2008.00842 [cs.DC].

[35] Gao, Z. et al. “Deep Reinforcement Learning Based Service Migra-
tion Strategy for Edge Computing”. In: 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE). GSCC:
0000116. 2019, pp. 116–1165.

[36] Gedik, B. “Partitioning functions for stateful data parallelism in
stream processing”. In: The VLDB Journal vol. 23, no. 4 (2014),
pp. 517–539.

[37] Gedik, B. et al. “Elastic scaling for data stream processing”. In: IEEE
Transactions on Parallel and Distributed Systems vol. 25, no. 6 (2013),
pp. 1447–1463.

[38] Geldenhuys, M. K. et al. “Phoebe: Qos-aware distributed stream
processing through anticipating dynamic workloads”. In: 2022 IEEE
International Conference on Web Services (ICWS). IEEE. 2022,
pp. 198–207.

[39] Gharaibeh, A. et al. “Smart cities: A survey on data management,
security, and enabling technologies”. In: IEEE Communications
Surveys & Tutorials vol. 19, no. 4 (2017), pp. 2456–2501.

[40] Goyal, T., Singh, A., and Agrawal, A. “Cloudsim: simulator for cloud
computing infrastructure and modeling”. In: Procedia Engineering
vol. 38 (2012), pp. 3566–3572.

[41] Gu, R. et al. “Meces: Latency-efficient Rescaling via Prioritized State
Migration for Stateful Distributed Stream Processing Systems”. In:
2022 USENIX Annual Technical Conference (USENIX ATC 22). 2022,
pp. 539–556.

[42] Gulisano, V. et al. “Streamcloud: An elastic and scalable data
streaming system”. In: IEEE Transactions on Parallel and Distributed
Systems vol. 23, no. 12 (2012), pp. 2351–2365.

[43] Gulisano, V. et al. “STRETCH: Virtual shared-nothing parallelism for
scalable and elastic stream processing”. In: IEEE Transactions on
Parallel and Distributed Systems vol. 33, no. 12 (2022), pp. 4221–
4238.

199

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

[44] Gupta, H. et al. “iFogSim: A toolkit for modeling and simulation of
resource management techniques in the Internet of Things, Edge and
Fog computing environments”. In: Software: Practice and Experience
vol. 47, no. 9 (2017), pp. 1275–1296.

[45] Heinze, T. et al. “Auto-scaling techniques for elastic data stream
processing”. In: 2014 IEEE 30th International Conference on Data
Engineering Workshops. IEEE. 2014, pp. 296–302.

[46] Heinze, T. et al. “Cloud-based data stream processing”. In: Proceed-
ings of the 8th ACM International Conference on Distributed Event-
Based Systems. 2014, pp. 238–245.

[47] Heinze, T. et al. “FUGU: Elastic Data Stream Processing with Latency
Constraints.” In: IEEE Data Eng. Bull. vol. 38, no. 4 (2015), pp. 73–81.

[48] Heinze, T. et al. “Latency-aware elastic scaling for distributed
data stream processing systems”. In: Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems. 2014,
pp. 13–22.

[49] Hidalgo, N., Wladdimiro, D., and Rosas, E. “Self-adaptive processing
graph with operator fission for elastic stream processing”. In: Journal
of Systems and Software vol. 127 (2017), pp. 205–216.

[50] Hiessl, T. et al. “Optimal placement of stream processing operators
in the fog”. In: 2019 IEEE 3rd International Conference on Fog and
Edge Computing (ICFEC). IEEE. 2019, pp. 1–10.

[51] Hirzel, M. et al. “A catalog of stream processing optimizations”. In:
ACM Computing Surveys (CSUR) vol. 46, no. 4 (2014), pp. 1–34.

[52] Hochreiner, C. et al. “Elastic stream processing for the internet
of things”. In: 2016 IEEE 9th international conference on cloud
computing (CLOUD). IEEE. 2016, pp. 100–107.

[53] Hoffmann, M. et al. “Megaphone: Latency-conscious state migration
for distributed streaming dataflows”. In: Proceedings of the VLDB
Endowment vol. 12, no. 9 (2019), pp. 1002–1015.

[54] Hu, J. et al. “Study on dynamic service migration strategy with energy
optimization in mobile edge computing”. In: Mobile Information
Systems vol. 2019 (2019). GSCC: 0000330.

[55] Hummer, W., Satzger, B., and Dustdar, S. “Elastic stream processing
in the cloud”. In: Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery vol. 3, no. 5 (2013), pp. 333–345.

[56] Hummer, W. et al. “Dynamic migration of processing elements
for optimized query execution in event-based systems”. In: OTM
Confederated International Conferences" On the Move to Meaningful
Internet Systems". Springer. 2011, pp. 451–468.

200

References

[57] Hwang, J.-H. et al. “A cooperative, self-configuring high-availability
solution for stream processing”. In: 2007 IEEE 23rd International
Conference on Data Engineering. IEEE. 2007, pp. 176–185.

[58] Isah, H. et al. “A survey of distributed data stream processing
frameworks”. In: IEEE Access vol. 7 (2019), pp. 154300–154316.

[59] Jha, D. N. et al. “IoTSim-Edge: a simulation framework for modeling
the behavior of Internet of Things and edge computing environments”.
In: Software: Practice and Experience vol. 50, no. 6 (2020), pp. 844–
867.

[60] Jonathan, A., Chandra, A., and Weissman, J. “WASP: wide-area adap-
tive stream processing”. In: Proceedings of the 21st International
Middleware Conference. 2020, pp. 221–235.

[61] Kakkad, V., Santosa, A. E., and Scholz, B. “Migrating operator
placement for compositional stream graphs”. In: Proceedings of
the 15th ACM international conference on Modeling, analysis and
simulation of wireless and mobile systems. GSCC: 0000359. 2012,
pp. 125–134.

[62] Kalavri, V. et al. “Three steps is all you need: fast, accurate,
automatic scaling decisions for distributed streaming dataflows”.
In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). Carlsbad, CA: USENIX Association, Oct.
2018, pp. 783–798.

[63] Kingman, J. “The single server queue in heavy traffic”. In: Mathemat-
ical proceedings of the cambridge philosophical society. Vol. 57. 4.
Cambridge University Press. 1961, pp. 902–904.

[64] Koldehofe, B. et al. “Rollback-recovery without checkpoints in
distributed event processing systems”. In: Proceedings of the 7th
ACM international conference on Distributed event-based systems.
2013, pp. 27–38.

[65] Lakshmanan, G. T., Li, Y., and Strom, R. “Placement strategies for
internet-scale data stream systems”. In: IEEE Internet Computing
vol. 12, no. 6 (2008), pp. 50–60.

[66] Lei, C. and Rundensteiner, E. A. “Robust distributed query processing
for streaming data”. In: ACM Transactions on Database Systems
(TODS) vol. 39, no. 2 (2014), pp. 1–45.

[67] Lera, I., Guerrero, C., and Juiz, C. “YAFS: A simulator for IoT scenarios
in fog computing”. In: IEEE Access vol. 7 (2019), pp. 91745–91758.

[68] Li, B. et al. “Marabunta: Continuous Distributed Processing of
Skewed Streams”. In: 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID). IEEE. 2020,
pp. 252–261.

201

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

[69] Li, J. et al. “Enabling elastic stream processing in shared clusters”.
In: 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD). IEEE. 2016, pp. 108–115.

[70] Lindeberg, M. and Plagemann, T. “A Study on Migration Scheduling in
Distributed Stream Processing Engines”. In: Proceedings of the 23rd
International Conference on Distributed Computing and Networking.
ACM New York, NY, USA. 2022.

[71] Liu, F. et al. “DROAllocator: a dynamic resource-aware operator
allocation framework in distributed streaming processing”. In:
Network and Parallel Computing: 17th IFIP WG 10.3 International
Conference, NPC 2020, Zhengzhou, China, September 28–30, 2020,
Revised Selected Papers. Springer. 2021, pp. 349–360.

[72] Liu, P., Da Silva, D., and Hu, L. “DART: A scalable and adaptive edge
stream processing engine”. In: USENIX Annual Technical Conference.
2021.

[73] Liu, S. et al. “An adaptive online scheme for scheduling and resource
enforcement in Storm”. In: IEEE/ACM Transactions on Networking
vol. 27, no. 4 (2019), pp. 1373–1386.

[74] Liu, X. and Buyya, R. “Resource management and scheduling in
distributed stream processing systems: A taxonomy, review, and
future directions”. In: ACM Computing Surveys (CSUR) vol. 53, no. 3
(2020), pp. 1–41.

[75] Liu, Y., Xu, H., and Lau, W. C. “Online Resource Optimization for
Elastic Stream Processing with Regret Guarantee”. In: Proceedings
of the 51st International Conference on Parallel Processing. 2022,
pp. 1–11.

[76] Liu, Y., Shi, X., and Jin, H. “Runtime-aware adaptive scheduling in
stream processing”. In: Concurrency and Computation: Practice and
Experience vol. 28, no. 14 (2016), pp. 3830–3843.

[77] Lohrmann, B., Janacik, P., and Kao, O. “Elastic stream processing with
latency guarantees”. In: 2015 IEEE 35th International Conference on
Distributed Computing Systems. IEEE. 2015, pp. 399–410.

[78] Lombardi, F. et al. “Elastic symbiotic scaling of operators and
resources in stream processing systems”. In: IEEE Transactions on
Parallel and Distributed Systems vol. 29, no. 3 (2017), pp. 572–585.

[79] Luo, Q. et al. “Resource scheduling in edge computing: A survey”.
In: IEEE Communications Surveys & Tutorials vol. 23, no. 4 (2021),
pp. 2131–2165.

202

References

[80] Luthra, M. et al. “TCEP: Adapting to dynamic user environments by
enabling transitions between operator placement mechanisms”. In:
Proceedings of the 12th ACM International Conference on Distributed
and Event-based Systems. 2018, pp. 136–147.

[81] Ma, K., Yang, B., and Yu, Z. “Optimization of stream-based live data
migration strategy in the cloud”. In: Concurrency and Computation:
Practice and Experience vol. 30, no. 12 (2018), e4293.

[82] Ma, L. et al. “Efficient Live Migration of Edge Services Leveraging
Container Layered Storage”. In: IEEE Transactions on Mobile
Computing vol. 18, no. 9 (2019). GSCC: 0000095, pp. 2020–2033.

[83] Ma, L., Yi, S., and Li, Q. “Efficient Service Handoff across Edge
Servers via Docker Container Migration”. In: Proceedings of the
Second ACM/IEEE Symposium on Edge Computing. SEC ’17. GSCC:
0000181. San Jose, California: Association for Computing Machinery,
2017.

[84] Mach, P. and Becvar, Z. “Mobile Edge Computing: A Survey on
Architecture and Computation Offloading”. In: IEEE Communications
Surveys Tutorials vol. 19, no. 3 (2017), pp. 1628–1656.

[85] Machen, A. et al. “Live Service Migration in Mobile Edge Clouds”. In:
IEEE Wireless Communications vol. 25, no. 1 (2018). GSCC: 0000256,
pp. 140–147.

[86] Madsen, K. G. S. and Zhou, Y. “Dynamic resource management in
a massively parallel stream processing engine”. In: Proceedings
of the 24th ACM International on Conference on Information and
Knowledge Management. 2015, pp. 13–22.

[87] Madsen, K. G. S., Zhou, Y., and Cao, J. “Integrative dynamic
reconfiguration in a parallel stream processing engine”. In: 2017
IEEE 33rd International Conference on Data Engineering (ICDE).
IEEE. 2017, pp. 227–230.

[88] Madsen, K. G. S., Zhou, Y., and Su, L. “Enorm: Efficient window-
based computation in large-scale distributed stream processing
systems”. In: Proceedings of the 10th ACM International Conference
on Distributed and Event-based Systems. 2016, pp. 37–48.

[89] Mahmud, R. et al. “iFogSim2: An extended iFogSim simulator for
mobility, clustering, and microservice management in edge and
fog computing environments”. In: Journal of Systems and Software
vol. 190 (2022), p. 111351.

[90] Mai, L. et al. “Chi: A scalable and programmable control plane for
distributed stream processing systems”. In: Proceedings of the VLDB
Endowment vol. 11, no. 10 (2018), pp. 1303–1316.

203

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

[91] Mandal, U. et al. “Greening the cloud using renewable-energy-aware
service migration”. In: IEEE Network vol. 27, no. 6 (2013). GSCC:
0000089, pp. 36–43.

[92] Manyika, J. et al. “Unlocking the Potential of the Internet of Things”.
In: McKinsey Global Institute vol. 1 (2015).

[93] Martin, A., Brito, A., and Fetzer, C. “Scalable and elastic realtime
click stream analysis using streammine3g”. In: Proceedings of the 8th
ACM International Conference on Distributed Event-Based Systems.
2014, pp. 198–205.

[94] Martin, A. et al. “User-constraint and self-adaptive fault tolerance for
event stream processing systems”. In: 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks.
IEEE. 2015, pp. 462–473.

[95] Mechalikh, C., Taktak, H., and Moussa, F. “PureEdgeSim: A simulation
toolkit for performance evaluation of cloud, fog, and pure edge
computing environments”. In: 2019 international conference on high
performance computing & simulation (HPCS). IEEE. 2019, pp. 700–
707.

[96] Mehmood, E. and Anees, T. “Challenges and Solutions for Processing
Real-Time Big Data Stream: A Systematic Literature Review”. In:
IEEE Access vol. 8 (2020), pp. 119123–119143.

[97] MOA. https://www.cs.waikato.ac.nz/ml/weka/. [Online; accessed
28-August-2021].

[98] Mohammadi, M. et al. “Deep learning for IoT big data and streaming
analytics: A survey”. In: IEEE Communications Surveys & Tutorials
vol. 20, no. 4 (2018), pp. 2923–2960.

[99] Mukherjee, M., Shu, L., and Wang, D. “Survey of fog computing:
Fundamental, network applications, and research challenges”. In:
IEEE Communications Surveys & Tutorials vol. 20, no. 3 (2018),
pp. 1826–1857.

[100] Ni, X. et al. “Automating multi-level performance elastic components
for IBM streams”. In: Proceedings of the 20th International Middle-
ware Conference. 2019, pp. 163–175.

[101] Oliveira, E. et al. “Latency and energy-awareness in data stream pro-
cessing for edge based IoT systems”. In: Journal of Grid Computing
vol. 20, no. 3 (2022), p. 27.

[102] Osanaiye, O. et al. “From Cloud to Fog Computing: A Review and a
Conceptual Live VM Migration Framework”. In: IEEE Access vol. 5
(2017). GSCC: 0000316, pp. 8284–8300.

204

References

[103] Ottenwälder, B. et al. “MCEP: A mobility-aware complex event
processing system”. In: ACM Transactions on internet technology
(TOIT) vol. 14, no. 1 (2014), pp. 1–24.

[104] Ottenwälder, B. et al. “Migcep: Operator migration for mobility driven
distributed complex event processing”. In: Proceedings of the 7th
ACM international conference on Distributed event-based systems.
2013, pp. 183–194.

[105] Pande, S. K., Panda, S. K., and Das, S. “Dynamic service migration and
resource management for vehicular clouds”. In: Journal of Ambient
Intelligence and Humanized Computing (2020), pp. 1–21.

[106] Papaemmanouil, O., Cetintemel, U., and Jannotti, J. “Supporting
generic cost models for wide-area stream processing”. In: 2009 IEEE
25th International Conference on Data Engineering. IEEE. 2009,
pp. 1084–1095.

[107] Pham, T. N. et al. “Uninterruptible migration of continuous queries
without operator state migration”. In: ACM SIGMOD Record vol. 46,
no. 3 (2017), pp. 17–22.

[108] Pietzuch, P. et al. “Network-aware operator placement for stream-
processing systems”. In: 22nd International Conference on Data
Engineering (ICDE’06). IEEE. 2006, pp. 49–49.

[109] Puliafito, C. et al. “MobFogSim: Simulation of mobility and migration
for fog computing”. In: Simulation Modelling Practice and Theory
vol. 101 (2020), p. 102062.

[110] Qayyum, T. et al. “FogNetSim++: A toolkit for modeling and
simulation of distributed fog environment”. In: IEEE Access vol. 6
(2018), pp. 63570–63583.

[111] Qin, C., Eichelberger, H., and Schmid, K. “Enactment of adaptation
in data stream processing with latency implications—A systematic
literature review”. In: Information and Software Technology vol. 111
(2019), pp. 1–21.

[112] Rasmussen, C. E. “Gaussian processes in machine learning”. In:
Summer school on machine learning. Springer. 2003, pp. 63–71.

[113] Repantis, T. and Kalogeraki, V. “Alleviating hot-spots in peer-to-
peer stream processing environments”. In: Proceedings of the 5th
International Workshop on Databases, Information Systems and Peer-
to-Peer Computing, DBISP2P, Vienna, Austria. Citeseer. 2007.

[114] Repantis, T. and Kalogeraki, V. “Hot-spot prediction and alleviation
in distributed stream processing applications”. In: 2008 IEEE
International Conference on Dependable Systems and Networks With
FTCS and DCC (DSN). IEEE. 2008, pp. 346–355.

205

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

[115] Rizou, S., Dürr, F., and Rothermel, K. “Solving the multi-operator
placement problem in large-scale operator networks”. In: 2010 Pro-
ceedings of 19th International Conference on Computer Communica-
tions and Networks. IEEE. 2010, pp. 1–6.

[116] RocksDB. https://rocksdb.org/. [Online; accessed 23-January-2023].
2021.

[117] Rodrigues, T. G. et al. “Hybrid Method for Minimizing Service Delay
in Edge Cloud Computing Through VM Migration and Transmission
Power Control”. In: IEEE Transactions on Computers vol. 66, no. 5
(2017). GSCC: 0000353, pp. 810–819.

[118] Rundensteiner, E. A. et al. “Cape: Continuous query engine with
heterogeneous-grained adaptivity”. In: Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30. 2004,
pp. 1353–1356.

[119] Röger, H., Bhowmik, S., and Rothermel, K. “Combining it all: Cost
minimal and low-latency stream processing across distributed hetero-
geneous infrastructures”. In: Proceedings of the 20th International
Middleware Conference. 2019, pp. 255–267.

[120] Röger, H. and Mayer, R. “A comprehensive survey on parallelization
and elasticity in stream processing”. In: ACM Computing Surveys
(CSUR) vol. 52, no. 2 (2019), pp. 1–37.

[121] Sahal, R., Breslin, J. G., and Ali, M. I. “Big data and stream processing
platforms for Industry 4.0 requirements mapping for a predictive
maintenance use case”. In: Journal of manufacturing systems vol. 54
(2020), pp. 138–151.

[122] Sakr, S. et al. “A survey of large scale data management approaches
in cloud environments”. In: IEEE communications surveys & tutorials
vol. 13, no. 3 (2011), pp. 311–336.

[123] Salama, M., Elkhatib, Y., and Blair, G. “IoTNetSim: A modelling and
simulation platform for end-to-end IoT services and networking”.
In: Proceedings of the 12th IEEE/ACM International Conference on
Utility and Cloud Computing. 2019, pp. 251–261.

[124] Shah, M. A. et al. “Flux: An adaptive partitioning operator for
continuous query systems”. In: Proceedings 19th International
Conference on Data Engineering (Cat. No. 03CH37405). IEEE. 2003,
pp. 25–36.

[125] Sonmez, C., Ozgovde, A., and Ersoy, C. “Edgecloudsim: An environ-
ment for performance evaluation of edge computing systems”. In:
Transactions on Emerging Telecommunications Technologies vol. 29,
no. 11 (2018), e3493.

206

References

[126] Srivastava, U., Munagala, K., and Widom, J. “Operator placement for
in-network stream query processing”. In: Proceedings of the twenty-
fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. 2005, pp. 250–258.

[127] Starks, F. and Plagemann, T. P. “Operator placement for efficient
distributed complex event processing in manets”. In: 2015 IEEE
11th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). IEEE. 2015, pp. 83–90.

[128] Starks, F., Plagemann, T. P., and Kristiansen, S. “DCEP-Sim: An Open
Simulation Framework for Distributed CEP”. In: Proceedings of the
11th ACM International Conference on Distributed and Event-based
Systems. DEBS ’17. Barcelona, Spain: ACM, 2017, pp. 180–190.

[129] Suhothayan, S. et al. “Siddhi: A second look at complex event pro-
cessing architectures”. In: Proceedings of the 2011 ACM workshop
on Gateway computing environments. 2011, pp. 43–50.

[130] Sun, D. et al. “A multi-level collaborative framework for elastic stream
computing systems”. In: Future Generation Computer Systems
vol. 128 (2022), pp. 117–131.

[131] Sun, D. et al. “Dynamic redirection of real-time data streams for
elastic stream computing”. In: Future Generation Computer Systems
vol. 112 (2020), pp. 193–208.

[132] Taieb, S. B. et al. “A review and comparison of strategies for multi-
step ahead time series forecasting based on the NN5 forecasting
competition”. In: Expert systems with applications vol. 39, no. 8
(2012), pp. 7067–7083.

[133] To, Q.-C., Soto, J., and Markl, V. “A survey of state management in big
data processing systems”. In: The VLDB Journal vol. 27, no. 6 (2018),
pp. 847–872.

[134] Tucker, P. et al. NEXMark—A Benchmark for Queries over Data
Streams DRAFT. Tech. rep. Technical report, OGI School of Science
& Engineering at OHSU, Septembers, 2008.

[135] Tziritas, N. et al. “On improving constrained single and group
operator placement using evictions in big data environments”. In:
IEEE Transactions on Services Computing vol. 9, no. 5 (2016),
pp. 818–831.

[136] Urgaonkar, R. et al. “Dynamic service migration and workload
scheduling in edge-clouds”. In: Performance Evaluation vol. 91 (2015).
Special Issue: Performance 2015, pp. 205–228.

[137] Vogel, A. et al. “Self-adaptation on parallel stream processing: A
systematic review”. In: Concurrency and Computation: Practice and
Experience vol. 34, no. 6 (2022), e6759.

207

IV. To Migrate or not to Migrate: An Analysis of Operator Migration in
Distributed Stream Processing

[138] Volnes, E. et al. “EXPOSE: Experimental Performance Evaluation of
Stream Processing Engines Made Easy”. In: Technology Conference
on Performance Evaluation and Benchmarking. Springer. 2020,
pp. 18–34.

[139] Volnes, E. et al. “Travel light: state shedding for efficient operator mi-
gration”. In: Proceedings of the 16th ACM International Conference
on Distributed and Event-Based Systems. 2022, pp. 79–84.

[140] Wang, C. et al. “Automating characterization deployment in dis-
tributed data stream management systems”. In: IEEE Transactions
on Knowledge and Data Engineering vol. 29, no. 12 (2017), pp. 2669–
2681.

[141] Wang, H. et al. “Service migration in mobile edge computing: A
deep reinforcement learning approach”. In: International Journal of
Communication Systems (2020). GSCC: 0000116 Publisher: Wiley
Online Library, e4413.

[142] Wang, L. et al. “Elasticutor: Rapid elasticity for realtime stateful
stream processing”. In: Proceedings of the 2019 International
Conference on Management of Data. 2019, pp. 573–588.

[143] Wang, S. et al. “Mobility-Induced Service Migration in Mobile Micro-
clouds”. In: 2014 IEEE Military Communications Conference. GSCC:
0000132. 2014, pp. 835–840.

[144] Wang, S. et al. “Dynamic service migration in mobile edge-clouds”.
In: 2015 IFIP Networking Conference (IFIP Networking). GSCC:
0000294. IEEE. IEEE, 2015, pp. 1–9.

[145] Wang, W. et al. “Potential-driven load distribution for distributed
data stream processing”. In: Proceedings of the 2nd international
workshop on Scalable stream processing system. 2008, pp. 13–22.

[146] Wang, X. et al. “Convergence of edge computing and deep learning:
A comprehensive survey”. In: IEEE Communications Surveys &
Tutorials vol. 22, no. 2 (2020), pp. 869–904.

[147] Wei, J. et al. “SatEdgeSim: A toolkit for modeling and simulation of
performance evaluation in satellite edge computing environments”.
In: 2020 12th International Conference on Communication Software
and Networks (ICCSN). IEEE. 2020, pp. 307–313.

[148] Weka. https://weka.cms.waikato.ac.nz/. [Online; accessed 28-August-
2021].

[149] Wu, Y. and Tan, K.-L. “ChronoStream: Elastic stateful stream compu-
tation in the cloud”. In: 2015 IEEE 31st International Conference on
Data Engineering. IEEE. 2015, pp. 723–734.

208

References

[150] Xing, Y., Zdonik, S., and Hwang, J.-H. “Dynamic load distribution in
the borealis stream processor”. In: 21st International Conference on
Data Engineering (ICDE’05). IEEE. 2005, pp. 791–802.

[151] Xu, J. and Palanisamy, B. “Model-based reinforcement learning for
elastic stream processing in edge computing”. In: 2021 IEEE 28th
International Conference on High Performance Computing, Data, and
Analytics (HiPC). IEEE. 2021, pp. 292–301.

[152] Xu, L., Peng, B., and Gupta, I. “Stela: Enabling stream processing
systems to scale-in and scale-out on-demand”. In: 2016 IEEE
International Conference on Cloud Engineering (IC2E). IEEE. 2016,
pp. 22–31.

[153] Yi, S., Li, C., and Li, Q. “A Survey of Fog Computing: Concepts,
Applications and Issues”. In: Proceedings of the 2015 Workshop on
Mobile Big Data. Mobidata ’15. Hangzhou, China: ACM, 2015, pp. 37–
42.

[154] Zacheilas, N. et al. “Elastic complex event processing exploiting
prediction”. In: 2015 IEEE International Conference on Big Data (Big
Data). IEEE. 2015, pp. 213–222.

[155] Zeng, Z. et al. “Efficient Edge Service Migration in Mobile Edge
Computing”. In: 2020 IEEE 26th International Conference on Parallel
and Distributed Systems (ICPADS). GSCC: 0000273. 2020, pp. 691–
696.

[156] Zhang, C. and Zheng, Z. “Task migration for mobile edge computing
using deep reinforcement learning”. In: Future Generation Computer
Systems vol. 96 (2019). GSCC: 0000116, pp. 111–118.

[157] Zhang, L. et al. “Autrascale: an automated and transfer learning solu-
tion for streaming system auto-scaling”. In: 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2021,
pp. 912–921.

[158] Zhou, Y., Aberer, K., and Tan, K.-L. “Toward massive query optimiza-
tion in large-scale distributed stream systems”. In: ACM/IFIP/USENIX
International Conference on Distributed Systems Platforms and Open
Distributed Processing. Springer. 2008, pp. 326–345.

[159] Zhou, Y. et al. “Efficient dynamic operator placement in a locally
distributed continuous query system”. In: OTM Confederated Inter-
national Conferences" On the Move to Meaningful Internet Systems".
Springer. 2006, pp. 54–71.

[160] Zhu, Y., Rundensteiner, E. A., and Heineman, G. T. “Dynamic plan
migration for continuous queries over data streams”. In: Proceedings
of the 2004 ACM SIGMOD international conference on Management
of data. GSCC: 0000194. 2004, pp. 431–442.

209

Paper V

Travel light: state shedding for
efficient operator migration

Espen Volnes, Thomas Plagemann, Boris Koldehofe, Vera
Goebel

Published in Proceedings of the 16th ACM International Conference on
Distributed and Event-Based Systems, August 2022, pp 79-84, DOI:
10.1145/3524860.3539638.

V

Abstract

Operator migration is a crucial concept to adapt event processing systems
to dynamic changes. When the placement of a stateful operator changes,
the operator state must be migrated to the new host. However, operator
state size and time constraints can make it impossible to migrate the
operator without severe Quality of Service (QoS) degradation. As a relief,
we propose to perform state shedding in such a situation. The core idea
of state shedding is to partition the operator state, assign a utility to each
partial state, and use the utility and size of each partial state to identify
the most useful partial states that can be migrated in a given time frame.
Thus, state shedding can maintain a substantially higher QoS with a
lower impact on query results than state-of-the-art solutions targeting
consistent state at the old and new host. In this paper, we define this
novel approach and in a simulation environment evaluate state shedding
in migration scenarios with pattern-matching queries.

V.1 Introduction

Stream and event processing systems are of fundamental importance and
an integral part of Big Data systems. They support important requirements
of Big Data applications to integrate and analyze in real-time high volume
data streams which can stem from many distinct and highly distributed data
sources. Current stream and event processing systems operate in a highly
distributed manner, i.e., the operators in charge of analyzing data streams
can be flexibly executed on systems resources in the cloud, at the edge, or
even on connected (mobile) devices. This way they can support application
requirements regarding Quality of Service (QoS).

211

V. Travel light: state shedding for efficient operator migration

System and application dynamics, like bursty input rates, resource
contention, and mobility can lead to reduced QoS and require adapting
the way operators are executed. Two established methods to react to such
changes are operator migration [18] and load shedding [1, 16, 20]. In
operator migration, the placement of operators on resources is changed
by migrating one or several operators from their current host (further
on referred to as old host) to a new host, which is better suited to meet
the required QoS. Load shedding allows reacting to temporary overload
situations, by dropping tuples in the input stream or dropping some state of
the operator to ensure the operator can process fresh data tuples timely.

Both approaches are effective to deal with overload situations, but they
also impose a cost for the distributed operator execution and therefore need
to be carefully designed and applied. Operator migration allows changing
the resources and this way also the performance, e.g., the processing rate for
executing and operator or communication delays for input tuples. Operator
migration requires (1) to set up a new resource, the new host of the operator,
(2) transmit state from the old host to the new host, and (3) coordinate
the handover between the old and new host. As such operator migration
can consume temporally redundant resources and increase delays until the
new host becomes operational. Load shedding reduces the time to react to
overload situations, but dropping tuples and state reduce the accuracy of the
results produced by the operators. For longer periods of overload situations,
load shedding may therefore be costly in terms of ensured accuracy.

Adapting distributed operator execution approaches mostly treat these
two mechanisms as alternatives performed in isolation. We propose and
study the combined use of migration and load shedding mechanisms. In
particular, we propose to apply state shedding in the course of operator
migration to counteract unexpected long delays during operator migrations.
State-of-the-art methods aim to atomically transfer the entire operator state
based on good estimates of the transfer cost. Contrary, in this paper, we
observe that the combination of state shedding and migration is promising
for operator migration to better adapt to unexpected situations. We propose
to counteract abrupt changes, such as reduced bandwidth and increased
transmission latencies, by transferring only the most necessary state. This
requires appropriate online migration procedures to prioritize the partial
state to ensure a high utility in terms of accuracy and imposed migration
and execution delays.

In this paper, we contribute to (1) a novel concept of combining state
shedding and operator migration by maximizing the utility of partially
migrated state, and (2) an analysis including a first empirical evaluation
that illustrates possible advantages of utility-based load shedding in the
context of two real-world data sets: the Citi Bike data set [5] and a bus GPS
data set from Dublin [6].

212

Background

V.2 Background

In this section, we introduce background on distributed operator execution,
operator migration and load shedding.

V.2.1 Distributed Operator Execution

In stream and event processing systems, the logic and the computational
functions to analyze and transform data streams are given in form of
operators, e.g., filter, join, grouping, and pattern detection operators. The
operators are commonly organized in a data flow graph, called the operator
graph. The operator graph models dependencies between operators and
data sources in receiving and producing tuples from/to specific streams.
The operators are executed on hosts of the distributed infrastructure. They
can also be dynamically migrated between hosts to meet the performance
requirements of the application or react to other changes, such as failures. It
is important to note that during the execution of an operator on a host, state is
built up while performing processing steps on the received input tuples. Such
state can be modeled in the form of (1) tuples in input and output queues and
(2) so-called partial states [16, 20], which correspond to intermediate results
needed to produce output tuples. When adapting the operator execution,
e.g., performing migrations or load shedding, managing the operator state is
highly important for the resulting accuracy and consistency.

V.2.2 Operator migration

Operator migration is a mechanism for exchanging the hosts engaged in
the distributed operator execution. It requires organizing the state transfer
between the old and new host and reorganizing the flow of data streams,
also named data stream management. A major objective of current operator
migration procedures is to ensure consistency, i.e., to ensure the migration
of the entire state completes and the resulting migration has no impact on
the operator results.

Approaches for performing operator migration can be classified according
to their stream management during the state transfer, i.e., in a single track
or parallel track [18]. In single-track migration, the tuples of upstream
operators are buffered (at the upstream node, new host, or old host).
Therefore, the migration procedure results in a temporary downtime during
the handover between the new and old host until all upstream tuples and
operator state are transferred consistently.

Parallel-track migration algorithms are able to migrate state without
operator downtime by upstream nodes sending tuples to the old and new
host [18]. Either the old host continues its executions until the state transfer
has been completed or the old host gradually moves state to the new host.

213

V. Travel light: state shedding for efficient operator migration

These algorithms require temporary duplication of input streams and good
connectivity. Under high system dynamics, e.g., slow communication links
and drastically reduced bandwidth, these mechanisms can significantly
reduce the performance of the distributed operator execution.

V.2.3 Load shedding

Load shedding is an established mechanism for operator execution to react
to overload situations, e.g., as originally proposed for the data stream
management system Aurora [1, 17]. In overload scenarios, part of the
workload for an operator is dropped to stabilize the system. Most of the
literature describes solutions where input tuples are dropped [2, 4, 7–10,
12, 13, 17]. For aggregation operators, the goal is to minimize the relative
error of the calculated aggregate. For join operators, the goal is to drop the
tuples that eventually join with the fewest tuples. Another method is to drop
windows [16] internally, which reduces the number of produced aggregates
instead of reducing the aggregates’ accuracy. In pattern-matching operators,
dropping input tuples is likely to distort the results completely, because
individual tuples can determine whether a sequence fulfills a pattern or not.
In such cases, a different state-based load shedding mechanism that drops
partial states from the operator is a better option. A partial match might or
might not result in an output complex event. If the likelihood of the partial
match in producing output is low, the entire sequence of tuples might be
dropped. This is done for the pattern-matching operator in a few recent
works [3, 14, 19, 20]. As a result of load shedding, the consistency may be
invalidated, but the accuracy and utility of the query may remain high.

V.3 Problem Statement

All state-of-the-art operator migration approaches aim to establish a
consistent state at the new host. Unforeseen network conditions can prevent
a timely transmission of the entire state between the old and new host.
Consequently, operators can experience unexpected freeze times before
the operator execution can be resumed. This is an inherent limitation of
single-track operator migration algorithms.

Figure V.1 shows a VANET scenario executing with three roadside base
stations running applications and collecting data from passing vehicles.
The red base station has a critically high load and needs to reduce it by
moving some operators to the green node that has sufficient capacity. In this
scenario, the operators deployed on the colored nodes execute operators for
detecting collisions, bottlenecks and other traffic situations which need to be
timely reported to traffic participants to properly act. Clearly, freezing the
operator execution can lead to the situation where traffic participants cannot

214

Approach

High load
Medium load
Low load

Figure V.1: Example VANET scenario

react while the operator execution is suspended during an unexpected long
migration.

Therefore, a better strategy, which we study in this paper, is to limit the
effect of delayed migrations by transmitting the most relevant state until
the time the operator needs to be resumed. With the help of state shedding,
the old host can decide on the most relevant partial state to be transmitted
yielding the highest utility for the application, e.g., to react to a possible
dangerous traffic event. In this paper, we address the following research
questions (RQ):

• RQ1: How to partition operator state in such a way that each partial
state is useful for further processing?

• RQ2: How to determine the utility of partial states?

• RQ3: How to select the partial states that can be sent in a given time
frame and provide the highest accumulated utility?

• RQ4: How do different approaches for operator migration with state
shedding perform?

In the next section, we present the overall approach of operator migration
with state shedding. RQ1 and RQ2 are addressed in Section V.5. RQ3 is
addressed in Section V.6 and RQ4 is answered in Section V.7.

V.4 Approach

In this section, we present the overall approach that combines operator
migration with state shedding. It comprises six steps illustrated in Figure
V.2 and Algorithm 7. (1) a monitor detects an overload situation or a network
problem, which triggers (2) the placement module to determine the new
placement and the maximum migration time, and triggers (3) the migration

215

V. Travel light: state shedding for efficient operator migration

Placement
module

State
shedding
function

Migration
module

Op1 U1 S=s1,s2,s3,s4,s5,s6,s7,s8,s9,s10 Op1 U1 S'=s8,s5,s1,s9

New
host

Old
Host

State window
(OH -> NH)

Maximum migration time Bandw
idth

S'=s8,s5,s1,s9

Monitor

Op1 U1

1 2 3

4

5

6

Figure V.2: Migration with state shedding in six steps

module to extract the current operator state S and to partition S into i

partial states, i.e, S1 to S10. Each partial state is the smallest useful unit
for resuming the operator at the new host. (4) The state shedding function
determines the utility of each partial state ui , and (5) selects the most
useful partial states, i.e., S8, S5, S1, and S9, migrates them to the new host,
and drops the remaining partial states. The final Step (6) is to resume the
operator at the new host.

Algorithm 7 Operator migration from old host (oh) to new host (nh) with
state shedding. Abbreviations: operator (op), partial states (p_states),
available bandwidth (bw), latency (lat), shedded state (s_state), state
shedding function (ls)

1: trigger_migration← monitor(load, resources)
2: migration_time← calculate_migration_time(oh, nh, op)
3: p_states← partition(state)
4: p_states_util[Si, Ui]← calculate_utils(p_states[Si])

5a: c← calculate_c(oh, nh, op, bw(oh, nh), lat(oh, nh))
5b: s_state← ls(start_time, max_time, p_states, bw(oh, nh)lat(oh, nh))
5c: migrate(oh, nh, shed_state, start_time)

6: resume_operator(nh)

The optimization problem of selecting the most useful partial states to
migrate during the maximum migration time can be reduced to solving the
knapsack problem. The objective function is to maximize the utility of the
operator’s partial states, each with utility ui and size si, subject to a limited
capacity c that represents the maximum amount of data that can be sent
during the migration.

max
n∑

i=1
ui

s.t.
∑

j

sj < c
(V.1)

The success of the solution depends highly on the specific operator

216

State partitioning

semantics which determine how to partition the state and assign utility.

V.5 State partitioning

This section explores how to partition the operator state into partial states
of limited size and determine their utility (RQ1 and RQ2). We identify
three common stateful operators that differ significantly in how their state
manifests: aggregation, join and pattern-matching operators (see example
queries in Figure V.3). Based on the established design procedures of these
operators, we want to analyze how state needs to be represented in order to
be be ready for partitioning, and its impact on utility.

An aggregation operator such as in Q1 can record the state as partial
aggregates (Figure V.3a) that are updated for each tuple that is processed.
If it uses a sliding window, it will update multiple aggregates for each tuple.
Alternatively, all received tuples can be stored until the end of the window,
and the tuples are aggregated (Figure V.3b). However, the latter method
requires substantially more storage space and can increase the delay of the
aggregation.

A pattern-matching operator looks for particular sequences of tuples that
indicate a higher-level event. The stored tuples in the sequences might vary
in size and the length of the partial matches may vary. A pattern-matching
operator such as in Q2 looks for patterns in a single stream and groups
the patterns by a key, leading to an internal state of a tuple sequence for
each group (Figure V.3c). If the pattern-matching operator looks in multiple
streams, such as in Q3, it is only able to keep one sequence in the internal
state at the time, because a group is defined for one stream only (Figure V.3d).
If a query joins and does pattern-matching with groups in the same query,
the query must first join the streams as in Q4 before matching patterns.

A join operator such as in Q4 might store the internal state as tuples in a
window and evict tuples when the window jumps (Figure V.3e). It may keep
cached matches on filter predicates to match new tuples to stored tuples
faster, using some lookup mechanism. Tuples often vary in size, especially
tuples from two different streams that are being joined. Even within the
same stream, some attributes, e.g., text attributes, can vary in size.

A state shedding function can drop random state, but there is a strong
incentive to keep the most important states. What this means depends on
the type of operator that is being assessed. The utility of a partial state is not
trivial to define or calculate. It is an operator-specific function that depends
also on the type of application that is executed.

In traditional aggregation queries, the shedding of input tuples reduces
the accuracy of the results produced output, but keeps the number of
produced tuples the same. As such, the goal has traditionally been
to minimize the relative error in results [2]. On the other hand, the

217

V. Travel light: state shedding for efficient operator migration

Q1: Sliding window 10 seconds Q2: Pattern A+B
Jump every 1 second Define A as speed > max(A.speed)
Group by id Group by S1. id

Q3: Pattern A+B Q4: Join S2
Define A as T.temp > 45 on S1. id = S2. s1
B as H. humidity < 25

Join
Group 3Group 2Group 1Group 3Group 2Group 1Group 3Group 2Group 1

Stream
 1

 tu
p

le
seq

u
en

ce

Ext 1
Ext 2

Ext 3

Ext 4
Ext 5

Ext 6

Ext 7

Ext 8
Ext 9

Ext 10

Ext 1
Ext 2

Ext 3

Ext 4
Ext 5

Ext 6

Ext 7

Ext 8
Ext 9

Ext 10

Ext 1
Ext 2

Ext 3

Ext 4
Ext 5

Ext 6

Ext 7

Ext 8
Ext 9

Ext 10

(a) (b) (c) (d) (e)

Aggregation Pattern-matching
Stream

 1
 tu

p
le

seq
u

en
ce

Stream
 1

 tu
p

le
seq

u
en

ce

Stream
 1

 an
d

 2

tu
p

le seq
u

en
ce

Stream
 1

 tu
p

le list

Stream
 2

 tu
p

le list

Tu
p

le list G
ro

u
p

 1
Tu

p
le list G

ro
u

p
 1

Tu
p

le list G
ro

u
p

 2

Tu
p

le list G
ro

u
p

 3

Figure V.3: Internal state of operators

number of produced tuples may be reduced when shedding tuples in a
join operator, sequences in a pattern-matching operator or window extents
in an aggregation operator. The accuracy of the produced tuples is retained,
but the accuracy of the query is reduced.

A tuple for a join operator has utility if it joins with other tuples. Therefore,
the overall goal is to maximize the number of tuples that are produced by the
join operator. For the pattern-matching operator, the goal is the same. Either
a match completes and produces a complex event, or it expires and never
completes. A partial match has no utility until tuples are produced. For an
aggregation operator, this is different. A window extent can be considered
as just a few integers that indicate the start and stop of the window extent,
the count of tuples in the window, and the current aggregate. An incoming
tuple triggers an increment of the count in every window extent, and the
aggregate is updated.

V.6 Partial state selection

This section discusses how to select the partial states to migrate (RQ3). The
knapsack problem can be solved in a few ways, where the greedy approach
of sending partial states in a descending order of utility density is the easiest
way, but it can not guarantee to achieve the optimum. If all partial states
have an identical size, such as for the aggregation operator in Figure V.3a,
the greedy solution will perform exactly as the optimum. However, with
variable partial state sizes in Figure V.3b, c, d and e, the state shedding

218

Analysis

solution might result in a significantly higher utility than the greedy solution.
In some cases, the maximum migration time is uncertain, and therefore, the
best effort provided with the greedy method might perform reasonably well.

However, if the maximum migration time is short or the state size varies
significantly, finding the optimum or near-optimum might yield a significantly
higher utility than the greedy solution. Since the knapsack problem is NP-
hard, brute-forcing is unfeasible for even small input sizes. However, the
knapsack problem has a polynomial-time approximation scheme that uses
dynamic programming to find the optimum. This solution has a run-time and
space complexity of O(n2 · m), where n is the total number of partial states,
m is the highest utility of the partial states, and n · m is the highest possible
sum of utilities. A simplification can be done with the fully polynomial-time
approximation scheme algorithm that scales down the utility with factor
θ > 0 to reduce the number of iterations. This reduces the run-time and
space complexity significantly to O(n2⌊ m

θ ⌋).
These algorithms might still have a significant run-time and memory

usage, which might be unfeasible if the migration must occur quickly. If we
design the utility functions such that the utility values depend on each other,
we can create a heuristic that binds the complexity of the optimal search
without compromising the accuracy: (1) each partial state i gets assigned
a utility through U(i), (2) the utilities are updated as U ′(i) = U(i)

m · 100.
Each partial state gets a utility between 0 and 100, depending on the most
important partial state. Since the maximum utility is capped at 100 for each
partial state, and the inner loop iterates through maximum

∑n
i=1 ui, the

worst case number iterations is n · 100, which leads to a run-time and space
complexity of O(n2).

V.7 Analysis

This section studies a practical application of the state shedding technique
to compare the different approaches for partial state selection (RQ4). We
apply a scenario similar to the VANET scenario from Section V.3 with two
real-world VANET data sets: (1) a data set from Citi Bike [5] that describes
bike trips of users, and (b) a data set containing GPS readings from buses in
Dublin [6]. We describe three queries in Listing V.1, Qpm1 uses the Citi Bike
data set and Qpm2 and Qpm3 use the bus data set. The configurations result
in different state characteristics: Qpm1 produces many partial states; Qpm2
only produces eight partial states; and Qpm3 produces many partial states.

Listing V.1: Queries used in the simulations

Qpm1 SEQ(A+B)
GROUP BY BikeTrip . bikeid
DEFINE B AS BikeTrip . end_station_id == 3116
WITHIN 1 day

219

V. Travel light: state shedding for efficient operator migration

Qpm2 SEQ(A+B)
GROUP BY BusRecord . operator
DEFINE B AS BusRecord . block_id == 67002
WITHIN 1 hour

Qpm3 SEQ(A+B)
GROUP BY BusRecord . vehicle_id
DEFINE B AS BusRecord . block_id == 67002
WITHIN 1 hour

We simulate a connectivity issue scenario where the old host is about
to lose connection or experience heavily degraded link connection with
the upstream and downstream nodes, and has to complete the migration
by a certain deadline. The connectivity failure can be due to imminent
node failure or network disconnection. The deadline is estimated by the
migration decision model Figure V.2, and the data it uses to predict this
time is assumed to be collected throughout normal execution. The old host
attempts to migrate the operator state using the state shedding function,
and after the scheduled state is sent, it continues sending the remaining
states as long as possible.

V.7.1 Simulations

Simulations are performed using the distributed stream processing simulator
DCEP-Sim [15]. The simulator implementation incorporates a small-scale
stream processing engine and builds upon the well-established discrete-event
network simulator ns-3 [11]. Four nodes are deployed in DCEP-Sim: one
upstream node, one downstream node, the old and new host. The upstream
node produces tuples and sends them to the query that produces tuples for
the downstream node. During the simulation, the old host migrates state to
the new host, and the utility achieved from the migration is measured and
analyzed.

We do three runs, one for each query in Listing V.1. The first run
compares optimal partial state selection with the random ordering, i.e.,
without prioritization, where partial states are sent until the old host
disconnects. Three utility distributions are used: one balanced and two
skewed distributions. In the first distribution, each partial state gets a
random utility between 0 and 100. In the second distribution, the random
utility is assigned and for 10% of the partial states, i.e., those with utility
above 90, we introduce skew by multiplying the utility by ten. In the third
distribution, utility values above 50 are multiplied by ten. State shedding
is expected to have a more significant effect on skewed utility distributions.
The random scenario is only executed with the balanced distribution, but
with a high number of partial states, the random case without skew has a
very similar utility result as the random case with skew. The second and
third runs compare the optimal to the greedy solution, without any utility

220

Analysis

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000

Disconnection time (ms)

Achieved utility from migration

State shedding (No skew)

State shedding (50\% skew)

State shedding (90\% skew)

Random

(a) Qpm1 with multiple utility distri-
butions

0

2000

4000

6000

8000

0 1000 2000 3000 4000

Migration

Simulation time (seconds)

Number partial states during simulation

State shedding

Random

No state

(b) Size of internal state during
simulation using Qpm1

0

0.2

0.4

0.6

0.8

1

0 10000 20000

Disconnection time (ms)

Achieved utility from migration

Optimal

Greedy

(c) Qpm2 with few big partial states

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000

Disconnection time (ms)

Achieved utility from migration

Optimal

Greedy

(d) Qpm3 with many small partial
states

Figure V.4: Simulation results where (a) and (b) use Qpm1, (c) uses Qpm2,
and (d) uses Qpm3

skew. These runs aim to show how the size and number of partial states
affect the achieved utility.

V.7.2 Results

The utility obtained with the Citi Bike data set are shown in Figure V.4a.
For the state shedding technique, the utility achieved depends on the utility
distribution of the partial states. In the case with skew for 10% of the partial
states, 80% of the total utility is reached when the disconnection time is 2 s,
less than 20% of the time it takes to send all partial states. When the skew
is 50% of the partial states, it takes 3.6 s to send partial states with 80% of
the total utility. At 5.5 s disconnection time, the 50% skew reaches >95%
of total utility. Even without skew, there is a clear advantage to using state
shedding.

221

V. Travel light: state shedding for efficient operator migration

Figure V.4b illustrates the internal state of the query throughout the
simulation, including during and after the migration. The query reaches
a bit over 8000 partial states. The migration goes on until the old host
is disconnected, at which point, the remaining partial states are dropped.
The configurations migrate approximately the same number of tuples, but
a different number of partial states. Since the utility is random, the state
shedding scheme drops fewer partial states than the random case to achieve
a higher utility.

Figure V.4c and V.4d compare the optimal and greedy solutions. The
utility is a function of the state size—the bigger the partial state is, the
higher the utility is. The optimal solution performs visibly better than the
greedy solution in Figure V.4c, but not in Figure V.4d. Figure V.4c illustrates
a case with few big partial states of varying size and Figure V.4d is based on
many small partial states of similar size. The main difference between the
two runs is the size of the partial states compared to the disconnection time.
This suggests that the benefit of optimization increases with the proportion
of the partial state size variance to the total capacity.

V.8 Conclusion and Future Work

This work presents the first investigation of the opportunities and challenges
of state shedding for operator migration. It is grounded in the insight that
the triggers for operator migration, i.e., overload or network problems, can
be limiting factors to successfully performing operator migration with state-
of-the-art solutions. Instead of the prevailing all-or-nothing solutions, we
propose to perform state shedding to migrate the most useful partial state
under the given situation. Both partitioning operator state and estimating
the utility of partial state depend on the particular operator. To maximize
the aggregated utility of the migrated partial states, we present a solution
to the given optimization problem with complexity O(n2). The simulation-
based comparison of this optimal solution with the greedy approach reveals
that the distribution of the partial size and the number of partial states
play an important role. With few larger partial states the optimal solution
outperforms greedy and with many partial states of similar size, they perform
almost identically. Further simulation experiments confirm the intuition that
the larger the skew in the distribution of the utility of partial states, the
faster the aggregated utility at the new host increases. Random selection
of partial states to migrate will in cases with utility skew and disconnection
before all state is migrated result in lower utility achieved than when using
state shedding.

To thoroughly investigate the full potential of state shedding, future work
will address novel solutions for utility estimation, e.g., to consider application
requirements and to use statistics about previous upstream data, as well as

222

References

to combine state shedding with scheduling of operator migration, e.g., to
delay migration.

Acknowledgments: This work was supported by the Parrot project
(Research Council of Norway, 311197).

References

[1] Abadi, D. et al. “Aurora: a data stream management system”. In:
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. 2003, pp. 666–666.

[2] Babcock, B., Datar, M., and Motwani, R. “Load shedding for
aggregation queries over data streams”. In: Proceedings. 20th
international conference on data engineering. IEEE. 2004, pp. 350–
361.

[3] Chapnik, K., Kolchinsky, I., and Schuster, A. “DARLING: data-aware
load shedding in complex event processing systems”. In: Proceedings
of the VLDB Endowment vol. 15, no. 3 (2021), pp. 541–554.

[4] Chi, Y. et al. “Loadstar: A load shedding scheme for classifying data
streams”. In: Proceedings of the 2005 siam international conference
on data mining. SIAM. 2005, pp. 346–357.

[5] Citi Bike trip data set. https://s3.amazonaws.com/tripdata/201810-
citibike-tripdata.csv.zip. 2018.

[6] Dublin bus GSP data from Dublin city council insight project. https:
//data.smartdublin.ie/dataset/dublin-bus-gps-sample-data- from-
dublin-city-council-insight-project. 2013.

[7] Gedik, B. et al. “Adaptive load shedding for windowed stream
joins”. In: Proceedings of the 14th ACM international conference
on Information and knowledge management. 2005, pp. 171–178.

[8] Gedik, B., Wu, K.-L., and Philip, S. Y. “Efficient construction of
compact shedding filters for data stream processing”. In: 2008 IEEE
24th International Conference on Data Engineering. IEEE. 2008,
pp. 396–405.

[9] Gedik, B. et al. “A load shedding framework and optimizations for
m-way windowed stream joins”. In: 2007 IEEE 23rd International
Conference on Data Engineering. IEEE. 2007, pp. 536–545.

[10] Kleiminger, W., Kalyvianaki, E., and Pietzuch, P. “Balancing load in
stream processing with the cloud”. In: 2011 IEEE 27th International
Conference on Data Engineering Workshops. IEEE. 2011, pp. 16–21.

[11] Riley, G. F. and Henderson, T. R. “The ns-3 network simulator”. In:
Modeling and tools for network simulation. Ed. by Wehrle, K., Güneş,
M., and Gross, J. Berlin, Heidelberg: Springer, 2010, pp. 15–34.

223

V. Travel light: state shedding for efficient operator migration

[12] Rivetti, N., Busnel, Y., and Querzoni, L. “Load-aware shedding in
stream processing systems”. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems.
2016, pp. 61–68.

[13] Slo, A., Bhowmik, S., and Rothermel, K. “hSPICE: state-aware event
shedding in complex event processing”. In: Proceedings of the
14th ACM International Conference on Distributed and Event-based
Systems. 2020, pp. 109–120.

[14] Slo, A., Bhowmik, S., and Rothermel, K. “State-Aware Load Shedding
from Input Event Streams in Complex Event Processing”. In: IEEE
Transactions on Big Data (2020).

[15] Starks, F., Plagemann, T. P., and Kristiansen, S. “DCEP-Sim: An Open
Simulation Framework for Distributed CEP”. In: Proceedings of the
11th ACM International Conference on Distributed and Event-based
Systems. DEBS ’17. Barcelona, Spain: ACM, 2017, pp. 180–190.

[16] Tatbul, N. and Zdonik, S. “Window-aware load shedding for aggre-
gation queries over data streams”. In: VLDB. Vol. 6. 2006, pp. 799–
810.

[17] Tatbul, N. et al. “Load shedding in a data stream manager”. In:
Proceedings 2003 vldb conference. Elsevier. 2003, pp. 309–320.

[18] Volnes, E., Plagemann, T., and Goebel, V. “To Migrate or not to
Migrate: An Analysis of Operator Migration in Distributed Stream
Processing”. In: IEEE Communications Surveys & Tutorials (in
revision) (2023).

[19] Zhao, B. “Complex event processing under constrained resources
by state-based load shedding”. In: 2018 IEEE 34th International
Conference on Data Engineering (ICDE). IEEE. 2018, pp. 1699–1703.

[20] Zhao, B., Hung, N. Q. V., and Weidlich, M. “Load shedding for complex
event processing: Input-based and state-based techniques”. In: 2020
IEEE 36th International Conference on Data Engineering (ICDE).
IEEE. 2020, pp. 1093–1104.

224

Appendices

Appendix A

Expose GUI Queries in YAML
Format

A.1 Full Expose Configuration in YAML Format

Listing A.1: Expose configuration in YAML format

stream−definit ions :
− stream−id : 0

name: StopStream
tuple−format :
− {name: streamList , type : string}
− {name: node, type : int}

− stream−id : 1
name: Person
tuple−format :
− {name: dateTime , type : timestamp}
− {name: id , type : int}
− {name: name, type : string}
− {name: emailAddress , type : string}
− {name: creditCard , type : string}
− {name: city , type : string}
− {name: state , type : string}

− stream−id : 2
name: Auction
tuple−format :
− {name: dateTime , type : timestamp}
− {name: id , type : int}
− {name: itemName, type : string}
− {name: description , type : string}
− {name: in i t ia lB id , type : long}
− {name: reserve , type : int}
− {name: expires , type : timestamp}
− {name: sel ler , type : int}
− {name: category , type : int}

− stream−id : 3
name: Bid
tuple−format :
− {name: dateTime , type : timestamp}
− {name: auction , type : int}
− {name: bidder , type : int}
− {name: price , type : long}

− stream−id : 4
name: Category
tuple−format :
− {name: id , type : int}
− {name: name, type : string}
− {name: description , type : string}
− {name: parentCategory , type : int}

− stream−id : 5
name: BikeTrip
tuple−format :
− {name: a_tripduration , type : long}
− {name: b_starttime , type : string}
− {name: c_stoptime , type : string}
− {name: d_start_station_id , type : long}
− {name: e_start_station_name , type : string}

259

A. Expose GUI Queries in YAML Format

− {name: f_start_stat ion_lat itude , type : double}
− {name: g_start_station_longitude , type : double}
− {name: h_end_station_id , type : long}
− {name: i_end_station_name , type : string}
− {name: j_end_station_latitude , type : double}
− {name: k_end_station_longitude , type : double}
− {name: l_bikeid , type : long}
− {name: m_usertype , type : string}
− {name: n_birth_year , type : long}
− {name: o_gender , type : long}

− stream−id : 15
name: BikeTrip_2
tuple−format :
− {name: a_tripduration , type : long}
− {name: b_starttime , type : string}
− {name: c_stoptime , type : string}
− {name: d_start_station_id , type : long}
− {name: e_start_station_name , type : string}
− {name: f_start_stat ion_lat itude , type : double}
− {name: g_start_station_longitude , type : double}
− {name: h_end_station_id , type : long}
− {name: i_end_station_name , type : string}
− {name: j_end_station_latitude , type : double}
− {name: k_end_station_longitude , type : double}
− {name: l_bikeid , type : long}
− {name: m_usertype , type : string}
− {name: n_birth_year , type : long}
− {name: o_gender , type : long}

− stream−id : 6
name: BusRecord
tuple−format :
− {name: a_ts , type : long}
− {name: b_line_id , type : long}
− {name: c_direction , type : long}
− {name: d_journey_pattern_id , type : string}
− {name: e_time_frame , type : timestamp}
− {name: f_vehicle_journey_id , type : long}
− {name: g_operator , type : string}
− {name: h_congested , type : long}
− {name: i_longitude , type : double}
− {name: j_ lat i tude , type : double}
− {name: k_delay , type : long}
− {name: l_block_id , type : long}
− {name: m_vehicle_id , type : long}
− {name: n_stop_id , type : long}
− {name: o_at_stop , type : long}

− stream−id : 18
name: OutQuery
tuple−format :
− {name: avgPrice , type : long}
− {name: maxPrice , type : long}
− {name: minPrice , type : long}
− {name: bidder , type : long}
− {name: auction , type : long}

− stream−id : 19
name: OutQuery2
tuple−format :
− {name: price , type : long}
− {name: bidder , type : long}
− {name: auction , type : long}

− stream−id : 20
name: OutQuery3
tuple−format :
− {name: l_bikeid , type : long}
− {name: h_end_station_id , type : long}

− stream−id : 21
name: OutQuery4
tuple−format :
− {name: avg_price , type : long}

260

Full Expose Configuration in YAML Format

− {name: count_tuples , type : long}
− {name: description , type : string}
− {name: itemName, type : string}

experiments :
− id : 4

flow :
− node: coordinator

task : deployQueries
arguments: [5 , 144]

− node: coordinator
task : addPotentialHost
arguments:
− [2 , 3, 4]
− 144

− node: coordinator
task : addSinkNode
arguments:
− [5]
− 144

− node: coordinator
task : addSourceNode
arguments:
− [1]
− 144

− node: coordinator
task : adapt
arguments: [144, 3, drop−state]

− node: 1
task : wait
arguments: [1000000000]

− node: coordinator
task : loopTasks
arguments:
− 1
− − node: coordinator

task : loopTasks
arguments:
− 10
− − node: 1

task : sendNRowsDsAsSpecificStream
arguments: [45 , 2, 1000]

− node: 3
task : retWhenReceived
arguments: [10000]

− node: 3
task : wait
arguments: [1000000000]

− node: 1
task : sendNRowsDsAsSpecificStream
arguments: [94 , 3, 100000]

− node: 3
task : retWhenProcessed
arguments: [100000, 144, jo in]

− node: coordinator
task : wait
arguments: [1000000]

− node: coordinator
task : adapt
arguments: [144, 4, migration_mechanism]

− node: 5
task : retEndOfStream
arguments: [1000000000]

datasets :
− { f i l e : nexmark−dataset−1000−unique−bidders−100000−rows . csv ,

name: NexMark 100000 tuples (CSV) , id : 94, type : csv}
− { f i l e : auction−10000.csv , name: 10k Auction , id : 46, type : csv}
spequeries :

outputs : []
inputs : []

261

A. Expose GUI Queries in YAML Format

queries :
− operators :

− name: Output 0
type : output
parameters : {stream−id : −1}

− name: Select 0
type : select
parameters :

f ie lds : [avg(B. price) avg_price , count (B. auction) count_tuples ,
A. description , A.itemName]

− name: input 0
type : input
parameters : {stream−id : 3, al ias : B}

− name: Print 0
type : print
parameters : {}

− name: Window 1
type : window
parameters : {external−timestamp−f i e ld : ’ ’ , size : 100000,

emit−type : PROCESSING_TIME, emit−size : 100,
size−type : PROCESSING_TIME, jump: 1000}

− name: GroupBy 1
type : groupby
parameters :

f ie lds : [B. bidder]
− name: input 1

type : input
parameters : {stream−id : 2, al ias : A}

− name: Join 0
type : jo in
parameters : {}

− name: Window 0
type : window
parameters : {external−timestamp−f i e ld : ’ ’ , size : 0,

emit−type : TUPLE_COUNT, emit−size : −1,
size−type : TUPLE_COUNT, jump: 1}

− name: Window 2
type : window
parameters : {external−timestamp−f i e ld : ’ ’ , size : 1000000,

emit−type : TUPLE_COUNT, emit−size : −1,
size−type : TUPLE_COUNT, jump: 1}

− name: F i l t e r 2
type : f i l t e r
parameters :

op: larger_than_or_equals
arg2 : {value−type : int , type : attribute , value : A. id , offset : 0}
arg1 : {value−type : int , type : attribute , value : B. auction}

− name: F i l t e r 3
type : f i l t e r
parameters :

op: smaller_than_or_equals
arg2 : { value−type : int , type : attribute , value : A. id , offset : 0 }
arg1 : { value−type : int , type : attribute , value : B. auction }

name: NewName0
edges:
− stream: stream_name1

from: {name: Window 0, type : intermediate}
to : {name: Join 0, type : intermediate}

− stream: stream_name0
from: {name: Window 1, type : intermediate}
to : {name: Select 0, type : intermediate}

− stream: Auction
from: {name: input 1, type : intermediate}
to : {name: Window 2, type : intermediate}

− stream: Output 0
from: {name: Output 0, type : output}

− stream: stream_name5
from: {name: Join 0, type : intermediate}
to : {name: F i l t e r 2, type : intermediate}

262

Grouped Aggregation Query in YAML Format

− stream: OutQuery4
from: {name: Select 0, type : intermediate}
to : {name: Print 0, type : intermediate}

− stream: stream_name4
from: {name: GroupBy 1, type : intermediate}
to : {name: Window 1, type : intermediate}

− stream: stream_name3
from: {name: Window 2, type : intermediate}
to : {name: Join 0, type : intermediate}

− stream: Bid
from: {name: input 0, type : intermediate}
to : {name: Window 0, type : intermediate}

− stream: Final
from: {name: Print 0, type : intermediate}
to : {name: Output 0, type : intermediate}

− stream: stream_name330
from: { name: F i l t e r 2, type : intermediate }
to : { name: F i l t e r 3, type : intermediate }

− stream: stream_name6
from: {name: F i l t e r 3, type : intermediate}
to : {name: GroupBy 1, type : intermediate}

id : 5
plots :
− {operator−name: Print 0, query−id : ’144 ’ , control−experiment−id : ’4 ’ ,

stream−id : ’3 ’ , name: plot1 , type : Input−latency}
network :

bandwidth : {migration : ’10000000’, tuples : ’10000000’}
latency : {migration : ’0 ’ , tuples : ’0 ’}

A.2 Grouped Aggregation Query in YAML Format

Listing A.2: Grouped aggregation query in YAML format

spequeries :
outputs : []
inputs : []
queries :
− operators :

− name: Output 0
type : output
parameters : {stream−id : −1}

− name: Select 0
type : select
parameters :

f ie lds : [avg(B. price) avg_price , count (B. auction) count_tuples]
− name: input 0

type : input
parameters : {stream−id : 3, al ias : B}

− name: Print 0
type : print
parameters : {}

− name: Window 1
type : window
parameters : {external−timestamp−f i e ld : ’ ’ , size : 700000,

emit−type : PROCESSING_TIME, emit−size : 1000000,
size−type : PROCESSING_TIME, jump: 1000000}

− name: GroupBy 1
type : groupby
parameters :

f ie lds : [B. bidder]
name: NewName0
edges:
− stream: stream_name0

from: {name: Window 1, type : intermediate}
to : {name: Select 0, type : intermediate}

263

A. Expose GUI Queries in YAML Format

− stream: Output 0
from: {name: Output 0, type : output}

− stream: OutQuery4
from: {name: Select 0, type : intermediate}
to : {name: Print 0, type : intermediate}

− stream: stream_name3
from: {name: GroupBy 1, type : intermediate}
to : {name: Window 1, type : intermediate}

− stream: Bid
from: {name: input 0, type : intermediate}
to : {name: GroupBy 1, type : intermediate}

− stream: Final
from: {name: Print 0, type : intermediate}
to : {name: Output 0, type : intermediate}

id : 5

A.3 Non-equijoin Query in YAML Format

Listing A.3: Non-equijoin query in YAML format

spequeries :
outputs : []
inputs : []
queries :
− operators :

− name: Output 0
type : output
parameters : {stream−id : −1}

− name: Select 0
type : select
parameters :

f ie lds : [B. price , A. id]
− name: input 0

type : input
parameters : {stream−id : 3, al ias : B}

− name: Print 0
type : print
parameters : {}

− name: input 1
type : input
parameters : {stream−id : 2, al ias : A}

− name: Join 0
type : jo in
parameters : {}

− name: Window 0
type : window
parameters : {external−timestamp−f i e ld : ’ ’ , size : 0,

emit−type : TUPLE_COUNT, emit−size : −1,
size−type : TUPLE_COUNT, jump: 1}

− name: Window 2
type : window
parameters : {external−timestamp−f i e ld : ’ ’ , size : 1000000,

emit−type : TUPLE_COUNT, emit−size : −1,
size−type : TUPLE_COUNT, jump: 1}

− name: F i l t e r 2
type : f i l t e r
parameters :

op: larger_than_or_equals
arg2 : {value−type : int , type : attribute , value : A. id , offset : 0}
arg1 : {value−type : int , type : attribute , value : B. auction}

− name: F i l t e r 3
type : f i l t e r
parameters :

op: smaller_than_or_equals
arg2 : { value−type : int , type : attribute , value : A. id , offset : 0 }

264

Join Followed By Grouped Aggregation Query in YAML Format

arg1 : { value−type : int , type : attribute , value : B. auction }
name: NewName0
edges:
− stream: stream_name1

from: {name: Window 0, type : intermediate}
to : {name: Join 0, type : intermediate}

− stream: stream_name0
from: {name: F i l t e r 2, type : intermediate}
to : {name: F i l t e r 3, type : intermediate}

− stream: stream_name9
from: { name: F i l t e r 3, type : intermediate }
to : { name: Select 0, type : intermediate }

− stream: Auction
from: {name: input 1, type : intermediate}
to : {name: Window 2, type : intermediate}

− stream: Output 0
from: {name: Output 0, type : output}

− stream: stream_name5
from: {name: Join 0, type : intermediate}
to : {name: F i l t e r 2, type : intermediate}

− stream: OutQuery4
from: {name: Select 0, type : intermediate}
to : {name: Print 0, type : intermediate}

− stream: stream_name3
from: {name: Window 2, type : intermediate}
to : {name: Join 0, type : intermediate}

− stream: Bid
from: {name: input 0, type : intermediate}
to : {name: Window 0, type : intermediate}

− stream: Final
from: {name: Print 0, type : intermediate}
to : {name: Output 0, type : intermediate}

id : 5

A.4 Join Followed By Grouped Aggregation Query in
YAML Format

Listing A.4: Join followed by grouped aggregation query in YAML format

spequeries :
outputs : []
inputs : []
queries :
− operators :

− name: Output 0
type : output
parameters : {stream−id : −1}

− name: Select 0
type : select
parameters :

f ie lds : [avg(B. price) avg_price , count (B. auction) count_tuples ,
A. description , A.itemName]

− name: input 0
type : input
parameters : {stream−id : 3, al ias : B}

− name: Print 0
type : print
parameters : {}

− name: Window 1
type : window
parameters : {external−timestamp−f i e ld : ’ ’ , size : 100000,

emit−type : PROCESSING_TIME, emit−size : 100, size−type :
PROCESSING_TIME, jump: 1000}

− name: GroupBy 1

265

A. Expose GUI Queries in YAML Format

type : groupby
parameters :

f ie lds : [A. id]
− name: input 1

type : input
parameters : {stream−id : 2, al ias : A}

− name: Join 0
type : jo in
parameters : {}

− name: Window 0
type : window
parameters : {external−timestamp−f i e ld : ’ ’ , size : 0,

emit−type : TUPLE_COUNT, emit−size : −1, size−type : TUPLE_COUNT, jump: 1}
− name: Window 2

type : window
parameters : {external−timestamp−f i e ld : ’ ’ , size : 1000000,

emit−type : TUPLE_COUNT, emit−size : −1, size−type : TUPLE_COUNT, jump: 1}
− name: F i l t e r 2

type : f i l t e r
parameters :

op: equals
arg2 : {value−type : int , type : attribute , value : A. id}
arg1 : {value−type : int , type : attribute , value : B. auction}

name: NewName0
edges:
− stream: stream_name1

from: {name: Window 0, type : intermediate}
to : {name: Join 0, type : intermediate}

− stream: stream_name0
from: {name: Window 1, type : intermediate}
to : {name: Select 0, type : intermediate}

− stream: Auction
from: {name: input 1, type : intermediate}
to : {name: Window 2, type : intermediate}

− stream: Output 0
from: {name: Output 0, type : output}

− stream: stream_name5
from: {name: Join 0, type : intermediate}
to : {name: F i l t e r 2, type : intermediate}

− stream: OutQuery4
from: {name: Select 0, type : intermediate}
to : {name: Print 0, type : intermediate}

− stream: stream_name4
from: {name: GroupBy 1, type : intermediate}
to : {name: Window 1, type : intermediate}

− stream: stream_name3
from: {name: Window 2, type : intermediate}
to : {name: Join 0, type : intermediate}

− stream: Bid
from: {name: input 0, type : intermediate}
to : {name: Window 0, type : intermediate}

− stream: Final
from: {name: Print 0, type : intermediate}
to : {name: Output 0, type : intermediate}

− stream: stream_name6
from: {name: F i l t e r 2, type : intermediate}
to : {name: GroupBy 1, type : intermediate}

id : 5

266

