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Abstract
A challenge in vascular surgeries is the precise positioning of catheters. Robotic
systems, especially flexible soft/serial-link robots, might be employed to assist
surgeons during catheterizations by providing real-time sensing, better hand-eye
coordination, and more reliable dexterity, especially in deep-seated regions within
the human body. This dissertation aims to advance the modeling and control of
catheterizations coupled with magnetic actuation. Mainly catheters/guidewires,
i.e., Continuum Manipulators (CMs), are studied in this thesis.

To alleviate the physical burden of a clinician, methods of wireless actuation
can be integrated with catheters or guidewires with advanced controllability that
potentially will perform better than current actuation systems. By omitting the
mechanical structures required for navigation of conventional robots, magnetic
actuation wirelessly actuate robots, i.e., surgical tools such as catheters and
guidewires, thus substantially reducing their size and complexity. This enables
the surgical tools to manoeuvre better in confined areas inside biological bodies.

Although magnetically-actuated catheters/guidewires are structurally simpler
than comparable devices, such magnetic tools exhibit complex mechanical
behavior. This thesis focuses on how these dynamics can be analyzed in
potentially clinically-relevant applications. The contributions are twofold and
are presented in the form of two research questions. This dissertation suggests
approaches to i) modeling the behavior of CMs and ii) devising control algorithms
to enable their steering.

A novel approach is presented to derive models for complex mechanisms
with large deformations that respects their intrinsic properties and preserves
the structure of the configuration space. The experimental results show an
average absolute error and maximum error in tip position estimation of 0.13 mm
and 0.58 mm, respectively, for a manipulator length of 60.55 mm. A balance
between computational bandwidths and prediction quality is established with a
Neural Networks-driven model which can be used for real-time applications where
the experiments suggest maximum and mean absolute errors of (1.27◦, 0.23◦),
(4.69◦, 1.27◦), and (0.60◦, 0.10◦) for rotations around the x, y, and z-axes in
the tip, respectively, for a manipulator length of 95 mm. Furthermore, the
dissertation explores the use of Reinforcement Learning techniques, Attractor
Dynamics, and the Execution Extended Rapidly-Exploring Random Trees
methods for an untethered magnetically actuated milliscale particle, and examines
the performance of a simple optimal control in a guidewire steering scenario.
The experimental results show an average success rate of 98.86% over 30 episodes
demonstrating the viability of the proposed Reinforcement Learning method.
After an introduction, we present a series of studies, divided into chapters, with
each chapter concerning challenges related to a particular research question.
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Sammendrag
En utfordring i vaskulærkirurgi er nøyaktig plassering av katetre. Robotiske
systemer, spesielt fleksible myke/serie-koblede roboter, kan benyttes for å bistå
kirurger under kateterisering ved å tilby sanntidsregistrering, bedre hånd-øye-
koordinasjon, og økt fingerferdighet, særlig i dyptliggende områder inne i
menneskekroppen. Denne avhandlingen sikter mot å fremme modelleringen
og styringen av kateteriseringer koblet med magnetisk aktuering. Hovedfokus er
på katetre/guideledninger, dvs. Kontinuum-Manipulatorer (KM). For å redusere
den fysiske belastningen for en kliniker, kan metoder for trådløs aktuering
integreres med katetre eller guideledninger med avansert kontrolleringsevne, som
potensielt kan prestere bedre enn dagens aktiveringssystemer. Ved å fjerne
de mekaniske strukturene nødvendige for navigering av konvensjonelle roboter,
kan magnetisk aktuering trådløst aktivere roboter, altså kirurgiske verktøy
som katetre og guideledninger, noe som vesentlig reduserer deres størrelse og
kompleksitet. Dette gir de kirurgiske verktøyene bedre manøvreringsevne i trange
områder inne i biologiske organismer.

Selv om magnetisk aktuerte katetre/guideledninger er strukturelt enklere
enn sammenlignbare enheter, viser slike magnetiske verktøy kompleks mekanisk
oppførsel. Denne avhandlingen fokuserer på hvordan disse dynamikkene kan
analyseres i potensielt klinisk relevante applikasjoner. Bidragene er todelt og
blir presentert i form av to forskningsspørsmål. Denne avhandlingen foreslår
tilnærminger til i) modellering av oppførselen til KMs og ii) utforming av
styringsalgoritmer for å muliggjøre deres styring.

En ny metode blir introdusert for å avlede modeller for komplekse mekanismer
med store deformasjoner som tar hensyn til deres iboende egenskaper og bevarer
strukturen i konfigurasjonsrommet. De eksperimentelle resultatene viser en gjen-
nomsnittlig absolutt feil og maksimal feil i estimeringen av tuppens posisjon på
henholdsvis 0,13 mm og 0,58 mm, med en manipulatorlengde på 60,55 mm. En
balanse mellom beregningskapasitet og kvaliteten på prediksjonene er oppnådd
ved hjelp av en modell basert på nevrale nettverk. Denne kan benyttes for san-
ntidsapplikasjoner hvor eksperimentene antyder maksimale og gjennomsnittlige
absolutte feil på (1, 27◦, 0, 23◦), (4, 69◦, 1, 27◦), og (0, 60◦, 0, 10◦) ved rotasjoner
rundt henholdsvis x-, y-, og z-aksene i tuppen, for en manipulatorlengde på
95 mm. Videre utforsker avhandlingen bruken av teknikker innenfor forsterkn-
ingslæring, Attractor Dynamics og Execution Rapidly-Exploring Random Trees
for en magnetisk drevet partikkel i millimeterskala. Den gransker også ytelsen
av en enkel optimal kontroll i et guidewire-styringsscenario. De eksperimentelle
resultatene viser en gjennomsnittlig suksessrate på 98,86% over 30 episoder, som
bekrefter levedyktigheten til den foreslåtte metoden for forsterkningslæring.
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Chapter 1

Introduction

Minimally Invasive Surgery (MIS) has become a standard methodology in many
clinical interventions over the past few decades due to its clear advantages for
operational success and patient recovery. The benefits include reduced trauma
during procedures, less pain, decreased blood loss, shorter hospital stays, quicker
recovery time, and lower risk of infection.

1.1 Robotics in MIS

Surgical robotics has significantly grown over the past decade to enable robotic
systems in various complex medical procedures that are arguably difficult to
perform with conventional means. Robotic systems are used to augment and
extend the capabilities of surgeons, offering outstanding levels of dexterity and
precision in diagnosis and treatment. Robotic methods are well equipped for
performing multiple tasks simultaneously, e.g., handling multiple tools and 3D
visualizations.

Better robot designs, modeling, and control methods are needed to meet
the current challenges in MIS. Reachability, a high level of dexterity, and large
elastic deformability are the primary driving factors behind the growth of
research in the design, modeling, and control of Continuum Manipulators (CMs),
which are flexible and deformable robots composed of soft and elastic materials
and can serve as possible substitutes for rigid robots. Flexible CMs have
recently generated interest in several fields, especially in minimally invasive
surgical robotics and interventional medicine, such as catheter-based endovascular
intervention [Bur+13; Gra+00] and cardiac surgeries [CP09; KH11]. In contrast
to conventional rigid link manipulators, soft manipulators are able to reshape
their configurations to allow for redundancies in path planning and are capable of
precise and delicate manipulation of objects in complex and varying environments.

1.1.1 Potential Applications of CMs in Medical Interventions

Continuum manipulators, with their ability to change shape and position flexibly
along their entire length, are particularly well-suited for minimally invasive
procedures. They are adept at navigating through body lumens, natural orifices,
or small surgical incisions, which makes them ideal for a range of applications in
MIS [Dup+22]:

These manipulators are highly advantageous in navigating the vascular system
for targeted interventions due to their slenderness and dexterity, offering minimal
invasiveness and precision. In cardiac surgeries, continuum robots can perform
delicate procedures within the heart, minimizing tissue damage and improving
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patient outcomes. Their narrow curvilinear shape allows them to be effectively
used in surgeries like laryngeal procedures and other interventions requiring
access to confined areas.

1.1.2 Design Requirements for CMs in MIS

Designing continuum manipulators for MIS involves considerations of flexibility,
precision, biocompatibility, and more. Key requirements include dexterity, elastic
deformability, precision in control, and miniaturization for patient safety and
reduced trauma [RDM19; Wei+23].

1.1.3 Expected Performances of CMs

The technical contributions of continuum manipulators in MIS are expected to
enhance surgical precision, improve operational efficiency, reduce patient recovery
time, and show adaptability to various surgical scenarios, thus improving surgical
procedures and patient care in MIS [Zha+23].

1.2 Actuation Mechanisms for CMs

Steerable manipulators, i.e., catheters in the context of MIS, are actuation-
dependent devices, and there are numerous candidate actuation mechanisms
for CMs, such as electric and mechanic actuations [Cia+13; WJ10; Yun+12].
Compared to these actuation mechanisms, magnetic actuation benefits from
high dexterity, versatility, and wireless actuation [HSM18; Sik+19]. However,
mechanically actuated catheters are the largest group in the literature. Mechanic
actuation describes the most commercially available group of recent catheter
actuation technologies, based on cable or tendon-actuated steering. It should
be noted that in this work, both magnetic and mechanical actuations were
investigated.

Magnetic fields can manipulate objects without any contacts. For CMs, this
enables manipulation without the need for mechanical guidewires or other internal
structures. Magnetic CMs consist of a passive elastic body and magnetic sections,
typically permanent magnets or small electromagnetic coils. An externally
generated magnetic field harmlessly permeates the patient’s body and applies
forces and torques on these magnets, causing the overall continuum structure
to deform. Omitting the structures necessary for mechanical actuation allows
magnetic catheters and endoscopes to be more flexible and thinner than tendon-
wire designs, enabling access to difficult-to-reach areas. Magnetic CMs can either
serve as interventional devices equipped with the necessary tools or guide other
non-magnetic instruments. Magnetic actuation typically relies on alterations
in a magnetic field, either internal or external, applied to the distal end of the
catheter equipped with electromagnetic elements. The resulting magnetic force,
with its specific magnitude and direction, is determined by the properties of these
electromagnetic elements and the surrounding magnetic field. By controlling the
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strength and orientation of the field, the magnetically active catheter tip can be
guided inside the body.

Magnetically actuated catheters are found to be moving from the experimental
scene toward the medical bench, with several magnetically steerable catheters
already commercially available, for example, the Niobe and the Genesis
(Stereotaxis Inc., MO, USA) [Arm+07; Tsu+06], the CGCI system (Magnetecs
Corporation, CA, USA) [Moy+13]. Additionally, catheter navigation in the
MRI is another growing field of research due to the potential of combining
visualization techniques with steering [Lal+15].

Regarding the mechanic actuation, two subcategories can be distinguished
regarding the tip mechanism in these catheters: 1) single segment actuation and
2) multiple segment actuation. The former group ensures deflection by using
steering cables together with a bendable catheter tip made from a compliant
material. The latter group provides deflection by the relative movement between
separate elements or joints as a result of cable push and pull.

1.3 Modeling and Control of CMs

One of the key challenges in the field of CMs is developing a model for analyzing
the dynamics of the manipulators and accurately predicting and controlling their
behavior. Control, trajectory planning, and optimal design purposes of CMs
typically rely on dynamic models of manipulators, especially in unknown and
unstructured environments such as inside the human body. Existing models
focus primarily on static or quasi-static approaches to make the computations
tractable. Such models usually do not account for the geometric nonlinearities
(e.g., large deformations) and do not respect the conservation of dynamical
properties of the system (e.g., energy and momentum maps conservation) or
the structures of configuration space. On the other hand, dynamical modeling
approaches, contain dynamics of CMs and also take into account time-varying
responses of manipulators, including high-frequency modes which may also
preserve the invariants (energy, momentum maps) or the symplectic structure of
CMs, especially for long-time simulations.

Accurately steering CMs for clinically relevant tasks within a constrained
environment requires proper control and/or pathfinding strategies, especially
in the presence of disturbances such as cardiac and respiratory motions, the
movement of the GI tract, and the bloodstream. It is obvious that the complexity
of the intervascular structure and its disturbances are barriers to using offline-
programmed paths, where an exact knowledge of the path from the insertion
point to the target location should be known in advance. Therefore, developing
appropriate control or pathfinding methods requires knowledge about the shape
of CMs or a model to describe the behavior of CMs.
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1.4 Research Objectives and Outline of the Thesis

Although CMs, especially in the field of MIS, provide surgeons with unique
clinical possibilities, such as the capability of navigating through confined areas
in biological bodies, their fabrication and development are subjected to a
variety of challenges. The challenges are varied, from the design of CMs to
the understanding and handling of their behavior.

Two key research questions have been identified by a vast literature search
done in the papers and summarized in Chapter 2 as the primary driving force
behind the research done in this thesis. Ultimately, the following were the
investigated research questions and the thesis objectives:

RQ.1 CM Modeling: How to develop dynamic models of functional-
ized CMs and make the models more practically-relevant for
novel applications?
In many tasks, dynamic models of CMs are crucial for control, trajectory
planning, and optimal design purposes, especially in MIS for operations in
unknown and unstructured environments such as inside biological bodies.
In the literature, the primary focus is on static or quasi-static, non-real-time,
or geometrically inexact approaches. Investigation of previous work reveals
the need for a comprehensive modeling method for offline study of CMs’
workspace, long-term simulations, and animation purposes. In this work,
we derive different models with unique properties, from a systematic,
actuation-independent, computationally intensive, geometrically exact
model to a neural networks-driven model that establishes a balance between
computational bandwidths and prediction quality.

RQ.2 CM Control: How to enable (vision-based) control and path
finding strategies applied to an (un)tethered magnetic milliscale
robot?
Due to the elastic characteristics and geometric nonlinearities (i.e., bending,
torsion, shear, and elongation, including large deformation) of CMs, their
dynamics may show highly nonlinear behavior and a complex workspace.
Therefore, CMs require a closed-loop control system in real-time robotic
applications. Conventional control and path-planning techniques rely on
analytical models. Also, traditional controllers and online path planners
are problem-specific or computationally heavy approaches, and their
design for time-varying workspaces and uncertain environments (e.g., with
obstacles and disturbances) becomes challenging. On the other hand, deep
Reinforcement Learning (RL) methods are powerful algorithms that handle
trajectory planning tasks and can be generalized for various dynamic
workspaces in the presence of complex obstacles and uncertainties.

Remark 1.4.1. The research in this thesis focuses on developing dynamic models
of CMs and control strategies for magnetic milliscale robots, with the aim of
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advancing medical interventions in MIS. The performance metrics that guide
this research are multifaceted, reflecting both the complexity and novelty of the
applications.

For CM Modeling (RQ.1), the performance metrics include:

• Modeling Accuracy and Dynamics Analysis: In evaluating the performance
of dynamic models for CMs, a key metric encompasses both Estimation
and Modeling Accuracy. This metric focuses on the precision of model
predictions, emphasizing the fidelity in capturing geometric nonlinearities,
such as large deformations, and conserving the dynamic properties of the
system. Precision is quantified through criteria like average absolute error
and maximum error in tip position estimation for manipulators, measured
in millimeters.

• Computational Bandwidth: A critical aspect of dynamic modeling in real-
time applications is the balance between computational resource allocation
and the quality of predictions. This is particularly pertinent for Neural
Networks-driven models used in CMs. The focus is on achieving high
prediction accuracy with minimal computational delay, ensuring that the
models can be effectively integrated into real-time applications.

• Model Validation: In this thesis, validation encompasses comparing our
developed dynamic models against outcomes from real-world experiments.
This approach benchmarks the models’ practical effectiveness, confirms
their theoretical soundness, and ensures their applicability in real-life
scenarios.

For CM Control (RQ.2), the performance metrics are:

• Success Rate: Demonstrating the viability of the Reinforcement Learning
method and its real-life applicability through the average success rate over
multiple episodes.

• Robustness to Disturbances: This metric gauges the control system’s
resilience against external perturbations, focusing on its consistency in
achieving predefined objectives under variable conditions.

• Path Planning Efficiency: Benchmarking the RL-based algorithm against
classical approaches like Attractor Dynamics and Execution Extended
Rapidly-Exploring Random Trees to assess the system’s efficiency.

• Control and Path finding Efficacy: In constrained environments, the
effectiveness of control strategies and path finding techniques is paramount,
including accuracy in trajectory planning and adaptability to changes in
the environment.

• Handling Nonlinear Behavior and Complex Workspace: Evaluating the
CM’s ability to navigate complex workspace and its performance in real-
time robotic application.
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Additionally, the thesis addresses the practical implications of these metrics,
aiming to reduce the physical burden on clinicians and improve surgical outcomes.
The overarching goal is to enhance the dexterity and maneuverability of surgical
tools within the human body, thereby potentially improving patient safety and
surgical precision.

The thesis consists of this introduction chapter and five more chapters
where we address background in Chapter 2, methods and experimental results
addressing the research questions, discussion, and concluding remarks through
Chapter 3 to Chapter 6. Chapter 3 gives an account of the development process
of dynamic modeling algorithms to capture the governing dynamics of magnetic
CMs and revisits the derivation and validation processes of real-time models for
CMs. This chapter covers the research question RQ.1 through Paper I, Paper II,
Paper IV, and Paper V. The research question RQ.2 is investigated in Chapter 4
which mainly concerns the control of CMs through Paper III, and Paper V. Lastly,
discussions and conclusions are presented in Chapter 5 and Chapter 6. The
papers come next, and then Appendix A provides physical interpretations of a
few mathematical concepts used throughout the thesis. Figure 1.1 depicts the
conceptual diagram for the thesis.

CMs for Medical Interventions

Robotics in MIS

Potential Applications of CMs in Medical Interventions

Design Requirements for CMs in MIS

Expected Performances of CMs

Modeling of CMs

Exact Nonlinear Dynamic Model Real- time Dynamic Model Rapid Physics- based Kinematic Model

Control of CMs

RL- based Switching Controller
Benchmarked with:

Optimal Kinematic- based Controller

Actuation Mechanisms for CMs

Scientific Output
Summary of Papers

Cable/Tendon- actuated Mechanism

Thermal Actuation

Electric Mechanism

Magnetic Mechanism

ERRT Attractor Dynamics

Paper I: Dynamic Modeling of Soft 
Continuum Manipulators Using Lie 

Group Variational Integration

Paper II: A Recurrent Neural- 
Network- Based Real- Time 

Dynamic Model for Soft 
Continuum Manipulators

Paper III: Reinforcement Learning- based 
Switching Controller for a Milliscale 

Robot in a Constrained Environment

Paper IV: Novel Robotic- Assisted 
Transesophageal Echocardiography 

System - Design, Prototyping, and 
Deep Learning Modeling

Paper V: Physics- Based Simulation 
and Control Framework for Steering 

a Magnetically- Actuated Guidewire

Pneumatic Mechanism

Hydraulic Mechanism

Figure 1.1: Conceptual diagram of the thesis.

1.5 Scientific Output: Summary of Papers

The studies conducted in the course of this thesis have been organized in a series
of publications. Figure 1.2 shows how the papers are connected to the research
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questions. Across all chapters, the content of this dissertation relates to the
context set by the following scientific articles.

Figure 1.2: All the papers included in the thesis, grouped by the research
questions they address. See Section 1.4 for the full research questions. Paper IV
is submitted at the time of thesis submission.

Paper I focuses on the derivation and experimental validation of a dynamic
algorithm for modeling and estimation of soft CMs’ full spatial dynamics
using Lie group variational integration. Using magnetic actuation, dynamic
and static experiments were conducted on manipulators with rigid and soft
materials (e.g., aluminum and Polydimethylsiloxane (PDMS)) to illustrate
the validity of the presented algorithm for a wide range of experiments.
This article’s novelty can be stated as follows:

• The primary contribution of this article is the derivation and
experimental validation of a dynamic model for forced continuum
manipulators with soft materials undergoing spatial deformation. The
model accounts for the nonlinearities of the continuum manipulator,
including loading resulting from magnetic fields, gravity, and internal
and external dissipation forces generated by friction.

• Due to the difficulty in obtaining knowledge about the internal and
external dissipation forces, distributed estimation filters have been
designed to take these forces into account and capture their behavior.

Paper II introduces and validates a real-time prediction framework based on a
neural network approach for soft continuum manipulators. The proposed
RNN-based parallel predictive scheme does not rely on computationally
intensive algorithms; therefore, it is useful in real-time applications. The
comparison results of the proposed model and a well-known model for
continuum manipulators, i.e., Cosserat rod theory, are also provided,
revealing the practical effectiveness of the proposed model. The
contributions of this paper are as follows:
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• Real-time prediction of soft manipulators’ full spatial dynamics is
considered in the proposed RNN-based algorithm by incorporating
multiple lightweight RNN-based models.

• In traditional modeling approaches, there are no systematic methods
to obtain knowledge about dissipation forces, in particular friction,
during the modeling procedure. The presented algorithm intrinsically
takes the dissipation forces into account and incorporates their effects
into the model.

• Through an experiment, the results of the proposed RNN-based model
and Cosserat rod theory method are compared, revealing the practical
effectiveness of the proposed methodology.

Paper III presents a customized reinforcement learning-based magnetic manipu-
lation and switching control mechanism to autonomously carry a particle
(i.e., a milliscale robot) around obstacles within a constrained environment
in the presence of disturbances. Applying wrenches to ferromagnetic parti-
cles is an essential part of magnetic actuation mechanisms. As a first step,
only a single untethered magnetic object is considered in this paper, and
the algorithm can be potentially used as an underlying control technique
for magnetic CMs. The main contributions to this work are as follows:

• Implementing an RL-based switching framework for dynamic control
of a particle in the presence of obstacles in two dimensions with visual
feedback and using a robotic arm in a real-world scenario.

• Through simulations and experiments, the results of the proposed
RL-based algorithm and classical approaches such as Attractor
Dynamics, and Execution Extended Rapidly-Exploring Random Trees
(ERRT) are compared, revealing the practical efficacy of the proposed
methodology.

Paper IV highlights the development and design of a robotic-assisted trans-
esophageal echocardiography (TEE) system. This work introduces a novel
approach in robotizing TEE probes, along with a focus on real-time kine-
matics modeling using a RNN. The RNN model adeptly predicts the TEE
transducer’s position and orientation, addressing challenges like the probe’s
dead-zone and nonlinearities. These contributions represent a significant
leap in robotic control and precision for TEE applications in medical
interventions.

Paper V establishes a physics-based simulation framework for steering a
magnetically actuated guidewire based on the linear elasticity and dipole
theories. In the presented framework, a simplified integration scheme
based on the finite-volume method is employed to model guidewire using
the linear elasticity theory and forces resulting from the interference of
magnetic fields to provide a rapid model reconstruction.
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This study contributes by presenting a rapid quasi-static modeling
technique for the simulation of soft manipulator control and formation. This
article proposes a rapid multiphysics simulation framework for magnetically
actuated continuum manipulators within an environment similar to the GI
tract for closed-loop control applications to reduce the reality gap. The
suggested technique is unique in that it combines rapid quasi-static models
with soft guidewires controlled by magnetic fields, which may be employed
in closed-loop control systems for precise navigation.

This chapter has established a foundational understanding of CMs, highlight-
ing this thesis’ core aspects. The next chapter will build on this foundation,
exploring the historical development of the field, key studies, and theoretical
frameworks. Our focus will be on identifying emerging challenges and potential
advancements within this area of research.
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Chapter 2

Background

Continuum robots and soft robots represent two innovative approaches in robotic
design, each with unique features suited for specific applications. While they
share some similarities in flexibility and dexterity, their differences are crucial in
the context of robotics[Li+22; WLK21].

Continuum robots, inspired by natural structures such as elephant trunks
and tentacles, exhibit a continuous, curvilinear structure devoid of discrete joints,
enabling smooth and natural movements. These robots are typically constructed
from materials that balance rigidity and flexibility, like segmented metal or plastic,
facilitating precise control necessary for complex medical procedures [RD99;
WJ10]. In contrast, soft robots are designed with highly flexible, compliant
materials like elastomers and bio-inspired substances, granting them remarkable
adaptability and safety due to their compliance [Maj14; Tri+08]. These materials
enable soft robots to mimic biological organisms, focusing on seamless integration
with the human body and natural environments.

The actuation methods employed by these robots are pivotal to their
functionality. Continuum robots often use tendon-driven systems, pneumatic
or hydraulic actuation, and sometimes shape memory alloys, providing precise
control and repeatable positioning, which are crucial for MIS applications [RS12].
Soft robots, however, utilize soft actuators such as pneumatic artificial muscles,
electroactive polymers, or fluidic elastomer actuators. These actuators allow for
adaptive and biomimetic movement but often at the expense of reduced precision
[Li+22; Mad+04; Shi+16].

Modeling and control of soft Continuum Manipulators (CMs) have been a
hotspot of study in recent years, with the overarching goal of developing accurate
models and efficient control strategies that can handle the inherent complexity
of these systems. This chapter presents an overview of the background and
state-of-the-art in modeling and control of continuum manipulators, with a
particular emphasis on the key developments, advances, and challenges in this
field.

2.1 Models for CMs

Controlling and understanding almost all physical systems typically requires
simulations of their dynamic and kinematic behavior over a wide range of time
and space scales. In the literature, numerous approximate models have been
investigated with the primary goal of striking a balance between computational
complexity and precision. In other words, the resulting models trade off accuracy
for computational efficiency. To get the big picture on modeling for CMs,
Figure 2.1 depicts an overview of different modeling methods categorized based
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on computation cost and the nature of the model (i.e., kinematic versus dynamic).
Some articles on computationally-intensive dynamic models are cited in Table 2.1
and a few references on rapid dynamic and kinematic analyses for CMs are
brought up in Table 2.2 and Table 2.3, respectively.

Figure 2.1: Overview of references grouped based on dynamic/kinematic and
computationally heavy/fast methods. The intersections represent models that
share attributes of the adjoining categories. This visualization also indicates the
positioning of our research within this framework

Table 2.1: References on computationally-heavy dynamic methods for CMs

Ref. Modeling Approach and
Properties

Robot Type/Applica-
tion

[AKN04] Multi-body dynamics with
bending energies

Guidewire modeling

[RB13;
RB14]

High-fidelity lumped parame-
ter model

Multisegment rod-driven
continuum robots

[Ren+14] Rigorous Cosserat geometri-
cally exact model

CM prototype inspired
by the octopus arm

[Dem+15;
GDS19]

Variational Lie group formu-
lation

General continuum ma-
nipulator

Following the references, the limitations of computationally-heavy dynamic
methods for CMs discussed in Table 2.1 can be:

• Computational Resources: These methods often require significant
computational power and time, which can limit their use in real-time
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Table 2.2: References on fast dynamic analysis for CMs

Ref. Modeling Approach and
Properties

Robot Type/Applica-
tion

[Dur+06] 3D beam theory with incre-
mental approach

General catheter for in-
terventional radiology

[TAR19] Cosserat/Kirchhoff PDEs Extensible rods, tendons,
and fluidic chambers

[Wen+12] Cosserat rod model and 3D
elesticity

Guidewire/ Inter-
ventional Radiology
procedures

[Ruc+10;
WRC09]

Beam mechanics based on
elastic energy (includes both
bending and torsion)

Concentric tubes/ Gen-
eral MIS

[Tun13] FEM with large deformation
and inflation

Simulations on general
medical robots

Table 2.3: References on fast kinematic analysis for CMs

Ref. Modeling Approach and
Properties

Robot Type/Applica-
tion

[JW06] Configuration space limited
by actuator length

Backbone continuum
robots

[GG19] Cosserat rod approach pneumatic continuum
arm

[Che+21] Integration of the spatial
curve by a modal method

1-DoF pneumatic bend-
ing robot

[RW11] Curve-based description Concentric-tube robot

applications or for simulations that involve complex scenarios or long time
horizons.

• Model Fidelity: While they may capture the dynamics of the system with
high fidelity, the complexity of the models may introduce challenges in
parameter estimation and validation.

• Scalability: These methods may not scale well as the complexity of the
manipulator increases, such as when adding more segments or when
considering interactions with complex environments.

• Specificity: The models and their validation might be highly tailored
to specific applications or types of continuum manipulators or actuation
mechanisms, which can limit their generalizability.

Fast dynamic analysis for CMs discussed in Table 2.2 may show the following
shortcomings:
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• Approximations: To achieve faster computations, these methods may make
approximations that can reduce the accuracy of the models, particularly
in predicting the behavior of the system under extreme conditions or
interactions with the environment.

• Complex Dynamics and Validation: Ensuring the validity of the model
across a wide range of operating conditions can be challenging when the
methods prioritize computational speed. Simplifications necessary for
speed can overlook complex dynamic phenomena such as nonlinear elastic
effects, hysteresis, or dynamic interactions with fluids.

• Real-Time Constraints: Even though these methods are faster, there may
still be constraints that prevent their use in high-frequency real-time control
loops, especially when high precision is required.

Fast kinematic approaches discussed in Table 2.3 may have the following
limitations:

• Dynamic Ignorance: These methods typically ignore the dynamics of the
system, which can lead to discrepancies between the predicted and actual
behavior, especially when the manipulator is subject to dynamic loading
or when inertia plays a significant role.

• Simplifications: Kinematic models may oversimplify the physical interac-
tions, such as friction, backlash, or material compressibility, which can be
significant in some applications.

• Control Limitations: While fast for planning and simulation, kinematic
models may not provide sufficient information for advanced control
strategies that require dynamic information.

• Assumptions: They often rely on assumptions about the manipulator’s
shape or environment that may not hold in all situations, potentially
reducing their applicability to novel or unstructured scenarios.

2.2 Control Methods for CMs

Control and path planning of CMs are broad research areas in which several types
of controllers have been explored in the literature, ranging from model-based
versus model-free, kinematic versus dynamic, and classical versus learning-
based controllers. In addition, the control and localization of small-scale
robots/particles are of utmost significance, where they essentially serve as
actuation points for CMs, particularly magnetic CMs. Table 2.4 is a synopsis
of some recent, pivotal articles on control and path planning in CMs. It is
important to note that classical control methods developed using kinematic
models or learning approaches taught on the static or kinematic behavior of CMs
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Table 2.4: References on control algorithms for CMs or small-scale robots

Ref. Control Approach and
Properties

Robot Type/Applica-
tion

[Kaz+22] Dynamic model-based, classi-
cal adaptive sliding mode po-
sition control

Soft robotic arm

[Li+17] Model-free kinematic adap-
tive Kalman filter-based po-
sition estimator

Pneumatic muscled CM

[Ber+20] Kinematic model-based distal
supervised learning method

Tendon driven robot

[Thu+18] Dynamic model-based rein-
forcement learning control

Pneumatically actuated
soft manipulator

[Jia+21;
You+17]

Model-free kinematic rein-
forcement learning control

Honeycomb pneumatic
manipulator

[Kha+02] Model-based PID and Adap-
tive position controllers

3-DoF microrobot

[Xu+15] Kinematic model|vision-based
orientation|position propor-
tional controller

Helical microswimmer

may not be accurate or efficient when CMs move fast enough (high-frequency
movements), or in other words, display complex dynamic motion.

Each referenced control approach has its own set of limitations and potential
areas for improvement, which are crucial to acknowledge for advancing the state
of the art. Here is a discussion on possible limitations of the methods presented
in Table 2.4:

• Dynamic Model-Based, Classical Adaptive Sliding Mode Position Control
[Kaz+22]: This approach may struggle with system uncertainties and
external disturbances. Adaptive sliding mode control is effective in
handling uncertainties, but it may not be robust enough in highly dynamic
environments. There’s also the issue of chattering, a common problem
in sliding mode control, which can cause excessive wear and tear on the
robotic components.

• Model-Free Kinematic Adaptive Kalman Filter-Based Position Estimator
[Li+17]: While model-free approaches have the advantage of not requiring
precise physical models, they often lack the ability to predict system
dynamics accurately, especially in complex environments. The adaptive
Kalman filter can improve estimation, but it might be slow to adapt to
sudden changes in dynamics or in the presence of non-Gaussian noise.
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• Kinematic Model-Based Distal Supervised Learning Method [Ber+20]:
These methods rely heavily on the accuracy of the kinematic models.
If the model does not accurately represent the real system’s dynamics,
the control performance can degrade. Additionally, supervised learning
methods require extensive data for training, and they may not generalize
well to situations not encountered during training.

• Dynamic Model-Based Reinforcement Learning Control [Thu+18]: The
success of reinforcement learning (RL) depends significantly on the quality
of the reward function and the training environment. RL can be sample
inefficient and may require a large amount of data to learn effective policies.
Furthermore, RL-based controllers might exhibit unpredictable behavior
in scenarios not encountered during training.

• Model-Free Kinematic Reinforcement Learning Control [Jia+21; You+17]:
Similar to other RL approaches, these methods can suffer from poor
generalization to new scenarios. Being model-free, they might also lack
the ability to accurately predict the effects of control actions on system
dynamics, which can lead to suboptimal control strategies.

• Model-Based PID and Adaptive Position Controllers [Kha+02]: PID
controllers are relatively simple and may not handle complex system
dynamics effectively. They are also prone to performance degradation in
the presence of nonlinearities and external disturbances. Adaptive elements
can improve performance, but they require careful tuning and may not
adapt quickly to rapid changes in the system.

• Kinematic Model|Vision-Based Orientation|Position Proportional Con-
troller [Xu+15]: This approach depends on the accuracy of both the
kinematic model and the vision system. Misalignments or errors in the
vision system can lead to poor control performance. Proportional con-
trollers may also struggle with stability and precision in highly dynamic
environments.

In the following chapter, we will discuss three novel algorithms that have been
presented to address the three main types of modeling that we have discussed up
until this point. These algorithms will cover computationally intensive dynamic
models as well as fast dynamic and kinematic analyses.
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Chapter 3

Dynamic Models for CMs
This chapter deals with the research question RQ.1 described in Section 1.4.
Section 3.1 concerns Paper I (a computationally heavy dynamic model),
Section 3.2 deals with Paper II and Paper IV (a computationally fast dynamic
model), and the modeling part of Paper V is discussed in Section 3.3 (a rapid
kinematic model reconstruction). An overview of Chapter 3 is shown in Figure 3.1.

Chapter 3
RQ.1: Section 1.4

Section 3.1

Section 3.2

Section 3.3

Paper I

Paper II Paper IV

Paper V

Figure 3.1: An overview of Chapter 3.

3.1 Exact Nonlinear Dynamic Model for Soft CMs: Lie
Group Variational Integration

This section mainly deals with Paper I with regards to developing a Lie group
variational solver for soft Continuum Manipulators (CMs). It is worth mentioning
that the term solver refers to a numerical algorithm or computational method that
solves the underlying equations governing the system’s behavior. Finite element
and difference methods have been essential computational tools for studying
the dynamics and statics of many physical systems, including CMs. The main
problem with these methods is that they discretize (partial) differential dynamic
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equations to obtain motion-related solutions that do not necessarily satisfy the
fundamental properties of continuum mechanical models. Although the stable
and convergent finite solvers preserve the invariant geometric and topological
structures underlying the continuous model such as symplectic structures, these
characteristics can sometimes be lost in the computation process. For example,
finite element methods do not necessarily preserve moments for systems with
symmetry. In other words, an obtained solution for a free rigid body may change
momentum and thereby fail to preserve invariant geometric structures [Dem+15;
MR13]. It has been shown that this problem can be avoided by the use of Lie
group variational integrators[BS99; Dem+15; LOL14].

Lagrange-d’Alembert’s variational principle governs a wide variety of forced
mechanical systems, including CMs. The object investigated in this section,
is the exact nonlinear model of dissipative or forced CMs [Sim85], where the
configuration space is a Lie group. Lie group variational integrators are derived for
a given classical discrete Lagrangian, i.e., kinetic minus potential and conservative
energies for CMs, by forming a discrete version of the Lagrange-d’Alembert
principle. Combining variational integrators with Lie-group techniques enables
integration schemes to respect not only the structure of the dynamics and its
properties but also the structure of the configuration space.

Unlike finite element methods, the fundamental idea underlying the employed
Lie group discrete variational integration is to discretize the variational principle
rather than discretize the equations of motion. This leads to the fact that for
non-dissipative and non-forced problems, variational integrators are symplectic
and momentum conserving [Hai+06].

To sum up, it is worth emphasizing that Lie group variational integration
schemes have not yet been fully explored, implemented, and tested in the real-
world in the context of magnetically-actuated soft CMs modeling, and this
section aims to contribute mainly in this direction. The primary contribution is
the derivation and experimental validation of a dynamic model for forced CMs
with soft materials undergoing spatial deformation. The model accounts for
the nonlinearities of the continuum manipulator; loading results from magnetic
fields, gravity, and internal and external dissipation forces generated by friction.
Also, due to the difficulty in obtaining knowledge about the internal and external
dissipation forces, distributed estimation filters have been designed to take these
forces into account and capture their behavior.

3.1.1 Continuum Manipulator Dynamics and Kinematics

Firstly, we consider the kinematics of CMs undergoing large deflections;
afterwards, we introduce a classical Lagrangian, i.e., kinetic minus potential and
conservative energies. The continuous Euler-Lagrange equations, i.e., dynamics
of CMs, are obtained by applying the Lagrange-d’Alembert principle to the
action function associated with the Lagrangian (Section I.2 in Paper I).
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Figure 3.2: Steps 1 through 5 toward deriving CM discrete dynamics.

Figure 3.3: Configuration of the nodes of the model and the corresponding
distributed filters. Filter ai and Node ai are coupled with the adjacent nodes in
succession.

3.1.2 Lie Group Variational Integrators for the Forced CMs:
Modeling and Estimation

In this subsection, we discuss deriving the discretized version of the forced
Euler-Lagrange with conservative (e.g., gravity) and non-conservative forces
(e.g., friction and external loads inserted by actuators). First, one needs to
consider the spatial discretization of Lagrangian introduced earlier. Afterward,
discrete Lagrange-d’Alembert equations need to be expressed on the configuration
space, which is a Lie group. Figure 3.2 depicts the modeling procedure. By
following the mentioned steps, discrete Euler-Lagrange equations for rotations
and translations are derived (Section I.3.1 in Paper I).

It is discussed how the online distributed estimation algorithm [Lu95] predicts
the model dissipation errors. The structure of the estimator mimics the structure
of the model, i.e., discrete Euler-Lagrange equations in a distributed multi-
systems configuration. We consider each node as an individual system coupled
with the other adjacent nodes, i.e., neighbors, in succession. In other words,
each node exchanges its local pose (position and orientation) with its neighbors.
It should be noted that the estimation filters are designed and implemented
for each node. Figure 3.3 shows the configuration of the distributed filters and
nodes (Section I.3.2 in Paper I).
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Figure 3.4: Magnetic field generation setup with the stereo vision cameras. Two
nested pairs of Helmholtz coils generate uniform magnetic fields in E1 and E2-axes
direction.

3.1.3 Simulation and Experimental Results

In this section, we investigate and analyze the solver’s performance with different
CMs through a variety of experiments using flexible metal rods and polymer-
based rods, both with and without magnetic actuation. To generate magnetic
fields, the setup as shown in Figure 3.4 consists of two pairs of Helmholtz coils,
and each pair consists of two identical electromagnetic coils. They produce two
perpendicular fields. In other words, the first pair of coils generates a uniform
magnetic field along the E1-axis. The second pair of smaller coils is placed inside
the first pair to produce a field along the E2-axis. Two cameras are placed next
to the setup to monitor the side view of the workspace. For image acquisition,
we use both cameras in a stereo vision setup to reconstruct 3D views of the
manipulator motion. For the detailed results, refer to Section I.4 in Paper I.

3.1.4 Discussion

Considering the maximum and the mean absolute values of the errors (Table I.8
in Paper I) in each experiment and compared to the manipulators’ length, the
mean absolute deviations are small, which reflect the model’s performance.

It was observed that the frequency of motion depends on the number of
nodes considered for the discretization. To make the frequency of motion in
simulations compatible with the experiments, a correction factor for frequency
shaping was introduced. By employing this correction factor in the simulation,
the effect of the number of discretization elements on the frequency of motion
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can be eliminated.
Remark 3.1.1. The computational intensity of the proposed dynamic model in this
section is intrinsically linked to their implementation approach, aimed at decoding
the intricate behaviors of CMs. These dynamic models are comprehensive but
computationally heavy, reflecting our prioritization of detail over real-time
scalability. As such, they are not immediately poised for real-time control but
provide an in-depth understanding that is critical for foundational research.
In the pursuit of operability within real-time systems, we anticipate refining
these models into reduced-order and data-driven versions. Such versions will
balance the fidelity of simulation with the practicality of execution, essential
for responsive actions in dynamic settings like surgical robotics. The evolution
from our current models to those suitable for real-time control will be explored
in the next section, ensuring that critical physical insights are preserved while
achieving the efficiencies necessary for live application.

3.2 Real-time Dynamic Model of CMs: RNN-based
Prediction

High flexibility and deformity of soft robots, especially CMs, come with a cost
of difficulty in steering them in constrained workspaces such as the human body.
From a mathematical point of view, the complexity of dealing with CMs is a
result of nonlinear PDEs, which are central to expressing the behavior of CMs.
Analytical models of soft manipulators help evaluate their motion and determine
their workspace in order to be used for control, motion planning, and animation
purposes. Proposed approaches in the literature are either kinematics-based
models [GDS19; MD11] which are not sufficient for high dynamic motions or
finite elements, or differences-based dynamical models [Tar+20; TAR19] which
are computationally expensive for real-time applications or fast simulations.
Another limitation is that solutions for dynamical models are discrete or not
sufficiently differentiable. It is worth noting that having a differentiable solution
(i.e., a solution that can be evaluated continuously on the workspace) is crucial
in the design process of model-based controllers or observers.

Recently, neural network models are becoming more prevalent among
numerical frameworks for approximating PDEs solution [SS18; WHJ17].
Also, these networks were employed to establish physics-informed models in
which PDEs are used as to-be-optimized cost functions [RPK17]. In this section,
inspired by the time-space integration scheme and using the Lie group variational
integration method described in the previous section, the dynamic equations for
translation and rotation for each node of a soft CM are decoupled, providing
an appropriate structure aimed at developing a real-time modeling algorithm.
Afterward, Recurrent Neural Networks (RNNs)-based models are employed
to approximate the high-dimensional discretized equations. RNNs with Long
Short-Term Memory (LSTM) layers can learn and remember the outputs of
nonlinear functions over sequences of inputs. By using internal feedback within
LSTM layers, these networks are capable of preserving long-term dependencies.
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Essentially, LSTM layers prevent older information from gradually vanishing.
LSTM layers consist of LSTM units, which can process sequences of data of any
length, for example, poses (positions and orienations). An LSTM unit controls
the contributions of each element of its inputs in its output and keeps track of
the dependencies between the elements [HS97]. Additionally, external torques
and forces (e.g., control inputs, friction, and gravity) are incorporated into the
model in a real-time manner for control applications.

The aim here is to propose distributed deep RNNs for capturing and
simulating PDEs that describe soft manipulator dynamics. This approach
is intended to enable accurate and real-time control compared to existing models.
Consider a CM with large deflections described by dynamic equations of motion
(as presented in [Tar+20] and [Dem+15]) in the PDEs form as

Hωt + ω ×Hω + n×Λ−1φx −Λ−1Λx ×m−mx = Λ−1τ

Mφtt −Λ(Λ−1Λx × n)−Λnx + f c = f
(3.1)

where M = ρ×A (ρ and A are the manipulator constant mass density and its
cross-section area), ω ∈ R3 is the manipulator’s angular velocity, H ∈ R3×3 is
the manipulator’s inertia matrix, φ ∈ R3 is the position of the manipulator’s
line of centroids in its workspace, Λ ∈ SO(3) denotes the orientation of moving
cross-sections at point φ. Also, while n ∈ R3 and m ∈ R3 are the stresses
and momenta along the manipulator, f c ∈ R3 represents conservative forces
(e.g., gravity). Furthermore, (·)x, (·)t, and (·)tt denote partial derivatives with
respect to position, time, and the second partial derivative with respect to time,
respectively. Finally, f ∈ R3 and τ ∈ R3 are non-conservative forces and torques
(e.g., frictions and control inputs) 1.

3.2.1 Proposed RNN-based Modeling and Training Procedure

Using a Lie group variational time integration model, the soft CM dynamics
given in Equation (3.1) are discretized where the equations are given in [Tar+20,
Sec. 2]. In our study, we discretize the manipulator with equidistant nodes, but
this can be changed depending on the application. Figure 3.5 demonstrates a
soft CM at time t where x∗ is the underformed length of Node n−1. The force
F (x∗, t) and torque τ(x∗, t) are applied to Node n−1 at the position φ(x∗, t).
Also, Λ(x∗, t) is the orientation matrix from the frame {O} to the frame {On−1

t }
attached to the cross-section of Node n−1.

The discrete equations suggest an appropriate structure for the RNNs-based
model for a single Node n and the whole manipulator with non-conservative
forces and torques as depicted in Figure 3.6. For details about the model, refer
to Section II.3 in Paper II.

For the training process, data-sets contain time-sequence inputs and forces
and torques applied to each node. Also, for each node, the poses of the node

1For the details see [Dem+15].
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Figure 3.5: A soft manipulator at time t with discretization nodes n and n−1
are shown. φ(x∗, t) and Λ(x∗, t) denote the position and the orientation of
cross-section of Node n−1, respectively. In addition, the force F (x∗, t), torque
τ(x∗, t), and the conservative force f c (e.g., gravity) are applied to Node n−1 at
the position φ(x∗, t).

and its neighbors are considered features, as shown in Figure 3.6. The first and
second input layers proceed through LSTM layers and dense layers as hidden
layers, respectively. Finally, output layers have resulted from fully connected
layers.

3.2.2 Simulation and Experiments

3.2.2.1 Case Study I

Here, we consider different examples and the experimental validation of the
proposed RNN-based model. It is worth mentioning that data-sets play a crucial
role in the efficiency and accuracy of machine learning-based algorithms. The
data acquisition process from a robot in real-world environments is both time-
and cost-consuming (implementation of multiple sensors, data filtering, fusion,
etc.). As an alternative approach, the required data can be acquired through
simulations of high-fidelity models.

The three simulation scenarios are as follows:

• Simulation I: An ellipse without external wrenches, where a cylindrical
rod is bent into a circle and its ends are attached to one another. The rod
is then deformed into an elliptical shape and released. Due to potential
energies in the ellipse, it starts to move without any external disturbances.
The goal is to model the behavior of the ellipse resulting from its internal
elastic energy.

• Simulation II: A cylindrical rod with external wrenches, where we simulate
a rod with a circular cross section that is actuated by external forces such
that its tip tracks a square in space. In this example, the goal is to model

27



3. Dynamic Models for CMs

Figure 3.6: Recurrent Neural Network-based model, length of the time history
horizon is determined by η and features composed of adjacent nodes pose: (A):
Poses of Nodes n−1, n, and n+1 are the input layer and no forces or torques
are applied to the node. (B): The first input layer is composed of poses pn−1,
pn, and pn+1 at time history horizon [t−η, t−η+1, · · · , t] and the second input
layer includes forces and torques [Fn

t , τ
n
t ]T which are incorporated into the

model through the Hidden Layers II (dense and flatten layers). (C): Proposed
RNN-based models of the CM with N nodes including Input, Hidden, and
Output Layers. A history of each node output is used as an input for adjacent
nodes. Nodes poses (Input Layer I) and forces and torques (Input Layer II)
through the Hidden layers I and II are proceed and concatenated together.
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the behavior of the rod, which results from applied external forces on its
end-effector.

• Simulation III: A cylindrical rod with and without external wrenches,
where we formed a semi-circular shape with a cylindrical rod. A force is
applied to the middle node for 0.5 s, and then the force is removed. The
idea is to model the behavior of the rod resulting from applied external
forces and internal elastic energy.

where we includes detailed comparisons regarding computational requirements
between the RNN-based approach and the classical Lie group variational
integrator. These comparisons, emphasizing the focus on position prediction,
demonstrate the RNN model’s superior efficiency and reduced computational
demands, suitable for real-time applications.

For the experiment, we fabricated a soft manipulator on which magnetic
fields are used to produce the necessary forces and torques. Furthermore, to
show the performance of the algorithm, results from the presented method and a
Cosserat rod-based theoretical model —presented in Appendix II.A in Paper II—
are compared to show the efficiency of the proposed RNN-based model.

Remark 3.2.1. The focus is on demonstrating a real-time dynamic predictive
model for soft CMs that leverages neural network-based strategies optimized for
computational efficiency in real-time applications. The choice to compare our
model’s performance with the Cosserat rod model was driven by the Cosserat rod
theory’s relevance and established use in modeling the mechanics of soft CMs,
particularly for its quick predictive capabilities which are crucial in dynamic
and real-time scenarios. By comparing our proposed model with an established
and well-used fast model in the literature, we aim to provide evidence that our
approach can outperform even these fast models, underscoring the efficacy and
efficiency of our neural network-based solution.

Our model’s architecture is specifically tailored to provide rapid predictions
essential for real-time control, distinguishing it from the objectives of Lie group
variational integrators, which, while powerful for preserving geometric properties,
are typically not optimized for speed. Thus, the comparison with the Cosserat
rod theory was more pertinent to the scope and aims of our work, highlighting the
advantages of our model in terms of computation time and real-time application
suitability.

Moreover, we have conducted three comparative simulations to showcase
the real-time capabilities of our proposed method against Lie group variational
integrators. These simulations illustrate that our neural network-based approach
maintains a competitive edge in speed and performance.

A soft CM is fabricated from urethane rubber, Polymer Matrix Composite
770 (PMC-770, Smooth-On Inc., USA) and neodymium (NdFeB) block magnets,
and the experimental setup consists of 6 stationary electromagnets surrounding a
spherical workspace of 100 mm diameter. Figure 3.7 shows the soft manipulator,
its segmented shape reconstruction, and the setup of the experiment.

29



3. Dynamic Models for CMs

Figure 3.7: (A): Polymer matrix composite 770 (PMC-770) beam continuum
manipulator with embedded neodymium (NdFeb) magnets located at tip
and intermediate positions. Dimensions are given in millimeter. (B):
Experimental setup consists of 6 stationary electromagnets and contains a
segmented photograph of the final shape manipulator. The flexible PMC-770
and rigid NdFeb sections of the manipulator are blue and red, respectively.
Six electromagnets generate a magnetic field (B) in the workspace, exerting
torques and forces (τm,fm, m = 1, 2) on the magnets, which deforms the
CM to its final shape at the time t = 340 s. C: Representation of the shape
reconstruction algorithm used for shape feedback. The manipulator is recorded
with a stereo vision setup. The manipulator body is represented by a 3D spatial
point cloud. The manipulator centerline, characterized by parameter s ∈ [0, L],
is approximated by N + 1 points ({p0, . . . ,pN}). A 3D polynomial fit (P (s)) is
made through the points, and the magnet orientation at an assumed constant
centerline position sm derived from the local gradient of the polynomial fit.
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Figure 3.8: (A): Initial and time-evolved configurations. (B): Applied torques
and forces on the distal and proximal magnets.

When the manipulator is subjected to an external magnetic field, the
embedded magnets experience forces and torques. This causes the flexible
portions of the manipulator composed of the PMC to undergo elastic deformation.
The applied magnetic forces and torques, together with the initial and a few
time-evolved configurations, are shown in Figure 3.8.

For rods properties, simulation parameters, the structure of the proposed
models and data-sets, details of the training processes, and results on the
prediction and real-time performances in the simulations and experiments, refer
to Section II.4 and Section II.5 in Paper II.

To sum up, the experiment demonstrated that not only can the presented
RNN-based model outperform classical modeling approaches such as the Cosserat
rod model, but it also shows possibilities for using the model in practice for
closed-loop control applications.
Remark 3.2.2. Table 3.1 summarizes the training and validation time for the
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simulations and experiment.

Simulation examples Training and Validation Time (S)
Simulation I 33
Simulation II 322
Simulation III 11
Experiment Training and Validation Time (S)
Experiment 1.1

Table 3.1: Training and validation times for the simulations and experiment are
given in seconds. The training and validation of models were conducted on a 16
GB, 1.99 GHz Intel i7 machine running Windows 10.

To sum up the findings up to this point, It is worth mentioning that increasing
the size of history horizons in the training stages may reduce the error to some
extent, but on the other hand, it makes the model slower. Based on conventional
dynamical models, the length of the history size should be at least 2.

To reach state-of-the-art performance, i.e., having less error and a faster
model simultaneously, one may prefer varying batch sizes in the training and
run-time phases. As a suggestion, we can use different batch sizes for training
and run-time stages. A model can be trained with appropriate batch sizes such
that the model’s performance meets the given criteria. Afterward, one can create
a new network with the pre-trained weights compiled with a batch size of 1.

The performance, i.e., the convergence and stability, of the presented
algorithm, unlike conventional algorithms, is independent of the number of
nodes considered for the whole manipulator. To be specific, in the analytical
model, there might be a need for several discretization nodes to achieve a
convergent solution with a specific tolerable error; however, in the RNN-based
model, only specific points or points of interest (e.g., two actuation points in the
experiment) are considered. In other words, in the experiment, 13 nodes (4 for
each flexible subsection, 2 for each magnet, and 1 for the base) were chosen for
solving the Cosserat rod model, but only two nodes were selected for the RNN-
based model. However, the complexity of dynamical systems (i.e., PDEs) affects
the complexity of the architecture used in the RNN-based model, i.e., the number
of layers and LSTM units, and generally how deep the model is. Nevertheless,
the suggested model suits parallel implementation and can benefit from a high
bandwidth for closed-loop control applications. Furthermore, the architecture of
the proposed RNN-based model can be optimized by reducing the number of
layers and trainable parameters to maximize the achievable bandwidths.
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Figure 3.9: The constructed robotic-assisted Transesophageal Echocardiography
System. Different components of the system are as follows: UR5 Manipulator,
Robotic Holder, TEE Probe, Gastroscope Tube, 6 DoFs Force-Torque Sensor,
Add-on Robotic System, Active Bending Tip, and Ultrasound Transducer.

Figure 3.10: The terminology used to describe the manual manipulation of the
TEE probe.

3.2.2.2 Case Study II

The same line of idea discussed in Section 3.2 is used for the modeling of
a flexible cable-driven Transesophageal echocardiography (TEE) probe. The
proposed robotic-assisted transesophageal echocardiography system is given in
Figure 3.9. The objective is to predict the positions and orientations of the TEE
transducer based on motor inputs within the workspace. The terminology used
to describe the manual manipulation of the TEE probe is given in Figure 3.10
and demonstrated on the proposed system in Figure 3.11.

In order to generate a data-set to train the algorithm on, several considerations
should be taken into account:

33



3. Dynamic Models for CMs

Figure 3.11: The conceptual design of the proposed robotic system where different
movement of TEE is depicted.

• During the insertion of the TEE transducer, the gastroscope tube has to
bend almost 90 degrees from the mouth to the esophagus. This bending
causes varying levels of friction between the cables and the inner surface
of the gastroscope tube, depending on the bend angle. The data-set aims
to capture this effect by considering bends of the gastroscope tube from
0 to 90 degrees. This will account for the impact of different gastroscope
shapes on the creation of dead zones. The data-set primarily documents
the kinematic behavior of the probe, and includes three distinct tip bend
angles for the TEE probe: 0, 45, and 90 degrees.

• The active bending portion of the TEE probe loses rigidity and becomes
limp when its wires are in their initial, relaxed state. This leads to issues of
hysteresis and back relaxation, making the control of the TEE transducer
difficult when it’s in its initial position. Consequently, the data gathering
process should incorporate considerations for these hysteresis and back
relaxation phenomena in the active bending part of the probe.

• Based on previous research [Saj+22], the dead zone of the small wheel
(which controls flex to Left/Right as shown in Figure 3.11) is influenced
by the angle of the large wheel (which is in charge of manipulating
Anteflex/Retroflex as shown in Figure 3.11), and the reverse is also true.
When both wheels are in operation, the accuracy of the geometric kinematic
model decreases in certain trajectory segments where the mechanism resides
within the dead zones of both wheels. Therefore, the data-set needs to
encompass the probe’s movement when both the small and large wheels
are activated.

• The data-set should include a variety of ranges of motion along the x−,
y−, and z−axes, as well as axis rotations.

The square-shaped trajectory in different rotations (Turn to Left/Right) and
translations (Advance/Withdraw) has been chosen for building the data-set to
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.

Figure 3.12: TEE tip positions in different data-sets.

incorporate the essential considerations, as illustrated in Figure 3.12. The focus
was on the change of the gastroscope tube inside the esophagus, and 20010
samples were recorded at zero degree bending, 14674 samples for 45 degree
bending, and 17342 samples for 90 degree bending to include different dead zones
caused by the different shapes of the gastroscope. Furthermore, for each square
trajectory, the probe is manipulated toward the initial position to incorporate
the hysteresis and back relaxation of the active bending part in the data-set,
resulting in different initial conditions for each trajectory.

The pose of the TEE transducer node is augmented in a 1-by-7 vector at
each time step. The size of the historical horizons has been determined to be two
η = 2. As a result, 2-by-7 tensors are produced for each time step and fed to the
model as an input layer. The motor position samples that are applied as another
input layer as 2-by-4 tensors go through the same preparation process. According
to Figure 3.6, the input layers are composed of tensors of size (Batch Size × 2 ×
7) and (Batch Size × 2 × 4), respectively. All layers’ initial dimension is reserved
for batch sizes for training purposes, and batch size 1 was chosen. The results of
estimation for scenarios 0, 45, and 90 degree bends are depicted in Figure IV.17,
Figure IV.18, and Figure IV.19 and explained in detail in Section IV.4.3.

3.3 A Rapid Physics-base Kinematic Model

Modeling of soft robots is computationally heavy due to complex geometries
and coupled actuation mechanisms such as thermal, electrical, or magnetic
actuators. In other words, soft robots may be coupled with other physical
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fields for actuation purposes, and therefore these physical fields should be taken
into account in the modeling. A rapid multiphysics simulation framework is
proposed for magnetically actuated CMs within an environment similar to the
Gastrointestinal (GI) tract, which can be used in closed-loop control applications
to reduce the reality gap.

Firstly, a model for magnetic wrenches is developed where each permanent
magnet is modeled as one or multiple dipoles depending on its size. Then, for the
guidewire, several joints are considered on the wire and modeled as rotational
springs (to capture the bending potential energy), and segments in between the
joints are modeled as a linear spring to capture the stretch of the wire. Finally,
the guidewire into which a permanent magnet is embedded as an actuation point
will be shaped to go through a GI tract structure by applying external magnetic
fields through single or multiple permanent magnets. The formation of the wire
will be discussed in the next chapter.

3.3.1 Modeling of Magnetic Wrenches

The aim here is to develop a light model for calculating the interacting forces
and torques between two dipoles — for simplicity, magnets are represented by
dipoles —. Forces at position d̄ resulting from the interaction of two dipoles
with magnetic moments µ̄1 and µ̄2 are the same in magnitude with opposite
directions can be written as F = 3µ0

4πd5

[
n̄1µ̄2 + n̄2µ̄1+ < µ̄1, µ̄2 > d̄− 5

d2 n̄1n̄2d̄
]

where n̄1 =< µ̄1, d̄ >, n̄2 =< µ̄2, d̄ >, d = ‖d̄‖2, ‖ · ‖2 denotes norm 2, and
< · > is used to denote the dot product or scalar product between two vectors.
The magnetic torque of the dipole µ̄2 acting on the dipole µ̄1 is defined as
τ̄1 = µ̄1 × B̄2 in which B̄2 is the magnetic field of the dipole µ̄2 and is defines
as B̄2(d̄) = µ0

4π

[
3d̄
d5 n̄2 − µ̄2

d3

]
. In addition, the magnetic torque of the dipole µ̄1

acting on the dipole µ̄2 can be found in a similar way.
The effects of a magnetic force resulting from an attraction field between two

aligned dipoles and the magnetic torque resulting from the misalignment of two
dipoles are shown in Figure 3.13 and Figure 3.14, respectively. In other words,
by moving the free dipole toward the constrained dipole, the beam bends due to
the magnetic force resulting from an attraction field (Figure 3.13). Furthermore,
by rotating the free dipole in place, the beam deflects from its original position
due to the magnetic torque resulting from the misalignment of two dipoles
(Figure 3.14).

An external magnet is modeled as a set of 2000 dipoles rotating around the
y-axis and Figure 3.15 shows the resulting flux and the applied force on the tip
dipole, and the projected force on the spline.

3.3.2 Guidewire Modeling

A guidewire is modeled as multiple segments and joints, which are modeled as
extensible and rotational springs, respectively. The embedded magnet in the tip
of the guidewire is considered a rigid body. Since guidewires are usually thin,

36



A Rapid Physics-base Kinematic Model

Figure 3.13: By moving the free dipole toward the constrained dipole, the beam
bends due to the magnetic force resulting from an attraction field.

Figure 3.14: By rotating the free dipole in place, the beam deflects from its
original position due to the magnetic torque resulting from the misalignment of
two dipoles.

Figure 3.15: A rotating external magnet modeled as 2000 dipoles. The resulting
flux and the applied force on the tip dipole and the projected force on the
guidewire’s centerline are shown.
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twisting is not considered in the modeling procedure. The model is shown in
Figure 3.16, and the modeling procedure is summarized in Algorithm 1.

Figure 3.16: A guidewire is partitioned into multiple segments and joints: Each
segment is modeled as a linear spring and joints are modeled as rotational
springs.

The steering setup, the formation of a guidewire, and the presented optimal
control will be discussed in the next chapter.

3.4 Findings and Implications

In this chapter, we have proposed and validated dynamic modeling approaches
for CMs. High-fidelity models are helpful for explaining and predicting the
behavior of a system with complex dynamics. However, due to computational
constraints, these models may not be employed for closed-loop control purposes
in a real-time implementation of robotic applications. Additionally, recent
developments in computer simulation demand superior, robust, and efficient
numerical frameworks compared to traditional approaches. Discrete geometric
mechanics, which are employed in this chapter, provide a systematic method to
cope with the complexity of CMs’ dynamics. The necessity of guaranteeing robots’
performance in sensitive applications such as minimally invasive surgeries requires
the use of pre-existing knowledge or a model in control architecture to obtain
guaranteed and reliable behavior in the presence of disturbances and uncertainties.
Although model-free control approaches are easy to implement, they do not
provide or ensure any performance level or high control-loop bandwidths.

In Section 3.1, the estimation and model validation problems of CMs’
dynamics using Lie group variational integrators were studied. Using magnetic
actuation, dynamic and static experiments were conducted on manipulators with
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Initialize:
Define a spline curve within the GI tract structure;
Orientation of joints in rest state on spline: {O0, · · · ,ON+1};
Position of joints in rest state on spline: {P0, · · · ,PN+1};
Initial velocity of joints is zero;
Boundary conditions are considered free at both ends;
while simulating do

i. Apply external magnetic forces on tip dipole
(attached magnet to the tip) alongside with
the spline;

ii. Integrate tip magnet position;

iii. Enforce tip magnet position coupling to
the rest of the guidewire;

iv. Calculate spring forces between guidewire
segments due to segment length deviations
by using a spring constant;

v. Calculate bending forces between
wire segments (at joints);

vi. Integrate joints poses;

vii. Project all joints forces to the direction of the corresponding guidewire
segment (alongside
with the spline);

viii. Update joints position;

ix. Snap all joints onto the closest spline;

end
Algorithm 1: Guidewire simulation.
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rigid and soft materials (e.g., aluminum and PDMS) to illustrate the validity of
the presented algorithm for a wide range of experiments.

Due to the lack of knowledge about friction and damping, distributed
predictive filters were designed to provide information about the unknown
signals. Therefore, the dynamical model equipped with the estimation algorithm
is a self-contained generic model for CM integration, which provides us with a
systematic approach to employing optimal control theory for realistic trajectory
planning in the presence of user- or environment-specified constraints. The
design of a controller and the parallel variational integration algorithm are to be
investigated in future work.

In Section 3.2, a distributed architecture for modeling complex dynamical
systems by using multiple light-weight RNN-based models is proposed. As a
result, the architecture would be easier to design and debug and would also benefit
from faster convergence compared to one large network. Furthermore, large
networks may take longer to train, they may not show acceptable performance,
and readjusting (hyper-)parameters and restarting the training process might be
necessary.

The evaluations showed that incorporating poses of adjacent nodes and also
wrenches as a separate input might help to have, to some extent, a generalizable
model rather than just purely learning the structure of data. However, supervised
learning methods likely tend to preserve the structure of data, and these models
might not entirely respect the underlying physics (conservation laws). In other
words, these methods might not be wholly physics-aware and applicable for
untrained or unprecedented dynamics or geometries without any adjustment,
re-training, or using techniques such as transfer learning, etc. One possible and
interesting solution [LLF98; PU92; RPK19] to overcome this problem and move
toward fully physics-aware neural networks is revisiting lost functions for the
training process. To be specific, the idea is finding solutions for PDEs given in
Equation (3.1), i.e., Λ(x, t) and φ(x, t) for sufficiently large number (e.g., Nf )
of pairs (xi, ti) ∈ (0, L) × [0, T ] in which L is the unreformed length of the
manipulator and parameter T is a user-defined time. Considering Equation (3.1),
a neural network can learn by minimizing the mean squared error loss.

1
Nf

( Nf∑
i=0

∥∥∥Jωti + ω × Jω + n×Λ−1φxi
−Λ−1Λxi ×m−mxi −Λ−1τ

∥∥∥2

{xi,ti}

+
Nf∑
i=0

∥∥∥Mφtiti −Λ(Λ−1Λxi × n)−Λnxi + fnc − f
∥∥∥2

{xi,ti}

)

This modified loss function enforces the structure imposed by Equation (3.1)
for a large number (e.g., Nf ) of pairs (xi, ti) ∈ (0, L)× [0, T ], and the trained
neural network will be aware of the governing PDEs.

In conclusion, this section described an approach for the real-time prediction
of dynamics for general continuum soft manipulators based on machine learning
techniques and Lie group variational integration methods. Poses of a soft,
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polymer-based manipulator, in the presence of conservative and non-conservative
wrenches, are predicted and validated experimentally. The comparison results of
the proposed model and a well-known model for CMs, i.e., Cosserat rod theory,
are also provided, revealing the practical effectiveness of the proposed model.
The presented method can be extended to different soft robots with different
shapes and materials. In addition, the training of physics-aware neural networks
for solving PDEs and the procedure of a model-based controller design are topics
of research to be studied in future work.
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Chapter 4

Control Strategies for CMs
This chapter deals with the research question RQ.2 described in Section 1.4
and is adapted from Paper III and Paper V. Figure 4.1 gives an overview of
Chapter 4.

Chapter 4
RQ.2: Section 1.4

Section 4.1 Section 4.2

Paper III Paper V

Figure 4.1: An overview of Chapter 4.

Soft, flexible materials and rigid, permanent milliscale magnets or coils are
typically used to fabricate magnetically-actuated CMs. When these CMs are
exposed to an external magnetic field, embedded magnets or coils experience
forces and torques (wrenches), which cause flexible portions of the CMs to
deform. Automated steering of these manipulators can be seen as a problem
where embedded magnets need to be ultimately controlled. However, once the
tip of a CM is guided onto a specific trajectory, the rest of the CM’s body
tends to follow that trajectory closely. Nevertheless, actuation, tracking, and
closed-loop positioning of these embedded rigid bodies, and thus, CMs, remain a
challenge, yet crucial in ensuring adequate reachability and precision. Miniature
robotics advancements have resulted in small-scale robots capable of targeted
interaction within the human body. Nonetheless, in a clinical setting, the use of
this technology is still constrained by the auxiliary infrastructure necessary for the
actuation of small robots. Using a combination of Reinforcement Learning (RL)
algorithms and a classical switching control approach —presented in Paper III—,
we show that small-scale particles can be steered within a constrained environment
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in the presence of disturbances by providing adequate external magnetic forces.
In addition, two other classical path-finding approaches, Attractor Dynamics
and Execution Extended Rapidly-Exploring Random Trees (ERRT), are also
investigated and compared to the RL-based method. Finally, a rapid kinematic
model developed in Section 3.3 and Paper V is used to steer a guidewire through
a Gastrointestinal (GI) tract structure by applying an external magnetic field
resulting from a rotating permanent magnet around only one axis.

4.1 RL-based Switching Controller for an Untethered
Magnetic Particle

Due to the potential of millirobotics to interact with the human body at millimeter
sizes, the utilization of these tiny robots as innovative surgical instruments has
gotten a lot of interest alongside the research on CMs. In recent years, there have
been substantial efforts to develop soft, untethered robots capable of performing
targeted drug delivery [Lu+18; VS16] directly to a tumor or other disease
sites precisely and non-invasively as traditional approaches such as pills and
intravenous therapy have been the primary method of drug delivery for decades
[Tiw+12; WJL15].

Unlike CMs that can traverse large distances within workspaces inside the
human body due to their continuously bending and compliance structure,
positioning and motion control for untethered milliscale robots over large
distances is difficult. One of the difficulties for small-scale robots moving toward
diseased tissues is disturbances introduced by bloodstream or other biophysical
barriers and obstacles [Bou12; Sch+19].

It should be noted that the miniaturization of conventional robots is limited
mostly by the mechanical structures required to allow them to navigate. By
contrast, magnetic actuation is a mechanism that can remotely and wirelessly
actuate robots without necessitating specialized structures directly in the robots,
thus substantially reducing their size and complexity. Reducing the size of
robots enables them to move to difficult-to-reach areas inside biological bodies by
applying an external magnetic field that harmlessly penetrates patients’ bodies
and applies wrenches on the robots.

Magnetic manipulation of micro/milliscale robots with an application such
as magnetic drug delivery has been an increasingly popular approach where
drug particles in the body are carried and manipulated by external magnetic
fields to reach a targeted location [Ami+17; Hos+17a; Hos+17b; Hos+18].
However, investigating existing results on magnetic control of small-scale robots
reveals that these studies employ either open-loop or traditional closed-loop
control mechanisms that may show degraded performance or fail in uncertain
environments. In other words, in practice, the methods are not robust in
the presence of disturbances. In addition, the existing studies do not take
into account any obstacle avoidance strategies in the design of controllers or
trajectory planners, and then these methods may not be robust enough for
realistic scenarios.
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Based on the issues mentioned above, more practical approaches to magnetic
control of small-scale robots require investigation. Although designing online
path planners together with appropriate, robust controllers is a problem-specific
approach, deep Reinforcement Learning (RL) methods can handle both the
trajectory planning and control tasks simultaneously and can be generalized to
be used in various workspaces. We propose to employ a deep RL algorithm for
magnetic position control of an object in a constrained environment.

Deep reinforcement learning methods have been widely applied in computer
games and simulations. However, employing these algorithms for practical, real-
world applications such as robotics becomes challenging due to the difficulty in
obtaining training samples. The effort here predominantly focuses on bridging the
gap between simulations and the real-world implementation of a reinforcement
learning algorithm for a robotic application in the context of miniaturized drug
delivery robots and robotic capsule endoscopes. In addition, the derivation
and experimental validation of a reinforcement learning-based algorithm for
controlling a magnetically-actuated small-scale robot within a simplified model of
the large intestine in the presence of disturbances are presented. We demonstrate
the possibility of training a high fidelity reinforcement learning algorithm fully
within a simulated environment before deploying it as-is in a real-world scenario
through carrying out different experiments. Implementing the presented control
framework complements a large body of this chapter, and the results offer a
feasibility study of using a reinforcement learning algorithm in practice.

To evaluate results of the RL-based mechanism, two classical approaches,
Attractor Dynamics[KB12] and Execution Extended Rapidly-Exploring Random
Trees (ERRT)[BV02] are tested through simulations and experiments, in which
the results confirm that the RL-based method achieves comparable performance
while being a more robust and generic solution to deploy in dynamic, complex
environments.

4.1.1 Preliminaries on RL

A technique to tackle control and tracking problems known as RL is based on
learning control policies via repeated trial-and-error interactions between a robot
and its environment. RL is a process in which a robot’s behavior is taught to
maximize its environment’s predicted sum of reward via feedback signals.

In the classic Q-Learning approach [WD92], learning Q-values is the primary
objective. If the robot starts from a specific state-action combination and follows
a particular policy, Q-values are the predicted cumulative rewards that the robot
will get over time. A significant milestone was achieved by introducing the Deep
Q-Networks (DQN) algorithm [Mni+13]. Unlike its table counterpart, DQN
represents all of the Q-values as a multi-layered neural network, rather than
storing them all in a look-up table as is done with the table variant.

The deep reinforcement learning community has made gradually several
improvements to the DQN algorithm [Mni+13] to cope with its shortages, for
example, Double Deep Q-Learning Networks (DDQN) [VGS15], Prioritized
DQN [Sch+15], Dueling DQN [Wan+16], Distributional DQN [BDM17], Noisy
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DQN [For+17]. Finally, Rainbow [Hes+17] incorporates the advances made in
earlier versions.

4.1.2 Method: Reinforcement Learning, Attractor Dynamics, and
ERRT-based Switching Controller

This section explains the proposed control architecture, consisting of two
controllers (Sub-controllers 1 and 2) and a switching rule. Sub-controller 1
consists of the inverse kinematics of the robot and keeps the magnetic particle
within the immediate vicinity of the robotic arm end-effector. Once the particle
is far enough from the end-effector, Sub-controller 1 takes the robotic arm to the
particle position, which is fed back to Sub-controller 1 from an optical tracking
system. As soon as the particle is again close enough to the end-effector, an
appropriate switching law makes Sub-controller 2 to control the robot arm to
carry the particle toward an objective inside the environment using a magnetic
field produced by an attached permanent magnet on the end-effector. In Sub-
controller 2, three approaches, i.e., reinforcement learning, attractor dynamics,
and ERRT algorithms, are used to carry the particle through a disturbed
environment toward a given target position.

4.1.2.1 Reinforcement Learning-based Approach

Sub-controllers 1 and 2 and the switching law are shown in Figure 4.2. The
control system should be resilient to losing the particle (when it ceases to react
to the field) and capable of automatically retrieving it if this happens. Sub-
controller 1 is in charge of maintaining the magnetic particle’s proximity to the
end-effector using information obtained from an optical tracking system. The
control-loop mechanism is shown in Figure 4.3a when Sub-controller 1 is enabled.

Sub-controller 2 drives the robotic arm to a preferred location inside a confined
(intestine-like) environment. Notably, this controller does not include inputs from
the optical tracking system, and the robot sees the surroundings partially through
the RGB camera on its end-effector. The control-loop mechanism is illustrated
in Figure 4.3b when Sub-controller 2 is triggered. Inspired by [Hes+17], for Sub-
controller 2, a modified Rainbow algorithm with Quantile Huber loss derived from
the Implicit Quantile Networks (IQN) algorithm [Dab+18] together with ResNet
[He+16] is employed. Since Mnih’s publication of DQN [Mni+15], the Huber loss
has been utilized for training the family of DQN RL algorithms. Obando-Ceron’s
comparison research in [OC20] shows that the Huber loss outperforms the more
conventional mean-squared error loss.

Observations fed to Sub-controller 2 are two-channel downsampled images
with a dimension of 84× 84. A set of 15 by 15 pixels in the center of each image
is considered, and then the mean of the pixel values in that square is calculated.
An obstacle is detected when the pixels’ average value is less than 150. Four
discrete actions are considered to control the robotic arm end-effector in the
xy-plane in two dimensions by setting a new position for the end-effector with a
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Figure 4.2: The switching controller architecture consists of Sub-controller 1
and Sub-controller 2 and a switching law (S). S is a supervisory algorithm
that controls the switching between the various controllers. The observations or
feedback signals are: the magnetic particle position obtained through the optical
tracking system (Pp), partial information (I) of the constrained environment
captured by an RGB camera on the end-effector, i.e., The RGB camera only
covers a portion of the environment for the Sub-controller 2. s represents
derivative filter. In Sub-controller 1, K1 represents a proportional gain for
adjusting the asymptotic convergence of the controller. Joints are modeled as a
single integrator which is represented by 1

s . Inverse Jacobian and the kinematic
of the robot is denoted by J−1(p) and J(q), respectively. q and q̇ represent joint
positions and angular velocities. V (p) models the unknown magnetic interaction
dynamic between the external magnet on the end-effector and the particle with
the input Pee and output Pp.

slight change concerning the end-effector’s current position. Figure 4.4 shows
details of the training.

As a reward function in the training of Sub-controller 2, each episode is
terminated with a negative reward if there is no response for the inverse kinematic,
the number of steps in each episode exceeds 150, or the end-effector would drive
the particle into an obstacle. In addition, an episode is terminated with a positive
reward if a goal is detected by the end-effector mounted camera within 2 cm
in the xy-plane. It should be noted that throughout training, objectives are
generated randomly during each episode.

The following is the switching law for enabling sub-controllers in the switching
control architecture: To activate Sub-controller 2, the euclidean distance between
the end-effector and particle locations must fall below a threshold of an arbitrary
value, which is chosen to be 10 cm in this study.
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(a) (b)

Figure 4.3: (a): The control-loop which employs analytical inverse kinematic
solutions when Sub-controller 1 is activated: The feedback coming from the
optical tracking system consists of the particle position and by employing the
analytical inverse kinematic solutions, the robotic arm will locate the particle.
(b): The control-loop mechanism which trains a customized Rainbow algorithm
to navigate through a constrained workspace when Sub-controller 2 is activated:
The feedback coming from the end-effector RGB camera consists of partial
information about the environment.

Figure 4.4: Observations for training Sub-controller 2: Two-channel images
84× 84, i.e., 2× 84× 84. The first channel includes a gray-scale image obtained
from the end-effector RGB camera and the second channel is an augmentation of
two matrices with the size 42× 84 which are populated with the goal and robot
current positions. The average of pixel values in the center of each gray-scale
image is used for obstacle detection.
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Figure 4.5: The switching controller architecture consists of Sub-controller 1
and Sub-controller 2, and a switching law (S). S is a supervisory algorithm
that controls the switching between the various controllers. The observations or
feedback signals are: the magnetic particle position obtained through optical
tracking system (Pp), partial information (I) of the constrained environment
captured by an RGB camera on the end-effector, i.e., The RGB camera only
covers a portion of the environment for the Sub-controller 2. K is the gain of
the state feedback controller, B2×2, and A2×2 are the identity matrices (Id2×2).
Furthermore, G2×2=[K Id] [ A B

Id 0 ]−1 [ 0
Id ]. The symbol s represents derivative

filter. In Sub-controller 1, K1 represents a proportional gain for adjusting
the asymptotic convergence of the controller. Joints are modeled as a single
integrator which is represented by 1

s . Inverse Jacobian and the kinematic of
the robot is denoted by J−1(p) and J(q), respectively. q and q̇ represent joint
positions and angular velocities. V (p) models the unknown magnetic interaction
dynamic between the external magnet on the end-effector and the particle with
the input Pee and output Pp.

4.1.2.2 Attractor Dynamics-based Approach

In the Attractor Dynamics-based Method, a state feedback controller and a
dynamic modulator [KB12, Section 3.2] are designed to ensure that the robot
will not hit convex obstacles while carrying the particle toward a goal. The block
diagram of the algorithm is shown in Figure 4.5. Sub-controller 1 and Switching
Law are the same as what is discussed in Section 4.1.2.1. For Sub-controller 2:

ṗ(t) = A
′
p(t) + B

′
u(t),

o(t) = p(t)
(4.1)
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where p(t) =
[
x y

]T ∈ R2×1 is Cartesian position of the end-effector in a 2-D
space (xy-plane), B′2×2, a state matrix and A′2×2, an input matrix, and Id2×2
is the identity matrix. It is worth noting that A′ = MA and B′ = MB.
Furthermore, u(t) ∈ R2×1 is a 2-by-1 control input. Let Pg denotes the desired
constant 2-by-1 vector for the output o(t) to track asymptotically.

The control goal of Sub-controller 2 is to design a state feedback controller in
which u(t) depends on p(t) and Pg so that the regulation error e(t) = Pg − o(t)
goes to zero when t → ∞. It can be shown ([Bro91; CLS04]) that the state
feedback control law:

u(t) = GPg −Kp(t) (4.2)
makes System 4.1, a globally asymptotically stable system, where G2×2 =

[K Id]2×4

[
A B
Id 0

]−1

4×4

[
0
Id

]
4×2

and K is the gain of the state feedback controller.

Although the control law 4.2 makes the manipulator stable, it cannot prevent
the robot from colliding with obstacles. Therefore, a real-time obstacle avoidance
strategy should be considered together with the described law. To design
the obstacle avoidance protocol, we follow the same line of ideas as in [KB12].
We consider rectangular 2-D obstacles based on superellipse curves, where
Γ(p) : ‖x−xo

a ‖
n + ‖y−yo

b ‖
n = 1 represents the boundary points of an obstacle

with the center point [xo, yo], furthermore, a and b are called the semi-diameters
of the curve. In other words, the curve Γ(p) is contained in the rectangles
‖x − xo‖ <= a and ‖y − yo‖ <= b. The similarity of the curve to a rectangle
is adjustable with the parameter n, and with n > 2 , the curve looks like a
rectangle with rounded corners.

The dynamic modulator matrix M (designed in [KB12, Section 3.2])
propagates the influence of the obstacle on the motion flow with the maximum
effect at the boundaries of the obstacle and vanishes for points far from it.
Applying the dynamic modulator to the linear system 4.1 yields:

ṗ(t) = M
(
Ap(t) + Bu(t)

)
(4.3)

where u(t) is given in Equation 4.2. Details of design, stability and convergence
analysis of the system with a modulation matrix can be found in[KB12]. Here
we skip the analysis for brevity.

For the computer implementation of 4.3, a simple way is to replace the
derivative by a difference

p(tk+1) = M
(
Ap(tk) + BGPg −Kp(tk)

)
h+ p(tk)h

where tk is the sampling instant and h = tk+1 − tk is the sampling period.

4.1.2.3 ERRT-based Approach

To better contextualize the proposed RL-based control algorithm, we additionally
propose employing an ERRT-based algorithm as a path planner within the Sub-
controller 2, the specifics of which are detailed in [BV02].
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ERRT is a sampling-based planning method for a continuous domain. Its
two extensions compared to RRT method [LaV+98] —the waypoint cache and
adaptive cost penalty search— enable the method to explore the environment
and plan an obstacle-free path on the fly. However, the quality of the generated
path and efficient replanning heavily depend on the processing of the received
obstacle images from the environment. Therefore, to be able to use this algorithm
to solve the presented problem, we develop a technique to optimally allocate
obstacles in rectangular shapes to be used in the ERRT algorithm. In addition,
the applicability of the algorithm in real-time heavily depends on how much the
environment is polluted by obstacles, the complexity of obstacle shapes, whether
obstacles are static or dynamic, and how fast obstacles are changing.

The block diagram of the switching controller based on this approach is
presented in Figure 4.6. Sub-controller 1 and Switching Law are the same as
what was mentioned in Section 4.1.2.1. However, in Sub-controller 2, ERRT,
instead of the RL-based algorithm, is used as a path planner in Cartesian space,
and the output is fed to the inverse kinematic function to generate joint angles.

In the obstacle processor, a quadtree [FB74] as a tree data structure is
used for spatial 2-D searching to optimally partition obstacles into a minimum
number of rectangular obstacles within a grayscale image, respecting a user-
defined threshold for the height and width of the smallest acceptable rectangle,
as depicted in Figure 4.7. As it is shown, there are regions with different shades
of gray, and the contrast ranges from black —pixel value 0— at the weakest
intensity to white —pixel value 255— at the strongest. To reduce the amount of
computation in the ERRT algorithm, only regions with a color intensity of 50 or
less are considered. These rectangular obstacles can be used efficiently by the
ERRT method.

4.1.2.4 A Discussion on Stability

For the stability of this Sub-controller 1 in RL, Attractor dynamics, and ERRT-
based methods, it can be shown that

e1 = Pp −Pee,

ė1 = Ṗp − Ṗee,

ė1 = Ṗp − J(q)q̇,

ė1 = Ṗp − J(q)J−1(q)
(
Ṗp +K1(Pp −Pee)

)
,

ė1 = −K1e1

(4.4)

where K1 is a 3-by-3 diagonal positive define matrix, then it is guaranteed that
Cartesian vector-valued e1 converges to 0 asymptotically for any initial values.
Remark 4.1.1. In the implementation of the derivative filter s within our control
system, the choice was justified by several factors that ensure minimal noise
impact. Primarily, the system benefited from a high signal-to-noise ratio (SNR)
in a controlled environment, attributable to the use of decent imaging sensors and
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Figure 4.6: The switching controller architecture consists of Sub-controller 1
and Sub-controller 2, and a switching law (S). S is a supervisory algorithm
that controls the switching between the various controllers. The observations or
feedback signals are: the magnetic particle position obtained through an optical
tracking system (Pp), partial information (I) of the constrained environment
captured by an RGB camera on the end-effector, i.e., the RGB camera only
covers a portion of the environment for the Sub-controller 2. I is fed to the
obstacle processing unit, which optimally partitions obstacles into a minimum
number of rectangular obstacles. The ERRT unit generates an obstacle-free path
based on the given feedback information. The symbol s represents a derivative
filter. In Sub-controller 1, K1 represents a proportional gain for adjusting the
asymptotic convergence of the controller, and in Sub-controller 2, K2 represents
a positive, definite 3-by-3 matrix for adjusting the asymptotic convergence of the
controller. K2 is a simple model for the internal control of the robot. Joints
are modeled as a single integrator, which is represented by 1

s . Inverse Jacobian
and the kinematic of the robot are denoted by J−1(p) and J(q), respectively. q
and q̇ represent joint positions and angular velocities. V (p) models the unknown
magnetic interaction dynamic between the external magnet on the end-effector
and the particle with the input Pee and output Pp.
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(a)

(b)

Figure 4.7: Inputs and outputs for the obstacle processing unit. (a)-(b): the most
left images are the inputs to the unit. The input images are converted to grayscale
images first, and then a quadtree algorithm is used to optimally partition
obstacles within a grayscale image into a minimum number of rectangular
obstacles respecting an user-defined threshold for the height and width of the
smallest acceptable rectangle. In these figures, the threshold is 50 for both height
and width.

their refined data acquisition protocols, which inherently suppressed noise levels
significantly. Moreover, we employed a robust numerical method—the mean
filter—for differentiation, which is specifically designed to attenuate noise while
accurately estimating derivatives. Empirical validation also underpinned our
approach: the experimental trials consistently demonstrated that the system’s
performance remained well within acceptable limits, reinforcing the validity
of using s. Data collection was conducted in a controlled environment, which
greatly diminished the influence of external noise variables. Collectively, these
measures effectively mitigated noise, justifying the derivative filter’s use in the
system’s design. Nonetheless, it is recommended to reassess the application of s
when transitioning the control system to practical, real-world environments.

Remark 4.1.2. Incorporating more realistic joint dynamics, such as friction,
alters the stability analysis. The simple integrator model assumes ideal, friction-
less motion, leading to a straightforward relationship between joint velocities
and positions. However, when friction is considered, it introduces a non-linear,
dissipative force that opposes motion. Friction is naturally considered velocity-
dependent, altering the stability analysis. Specifically, friction could aid in

53



4. Control Strategies for CMs

damping oscillations and stabilizing the system, but it also introduce non-linear
behaviors that complicate the convergence of e1 to zero. The presence of friction
means that the system’s response to control inputs becomes less predictable and
more sensitive to the specific characteristics of the friction model used, such as
static vs. dynamic friction, and the friction coefficient. As a result, the controller
might need to be more sophisticated, possibly requiring adaptive or robust or
adaptive robust control strategies to ensure stability and desired performance.

As it is discussed in Section 4.1.2.1, a closed control architecture within
industrial robots or cobots (collaborative robots) such as UR5 has the
responsibility of regulating joint angles to desired values (sometimes for simplicity,
each joint of an industrial arm might be seen as a simple integrator, which is
being controlled internally). For the stability of this Sub-controller 2 in RL and
ERRT-based methods, it can be shown that

e2 = Pref −Pee,

ė2 = Ṗref − Ṗee,

ė2 = Ṗref − J(q)q̇,

ė2 = Ṗref − J(q)J−1(q)
(
Ṗp +K1(Pref −Pee)

)
,

ė2 = −K2e2

(4.5)

where K2 is a 3-by-3 diagonal positive, define matrix, then it is guaranteed that
Cartesian vector-valued e2 converges to 0 asymptotically for any initial values.

Both RL and ERRT algorithms act as path planners, and it can be seen that
the robot’s internal controller stabilizes the system as long as an obstacle-free
path within the workspace of the robot is generated. This is determined by how
well Sub-controller 2 is trained in the RL algorithm or how good the quality of
a path is in the ERRT method. Furthermore, in the Attractor dynamic-based
method, the global asymptotic stability of Sub-controller 2 is guaranteed, as it
is discussed earlier in Section 4.1.2.2.

It should be noted that each control loop has different set-points, so the
loops are entirely separate in that sense. In other words, switching between
those two stable control loops does not introduce instability to the system, and
the loops accomplish separate sub-tasks with different set-points. Therefore,
this may raise the question of whether or not there is a possibility of having
only one controller to accomplish the task. Since there is no need to have a
collision avoidance strategy when the manipulator is moving to the location of
the disturbed particle, two different controllers are considered.

4.1.3 Simulations and Experiments

We employ the Universal Robots UR5 robotic arm for simulations and
experiments. The UR5 manipulator has a gripper that holds a neodymium
block magnet in place. In Figure 4.8, images from the end-effector camera are
utilized to detect the magnetic particle and identify barriers in the surroundings.
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Figure 4.8: The experimental setup: UR5, Permanent Magnet and RGB camera
mounted on the end-effector, the 2D constrained workspace, and the object
(sphere magnet).

We use a sphere of NdFeB magnet with a grade of N42 and a diameter of 5
mm as a magnetic particle. Besides, a neodymium block magnet with dimensions
50× 25× 10 mm and a grade of N35 is attached to the UR5’s end-effector to
produce enough magnetic field strength to carry the magnetic particle. To
prevent two magnets from colliding, the UR5 moves in an imaginary plane 10
cm above the table’s surface.

4.1.3.1 Simulations, Experiments, and Results: Reinforcement
Learning-based Approach

Training for a policy in the real world can be costly. Simulations can speed
up the learning process and help avoid potentially unwanted actions that can
damage the robot or the surrounding environment. OpenAI Gym and PyBullet
[CB19] are used for this purpose. However, modeling a complex environment
or robots can be challenging, and this may introduce a simulation-reality gap
[Bou+18]. To minimize this gap, the UR5 swept and imaged the whole real-world
environment using the mounted RGB camera (with steps of 1 cm in both x and
y-axes). As discussed, the UR5 end-effector was kept in an imaginary plane at a
10 cm distance from the surface of the table during the imaging process.

It is worth mentioning that in the simulation, the magnetic particle is
not considered, and therefore the whole switching control architecture is not
implemented. After training, the average success rate for the learned policy
is 100% for randomly generated initial and goal positions (calculated over 30
random restarts).

Afterward, we consider the magnetic particle in the loop, and the full
controller structure is implemented. In the real world, the magnetic particle is
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consistently carried to a randomly placed target, starting from a random position.
We repeated undisturbed scenarios for arbitrary initial and goal positions for
30 episodes, and the average success rate is 100% with a mean tracking error of
0.02 (m) in both axes and an average maximum error of 0.08 (m) and 0.09 (m)
in the x and y-axes, respectively.

Finally, the robustness of the system to deal with external disturbances that
could result from real-world uncertainties is studied. As disturbances occur, we
physically draw the magnetic particle away from the magnetic control zone during
active control. We repeated the disturbed scenarios for random disturbances,
initial positions, and the target positions for 30 episodes, and the average success
rate was 96.6%.
Remark 4.1.3. Sub-controller 1 employs kinematic control; therefore, its
performance is satisfactory only when the introduced disturbances are neither
too rapid nor require significant accelerations. Furthermore, due to the lack of
control over the magnetic field’s strength, the robot may struggle to navigate the
particle through corners in the environment. Essentially, a failure occurs when
the end-effector would drive the particle into an obstacle, there is no response
for the inverse kinematic, or the number of steps in each episode exceeds 150.

4.1.3.2 Simulations and Results: Attractor Dynamics-based Approach

The following example illustrates the Attractor Dynamic-based method without
any disturbance applied.

Example 4.1.4. Consider a 2-D shape of the constrained environment with the
manipulator’s initial Cartesian position [−0.78, 0.73, 0.10] and the target position
[0.77, 0.19, 0.10]. An overview of the simulation is shown in Figure 4.9. It should
be noted that the manipulator can partially sense an obstacle with a maximum
height and width of 2 cm. The system employs the state feedback control law
given in Equation (4.2). Since there is no perturbation, Sub-controller 1 (as
shown in Figure 4.5) is not active.

An advantage of the considered conventional method is that there is no need
for offline training or parameter tuning; however, the method cannot handle
concave or connected obstacles. Since the method requires analytical modeling of
the obstacle’s boundary, we consider a rectangle around the part of the obstacle
detected by the robot’s sensor — we fit the point cloud with a rectangle—.
However, the actual shape of the obstacle(s) may not necessarily be a rectangle.
In other words, the approach might be conservative in some scenarios.

In the following examples, a disturbance is introduced to the motion of the
particle.

Example 4.1.5. Consider a 2-D shape of a constrained environment shown in
Figure 4.10. The manipulator’s initial Cartesian position [0.72, 0.76, 0.10] and
the target position [−0.77, 0.12, 0.10]. A perturbation in x-axis with magnitude
0.63 m is applied to the particle when the particle is at the position [−0.21, 0.55, 0]
or at step number 50 where Sub-controller 1 (as shown Figure 4.5) is active and
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(a) (b)

Figure 4.9: Online obstacle avoidance of UR5 carrying an undisturbed particle
through a 2-D environment in Example 4.1.4. Information from a part of obstacle
seen by the robot is used to make the particle goes around the obstacle. Since
there is no perturbation is assumed, Sub-controller 2 carries the particle toward
the target position.

takes the manipulator to the new position of the particle. When the manipulator
is in place, Sub-controller 2 has the responsibility of carrying the particle toward
the target position. Also in this example, the manipulator can partially sense
an obstacle with a maximum height and width of 2 cm. An overview of the
simulation is shown in Figure 4.10.

4.1.3.3 Simulations and Results: ERRT-based Approach

The following example illustrates the performance of the ERRT-based method
with disturbances applied to the particle.

Example 4.1.6. Consider a 2-D environment as depicted in Figure 4.11 with
the manipulator’s initial Cartesian position [−0.24,−0.27, 0.10] and the target
position [0.19,−0.28, 0.10].

Two disturbances happen at locations [0.21,−0.34, 0.10] and [0.20,−0.47, 0.10]
where the particle is displace to new positions [−0.19,−0.48, 0.10] and
[−0.24,−0.28, 0.10], respectively, as shown in Figure 4.12 where initial, tar-
get, and disturbance positions, explored area, and selected path are depicted. In
addition, it should be noted that the ERRT algorithm senses obstacles through
received images from the environment depending on the robot’s end-effector’s
current position (obstacles are partially seen by the camera mounted on the
robot).

Figure 4.13 depicts the particle and end-effector trajectories together with
Tracking Error (T.E.) in both axes x and y and the mean of T.E. through the
environment in the presence of disturbances where the particle is supposed to
reach the goal position [0.21,−0.40, 0.10].
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(a) (b)

Figure 4.10: Online obstacle avoidance of UR5 carrying a disturbed particle
through a 2-D environment in Example 4.1.5. A disturbance in x-axis with
magnitude 0.63 m is applied to the particle when the particle is at the position
[−0.21, 0.55, 0], as shown in Figure 4.10a. When the disturbance occurs, Sub-
controller 1 takes the manipulator to the new position of particle. When the
manipulators in the place, Sub-controller 2 has the responsibility of carrying the
particle toward the target position (the path shown in red). Information from a
part of the obstacle seen by the robot is used to make the particle goes around
the obstacle.

(a) (b)

Figure 4.11: (a): Initial environment provided for robot with boundary obstacles
to limit the search space. (b): Initial path planning by robot from the initial
position to the goal robot with explored and selected paths and boundary
obstacles to limit the search space. No obstacle is detected by the camera.
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(a) (b) (c)

Figure 4.12: Initial, target, and disturbance locations, explored area and selected
path. (a): Initial position before the first disturbance at [−0.24,−0.27, 0.10],
the target position at [0.19,−0.28, 0.1], and the first disturbance occurs
at [0.21,−0.34, 0.1]. (b): Initial position after the first disturbance at
[−0.19,−0.48, 0.1], the target position is the same as before, and the second
disturbance occurs at [0.20,−0.47, 0.1]. (c): Initial position after the second
disturbance at [−0.24,−0.28, 0.1], the target position is kept the same as before,
and no disturbance occurs.

4.1.4 Discussions

We examined the feasibility of implementing the Rainbow algorithm [Hes+17]
to accomplish set-point regulation tasks within a constrained environment in
the presence of disturbances. The results suggest that deep RL methods as a
trajectory planner prevent the robot from encountering singularities and guide
the particle toward a goal while avoiding obstacles and accommodating for
disturbances. Furthermore, the results show that it is possible to train the RL
algorithm fully within a simulation environment and deploy it as-is in a real-world
scenario for remote magnetic control with reliable behavior in the presence of
disturbances and uncertainties. Although traditional control approaches may
ensure some performance levels under restricted assumptions, their design is
challenging, especially when only partial information from the environment is
available at each time step. Also, in many traditional path planning and control
design approaches, an exact analytical model of the robot and its interaction
with the surrounding environment is a necessity; contrastingly, RL methods do
not rely on pre-existing knowledge or models.

Compared to traditional methods, the strength of RL-based methods is that
they are applicable to the more complex environment without a need to re-design
the controller structure, —which is based on neural networks—. Yet, there
might be a need for more samples for offline training and proper tweaking of the
controller’s hyperparameters. We also experienced that learning performance
is sensitive to the choice and format of observation space; therefore, learning
parameters must be chosen carefully.

It is worth mentioning that the presented Attractor Dynamics-based
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Figure 4.13: Set-point regulation with three disturbances in one episode.
Disturbances happen at step numbers 72 and 90 (a,b): Cartesian positions
of the end-effector and the magnetic particle are depicted in both x and y-axes.
In (a), disturbance at step numbers 72, and in (b), a disturbance at step number
90 are visible. (c,d): Tracking Errors (T.E.) in each axis are shown. Errors
in each axis increase when there is motion in that axes or when a disturbance
happens. The magnitude of disturbances at step numbers 72 and step number
90 can be seen in (c) and (d), respectively. (e): Euclidean norm of errors in both
axes at each step number is shown. (f): Locus of the particle and end-effector in
the 2-D workspace is depicted.
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conventional method can only be used where obstacle(s) are convex and are not
connected. The method requires analytical modeling of the obstacle’s boundary.
To this end, we consider a rectangle around the part of the obstacle detected by
the robot’s sensor — we fit the point cloud with a rectangle—. However, the
actual shape of the obstacle(s) may not necessarily be a rectangle. In other words,
the approach might be conservative in some scenarios. Also, integration errors
can cause issues in the discrete implementation of the approach in a way that
the next computed point falls inside an obstacle boundary due to the integration
error, and trajectories tend to stay inside the obstacle (as no trajectory can enter
or leave obstacles).

To highlight the benefits of the proposed RL-based algorithm, an ERRT-based
approach is also employed to accomplish the same task. ERRT is a sampling-
based planning method that explores the environment and plans an obstacle-free
path on the fly. In order to handle feeding the algorithm with varying obstacle
shapes, a technique is developed to optimally partition obstacles into rectangular
shapes that can be processed by the ERRT algorithm. This is the first difference
between RL and ERRT-based methods. In the RL-based approach, there is no
need to be concerned about the shape of obstacles as the whole obstacle image
will be taken into account. Therefore, by approximating obstacles, the available
workspace for generating an obstacle-free path might be reduced. At the same
time, this approximation will also increase the computation loads to some extent,
which eventually will lead to decreased bandwidth for the control loop.

In the proposed RL-based algorithm, training or exploring the environment
takes place offline, yet in the ERRT method, environment exploration happens
on the fly, and this directly affects whether the method can be used in real-time.
If the environment is filled with complex and/or dynamic obstacles, the ERRT
algorithm might not be responsive to the changes due to computational loads.
However, this is not the case in the RL-based algorithm. In the presented
scenario in this chapter, the environment is static, so employing the ERRT
method was feasible.

In the ERRT method, there is a need for calibration of the environment
with respect to the robot to keep track of the obstacle positions. Yet, in the
RL-based approach, the current pose of the robot will be assigned to the received
obstacle image, and this will be preserved in the neural network, which will
enable employing the RL-based method in dynamic 3-dimensional environments
without being concerned about the calibration. Still we may use ERRT method
in 3-dimensional environments if we have a reliable way of mapping obstacles to
the robot’s reference frame.

4.2 Optimal Kinematic-based Controller for Magnetic
Guidewire

We employ a simplified integration scheme presented in Section 3.3 to model a
guidewire and forces resulting from the interference of magnetic fields to provide
a rapid model reconstruction. Furthermore, using the presented model and by
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Figure 4.14: Proposed steering setup including an external magnet

orienting the external magnetic field, a guidewire is steered into a constrained
environment. Finally, simulations illustrate the approach performance on a soft
rod where an external magnetic field is oriented to form the desired shape for a
continuum rod and steer it within a vascular-like environment.

4.2.1 Steering Setup

A single external magnet is employed in this study to introduce forces to the tip
for steering purposes. The proposed setup is shown in Figure 4.14. Furthermore,
the external magnet is modeled as a set of 2000 dipoles rotating around the
y-axis and Figure 3.15 shows the resulting flux, the applied force on the tip
dipole, and the projected force on the spline.

The external magnet is located at a 7 cm distance from the GI tract. The idea
is to rotate the external magnet to steer the guidewire toward a desired location
inside a GI tract structure, as shown in Figure 3.16. Length and diameter of GI
tract structure are 8× 10−1 m and 1.5× 10−2 m. The tip embedded neodymium
magnet is a cylindrical magnet with a diameter of 2 mm, height of 3 mm, weight
of 7.2 × 10−5 kg, and residual magnetism of 1.37 T. A circular cross-section
guidewire with the radius 2.5× 10−3, Young modulus constants 550 and 600
KPa for rotational and linear springs are considered, i.e., the rotational and
linear spring constants are 10.79 Nm−1 and 11.78 Nm−1, respectively. For the
external magnet, a block magnet 50.8 mm× 50.8 mm× 50.8 mm with residual
magnetism of 1.3 T is considered. Furthermore, it should be noted that as
boundary conditions, the guidewire is always locked to the direction of the GI
tract, i.e., tangent to the GI tract, and cannot bungle up inside the environment,
as it has been mentioned in the last step in Algorithm 1.
Remark 4.2.1. The choice of 2000 dipoles for the modeling of the external
magnet to steer a guidewire within a GI tract strikes a balance between modeling
accuracy and computational efficiency. This number provides sufficient detail
to simulate the magnetic field, especially at the guidewire’s tip for steering
(considering the magnetic distance from the GI tract, Young modulus and spring
constants etc.). Simultaneously, it represents a point where the computational
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Figure 4.15: Projected force (N) is applied to the guidewire tip dipole alongside
the GI tract resulting from the orientation of the external magnet with respect
to the rotation of the external magnet at different locations of the GI tract, i.e.,
the GI tract index positions. The maximum projected force applied to the dipole
embedded at the tip of the guidewire is shown by the solid black curve.

demands of the simulation remain manageable, aligning with a specific precision
requirement of the application.

4.2.2 Simulation Results

For the simulation, the external magnet only has a rotational movement.
Figure 4.15 shows projected forces tangent to the GI tract structure obtained
from different rotation angles. The maximum projected force on the spline curve
resulting from a specific rotation angle is depicted in Figure 4.16. In other words,
Figure 4.16 depicts the maximum projected force applied to the dipole embedded
at the tip of the guidewire resulting from a specific rotation angle of the external
magnet at each position of the GI tract.

4.3 Findings and Implications

In this chapter, we mainly discussed deriving and validating a customized
Rainbow RL method for online trajectory planning and remote control of
a ferromagnetic particle. Using magnetic actuation, the robot learned to
robustly carry a small ferromagnetic object in a constrained environment.
Furthermore, the trained network is integrated with the two-module controller,
which is deployed as-is in a validation experiment in the real world, where
the experiment showed the robustness of the approach against disturbances.
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Figure 4.16: The maximum projected force applied to the dipole embedded at
the tip of the guidewire results from a specific rotation angle of the external
magnet at each position of the GI tract.

Also, a conventional controller based on the Attractor Dynamics-based approach
is designed. Afterward, simulations were carried out, and the shortcomings
of the proposed method were also discussed. Finally, the experiment results
from the ERRT-based method highlight the improved robustness to dynamic
environments offered by the proposed RL-based algorithm. For future work,
a three-dimensional environment can be investigated. Also, the constrained
environment is static, meaning it does not change over time. However, by
training the RL algorithm in dynamic environments, there is a possibility of
considering time-varying workspaces.

In the second section of this chapter, the possibility of steering a guidewire
inside a complex environment by rotating an external magnet is demonstrated.
The results open up possibilities to construct a rapid model and, therefore, model-
based control algorithms for magnetically-actuated continuum manipulators for
closed-loop control applications to reduce the reality gap. Clearly, further
research will be needed to validate the results. Therefore, the next stage of this
research will be the experimental confirmation of the presented framework and
considering more external magnets as actuators for shape formation of CMs in
difficult-to-reach environments.
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Chapter 5

Discussion
The work presented in the thesis will be discussed in this chapter. Initially, we
examine the motives behind the utilized and developed modeling and control
methods. After that, the chapter concludes with a discussion on the results,
performance, and limitations of the research in the thesis.

The Nature of Models and the Quest for Illumination

Many approaches have been devised by researchers to tackle the modeling of a
CM. "All models are wrong as they are approximations and therefore don’t show
the whole truth, but some are useful. The main question of interest is: Is the
model illuminating and useful?" [Box76]. At the same time, "we must recognize
that eternal truth is not within our grasp" [NW72]. "The idea that complex
physical, biological, or sociological systems can be exactly described by a few
formulae is patently absurd" [Cox90]. In other words, "there is no formula that
can deliver all truth, all harmony, all simplicity. No theory of everything can
ever provide total insight, for to see through everything would leave us seeing
nothing at all" [Bar08]. Thus, we strived to figure out how we might get the
model as close to a real system as possible, at least in some aspects, in order to
address the issue of obtaining an illuminating model of complex physical systems
like soft CMs.

Lie Group Variational Integration and its Challenges

Focusing on symplectic integration1of Hamiltonian systems guided us to
investigate Lie group variational integration scheme to model CMs. The solver2,
presented in the first paper, is not only symplectic and conserves system invariants
such as energy and momentum maps for long-time simulations, but also its unique
formulation provides the possibility of being implemented in parallel. The latter
is surprisingly nontrivial, meaning that each element in the mesh can possibly
have a different time step and does not need to be updated in a consecutive
manner. The first article does not investigate the parallel implementation of
the solver, and the solver results in average absolute and maximum errors in tip
position estimation of 0.33 mm and 1.40 mm, respectively, for a manipulator
length of 85.5 mm in quasi-static experiments3. In those experiments, the
manipulators experienced large deformations and external loads; nevertheless,

1See Appendix A
2The term solver refers to a numerical algorithm or computational method that solves the

underlying equations governing the system’s behavior.
3See Table I.8 for more details.
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the worst-case errors were less than 2% of the manipulators’ length. It is also
worth noting that Lie group variational based solvers for geometrically exact
modeling of soft CMs have not been widely used in the robotics community
due to a variety of factors, including difficult implementation and exploitation
for control purposes. Furthermore, it should be pointed out that the provided
integration scheme is most suited to CMs where external wrenches and loads
are applied at actuation points by electric[Yun+12], thermal[Hag+10; LK04],
or magnetic[Kim+19] actuation mechanisms. In CMs where wrenches are
conveyed along the bodies of manipulators to their tips via hydraulic[IIS02],
pneumatic[RWM18], or tendon-deriven[Ren+12] actuations, the solver might be
challenging to deploy.

Neural Network-Based Modeling for Improved Real-time
Performance

To address the shortcoming of the integration scheme, especially its real-time
performance, some further studies were carried out in Paper II and Paper IV. The
underlying principles and structure of the modeling method —a parallelizable
neural-network-based prediction— are heavily inspired by the formulation of the
solver presented in the Paper I and the fact that the solver, to a very good extent,
mimics the true behavior of CMs. While trained neural network-based prediction
algorithms on data-sets may be more likely to pick up more on the structure of
the data than the underlying dynamics of CMs, tests performed in Section II.4,
have demonstrated that trained models can be generalized when new input
profiles are introduced. High real-time bandwidth for the presented algorithm is
shown through several experiments on two different CMs, i.e., a magnetically-
actuated soft CM fabricated from a urethane rubber Polymer Matrix Composite
and a commercial tendon-driven transesophageal echocardiography probe. It
might be worth stating that the neural-network-based model is straightforward
in applying to tendon-driven CMs without being concerned with how wrenches
are being propagated through the CM to its tip.

Better estimation quality is tied to having a comprehensive data-set, and
this means that obtaining such data-sets might be costly in the real world, and
it may not always be feasible to build such data-sets using high-fidelity classical
models. A closer look at the PDEs governing the dynamics of CMs whose
high order introduces a level of complexity such that constructing physics-aware
numerical solutions has not been adequately investigated so far; however, there
are numerous attempts that consider more basic and simpler types of PDEs
utilizing neural networks. Murray Gell-Mann, a Nobel Prize-winning physicist,
nicely puts it: "Someone should be studying the whole system, however crudely
that has to be done, because no gluing together of partial studies of a complex
nonlinear system can give a good idea of the behavior of the whole".
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Exploring Control Methods: Reinforcement Learning and
Classical Approaches

In the next step of this thesis, we explored more extensively the topic of CM
control, zeroing in on magnetically actuated CMs, the control of which essentially
comes down to the control of actuation points. In other words, the very first
step in comprehending how a CM may be controlled in confined, dynamic
environments is learning how the actuation point of the CM, which can be thought
of as a small, rigid particle, can be controlled in such workspaces. Hence, Paper III
tackled the issue of controlling a small particle in a constrained environment
using an RL algorithm. RL algorithms are organic choices for controlling the
behavior of small-scale particles in a general constrained workspace, as they may
be more robust in dealing with uncertainties and also less difficult to design than
traditional approaches, where they typically require more restricting assumptions
on the workspaces or prior knowledge about the environment. It should be noted,
however, that the control performance may not be generalizable to the case in
which the same method is used for a CM, as the soft portions of the manipulator
undergo elastic deformation, which introduces effects that may be incorporated
as unknown three-dimensional disturbances on the actuation points.

Although three approaches were evaluated, each has advantages and
disadvantages. In other words, classical control systems may be able to ensure
some performance levels under restricted assumptions, but their design is
challenging, particularly when only partial information from the environment
is accessible at each time step. In addition, many conventional path planning
and control design methods require an exact analytical model of the robot and
its interaction with the surrounding environment, whereas RL methods do not
rely on prior information or models. Implementing RL algorithms for real-world
robotic applications can be costly, yet this can be mitigated to some extent by
training algorithms in simulation environments and deploying them as-is in
real-world scenarios.

Applying Developed Models for Control in Constrained
Environments

A particularly important and relevant point that should be discussed here is how
the models developed in the two first publications might be applied to control
a CM in confined, dynamic environments such as the intervascular system or
the large intestine of the human body. A requirement to deploy those models is
the need to know the exerted torques and forces onto the body of the CM while
it is being inserted into a constrained environment at the time of the collision
with the environment. In addition, there should be information on where on
the body of the CM, wrenches were applied. This may be accomplished, albeit
with considerable difficulty in implementation, by knowing the exact model of
the environment to detect the collocation places alongside the body of the CM
in conjunction with observers or estimators to estimate forces and torques, or
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another way would be to equip the CM with strain measurement sensors such
as Fiber Bragg Grating (FBG) sensors in order to both detect the collocation
spots and the amount of interaction forces.

A further crucial consideration is that the length of the CM being manipulated
within a constraint workspace will vary, requiring the indices of discretized mesh
elements to be modified accordingly. The scenario will be more challenging to
deal with, particularly if the length of discretized elements is unequal.

The exploration of CMs in MIS and medical interventions presented in this
work opens several avenues for future research. Reflecting on these findings, it
becomes evident that there are key areas within CM modeling and control that
require further investigation:

• Integration of Advanced Control Strategies: The advancements in control
strategies for CMs, as discussed in earlier chapters, lay the groundwork
for incorporating more sophisticated algorithms. The potential of machine
learning and artificial intelligence, particularly reinforcement learning,
emerges as a promising approach which could offer adaptive control
capabilities in the dynamically challenging environments of human tissues,
a topic that directly aligns with the control challenges highlighted in our
experimental results.

• Improving Real-time Performance: Our research has underscored the
criticality of real-time performance in CMs. There remains a gap in
achieving the desired level of accuracy and responsiveness within the
stringent constraints of surgical environments. Future work should pivot
towards enhancing the computational efficiency of modeling and control
algorithms and the real-time data processing capabilities of these systems,
a need that was evident in our latency and response time analyses.

• Addressing the Simulation-Reality Gap: A notable observation from our
experimental work is the divergence between simulation models and real-
world application. This gap often results in performance discrepancies
and unforeseen outcomes in surgical settings. Consequently, there is an
imperative need for more robust simulation models and methodologies,
aimed at bridging this gap and ensuring a smoother translation of simulated
predictions to real-world surgical scenarios.

• Enhancing Autonomy in CMs: The potential of autonomous or semi-
autonomous CMs to elevate the efficiency and safety of MIS has emerged
as a critical discussion point. Future research directions could explore
integrating sensory feedback, advanced imaging, and decision-making
algorithms. Such integration would align with our findings on the
limitations of manual control and the potential for enhanced automated
responses.

• Material and Design Innovations: The development of new materials
and design approaches for CMs could lead to significant advancements
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in flexibility, durability, and bio-compatibility. This area of research
is particularly promising, offering possibilities to overcome some of the
mechanical limitations identified in our prototypes.

• Ethical and Regulatory Considerations: As the technology surrounding
CMs progresses, there arises a concurrent need to address the ethical
and regulatory dimensions. This includes considerations of patient safety,
privacy, and the broader ethical implications of robotic interventions.

• Interdisciplinary Collaboration: The research conducted highlights the
benefits of interdisciplinary collaboration, merging insights from robotics,
medicine, material science, and computer science. Future endeavors in
this field would benefit from continued and expanded collaborative efforts,
fostering an environment where innovation can thrive.

In summary, these areas not only reflect the open issues and challenges
encountered in our research but also pave the way for future explorations. They
form the cornerstone for the next steps in CM research, particularly in the
dynamic and evolving landscape of MIS.

In this chapter, we have journeyed through some discussions around the
work conducted in this thesis, from the motivations driving the chosen modeling
and control methods, to the performance and limitations of our research. As
we conclude this chapter, it is clear that this thesis has contributed to the
broader understanding and development of CM control. Despite the challenges
and complexities faced, the potential for further exploration and improvement
remains vast. This chapter has provided a context for the findings of our
research, setting the stage for the final conclusions and future directions that
will be presented in the next chapter.
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Chapter 6

Concluding Remarks and Future
Prospects

In this thesis, we scratched the surface of important challenges related to
the modeling and control of magnetic catheters and guidewires, focusing on
understanding the complex behavior of such tools. We explored topics across a
series of studies, which hopefully can be used as inspiration in future academic
research. This chapter focuses on summarizing our work, providing a connection
between outcomes and knowledge of each individual study, and discussing them
with respect to the research objectives formulated in the introduction (Chapter 1).
Furthermore, to put our research in the relevant context, future prospects for
where magnetically-actuated continuum manipulators are possible to develop in
the near future are described.

6.1 Conclusions

Employing magnetic actuation opens up possibilities for the development of
robotic catheters or guidewires with advanced functionalities but complex
behavior. Controlled magnetic forces and torques can be applied locally and
in a non-contact fashion to actuation points where magnetic elements such as
permanent magnets or coils are located. This brings versatility to the magnetic
actuation mechanism, which can be effectively used to move the CMs, change
their formation, or make them interact with the environment directly. By
addressing the research questions formulated in Section 1.4, we have intended
to study the foundations for the modeling and control of CMs, upon which the
complex behavior of magnetic CMs can be analyzed and put into effective and
relevant clinical use. The key findings of the work presented to address the
research questions of this dissertation are as follows:

To approach RQ.1, i.e., CM Modeling, we direct our focus towards the
development of modeling solutions to capture the mechanics of CMs using the
principles of continuum robotics. In Chapter 3 and its related papers Paper I,
Paper II, Paper IV, and Paper V, we initiate our work mainly on developing
nonlinear dynamic models that are Lie group variational and recurrent neural
network integrations. A significant amount of work within this chapter is
devoted to formulating an exact model of CMs. We presented the derivation
and experimental validation of algorithms for modeling and estimation of
magnetically-actuated soft continuum manipulators using Lie group variational
integration. Using magnetic actuation, dynamic and static experiments were
conducted on manipulators with rigid and soft materials (e.g., aluminum and
PDMS) to illustrate the validity of the presented algorithm for a wide range of
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experiments.We identified several principal contributions to our work. First of
all, we derived and validated a fully three-dimensional dynamic model for forced
continuum manipulators with soft materials undergoing spatial deformation.
Secondly, we proposed distributed predictive filters to capture the behavior of
internal and external dissipative damping. Finally, we validated our approach by
designing and carrying out different experiments with metal rods and polymer-
based soft rods.

In Section 3.2, the proposed exact model is used to realize a real-time model
for forced CMs undergoing spatial deformation, making the model usable in
closed-loop control applications. In data-driven approaches such as recurrent
neural networks, there is a need for a large number of labeled data. This is
usually a barrier to using neural networks in robotic applications. We used
the Lie group variational integration method, presented earlier, to generate
the necessary data-set for training recurrent neural network-based models. It
was also shown that the developed models could be generalized and applied
to different boundary and initial conditions without the need for re-training.
Furthermore, the computation time to run these neural-network-based models is
much faster (and in some examples, a few orders of magnitude less) than the
time needed to run the exact nonlinear Lie group-based method. Such a large
computation bandwidth is beneficial for employing such models in closed-loop
control tasks. We finally demonstrate that the presented model can outperform
classical modeling approaches such as the Cosserat rod model while also showing
possibilities for the model being used in practice by providing high quality
predictions of CMs’ behavior1.

Permanent magnets or electromagnetic coils located outside of the body are
auxiliary infrastructures that are used to generate external fields penetrating
through the body and transmitting power to manipulate CMs at their actuation
points (which can either be small coils or permanent magnets integrated within
the bodies of CMs). In the third part, we explore a rapid multiphysics model by
employing the dipole and linear elasticity theories to capture the mechanics of
magnets (auxiliary infrastructures) and guidewires, respectively. This provides a
quick tool to roughly simulate both magnetically actuated CMs and the necessary
auxiliary infrastructure for the manipulation of CMs.

Within the boundaries of the research question RQ.2, i.e., CM Control, we
explore control and path planning strategies for manipulation of untethered
smallscale robots, which essentially can be seen as a magnetic actuation point
for CMs. Such path planners eventually will contribute to making magnetic
CMs operational in a (semi-)autonomous mode. In Chapter 4 and its related
papers, Paper III and Paper V, three path planning strategies are developed
and compared. However, the main effort involves deriving and experimenting
with a deep reinforcement learning method. We utilize a customized Rainbow
algorithm, along with Quantile Huber loss and ResNet, to bridge the gap
between simulations and real-world implementation of a reinforcement learning
algorithm for a robotic application. This application focuses on particle deliveries

1See Table II.1 and Figure II.14 for a detailed performance comparison.
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within a simplified model of the large intestine, which represents a constrained
and uncertain environment. The experimental results on the UR5 robot show
an average success rate of 98.86% over 30 episodes for randomly generated
trajectories, demonstrating the viability of the proposed approach for real-life
applications. To evaluate the results of the RL-based mechanism, two classical
approaches, Attractor Dynamics and Execution Extended Rapidly-Exploring
Random Trees (ERRT), are tested through simulations and experiments. The
results confirm that the RL-based method achieves comparable performance
while being a more robust and generic solution to deploy in dynamic and complex
environments. Eventually, by using the proposed rapid kinematic model, an
optimal angle for orienting an external magnetic field is calculated, which results
in a desired shape of continuum guidewire for being steered into a vascular-like
structure.

6.2 Future Work

The work done in this dissertation brings some insights into how CMs can be
analyzed by investigating modeling and control strategies. The subject of CMs,
especially magnetically actuated CMs, is evolving in many areas, particularly
in the field of minimally invasive surgeries. According to our experience, some
educated potential suggestions are provided to promote that evolution.

The complex mechanical behavior of magnetic CMs, as it is discussed
throughout the chapters, raises expectations that these instruments can perform
a wide variety of clinically-relevant tasks in challenging areas within the human
body. Yet, related challenges must be tackled to be able to simulate and analyze
the dynamics and behavior of such tools. Although the presented analytical
model in this work tries to model the mechanics of CMs exactly, there will be
challenges, such as reducing computation bandwidth while capturing the exact
dynamics of CMs and preserving their outstanding conservation properties. This
can be done by employing asynchronous variational integrators in a distributed,
parallel scheme for computations.

It was demonstrated that in the modeling of CMs —discretized as several
nodes—, incorporating poses of adjacent nodes and also wrenches as separated
inputs helps to have a real-time generalizable model rather than just purely
learning the structure of data, while achieving high quality predictions. However,
supervised learning methods likely tend to preserve the structure of data, and
these models might not entirely respect the underlying physics (conservation
laws). In other words, these methods might not be wholly physics-aware and
applicable for untrained or unprecedented dynamics or geometries without any
adjustment, re-training, or using techniques such as transfer learning. One
possible solution that can be considered to tackle the mentioned issue and move
toward fully physics-aware neural networks is revisiting lost functions for the
training process to enforce the structure imposed by PDE equations describing
CMs dynamics and kinematics such that the trained neural network will be
aware of governing PDEs.
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6. Concluding Remarks and Future Prospects

A plausible path to bio-active medical robotic agents goes through smallscale
robot technology aiming at utilizing micro- and nano-robots to reach sites of
treatments in the human body. As we demonstrated in Chapter 4, magnetic
particles can serve as controllable agents in clinically-related tasks. It is worth
mentioning that flexible continuum tools and smallscale robots can be seen
as inseparable elements of the same bio-active medical tool. Furthermore,
investigating suitable control and path-finding strategies for such a system is
therefore a necessity.

Although deep reinforcement learning methods are widely applied in
simulations, employing these algorithms for robotic applications is challenging,
both due to the difficulty of obtaining training samples and the lack of a concrete
analytical proof for ensuring the stability of a system. Yet, the convergence
of the system to a stable behavior can be shown statistically to a very good
extent. Furthermore, there is no need for a precise model for the robot and its
interaction with the environment, which can make reinforcement learning-based
methods a general solution for tackling challenges in controlling robots where
classical control might be difficult to apply. This comes at a price that there
should be large enough data-sets to train robots on, which would be costly in
real-world robotic applications. More improvements are possible, both with
respect to the techniques used in the design of reinforcement learning-based
algorithms and to making tasks and environments more realistic for robots.
For example, three-dimensional dynamic environments or obstacles that change
over time can be investigated. Equipping the RL method with a high fidelity
segmentation algorithm would help in better understanding the environment,
thereby reducing the simulation reality gap. In addition, for more practical
uses, all the imaging modalities, i.e., tracking systems, are better integrated at
the end-effector and replaced by more relevant radiography methods, which are
considered safe procedures and can be used to see through the body. It was
observed that offline training of high fidelity reinforcement learning algorithms
in complex environments requires a relatively large amount of time. The training
time can be reduced by augmenting a model or pre-existing knowledge, such
as a classical path-finding method such as the presented ERRT with learning
methods.
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Abstract

This paper presents the derivation and experimental validation of
algorithms for modeling and estimation of soft continuum manipulators
using Lie group variational integration. Existing approaches are generally
limited to static and quasi-static analyses, and are not sufficiently validated
for dynamic motion. However, in several applications, models need
to consider the dynamical behavior of the continuum manipulators.
The proposed modeling and estimation formulation is obtained from a
discrete variational principle, and therefore grants outstanding conservation
properties to the continuum mechanical model. The main contribution
of this article is the experimental validation of the dynamic model of
soft continuum manipulators, including external torques and forces (e.g.,
generated by magnetic fields, friction, and the gravity), by carrying out
different experiments with metal rods and polymer-based soft rods. To
consider dissipative forces in the validation process, distributed estimation
filters are proposed. The experimental and numerical tests also illustrate
the algorithm’s performance on a magnetically-actuated soft continuum
manipulator. The model demonstrates good agreement with dynamic
experiments in estimating the tip position of a Polydimethylsiloxane
(PDMS) rod. The experimental results show an average absolute error
and maximum error in tip position estimation of 0.13 mm and 0.58 mm,
respectively, for a manipulator length of 60.55 mm.
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I.1 Introduction

Reachability, high level of dexterity, and large elastic deformability are the
primary driving factors behind the growth of research in the design, modeling,
and control of continuum manipulators. Flexible continuum manipulators have
recently generated interest in several fields [LMC16; Pol+17; RT15], especially in
minimally invasive surgical robotics and interventional medicine, such as catheter-
based endovascular intervention [Bur+13; Gra+00] and cardiac surgeries [CP09;
KH11]. In contrast to conventional rigid link manipulators, soft manipulators are
able to reshape their configurations to allow for redundancies in path planning,
and are capable of precise and delicate manipulation of objects in complex and
varying environments.

There are numerous candidate actuation mechanisms for continuum manipu-
lators such as tendon-drives and concentric tubes [Cam+08; Cia+13; Guo+96;
WJ10]. Compared to other actuation mechanisms, magnetic actuation benefits
from high dexterity, versatility, and wireless actuation [HSM18; Sik+17; Sik+19;
Tho+20]. By applying remote magnetic torques on permanent magnets or coils
which are embedded inside the body of a manipulator and/or at its tip, one can
control the motion and configuration of the manipulator.

This paper aims to develop a computational model for analyzing the
dynamics of soft continuum manipulators, which is one of the key challenges
in soft robotics. In many tasks, dynamic models of manipulators are essential
for control, trajectory planning, and optimal design purposes, especially in
Minimally Invasive Surgeries (MIS) for operation in unknown and unstructured
environments such as inside the human body. Due to elastic characteristics and
geometric nonlinearities (i.e., bending, torsion, shear, elongation, including large
deformation) of continuum manipulators, their dynamics have highly nonlinear
behavior and are expressed as partial differential equations. Some recent modeling
approaches of soft continuum manipulators/robots, which have been employed
in the surgical robotics field, are summarized in Table I.1.

80



Introduction

Table I.1: References on dynamics/static analysis of soft continuum manipulators
in surgical robotics field.

References Modeling Approach
and Properties

Robot Type/Applica-
tion

[Pai02] Static analysis: Cosserat
rod model. 3D elesticity

Surgical suture/ strands

[WRC09] Beam mechanics based on
elastic energy

Concentric tubes/ General
MIS

[XS08] Static analysis based on
screw theory and a virtual-
work model

Multiple parallel back-
bones/ General MIS

[Cam+08; CCS09] Linear elasticity theory Single/Redundant tendons
[JGT09] 3D Static analysis with

loads: Cosserat rod model
General purpose CRs

[Ruc+10] Beam mechanics based on
elastic energy (includes
both bending and torsion)

Concentric tubes/ General
MIS

[XS10] Bernoulli–Euler elastica
theory: statics, 2D

Multibackbone

[KS10] Static analysis based on a
virtual-work model

Serial Segments/ General
surgical end-effectors

[Loc+10; RJW10] Static analysis: Cosserat
rod theory

Concentric tubes with and
without external loads

[Tun11] Static analysis: Cosserat
rod theory

Magnetic Catheter/ Gen-
eral purposes

[MD11] Loaded static analysis:
Cosserat rod theory

General MIS

[Wen+12] Dynamic analysis:
Cosserat rod model.
3D elesticity

Guidewire/ Interventional
Radiology procedures

[Tun13] FEM: large deformation
and inflation

Simulations on general
medical robots

[JPZ14] Lumped-parameter model Multiple parallel shafts/
general Magnetic reso-
nance imaging (MRI)-
compatible medical
manipulators

[GC15] Pseudo-rigid-body model Multiple parallel shafts/
cardiac robotic catheter

[RM16] 2D static analysis: rigid-
link modeling

Planar tendon-driven con-
tinuum manipulator/ gen-
eral medical robots

[GDS19] Static analysis: α Lie
group formulation

Planar continuum: simula-
tions and bechmark analy-
sis/ intravascular shaping
operations

[VSM19] 3D static analysis: pseudo
rigid body model

Magnetic catheter/ Gen- 
eral surgical catheters
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Soft continuum manipulators are analogous to specific Cosserat continuums.
Therefore, Lie group synchronous variational integrators [BS99; Dem+15],
a novel time and space integration scheme, is employed in this paper to
model geometrically exact beams based on the Simo beam model [Sim85] and
Hamiltonian formulation. The core idea of this algorithm is to obtain the dynamic
behavior of the system while conserving the invariants (energy, momentum
maps) of the system, especially for long-time simulations. The distinguishing
characteristic of variational integrators is that they define the equations of motion
based on the discretized variational principle of the system. Combining the
integrators with Lie-group/algebraic techniques enables the algorithm to respect
not only the structure of the dynamics and its properties but also preserve
the structure of the configuration space. The advantages of employing the Lie
group variational integration method compared to other modeling strategies is
that the proposed solver is applicable to exact nonlinear dynamic models of
continuum manipulators subject to large deformations. The algorithm preserves
the symplectic structure, i.e., the invariants of mechanical systems. Also, it allows
the usage of different time steps at different points in a given finite element for
the geometry of soft manipulators. These properties are investigated in previous
work (e.g., [Dem+15; Lee08; LOL14]), while the main focus of this paper is the
experimental validation of the method on magnetically-actuated soft continuum
manipulators.

Investigation of previous work in modeling of the continuum manipulators
suggests that existing literature focuses primarily on static or quasi-static
approaches, or does not provide sufficient experimental validation in realistic
application scenarios. By contrast, the main contribution of this article compared
with the existing work in literature is the validation of an accurate dynamic model
of a soft continuum manipulator, considering spatial motion. Also, it should
be noted that the model accounts for the geometric nonlinearities (e.g., large
deformation) and respects conservation of dynamical properties of the system
(e.g., energy and momentum maps conservation), and structures of configuration
space simultaneously. Besides, it should be pointed out that three-dimensional
internal and external dissipation forces act on the continuum manipulator and
hence affect the dynamics. Therefore, it is necessary to consider these friction/
dissipation forces in the validation process. To this end, distributed prediction
filters have been proposed.

In summary, this article’s contributions can be stated as follows.

• Existing studies on the modeling of continuum manipulators primarily
consider static or quasi-static approaches. However, in numerous
applications, the fully spatial dynamics of manipulators need to be
considered for accurate control and design purposes. The primary
contribution of this article is the derivation and experimental validation of
a dynamic model for forced continuum manipulators with soft materials
undergoing spatial deformation. The model accounts for the nonlinearities
of the continuum manipulator; loading resulted from magnetic fields, the
gravity, and internal and external dissipation forces generated by friction.
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• Due to the difficulty in obtaining knowledge about the internal and external
dissipation forces, distributed estimation filters have been designed to take
these forces into account and capture their behavior.

The rest of the paper is organized as follows. In Section I.2, mathematical
preliminaries, including the system description and notation, are discussed. Next,
Section I.3 addresses the algorithm and numerical results. The experimental
framework and implementation results are described in Section I.4, demonstrating
the effectiveness of the theoretical formulation. In addition, Section I.5 provides a
discussion on the implementation of the modeling algorithm. Finally, Section I.6
summarizes the results of this work and draws conclusions and posits directions
for future work.

I.2 Continuum Manipulator Dynamics

This section is devoted to describing kinematics and full three-dimensional
dynamics for continuum manipulators undergoing large deflections (for detailed
explanations, refer to the reference [Dem+15]). We review the static description
of a continuum manipulator in three-dimensional space R3 toward deriving the
dynamic equations of motion of geometrically exact continuum manipulator by
applying Hamilton’s principle to the Lagrangian of the system.

I.2.1 Kinematics

The manifold of configuration space of a continuum manipulator considering
Boundary Conditions (BCs) is defined as

Q =
{

(O,P) ∈ C∞(·) : [0, L]→ SO(3)× R3
∣∣∣BCs are satisfied

}
in which L is the length of the undeformed continuum manipulator, P : [0, L]→
R3 maps the line of continuum manipulator’s centroids (i.e. center of mass)
to Euclidean space R3 and the orthogonal transformation O : [0, L] → SO(3)
determines the orientation of moving cross-sections at points P(s) in the terms
of a fixed basis {E1(s), E2(s), E3(s)}. Therefore, the orientation of each cross-
section which is denoted by directors or moving basis {D1(s),D2(s),D3(s)} can
be written as

Di(s) = O(s)Ei, i = 1, 2, 3.
Figure I.1 shows initial and a time-evolved configuration of the continuum
manipulator with the free right tip and clamped left end, i.e, BCs: O(0) = I3,
∂P(0)
∂s = E3. The BCs imply that the clamped cross section is orthogonal to the

plane defined by E1 and E2. In addition, a curve q(s, t) = (O(s, t),P(s, t)) ∈ Q
characterizes a time-evolved configuration space of the continuum manipulator.
The family of tangent vectors to the curve q(t) is defined as

q̇(s, t) = dq(s, t)
dt =

(
Ȯ(s, t), Ṗ(s, t)

)
∈ TqQ,

which characterize tangent bundle TqQ to Q at the manifold q(s, t).
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(a) Initial Configuration (b) Time-Evolved Configuration

Figure I.1: Initial and time-evolved configurations of the continuum manipulator.
The highlighted frames depict cross-sections at discretization points. Fixed bases
or material frame {E1, E2, E3} are also shown at the fixed end of the manipulators.
Also, moving bases {D1,D2,D3} are attached to the cross section at the centroid
s and the tip of manipulators.

I.2.2 Lagrangian and Equation of Motion

To derive the equations of motion, we first need to introduce the Lagrangian
L : TqQ of the system which can be written as

L(O,P, Ȯ, Ṗ) = 1
2

∫ L

0

(
M‖Ṗ‖2 + ωTJω

)
ds︸ ︷︷ ︸

Kinetic energy

− 1
2

∫ L

0

(
(Γ− E3)TC1(Γ− E3) + ΩTC2Ω

)
ds︸ ︷︷ ︸

Elastic energy

−
∫ L

0
F c · Pds︸ ︷︷ ︸

Conservative
potential energy

(I.1)

where the matrices C1 and C2 are defined as C1 := diag(GA GA EA) and
C2 := diag(EI1 EI2 GJp). For brevity, other parameters are defined in Table I.2.
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Table I.2: Definition of parameters in Lagrangian (Equation (I.1)) as described
in [Dem+15].

M = ρ0 ×A ρ0 and A are the body constant
mass density and cross section’s
area.

ω(s, t) ∈ so(3) the body angular velocity
J = −ρ0

∫
A

̂(xE1 + yE2)
2
dxdy inertia matrix in the fixed frame

(Ω(s, t),Γ(s, t)) = (O−1 ∂O
∂s ,O

−1 ∂P
∂s ) deformation gradients as viewed

at the time t by an observer that
is located at the position s

E, G = E/(2(1 + ν)), ν, I1, I2, and Jp Young’s modulus, shear modu-
lus, Poisson’s ratio, principal mo-
ments of inertia of the cross-
section, and polar moment of in-
ertia, respectively.

where each cross section is given by a compact set A = {(x, y)|x, y ∈ R}, Lie
algebra so(3) is associated with the Lie group SO(3), and Hat map/ operator
ˆ : R3 → so(3) which is a one-to-one invertible map, i.e., an isomorphism, is
defined as

v =
[
v1
v2
v3

]
→ v̂ =

[
0 −v3 v2
v3 0 −v1
−v2 v1 0

]
(I.2)

.

Remark I.2.1. the inertia J dependents both on the cross-sectional area A and
also on the distribution of mass within the cross-section. The integral takes
into account the coordinates x and y within the cross-sectional area A, which
corresponds to how the mass is distributed in relation to the E1 and E2 axes.
The inertia matrix J takes into consideration the geometry of the cross-section,
including how far from the center of mass (centroid) the material is distributed,
as this affects the body’s resistance to angular acceleration. The use of the
hat operator ˆ implies that it is considering the rotational effects due to the
distribution of mass around each axis, not just the area alone.

For the continuum manipulator described, which is naturally aligned with
E3, and has cross-sections at discretization points where E3 is normal to the
cross-sections, Inertia is most significant about the principal axes of the cross-
section, which are typically aligned with the manipulator’s geometric axes. For a
continuum manipulator, the principal moments of inertia are often most relevant
in the plane of the cross-sections (i.e., E1 − E2 plane), where each discretized
node is expected to experience the most significant bending deformations. Each
discretized node, considering its cross-section, is designed to bend primarily in
the E1 − E2 plane, which means that inertia about the E3 axis (normal to this
plane) is most relevant for the dynamics of bending motions for each node.
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The Euler-Lagrange equations are obtained by applying by the Lagrange-
d’Alembert principle to the action functional H associated to L, namely

Y(O,P) =
∫ tf

to

(
L(O,P, Ȯ, Ṗ) + Fnc(O,P, Ȯ, Ṗ)

)
dt

By employing the Lagrange-d’Alembert principle, one computes

δY =
∫ tf

to

(∫ L

0

(
MṖT (δṖ) + ωTJδω

)
ds

−
∫ L

0

(
(Γ− E3)TC1δΓ + ΩTC2δΩ

)
ds

−
∫ L

0
F cδP ds− Fnc · δq(s, t)

)
dt

The terms δω, δΩ, and δΓ are defined ([LOL14]) as follows:

δω = ω × η + d
dtη

δΩ = ∂

∂s
η + Ω× η

δΓ = OT δ
( ∂
∂s
P
)

+ Γ× η

(I.3)

where δO = Oη̂.
Taking into account the expressions for δω, δΩ, and δΓ in Equations (I.3)

and using integration by parts in space and time, we obtain Euler-Lagrange
equations with non-conservative force Fnc(O,P, Ȯ, Ṗ) : TqQ → T ∗qQ as

Jω̇ − Jω × ω − Γ× C1(Γ− E3)− Ω× C2Ω− C2
∂Ω
∂s

= O−1N

M P̈ − ∂OC1(Γ− E3)
∂s

+ F c = F
(I.4)

in which we could consider 6 × 1 representations of general non-conservative
force vector Fnc = [NF ] where F and N are force and moment vectors in R3,
respectively. Also, T ∗qQ denotes the cotangent bundle of Q. For simplicity, one
may think of the cotangent boundle as the space of positions and momenta. For
the exact definitions, refer to [MR94] or [AM78].

I.3 Lie Group Variational Integrators for the Forced
Continuum Manipulator

In this section, the focus is on analyzing a Lie group variational integrator
for continuum manipulators with conservative (e.g., the gravity) and non-
conservative forces (e.g., friction and loads inserted by actuators). In the following
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Spatial discretization Temporal discretization

Compute discrete
action sum

Lagrange–d’Alembert
principle

Apply discrete Discrete
Forced Euler-Lagrange

equations

Lagrangianof Lagrangianof 

1 2

3 4 5

Figure I.2: Steps 1 through 5 toward deriving continuum manipulator discrete
dynamics.

subsection, the discretized version of the forced Euler-Lagrange Equation (I.4) is
given (for further details and stability analysis, see [Dem+15]), and afterward,
the estimation process is discussed.

I.3.1 Modeling

This section is devoted to introducing a Lie group variational integration scheme
for continuum manipulators with external loading. First, one needs to consider
the spatial discretization of Lagrangian introduced in the previous section.
Afterward, discrete Lagrange-d’Alembert equations need to be expressed on
Lie group SE(3). These equations are employed to propose a model-based
distributed estimation scheme. Figure I.2 depicts the modeling procedure in this
section.

Here notations of the paper are provided. Additionally, concepts and
definitions on Lie groups and Lie algebra are presented in Appendix I.A.

Notations: The undeformed continuum manipulator’s length [0, L] is spatially
discretized into N subsets Ii = [sai

, sai+1 ] of length lIi
= sai+1−sai

. For an
element Ii, ai and ai+1 denote its left and right nodes. The configuration
of the continuum manipulator at the node ai is given by Oai

:= O(sai
) and

pai
:= P(sai

). Also, ωai
denotes the angular velocity of a node ai. Given

a node ai, the discrete time evolution of this node is given by the discrete
curve (Ojai

, pjai
) ∈ SE(3) = SO(3) × R3, j = 0, · · · , V and is based on

the discrete Euler-Lagrange equations on Lie group SE(3), The discrete
variables F jai

associated with the node ai are defined as F jai
= (Ojai

)TOj+1
ai

.
We denote the fixed time step by ∆t = tj − tj+1, j = 0, · · · , V . In time
discretization of the continuum manipulator, we have ∆pjai

:= pj+1
ai
− pjai

.

By identifying the configuration space Q of the continuum manipulator with
the infinite dimensional Lie group G = C∞([0, L],SO(3)× R3, we consider the
trivialized Lagrangian L : G × g → R, where g is a Lie algebra associated
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with the Lie group G. A spatial discretization of the trivialized Lagrangian
for an element Ii and the total system are computed as follows, respectfully.
It should be noted that the evaluation of Lagrangian at midpoints of nodes is
employed. Other evaluations of the Lagrangian depending on a different number
or combinations of nodes are possible (see [LOL14]).

For an element Ii:

LIi
= lIi

4 M
(
‖pai
‖2 + ‖pai+1‖2

)
+ lIi

4

(
ωTai

Jωai
+ ωTai+1

Jωai+1

)
− VIi

(I.5)

where VIi
is conservative potential energy of an element Ii due to the gravity

and elasticity and given by

VIi = lIi

4

[(
OTai

∆pa
lIi

−E3
)T
C1

(
OTai

∆pa
lIi

−E3
)

+
(
OTai+1

∆pa
lIi

−E3
)T
C1

(
OTai+1

∆pa
lIi

−E3
)]
(I.6)

For the whole continuum manipulator:

L =
∑N

i=1

( lIi

2 M‖pai
‖2+ lIi

2 ωai
Jωai

)
+
∑

i=0,N+1

( lIi

4 M‖pai
‖2+ lIi

4 ωai
Jωai

)
−
∑N+1

i=0
VIi

The temporal discretized Lagrangian L j
Ii

approximates the Lagrangian LIi

in Equation (I.5) during the time step ∆t is therefore

L j
Ii

=
∑

a=ai,ai+1

( lIi

4 M
‖Hj

a‖2

∆t +
( lIi

2
Trace

(
(I3 − F ja )Jd

)
∆t

)
−∆tVjIi

(I.7)

where Hj
a = (Oja)T∆pja and Jd = Trace(J)

2 I3 − J .
The discrete action sum over the discretized time interval [0, T ] =

{t0, · · · , tj |tj = tj−1 + ∆t, t0 = 0, tV = T}, is computed as follows.

Yd =
N+1∑
i=0

V∑
j=1

L j
Ii

The discrete Lagrange–d’Alembert principle is

δ
N+1∑
i=0

V∑
j=0

L j +
V∑
j=0

N+1∑
i=0

Fd
nc
ai

j · δ(Ojai
, pjai

) = 0 (I.8)

By applying the discrete Lagrange–d’Alembert principle (I.8), we get the
discrete Euler–Lagrange equations for a node ai in a compact form as
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T ∗e L(F j−1
ai

,Hj−1
ai

)

(
DF j−1

ai
L j−1
ai

, DHj−1
ai

L j−1
ai

)
−Ad∗(F j

ai
,Hj

ai
)−1T

∗
e L(F j

ai
,Hj

ai
)

(
DF j

ai
L j
ai
, DHj

ai
L j
ai

)
+ T ∗e L(Oj

ai
,pj

ai
)

(
DOj

ai
L j
ai
, Dpj

ai
L j
ai

)
+ (Ojai

, pjai
)−1Fd

nc
ai

j = 0

(I.9)

Finally, using the definitions of adjoint and coadjoint actions, and cotangent
lift of left translation which are presented in Appendix I.A, Equations (I.7)
and (I.9) yields Equations (I.10)-(I.12) and (I.14)-(I.16) to update rotations and
positions of each node.

I.3.1.1 Discrete Euler-Lagrange Equations for Rotations

• For the left node of the continuum manipulator (ai=0)

(F ja0
Jd − Jd(F ja0

)T )∨ = −2∆t2

lI0

[
1
2C1

(
OTa0

∆pa0

lI0

− E3
)
×OTa0

∆pa0

+ 1
lI0

((
(I +OTa0+1

Oa0)−1Ĉ2ψa0(ψ̂a0 − 2I)
)(A)

)∨
−∆tO−1

a0
Na0

]∣∣∣∣∣
t=tj

+ (JdF j−1
a0
− (F j−1

a0
)TJd)∨

(I.10)

• For the interior nodes of the continuum manipulator ∀ai, i ∈ {1, · · · , N−1}

(F jai
Jd − Jd(F jai

)T )∨ = −∆t2

lIi

[
1
2C1

(
OTai

∆pai−1

lIi

− E3
)
×OTai

∆pai−1

+1
2C1

(
OTai

∆pai

lIi

− E3
)
×OTai

∆pai + 1
lIi

((
(I +OTai+1

Oai)−1Ĉ2ψai(ψ̂ai − 2I)
)(A)

)∨
+ 1
lIi

((
(I +OTai−1

Oai
)−1Ĉ2ψai−1(−ψ̂ai−1 + 2I)OTai−1

Oai

)(A)
)∨
−∆tO−1

ai
Nai

]∣∣∣∣∣
t=tj

+(JdF j−1
ai
− (F j−1

ai
)TJd)∨

(I.11)
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• For the right node of the continuum manipulator (ai=N )

(F jaN
Jd − Jd(F jaN

)T )∨ = −2∆t2

lIN

[
1
2C1

(
OTaN

∆paN−1

lIN

− E3
)
×OTaN

∆paN−1

+ 1
lIN

((
(I +OTaN−1

OaN
)−1 ̂C2ψaN−1(ψ̂aN−1 − 2I)

)(A)
)∨

−∆tO−1
aN
NaN

]∣∣∣∣∣
t=tj

+ (JdF j−1
aN
− (F j−1

aN
)TJd)∨

(I.12)

where the variable ai is defined as ψ̂ai := exp−1(OTai
Oai+1) which is

approximated by the Cayley transformation as ψ̂ai
:= Cay−1(OTai

Oai+1), where
The Cayley transformation and its inverse are defined in the following form for
convenience OTaOa+1 = Cay(ψ̂a) = I+ψ̂a

I−ψ̂a
with inverse ψ̂a = Cay−1(OTaOa+1) =

2O
T
aOa+1−I
OT

aOa+1+I (see, [Dem+15; Lee08]). In addition, ∆pai

∣∣∣
t=tj

= pj+1
ai
− pjai

.

For discrete Euler-Lagrange equations for rotations, Equations (I.10)-(I.12),
one has to solve an implicit expression of the form

Û = FaJd − JdFTa , ∀a ∈ {a0, · · · , aN} (I.13)

In order to solve Equation (I.13) for F ∈ SO(3), (the vector U or the
right hand sides of Equations (I.10)-(I.12) and the symmetric non-standard
inertia matrix Jd are known), a Newton iteration method based on the Cayley
transformation is applied (as described in [Lee08, Section 3.3.8]) .

I.3.1.2 Discrete Euler-Lagrange Equations for Translations

• For the left node of the continuum manipulator (ai=0)

pj+1
a0

= 2∆t2

lI0M

[
1
2Oa0C1

(
OTa0

∆pa0

lI0

− E3
)

+ 1
2Oa0+1C1

(
OTa0+1

∆pa0

lI0

− E3
)

− lI0

2 F ca0
−∆tO−1

a0
Fa0

]∣∣∣∣∣
t=tj

+ 2pja0
+ pj−1

a0

(I.14)
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• For the interior nodes of the continuum manipulator ∀ai, i ∈ {1, · · · , N−1}

pj+1
ai

= ∆t2

lIiM

[
1
2Oai

C1

(
OTai

∆pai

lIi

− E3
)
− 1

2Oai−1C1

(
OTai−1

∆pai−1

lIi

− E3
)

+1
2Oai+1C1

(
OTai+1

∆pai

lIi

− E3
)
− 1

2Oai
C1

(
OTai

∆pai−1

lIi

− E3
)

− lIi

2 F cai
−∆tO−1

ai
Fai

]∣∣∣∣∣
t=tj

+ 2pjai
+ pj−1

ai

(I.15)

• For the right node of the continuum manipulator (ai=N )

pj+1
aN

= 2∆t2

lIN
M

[
− 1

2OaN−1C1

(
OTaN−1

∆paN−1

lIN

− E3
)

−1
2OaN

C1

(
OTaN

∆paN−1

lIN

− E3
)

− lIN

2 F caN
−∆tO−1

aN
FaN

]∣∣∣∣∣
t=tj

+ 2pjaN
+ pj−1

aN

(I.16)

Remark I.3.1. For magnetic actuation, we fabricate manipulators with embedded
permanent magnets. Consider Magnet i with weight mi in an interval Ii in
which ai and ai+1, i ∈ {0, · · · , N − 1} are considered as left and right nodes
of the interval. Therefore, the distributed load per unit length for Nodes ai
and ai+1 are approximately considered as M + mi

2lIi
. In addition, if Magnet i is

embedded at the tip, M + mi

lIN
replaces the distributed load per unit length of

Node aN+1 while the distributed load per unit length of Node aN is unchanged.

I.3.2 Estimation

In this section, online distributed estimation algorithms are developed to predict
the model dissipation error. The structure of the estimator mimics the model’s
structure, as explained in Section I.3.1. To design the estimation protocol,
we follow the same line of ideas as in [Lu95] but in distributed multi-systems
configuration. We consider each node as an individual system coupled with the
other adjacent nodes, i.e., neighbors, in succession. In other words, each node
exchanges its local pose (position and orientation) with its neighbors. It should
be noted that the estimation filters are designed and implemented for each node.
Figure I.3 shows the configuration of the distributed filters and nodes.

For simplicity, we assume that each node’s position is included in its state
vector. Therefore, given node ai, i = {0, · · · , N}, the time-varying dynamic
equations based on Equations (I.14)-(I.16) can be written as

Sj+1
ai

= Fai
(Sjai

, Ujai
, j) + Gjai

(Sjai
)F jai

,

Yj+1
ai

= Hj+1
ai

Sj+1
ai

,
(I.17)
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𝑀𝑜𝑑𝑒𝑙 𝑁𝑜𝑑𝑒 𝑎0 𝑁𝑜𝑑𝑒 𝑎1 𝑁𝑜𝑑𝑒 𝑎𝑖
𝑁𝑜𝑑𝑒
𝑎𝑁+1

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑖𝑙𝑡𝑒𝑟 𝑎0 𝐹𝑖𝑙𝑡𝑒𝑟 𝑎1 𝐹𝑖𝑙𝑡𝑒𝑟 𝑎𝑖
𝐹𝑖𝑙𝑡𝑒𝑟
𝑎𝑁+1

⋯ ⋯

⋯⋯

Figure I.3: Configuration of the nodes of the model and the corresponding
distributed filters. Filter ai and Node ai are coupled with the adjacent nodes in
succession.

where j = {1, 2, · · · }, i = {0, 2, · · · , N}, Sjai
= [pj−1

ai
pjai

]T ∈ R6 is the true
state vector, Ujai

is a known input vector, Fai
∈ R6 is sufficiently differentiable,

Gjai
= [03×3,

−2∆t3
lIi
M O

j
ai

−1]T ∈ R6×3 is the model dissipation error matrix and in
the considered systems is time-varying, F jai

∈ R3 is a modified viscous model
dissipation force or hysteretic damping force in the form of Kjai

◦∆t−1(pjai
−pj−1

ai
),

where ◦ denotes Hadamard product and Kjai
∈ R3 is damping capacity that is

independent of frequency of motion and needs to be estimated, Hj+1
ai
∈ R3×6 is

the output matrix, and Yj+1
ai
∈ R3×1 is the output vector.

By substituting F jai
= Kjai

◦∆t−1(pjai
− pj−1

ai
) into Equation (I.17), one has

Sj+1
ai

= Fai
(Sjai

, Ujai
, j) + Gjai

(Sjai
)Kjai

◦∆t−1(pjai
− pj−1

ai
),

Yj+1
ai

= Hj+1
ai

Sj+1
ai

,
(I.18)

Using commutative property of Hadamard product, we can write Gjai
(Sjai

)Kjai
◦

∆t−1(pjai
− pj−1

ai
) = Gjai

(Sjai
)∆t−1(pjai

− pj−1
ai

) ◦ Kjai
. Then, Hadamard product

can be converted to matrix multiplication by the corresponding diagonal
matrix of the vector Gjai

(Sjai
)∆t−1(pjai

− pj−1
ai

) which is denoted by Gjai
=

Gjai
(Sjai

)∆t−1diag
(
pjai
− pj−1

ai

)
and Gjai

∈ R6×3. Therefore, Equation (I.18) may
be written as

Sj+1
ai

= Fai(Sjai
, Ujai

, j) + Gjai
(Sjai

)Kjai
,

Yj+1
ai

= Hj+1
ai

Sj+1
ai

,

Estimation of the state and output vector is given by

Ŝj+1
ai

= Fai
(Ŝjai

, Ujai
, j) + Gjai

(Ŝjai
)K̂jai

,

Ŷj+1
ai

= Hj+1
ai

Ŝj+1
ai

,

where Ŝjai
= [p̂j−1

ai
p̂jai

]T ∈ R6 is the estimation of the state vector, K̂jai
∈ R3

is the model dissipation error estimates, Ŷj+1
ai
∈ R3×1 is the output vector

estimates. Finally, Ỹj+1
ai

denotes the measurement. The block diagram of the
filter integrated with the model is shown in Figure I.4. To find K̂jai

for the
node ai at the time j, we consider a pointwise cost function that penalizes and

92



Lie Group Variational Integrators for the Forced Continuum Manipulator
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−
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+1
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Sjai
S

Fai
(Sjai

, Ujai
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Sj
i

+1
a

K̂jai

Ujai

ŜGaji( j
ai

)

ŜFai
( j
ai
, Ujai

, j)
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Ŝj+1
ai

Gaji 
( jai 

)

Figure I.4: Block diagram of the proposed prediction filter ai coupled with the
node ai’s model. The filter employs the model’s output to perform a pointwise
optimization problem to predict the damping capacity K̂iai

.

minimizes the estimation error vector (the error between measurement and the
output estimation) at the next sampling time j + 1, and estimated damping
capacity Kj+1

ai
. The cost function for each node ai is given as

Jai
(Kj+1

ai
) = 1

2e
j+2
ai

T
Rej+2

ai
+ 1

2K
j+1
ai

T
W Kj+1

ai
(I.19)

where ej+2
ai

= Ŷj+2
ai
− Ỹj+2

ai
, W ∈ R3×3, and R ∈ R3×3 are positive semi-definite

and positive definite matrices, respectively.
In order to derive an optimal estimation law, we need to approximate the

output estimation vector Ŷj+2
ai

at the next sampling time j + 2, which is given
by its Taylor series expansion as follows

Ŷj+2
ai
≈ Ŷj+1

ai
+ Z(Ŝj+1

ai
,∆t) + Λ(∆t)M(Ŝj+1

ai
)K̂j+1

ai
(I.20)
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where

Z(Ŝj+1
ai

, j) = ∆tL1
Fai

(Hj+1
ai

Ŝj+1
ai

) = ∆t
∂Hj+1

ai
Ŝj+1
ai

∂Ŝj+1
ai

Fai

Λ(∆t) = ∆tI3

M(Ŝj+1
ai

) = −2∆t2

lIi
M
Ojai

−1diag
(
pjai
− pj−1

ai

)
Similarly, we may expand the ith component of Ỹj+2

ai
in an first-order Taylor

series so that
Ỹj+2
ai
≈ Ỹj+1

ai
+ dj+1

ai

where the hth component of dj+1
ai
∈ R3 is

dj+1
ai h

= Ỹj+1
ai h

− Ỹjaih

Solving Equation (I.19) for K̂j+1
ai

by considering Equation (I.20) yields

K̂j+1
ai

=
{

[Λ(∆t)M(Ŝj+1
ai

)]TR[Λ(∆t)M(Ŝj+1
ai

)] +W
}−1

× [Λ(∆t)M(Ŝj+1
ai

)]TR

× [Z(Ŝj+1
ai

, j) + ej+1
ai
− dj+1

ai
]

(I.21)

Stability and convergence analysis of the filters can be found in [Lu95]. Here
we skip the analysis for brevity.

I.4 Simulation and Experimental Results

In this section, we investigate and analyze the solver’s performance with
different continuum manipulators through experiments. The experiments here
are expected to provide validation of the theoretical formulation for a variety
of scenarios. As discussed earlier, it is worth remembering that the dynamic
equations for translation and rotation are decoupled. Equations (I.14)-(I.16) can
be solved explicitly to update nodes translation, while an iterative method — as
it is discussed in Section I.3.1.1 — is necessary to solve Equations (I.10)-(I.12) for
updating the rotations. It should be pointed out that the estimation law (I.21)
is implemented for every node to estimate conservative forces. The required
parameters for the simulation will be discussed for each experiment.

I.4.1 Flexible Metal Rods

As a first case, we consider a cylindrical rod made of aluminum ( Al4043/ AlSi5 )
with diameter of 2 mm, length 200 mm, mass density 2690 kg

m3 , Young’s modulus
75 GPa and Poisson’s ratio 0.33. As a first example, we suppose a planar motion
of the rod in the E1E3-plane with the initial deflection θE1E3 = 3.69°. θE1E3 denotes
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Table I.3: Simulation parameters in Equations (I.10)-(I.16)
and (I.21) for in-plane experiment of flexible cylindrical
rod (AlSi05).

M 8.45× 10−3 g
mm

Number of elements 15
lIi

∣∣
i={1,2,··· ,N}

200
15 mm

Jd diag(0, 2.11, 2.11) g×mm2

E3 [1, 0, 0]T
F cai

∣∣
i={1,2,··· ,N+1} [0, 0, 8.29]T × 104 g

S2

C1 diag(2.35, 0.88, 0.88)× 1014

C2 diag(4.42, 5.89, 5.89)× 1013

Time step 1× 10−6

Simulation time 1.5 (S)
R I3 × 104

W I3 × 10−1

the rotation of the tip around E1 in the E1E3-plane. It is worth pointing out
that the nondissipative force is the gravity in the E3-axis direction. In addition,
we run a simulation with the given specifications with N = 15 discretization
nodes. These points are depicted in Figure I.5 together with some time-evolved
configurations of the rod. For simplicity, only tip positions are used for the
comparison with the simulation results. The maximum and mean absolute error
are 0.15 mm (i.e., 2.5% of displacement), and 0.05 mm, respectively. The error,
simulation and experiment results are shown in Figure I.6 and the simulation
parameters are summarized in Table I.3.

Next, we consider a three-dimensional motion for a rod with the same
material as the first case but with diameter d = 1 mm with initial deflections
θE1E2 = −5.53° (i.e., the tip distance is 8 mm from E2-axis) and θE1E3 = 6.52° (i.e.,
the tip distance is 10 mm from E3-axis) in the E3E2 and E1E2 planes, respectively.
The results of the experiment, simulation, and error are depicted in Figure I.7.
Maximum and mean absolute error in both E3 and E1 axes are 0.15 mm (i.e.,
2.12%), and 0.05 mm, respectively. The simulation parameters are summarized
in Table I.4.

I.4.2 Polymer-based Rods

In the second experiment, a cylindrical Polydimethylsiloxane (PDMS) rod is
considered. Figure I.8 depicts the rod, which has diameter D = 5 mm, length
L = 60.5 mm. In addition, for the rod, mass density ρ = 1101 kg

m3 , Young’s
modulus E = 365.12 MPa, and Poisson’s ratio ν = 0.5. In this experiment,
the rod is kept straight initially, with the gravity acting along E2, Figure I.8(a).
Experiment and simulation results for the tip position and the error are depicted
in Figure I.9. Also, maximum and mean absolute error in E2-axis are 0.56 mm

95



I. Dynamic Modeling of Soft Continuum Manipulators Using Lie Group
Variational Integration

200 400 600 800 1000 1200

50
100
150
200

200 400 600 800 1000 1200

50
100
150
200

200 400 600 800 1000 1200

50
100
150
200

200 400 600 800 1000 1200

50
100
150
200

200 400 600 800 1000 1200

50
100
150
200

200 400 600 800 1000 1200

50
100
150
200

Figure I.5: Sample of grabbed images of flexible rod (AlSi05) configurations,
in-plane experiment (E1E3-plane). 15 discretization nodes, depicted in blue
squares, are superimposed on the flexible rod.
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Figure I.6: Simulation and experiment results for flexible rod (AlSi05), in-plane
experiment: (a) Tip position in E1-axis direction. Inset highlights the results in
a small time range. (b) Error in E1-axis direction.

Table I.4: Simulation parameters in Equations (I.10)-(I.16)
and (I.21) for out-of-plane experiment of flexible cylindrical
rod (AlSi05).

M 2.11× 10−3 g
mm

Number of elements 15
lIi

∣∣
i={1,2,··· ,N}

200
15 mm

Jd diag(0, 0.13, 0.13) g×mm2

E3 [1, 0, 0]T
F cai

∣∣
i={1,2,··· ,N+1} [0, 0, 2.07]T × 104 g

S2

C1 diag(5.89, 2.21, 2.21)× 1013

C2 diag(2.76, 3.68, 3.68)× 1012

Time step 1× 10−6

Simulation time 1.5 (S)
R I3 × 104

W I3 × 10−1

(i.e., 4.87%), and 0.05 mm, respectively. In E3-axis, maximum and mean absolute
error are 0.28 mm (i.e., 4.89%), and 0.05 mm, respectively. The simulation
parameters are summarized in Table I.5.

For the next experiment, we fabricated a cylindrical PDMS manipulator with
a permanent magnet at the tip. The initial and some time-evolved configurations
of the rod are depicted in Figure I.10. The specifications of the rod are as
follows: diameter D = 4 mm, length L = 60.55 mm. In addition, the embedded
neodymium magnet is a cylindrical magnet with diameter Dm = 2 mm, height
Lm = 4 mm, mass Mm = 9.6 × 10−5 kg. The rod moves around E1 with the
initial deflection θE2E3 = −41.74 in the E2E3-plane. Also, maximum and mean
absolute error in E3-axis are 0.55 mm (i.e., 1.16%), and 0.13 mm, respectively. In
E2-axis, maximum and mean absolute error are 0.61 mm (i.e., 3.35%), and 0.14
mm, respectively. Tip positions in the experiment, simulation and the error are
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Figure I.7: Simulation and experiment results for flexible rod (AlSi05), out-of-
plane experiment: (a) Tip position in E3-axis direction. (b) Tip position in
E1-axis direction. (c) Error in E3-axis direction. (d) Error in E1-axis direction.
(e) Tip 3D position: non-planar experiment. (f) Tip 3D position: simulation.
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Figure I.8: Sample of grabbed images for Polydimethylsiloxane (PDMS) rod
without any embedded magnet in 2D experiment: in-plane motion. Also, 10
discretization points are superimposed on the soft rod.
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Table I.5: Simulation parameters in Equations (I.10)-(I.16)
and (I.21) for in-plane experiment of PDMS rod (without
magnet).

M 21.62× 10−3 g
mm

Number of elements 10
lIi

∣∣
i={1,2,··· ,N}

60.5
10 mm

Jd diag(0, 33.78, 33.78) g×mm2

E3 [1, 0, 0]T
F cai

∣∣
i={1,2,··· ,N+1} [0, 0, 2.12]T × 105 g

S2

C1 diag(7.17, 2.39, 2.39)× 109

C2 diag(0.75, 1.12, 1.12)× 1010

Time step 8× 10−5

Simulation time 1.5 (S)
R I3 × 105

W I3 × 10−1

shown in Figure I.11. The simulation parameters are summarized in Table I.6.

Table I.6: Simulation parameters in Equations (I.10)-(I.16) and
(I.21) for in-plane and circular-motion experiments of PDMS rod
(with tip magnet).

M 13.83× 10−3 g
mm

Number of elements 10
lIi

∣∣
i={1,2,··· ,N}

60.55
10 mm

Jd diag(0, 13.83, 13.83) g×mm2

E3 [1, 0, 0]T
F cai

∣∣
i={1,2,··· ,N} [0, 0, 1.357]T × 105 g

S2

F caN+1
[0, 0, 1.36]T × 105 g

S2

C1 diag(4.58, 1.53, 1.53)× 109

C2 diag(3.06, 4.59, 4.59)× 109

Time step 9× 10−5

Simulation time 2 (S)
R I3 × 105

W I3 × 10−1

Magnet weight 0.096 g

Hereafter, a magnetic field generation setup is employed to actuate the
manipulators. The following section introduces magnetic field generation setup
and the related background.
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Figure I.9: Simulation and experiment results of Polydimethylsiloxane (PDMS)
rod, planar motion: (a) Tip Position in E2-axis direction. Inset magnifies the
results in a small time range. (b) Tip Position in E3-axis direction. (c) Error in
E2-axis direction. (d) Error in E3-axis direction.

I.4.3 Magnetic Field Generation

The setup used here consists of two pairs of Helmholtz coils to generate magnetic
fields. Each pair consists of two identical electromagnetic coils, as shown in
Figure I.12. The first pair of coils generates a uniform magnetic field along
the E1-axis. The second pair of smaller coils are placed inside the first pair to
produce a field along the E2-axis. Two cameras are placed next to the setup
to monitor the side view of the workspace. For image acquisition, we use both
cameras in a stereo vision setup to reconstruct 3D views of the manipulator’s
motion.

The setup produces a maximum magnetic field Bu = 45 mT.
For the first experiment using magnetic actuation, we use the rod with a

neodymium magnet with diameter 2 mm, height 4 mm, and magnetisation N45.
First, a magnetic field Bg = 7.75 mT is applied to compensate for the gravity.

Then, the tip of the manipulator is induced to rotate in a circle in the E2E3-plane
using a rotating magnetic field of magnitude Bu = 14.5 mT.

The magnetic field produces force and torque Frot and τrot, respectively,
given by

Frot = ∇(m ·Brot),
τrot = m×Brot
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Figure I.10: Sample of grabbed images: Polydimethylsiloxane (PDMS) rod with
an embedded magnet at the tip in 2D experiment: motion in a plane. Also, 10
discretization points are shown on the soft rod.
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Figure I.11: Simulation and experiment results of Polydimethylsiloxane (PDMS)
rod with an embedded magnet at the tip, planar experiment: (a) Tip Position
in E3-axis direction. Inset highlights the results in a small time range. (b) Tip
Position in E2-axis direction. (c) Error in E3-axis direction. (d) Error in E2-axis
direction.

where m is the dipole moment of the tip’s magnet. The dipole moment can be
computed as m = 1

µ0
BrV in which residual magnetism Br ∈ [1.32, 1.37] mT, µ0

is the permeability of vacuum, and the volume of the magnet, V = 4π mm3.
Experiment, simulation results and the error are shown in Figure I.13. It should
be noted that the error plot shows Euclidean norm of the tip position in the
experiment and simulation. Also, the maximum and mean absolute errors
are 1.20 mm (i.e., 1.43%) and 0.59 mm, respectively. Since we use the same
manipulator as the previous experiment, simulation parameters can be found in
Table I.6.

As a last experiment, we fabricated a PDMS continuum manipulator with
a square cross-section and two embedded permanent magnets, one at the tip
and another in the middle — 36.1 mm from the tip — of the manipulator. The
embedded neodymium magnets are identical cylindrical magnets with different
dipole moment’s directions and diameter Dm = 2 mm, height Lm = 3 mm,
weight Mm = 7.2 × 10−5 kg. The embedded magnets are induced to pursue
a prescribed motion in the E2E3-plane using a varying magnetic field of initial
and final magnitude Bu = 20 mT and 19.85 mT. The initial and some time-
evolved configurations of the rod are depicted in Figure I.14. It should be
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Figure I.12: Magnetic field generation setup with the stereo vision cameras.
Two nested pairs of Helmholtz coils generate uniform magnetic fields in E1 and
E2-axes direction.

noted that analysis of magnetic force and torque follows the same procedure
as described above. The specifications of the manipulator are as follows: edge
length a = 2 mm, length L = 85.5 mm. The maximum and mean absolute error
for the tip magnet are 1.00 mm (i.e., 2.24%) and 0.15 mm, in E2-axis direction,
respectively. In E3-axis direction, the maximum and mean absolute error for the
tip magnet are 1.40 mm (i.e., 5.13%) and 0.33 mm, respectively. The maximum
and mean absolute error for the middle magnet are 0.47 mm (i.e., 2.05%) and
0.08 mm, in E2-axis direction, respectively. In E3-axis direction, the maximum
and mean absolute error for the middle magnet are 0.40 mm (i.e., 3.68%) and
0.10 mm, respectively.

The position of the tip and middle magnets in the experiment and simulation
and also the error is shown in Figure I.15. For this experiment, the simulation
parameters are summarized in Table I.7.

I.5 Discussion

We validate our approach by designing and carrying out different experiments
with flexible metal rods and polymer-based soft rods. The results are summarized
in Table I.8.

Table I.8 demonstrates the maximum and the mean absolute values of the
errors. As we observe from this table, the simulation results closely match
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Table I.7: Simulation parameters in (Equation (I.10))-
(Equation (I.16)) and (Equation (I.21)) for in-plane experiment
of square cross-section PDMS rod (with 2 magnets).

M 4.40× 10−3 g
mm

Number of elements 10
lIi

∣∣
i={1,2,··· ,N}

85.5
10 mm

Jd diag(0, 1.47, 1.47) g×mm2

E3 [1, 0, 0]T
F cai

∣∣
i={1,2,5,··· ,N} [0, 0, 4.32]T × 104 g

S2

F caN+1
≈ F ca3,4

[0, 0, 4.33]T × 104 g
S2

C1 diag(1.46, 0.49, 0.49)× 1010

C2 diag(3.25, 4.87, 4.87)× 109

Time step 1× 10−4

Simulation time 7.5 (S)
R I3 × 105

W I3 × 10−1

Tip and middle magnets weight 0.072 g

the experimental responses, i.e., for Experiments 1 and 2 in which the flexible
metal rods (AlSi05) are employed, the worst-case errors are < 0.01% of the
manipulators’ length. For dynamic Experiments 3 and 4 in which the PDMS rods
are used, maximum of errors respectively are 0.95% and 1% of the manipulator’s
length. For the polymer rods, higher errors are due to the uncertainties in
fabrication and nonlinear elastic properties. In quasi-static Experiments 5 and
6, the manipulators experience large deformations and external loads; the worst-
case errors are less than 2% and 1% of the manipulators’ length. It should
be pointed out that compared to the manipulators’ length, the mean absolute
deviations are small, which reflect the model’s performance.

During the implementation of the modeling approach, it was observed that
the number of nodes affects the frequency of motion. Increasing the number
of nodes provides a more accurate solution for the frequency of the system.
However, the computation time increases significantly with the number of nodes.
Therefore, to be able to run the simulations in a reasonable amount of time and
with a small number of nodes, frequency shaping was necessary to be able to
match the results.

The following example shows the motivation behind the frequency shaping
of the motion. Consider a manipulator with the following specifications: Length
L = 0.5 m, mass density ρ = 1000 kg

m3 , square cross-section with edge length
a = 5 cm, Poisson’s ratio ν = 0.35, and Young’s modulus Ehf = 5× 104 KPa in
the high frequency case and Elf = 500 KPa. Figure I.16 compares the position
between high and low-frequency cases. The base of the manipulator is fixed at
the origin. From Figure I.16, it is observed that by changing the Young Modulus
from Ehf to Elf , tip motion is preserved but in a scaled frequency.
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Figure I.13: Reconstruction of the scene for circular motion of Polydimethylsilox-
ane (PDMS) rod with an embedded magnet at the tip: (a,b) 3D experiment and
simulation results. (c) Euclidean distance/error of experiment and simulation
results in tip position.

The frequency of the continuum motion is only dependant on parameters
such as length, the moment of inertia of the cross-section, Young modulus, and
material density. Then, the natural frequency of the continuum manipulator
with a fixed end and free tip can be written as

ωnf ∝

√
EI

ρAL4

Consider a manipulator with an equivalent spatial discretization of its central
line by N̄ elements. ωnf N̄ denotes the natural frequency of the manipulator in
the simulation with N̄ elements, and one has

ωnf N̄ ∝

√
γcorrEI

ρAL4

The correction factor which needs to be multiplied by Young Modulus in the
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Figure I.14: Sample of grabbed images: Polydimethylsiloxane (PDMS) rod
with two embedded magnets, 2D experiment: motion in a plane. Also, 10
discretization points, (blue squares,) are shown on the rod.
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Figure I.15: Simulation and experiment results of Polydimethylsiloxane (PDMS)
rod with two embedded magnets, 2D experiment: (a) Tip magnet’s position in
E2-axis direction. (b) Error of tip magnet’s position in E2-axis direction. (c)
Tip magnet’s position in E3-axis direction. (d) Error of tip magnet’s position in
E3-axis direction. (e) Middle magnet’s position in E2-axis direction. (f) Error of
middle magnet’s position in E2-axis direction. (g) Middle magnet’s position in
E3-axis direction. (h) Error of middle magnet’s position in E3-axis direction.
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Table I.8: Maximum and mean absolute errors in the experiments using flexible
metal rods (AlSi05) and Polydimethylsiloxane (PDMS) rods.

Experiments Max. Er-
ror

Mean
Absolute
Error

(1) Flexible rod (AlSi05): in-
plane experiment

0.15 mm
(i.e., 2.50%)

0.05 mm

(2) Flexible rod (AlSi05): out-of-
plane experiment, both axes

0.15 mm
(i.e., 2.12%)

0.05 mm

E2-axis 0.56 mm
(i.e., 4.87%)

0.05 mm
(3) PDMS rod
(without magnet):
in-plane experiment

E3-axis 0.28 mm
(i.e., 4.89%)

0.05 mm

E2-axis 0.61 mm
(i.e., 3.35%)

0.14 mm
(4) PDMS rod (with
magnet): in-plane
experiment

E3-axis 0.55 mm
(i.e., 1.16%)

0.13 mm

(5) PDMS rod (with magnet):
circular motion

1.20 mm
(i.e., 1.43%)

0.59 mm

Tip magnet:
E2-axis

1.00 mm
(i.e., 2.24%)

0.15 mm

Tip magnet:
E3-axis

1.40 mm
(i.e., 5.13%)

0.33 mm

Middle mag-
net: E2-axis

0.47 mm
(i.e., 2.05%)

0.08 mm
(6) Square
cross-section PDMS
rod (with 2 magnets):
in-plane experiment Middle mag-

net: E3-axis
0.40 mm
(i.e., 3.68%)

0.10 mm

simulation is obtained as
γcorr =

(ωnf N̄
ωnf

)2

By employing this correction factor in the simulation, the effect of the number
of discretization elements on the frequency of motion can be eliminated.

High fidelity models are helpful for explaining and predicting the behavior of
a system with complex dynamics. However, due to computational constraints,
these models may not be employed for closed-loop control purposes in a real-
time implementation of robotic applications. Additionally, recent developments
in computer simulations demand superior, robust, and efficient numerical
frameworks compared to traditional approaches. Discrete geometric mechanics,
which are employed in this paper, provides a systematic method to cope with the
complexity of continuum manipulators’ dynamics. The necessity of guaranteeing
robots’ performance in sensitive applications such as minimally invasive surgeries
requires the use of pre-existing knowledge or a model in control architecture
to obtain guaranteed and reliable behavior in the presence of disturbances and
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Figure I.16: Simulation results for high and low frequency comparison: (a) High
frequency. (b) Low frequency. (c) Error of in high and low frequency cases.

uncertainties. Although model-free control approaches are easy to implement,
they do not provide and ensure any performance level and high control-loop
bandwidths.

I.6 Conclusions and Future Work

This article studies the estimation and model validation problem of continuum
manipulators’ dynamics using Lie group variational integrators. Using magnetic
actuation, dynamic and static experiments were conducted on manipulators with
rigid and soft materials (e.g., Aluminum and PDMS) to illustrate the validity of
the presented algorithm for a wide range of experiments.

Due to the lack of knowledge about friction/damping, distributed predictive
filters were designed to provide information about the unknown signals. Therefore,
the dynamical model equipped with the estimation algorithm is a self-contained
generic model for continuum manipulator integration, which provides us with
a systematic approach to employ optimal control theory for realistic trajectory
planning in the presence of user/environment-specified constraints. The designing
of a controller and the parallel variational integration algorithm are to be
investigated as future work.

110
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Appendix I.A Preliminaries on Lie groups and Lie algebra

Some concepts and definitions on Lie groups and Lie algebra are presented
(References [Dem+15] and [Hol11]).

Preliminaries on Lie groups: A group G is a set of elements with:

• A multiplication, G×G→ G , such that the following properties hold:

i. The product of g and h is written gh.
ii. The product is associative, (gh)k = g(hk).

• Identity element e: eg = g and ge = g, ∀g ∈ G.

• Inverse operation G→ G, so that gg−1 = g−1g = e.

A Lie group is a smooth manifold G which is also a group and for which
the group operations of multiplication, (g, h)→ gh for g, h ∈ G, and inversion,
g → g−1 with gg−1 = g−1g = e, are smooth functions. The action of a
Lie group G on a manifold M is a group of transformations of M associated
to elements of the group G, whose composition acting on M is corresponds
to group multiplication in G. Left and right multiplication by g ∈ G are
denoted by Lg, Rg : G → G,Lg(f) = gf,Rg(f) = fg. The tangent lifted
actions TLg, TRg : TG → TG are sometimes denoted as gvf := TLg(vf ) and
vfg := TRg(vf ) for simplicity, where vf ∈ TG. Similarly, the cotangent lifted
actions T ∗Lg−1 , T ∗Rg−1 : T ∗G → T ∗G is denoted by gαf := T ∗Lg−1(αf ),
αfg := T ∗Rg−1(αf ), where αf ∈ T ∗G.

Consider G = SE(3), we identify the Lie algebra se(3) of G with R3 ×R3 by
using the hat map (I.2). Therefore, the adjoint action is written as:

Ad(Oai
,Pai

)

(
Oak

,Pak

)
=
(
Oai
Oak

,Oai
Pak

+ Pai
×Oai

Oak

)
also the coadjoint action reads

Ad∗(Oai
,Pai

)−1

(
Oak

,Pak

)
=
(
Oai
Oak

+OPi
×Oai

Pak
,Oai

Pak

)
The cotangent lift of left translation T ∗e L(Oai

,Pai
) : T(Oai

,Pai
)G→ T ∗eG reads

T ∗e L(Oai
,Pai

)

(
Oak

,Pak

)
=
(
OTai
Oak

,OTai
Pak

)
where e = (I, 0) is the identity element.
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Abstract

This paper introduces and validates a real-time dynamic predictive
model based on a neural network approach for soft continuum manipulators.
The presented model provides a real-time prediction framework using
neural-network-based strategies and continuum mechanics principles. A
time-space integration scheme is employed to discretize the continuous
dynamics and decouple the dynamic equations for translation and rotation
for each node of a soft continuum manipulator. Then the resulting
architecture is used to develop distributed prediction algorithms using
recurrent neural networks. The proposed RNN-based parallel predictive
scheme does not rely on computationally intensive algorithms; therefore,
it is useful in real-time applications. Furthermore, simulations are shown
to illustrate the approach performance on soft continuum elastica, and
the approach is also validated through an experiment on a magnetically-
actuated soft continuum manipulator. The results demonstrate that the
presented model can outperform classical modeling approaches such as
the Cosserat rod model while also shows possibilities for being used in
practice.
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II.1 Introduction

Soft continuum manipulators are flexible and highly deformable robots composed
of soft and mostly elastic materials, and can serve as possible substitutes for rigid
robots. Advantages of soft manipulator robots such as their compliance, dexterity,
and adaptability to complex workspaces are driving the emergent research in
this field. By contrast, rigidity of traditional rigid robots limits their use in
constrained and confined environments, and reduces the possibilities for safe
interaction with humans. Soft continuum manipulators have found applications
in many areas, such as dexterous grasping [KMR15; McM+06] and assistive
devices [Ans+17], and particularly in the field of minimally invasive surgeries,
such as laryngeal surgery [STF04], catheter-based endovascular intervention
[Bur+13; Gra+00], and cardiovascular surgery [KH11].

Analytical modeling of soft manipulators helps evaluate their motion and
determine their workspace, in order to be used for control, motion planning,
and animation purposes. Soft manipulators distinguish themselves by having
an infinite number of degrees of freedom in any workspace they occupy. This
characterization makes modeling complicated for soft manipulators. Several
approaches have been investigated thus far in the literature. Most of the
approaches consider the kinematic (i.e. static or quasi-static) modeling of the
manipulators such as static analysis using virtual-work model [KS10], Cosserat
rod theory [JGT09; MD11; Pai02], and α Lie group formulation [GDS19].
These models do not describe full dynamics of the manipulators, and they
may show performance degradation when it comes to high-frequency applications
or large and complex deformations. On the other hand, dynamical modeling
approaches (e.g. [HWK19; JPZ14; Sad+19; Tar+20; TAR19; Wen+12]), contain
dynamics of the manipulators and also take into account time-varying responses
of manipulators, including high-frequency modes. However, the dynamic
models mostly rely on traditional methods, such as finite elements and finite
differences (i.e., quantitative and numerical methods), making the algorithms
computationally expensive for real-time applications. In other words, to obtain
sufficiently accurate solutions, methods need to deal with fine meshes, which
increase memory use and computation time. Another limitation is that their
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solutions are discrete or not sufficiently differentiable. It is worth noting that
in model-based controllers or observers, having a differentiable solution (i.e., a
solution that can be evaluated continuously on the workspace) is crucial in the
design process. Furthermore, when softer materials are employed for manipulator
construction with more complex geometries or large deformations, modeling
their behavior analytically becomes challenging. Therefore, there is a need
for appropriate data-driven approaches without compromising computational
bandwidths and the prediction quality.

Dynamics of soft continuum manipulators have highly nonlinear behavior and
are expressed as Partial Differential Equations (PDEs). An effective approach
to represent and model PDEs solutions is to use Neural Networks (NN). NN-
based solutions of PDEs are infinitely differentiable by eliminating the need for
interpolation. Furthermore, compared to finite elements or difference methods,
solutions are represented by fewer parameters, which reduces the memory use.
There are studies that use machine learning algorithms to find a solution for
special types of PDEs such as [EHJ17; LK90; LLF98; RPK19]. However, to the
authors’ best knowledge, there is no study that investigates possible NN-based
solutions for partial differential equations that describe the full dynamics of
continuum manipulators. In this work, inspired by a time-space integration
scheme and by using the Lie group variational integration method [Dem+15],
the dynamic equations for translation and rotation for each node of a soft
continuum manipulator are decoupled, providing an appropriate structure
aimed at developing a real-time modeling algorithm. Afterward, Recurrent
Neural Networks (RNNs)-based models are employed to approximate the high-
dimensional discretized equations. Additionally, external torques and forces
(e.g., control inputs, friction, and gravity) are incorporated into the model in a
real-time manner for control applications.

The ability of RNNs to learn and approximate large classes of nonlinear
functions over sequences of inputs accurately makes them prime candidates
for use in dynamic modeling of complex nonlinear systems. RNNs with Long
Short-Term Memory (LSTM) layers process sequences by iterating through
the sequence elements. Using an internal feedback, the network is capable
of preserving long-term dependencies. Essentially, LSTM layers prevent older
information from gradually vanishing. These networks also have been used for
several applications in soft robotics. To name a few, Thuruthel in [Thu+19]
proposes a model-free, real-time sensing method for soft robots perception. The
authors in [Thu+17] uses RNNs to model and control soft robotic manipulators.
Also, force and motion estimation using RNNs has been investigated in [Mar+19]
and [Tur+18], respectively.

This paper aims to develop a real-time dynamic model for analyzing the
dynamics of soft manipulators. Investigation of previous work on the modeling
of the continuum manipulators suggests that existing literature focuses primarily
on static or quasi-static approaches, or does not provide a real-time model.
The contribution of this article is to present a scalable, parallel and real-time
modeling algorithm for soft manipulators dynamics. The contributions of this
paper are as follows.

119



II. A Recurrent Neural-Network-Based Real-Time Dynamic Model for Soft
Continuum Manipulators

• Existing approaches primarily deal with kinematic modeling methods.
Nevertheless, in this study, real-time prediction of soft manipulators full
spatial dynamics is considered in the proposed RNN-based algorithm by
proposing multiple light-weight RNN-based models.

• In traditional modeling approaches, there are no systematic methods
to obtain knowledge about dissipation forces, in particular friction, in
the modeling procedure. The presented algorithm intrinsically takes the
dissipation forces into account and incorporates their effects into the model.

• Through an experiment, results of the proposed RNN-based model
and Cosserat rod theory method are compared, revealing the practical
effectiveness of the proposed methodology.

The remainder of this paper is organized as follows: the problem statement is
given in Section II.2. Section II.3 describes the proposed RNN-based algorithm
in details. In Sections II.4 and II.5, different simulations and experimental
validation are presented to demonstrate the efficacy of the proposed RNN-based
method, in terms of the model performances and accurately predicting poses
of manipulators. Finally, the discussion and main conclusions are stated in
Sections II.6 and II.7.

II.2 Problem Statement

Consider a continuum manipulator with large deflections described by dynamic
equations of motion (as presented in [Tar+20] and [Dem+15]) in the PDEs form
as

Hωt + ω ×Hω + n×Λ−1φx −Λ−1Λx ×m−mx = Λ−1τ

Mφtt −Λ(Λ−1Λx × n)−Λnx + f c = f
(II.1)

where M = ρ×A (ρ and A are the manipulator constant mass density and its
cross-section area), ω ∈ R3 is the manipulator’s angular velocity, H ∈ R3×3 is
the manipulator’s inertia matrix, φ ∈ R3 is the position of the manipulator’s line
of centroids in its workspace, Λ ∈ SO(3) denotes the orientation of moving cross-
sections at point φ. Also, n ∈ R3 and m ∈ R3 are the stresses and momenta
along the manipulator, f c ∈ R3 represents conservative forces (e.g. gravity).
Furthermore, (·)x, (·)t, and (·)tt denote partial derivatives with respect to position,
time, and the second partial derivative with respect to time, respectively. Finally,
f ∈ R3 and τ ∈ R3 are non-conservative forces and torques (e.g., frictions and
control inputs) 2.

Although high fidelity models given in the references can describe continuum
manipulators dynamics efficiently, they suffer from limitations that are discussed
in Section II.1. Inspired by the structure and formulation of the dynamics based

2For the details see [Dem+15].
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Figure II.1: A soft manipulator at time t with discretization nodes n and n−1
are shown. φ(x∗, t) and Λ(x∗, t) denote the position and the orientation of
cross-section of Node n−1, respectively. In addition, the force F (x∗, t), torque
τ(x∗, t), and the conservative force f c (e.g., gravity) are applied to Node n−1 at
the position φ(x∗, t).

on the Lie group variational integration scheme, the aim is to propose distributed
deep recurrent neural networks to capture and simulate soft manipulators
dynamics in real-time to be able control them more accurately than existing
models.

II.3 Proposed RNN-based Model

This section is devoted to develop a model based on the time series prediction
using RNNs. To solve PDEs numerically using NNs, one approach is to utilize
discrete solutions of finite element or difference methods to train an NN. A Lie
group variational time integration model is employed to discretize the continuous
dynamics of a soft manipulator 3. The whole manipulator is discretized into an
arbitrary number of nodes where the position and orientation equations of each
node are decoupled. In our study, we discretize the manipulator with equidistant
nodes, but this can be changed depending on the application.

Figure II.1 demonstrates a soft continuum manipulator at time t where x∗
is the undeformed length of Node n−1. The force F (x∗, t), torque τ(x∗, t) are
applied to Node n−1 at the position φ(x∗, t). Also, Λ(x∗, t) is the orientation
matrix from the frame {O} to the frame {On−1

t } attached to the cross-section
of Node n−1.

The discrete equations suggest an appropriate structure for the RNNs-based
model.

Given time-sequence inputs (as a first input layer), i.e., poses (positions
and orientations) of nodes, and also forces and torques (as a second input
layer) applied to each node, the RNN-based model of Node n is depicted in

3Dynamic equations are given in [Tar+20, Sec. 2]
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Figure II.2:(A,B). For Node n, the first input layer is a time-sequence series of
poses pn−1, pn, and pn+1 (i.e., poses of Node n and its adjacent nodes n−1 and
n+1) and the second input layer includes forces and torques of node n at time t,
i.e., [Fn

t , τ
n
t ]T which are incorporated into the model through dense layers.

The network takes specific size vectors as inputs, which are called input
layers. The inputs are transformed through a series of hidden layers (LSTM,
dense, or fully connected layers) to produce an output. The output vectors are
called an output layer. Dense or fully connected layers perform linear operations
(i.e., multiplication and summation) on their inputs. Furthermore, LSTM layers
consist of LSTM units, which can process sequences of data of any length, for
example, poses of nodes. An LSTM unit controls contributions of each element
of the input layer in the output and keeps track of the dependencies between
the elements [HS97].

For the training process, data-sets contain time-sequence inputs and forces
and torques applied to each node. Also, for each node, the poses of the node
and its neighbors are considered features, as shown in Figure II.2:(A,B). The
first and second input layers proceed through LSTM layers and dense layers
as hidden layers, respectively. Finally, output layers have resulted from fully
connected layers.

By augmenting the given models for all nodes (see Figure II.2:(B)) as a series,
the proposed RNN-based models of the whole continuum manipulator with N
nodes with non-conservative forces and torques are depicted in Figure II.2:(C).
Output of every node is updated at each time step by using a history (at least
two previous time steps) of neighboring node outputs. Therefore, the proposed
architecture suggests a suitable framework to construct a parallel modeling
algorithm.

II.4 Simulations Results

In this section, we consider different examples and evaluate the performance
of the proposed RNN-based model in Figure II.2:(C). It is worth mentioning
that data-sets play a crucial role in efficiency and accuracy in machine learning-
based algorithms. The data acquisition process from a robot in real-world
environments is both time and cost-consuming (implementation of multiple
sensors, data filtering, and fusion, etc.). As an alternative approach, the required
data can be acquired through simulations of high fidelity models. The obtained
data can thus be transferred to train the algorithms to be implemented in
real-world scenarios. In this section and for the presented examples, required
data for the training of the proposed RNN-based model are acquired through
simulations of the algorithm presented in [Tar+20, Sec. 2]. For clarity, this
model is henceforth referred to as the analytical dynamic model. In addition,
since thin rods are considered in the examples, orientations of cross-sections
are not of any concern. Also, it should be noted that orientations, except the
twisting angle, can be reconstructed from manipulators’ configuration. Therefore,
to obtain a computationally-light model, the focus of attention is only on the
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Figure II.2: Recurrent Neural Network-based model, length of the time history
horizon is determined by η and features composed of adjacent nodes pose: (A):
Poses of Nodes n−1, n, and n+1 are the input layer and no forces or torques
are applied to the node. (B): The first input layer is composed of poses pn−1,
pn, and pn+1 at time history horizon [t−η, t−η+1, · · · , t] and the second input
layer includes forces and torques [Fn

t , τ
n
t ]T which are incorporated into the

model through the Hidden Layers II (dense and flatten layers). (C): Proposed
RNN-based models of the continuum manipulator with N nodes including Input,
Hidden, and Output Layers. A history of each node output is used as an input
for adjacent nodes. Nodes poses (Input Layer I) and forces and torques (Input
Layer II) through the Hidden layers I and II are proceed and concatenated
together.
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prediction of positions.

II.4.1 First Simulation: An Ellipse without External Wrenches

As a first case, a cylindrical rod is bent into a circle and its ends are attached
to one another. The rod is then deformed into an elliptical shape and released.
Due to potential energies in the ellipse, it starts to move without any external
disturbances. The goal is to model the behavior of the ellipse resultant from its
internal elastic energy.

The ellipse is formed in the xy-plane with the width 0.2 m and height 0.6 m.
As boundary conditions, the first and last nodes are fixed to the origin and
their orientations are set to Ry(18.07°) and Ry(341.92°), respectively, where Ry(θ)
denotes a rotation matrix describing a rotation around the y-axis by θ degrees.
The rod properties, simulation parameters, and the structure of the proposed
RNN-based model are given in Figure II.3:(A,B). Furthermore, the initial and a
few time-evolved configurations are shown in Figure II.3:(C). As seen, the ellipse
oscillates back and forth due to its internal elastic energy. Since orientations
except the twisting angle can be reconstructed from the configuration of the
manipulator, to have a light model and for brevity, positions of the node located
at (−0.01,−0.59) — Node 30th — are predicted. The chosen node is the furthest
from the origin and would, compared to other nodes, most likely have the largest
errors.

50001 position samples are generated from the analytical model for each
node. We augment 1-by-3 position vectors of Node 30th and its adjacent nodes
(Nodes 29th and 31st) at each time step. Therefore, the augmentation results
in a 1-by-9 vector. Furthermore, the size of history horizons is chosen to be 2.
In other words, η = 1 in Figure II.2:(A, B). Finally, augmented 2-by-9 tensors
are obtained for each time step. The prepared data-set is called Data-set I and
60 percent of it is used for training process. The architecture in Figure II.3:(A)
shows the input layer consists of tensors of size 2 × 9. The first dimension of
all layers are reserved for batch sizes and for the training, the batch size 1 was
chosen. In the architecture of the model in Figure II.3:(A), the Input, Hidden
and Output Layers I together with the number of nodes and type of layers are
demonstrated according to Figure II.2:(A).

First, we evaluate the model by using unseen data samples in Data-set I and
the results are shown in Figure II.3:(D). The maximum and mean absolute error
are (1.57 mm, 0.27 mm), (2.27 mm, 0.46 mm), and (0.23 mm, 0.06 mm), or in
other words, the percentage of the maximum errors with respect to the length
of the manipulator are 0.11, 0.17, and 0.02 in the x, y, and z-axes, respectively.
It is worth mentioning that it is prior knowledge that the manipulator does
not have any motion in the z-axis and therefore, components of the z-axis in
position vectors can be ignored. Furthermore, the evaluation Root-Mean-Square
(RMS) errors of the considered node in all axes at every time step is calculated
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by

RMSE(t) =

√
1
3

((
xp(t)− xm(t)

)2 +
(
yp(t)− ym(t)

)2 +
(
zp(t)− zm(t)

)2)
(II.2)

where predicted positions
[
xp(t), yp(t), zp(t)

]T obtained from the proposed RNN-
based model and measurement positions

[
xm(t), ym(t), zm(t)

]T in Data-set I and
the results are shown in Figure II.3:(E).

To demonstrate that the model can be extended to different boundary and
initial conditions, the cylindrical rod is employed to form a horizontal ellipse
with the width 0.6 m and height 0.2 m. The rod properties and the simulation
parameters given in Figure II.3:(B) are used. As boundary conditions, the
first and last nodes are attached to the origin and their orientations are set to
the identity. The manipulator with the new boundary and initial conditions
is only used for the evaluation of the trained model by predicting positions of
the node located at (−0.01,−0.19). Based on the prediction, the maximum
and mean absolute errors are (26.33 mm, 3.37 mm), (21.71 mm, 3.70 mm), and
(4.92 mm, 4.22 mm) in the x, y, and z-axes, respectively. Furthermore, the
maximum/worst-case errors with respect to the length of the manipulator are
1.97%, 1.62%, and 0.37% in each axis, respectively.

Let us assume that the analytical dynamic model is implemented in a parallel
scheme, i.e., each node of 59 nodes is handled with a CPU core or different
hardware such that there is no latency in communications. Then, the dynamics
of each node can be solved in 1.62× 10−4 s on average. In addition, to preserve
the convergence of the solver of the analytical dynamic model, the maximum
constant time step for this simulation is 10−3 s. A minimum criterion to have
a real-time performance is that the time required to solve each node dynamics
must be less than the constant step simulation. To be more specific, to have a
real-time model, the CPU time, i.e., the amount of time spent in a user code
must be less than Wall-clock time that measures the time elapsed to run a user
code. According to this minimal criterion, as long as the computation-time for
simulation of a method/model is less than a user-defined time for the simulation,
the model is called a real-time model. It can be shown that in this example
and based on the given assumption, the maximum bandwidth for a real-time
performance is 3.93 Hz on average (calculation is done on a 16 GB, 1.99 GHz
Intel i7 machine running windows 10). It should be pointed out that we use
the same machine for calculations in this paper. It will be discussed that even
achieving this bandwidth limit is not feasible. On the other hand, for the
proposed RNN-based model, the bandwidth of a real-time performance is 65.70
Hz, which can be further improved by optimizing the number of layers and
trainable parameters.

It is worth mentioning that the considered assumption is very strict, which
cannot be satisfied in reality. First of all, conventional algorithms need a relatively
high number of nodes to have numerical stability and an acceptable convergence
rate. Furthermore, due to limitations in computation resources, more than
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Figure II.3: First simulation example: (A): The model architecture used for the
first simulation example. The first stage is the Input layer, the intermediate
stages are the Hidden layers, and the last stage is the Output layer. The first
dimension of inputs and outputs in each layer are unspecified and can vary with
the size of batches. (B): Rod properties and simulation parameters used in
the first example. (C): Initial and time-evolved configurations. Positions of
node specified by a red rectangle are measured and predicted. (D): Measured
position calculated from analytical dynamic model and predicted by the proposed
RNN-based model in the x, y, and z-axes are given. (E): RMS error considering
all the axes.

one node will be assigned to each core of CPU, and there is always latency in
communications between threads in parallel programmings. Therefore, reaching
the mentioned bandwidth through the analytical dynamic model is infeasible.
However, the real-time performance of the proposed RNN-based model can be
applicable in closed-loop control applications.

II.4.2 Second Simulation: A Cylindrical Rod with External
Wrenches

In the second example, we simulate a rod with a circular cross section, which is
actuated by external forces such that its tip tracks a square in space. In this
example, the goal is to model the behavior of the rod which results from applied
external forces on its end-effector. For boundary conditions, the first node is
fixed to the origin and its orientation is set to the identity for all time steps. The
rod properties and simulation parameters, and the structure of the proposed
model are given in Figure II.4. The trajectory of the end-effector and the applied
forces onto it are shown in Figure II.5:(A).
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160001 position and force samples are generated from the analytical model
for each node. We augment 1-by-3 position vectors of the last node (end-effector)
and its adjacent node at each time step. Therefore, the augmentation results in a
1-by-6 vector. Furthermore, the size of history horizons is chosen to be 2 (η = 1).
Finally, augmented 2-by-6 tensors are obtained for each time steps which are fed
to the model as the Input Layer I. The same preparation process are applied
for the force data samples which are used as the Input Layer II. The prepared
data-set is called Data-set II and 60 percent of it is used for training process.
The architecture in Figure II.4:(A) shows the Input layers I and II consist of
tensors of size (Batch Size× 2× 6) and (Batch Size× 2× 3), respectively. The
first dimension of all layers are reserved for batch sizes and for the training, the
batch size 1 was chosen. In the architecture of the model in Figure II.4:(A), the
Input, Hidden and Output Layers I and II together with the number of nodes
and type of layers are demonstrated according to Figure II.2:(B).

First, unseen data samples in Data-set II are employed to evaluate the model,
and tip positions are calculated and the results are shown in Figure II.5:(B). The
maximum and mean absolute error are (3.58 mm, 1.70 mm), (1.80 mm, 0.69 mm),
and (2.73 mm, 1.41 mm), or in other words, the maximum errors with respect to
the length of the manipulator are 0.71%, 0.36%, and 0.54% in x, y, and z-axes,
respectively. The RMS errors of the end-effector through Equation (II.2) are
shown in Figure II.5:(C).

To evaluate the generalizability of the trained model, different profiles of
forces are applied to the model aiming at obtaining different position trajectories
for the end-effector as depicted in Figure II.6:(A,D). To fulfill the goal of the
second example, the new forces are only used for the evaluation of the trained
model by predicting the positions of the end-effector. Results of the prediction are
plotted in Figure II.6:(B) and are as follows: The maximum and mean absolute
errors are (10.49 mm, 2.61 mm), (5.54 mm, 1.05 mm), and (5.97 mm, 2.83 mm),
furthermore, the percentage of the maximum/worst-case errors with respect to
the length of the manipulator are 1.90, 1, and 1.08 in the x, y, and z-axes,
respectively. The RMS errors of the end-effector through Equation (II.2) are
shown in Figure II.6:(C).

In this example, the maximum constant time step for this simulation is 10−4

s, to have a convergent numerical solver for the analytical dynamic model. In
addition, on average, the time 1.89× 10−4 s is required for solving the dynamics
of each node. In other words, the analytical dynamic model can not achieve any
real-time performance for this example. However, the proposed model achieves
a real-time performance of the bandwidth of 60.30 Hz on average.

II.4.3 Third Simulation: A Cylindrical Rod with and without
External Wrenches

In the last example, we form a semi-circular shape with a cylindrical rod. A force
is applied to the middle node — Node 51th— in the −y−axis direction for 0.5
s and then the force is removed. Furthermore, the boundary conditions are as
follows: the first and last nodes are fixed to the origin and their orientations are
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Figure II.4: (A): The model architecture used for the second simulation example.
There are two Input layers, the first one is the poses of the node and the second
input is the applied forces on the node. The first dimension of inputs and outputs
in each layer are unspecified and can vary with the size of batches. (B): Rod
properties and simulation parameters used in the second example.
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Figure II.5: Second simulation example: (A): Initial, Time-evolved configurations
and forces on the last node. (B): Tip positions: calculated from the analytical
dynamic model and predicted by the proposed RNN-based model. (C) RMS
error considering all the axes. (D) Predicted and measured trajectories.
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Figure II.6: Evaluation example of Second simulation: (A): Initial, Time-evolved
configurations and forces on the end-effector. (B): Tip positions: calculated
from the analytical dynamic model and predicted by the proposed RNN-based
model. (C) RMS error considering all the axes. (D) Predicted and measured
trajectories.
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set to the identity and Rz(181.81°), respectively, where Rz(θ) describes rotation
around the z-axis by θ degrees. In this example, the idea is to model the
behavior of the rod resulted from applied external forces and internal elastic
energy. The structure of the proposed model is given in Figure II.7:(A) and
the rod properties and simulation parameters are given in Figure II.7:(B). The
initial and a few time-evolved configurations together with the applied forces
are given in Figure II.8:(A).

20001 position and force samples are generated from the analytical model for
each node. We augment 1-by-3 position vectors of Node 15th and its adjacent
nodes at each time step. Therefore, the augmentation results in a 1-by-9 vector.
Furthermore, the size of history horizons is chosen to be 2 (η = 1). Finally,
augmented 2-by-9 tensors are obtained for each time steps which are fed to the
model as the Input Layer I. The same preparation process are applied for the
force data samples which are used as the Input Layer II. The prepared data-set
is called Data-set III and 60 percent of the data is used for training process.
The architecture in Figure II.7:(A) shows the Input layers I and II consist of
tensors of size (Batch Size× 2× 9) and (Batch Size× 2× 3), respectively. The
first dimension of all layers are reserved for batch sizes and for the training, the
batch size 1 was chosen. In the architecture of the model in Figure II.7:(A), the
Input, Hidden and Output Layers I and II together with the number of nodes
and type of layers are demonstrated according to Figure II.2:(B).

The positions of Node 51th are predicted using seen and unseen data samples
in Data-set III and the results are shown in Figure II.8:(B,C). The maximum
and mean absolute error are (1.36 mm, 0.78 mm), (0.23 mm, 0.13 mm), and
(2.22 mm, 0.81 mm). Furthermore, the maximum/worst-case errors with respect
to the length of the manipulator are 0.22%, 0.04%, and 0.37% in the x, y, and
z-axes, respectively.

For the evaluation of the trained model and to fulfill the goal of this example,
force vector [0, 0, −100× cos(πt)]T mN is applied to Node 51th for t ∈ [1, 2] s.
Results of the prediction are as follows: The maximum and mean absolute errors
are (3.73 mm, 1.25 mm), (2 mm, 0.2 mm), and (8.1 mm, 1.2 mm), furthermore,
the maximum/worst-case errors with respect to the length of the manipulator
are 0.62%, 0.33%, and 1.35% in the x, y, and z-axes, respectively.

In this example, the maximum constant time step for this simulation is 10−4

s using the analytical model. In other words, the analytical model does not show
a real-time performance since, on average, the time 2.22× 10−4 s is required for
solving the dynamics of each node. On the other hand, the proposed model can
achieve a real-time performance of the bandwidth 58.13 Hz on average.

II.5 Experimental Results

This section is devoted to the experimental validation of the presented model.
To that end, we fabricated a soft manipulator on which magnetic fields are used
to produce necessary forces and torques. Compared to the simulations in which
positions are predicted, time-sequence input is composed of orientations of nodes
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Figure II.7: (A): The model architecture used for the third simulation example.
There are two Input layers, the first one is the poses of the node and the second
input is the applied forces on the node. The first dimension of inputs and outputs
in each layer are unspecified, and can vary with the size of batches. (B): Rod
properties and simulation parameters used in the third example.

in the experiment. Furthermore, to show the performance of the algorithm,
results from the presented method and a Cosserat rod-based theoretical model
are compared to show the efficiency of the proposed RNN-based model. The
Cosserat rod model of the soft manipulator is detailed in the appendix.

II.5.1 Soft Continuum Manipulator

A soft continuum manipulator is fabricated from a urethane rubber Polymer
Matrix Composite 770 (PMC-770, Smooth-On Inc., USA) and neodymium
(NdFeB) block magnets whose dimensions are given in Figure II.9:(A). When the
manipulator is subjected to an external magnetic field, the embedded magnets
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Figure II.8: Third simulation example: (A): Initial, Time-evolved configurations
and forces applied on the rod. Positions of the middle node, where the force is
applied, are measured and predicted. (B): Measured position calculated from
analytical dynamic model and predicted by the proposed RNN-based model in
the x, y, and z-axes are given. (C) RMS error considering all the axes.

experience forces and torques. This causes the flexible portions of the manipulator
comprised of the PMC to undergo elastic deformation.

The PMC-770 has a density ρ = 1000 kg/m3, Young modulus E = 2.5 MPa,
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and Poisson ratio ν = 0.5. The distal and proximal NdFeb magnets have grades
N45 and N42, respectively. In addition, they have density ρ = 7000 kg/m3,
Young modulus E = 41.4 GPa, and Poisson ratio ν = 0.3. It should be pointed
out that Young’s modulus and densities of the soft manipulator constituent
materials were determined using a combination of supplier data and experiments
until theoretical results (predicted by the Cosserat rod model) would resemble
the experiment results. The magnitude of the magnetic dipoles carried by the
manipulator was calculated from the magnets volume and manufacturer-supplied
residual flux density.

II.5.2 Experimental Setup

The experimental setup consists of 6 stationary electromagnets surrounding
a spherical workspace of 100 mm diameter [Sik+17]. Figure II.9:(B) shows
the setup of the experiment. In addition, the final shape of manipulator has
been segmented and is shown in the workspace. The continuum manipulator
is suspended horizontally (along x) in the workspace and actuated to move in
a plane, steering the magnets by manipulating the magnetic field generated by
the electromagnets. Orientations are represented using the axis-angle notation.
Let km ∈ R3 and φm ∈ R denote the axis- and angle-of-rotation, respectively,
where m = 1, 2 denotes the magnet index counting from the manipulator base.
In the 2D experiment, km = y, and φm is defined relative to z.

Figure II.9:(C) represents the shape reconstruction of the soft manipulator
through images coming from two Dalsa Genie Nano C1940 Red-Green-Blue
(RGB) cameras (TeledyneDalsa, Waterloo, ON, Canada). The flexible PMC-770
and rigid NdFeb magnets were colored blue and red, respectively. The RGB
cameras (horizontal and vertical) that formed a stereo vision setup recorded the
workspace during experiments. First, we discretize the actuation workspace into
voxels. The silhouette of the continuum manipulator is segmented as binary
masks and the manipulator body represented as a 3D spatial point cloud. The
manipulator centerline is approximated by N ∈ N discrete segments. A simple
iterative shape reconstruction algorithm [Sik+19] moves through the voxels to
represent the the manipulator centerline withN discrete points ({p0,p1, . . . ,pN})
as a function of centerline parameter s ∈ [0, L]. To be specific, with knowledge of
the RGB-camera frames, the points are projected onto each camera image. If a
point is projected onto both binary masks, the point falls within the manipulator.
This process is repeated for all voxels. Subsequently a 3D polynomial fit (P (s)) is
made through the points. We assume that magnetically exerted forces and torques
are insufficient for the manipulator extension along the centerline, and therefore
assume constant positions of the magnets along the centerline, sm ∈ (0, L).
The measured magnet position is thereafter obtained from the polynomial fit
(pm = P (sm)), and its orientation from the local gradient of the polynomial fit
(∂sP (sm)) relative to a reference z axis,
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Figure II.9: (A): Polymer matrix composite 770 (PMC-770) beam continuum
manipulator with embedded neodymium (NdFeb) magnets located at tip
and intermediate positions. Dimensions are given in millimeter. (B):
Experimental setup consists of 6 stationary electromagnets and contains a
segmented photograph of the final shape manipulator. The flexible PMC-770
and rigid NdFeb sections of the manipulator are blue and red, respectively. Six
electromagnets generate a magnetic field (B) in the workspace, exerting torques
and forces (τm,fm, m = 1, 2) on the magnets, which deforms the continuum
manipulator to its final shape at the time t = 340 s. C: Representation of the
shape reconstruction algorithm used for shape feedback. The manipulator is
recorded with a stereo vision setup. The manipulator body is represented by a
3D spatial point cloud. The manipulator centerline, characterized by parameter
s ∈ [0, L], is approximated by N + 1 points ({p0, . . . ,pN}). A 3D polynomial fit
(P (s)) is made through the points, and the magnet orientation at an assumed
constant centerline position sm derived from the local gradient of the polynomial
fit.
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φm = cos−1 (z · [∂sP (sm)]∧),
km = [z × ∂sP (sm)]∧

where [·]∧ represents a normalization. Furthermore, in the experiments
performed for this study, camera occlusions did not occur.

The magnetic torques and forces were computed from the magnets position
pm, magnets dipole moments µm ∈ R3, and electromagnet currents IC ∈ R6.
The magnets position and orientations were obtained from the stereo vision
setup. Afterwards, the orientations are used to compute magnets dipoles. To
compute the magnetic field, each electromagnet is associated with a unit-current
field and field gradient map (βi(p) ∈ R3 and β∇,i(p) ∈ R3×3, i = 1, . . . , 6),
which computes the unit-current contribution of the electromagnet to the field
at field point p. We define a map G(β∇,i) : R3×3 → R5 which takes the five
independent gradient terms of the field [PN15]. The field (gradient) at magnet
position pm is then given by the superposition principle

Bm =
[
β1(pm), . . . , β6(pm)

]
IC

G(B∇,m) =
[
G(β∇,1(pm)), . . . , G(β∇,6(pm))

]
IC .

The torques and forces exerted on the magnets due to the field is given by

τm = µm ×Bm,
fm = ∇(µm ·Bm) ⇒

τm = [µm]×Bm

fm = M(µm)G(B∇,m)

where M(µm) : R3 × R3×5 represents a map of the field independent spatial
gradients to forces on the dipole µm [PN15]. The applied magnetic forces and
torques together with the initial and a few time-evolved configurations are shown
in Figure II.10.

For modeling, we consider three nodes located at the locations of the proximal
and distal magnets, and the clamped end of the rod. It should be pointed out
that the performance of the proposed RNN-based model, unlike conventional
algorithms, is independent of the number of nodes considered for the whole
manipulator. Therefore, it is sufficient to model points of interest. The idea is
to independently manipulate each magnet (actuation point). However, the setup
provides us with 8 degrees of freedom, meaning that positions and orientations
(12 degrees of freedom) cannot be manipulated at the same time. Therefore, we
carried out the experiment to achieve only orientation control.

669 1-by-3 position samples and 1-by-6 augmented wrench samples (i.e.,
[τ, f ]T ) for the both magnets are obtained. By choosing the size of history
horizon 2 (η = 1), the augmented 2-by-6 position tensors are reshaped for each
time step and fed to the model as the Input Layer I. The same preparation
process is applied for the force data samples which are used as the Input Layer
II. The prepared data-set is called Data-set IV and 60 percent of the data is
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Figure II.10: (A): Initial and time-evolved configurations. (B): Applied torques
and forces on the distal and proximal magnets.
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used for training process. We suggest the same model for both moving nodes
and the architecture of the model is depicted in Figure II.11 which is the same
for the proximal and distal nodes. The architecture shows the Input layers I
and II consist of tensors of size (Batch Size × 2 × 6). The first dimension of
all layers are reserved for batch sizes and for the training, the batch size 1 was
chosen. In the architecture of the model in Figure II.11, the Input, Hidden and
Output Layers I and II together with the number of nodes and type of layers
are demonstrated according to Figure II.2:(B).

Figure II.11: The model architecture used for the experiment. There are two
Input layers, the first one is the poses of the node and the second input is the
applied forces on the proximal node. The first dimension of inputs and outputs
in each layer are unspecified, and can vary with the size of batches.

II.5.3 Results

The distal and proximal node rotations are predicted both by Cosserat rod model
and the proposed model, and the results are shown in Figure II.12. Also, the
maximum and mean absolute errors are stated in an ordered pair in Table II.1.

The computation time required to find a solution of the manipulator statics
from a Boundary Value Problem (BVP) with Cosserat rod theory depends
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Figure II.12: (A): Measured and predicted orientations of tip/distal magnet by
Cosserat rod model and proposed RNN-based model. (B): Mean Euclidean norm
of error for distal/tip magnet resulted from Cosserat rod model and proposed
RNN-based model. (C): Measured and predicted orientations of middle/proximal
magnet by Cosserat rod model and proposed RNN-based model. (D): Mean
Euclidean norm of error for middle/proximal magnet resulted from Cosserat rod
model and proposed RNN-based model.
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Results for distal node x-axis y-axis z-axis
Proposed RNN-based model (1.27°, 0.23°) (4.69°, 1.27°) (0.60°, 0.10°)

Cosserat rod model (3.56°, 0.82°) (10.55°, 5.03°) (4.02°, 2.22°)
Results for proximal node x-axis y-axis z-axis
Proposed RNN-based model (1.13°, 0.31°) (3.30°, 0.89°) (3.93°, 0.31°)

Cosserat rod model (1.55°, 0.36°) (7.22°, 3.51°) (3.29°, 1.99°)

Table II.1: The maximum and mean absolute errors around the x, y, and z-axes
in ordered pairs for the distal and proximal nodes.

on the quality of the initial solution guess, i.e, n(s) and m(s) at s = 0, the
tolerable error (E ∈ R), and the number of nodes (N ∈ N) used to discretize the
manipulator.

A tolerable error describes the error between the distal internal forces and
moments obtained from forward integration which are called ndf and md

f , and
distal boundary condition, i.e., ndb and md

b . The tolerable error can be written
as
∥∥∥ [ndf − ndb , md

f −md
b

] ∥∥∥
2
≤ E.

Decreasing the tolerable error increases the solution accuracy, but potentially
requires more time to solve convex optimizations for the BVP. Increasing the
number of nodes is necessary to describe complex manipulator geometries, but
should be chosen to minimize the required steps during forward integration.

To visualize how the required computation time changes with the number of
nodes and the tolerable error, multiple simulations were performed by assigning
known torques τm and forces fm for m = 1, 2, to the manipulator, and finding
a valid solution from solving the BVP. Changes to tolerable errors (E) and
number of nodes (N) were made manually. For example, an error of 2% in the
initial solution guess was obtained by multiplying the valid solution with 0.98.
After each change the BVP was solved again fifty times. The obtained mean
and standard deviation of the computation times are shown in Figure II.13. By
taking into account all the aforementioned variables, i.e., number of nodes and
the tolerable error, the Cosserat rod model is capable of achieving real-time
performances of the bandwidths between 8.33 Hz and 50 Hz.

Figure II.13:(A) shows how the computation time required for solving a
solution to the BVP changes with decreasing tolerable error (E) and increasing
percentage errors from a valid solution (at 0%), for a constant number of nodes.
Also, Figure II.13:(B) shows how the computation time required for solving
a solution to the BVP changes with an increasing number of nodes (N) and
increasing percentage errors from a valid solution, for a constant tolerable error.
However, It should be mentioned that the proposed RNN-based model shows a
real-time performance with a bandwidth of 60.75 Hz on average for the given
architecture in Figure II.7, number of epochs = 25, and batch size = 1. In
addition, Figure II.14:(A) demonstrates the computation bandwidth required for
the prediction of the next step using the trained model with a different number
of LSTM units and a different size of time history horizons in Data-set IV. The
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Figure II.13: (A): Computation time required for solving a solution to the BVP
changes with decreasing tolerable error (E) for a constant number of nodes. (B):
Computation time required for solving a solution to the BVP changes with an
increasing number of nodes (N) and increasing percentage errors from a valid
solution, for a constant tolerable error.

Figure II.14: (A): Computation bandwidth (Hz) obtained with respect to
different number of LSTM units and size of time history horizon (for number of
epochs = 25 and batch size = 1). (B): RMS Error (mm) of the prediction on
Data-set IV using trained models with different number of LSTM units and size
of time history horizons (for number of epochs = 25 and batch size = 1).

figure suggests that computation bandwidths are fairly unchanged with the
number of LSTM units; however, increasing the length of time history reduces
bandwidth. The optimal region maximizing the bandwidth is approximately
with time history size in (2, 20) and LSTM unit size in (5, 15). Figure II.14:(B)
suggests that RMS error of the prediction decreases by increasing the number of
LSTM units and the optimal area minimizing RMS errors is approximately with
time history size in (2, 20) and LSTM unit size in (20, 25).

To sum up, this experiment demonstrates that not only can the presented
RNN-based model outperform classical modeling approaches such as the Cosserat
rod model, but also it shows possibilities to use the model in practice for closed-
loop control applications.
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II.6 Discussion

This work suggests a distributed architecture for modeling complex dynamical
systems by using multiple light-weight RNN-based models. As a result, the
architecture would be easier to design and debug, and also benefits from faster
convergence compared to one large network. Furthermore, large networks may
take longer times to be trained, and they may not show an acceptable performance
and readjusting (hyper-)parameters and restarting the training process might be
necessary.

Increasing the size of history horizons in training stages may reduce the error
to some extent, but on the other hand, it makes the model slower. Based on
conventional dynamical models, the length of the history size should be at least
2. To reach a state-of-the-art performance, i.e., having less error and faster
model simultaneously, one may prefer varied batch sizes in the training and
run-time phases. As a suggestion, we can use different batch sizes for training
and run-time stages. A model can be trained with appropriate batch sizes such
that the model performance suits the given criteria. Afterward, one can create a
new network with the pre-trained weights compiled with a batch size of 1.

The performance, i.e., the convergence and stability, of the presented
algorithm in this paper, unlike conventional algorithms, is independent of the
number of nodes considered for the whole manipulator. To be specific, in the
analytical model, there might be a need for several discretization nodes to achieve
a convergent solution with a specific tolerable error; however, in the RNN-based
model, only specific points/ points of interests (e.g., two actuation points in the
experiment) are considered. In other words, in the experiment, 13 nodes (4 for
each flexible subsection and 2 for each magnet, and 1 for the base) were chosen for
solving the Cosserat rod model, but two nodes were selected for the RNN-based
model. However, the complexity of dynamical systems (i.e., PDEs) affects the
complexity of the architecture used in the RNN-based model, i.e., the number
of layers and LSTM units and generally how deep the model is. Nevertheless,
the suggested model suits parallel implementation and can benefit from a high
bandwidth for closed-loop control applications. Furthermore, the architectures
of the proposed RNN-based model can be optimized by reducing the number of
layers and trainable parameters to maximize the achievable bandwidths.

The evaluations showed that incorporating poses of adjacent nodes and also
wrenches as a separated input might help to have, to some extent, a generalizable
model rather than just purely learning the structure of data. However, supervised
learning methods likely tend to preserve structure of data, and these models
might not entirely respect underlying physics (conservation laws). In other
words, these methods might not be wholly physics-aware and applicable for
untrained/unprecedented dynamics or geometries without any adjustment, re-
training, or using techniques such as transfer learning, etc. One possible and
interesting solution [LLF98; PU92; RPK19] to overcome this problem and move
toward fully physics-aware neural networks is revisiting lost functions for the
training process. To be specific, it is mentioned in Problem Statement Section
that the idea is finding solutions for PDEs given in Equation (II.1), i.e., Λ(x, t)
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and φ(x, t) for sufficiently large number (e.g., Nf ) of pair (xi, ti) ∈ (0, L)× [0, T ]
in which L is the unreformed length of the manipulator and parameter T is a
user-defined time. Considering Equation (II.1), a neural network can be learned
by minimizing the mean squared error loss

1
Nf

( Nf∑
i=0

∥∥∥Jωti + ω × Jω + n×Λ−1φxi
−Λ−1Λxi

×m−mxi
−Λ−1τ

∥∥∥2

{xi,ti}

+
Nf∑
i=0

∥∥∥Mφtiti −Λ(Λ−1Λxi
× n)−Λnxi

+ fnc − f
∥∥∥2

{xi,ti}

)

This modified loss function enforces the structure imposed by Equation (II.1) for
large number (e.g., Nf ) of pair (xi, ti) ∈ (0, L)× [0, T ] and the trained neural
network will be aware of governing PDEs.

II.7 Conclusion

This paper describes an approach for the real-time prediction of dynamics for
general continuum soft manipulators, based on machine learning techniques
and Lie group variational integration methods. Poses of a soft, polymer-based
manipulator, in the presence of conservative and non-conservative wrenches, are
predicted and validated experimentally. The comparison results of the proposed
model and a well-known model for continuum manipulators, i.e., Cosserat rod
theory, are also provided, revealing the practical effectiveness of the proposed
model. The presented method can be extended to different soft robots with
different shapes and materials. In addition, training of physics-aware neural
networks for solving PDEs and the procedure of a model-based controller design
are topics of research to be studied as future work.

Appendix II.A Cosserat Rod Theory

The Cosserat rod model of the manipulator assigns a position p(s) ∈ R3,
orientation quaternion q(s) = (qr, qi) ∈ R4, internal force n(s) ∈ R3, and
internal moment m(s) ∈ R3 to a material cross-section at centerline position
s ∈ [0, L], where L ∈ R+ is the length of the manipulator, giving a material state
vector y = [pT , qT ,nT ,mT ]T . A set of thirteen ordinary differential equations
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describe how the state vector evolves between centerline positions [EPN17]

p′ = R(q)v,

q′ = 1
2

[
−qTi

qrI3 − [qi]×

]
R(q)u,

n′ = −f ,
m′ = −p′ × n− τ ,
v = K−1

s R(q)Tn+ v̂,
u = K−1

b R(q)Tm+ û,

where p′ ≡ ∂sp, [·]× : R3 → R3×3 a mapping to a skew-symmetric matrix,
R(q) ∈ SO(3) the rotation matrix associated with orientation quaternion q,
Ks,Kb ∈ R3×3 diagonal shear and bending stiffness matrices, I3 ∈ R3×3 a
unit matrix, v(s) ∈ R3 and u(s) ∈ R3 the material strain and bending, and
v̂(s) = [0, 0, 1]T and û(s) = [0, 0, 0]T the intrinsic material strain and curvature.
External forces f(s) ∈ R3 and torques τ (s) ∈ R3 determine the shape of the
manipulator [Ant95; RW11]. The manipulator is subject to a distributed gravity
force (not shown in Fig. II.9) and magnetically exerted distributed forces fm
and torques τm due to interaction of the magnets with the magnetic field
Bm, where m = 1, 2 denotes the magnet index from the base of manipulator.
Given the exerted torques and forces, the shape of the manipulator is solved
as a Boundary Value Problem (BVP). The base of the manipulator is fixed
to a rigid base with constant position p0 and orientation q0, and its distal tip
is free with constant internal force ndL and moment md

L. The proximal and
distal boundary conditions are then formulated as follows, assuming no tip
wrench, we have P(y0) = [pT0 , qT0 ]T and D(yL) = [ndL

T
,md

L

T ]T = 0. The BVP
is solved with a forward integration using an explicit Runge-Kutta fourth order
method, and convex optimization using Levenberg-Marquardt [TAR19]. The
unknown proximal state parameters ξ = [nT0 ,m0]T are guessed and subject to
the optimization where N ∈ N is the number of discrete steps along s. Then yN
are the manipulator distal state parameters obtained from the forward integration
using an explicit Runge-Kutta fourth order method. The error between desired
distal boundary condition D(yL) and D(yN ) determines if the solution (ξ) is
accepted.
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V

Abstract

This paper establishes a physics-based simulation framework for steering a
magnetically actuated guidewire based on the linear elasticity and dipoles
theories. Interaction wrenches resulting from an external magnetic field
and embedded magnets in a continuum rod, i.e., guidewire, serves as
actuators for steering. In the presented framework, a simplified integration
scheme based on the finite-volume method is employed to model guidewire
using the linear elasticity theory and forces resulting from the interference
of magnetic fields to provide a rapid model reconstruction. Furthermore,
orienting the external magnetic field is employed to steer a guidewire into
a constrained environment. Finally, simulations illustrate the approach
performance on a soft rod where an external magnetic field is orientated
to form the desired shape for a continuum rod and steer it within an
environment. The results open up possibilities to construct a rapid model
for continuum manipulators in practice.
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V.1 Introduction

Modeling and simulation of multiphysics phenomena have attracted the attention
of researchers in recent decades with the help of advances in computing
performance. The multiphysics simulations by taking into account criteria
such as geometrical constraints and mechanical properties. These algorithms
can be employed to cope with the difficulties of modeling continuum robots in
which various actuation mechanisms are employed.

Soft continuum robots have flexible and stretchable bodies with infinite
degrees of freedom, increasing the complexity and maneuverability of robots in
a workspace. Modeling these highly complex robots is computationally heavy
due to complex geometries and coupled actuation mechanisms such as thermal,
electrical, or magnetic actuators. In other words, soft robots may be coupled
with other physical fields for actuation purposes, and therefore these physical
fields should be taken into account in the modeling.

For continuum manipulators, several actuation mechanisms have been taken
into account in the literature such as cable-driven [Ore+16; Qi+21; YL18],
thermal [Tel+10], magnetic actuation [Tar+21] in different applications. Table
Table V.1 summarizes recent work on shape formation or simulation of continuum
manipulators with different actuation mechanisms.

Shape formation of a continuum manipulator can be addressed through
model-based [Qi+21; Tar+20] and model-free approaches [Fra+21; Ver+19;
YC14]. Although precise modeling of soft robots may lead to a robust control
or motion planning, these algorithms [Tar+20] are usually based on numerical
methods and target to find solutions for (partial) differential equations and
therefore require extensive computational resources. In addition, it may not
be feasible to run those algorithms in real-time. On the other side, model-free
approaches do not guarantee any level of performance, especially in the presence
of uncertainties in the robots’ workspace. Therefore, the prevalence of modeling
for soft manipulators in real-world applications necessitates developing rapid
and intuitive simulations.

This study makes a contribution by presenting a rapid quasi-static modeling
technique for simulations of soft manipulators control and formation. This article
proposes a rapid multiphysics simulation framework for magnetically actuated
continuum manipulators within an environment similar to GI tract for closed-
loop control applications to reduce the reality gap. The suggested technique
is unique in that it combines rapid quasi-static models with soft guidewires
controlled by magnetic fields, which may be employed in closed-loop control
systems for precise navigation.
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Table V.1: Static simulations of continuum manipulators

Reference Modeling Approach Robot
[CWD18] piecewise-constant curvature 2-DoF tendon-driven robotic

guidewire
[Gao+20] kinematic model considering seg-

ments and tension-sensing cable
Cable-Driven Continuum robot
with interlocked segments

[Pai02] Static simulation based on
Cosserat rod model in three
dimensions

Continuum strands

[GDS19] Static simulation based on group
theory formulation

Intervascular shaping operations

[Tun13] A finite element based simulation
with considering large deforma-
tions

A general surgical continuum ma-
nipulator

[JGT09] Static simulations with loads
in three dimensions based on
Cosserat rod model

A general surgical continuum ma-
nipulator

[CCS09] Static simulation based on linear
elasticity theory

A Tendon driven continuum ma-
nipulator

[XS08] Static simulation analysis based
on virtual-work and screw theory

Multiple backbone continuum
manipulator

[WRC09] Static simulation based on beam
mechanics and elestic energy the-
ory

Concentric tube manipulator

The paper is organized as follows. The problem statement is briefly discussed
in Section V.2. Section V.3 is devoted to introducing the approaches we employed
for a rapid simulation. Simulations have also been carried out to test the efficiency
of the proposed solver in Section V.4, and discussions and conclusions are reported
in Section V.5 and Section V.6, respectively.

V.2 Problem Statement and Motivation

Consider a guidewire into which a permanent magnet is embedded as an actuation
point. The guidewire will be shaped to go through a Gastrointestinal (GI)
tract structure by applying external magnetic fields through single or multiple
permanent magnets. Firstly, a fast, controllable model for magnetic wrenches is
developed where each permanent magnet is modeled as one or multiple dipoles.
Secondly, for the guidewire, multiple joints are considered on the wire where
they are modeled as rotational springs (to capture the bending potential energy),
and segments in between the joints are modeled as a linear spring. Finally, the
interaction of the manipulator and its surrounding tissues, i.e., friction, has been
incorporated into the manipulator model. The presented model can be used to
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Figure V.1: By moving the free dipole toward the constrained dipole, the beam
bends due to the magnetic force resulting from an attraction field.

model both stiff and soft continuum manipulators. In the presented framework,
the objective is to steer a guidewire into an intervascular-like structure.

V.3 Method

This section presents a framework for the simulation of a soft continuum
manipulator based on the linear elasticity theory.

V.3.1 Magnetic Interaction Modeling

In general, calculating interactive magnetic wrenches between two magnets is a
very complex problem, and they depend on the magnetization, shape, and pose
of magnets. In other terms, for accurate calculations of the wrenches, numerical
methods are employed. Nevertheless, light and real-time models for calculating
the wrenches are essential when magnets are used in a control loop as model
uncertainties and errors are compensated by designing suitable controllers. In
this study, and for simplicity, magnets are represented by dipoles. Forces at
position d̄ resulting from the interaction of two dipoles with magnetic moments
µ̄1 and µ̄2 are the same in magnitude with opposite directions can be written
as F = 3µ0

4πd5

[
n̄1µ̄2 + n̄2µ̄1+ < µ̄1, µ̄2 > d̄ − 5

d2 n̄1n̄2d̄
]
where n̄1 =< µ̄1, d̄ >,

n̄2 =< µ̄2, d̄ >, d = ‖d̄‖2, and ‖ · ‖2 denotes norm 2. The magnetic torque of
the dipole µ̄2 acting on the dipole µ̄1 is defined as τ̄1 = µ̄1 × B̄2. in which B̄2 is
the magnetic field of the dipole µ̄2 and is defines as B̄2(d̄) = µ0

4π

[
3d̄
d5 n̄2 − µ̄2

d3

]
. In

addition, the magnetic torque of the dipole µ̄1 acting on the dipole µ̄2 can be
found in a similar way.

The effects of a magnetic force resulting from an attraction field between two
aligned dipoles and the magnetic torque resulting from the misalignment of two
dipoles are shown in Figure V.1 and Figure V.2, respectively. In other words, by
moving the free dipole toward the constrained dipole, the beam bends due to
the magnetic force resulting from an attraction field. Furthermore, by rotating
the free dipole in place, the beam deflects from its original position due to the
magnetic torque resulting from the misalignment of two dipoles.
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Figure V.2: By rotating the free dipole in place, the beam deflects from its
original position due to the magnetic torque resulting from the misalignment of
two dipoles.

Figure V.3: A guidewire is partitioned into multiple segments and joints: Each
segment is modeled as a linear spring and joints are modelled as rotational
springs.

V.3.2 Guidewire Modeling

A guidewire is modeled as multiple segments and joints such that each segment
is modeled as an extensible spring, and joints are modeled as rotational springs,
which allow the guidewire to bend in the three dimensions. The embedded magnet
into the tip of the guidewire is considered as a rigid body. Since guidewires are
usually thin; therefore, twisting is not considered in the modeling. The model is
shown in Figure V.3, and the modeling procedure is summarized in Algorithm 2.
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Initialize:
Define a spline curve within the GI tract structure;
Orientation of joints in rest state on spline: {O0, · · · ,ON+1};
Position of joints in rest state on spline: {P0, · · · ,PN+1};
Initial velocity of joints is zero;
Boundary conditions are considered free at both ends;
while simulating do

i. Apply external magnetic forces on tip dipole
(attached magnet to the tip) alongside with
the spline;

ii. Integrate tip magnet position;

iii. Enforce tip magnet position coupling to
the rest of the guidewire;

iv. Calculate spring forces between guidewire
segments due to segment length deviations
by using a spring constant;

v. Calculate bending forces between
wire segments (at joints);

vi. Integrate joints poses;

vii. Project all joints forces to the direction of the corresponding guidewire
segment (alongside
with the spline);

viii. Update joints position;

ix. Snap all joints onto the closest spline;

end
Algorithm 2: Guidewire simulation.
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Figure V.4: Proposed steering setup including an external magnet.

Figure V.5: A rotating external magnet modeled as 2000 dipoles. The resulting
flux and the applied force on the tip dipole and the projected force on the spline
are shown.

V.3.3 Steering Setup

A single external magnet is employed in this study to introduce forces to the tip
for steering purposes. The proposed setup is shown in Figure V.4.

The external magnet is modeled as a set of dipoles (2000 dipoles) rotating
around y-axis and Figure V.5 shows the resulting flux and the applied force on
the tip dipole and the projected force on the spline.
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V.4 Simulation Results

In this section, we consider a permanent magnet modeled as a dipole embedded
into the tip of the guidewire. The presented setup, including an external magnet
modeled as 2000 dipoles, is located at a 7 cm distance from the GI tract. The
idea is to rotate the external magnet to steer the guidewire toward a desired
location inside a GI tract structure, as in is shown in Figure V.3. Length and
diameter of GI tract structure are 8 × 10−1 m and 1.5 × 10−2 m. The tip
embedded neodymium magnet is a cylindrical magnet with a diameter of 2 mm,
height 3 mm, weight 7.2× 10−5 kg, and residual magnetism 1.37 T. A circular
cross-section guidewire with the radius 2.5× 10−3, Young modulus constants 550
and 600 KPa for rotational and linear springs are considered, i.e., rotational and
linear spring constants are 10.79 Nm−1 and 11.78 Nm−1, respectively. For the
external magnet, a block magnet 50.8 mm× 50.8 mm× 50.8 mm with residual
magnetism 1.3 T is considered. Furthermore, it should be noted that as boundary
conditions, the guidewire is always locked to the direction of the GI tract, i.e.,
tangent to the GI tract and cannot bungle up inside the environment as it has
been mentioned in the last step in Algorithm 1.

For the simulation, the external magnet only has a rotational movement.
Figure V.6 shows projected forces tangent to the GI tract structure obtained
from different rotation angles. The maximum projected force on the spline curve
resulting from a specific rotation angle is depicted in Figure V.7. In other words,
Figure V.7 depicts the maximum projected force applied to the dipole embedded
at the tip of the guidewire resulting from a specific rotation angle of the external
magnet at each position of the GI tract.

V.5 Discussion

It was the primary purpose of the paper to draw attention to the magnetic
navigation of a guidewire or catheter inside a complex environment such as
the GI tract. The authors attention was concentrated not only on designing a
multiphysics simulation framework to model soft guidewires and magnetic fields
and forces but also on showing possibilities for applying the proposed framework
in minimally invasive surgeries. The originality of the proposed solution lies in
the fact that it combines fast quasi-static models of soft guidewires actuated
with magnetic fields where this model can be used in closed-loop control systems
for accurate navigation.

The results obtained are broadly in good agreement with the major trends
of magnetically actuated manipulators. In other words, the main finding in this
study is that we only need one magnet and one axis of rotation to move the tip
of a guidewire in any direction in 3D space as long as the guidewire tip is aligned
with (tangent to) the GI tract. This is not very intuitive that with only one
input parameter, the system is capable of dragging a guidewire in the 3D space.

The findings have a number of possible limitations, namely, force magnitude
inserted on intestines or the force magnitude might not be enough for moving
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Figure V.6: Projected force (N) applied to the guidewire tip dipole alongside the
GI tract resulting from orientation of the external magnet with respect to the
rotation of the external magnet at different locations of the GI tract i.e., the GI
tract index positions. Maximum projected force applied to the dipole embedded
at the tip of the guidewire is shown by the solid black curve.

Figure V.7: Maximum projected force applied to the dipole embedded at the tip
of the guidewire resulting from a specific rotation angle of the external magnet
at each position of the GI tract.
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the tip magnet; finally, geometry and the number of the external magnets affect
the produced forces on the tip. Also, torques on the tip are not desired in
the considered scenario, meaning that torques can deviate from the tip for the
defined spline curve. Therefore, by adding more degrees of freedom to the system,
such as increasing the number of external magnets and considering transnational
movements of external magnets, the magnitude of the projected force can be
increased, and undesired effects of torques can be weakened.

V.6 Conclusion

The article demonstrates the possibility of steering a guidewire by rotating
an external magnet inside a complex environment. The proposed simulation
framework results should be applicable also to different scenarios where the
number of external magnets and their geometries are customized. Also, the
results open up possibilities to construct a rapid model for magnetically actuated
continuum manipulators for closed-loop control applications to reduce the reality
gap. Clearly, further research will be needed to validate the results. Therefore, the
next stage of this research will be the experimental confirmation of the presented
framework. Future work will involve considering more external magnets as
actuators together with difficult-to-reach environments.
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Appendix A

Some Mathematical Concepts with
Physical Interpretations

Symplectic Systems 1

Symplectic systems are a class of mathematical systems that describe the behavior
of many physical phenomena, particularly in classical mechanics. They provide
a framework for understanding how certain quantities evolve over time, such
as position and momentum. To give an intuitive and cool interpretation of
symplectic systems, let’s consider an analogy involving a dance.

Imagine a dance floor filled with couples, where each couple represents a pair
of canonical coordinates (position and momentum) of a particle in a physical
system. The symplectic structure can be thought of as the "choreography" that
guides the couples through the dance, preserving certain relationships between
their movements.

Now, imagine that the dance floor is a phase space, a mathematical space
where each point represents the complete state of the system (i.e., the positions
and momenta of all particles). The symplectic structure helps us understand
how the system evolves over time, tracing out paths through phase space as the
particles move.

The key aspect of a symplectic system is the conservation of a certain
geometric property called the symplectic form, which is analogous to the
way couples maintain constant distance and orientation during a dance. This
conservation principle has important implications for the behavior of physical
systems:

• Conservation of energy: Just as dancers must follow certain rules to
maintain their rhythm and balance, symplectic systems must conserve
energy. This principle is crucial for understanding the long-term behavior
of physical systems.

• Reversibility: Imagine playing a video of the dance in reverse. The
symplectic structure ensures that the dance still "works" and follows the
same choreography, just in the opposite direction. Similarly, symplectic
systems exhibit time-reversibility, meaning that if you reverse the direction
of time, the equations of motion still hold.

• Stability: The conservation of the symplectic form also helps maintain
stability in the system. Just as the rules of the dance prevent couples from

1[Arn89; Can01; GS90; MS98]
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colliding or drifting apart, the symplectic structure prevents the system
from becoming chaotic or unstable.

Overall, symplectic systems provide a powerful and elegant way to describe
the dynamics of many physical systems, with the symplectic structure playing
the role of an intricate and well-orchestrated dance that maintains the harmony
and balance of the system.

SO(2), SE(2), SO(3), and SE(3) 2

• SO(n): Special Orthogonal group of order n, represents rotations in n-
dimensional space.

• SE(n): Special Euclidean group of order n, represents rigid body motions
(rotations and translations) in n−dimensional space.

• so(n): The Lie algebra of the Special Orthogonal group SO(n), represents
infinitesimal rotations in n−dimensional space.

• se(n): The Lie algebra of the Special Euclidean group SE(n), repre-
sents infinitesimal rigid body motions (rotations and translations) in
n−dimensional space.

Now let’s dive into each one with examples in 2D and 3D space:

• SO(2) - Rotations in 2D space: Imagine you have a flat piece of paper
with a drawing of an arrow. SO(2) represents all possible rotations of
that arrow around a fixed point (like the arrow’s tail) without flipping or
deforming it. This can be visualized as a continuous rotation from 0 to
360 degrees.

• SE(2) - Rigid body motions in 2D space: Now, in addition to rotating
the arrow on the paper, you can also slide it around without changing its
orientation. SE(2) represents all possible combinations of rotations and
translations (sliding) of the arrow in the 2D plane. This can be visualized
as moving the arrow to any position on the paper while also allowing it to
rotate.

• SO(3) - Rotations in 3D space: Imagine a small 3D arrow model suspended
in mid-air. SO(3) represents all possible rotations of that arrow around
any axis in 3D space. You can rotate the arrow around the x−, y−, and
z−axes, or any combination of these axes. This can be visualized as a
continuous rotation around any axis from 0 to 360 degrees.

2[Lip66; ŠŠ20; Yos90]
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• SE(3) - Rigid body motions in 3D space: In addition to rotating the 3D
arrow, you can also move it around in the 3D space without changing its
orientation. SE(3) represents all possible combinations of rotations and
translations of the arrow in 3D space. This can be visualized as moving the
arrow to any position in 3D space while also allowing it to rotate around
any axis.

• so(2) - Infinitesimal rotations in 2D space: Going back to the 2D arrow
on the paper, so(2) represents the tangent space of SO(2) at the identity
element. This captures the infinitesimal rotations of the arrow, i.e.,
extremely small rotations, around the fixed point. You can think of
this as the "speed" or "rate" of rotation of the arrow.

• se(2) - Infinitesimal rigid body motions in 2D space: se(2) represents
the tangent space of SE(2) at the identity element, which captures the
infinitesimal rigid body motions of the arrow in 2D space. This includes
both small rotations and small translations (sliding) of the arrow. You
can think of this as the "speed" or "rate" of rotation and translation of the
arrow in the 2D plane.

• so(3) - Infinitesimal rotations in 3D space: For the 3D arrow model
suspended in mid-air, so(3) represents the tangent space of SO(3) at the
identity element. This captures the infinitesimal rotations of the arrow in
3D space, i.e., extremely small rotations, around any axis. You can think
of this as the "speed" or "rate" of rotation of the arrow around any axis in
3D space.

• se(3) - Infinitesimal rigid body motions in 3D space: se(3) represents
the tangent space of SE(3) at the identity element, which captures the
infinitesimal rigid body motions of the arrow in 3D space. This includes
both small rotations and small translations of the arrow. You can think of
this as the "speed" or "rate" of rotation and translation of the arrow in 3D
space.

In summary, SO(n) and SE(n) are groups that represent rotations and
rigid body motions in n−dimensional space, respectively. so(n) and se(n)
are their corresponding Lie algebras, representing infinitesimal rotations and
rigid body motions. These concepts are fundamental in various fields such as
robotics, computer graphics, and physics, as they help describe the motion and
transformations of objects in space in a mathematically consistent and compact
manner.

Lie groups and Lie algebras 3

Consider a flat, 2D plane with an equilateral triangle on it. Now, think of all
the possible ways to move this triangle on the plane without changing its shape

3[Gil08; Hal15]
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or orientation. These transformations include translations (sliding the triangle)
and rotations (spinning the triangle around a fixed point). We can describe this
set of transformations as a Lie group. The translations form a Lie group called
R2, representing translations along the x and y axes. The rotations around a
fixed point form another Lie group called SO(2), which describes rotations in a
2D plane.

Now, let’s consider a Rubik’s Cube. The set of all possible rotations of the
cube’s faces forms a discrete group called the Rubik’s Cube group. However, if
we allow smooth, continuous rotations of the faces, we obtain a Lie group called
SO(3) that describes rotations in 3D space.

To understand Lie algebras, let’s go back to the 2D plane with the equilateral
triangle. When we perform a small rotation or translation, we’re essentially
moving along a tangent direction to the identity transformation (i.e., no
transformation). The set of all such tangent directions forms the Lie algebra
associated with the Lie group. For the R2 Lie group, the Lie algebra is also
denoted as R2. It consists of two generators: one for translations along the x−axis
and one for translations along the y−axis. The Lie algebra for SO(2) consists of
infinitesimal rotations in the plane, with a single generator corresponding to the
rotation around the fixed point.

In the Rubik’s Cube example, the associated Lie algebra for the continuous
SO(3) group consists of infinitesimal rotations around the x−, y−, and z− axes.
Each axis has a generator, and their linear combinations describe all possible
infinitesimal rotations in 3D space.

Every Lie group has an associated Lie algebra, which can be thought of as
capturing the local behavior of the group. Conversely, every Lie algebra can be
"integrated" to obtain the corresponding Lie group. This integration process is
called exponentiation. In physics, Lie groups and Lie algebras often appear in
tandem, with the Lie group describing the global symmetries and the Lie algebra
describing the generators of these symmetries.

Lie groups have both algebraic and topological properties, while Lie algebras
are purely algebraic structures. Lie groups describe global symmetries, while Lie
algebras describe local (infinitesimal) symmetries. Lie groups are composed of
transformations (e.g., rotations or translations), while Lie algebras consist of the
tangent space at the identity element of the Lie group.

In summary, Lie groups describe global, continuous symmetries (such as
translations and rotations), while Lie algebras capture the infinitesimal, local
structure of those symmetries.
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