
.

Master’s thesis

Forecasting the Oslo Stock
Exchange All-Share Index with
Deep Learning and Economic
Data
A Machine Learning Regression Approach

Ulrik Johan Vedde Tranvåg

Informatics: Robotics and Intelligent Systems
60 ECTS study points

Department of Informatics
Faculty of Mathematics and Natural Sciences

Autumn 2023

Ulrik Johan Vedde Tranvåg

Forecasting the Oslo Stock
Exchange All-Share Index with

Deep Learning and Economic Data

A Machine Learning Regression Approach

Supervisor:
Jim Tørresen

Abstract
Succeeding in accurately forecasting stock market indices is a sought-after
capability for investors, traders, and policymakers. However, many financial
researchers regard financial assets, including stock market indices, as un-
forecastable. Others have attempted to challenge these views, traditionally
by fundamental or technical analysis of the indices’ historical data. Within
the technical approaches, there has been a growing interest in machine
learning (ML), a field within computer science. Within the ML methodolo-
gies, deep learning (DL), which consists of complex model designs inspired
by brain neurons, has lately attracted the most attention. Several studies
where DL is used for forecasting stock market index developments present
impressive forecasting accuracies, but they seldom benchmark against mod-
els based on financial theories such as the random walk and efficient market
hypotheses.

This study proposes a framework to evaluate ML regression models against
these financial theories. As benchmarks, the framework includes two ran-
dom walk hypothesis-based models: the naive seasonal and naive drift. It
is also examined if utilizing economic indicators increases forecasting per-
formance. For experiments, the Oslo Stock Exchange, situated within the
small, open, and oil-price-dependent economy of Norway, presents an inter-
esting environment. The Oslo Stock Exchange all-share index is chosen as
the target variable, and Norwegian economic data is gathered, resulting in a
72-feature dataset stretching back to 1988 with a daily frequency. Two state-
of-the-art DL models are evaluated: long short-term memory networks and
the temporal fusion transformer. The models are assessed by forecasting the
target variable’s next-day closing valuation and then compared against the
benchmark models.

From the results, it is found that none of the DL models outcompete the
random walk-based models. The most accurate DL implementation, the
long short-term memory networks, has a 42,75 % higher error rate than
the benchmarks. It is also found that including additional features beyond
the target index’s price history in the training data leads to decreased per-
formance. Several factors may cause these results. There may be too much
noise or irrelevant information in the additional data, causing the models to
overfit. Stock markets are dynamic, and since the dataset stretches back to
the 1980s, it may learn the forecasting model patterns that are outdated in
today’s market.

I

Foreword and acknowledgments
This thesis written on ML-applied stock market forecasting represents not
just an academic endeavor but also a journey of personal and professional
growth. Using ML models and economic data to forecast future valuations
of stock and stock indices is an area that has long intrigued me, stemming
from my long interest in programming, ML, economics, and finance. This
journey has thus been immensely rewarding, allowing me to explore these
four fields in depth.

I would like to express my deepest gratitude to my supervisor, Professor
Jim Tørresen, who has allowed me to follow these interests when writing
my thesis and whose expertise and guidance have been invaluable.

My greatest gratitude to my family for their unwavering love, patience, and
encouragement. I am equally grateful to my partner and her family for such
immense support and guidance while writing this work.

Thanks to my fellow students and friends for abundant valuable input and
suggestions. Your companionship and intriguing discussions have greatly
enriched my years at the University of Oslo.

II

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statements . 3
1.3 Delimitations . 4
1.4 Ethical considerations . 5
1.5 Main contributions . 6
1.6 Thesis outline . 6

2 Background and Related Works 8
2.1 Stock market forecasting . 8

2.1.1 Stock markets and exchanges 9
2.1.2 Stock market indices . 9
2.1.3 Traditional forecasting approaches 10
2.1.4 Modern forecasting approaches 11
2.1.5 A challenging domain . 12
2.1.6 Random walk hypothesis 13
2.1.7 Efficient market hypothesis 14

2.2 Machine learning . 15
2.2.1 Data . 17
2.2.2 Loss . 18
2.2.3 Overfitting . 18
2.2.4 Artifcial neural networks 19

2.3 Deep learning . 21
2.3.1 Recurrent neural networks 21
2.3.2 Long short-term memory networks 21
2.3.3 Transformer models . 22
2.3.4 Temporal fusion transformers 22

2.4 Feature selection . 23
2.4.1 An overview . 23
2.4.2 Random forest based feature selection 25

III

2.5 Related works . 26
2.5.1 LSTM applications . 26
2.5.2 Transformer and TFT applications 27
2.5.3 Utilization of wider economic datasets 28

3 Methodology 29
3.1 Experiment design . 29

3.1.1 Formalizing the problem-solving framework 29
3.1.2 Target variable: Oslo Børs all-share index 30
3.1.3 Data granularity and frequency 32
3.1.4 Forecasting horizons . 32
3.1.5 Software . 33
3.1.6 System, hardware, and setup 33
3.1.7 An overview of the final experiment framework 34

3.2 Data research and retrieval . 35
3.2.1 Selection criteria . 35
3.2.2 Research . 37
3.2.3 Data sources . 37
3.2.4 Retrieval . 37

3.3 Data preprocessing . 39
3.3.1 Forward filling and frequency handling 39
3.3.2 Outlier detection . 41
3.3.3 Splitting . 42
3.3.4 Managing stationarity 42
3.3.5 Normalization . 43

3.4 Feature Selection . 43
3.4.1 Research-based manual feature selection 44
3.4.2 Random forest-based feature selection 44
3.4.3 Hyperparameter optimization feature selection 45

3.5 Forecasting models . 45
3.5.1 Random walk model . 46
3.5.2 Random walk with drift 47
3.5.3 LSTM . 48
3.5.4 TFT . 48

3.6 Training and evaluation . 49
3.6.1 RW models . 49
3.6.2 DL models . 49
3.6.3 Evaluation metrics . 50

3.7 Hyperparameter optimization search 52
3.7.1 Tuning machine learning models 52
3.7.2 Implementation . 53

IV

3.7.3 Overview of the tuning process 53

4 The Economic Dataset 55
4.1 Composition . 55

4.1.1 Length, size, and span 55
4.1.2 Categorization . 55

4.2 Preprocessing results . 59
4.2.1 Detecting and handling outliers 59
4.2.2 Managing non-stationary features 59

4.3 Feature selection . 61
4.3.1 A target feature baseline 62
4.3.2 Research based selection 62
4.3.3 RF-FS based selection 62

5 Experiments & Results 64
5.1 Hyperparameter tuning results 64

5.1.1 LSTM . 64
5.1.2 TFT . 66

5.2 Experiment procedure . 68
5.2.1 Reiteration of final components and rationale 68
5.2.2 Procedure . 70
5.2.3 Results presentation . 70

5.3 Forecasting results . 71
5.3.1 RWM . 71
5.3.2 RWD . 72
5.3.3 LSTM . 72
5.3.4 TFT . 78

5.4 Summary . 84
5.4.1 Top five most accurate models 85

6 Discussion 86
6.1 Feature selection results . 86

6.1.1 A preference for the target variable 86
6.1.2 RF-FS promoting technical indicators 87

6.2 Tuning results . 87
6.2.1 Overfitting LSTMs . 87
6.2.2 An improved TFT . 88

6.3 Forecasting results . 89
6.3.1 RWM: Performs the best 89
6.3.2 RWD: Drift does not improve accuracy 90
6.3.3 LSTM standard: Most accurate DL model 90

V

6.3.4 LSTM tuned: Overfits 91
6.3.5 TFT standard: Suboptimal architecture 92
6.3.6 TFT tuned: Closing in on the LSTMs 92

6.4 Summary . 93
6.4.1 The random walk remains undefeated 93
6.4.2 Why the deep learning models are inaccurate 93
6.4.3 Arbitrage and noise . 94
6.4.4 Additional reasons for the observed performance 94

7 Conclusions 97
7.1 Summary . 97
7.2 Answering the research questions 98
7.3 Main contributions . 99
7.4 Future Work . 100

A Additional Information 113
A.1 Data sources . 113
A.2 Front page illustration: . 114

B Additional Tables 115

VI

List of Figures

2.1 MSCI world index daily closing prices between 1988 and 2022 10
2.2 Illustration of the AI definition-hierarchy [56]. 16
2.3 A simple ANN and the organization of its layers [13]. 20
2.4 Overview of the LSTM architecture [21] 22
2.5 A simplified overview of the TFT model architecture [52] . . . 24

3.1 OSEAX index daily closing prices between 1988 and 2022 . . 31
3.2 Overview of the experiment framework 34
3.3 Lineplot visualizing the dataset splits on the target variable . 41

5.1 Line plot - RWM forecast . 72
5.2 Line plot - RWD forecast . 73
5.3 Line plot - LSTM standard univariate average forecast 74
5.4 Box plots - standard LSTM forecasts 75
5.5 Line plot - LSTM tuned RF strict average forecast 76
5.6 Box plots - tuned LSTM forecasts 77
5.7 Line plot - TFT standard RF top-7 average forecast 78
5.8 Box plots - standard TFT forecasts 79
5.9 Line plot - TFT tuned RF strict average forecast 81
5.10 Box plots - tuned TFT forecasts 82
5.11 Summarized results for all models by MAPE 84

VII

List of Tables

3.1 DL models training settings . 49
3.2 DL tuning settings . 53

4.1 Overview of the features, their abbreviations, and sources . . 57
4.2 Overview of the feature-reduced datasets 61

5.1 Hyperparameter tuning results for the LSTM models 67
5.2 Hyperparameter tuning results for the TFT models 69
5.3 Metrics - RWM and RWD forecasts 72
5.4 Metrics - standard LSTM forecasts 73
5.5 Metrics - tuned LSTM forecasts 74
5.6 Metrics - Standard TFT forecasts 78
5.7 Metrics - Tuned TFT forecasts 81
5.8 MAPE scores for all forecasting experiments 85

B.1 ADF critical values . 115
B.2 ADF test results . 115

VIII

Chapter 1

Introduction

This introductory chapter presents the motivation behind this thesis re-
search and gives a general overview of its contents. The motivation is pre-
sented in Section 1.1, followed by the problem statements in Section 1.2. To
highlight the focus of the thesis, Section 1.3 explains the delimitation and
scope of the research. Thereafter, ethical considerations will be discussed
in Section 1.4. The main contributions from the thesis research will be pre-
sented in Section 1.5 Finally, the full contents of the thesis are outlined in
Section 1.6

1.1 Motivation
Stock market indices, such as the Standard and Poor’s 500 (S&P 500) and
the Oslo Børs all-share index (OSEAX), are useful tools for measuring the
valuation of selected stock market segments and benchmarking asset allo-
cation performance [77]. Additionally, such indices indicate their respective
stock market states, reflecting their investors’ confidence and thus may in-
dicate their situated economy’s overall health [62]. Stock indices may also
function as investable assets traded as "index funds."

Succeeding in accurately forecasting stock indices may, therefore, be consid-
ered an important task for investors, traders, and policymakers. Viewing
the possible future development of one’s economy and its investors’ senti-
ment may greatly aid in making informed decisions regarding asset alloca-
tion, risk management, and market trends. Not to mention the possibilities
of using this knowledge in building trading strategies [55] to extract exces-
sive risk-adjusted returns.

1

In recent years, there has been a growing interest in using machine learn-
ing (ML) techniques for time series forecasting, particularly in the context
of forecasting stock valuations and economic indicators (econometrics), in-
cluding stock market indices [77, 50]. Compared to traditional, explicitly
programmed stock market forecasting models, ML algorithms have some
advantages:

1. They easily identify trends and patterns that are not inherently appar-
ent to humans [47].

2. They may provide an advantage when dealing with multidimensional
data, as they can recognize relationships that haven’t previously been
appreciated [48].

3. ML algorithms can continuously and autonomously learn from and
adapt to new information without human intervention [2].

4. They may finish tasks faster than humans and are unaffected by emo-
tions [47].

Given these factors, the technology might add depth to traditional forecast-
ing methods or even serve as a cheaper, less labor-intensive alternative with
the potential for higher accuracy. Most recently, state-of-the-art ML tech-
niques utilizing deep learning (DL), such as the long short-term memory
networks (LSTM), have shown promise in improving the accuracy of such
models [9, 57, 50]. LSTMs are well-suited for handling the large, noisy, and
complex datasets associated with economic data, achieving good forecasting
accuracies [32].

Recently, a new emergent DL model has been gaining attention. The tem-
poral fusion transformer (TFT) is a novel deep learning attention-based ar-
chitecture that makes accurate forecasts on time series data [52]. It is an
extension of the popular transformer architecture, which has shown great
success in natural language processing and other applications. The TFT
is designed to capture patterns over different time scales or frequencies,
making it well-suited for time series forecasting tasks. Within a financial
forecasting application, the TFT has successfully been used to forecast and
explain future stock valuation [40].

Indices representing smaller economies are underrepresented [50]. The Nor-
wegian stock market, represented by the Oslo Stock Exchange (OSE), is a
small, open, and oil-price-dependent economy, making it an interesting can-
didate to test further the capabilities of ML-based financial time-series fore-
casting.

2

The recent research literature on stock market forecasting presents many
good results with high accuracies, including stock index forecasting appli-
cations. These studies present intricate, novel algorithms that outperform
previous and more common ML forecasting models. In their introduction
chapter, most studies tackle the problems faced with stock market forecast-
ing, highlighting the financial theories of the random walk and the efficient
market hypotheses, two commonly accepted frameworks that explain these
difficulties [29, 59]. However, many do not include benchmarking forecast-
ing models based on these financial theories [50]. Including these models
as benchmarks may give a very accurate indication of the real-world per-
formance of the main ML implementations. For example, the random walk
hypothesis can be modeled with a naive baseline model, repeating the last
observed value as its forecasts.

1.2 Problem statements
This thesis aims to develop and examine the forecasting capabilities of the
two state-of-the-art DL models, LSTM and TFT, on long- and short-term fu-
ture composite OSE valuation. The challenge addressed is demonstrating
whether these models trained on different technical and economic indica-
tors outperform a random walk-inspired forecasting model. The motivation
is to research if the newly emergent DL technology can challenge the ran-
dom walk hypothesis on the OSE. Summarizing the main goal, the following
research question is formed:

(RQ-1) Are the state-of-the-art DL models TFT and LSTM capa-
ble of achieving higher accuracies than the random walk model
when forecasting long and short-term OSE valuations?

Furthermore, this thesis aims to research how including additional indica-
tors to a univariate, historical valuation-only data series alters the selected
DL models’ performance in this environment. The motivation is to establish
whether these models benefit from adding extra economic-based features
to their training data. Additionally, if adding such supplementary data en-
hances performance, which economic and technical indicators have the most
significant impact? This is summarized in the second research question:

(RQ-2) For the TFT and LSTM DL models forecasting future
valuation of the OSE: To what extent does including economic
and technical indicators enhance performance for these al-
gorithms in this environment?

3

During recent years, LSTMs have emerged as a dominant technique for fi-
nancial forecasting [50, 9]. The TFT attention-based architecture has shown
promising results forecasting noisy, tabular data [52], making it a good con-
tender against the LSTM architecture in a financial forecasting setting. Ex-
cept for Hu’s Google valuation forecasting [40], there has been little research
conducted on the TFT’s performance at stock and stock-marked index fore-
casting. Benchmarking the two models in the OSE environment can give
insight and further establish the TFT’s capabilities on such data. There-
fore, this thesis also seeks to establish if the TFT can be considered a domi-
nant forecasting technique in this environment compared to the LSTM. This
leads to the third research question:

(RQ-3) Is the TFT architecture capable of outperforming the
LSTM when forecasting future valuations of the compound OSE?

1.3 Delimitations
When tackling problems within the cross-disciplinary universe of ML, eco-
nomics, and finance, various options for research and possible experiments
are available. Therefore, some limits must be set for the scope of this thesis:

1. This thesis will not attempt to directly investigate the capabilities of
the selected algorithms to generate excessive returns when deployed
with trading strategies into the financial markets. The theories re-
garding the possibility of generating excess risk-adjusted returns with
historical data are a complete field on their own, and researchers are
divided on the matter. This thesis will stick to achieving high forecast-
ing accuracy and disregard return generating and trading strategies,
which is better suited for further research.

2. DL models are time-consuming and computationally expensive. There-
fore, this study has been limited to a 1-day forecasting horizon only.
Longer forecasting horizons are motivated as future work.

3. The data utilized for forecasting in this research is limited to variables
that are easily accessible and with sufficient length and quality. Vari-
ables that do not fulfill these requirements are excluded, which means
some central indicators, for example, the Chicago Board Options Ex-
change’s volatility index (VIX) and the Norwegian consumer confidence
index.

4

1.4 Ethical considerations
The field of asset forecasting ML applications raises several ethical concerns
that must be addressed. Many of these relate not directly to this thesis but
to the potential of further use of its technology. The following considerations
may also apply to ML applied to finance and economics. These include:

Risk of malicious use: Actors with malicious intent can potentially uti-
lize the methods researched in this thesis. For example, AI may be capable
of learning and conducting trade manipulation on the asset market, harm-
ing other fair-playing individuals. It is important to be aware of this risk and
motivate future work to investigate solutions to prevent such incidences.

Risk of faulty use: The technology research in this thesis can potentially
be used erroneously, especially by actors with limited knowledge of the fields
of ML and finance. Such an example is the overestimation of ML’s capabil-
ities, resulting in permanent capital losses through investments motivated
by the technology. Related to this study, investors may try to use the model’s
forecasts as a net present value (NPV) calculation of the market and further
invest in the forecasted index according to their price relative to this NPV. It
is important to clarify the risks associated with such investing techniques.
Additionally, it is important to highlight that even though an algorithm may
produce accurate forecasts or outperform indices when modeling portfolios,
it may underperform when put into real-world financial markets. This is
due to costs and other frictions occurring in real-world investing that are
hard to predict or account for in theoretical models.

Job safeguarding: Due to AI-driven financial technology, Wells Fargo es-
timates that about 200,000 banking jobs will be replaced by robots this
decade [85]. It is important to consider the impact on these people’s lives and
to motivate further research into preventing this from becoming an exces-
sive problem. This could be done through, for example, wealth distribution
management through tax-financed re-education and through AI taxing.

Environmental impact: As mentioned in Section 1.3, DL models are
quite computing resource intensive, thereby having a high demand for elec-
tricity and hardware built of rare precious metals. It is important to high-
light the potential environmental impact the induced demand for these re-
sources can have.

5

1.5 Main contributions
While conducting this research, this thesis provides several new contribu-
tions. These contributions are:

• Presenting a preprocessing, RF-FS feature selection, hyperparameter
tuning, and performance evaluation framework for thoroughly eval-
uating stock index (and other financial assets) regression-based fore-
casting models against the random walk hypothesis using larger eco-
nomic datasets.

• Provide the first identified attempt at introducing the TFT architecture
at forecasting an OSE-based index.

• Prove that the financial hypotheses of RW and EMH remain uncon-
tested in a 1-day OSEAX valuation forecasting environment.

• Present an optimal dataset composition, architecture, and training pa-
rameters for both the LSTM and TFT in such an environment.

• Gathered and built an extensive 1-day granularity, 72-feature economic
dataset consisting of OSEAX and Norwegian economy-related indica-
tors as features, spanning over 35 years.

• Provided evidence that including additional features in the covered
forecasting approaches degrades performance: training on a series of
the target OSEAX variable alone produces the best results.

1.6 Thesis outline
This section presents an overview of the thesis contents and structure. The
thesis has been divided into 7 chapters. In addition, there are two ap-
pendixes at the end of the thesis: one for larger tables and one for addi-
tional information like data sources. The main summary of the results can
be found under Section 5.4 on page 84. The chapters, appendixes, and their
contents are structured as follows:

Chapter 1 - Introduction: Presents the thesis motivation, research ques-
tions, ethical considerations, and this overview of its contents.

Chapter 2 - Background and Related Works: Explains the central con-
cepts on which this thesis is built, in addition to the most recent relevant
research.

6

Chapter 3 - Methodology: Presents the implementations and other meth-
ods used by this thesis to produce the experiment and its results.

Chapter 4 - The Economic Dataset: Introduces the collected dataset,
elaborates on the preprocessing and feature selection results, and then presents
the final feature-reduced datasets used in the experiments.

Chapter 5 - Experiments and Results: Gives an overview of the experi-
ments and presents their results.

Chapter 6 - Discussion: Discusses the results obtained from the experi-
ments in the previous chapter.

Chapter 7 - Conclusions: Concludes based on the results and discussion
by summarizing the thesis and formally answering the research questions.
The thesis’s main contribution and possible future work will also be elabo-
rated.

7

Chapter 2

Background and Related Works

The purpose of this chapter is to provide the reader with an understanding
of the theoretical and practical background relevant to the research topic of
this thesis, including the history and evolution of related fields, key concepts
and definitions, and current research and trends. Section 2.1 introduces
the field of stock market forecasting and explains its most central concepts.
Following that, Section 2.2 will give an introduction to the world of ML.
Section 2.3 introduces DL and recent developments in related algorithms.
Section 2.4 gives a short overview of feature selection methodologies. Finally
Section 2.5 presents the most relevant recent research and trends within
stock market forecasting applied ML.

2.1 Stock market forecasting
The field of stock market forecasting focuses on developing and employing
different approaches to forecast stock or stock index valuations accurately.
The main goal is to use historical and real-time data to foresee future mar-
ket valuations, which can then be utilized through trading strategies by
investors to achieve high returns [7]. Stock market forecasting is generally
recognized as one of the most relevant but, at the same time, highly chal-
lenging fields within financial research. The latter is due to controversies
about to which extent its goals are achievable, which is still being debated
to this day [50].

8

2.1.1 Stock markets and exchanges
A Stock is a certificate representing ownership of a share of a corporation’s
assets (share capital). There are two main types of stocks: common stocks
and preferred stocks [22]. Owners of stocks, called shareholders, also claim
a proportion of the corporation’s future profits. Profits are rewarded to the
shareholders through paying out dividends [51]. These certificates can be
traded, with the buyers and sellers often referred to as investors. Stock mar-
kets are places where stocks are bought and sold between investors. Most of
these transactions take place on stock exchanges [75].

Stock exchanges serve as physical meeting places and communication facili-
ties where investors can buy and sell their stocks and many other financial
assets. Stock exchanges operate with specific rules and regulations, and
most transactions are done digitally. When a stock is tradeable on a given
exchange, it is referred to as "listed on" that exchange [75].

The Oslo Stock Exchange (OSE), or Oslo Børs, is the main stock exchange in
Norway. The OSE also facilitates the trading of other financial instruments,
such as bonds and derivatives. It was established by law in 1819, with trad-
ing commencing the year after [25]. The OSE lists various companies but
is most heavily weighted in the energy sector. Other prominent sectors are
maritime (energy service and shipping) and seafood [26].

2.1.2 Stock market indices
A stock market index is a measure used to track and compare the perfor-
mance of a stock market or its segments. Investors and analysts keep a
close eye on the indexes not only to monitor the economic activity but also
to evaluate the performance of individual companies [75]. By comparing a
stock’s price history against a market index, investors can assess the perfor-
mance of that stock against the market the index represents (most usually
the stock’s respective market). The same can be done for portfolios consist-
ing of multiple stocks, whereof now the portfolio is compared against the
market index. Figure 2.1 shows the daily closing prices of the MSCI world
index, an index covering the 23 developed markets countries [65].

Stock market indices are computed from several selected stocks, often orga-
nized by the exchange in which they are listed or to a specific sector. Most
commonly, they are calculated from the same-day total market capitaliza-
tion of the selected stocks. [51] This makes stock market indices a tool for
measuring the current and historic compound valuation of their market.
Stock market indices can be nationally bound, representing the valuation of

9

Figure 2.1
MSCI world index daily closing prices between 1988 and 2022

their respective countries’ stock markets. Two other commonly known ex-
amples of market indices include the S&P 500 and the Dow Jones industrial
average. The S&P 500 tracks the performance of 500 large companies listed
on US stock exchanges, while the Dow Jones Industrial Average measures
the performance of 30 significant US industrial companies [75].

2.1.3 Traditional forecasting approaches
In the past, stock market forecasting has been explored with a mixture of
economic theories, statistical analysis, human psychology, and financial un-
derstanding. In overview, there are two distinct traditional methodologies:

1. Fundamental analysis: A method focusing on evaluating the intrin-
sic value of stocks, which is the value that can be justified based on the
assets, earnings, and dividends of the company. The intrinsic value
is found by analyzing financial statements, industry trends, and eco-
nomic factors, among others. Fundamental analysis is conducted quan-
titatively and qualitatively and is more frequently used over longer
investment horizons [82].

2. Technical analysis: A technique that utilizes price data, trading vol-
umes, and other asset pricing indicators to forecast valuations based
on historical performance and patterns. The main difference between

10

technical and fundamental analysis is that technical analysis assumes
that market prices result from the interplay between supply and de-
mand driven by investor behavior. In other words, technical analysis
focuses on market trends and patterns rather than the intrinsic value
of the security and is traditionally used for shorter horizon forecasts
[82].

Historically, the evolution of traditional approaches in stock market fore-
casting has been a journey from qualitative assessments towards more quan-
titative, data and model-driven methodologies, resulting in today’s state-of-
the-art forecasting techniques. These more recent approaches are presented
in the next subsection.

2.1.4 Modern forecasting approaches
Recently, advancements in computer technology have opened a new era of
stock market forecasting. Most previous studies have moved more towards
applying statistical time series forecasting, a technical approach that ana-
lyzes time-ordered historical data to find patterns, trends, and cyclic behav-
iors [51]. These are then used to forecast the future values of a stock or
stock market index. Models like ARIMA (Autoregressive integrated moving
average) are often used for this purpose [16, 24]. From these techniques,
combined with the most recent advancements in data analytics, computer
science, and computational power, even more sophisticated and increasingly
accurate forecasting models have spawned. The introduction of artificial
intelligence has particularly led to these.

Machine learning in stock market forecasting

With the introduction of artificial intelligence (AI), an even bigger interest in
time series forecasting applied to stock market forecasting has followed. The
quantitative methodology of machine learning (ML) is a key contributor to
this progress and has been gaining increased attention [50]. ML, more elab-
orately explained in Section 2.2, involves training autonomous, self-learning
algorithms on historical data to make predictions on new, unseen data [8].
Unlike traditional, explicitly programmed quantitative methodologies, ML
models are adaptable and recognize relationships that haven’t previously
been appreciated [48]. ML models are also better equipped to handle the
chaotic, nonlinear, noisy, and complex data associated with stock markets.
This enables them to make more accurate predictions [18], explaining their
increase in popularity. Between 2000 and 2020, the number of published

11

articles regarding stock market forecasting applied ML has increased expo-
nentially [50]. During this period, three ML methods stand out from the
literature:

1. Artificial neural networks (ANN): Models inspired by the intercon-
nected neuron structure of brains. These models consist of layers of
neurons (called nodes) [4]. ANNs are more elaborately explained in
Subsection 2.2.4.

2. Support vector machines (SVM): Models dividing input data into
classes using a hyperplane [19]. They also exist as regressors called
support vector regressors (SVR) [50].

3. Fuzzy theory-based techniques: Models incorporating principles
from fuzzy logic to handle uncertainties [49]. Fuzzy logic extends clas-
sical (binary) logic: an event is not only true or false but can be par-
tially true or false (for example, 0.8 true and 0.2 false).

Recent trends in modern forecasting approaches

Most recently, deep learning (DL), ensemble learning, and feature selection
approaches have become more prominent topics within the field [50]. DL,
to be discussed in Section 2.3, is a subset of ML and exceedingly capable
of identifying hidden, nonlinear relationships from complex and noisy data
[50]. Ensemble learning is a method in which multiple ML models are com-
bined to improve the overall forecasting performance. Random Forest is an
example of an ensemble learning method and will be discussed in Subsection
2.4.2. Feature selection, to be discussed in section 2.4, concerns reducing the
variables (features) of a dataset to filter out irrelevant ones.

2.1.5 A challenging domain
The underlying premise in stock market forecasting is that past market
data behaviors, coupled with current market conditions, can inform fore-
casts about asset valuations. However, it is a highly challenging domain
due to the stochastic nature of financial markets, influenced by many factors
such as economic indicators, political events, company performance, and in-
vestor sentiment, among others.

Chaotic systems

As defined by historian Yuval Noah Harari [36], chaotic systems may be
partly attributed to the problems faced by stock market forecasting. These

12

systems are neither deterministic nor simple to predict, as they are affected
by many factors. They can be divided into two forms:

1. Level one chaotic systems: Chaotic systems that do not react to
predictions about themselves. The weather is an example of such a
system. It is complex and hard to predict, but it does not get influenced
or alter its course when metrologists present their weather forecasts.

2. Level two chaotic systems: Level two systems, on the other hand,
are chaotic systems that are reactive to any prediction about them.
Markets and politics are examples of such systems.

Stock markets fall under the type two category and its associated forecast-
responding behavior. For instance, if a highly regarded stock analyst pre-
dicts that a stock valued at 100 NOK will be worth 200 NOK in a week,
investors will immediately adjust their prices to reflect this new valuation.
As a result, the stock is valued at 200 NOK seven days before the analyst’s
target date, with the remaining time only posing an uncertainty risk. This
poses a challenge if the forecasting results, method, or data is publicly avail-
able and known. However, chaotic systems may only explain parts of the
associated problems with forecasting financial assets. Additionally, a fore-
casting methodology, data, and results may be kept away from competing
actors, preventing them from affecting the system.

Within finance, two important main hypotheses try to explain why precise
forecasting of assets and achieving excess returns that are higher than the
market average: the random walk hypothesis, outlined in Subsection 2.1.6,
and the efficient market hypothesis, discussed in Subsection 2.1.7.

2.1.6 Random walk hypothesis
The Random walk hypothesis (RW) suggests that stocks and other financial
assets’ prices evolve randomly and are unpredictable [30]. This implies that
historical price movements do not hold any predictive power over future
price directions. Put simply: past prices cannot predict future prices [30].
More formally, the RW states that:

1. The future changes in the valuation of a stock are independent of its
past price history.

2. A stocks price changes conform to a probability distribution.

Burton G. Malkiel popularized the RW in 1973 with his book A Random
Walk Down Wall Street. He argues that attempting to "time" (buying and

13

selling at the right time) or in any other form of outperforming the market
is a futile effort that often results in underperformance. This also applies to
utilizing fundamental or technical analysis to forecast stock prices. Instead,
Malkiel suggests that investors should invest in and hold a diverse stock
index fund to follow the general market returns [60]. The RW is a founda-
tional hypothesis upon which the efficient market hypothesis is built, which
will be discussed in the following subsection.

2.1.7 Efficient market hypothesis
In 1970, Eugene F. Fama published a defining paper, establishing a cen-
tral part of Financial theory, the efficient market hypothesis (EMH) [29].
EMH states that financial markets are informationally efficient, meaning
all publicly available information is already reflected in the market price.
Therefore, it is impossible to achieve returns higher than the average mar-
ket through any systematic strategy consistently. In other words, future
price changes are unpredictable, as the prices of financial assets already re-
flect all publicly available information. There is no ground for getting an
informational advantage that gives a more accurate "fair value estimate" to
a specific asset. Also, the asset prices are subjected to noise, making them
"randomly walk" around their anchor point [30], as explained in the previ-
ous subsection.

The EMH can be divided into three forms:

1. Weak form: Prices reflect all information regarding past prices and
returns.

2. Semi-strong Form: Prices reflect all publicly available information,
including past prices.

3. Strong form: Prices reflect absolutely all information, both public and
private.

In the weak-form environment, using an asset’s price history to forecast
its future valuation is impossible, making technical analysis ineffective in
trying to beat or accurately forecast the market [30]. On the other hand,
weak-form environments theoretically allow for fundamental analysis. This
means it is viable to analyze assets using publicly available fundamental
data like company-specific fundamentals, financial reports, and macroeco-
nomic variables.

In the semi-strong form environment, there is no opportunity for the latter
as the current market prices already reflect all publicly available informa-

14

tion. The only way of getting a hold of the market is through possessing
and analyzing private, non-public data, also addressed as "insider informa-
tion." In such an environment, any attempts at forecasting financial assets
to achieve above-market returns are considered futile unless such insider
information is possessed.

Lastly, the strong form of EMH prevents any investor or algorithm from
achieving higher returns than the broader market. Since all information,
both public and private, is reflected in the current stock price, not even in-
siders may achieve an advantage, and stock market returns are effectively
non-forecastable. In such a case, using any form of analytics for stock mar-
ket forecasting is considered ineffective.

Since its inception, both the EMH and RW theories have been widely de-
bated among financial researchers and economists [81, 28, 20, 53, 60]. Even
Fama himself has stated that it would be unexpected if private information
would not bring benefits for an insider [29], thereby implying that the strong
form of EMH is somewhat radical. The EMH and other traditional financial
theories have proven well-suited to aiding in making calculated financial
decisions, but they cannot explain stock market disruptions [46]. Examples
of such disruptions are stock market bubbles, momentum, market overreac-
tion, and market under-reaction.

2.2 Machine learning
Machine learning (ML) is a field within computer science that is fundamen-
tally concerned with studying, developing, and applying algorithms that can
recognize, learn, and improve without being explicitly programmed. ML is
regarded as a subset of AI, as illustrated in Figure 2.2.

The field embodies many methods ranging from data analysis, pattern recog-
nition, statistical modeling, and computational learning theories. ML’s com-
putational characteristic is to generalize experience obtained through train-
ing to output a hypothetically estimated target function. The goal is to ob-
tain a target function that is generalized well and precisely predicts future
outcomes unknown to the computer [61]. ML is generally categorized into
three types: supervised learning, unsupervised learning, and reinforcement
learning:

Supervised learning: When an ML model is categorized under supervised
learning, it is trained using a dataset of labeled data. This dataset contains
the input (training) data and a corresponding correct response. When train-

15

Artificial Intelligence

Machine Learning

Deep Learning

Figure 2.2
Illustration of the AI definition-hierarchy [56].

ing, the ML model’s predictions are compared and corrected with the "true"
labeled data [8]. The goal is to train, correct, and adjust the models, utiliz-
ing the labeled data, to predict the output for new, unseen inputs accurately.
A properly trained model does this by generalizing to respond correctly to
the input features [61]. Examples of supervised learning applications in-
clude image classification, speech recognition, and sentiment analysis [8].
Supervised learning is generally used in solving two types of problems [61]:

1. Regression: To find a mathematical function (model) that fits a curve
as close to the target data points as possible.

2. Classification: Finding a model that most precisely assigns the input
data to a predefined number of classes.

Unsupervised learning: Unlike supervised learning, unsupervised learn-
ing deals with unlabeled data, meaning correct responses are not provided.
Unsupervised learning algorithms try to identify patterns and structures in
the input data and to group instances without any "supervision" from pre-
specified labeled data. Such ML systems generally learn by rejecting pure
unstructured noise [8] and categorizing inputs with common attributes [61].
Clustering and dimensionality reduction are common unsupervised learn-
ing techniques used in various applications [8], such as data compression
and anomaly detection.

16

Reinforcement learning: Algorithms based on reinforcement learning
(RL) learn by live-interacting with an environment to optimize a predefined
cumulative reward or other goal. The learner (RL-agent) receives feedback
through rewards and penalties triggered by observable changes in the en-
vironment state. The RL agent learns by trial and error by exploring and
adapting a sequence of actions to maximize the reward [8].

Other ML learning categories exist, such as semi-supervised learning, trans-
ductive learning, and inductive inference [4].

2.2.1 Data
A robust ML implementation is dependent on sufficient amounts of high-
quality data. From the literature, it is well established that an ML im-
plementation’s performance is upper bound by the data quality [45]. First
of all, a sufficient amount of data is needed. More data may give a more
comprehensive representation of the environment and potential underlying
patterns. ML algorithms require significant amounts of data, but too much
data may increase the computational cost too much [61]. Secondly, the data
must be relevant to the problem and contain features that are potentially
informative for predicting the target. Domain awareness is key here [61].
Additionally, there are five important quality dimensions to assess when
ensuring quality data for ML tasks [12]:

1. Consistent representation: None of the dataset’s features have iden-
tical values with different compositions (unique but semantically equal
values) [12]. For example, both "25 years" and "25 y" convey the same
meaning, but have different composition.

2. Completeness: No values are missing.

3. Feature accuracy: The accuracy of a feature in a given dataset in-
dicates the extent to which its values match their corresponding true
values [12].

4. Target accuracy: Absence of incorrectly valued data in the labeled
target data; for example, differences in using commas and dots in
floats.

5. Uniqueness: Ensuring unique features and avoiding redundancies.

To ensure these requirements are satisfied, proper data preprocessing and
feature selection have to be performed as a part of the ML process pipeline
[61].

17

2.2.2 Loss
Loss is the difference between a model’s prediction output and the actual
true target values in the training data. In essence, it measures the model’s
performance by quantifying how far off the model’s predictions are from the
true values. A loss function is a mathematical expression that calculates
the loss as a single scalar value. An ML algorithm’s main goal is to mini-
mize this function. Mean squared error is an example of a widely used loss
function.

Mean squared error

Mean squared error (MSE) is a common loss function used in regression
problems within ML and statistics and is a measure of absolute error. It
calculates the average of the squares of the errors between the predicted
values by the model and the actual target values in the labeled dataset.
The MSE is often used as a performance measure when doing time series
forecasting [91]. A lower MSE value indicates that the model is accurate,
while a higher value signifies poor performance. If a model’s forecast is
perfect, meaning no deviations between predicted and true values, the MSE
will be zero. Mathematically, the formula for MSE is expressed as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.1)

where:

n = number of observations in the dataset
yi = true value of the target variable for the ith observation
ŷi = models target variable forecast for the ith observation

The MSE can be sensitive to outliers, as the squaring can give too much
weight to outliers if they are present in the data. In addition, the MSE error
value does not come in the same unit as the labeled data, which might be
unintuitive for interpretation.

2.2.3 Overfitting
A common challenge within the field of ML is overfitting. When a model
"overfits," it has learned noise and other unimportant details in the training
data to the extent that it performs poorly on new, unseen data. Its internal

18

structure has become too specialized for the training data, making it unable
to generalize. Overfitting can occur if the model is trained too long on the
datasets, making its parameter (over)fit to the data [61]. Several techniques
can help to prevent or mitigate overfitting, including:

• Cross-validation: Partitioning the data into three subsets: training
validation and testing. The validation set is used to measure how well
the model is generalizing.

• Early stopping: Stopping the training process when the model’s gen-
eralizing performance measured on the validation set starts to de-
grade.

• Dropout regularization: Involves randomly freezing nodes within
ANN-based models, forcing the neural net to learn additional routes to
prevent node codependence.

• Training on more data: Increasing the amount of training data can,
given it is diverse enough, help mitigate overfitting by providing a
broader basis for learning.

• Feature selection: Selecting the features that best represent the
problem while removing irrelevant or redundant features mitigates the
overfitting risk.

• Hyperparameter tuning: Careful tuning of the model’s hyperparam-
eters, including the learning rate and the architectural complexity, can
help avoid overfitting.

2.2.4 Artifcial neural networks
Artificial neural networks (ANN) is a type of ML algorithm consisting of
many interconnected nodes, called neurons, organized into layers. Its design
is inspired by the structure and function of biological neurons in brains [4].
The standard structure consists of an input layer, a "hidden" layer, and an
output layer and is illustrated in Figure 2.3. All neurons have their own
individual constant value, called "bias." Each neuron is interconnected with
every neuron in its neighboring layers. These connections are referred to
as "edges." Each connecting edge also has an individual weighting factor
called "weights." The weights decide how much information is passed from
the edges of the starting neuron to the next neuron. Both weights and bias
can be tuned for each individual neuron. The goal of the ANN is to obtain
the set of weights and biases that make the model predict as precisely as
possible when given new unseen data, known as the test dataset.

19

Input
layer

Hidden
layer Output

layer

Figure 2.3
A simple ANN and the organization of its layers [13].

An ANN learns by passing information from the input layer through its hid-
den layers by the interconnected neurons. The value(s) resulting in its final
output neuron(s) is the model’s prediction. This is also called a "forward
pass." In a supervised regression setting, the output value is compared with
its corresponding true value from the labeled dataset. This is done through
the loss function, as discussed in Subsection 2.2.2. The model wants to
minimize the difference (error) between its output and the true value, or
in other words, minimize its loss function. To achieve this, the model per-
forms "backpropagation," or a "backward pass." This involves computing the
partial derivatives of the loss function with respect to each weight, showing
how much a change in weight would affect the loss. Essentially, it’s a mea-
sure of responsibility: how much did each weight contribute to the error?

After computing the gradients, the network’s weights are updated using a
gradient descent optimization algorithm. The gradient descent adjusts each
weight in the opposite direction of its gradient, which reduces the loss. The
strength of the weight updates is controlled by a parameter called the learn-
ing rate. A smaller learning rate means the network will slowly adjust its
weights, while a larger learning rate leads to faster learning but can over-
shoot the optimal values.

ANNs are the foundation of DL. When increasing the number of hidden
layers, the definition of the model changes to deep artificial neural networks
[4]. This will be further discussed in the next section.

20

2.3 Deep learning
Deep learning (DL) is a more advanced form of ML and is considered a sub-
part of the ML umbrella, as seen in the AI definition-hierarchy illustrated
in Figure 2.2. As with the ANN discussed in Subsection 2.2.4, DL utilizes
"hidden" layers between the input and output layers. The main difference
lies in the number of hidden layers. DL models use multiple hidden lay-
ers, whereas traditional "shallow" ML only uses one or two. This structure
makes them demanding, both computationally and in required amounts of
data, to learn efficiently. This has limited the research and application of
the technology [4]. Recently, as computing power has become more afford-
able, the technology has been utilized with great success in multiple fields.
The "deep" version of ANN is referred to as deep neural newtworks (DNN).

2.3.1 Recurrent neural networks
Recurrent neural networks (RNN) are a subclass of DNNs adept at recog-
nizing patterns in data sequences. By utilizing feedback loops, the RNN
algorithm can use previous outputs as inputs to its current computation, al-
lowing it to memorize past inputs [88]. They are highly suitable for tasks
where previous information is required to generate accurate outputs. RNNs,
generally DNNs, can suffer from exploding or vanishing gradients, making
training deeper networks challenging [4]. When training on longer data se-
quences, this results in inaccurate results or even a total stall during the
training process.

2.3.2 Long short-term memory networks
Long short-term memory networks (LSTM) are a more advanced form of
RNN architecture. LSTMs solve the vanishing gradient problem by intro-
ducing a series of memory cells that can selectively store and forget informa-
tion from previous time steps [39]. By utilizing gating mechanisms of input,
forget, and output gates to control the flow of information, LSTMs are capa-
ble of tackling the vanishing gradient problem. This technique also enables
it to handle long-term dependencies [4]. The gates decide what information
to store, discard, and output, allowing LSTMs to maintain or forget infor-
mation over extended sequences, making them capable of memorizing input
information over longer periods. Figure 2.4 shows the architecture of the
LSTM and how the three gates update the memory cell containing the long-
term memory and the hidden state, which contains the short-term memory
of the calculations from the previous time step.

21

Sigmoid Sigmoid

X +

tanh

Sigmoid

X
tanh

X

Forget Gate Input Gate Output Gate

Cell State
(Memory)

Updated
Cell State
(Memory)

Hidden
State

Input

Updated
Hidden
State

Figure 2.4
Overview of the LSTM architecture [21]

2.3.3 Transformer models
Transformers are attention-based models initially developed for natural lan-
guage processing. By moving away from the recurrent structure of RNNs
and LSTM, they have significantly improved the handling of sequential
data. Using an encode-decode architecture combined with a self-attention
mechanism, transformers can process input sequences in parallel rather
than sequentially [90]. Compared to the LSTM, this architecture gives the
transformer the capability to capture long-range (global) dependencies in
data, as well as reduce its training times [91].

Within the transformer architecture, an encoder processes the input data
while a decoder generates the outputted forecasts. The encoder and de-
coder are built of multiple self-attention and feed-forward neural networks.
The central self-attention mechanism allows each value within the input se-
quence to focus on other parts of the sequence. This enables the model to
learn dependencies between different values, regardless of their position of
the sequence [90].

2.3.4 Temporal fusion transformers
Temporal fusion transformers (TFT) is a transformer-based technique that
uses several mechanisms from other DL models. It utilizes the gated lay-
ers from LSTMs and the attention-based mechanism used in transformer
models [52]. The TFT’s architecture, which is depicted in Figure 2.5 on

22

page 24, is designed for handling time-series data. It fuses temporal (time-
dependent) and static (time-invariant) data in a unified framework. TFTs
employ the transformer-based architecture to capture temporal relation-
ships, combined with the LSTM layers gating networks to fuse the temporal
and static data effectively [52]. One key feature is the model’s capability
of taking in future covariates, which are features that can be known in the
future. Examples are dates (it is known which dates will be occurring in the
future), holidays, and, to some degree, the weather.

Like the original transformer model, the TFT uses an encoder to process
input data and a decoder to generate forecasts. In addition, it introduces
components like temporal self-attention, static covariate attention, and vari-
able selection. These unique architectures enable the TFT to handle the in-
tricacies of time series better. Like the original transformer, the temporal
self-attention mechanism helps to learn long-term (global) dependencies in
the time-series data. The LSTM gating networks aid in selectively using or
ignoring certain features, improving the model’s interpretability and perfor-
mance in time-series forecasting tasks [52].

2.4 Feature selection
This section will briefly explain the workings and rationale behind the fea-
ture selection process. Subsection 2.4.1 will give an introductory rundown
on the feature selection methodology. Thereafter, Subsection 2.4.2 will elab-
orate on the technique of random forest-based feature selection.

2.4.1 An overview
As discussed in Subsection 2.2.3, feature selection selects the most informa-
tive features from a dataset by removing redundant or irrelevant features
[8]. The goal is to improve model accuracy, reduce the computational cost,
and provide insight into the data-generating process while at the same time
minimizing information loss [35]. Accuracy improvements are achieved by
mitigating overfitting risk and defying the curse of dimensionality: avoiding
the number of data dimensions and, thereby, the data mass from becom-
ing too large. The risk of overfitting is mitigated by reducing the model
complexity: fewer features result in a smaller input layer (input window).
Feature selection is especially important in cases of high-dimensional data
to alleviate the curse of dimensionality, and it’s pivotal in domains where
interpretability and model simplicity are essential.

23

Static
covariate
encoders

Variable
selection

Quantile or point-
estimate forecasts

Past covariates

Variable selection

LSTM decoder(s)

Add & norm gates

GRNs

Variable selection

LSTM encoder(s)

Add & norm gates

GRNs

Static metadata

Add & norm gates

GRNs

Add & norm gates

Dense

Temporal fusion decoder

Past Future

Masked interpretable multi-head attention

Future covariates

Past inputs Known future inputs

Figure 2.5
A simplified overview of the TFT model architecture [52]

24

Primary Methods

There are three primary methods for feature selection: filter methods, wrap-
per methods, and embedded methods:

• Filter methods evaluate features individually based on statistical
characteristics, such as mutual information or correlation coefficients.

• Wrapper methods, on the other hand, assess feature subsets by train-
ing models and evaluating their performance. Recursive feature elim-
ination is a popular technique used in wrapper methods.

• Embedded methods intertwine feature selection with model train-
ing. This means the model itself selects the most relevant features
during training.

2.4.2 Random forest based feature selection
Random forest-based feature selection (RF-FS) is a method that uses the
ensemble learning ML technique random forest (RF) to evaluate the impor-
tance of and then select features from a dataset. The RF is utilized for fea-
ture selection by using the by-products of its learning process (the feature
importance) to identify which features are most influential in predicting the
target variable. To achieve this, an RF regressor is trained on the data, and
feature importances are derived from the model. Feature importance is de-
termined by the average impurity reduction a feature brings to the trees in
the forest, typically measured by the gini impurity or entropy. The out-of-
bag error (OOB) can also be utilized to estimate feature importance by ob-
serving how the error changes as the values of each feature are permuted.
Based on their importance scores, the features are ranked, and a subset of
features can be selected. RF-FS is a versatile and reliable method for fea-
ture selection as it does not assume any specific form of data distribution
[10].

25

2.5 Related works
This section presents the recent related works on which this thesis research
has been inspired by and built upon.

An important study is the work of Kumbure et al. [50], which gives an exten-
sive overview of the recent history and trends within the field of ML stock
market forecasting. In addition, their paper presents a thorough overview of
which types of features, forecasting models, and benchmarking techniques
have been used in different research. From this research, it is noticed that
few regression ML stock market index forecasting applications utilize finan-
cial theory-based baseline models. Studies attempting to achieve excess re-
turns with trading strategies often use a "buy and hold" approach as a base-
line. However, this is not as straightforward when using regression alone
without attempting such strategies.

DL integrations gaining traction

As discussed in Subsection 2.1.4, the field of stock market forecasting is
growing fast. Between 2000 and 2020, the number of yearly published ar-
ticles regarding stock market forecasting applied ML has grown exponen-
tially. This period has been dominated by ANN, SVM, and Fuzzy Theory-
based models. In the past five years, "shallow" ANNs and SVMs have lost
ground to DL models, feature selection processes, and classifier ensembles.
DL models and feature selection techniques, in particular, have been rapidly
gaining traction and becoming more prominent topics within the field [50].

2.5.1 LSTM applications
Some DL-based methodologies that have recently gained popularity are RNN-
based models, particularly LSTMs [50]. LSTMs are not only popular as a
standalone configuration: good results have also been achieved by utilizing
different LSTM ensemble model configurations, particularly in combination
with convolutional neural nets (CNN) and feature selection models [50].

In 2018, Fischer and Krauss did the first study utilizing LSTM for stock
market forecasting [32]. By forecasting the out-of-sample directional move-
ments of the S&P 500 constituent stocks, the authors attempted to achieve
excess risk-adjusted returns. The LSTM implementation outperformed all
the following benchmark models: Logistic Regression, standard DNNs, and
RF. The LSTM also shows resilience during market friction, which are peri-
ods of financial turmoil and stock market downturns. A highly interesting

26

finding is that the LSTM’s trading performance statistically challenged the
semi-strong EMH until 2010. Past this, excess returns seem to have been
arbitraged away, meaning that all possibilities of using LSTMs and simi-
lar models for buying and selling stocks to generate an above-market aver-
age income have already been exploited by others. The latter may indicate
that ML implementations or other more efficient quantitative methodolo-
gies have been increasingly deployed to the S&P 500 stock market around
this time.

The same experiment has been conducted on the OSE: In the same year,
Lund and Løvås attempted a similar approach to the methodology developed
by Fischer and Krauss on the OSE [57]. When experimenting with various
LSTM architectures coupled with historical valuations and some technical
and economic indicators, the authors achieved promising results forecasting
next-day out-of-sample directional movements of stock included in the Oslo
Stock Exchange benchmark index (OSEBX). Their results proved the LSTM
outperformed the benchmarked Logistic Regression, RF, and SVM models.
However, when deploying their algorithms to achieve excess risk-adjusted
returns, the results were unsatisfactory.

2.5.2 Transformer and TFT applications
Researchers have recently successfully applied transformer and TFT models
to stock market forecasting problems.

Wang et al. applied a transformer model to forecast multiple stock mar-
ket indices, including the S&P 500 and CSI 300 (300 larger companies in
China) [91]. Their research shows that the transformer model outperforms
all benchmarked models, including LSTMs and CNNs. The authors utilized
a univariate dataset, as the models were trained on the indices’ historical
prices only.

Hu experimented with a TFT implementation for stock and index forecast-
ing and compared it against an LSTM and an SVR [40]. The target vari-
ables were the stock price of Google and the valuation of the S&P 500 index.
The data consisted of high, low, open, and close prices, in addition to traded
volume and adjusted closing prices. When benchmarking the models’ fore-
casting results, the TFT was found to be outperforming both LSTM and SVR
contenders. Analyzing the TFTs encoder variable importance, it was found
that the model highly favored the last five days’ closing price before any
other feature.

27

2.5.3 Utilization of wider economic datasets
Some studies have explored methodologies involving feature selection from
larger, more diverse datasets. The authors of said studies emphasize the im-
portance of including such approaches when conducting stock market fore-
casting.

Gaspareniene et al. achieved an accuracy of 97,68% (R2) over one-month
forecasts, using the Random Forest algorithm trained on carefully selected
US. economic indicators. Utilizing manual statistical feature selection, they
found the 3-month treasury bill, West Texas Intermediate (a global oil price
benchmark), and personal savings to be the most important variables. The
study only examined one simpler DL algorithm, deep learning feed-forward
neural networks (DL FFNN) - a DNN. Although outperformed by the RF,
the dataset utilized was a smaller size of 2444 data points for each of the
4 variables. The authors claim that macroeconomic environments have a
significant impact on their respective compound stock market [33], high-
lighting the importance of their inclusion. Additionally, the research also
leaves room for experimenting with more sophisticated DL models on more
extensive datasets.

28

Chapter 3

Methodology

This chapter will introduce and explain the methods used to produce the re-
sults of this thesis, presenting the chosen implementations and the reasons
why they have been included. First, Section 3.1 will give an overview of
the experiment design. Following, Section 3.2 will explain the data research
and retrieval process. The preprocessing procedures of the collected data are
presented in Section 3.3. Section 3.4 will elaborate on the feature selection
procedure. The forecasting model implementations will be presented in Sec-
tion 3.5. Thereafter, the training procedures will be explained in Section 3.6.
Finally, the hyperparameter optimization search method will be elaborated
in Section 3.7

3.1 Experiment design
To test the LSTM and TFT model’s capabilities of forecasting the compound
OSE valuation, a system allowing for this experiment must be developed.
This section presents the environment in which this thesis experiments will
be conducted.

3.1.1 Formalizing the problem-solving framework
In overview, the problems regarding the research questions in Section 1.2
can be formalized into a problem environment. In brief, this environment
can be described as the following:

• Time series forecasting: The data is time ordered.

• Supervised learning: There is labeled target data available.

29

• Regression: Instead of classification, point estimation will be con-
ducted.

Stock market data and associated features come as time-ordered data, mean-
ing all values have an associated timestamp telling when the data is recorded.
Stock market valuations are also a time-dependent forecasting problem,
making this a time series forecasting problem. This time-ordered data can
easily be used as a labeled target dataset by shifting it with H forecasting
horizon-days. This makes the problem solvable through supervised learning,
which is also the most common for stock market forecasting [50]. The lat-
ter point, regression, is implemented by choice in this thesis’ methodology.
Many stock market forecasting implementations use classification to fore-
cast directional movements (for example, up, down, flat), but this method
can be limited due to the lack of differencing between directional strength
(how much does the valuation rise or fall) [50]. Therefore, the problem is
solved as a regression problem in this experiment.

3.1.2 Target variable: Oslo Børs all-share index
To be able to time series forecast the valuation of the compound OSE with
supervised learning regression models, a target variable and a correspond-
ing labeled true-values dataset are required. To achieve this, the compound
valuation of the OSE must be quantified into data that satisfy these require-
ments and can be used for model experiments.

Oslo Børs all-share index

The Oslo Børs all share index (OSEAX) is a stock market index reflecting
the performance of all shares listed on the (Euronext) OSE. At the end of
2022, the index consists of 196 individual component stocks, with a compos-
ite market capitalization of 362.41 billion EUR. Since its inception in 1995,
the annualized return has been 6.38 %. The 30-day volatility is 14.93 %.
[74] Figure 3.1 shows the OSEAX’s daily closing prices from 1988 to 2022.
The price is denominated in index points, starting at 100 at the end of 1995
for the OSEAX.

The index is full market capitalization weighted, meaning each stock within
is weighted relative to its total market capitalization compared with the
index. This causes larger companies with higher market capitalization to
have a greater impact on the index’s fluctuations. For example, the oil and
gas company of Equinor, the largest in Norway, makes up 29.57 % of the
index at the end of 2022. This gives a more realistic representation of the

30

Figure 3.1
OSEAX index daily closing prices between 1988 and 2022

compound OSE valuation and the Norwegian economy in general.

The OSEAX also serves as an underlying recipe for funds, exchange-traded
funds (ETFs), and other products, making a respective forecasting model’s
outputs applicable for integration into systems trading these related assets
in future works. The index composition is revised daily for corporate ac-
tions: events initiated by companies that could impact their stock price,
such as stock splits, dividends, or mergers. Additional semi-annual reviews
are conducted in January and July [74].

Since the OSEAX represents the performance of all the stocks listed on the
OSE, it is selected as the feature for representing the OSE valuation in this
research. More specifically, the gross return version of the OSEAX is chosen
(OSEAX GI). The GI (Gross return index) version includes any additional
yields, such as dividends, which gives a more realistic projection of the in-
dex returns and its compound valuation, making the models trained in this
thesis better suited for future works related to profit estimations. Other
OSE indices exist, such as the OSEBX, but the OSEAX is wider in its repre-
sentation.

31

3.1.3 Data granularity and frequency
For time series data, the granularity (frequency) is the time unit in which
each element within the series is sampled (recorded) individually, and the
time steps between each sample are fed to the forecasting model. For ex-
ample, the price of a stock can be recorded each minute, hour, daily, and so
on. A finer granularity provides more data samples (a longer dataset) but
is more computationally expensive. In large, diverse datasets, it is common
for different features to be updated at different intervals. In such cases, its
underlying features will not update with the same frequency as the granu-
larity. For example, some macroeconomic indicators are updated quarterly,
while stock prices can be recorded every five minutes.

With this in mind, the data in this experiment will be processed to have a
one-day granularity. This is the most standard practice within the field [50]
and may provide the best common ground between the number of training
data samples and granularity that fits the update frequency of stock mar-
ket indices, its technical indicators, and economic data. It is also a compro-
mise between common practices of studies utilizing DL, which often get good
results from univariate five-minute-granularity data, and studies focusing
on general ML trained on wider macroeconomic datasets, which often use
monthly granularity [50, 33].

The daily granularity will be on a business daily frequency. A business
day (b-day) is commonly every weekday, except for holidays or other days
when financial institutions are required by law to be closed. This is also the
most common practice [50]. With a b-daily frequency, the dataset gets even
shorter as non-b-day samples are removed. This may improve performance,
as including weekends and other days without new updates to the target
variable increases computational cost without bringing any new useful in-
formation to the table (the stock exchange is closed). It can also make a
false assumption of better performance, as metrics may look better on a full-
week/all-day dataset because of many days with a static, easily predictable
target variable.

3.1.4 Forecasting horizons
The forecasting horizon is the number of days ahead the model is trained
to forecast. The labeled data is shifted by the horizon H (b-days) before
being fed to the algorithm’s loss function for comparison. Every horizon,
dataset, and hyperparameter combination in this thesis experiment envi-
ronment will require a uniquely trained model. Therefore, experimenting

32

with many time spans will be too time-consuming and computationally ex-
pensive. To reduce this cost, the forecasting experiments are confined to the
horizon span of 1 b-day. A 1-day horizon is the most common practice in ML-
based stock index forecasting [50], allowing cross-experiment comparison. It
is also simple and allows for examining immediate, short-term fluctuations
forecasts.

3.1.5 Software
The main programming language utilized in this thesis is Python, chosen
due to its large extent of relevant ML libraries and its simple and efficient
high-level language [89]. Mainly, three Python libraries will be used for
training and optimizing models and organizing, analyzing, and interpreting
the data. In overview, these are:

• PyTorch: PyTorch is a Python ML library combining efficiency and
user-friendliness. It offers many different ML models [76].

• Darts: A Python library focusing on time series forecasting. Offers
many different ML and non-ML models, tools, and objects for such
projects. Most of the ML models are wraparounds of pytorch [38].

• Optuna: A hyperparameter optimization search Python library. Op-
tuna offers tools for and simple integration of state-of-the-art optimiza-
tion techniques [5].

3.1.6 System, hardware, and setup
When training forecasting models, sufficient computing resources are re-
quired. Computing ML models, especially for DL, are computationally ex-
pensive. In this thesis, computation will be conducted on different resources:
a simple, local system and a high-performance computing cluster (HPC).

Local resource

For smaller, less computing-intensive tasks, a simpler local system is used.
These are performed on a Lenovo Yoga Slim 7 laptop computer. Since this
system does not have a CUDA-compatible NVIDIA GPU, only CPU resources
are utilized. For heavier task, which involves all DL implementations, more
power is required. Using the local system is insufficient for these models
because of the computational time associated with DL models.

33

Data phase Forecasting phase

Data research

Data gathering

Data preprocessing

Feature selection

Hyperparameter
tuning/search

Forecasting model
design

Model training

Performance
evaluation

Prototyping

Figure 3.2
Overview of the experiment framework

Fox HPC cluster

The Fox HPC cluster is a powerful computing resource available for users
of the Educloud Research infrastructure, a project-oriented self-service plat-
form for research projects [73].

Fox offers different system configurations. In this experiment environment,
the ifi_accel nodes will be used, as they are more available and the GPUs
more compatible with the software.

3.1.7 An overview of the final experiment framework
With the general experiment environment defined, a general experiment
framework is presented to provide an interpretable overview of the opera-
tion. This thesis experiment structure is inspired by the ML design process
outlined by Marshland [61]. An overview of the process is illustrated in
Figure 3.2. The system has been built through many iterations, as illus-
trated by the "prototyping" process in the figure. It has developed through
six stages or versions. For each iteration, the following were the most im-

34

portant lessons that led to this final system:

1. Non-stationary data produced inaccurate results: some features, in-
cluding the target variable, must be modified to become stationary.

2. Utilization of a daily frequency gives more training data but makes
the results look artificially good and is not standard within the field:
b-daily frequency is used instead.

3. Using the TFT for feature selection (originally intended) is too time-
consuming: integrating other feature selection approaches, including
an RF-based mechanism, instead.

4. Calculating and including technical indicators to the dataset, as they
are known to be short-term indicators.

5. The TFTs perform badly under manual hyperparameter tuning. There-
fore, an advanced automated hyperparameter optimization step is in-
tegrated into the framework, greatly improving the TFTs results.

6. Adding an additional RW-based forecasting model that includes long-
term growth may be important for the framework for future works with
longer forecasting horizons. Such a model is built and benchmarked.

3.2 Data research and retrieval
Data collection is a critical aspect of any research study. In this thesis, time
series data is collected from various sources. This section will explain the
process behind the research conducted to identify the desired data and the
related selection criteria. It will also elaborate on the retrieval process. For a
full overview of all the selected features, please see Table 4.1 under Chapter
4 on page 57.

3.2.1 Selection criteria
Before starting the research, some selection criteria are set to ensure rele-
vance and delineate the available data. In overview, variables to be included
in this thesis dataset must:

1. Be relevant to the OSEAX and the Norwegian economy.

2. Show a scientific potential to be utilized in stock market forecasting.

3. Be available publicly or through university resources.

35

4. Have a granularity between 1 day and one quarter.

5. Contain data back to 1988 and until the end of 2022.

Point 1 indicates that variables must be relevant to the compound OSEAX
and the stock market in Norway, which means that the feature can poten-
tially contain important information for future OSEAX valuations. This
point is fulfilled if there is research, or generally known, that an indica-
tor has or has a probability of correlating with the compound stock marked.
Point 2 sets a boundary to only include features that have shown potential
for relevance in ML stock market forecasting applications through research.
Point 3 is there to ensure data is available for reproducibility. Point 4 is in-
cluded to avoid having too infrequent updates within features in this thesis’s
daily granularity dataset. Point 5 is included for a number of reasons:

• DL requires lots of data: A longer data set will give the algorithms
more data to train on, increasing the chances of learning important
patterns and reducing the possibility of overfitting.

• Ensuring environmental diversity: Starting within the 1980s, the
algorithms get a chance to learn patterns during high inflation and
interest rate periods. Many research projects only train on the last 5 or
10 years of data [50], meaning they miss out on what may be multiple
important economic periods.

• Recency and relevance: By waiting until the end of 2022, the most
recent and relevant data can be collected, allowing the algorithms to
be tested on as recent data as possible.

• Availability: As the oldest identifiable OSEAX valuation data starts
on 03.01.1980 [71], it is desirable to gather data that is as close as pos-
sible to this date and, at the same time, not discard other important
features that may be regarded as essential for this research. The re-
quirement of having data back to 1987 is set as a compromise because
multiple potentially important features do not have accessible data be-
fore this year.

With the selection criteria defined, the research to identify the desired eco-
nomic indicator features can commence. In the next subsection, this process
will be explained.

36

3.2.2 Research
The search for viable indicators revolves around reviewing literature re-
search. Many papers have been written about technical and economic in-
dicators and other stock market forecasting viable features. Kumbure et
al.’s literature review paper on ML stock market forecasting techniques and
associated data [50] has been a central piece when navigating this territory.
The findings in Gaspareniene et al.’s macroeconomic indicator-centered ap-
proach discussed in Subsection 2.5.3 have also been considered. [33]. Find-
ings in these studies have been projected onto the OSE and OSEAX environ-
ment, whereof the relevant and available sources will be listed in the next
subsection. The resulting economic indicators chosen as features for the
main full dataset will be outlined in Section 4.1. A full overview is provided
in Table 4.1 on page 57.

3.2.3 Data sources
Due to the targeted length, diversity, and granularity of the features, the
data set has to be collected from multiple sources. The most important
sources are SSB [84], OECD [72], and Norges Bank [68]. For a complete
list and introduction to the sources, please refer to the Appendix A.1 on
page 113. Another central source for this research is Bern Arne Ødegaard’s
database [71], which contains OSEAX-index daily returns data all the way
back from 1980. As the OSEAX we index know today was formally initiated
at the end of 1995, most of the available dataset only contains data back
to this year [74]. Thanks to Ødegaard’s data, the OSEAX index valuation
can be backward projected, giving potential for an additional 15 years of
experiment data.

3.2.4 Retrieval
With the desired features and their respective sources identified, the data
can be downloaded and organized for preprocessing. Since the sources are
quite diverse in their data-delivering standards and procedures, it is de-
cided to download and save the data as comma-separated values (CSV) files
instead of using APIs and web scraping. The only exception is the date
and time features, which are extracted through Darts API later. For a full
overview of all the selected features, see Table 4.1 under Chapter 4 on page
57.

37

General data retrieval with CSVs

The data have to be consolidated into one dataset. This is done using Mi-
crosoft Excel. An Excel sheet is initiated and filled with all dates between
01.01.1980 and 31.12.2022. Each feature from each CSV file is then joined
into this Excel sheet by date, with each feature having its own column. Some
incomplete features must be extended or built from different sources to cover
the desired time frame. Features built from multiple sources can be seen in
Table 4.1 with multiple citations. With the data consolidated, the Excel file
is converted into a Pandas data frame in Python.

Date and time feature data retrieval with Darts API

The next step in the retrieval procedure is to gather all date and time-
related features. These are easily accessible through Darts’ API, with which
they are added to the data frame using the add_datetime_attribute()
function. These features are grouped under the category "Time and date" at
the end of Table 4.1, which starts on page 57.

Calculating features

The final data retrieval step involves calculating desired features that are
obtainable by calculating them from the current dataset. One prominent
group is the OSEAX technical indicators features, which can be computed
from the retrieved OSEAX valuation feature. These are:

• OSEAX MACD histogram (MACD)

• OSEAX relative strength index (RSI)

• OSEAX 50d moving average (50d MA)

• OSEAX 200d moving average (200d MA)

Since no OSEAX volume data fulfilling the selection criteria were found
during the data collection phase, no volume-based technical indicator fea-
tures are included. In addition, the 10y/3m rate spread NOR is calculated
from the 10y G-bond and 3m T-bill features. After being computed, they are
added as separate features to the data frame. The final Pandas data frame
is ready for preprocessing and feature selection, which will be handled in
the next section.

38

3.3 Data preprocessing
Due to the difference in the above sources’ data values, the dataset must be
preprocessed before it can be considered applicable for ML training. Data
preprocessing transforms raw data into a clean, organized, and understand-
able format suitable for analysis. It involves cleaning, formatting, imputing
(filling), and transforming the data to make it suitable for analysis. ML im-
plementations learn much more efficiently when the data is preprocessed
accordingly [61].

This study uses preprocessing techniques, such as forward-filling, data im-
putation, and normalization, to ensure these standards are met, enhancing
performance and reducing the probability of overfitting. This section will
elaborate on the preprocessing steps conducted in this research. The fol-
lowing subsections will present each step individually, ordered by how the
preprocessing pipeline takes place. All preprocessing steps have been done
using integrated Darts and Pytorch tools, in addition to Pandas, a flexible
data analysis and manipulation tool for Python [63].

3.3.1 Forward filling and frequency handling
The first preprocessing step is to handle missing values and to set the data
frequency for the data, now organized in a Pandas DataFrame. One problem
that emerges when dealing with time series data is missing values. Missing
values are a commonality and may be caused by multiple reasons. When
dealing with stock indices, this problem materializes as missing data points
during weekends and holidays, as stock exchanges are only open on work-
ing days. Many of the financial data sources that are utilized are incomplete
due to downtime during recording, systems faults, or payment walls. Addi-
tionally, some values, such as the Norwegian GDP, are only set on specific
dates, with months in between, leaving only a single data point for that pe-
riod. To make the algorithm able to read the data set and to prevent fault
during calculation or in the results, the lacking data has to be managed and
standardized.

Forward filling imputation, trimming, and data type conversion

Forward filling is a technique that fills all empty values in a time series or-
dered dataset with the last observed value. It is also called "last observation
carried forward (LOCF), as it is carrying on the last observed value until a
new value is available. In the data frame, forward filling is conducted using

39

the Pandas ffill() method.

This method is chosen since it best represents the information gained from
the financial markets in a realistic manner. The models will always have
the latest, true recorded data points, in contrast to interpolation, which fills
missing data with modified values. Forward filling is also chosen because
it does not pose any threat of "data leaks" instances where the forecasting
model gains access to information before its true occurrence date.

Ensuring b-daily frequency

Subsection 3.1.3 discussed the definition of b-daily frequency and why using
it is attractive in stock market forecasting. To convert the forward-filled
dataset to n-daily frequency, the following code snippet is used:

1 # 1. Get b-daily-range from the data frame's date column:
2 bd_range = pd.bdate_range(
3 start=dataframe.index.min(),
4 end=dataframe.index.max())
5 # 2. filtering dataframe:
6 dataframe = dataframe[dataframe.index.isin(bd_range)]

This script first extracts the b-daily data range as dates. Then, the data
frame is filtered by those dates, effectively removing any date that is not a
b-daily date. This method will not remove Norwegian holidays, only dates
falling within weekends.

Removing empty elements and setting data type

With the dataset forward-filled and on b-daily frequency, there are still some
empty elements that will need to be removed. This is because the ffill pro-
cess does not fill any forwardly missing values, leaving columns of empty
elements before the first recording for some features. These are removed by
using the Pandas method dropna() on the data frame, which removes any
empty values still present. Finally, the dataset is converted to a data type
that is optimal for ML models: np.float32. This is done using the Numpy
astype(np.float32) method on the data frame.

Adding a time buffer

Due to the uncertainty of the time of the announcement, all the macroe-
conomic indicators updated monthly or less frequently have been shifted
backward by one to three months (22-66 b-days). This is quite a large buffer,
but the thought is that the state of the macroeconomic indicators, although

40

Figure 3.3
Lineplot visualizing the dataset splits on the target variable

lagged, can have informational value for the algorithm. This step is taken to
prevent the algorithm from having a look-ahead bias by gaining information
before it was publicly available and thereby performing better than what is
possible. This may potentially harm performance, but in the first instance
of this system built in this thesis, security precautions are taken. Using a
non-buffered macroeconomic dataset is better suited for future work.

After this, the initial preprocessing steps are done. The dataset is now ready
for outlier detection and handling, which will be elaborated in the next sub-
section.

3.3.2 Outlier detection
Outliers, also called anomalies, are values within the dataset significantly
deviating from other values [3]. They are another common occurrence in
datasets and can introduce noise and hamper performance. To detect any
possible outliers, a visual inspection is conducted. The results from the in-
spection are presented later in the dataset chapter; Chapter 4 under Sub-
section 4.2.1

41

3.3.3 Splitting
To properly train, cross-validate, and test the forecasting algorithms, the
dataset has to be split into partitions. A train-validation-test-split is carried
out to achieve this, a common and important practice in ML. By using the
Darts split_after() method, the dataset is split into the following three
sets [61]:

• (70 %) Training: For training the forecasting model.

• (15 %) Validation: To monitor model performance while training.

• (15 %) Test: For final evaluation of model performance on unseen data.

A visualization of the dataset splits can be seen in Figure 3.3. The 70-15-15
split is chosen to ensure both the train and test periods include a "drawdown
period," during which the OSEAX experiences a sudden decline. As seen in
Figure 3.3, this split lets the training data experience multiple such periods,
including the 2008-2009 financial crisis, while the test set falls within the
timeframe of the 2020 COVID-19 recession. Preferably, the validation set
should also include such a period, but that would have to be at the cost of
a smaller training set or the exclusion of a drawback period in the test set.
Both are undesirable. A smaller training set can hamper algorithmic perfor-
mance while excluding the COVID-19 recession from the test set may lead to
artificially good-looking results when evaluating forecasting performance.

3.3.4 Managing stationarity
Stationarity, in this case, weak-form stationarity, or “covariance stationar-
ity,” are time series that have constant, mean, variance, and covariance be-
tween identically distanced periods [94]. When dealing with time series
forecasting, ensuring that the data has stationary properties is important
for some algorithms. If a feature is non-stationary, it can be differentiated
(in an attempt) to make it stationary. To identify non-stationary indicators,
an augmented Dickey-Fuller test is administered.

Augmented Dickey-Fuller test

The augmented Dickey-Fuller test (ADF) is a statistical test developed by
David Dickey and Wayne Fuller used to determine whether a time series
is stationary [23, 94]. The test checks if there’s a unit root in the time se-
ries, suggesting that the series is non-stationary. An ADF implementation is
available from Python’s statsmodels library as the adfuller() function,

42

which is further utilized in this methodology. For experiment integrity, the
test is only carried out on the training set. This is to avoid data leaks from
the test set. The results from the test and the following feature (differenti-
ating) modifications are presented later under Subsection 4.2.2 on page 59
under the Dataset chapter.

3.3.5 Normalization
Normalization is a technique used to change the values of numeric values
of a feature in a dataset to a common scale without distorting differences
in the ranges of values or losing information. This is important in datasets
with features that vary in magnitudes, units, and range, something which
this thesis’ dataset does (to be elaborated in Chapter 4). Additionally, many
ML algorithms, especially ANN-based ones, perform poorly when numerical
input variables have different scales, making normalization necessary.

Normalization is performed on the training, validation, and testing data
frame using the Darts darts.dataprocessing.transformers.Scaler
object. This scaler sets all individual feature values between 0 and 1. First,
the scaler is fitted to the training set using Scaler.fit(training_data)
method. Fitting the scaler means adjusting its range to the feature value
ranges in this data set. Then, the scaler is applied to all data set splits,
transforming their values to the range set from the training data. This
is done using the Scaler.fit(<dataset_split>) method. Some models
will not work optimally with normalized data. Therefore, a pre-normalization
instance of the data set splits is kept for later.

The dataset preprocessing procedure is now completed, and the data is ready
for the next step in the experiment pipeline. This step is to perform data
analytics, followed by feature selection, to be elaborated in the next section.

3.4 Feature Selection
This section will elaborate on the feature selection processes administered
in this thesis. These selection processes are included for several reasons. A
dataset of 72 features may be too much for an algorithm to handle. Training
time may take too long, and overfitting is a threat. Reducing the amount
of features through feature selection will result in a smaller and possibly
more informative dataset. Three methods have been chosen: Manual selec-
tion based on research, the RF-FS method, and a hyperparameter tuning-
integrated method.

43

3.4.1 Research-based manual feature selection
In this thesis, the manual research-based feature selection process will in-
volve choosing a set of features based on their proven relevance or potential
for relevance. To decide which features should be considered, relevant litera-
ture is analyzed. This feature selection methodology is included to provide a
baseline against the other dataset instances. The resulting dataset instance
is presented in Subsection 4.3.2 on page 62.

3.4.2 Random forest-based feature selection
Random forest feature selection (RF-FS) is the feature selection method
based on the RF ML algorithms feature importance system discussed in
Subsection 2.4.2. This method has been included due to its simple yet proven
accurate way of selecting suitable features. RF-FS has been successfully uti-
lized in many applications [55, 69, 37].

This thesis RF-FS methodology involves training an RF regressor on the
training set and extracting the resulting features and feature-importances.
For this, the sklearn SelectFromModel meta transformer class and the
RandomForestRegressor class are utilized. The former extracts the fea-
tures based on the feature importance results from training the latter. This
is done by running the following script:

1 # Building selector (meta transformer) using RF feature importance:
2 selector = SelectFromModel(
3 estimator=RandomForestRegressor(
4 n_estimators=100,
5 random_state=42,
6 n_jobs=6,
7 verbose=0))
8 # Training selector:
9 selector = selector.fit(

10 X=dataset,
11 y=target_series)
12 # Getting results:
13 seleted_features = selector.get_feature_names_out()
14 n_selected = len(seleted_features)
15 # Getting feature importances:
16 feature_scores = pd.Series(
17 selector.estimator_.feature_importances_,
18 index=dataset.columns).sort_values(ascending=False)

Due to the RF regressor’s low computational complexity, the script is exe-
cuted on the local system. As for hyperparameters, the number of trees in

44

the forest (n_estimators) is set to 100. A number 1000 was considered due
to possible performance gains, but some research has found that RF models
overfit for some noisy datasets [79]. To ensure reproducibility, the model
seed is fixed by setting random_state to 42.

Two dataset instances are built according to these selected features and
their importance ratings. The resulting datasets are presented in the up-
coming Subsection 4.3.3 on page 62.

3.4.3 Hyperparameter optimization feature selection
As later explained in Section 3.7, this thesis will perform a hyperparameter
optimization search on the LSTM and TFT models. Due to Darts’ support of
simple inline inclusion of date and time features during model initialization,
a third form of feature selection will be performed. This will be executed as
a part of the hyperparameter optimization search process, explained in Sub-
section 3.7, and will only regard the date and time features. The results from
this hyperparameter selection process will not result in another dataset in-
stance but will be included as part of the hyperparameters for the tuned
LSTM and TFT.

Including this method will allow further experimenting if the models prefer
to utilize date and time features. This is especially important for the TFT,
which supports date and time features as future known inputs (future co-
variates). If the RF-FS method is unjustly disfavoring them, the features
can show their real potential within this process. The results from the hy-
perparameter optimization search are presented under Section 5.1

Finally, with the final dataset instances’ building methods explained, the
implementation of the selected forecasting models will be presented in the
next section.

3.5 Forecasting models
This section explains the inner workings, selection rationale, and integra-
tion of the selected forecasting models. As discussed in the Background sec-
tion, the LSTM and TFT models pose promising candidates for this experi-
ment. In addition, two RW-based models have also been selected to compare
the DL models forecast against the RW. All models have been implemented
using the Darts library in Python.

45

3.5.1 Random walk model
As discussed in Subsection 2.1.6, the RW states that prices develop indepen-
dently of pricing history and are bound to a probability distribution. This
implies that prices are non-forecastable. To test whether the DL models can
challenge this, a forecasting implementation based on the RW is built: a
random walk model (RWM).

Modeling random walks

Forecasting the outcome of a random walk is difficult due to its unpre-
dictable nature. The best estimate that can be made is to use the obser-
vation from the previous time step as the expected outcome for the next
time step. It’s simple but surprisingly hard to beat; repeating the last day’s
value is an accurate approach for short-term forecasting. This type of fore-
casting is commonly referred to as a naive seasonal forecast [11], and it has
been shown to be optimal when data follow a random walk pattern [42].
Preceding DL models should be capable of outperforming this model to be
considered well-performing.

Take this example while assuming an equal probability distribution of price
changes: If a stock has an equal chance of falling or increasing within a set
symmetric range of NOK tomorrow, the two probabilities cancel each other
out and only leave the last recorded price in the equation.

An RWM can be modeled as a naive seasonal forecast. Formally, the RWM
can written as the following equation [67]:

ŷ = yt−H (3.1)

where:

ŷ = models price forecast
yt−H = price observed H forecasting horizon time step ago

From a trading perspective, this can simulate a buy-and-hold strategy. If
fully invested in a financial asset, a forecast repeating today’s value (the
price stays flat) for the asset motivates one to hold it. Selling takes time and
energy and also induces transaction costs. This is given that this example is
only observed as a delimited case, excluding the possibility that the investor
has other, better assets in his or her overview that are a better investment
opportunity.

46

Implimentation

To implement the RWM, the Darts NaiveSeasonal model class is used.
This class works as the naive seasonal methodology described above: the
last observed value is used as the forecast. The model is univariate, consid-
ering only the OSEAX price history and no other features. It is evaluated on
a non-differentiated OSEAX test set, as it works best when forecasting full
index values. Using a differentiated OSEAX data set may falsely indicate
worse performance.

3.5.2 Random walk with drift
An RWM implementation can also include a constant underlying growth.
This is called a random walk with drift (RWD). In this setting, the model
includes a drift component. The drift component represents a consistent
upward or downward trend in the data, gradually and short-term unpre-
dictably pushing the random walk in the trend direction. The following
equation expresses this as [67]:

ŷ = yt−H + α (3.2)

where:

ŷ = models price forecast
yt−H = price observed H forecasting horizon time step ago
α = drift component

In this case, it can be modeled as the underlying economic growth that, over
time, lifts stock indices. This is useful for the longer-term one-year forecasts.
Where the standard RWM will only repeat the same price recorded last year,
the RWG does the same, but with an extra upward push by the growth
trend, potentially improving forecast accuracy. Such a model is important
for benchmarking the DL models’ long-term forecasting capabilities.

Implimentation

Like the RWM, the RWD is implemented using the Darts NaiveSeasonal
model. In addition, the mean H growth is added to the NaiceSeasonal
forecast. The mean growth is calculated from all H time spans in the test
set. It is evaluated on a non-differentiated univariate version of the OSEAX
test set.

47

3.5.3 LSTM
In Subsection 2.3.2, the workings of the LSTM model were discussed. The
model has been chosen based on its good performance in similar studies
and has been described as ideal for learning advanced patterns from the
immense and noisy data sets associated with economic data [50, 9, 32]. The
LSTM technique has been deployed successfully for forecasting daily out-of-
sample directional movements of the constituent stocks of the OSEBX index,
a similar index to the OSEAX [57]. The model is included based on:

• Its proven performance makes it a benchmark for the TFT experiments
to see if it can achieve good accuracies.

• It is a good benchmark to compare against the RWM and RWD models.

Implementation

The LSTM model is built using the BlockRNNModel class, a Darts imple-
mentation for training sliding window RNN models. To modify the class to
train as an LSTM, the hyperparameter model='LSTM', is set when ini-
tiating the model object. The hyperparameters set as standard by Darts
are used for the non-tuned version of the model. To allow the algorithm to
capture inter-feature patterns, the input window size is set to 22 b-days,
corresponding to a business month.

3.5.4 TFT
The TFT model, discussed in Subsection 2.3.4, is a state-of-the-art time se-
ries forecasting technique and is therefore included in this research. It has
already shown promising performance forecastsing other financial assets
[40]. No research applying the TFT to the OSE has been identified during
the literature search. The TFT is included to observe if it can outperform
the LSTM in this domain, further proving DL’s potential in stock market
forecasting applications.

Implementation

Implementation of the TFT is done using the Darts TFTModel class. This
class is based on the paper published by Lim et al. [52]. Their research found
a set of hyperparameters that were generally well-performing at multiple
tasks. These hyperparameters are used for the standard non-tuned version
of the TFT in the experiments, while the input window size is set to the
same as for the LSTM: a sliding type of 22 b-days.

48

Table 3.1
DL models training settings

Setting Value

Models trained per instance 30
Max epochs 1000
Stopper patience 50
Loss function MSE
System Fox HPC

3.6 Training and evaluation
This section explains the training procedure chosen for this experiment. Be-
cause of their different workings, the RW-based models and the DL models
require different training procedures. The next subsections will describe
these.’

3.6.1 RW models
The RW models are both simple and computationally inexpensive. Both
are, therefore, trained on the local system. Additionally, the RW models
are deterministic, meaning their forecasts will be the same for every same-
model run. These models only take the univariate OSEAX data, and none
require training. Therefore, only one instance is evaluated for each model
on the OSEAX test set. Results are presented in Subsection 5.3.1.

3.6.2 DL models
DL models are stochastic, meaning the same model architecture will per-
form different forecasts for each unique instance. They also take all the
different dataset instances and require training. All DL models are imple-
mented using a fixed-size sliding window and outputting a single point H
forecasting horizon b-days ahead of time. DL models are also quite compu-
tationally expensive, requiring more robust hardware. Therefore, a more
sophisticated training procedure is designed and then uploaded and exe-
cuted on the FOX HPC. For each DL algorithm, feature-reduced dataset,
and hyperparameter set combination, training is conducted as follows:

1. Train 30 models: 30 model instances with different weights are trained
for the DL algorithms.

49

(a) Fixed seeds: To ensure reproducibility, the 30 models are trained
with the same 30 fixed seeds.

(b) Early stopping: During training, the validation performance is
monitored. If the model shows no improvement in the validation
loss after a certain number of epochs (stopper patience), the train-
ing is halted, and the next step is performed.

(c) Backtesting: After training, each model is evaluated on the train-
ing set by backtesting and calculating metrics, using the best model
weights discovered during training.

i. Conversion to full index values: To compare the DL mod-
els with the RW models, the DL forecasts are converted to the
same representation used by the RW ones: full, non-differentiated,
non-normalized OSEAX index valuations denominated in in-
dex points.

2. Mean metrics: When all models have been trained, the mean metric
scores are calculated from the 30 models.

Running 30 different models is performed to calculate mean forecasts, met-
rics, and standard deviation for each model instance. Early stopping is in-
cluded to prevent overfitting and reduce the overall training time and com-
putational expense. The max epoch, early stopper patience, loss function,
and training system settings used for training are summarized in Table 3.1.
The max epoch setting is chosen because DL models are known to require
hundreds of epochs to learn the dataset patterns completely [91]. When
evaluating the models on the test set, selected metrics are used. These are
discussed in the next subsection.

3.6.3 Evaluation metrics
When evaluating the models’ performances on the training set, three eval-
uation metrics are used. These are basically other types of loss functions,
such as the MSE discussed under Subsection 2.2.2, which is used during
training. They are quantitative methods of measuring the accuracy of the
forecasting models. Multiple metrics are used to get a diverse picture of
the models’ performances. The metrics selection in this thesis is inspired by
Bhandari et al.’s research [9] Additionally, these three are common in stock
market forecasting regression applications [50]. The MSE is not used as a
final evaluation metric due to its lesser-informational format.

50

Mean absolute percentage error

Mean absolute percentage error (MAPE) is a measure of forecasting accu-
racy, measured as a percentage. This percentage is the average deviation of
the model’s forecast from the true values. MAPE is defined by the following
formula:

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3.3)

where:

n = number of observations in the dataset
yi = the true value of the ith observation
ŷi = the models forecasted value of the ith observation

Root mean square error

Root mean square error (RMSE) measures the average difference between
a model’s forecasted values and the true values. RMSE is denominated in
the unit of the forecasted value and is therefore included in this thesis. For
instance, if a forecast of a NOK-denominated stock price has an RMSE = 2,
it means that the model, on average, misses by NOK 2 from the true value.
RMSE is defined by the following formula:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.4)

where:

n = number of observations in the dataset
yi = the true value of the ith observation
ŷi = the models forecasted value of the ith observation

Coefficient of determination

The coefficient of determination, also known as R-squared (R2), is a metric
that measures the proportion of variance for a dependent variable (a fore-
casting model’s output) explained by its independent values (the input fea-
tures). It is commonly used in regression analysis, including regression ML
models, where it measures the goodness of fit, which is how well the model

51

explains the forecasted value in relation to the true data. The R2 score gen-
erally ranges from 0 to 1 but can also be negative if the forecasting model
is severely flawed. An R2 of 0 indicates that the model explains none of the
variability in the data. An R2 of 1 indicates that the model forecasts the
target variable perfectly. Mathematically, the R2 can be expressed as:

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
(3.5)

where:

n = number of observations in the dataset
yi = the true value of the ith observation
ŷi = the models forecasted value of the ith observation
ȳ = the mean of the true yi values

3.7 Hyperparameter optimization search
There are many different parameters to set for the LSTM and TFT models.
Some are related to architecture, like the number of nodes or hidden lay-
ers, while others are related to training, like learning rate and optimizers.
The best combinations of hyperparameters for these models in the OSEAX
forecasting environment are unknown. Therefore, a hyperparameter opti-
mization search is conducted to explore the possible combinations.

3.7.1 Tuning machine learning models
The hyperparameter optimization search, from now on referred to as tun-
ing, is the process of exploring a given range of hyperparameters to find
the most optimal set for a given ML model in a given environment. Tradi-
tionally, tuning has been performed with grid search, explicitly defining all
parameter combinations to be tested and systematically running through
them. Although thorough, this method is slow and computationally expen-
sive. In recent times, more sophisticated and efficient tuning methodologies
have been developed. Bayesian optimization, in particular, is one of these.
Most recently, the Bayesian optimization method of Tree-Structured Parzen
Estimators (TPE) has gained much attention due to its good performance
[93]. The tuning framework in this thesis is chosen to be built around the
TPE, as it has been shown to be more efficient and precise in applications
with many tunable hyperparameters.

52

Table 3.2
DL tuning settings

Setting Value

Number of trials 500
Models trained per instance 10
Max epochs 1000
Stopper patience 20
Loss function MSE
System Fox HPC

3.7.2 Implementation
For the tuning procedure, the Python library Optuna is chosen. Optuna
offers flexibility and modularity within a simple interface. It also offers
tools for increasing efficiency and accuracy [5]. The most desirable methods
included in Optuna are:

• TPE support: Optuna uses TPE as default.

• Warm starts: The possibility to instruct the tuning algorithm to train
and learn on a predetermined set of hyperparameters.

• Pruner: A pruner for stopping unpromising experiments early so they
don’t waste resources.

All of the above are utilized in this framework.

3.7.3 Overview of the tuning process
Each DL algorithm and dataset instance combination is tuned in case differ-
ent data work better on different hyperparameters. The tuning procedure
starts before the training experiments described in Section 3.6 to obtain
the tuned hyperparameters before the final main experiment. An overview
of the settings used in the tuning procedure can be viewed in Table 3.2.
The number of trials (unique hyperparameter experiments) is set to 500 to
give the tuning algorithm enough combinations to explore. The number of
trained models per model-type dataset instance has been decreased to 10 to
reduce runtime. Stopper patience is reduced to 20 for the same reason. The
process of tuning can be summarized as follows:

1. Initialize trial: If the number executed of trials is below 500, a new
trial is initiated.

53

2. Selecting hyperparameters: The optimization algorithm chooses a
set of hyperparameters within the instructed ranges for the trial.

(a) Warm starts: For all models, the first five sets of hyperparame-
ters are so-called "warm starts." These are hyperparameters man-
ually set beforehand to give the algorithm a good ground to start
off on. The warm-start hyperparameter sets are derived from
Darts’ standard hyperparameters for the respective models, as
well as from other research papers with similar models.

3. Train 10 models: 10 model instances with the selected hyperparame-
ters, all with different weights, are initiated and trained. The number
of trained models is reduced during tuning to save computational re-
sources and rescue training time.

(a) Fixed seeds: To ensure reproducibility, the 10 models are trained
with the same 10 fixed seeds.

(b) Pruning: To reduce training time, a pruner is utilized to moni-
tor the validation loss and stop promising trials. This is done by
comparing the current trial with the past executed trial.

(c) Early stopping: Stopping of models when learning deteriorates
is also included in the tuning procedure, but the patience is set to
20 to reduce time and computational expenditures.

(d) Backtesting: After stopping or reaching the max epoch, the best
model instance is loaded and backtested on the validation set to
calculate MSE loss (the test set is not utilized during tuning due
to data leak/look-ahead bias).

4. Mean MSE reported: The mean of all the final validation loss from
all models is calculated and then reported to the optimization algo-
rithm. Then the algorithm returns to step 1.

During tuning, the optimization algorithm records the best-performing hy-
perparameters. When the models are finished after the 500 trials, the Op-
tuna study is saved to a file in which the best parameters are obtainable.
These can then be extracted and used in the main experiment.

It is important to mention that sophisticated tuning procedures run the risk
of overfitting to the validation set. Therefore, all hyperparameter-tuned
models are compared with models trained with a fixed set of standard hy-
perparameters.

54

Chapter 4

The Economic Dataset

This chapter presents an overview of the dataset collected for the exper-
iments. It will briefly present its composition in Section 4.1, discuss the
results from the preprocessing procedure in Section 4.2, and finally present
the process of attaining the four final feature-reduced datasets through the
selected feature selection processes in Section 2.4.

4.1 Composition
This section will give an introduction to how the dataset is comprised. A full
overview of the dataset’s features, their respective abbreviation, and sources
are presented in Table 4.1 on page 57.

4.1.1 Length, size, and span
After the initial processing steps, which were discussed in Section 3.3, the
total length of the dataset is 9110 b-days. The average number of b-days
per year is 260.93 in the dataset. This is rounded to 261 and selected as
the formal number of b-days per year in this thesis and is the basis of the
261 b-days long one-year forecasting horizon. This corresponds to nearly 35
years of b-daily data, ranging from 01.02.1988 to 31.12.2022.

4.1.2 Categorization
Including the target variable, the dataset consists of 72 unique features. The
features have been grouped into 12 categories:

55

1. Stock indices: Includes the target OSEAX index and its belonging
technical indicators, as well as two foreign indices relevant to the OSE:
MSCI-W and WILL5000.

2. General macroeconomic indicators: Features related to general
Norwegian macroeconomic data.

3. Consumption indicators: Indicators reflecting consumer, retail, and
government consumption.

4. Residential indicators: Features regarding the housing market.

5. Foreign currency exchange rates (forex): The exchange rates be-
tween the Norwegian Krone (NOK) and relevant forex, such as the
USD and GBP.

6. Commodities: Features reflecting the prices of important basic raw
materials.

7. Interest rates: Indicators of the interest rates set by NB and on dif-
ferent assets.

8. Monetary aggregates: Feature representing measures of the amount
of money in circulation within Norway.

9. Debt indicators: Features representing the debt burden within dif-
ferent sectors.

10. Economic health and sentiment indicators: Indicators often used
to gauge the overall economic and stock market sentiments, both glob-
ally and in Norway.

11. Geopolitical risk indices: Included as a substitute for sentiment
analysis data. These risk-measuring indices, developed by Dario Cal-
dara and Matteo Iacoviello, work by analyzing sentiment through large,
global-spanning newspapers [15].

12. Time and date: Features representing time and date-related infor-
mation.

The features in the full overview in Table 4.1 are ordered by these categories.

56

Table 4.1
Overview of the features, their abbreviations, and sources

Category Variable Abbreviation Source(s)

Stock indices

Oslo Børs all-share index OSEAX [71, 87, 31]
OSEAX MACD histogram MACD Computed
OSEAX relative strength idx RSI Computed
OSEAX 50d moving average 50d MA Computed
OSEAX 200d moving average 200d MA Computed
MSCI world index MSCI-W [80]
Wilshire 5000 full cap index WILL5000 [6]

General
macro-
economic
indicators

Gross domestic product GDP [84]
Current account balance CAB [84]
Net international trade Trade [72]
Consumer price index CPI [84]
Producer price index PPI [72]
Industrial production Production [72]
Wages in manufacturing Wages [72]
Unemployed persons Unemployed [72]
Unfilled job vacancies Vacancies [72, 84]

Consumption
indicators

Government consumption C govt. [72]
Private consumption C priv. [72]
Retail trade index RTI [72]
New car registrations New cars [72]

Residential
indicators

Residential property prices Home price [43]
Residential build costs Build costs [72]
Residential build starts Home starts [72]

Foreign
currency
exchange
rates

NOK trade-weighted index NOK-TWI [68]
USD/NOK exchange rate USD/NOK [68]
GBP/NOK exchange rate GBP/NOK [68]
SEK/NOK exchange rate SEK/NOK [68]
DKK/NOK exchange rate DKK/NOK [68]
JPY/NOK exchange rate JPY/NOK [68]
CAD/NOK exchange rate CAD/NOK [68]

Commodities

Brent crude oil price Crude oil [27]
Natural gas price Natural gas [44]
Gold price Gold [44]
Copper price Copper [58]
Lumber price Lumber [58]

57

Table 4.1 continued from previous page
Category Variable Abbreviation Source(s)

Interest

Key policy rate Policy rate [68]
Money market rate 3m NIBOR [72]
3-month treasury bill rate 3m T-bill [87, 68]
6-month treasury bill rate 6m T-bill [87, 68]
12-month treasury bill rate 12m T-bill [87, 68]
3-year government bond rate 3y G-bond [68]
5-year government bond rate 5y G-bond [68]
10-year government bond rate 10y G-bond [68]

Monetary
aggregates

Base money supply M0 [84, 68]
Narrow money supply M1 [84, 72]
Intermediate money supply M2 [84, 72]
Broad money supply M3 [72]
International reserves I-reserves [84]

Debt
indicators

Debt general public D public [84]
Debt corporations D corporate [84]
Debt private households D households [84]
Debt central government D cent. govt. [84]
Debt municipal government D mun. govt. [84]

Economic
health and
sentiment
indicators

Consumer confidence idx EU CCI EU [72]
Business confidence idx NOR BCI NOR [72]
10y/3m rates spread NOR 10y/3m NOR Computed
10y/3m rates spread U.S. 10y/3m U.S. [83]
Number of bankruptcies Bankruptcies [84]

Geopolitical
risk indices

Geopolitical risk index global GPR [14]
GPR 7d moving average GPR 7d MA [14]
GPR 30d moving average GPR 30d MA [14]
GPR acts risk index global GPRA [14]
GPR threats risk index global GPRT [14]
GPR index NOR recent GPR NOR [14]
GPR index NOR historical GPRH NOR [14]

58

Table 4.1 continued from previous page
Category Variable Abbreviation Source(s)

Time and date

Year Year Darts
Month of year Month Darts
Day of month Day Darts
Week of year Week Darts
Day of week Day/week Darts
Holiday binary indicator Holidays Darts
Datetime value Datetime Darts

4.2 Preprocessing results
This section will present any important results from the preprocessing op-
erations, which were described in Section 3.3.

4.2.1 Detecting and handling outliers
To detect any possible outliers, a visual inspection is conducted by plotting
and inspecting all features individually. From this, only one possible trou-
blesome anomaly is detected in the T-Bill features. This is in the short-
term interest rate indicators 3-M T-Bill, 6-M T-Bill, 12-M T-Bill, and 10Y-
3M NOR. In 1990, the short-term Norwegian Treasury Bills dropped from
around 10-12 % down to 0 % and then surged back up to initial levels.

Some research into this drop has been conducted. Although no direct proof
of the drop was identified, it occurred during the Norwegian banking crisis
[64]. This may indicate that the drop is not an anomaly. Nevertheless, it is
decided to remove the anomaly by forward filling.

4.2.2 Managing non-stationary features
This subsection presents the results of the ADF tests and which variables
are transformed to make them stationary. To prevent data leakage, the test
is conducted on the test set only.

ADF test results

From the ADF test results, presented in Table B.2 on page 115, it is seen
that only 23 of the 72 features are stationary. The features failing the test
will undergo a data transformation process to make them stationary.

59

Data transformation

Features not fulfilling the ADF test get all their individual data points differ-
entiated to a 1-year delta. The choice of using year-to-year deltas is because
of the smoother, less noisy data. The features are transformed by either:

(a) Percentage change year-over-year: Each individual data point is
transformed by

∆%(t) =
xt − xt−261

xt−261

(4.1)

where ∆%(t) is the function for calculating the year-on-year change as
a fraction at time point t, Xt is the value of the time series at time t,
and Xt−261 is the value of the time series one dataset adjusted business
year (261 business days) before time t. Some features are on forms that
risk creating infinity values when differentiated on a percentage basis.
For such features, option (b) is performed instead:

(b) Change in actual value year-over-year: Alternative transforma-
tion if the percentage differentiation method in (a) runs the risk of
resulting in infinity values. For these variables, each data point is
transformed by

∆f(t) = xt − xt−261 (4.2)

where ∆f |(t) is the function for calculating the year-on-year change
in terms of absolute value at time point t, Xt is the value of the time
series at time t, and Xt−261 is the value of the time series one year (or
261 days) before time t.

Having two transformation methods resolves two problems:

1. Risk of infinity values for the percentage year-on-year form:
The problem of infinity values arises for interest rates and other fea-
tures denominated in percentage or any other features crossing into
zero-territory. When these variables go from 0 to any other value, the
percent change becomes +infinite or -infinite.

2. Change in intensity: If an original pre-transformation series has
a trend, the intensity of the changes in its value may increase over
time. This may incur problems for some ML algorithms, as the future
values outside its training set may be outside the bounds it is trained
to forecast.

In addition to this, some exceptions require attention: Some values are con-
sidered statistically stationary by the ADF test but are still converted to
year-to-year percentage change. This is so that all variables within each

60

Table 4.2
Overview of the feature-reduced datasets

Univariate RF strict RF top-7 Selected

OSEAX OSEAX OSEAX OSEAX
Datetime Datetime Datetime Datetime

50d MA 50d MA WILL5000
MSCI-W MSCI-W CPI
RSI RSI Production

200d MA 3m NIBOR
GBP/NOK 10y G-bond
MACD Crude oil
Gold USD/NOK

category are standardized or because the variables could qualitatively be
regarded as having a time-dependent trend (not stationary) despite not be-
ing caught by the ADF test. This counts for M0, House Starts, Lumber,
Bankruptcies, DKK/NOK and CAD/NOK. Due to their nature, these vari-
ables may fundamentally increase over time due to growth in population,
the economy, and or inflation. This underlying trend may not have been
caught during the variable’s data time span or caused by extraordinary
events. None of the time and date features are converted, as their under-
lying information will get altered to a state that probably does not contain
any information valuable to the algorithms.

4.3 Feature selection
The results from the feature selection process and its resulting datasets are
presented in this section. From this, four feature-reduced datasets are built:
the nine-feature selected dataset based on earlier studies, the RF strict,
which is a minimal RF-FS dataset build, the RF top-7, which is a larger
nine-feature RF-FS build, and the univariate dataset which contains the
target variable only (in addition to a Datetime value). The maximal number
of features is set to nine to allow 1000 samples per feature. An overview of
the final feature-reduced datasets is presented in Table 4.2.

61

4.3.1 A target feature baseline
To assess if adding additional features to a stock index forecasting approach
enhances its performance, a baseline is needed for comparison. Because of
this, the univariate dataset is built. This baseline dataset consists of the
OSEAX target index, but to make it able to run with the TFT, the datetime
value is also included since the TFT requires at least one future covariate
feature. Due to this, the dataset is not strictly univariate, however, it was
chosen to keep the name for simplicity’s sake.

4.3.2 Research based selection
Within the research-based selection process, multiple papers and theses re-
garding which indicators may influence the OSE have been analyzed. From
this, nine features are selected. First of all, the OSEAX target variable is
included, as the target feature is also the most common feature to use for in-
put data. In addition, the datetime feature is included to have a time-related
feature within the dataset. This is important because the TFT requires at
least one feature to be used as a future covariate.

The dataset of research-selected data is called the selected dataset. It con-
tains the following features, with their respective inclusion justifying stud-
ies/theses cited behind: OSEAX [50], WILL5000 [41, 78], CPI and produc-
tion [34, 66, 78], 3m NIBOR [34, 78], 10y G-bond [86, 57], crude oil [86, 34,
41], USD/NOK [57, 9, 78], and datetime (due to TFT compatibility).

4.3.3 RF-FS based selection
Two dataset instances are built using the RF-FS procedure. The RF-FS is
fed the full 72 feature dataset, and a H shifted target OSEAX data series.
After executing the RF-FS procedure, it returns a list of all the features it
considers optimal for this forecasting environment. The result is interesting,
as the only feature the implementation finds suitable is the target OSEAX
series alone. The RF-FS algorithm chooses to go univariate, meaning it
only selects the OSEAX and discards all the remaining 71 features. This
indicates the algorithm finds no important information in the other features
for a one-day horizon.

It is decided to alter the approach. As a univariate dataset already exists,
two RF-FS datasets will be built using its outputted feature scores instead.
These differ from the original approach in that all features are listed by
their scores instead of just the best being returned in a list (without scores).

62

These are built to test if there is any information in the top-ranked features
that may outperform the univariate or selected datasets. The two RF-FS are
named RF strict and RF top-7, and their contents are presented in Table 4.2.

The RF strict is built with the 3 top ranked features from the RF-FS, in addi-
tion to the target variable and datetime feature. It was originally considered
a "features strictly selected by the RF-FS" representation, as the RF-FS can
return multiple features. But with the results only choosing the target fea-
ture, it is decided to make this dataset consist of the top 3 ranked features
by extracting the algorithms feature ranking scores. The RF top-7 is built
on the same basis as the RF strict ended with but with the top seven best-
ranked features. By having the n-best approach, it can be tested if using
RF-FS ranked features can be better than just the single feature originally
chosen by the algorithm. It also allows for testing a broader amount of fea-
tures from the data set.

63

Chapter 5

Experiments & Results

This chapter presents the results obtained through this thesis methodolo-
gies. First, Section 5.1 presents the hyperparameters found by the DL model
tuning procedures. Following this, the experiment and process will be ex-
plained in Section 5.2. This includes all final forecasting models, feature-
reduced datasets, and hyperparameter combinations. Finally, Section 5.3
will present the final result obtained from the experiments.

5.1 Hyperparameter tuning results
This section presents the results from the tuning procedures and their sub-
sequent hyperparameter sets for each model. An overview of the tuned pa-
rameters for each dataset is presented in Table 5.1 on page 67 for the LSTM
and Table 5.2 on page 69 for the TFT.

5.1.1 LSTM
From the results presented in Table 5.1 (page 67), it can be observed each
of the 1-day horizon LSTM dataset instances adopt quite different architec-
tures and training parameters, except for the optimizer and the date and
time feature inclusion. "Month" is the most popular feature used by two
model-dataset instances: Univariate and Selected, the two most dissimilar
datasets. The latter also chooses the "Holiday" indicator, while all the re-
maining features remain unchosen. All instances prefer the Adam optimizer
in this experiment. Most models adopt a single-layered architecture for the
number of hidden layers, except for the RF Top-7 instance, which is more

64

optimal with two. The smallest Univariate and the largest selected dataset
instances adopt about the same input window sizes and dropout rates.

Some trends can be identified. Firstly, the RF feature selection-based datasets
prefer a more significant number of total nodes: around 335. The nodes are
organized in either one layer or spread over two. Secondly, the RF-based
dataset shares the same batch size and learning rate. Thirdly, the RF-based
dataset instances prefer a smaller input window depth and dropout rates
than their manually built peers. More specifically, for each dataset, the fol-
lowing is noted: Finally, the two most extensive datasets prefer the warm
restating cosine annealing LR scheduler strategy. Both the RF top-7 and
the selected datasets tuning results in the CosAWR scheduler (and also with
very similar scheduler parameters). The next paragraphs will look at each
LSTM dataset combination separately:

Univariate : After finishing the tuning, it is observed through the vali-
dation loss log that the univariate instance performs poorly. In the tunings
resulting parameters, the algorithm has chosen to use the StepLR learning
rate scheduler with a step size S of just 3. With the predefined fixed gamma
γ of 0.1, the learning rate is reduced by 90% after every third epoch with
this setting, which is quite steep. It is decided to use a more fitting step size
in the final experiment, so S is set to 40. With this, the validation losses
improve to about the same level as for the standard univariate LSTM. For
the other hyperparameters, it can be seen that the algorithm has chosen the
highest possible LR of 0.1, probably due to utilizing an LR scheduler. The
univariates-instance ends up with the largest batch size of the four while at
the same time adopting a high dropout rate of 0.7. It also chooses quite a
large input window depth compared to the RF-based sets.

RF Strict : When introducing the technical indicators selected by the RF,
it is evident that the optimization algorithm prefers none of the date and
time features. The total amount of nodes, on the other hand, increases while
the input windows narrow compared to the univariate results.

RF Top-7 : With the RF Top-7 dataset’s additional four features, the op-
timization search does not result in any inclusion of extra time and date
features. It has reduced its input window size compared to its 5-feature RF
Strict counterpart. The total amount of hidden layer nodes is the same as
for its sibling but is now spread over two layers instead of just one. The RF
Top-7 dataset instance is the only one adopting a two-layered hidden archi-
tecture of all four LSTM dataset instances. Lastly, this instance is one of the

65

two that adapt the CosAWR LR scheduler.

Selected : Finally, the selected dataset instance search results in quite a
different set of hyperparameters than the second largest RF Top-7. It adopts
the same optimizer and LR scheduler (and nearly the same LR scheduler pa-
rameters), but the similarities end here. Architecturally, it is similar to the
most optimal LSTM model found by Bhandari et al., which is also trained
with economic indicators.

5.1.2 TFT
The TFT tuning results are presented in Table 5.2 on page 69. In the
overview, the following can be spotted: Most of the TFT models chose to in-
clude multiple date and time features. The RF strict trained TFT is the only
model not utilizing any. There is a lot of variation between the models re-
garding hidden layers, nodes, and continuous layer nodes. Like the LSTM,
all models adopt the Adam optimizer. Also, TFT models use a narrow in-
put depth (window) of 7-14 days, a small batch size, and prefer a low or no
dropout. The number of attention heads seems to increase with dataset size.
LR is mostly set to be fixed, with all models choosing a starting LR of 0.001
or lower. More specifically, for each TFT dataset instance, the following is
observed:

Univariate : The tuning findings include all time and date features, ex-
cept day/week, as the most optimal. Architecturally, the input depth is set
to seven days, with a single hidden layer of 247 nodes. The univariate TFT
is the only model utilizing an LR scheduler.

RF Strict : This model goes for a no-time-feature approach as well as con-
sisting of a double-layered 37-node architecture. It has the largest hidden
continuous layer and is the only model utilizing dropout.

RF Top-7 : The larger RF-FS dataset TFT adopts a very different ap-
proach by including most date and time features, having a larger input
depth, and a large single-layered architecture of 307 nodes. The number of
continuous nodes is 19, while the number of attention heads has increased
by many folds to eight (compared to one for the RF strict).

Selected : Finally, the selected TFT adopts something that seems like
a common ground between the hyperparameters of the univariate and RF

66

Table 5.1
Hyperparameter tuning results for the LSTM models

Type Parameter Dataset

Univariate RF Strict RF Top-7 Selected

Inclusion of
extra date
and time
features

Year
Month
Day/month
Week
Day/week
Holiday

Architecture

Input width 3 features 5 features 9 features 11 features

Input depth 161 68 19 178
Layers hidden 1 1 2 1
Nodes/layer 31 336 167 149
Dropout 0.7 0.0 0.4 0.7

Training

Batch size 16 4 4 8
Optimizer Adam Adam Adam Adam
LR 0.1 0.001 0.001 0.01
Scheduler StepLR None CosAWR CosAWR

S = 40* T0 = 18 T0 = 24
γ = 0.1 Tm = 4 Tm = 3

LR = learning rate.
S = step size.
γ = gamma - a factor by which the LR is reduced by multiplication.
T0 = iterations before the first restart.
Tm = A T0 multiplication factor increasing the n-iterations after each restart.

* Set to 3 by the search, but set to 40 due to bad performance

67

top-7. It uses three of six time and date features. Architecturally, this model
has an input depth of 12, coupled with a single 176-node hidden layer and a
72-node continuous layer. Attention head count is at 5.

5.2 Experiment procedure
This section summarizes the final models, feature-reduced datasets, and hy-
perparameter set combinations, as well as their respective rationales for
inclusion. Additionally, it presents the experiments based on these combi-
nations and how they are conducted.

5.2.1 Reiteration of final components and rationale
The experiment training and evaluation procedure is built around the se-
lected forecasting models, feature selection, and hyperparameter sets.

Models: There are four models: RWM, RWD, LSTM, and TFT. The TFT
is the main "novel" model in this research. The RWM and RWD models are
included to test the DL models against the RW, while the LSTM is included
due to its proven performance in stock market forecasting and thereby as a
benchmark against the TFT.

Datasets: For the LSTM and TFT, there are four feature-reduced datasets:
the univariate, RF strict, RF top-7, and selected. The univariate is a bench-
mark to see if including more sophisticated features enhances performance.
The RF-FS-based feature-reduced datasets are included to test if using the
RF-FS n-feature ranking procedure improves performance. Finally, the se-
lected dataset also serves as a benchmark against the other sets and a mea-
sure of how a "manually" selected feature-reduced dataset fares in this en-
vironment.

Hyperparameters: In addition, each DL model and feature-reduced dataset
combination can be trained with the standard and tuned hyperparameter
sets. Including one experiment with the standard, generally well-performing
hyperparameters are done to benchmark against the tuned hyperparame-
ters. Using two sets of hyperparameters per DL model is also done to com-
pare and monitor if the tuned models are overfitting.

68

Table 5.2
Hyperparameter tuning results for the TFT models

Type Parameter Dataset

Univariate RF Strict RF Top-7 Selected

Inclusion of
extra time
features

Year
Month
Day/month
Week
Day/week
Holiday

Architecture

Input width 7 features 7 features 14 features 12 features

Input depth 247 37 66 176
Hidden layers 1 2 1 1
Nodes/layer 72 111 307 77
Nodes cont. 99 110 19 72
Dropout 0.0 0.1 0.0 0.0
Att. heads 1 1 7 5
Full attention True False True False

Training

Batch size 2 4 2 2
Optimizer Adam Adam Adam Adam
LR 0.001 0.001 0.0001 0.001
Scheduler RPlatau None None None

γ = 0.1834
P = 6

LR = learning rate.
γ = gamma - a factor by which the LR is reduced by multiplication.
P = number of epochs with no improvement before the LR gets reduced.

69

5.2.2 Procedure
With the available combinations described in the previous section, the ex-
periments which will be conducted are the following:

• RW-models: One experiment per RW-based model is conducted, both
with a strictly univariate dataset, totaling two experiments. Since the
RW-based implementations are deterministic, only one run is required
per model. The results are presented in Subsection 5.3.1 for the RHM
and in Subsection 5.3.2 for the RWD.

• LSTM-models: In total, eight experiments are conducted, one for each
feature-reduced dataset and hyperparameter combination. Each ex-
periment trains and compares the results of 30 sub-models. The re-
sults are presented under Subsection 5.3.3.

• TFT-models: The same procedure as for the LSTMs: Eight exper-
iments are conducted, one for each feature-reduced dataset and hy-
perparameter combination. Each experiment trains and compares the
results of 30 sub-models. The results are presented under Subsection
5.3.4.

These model-dataset-hyperparameter combinations are trained and evalu-
ated in accordance with their respective procedures described under Section
3.6

5.2.3 Results presentation
For each experiment, the results will be presented in different measures
to give a complete and thorough picture of the different combinations of
performances. Each model and tuning combination result is presented by:

• Tables: To present the absolute accuracies and precisions, the MAPE,
RMSE, and R2 metrics discussed in Subsection 3.6.3 are presented in
a table accompanied by their standard deviations in parentheses. In
addition, the full runtime of the 30-model experiment will be included
as a measure of efficiency. All the above four measures are presented
for each feature-reduced dataset.

• Line plots: Included to give a visualization of the model forecast
against the actual values. The plots are focused on the period of the
COVID-19 stock market crash between the dates of 14.02.2022 and
16.04.2020 to visualize the forecasts during a challenging drawdown
period. For the DL models, the forecast line plot is the average of the

70

30 trained sub-models and includes error bands for indicating standard
deviation. To preserve space, only the most accurate model-tuning-
dataset-instance is plotted for each DL model-tuning version experi-
ment.

• Box plots: These plots are included to visualize the internal differ-
ences between the different feature-reduced datasets for each model-
hyperparameter instance. Therefore, they will only be included in the
DL models. All measures included in the tables will also be presented
in the box plots, but the total runtime will be presented as mean run-
time (over the 30 sub-models) instead. This is to visualize if the sub-
models differ in train time, which can signal instability.

In this experiment, MAPE is considered as the "main" metric. This is be-
cause it is relative and unaffected by the size of the OSEAX stock index
valuation. For example, the RMSE can differ in magnitude when the base
value of the index changes: 1 % of 100 is 1, while for 1000, 1 % it is 10.
Summarizing the results, a sorted consolidation of all the forecasting mod-
els MAPE scores is presented in Figure 5.11 on page 84.

5.3 Forecasting results
This section presents the results from the forecasting experiments. Initially,
the baseline RW-based models’ results will be presented, with the classic
RWM in Subsection 5.3.1 and then the "drifting" RWD in Subsection 5.3.2.
Following this, the DL models’ results will be presented in Subsection 5.3.3
for the LSTMs and Subsection 5.3.4 for the TFTs.

5.3.1 RWM
Table 5.3 outlines the RWM experiments metrics. As the model is determin-
istic, no standard deviations are included. Despite being a straightforward
approach, the RWM achieves relatively high accuracy with a MAPE score of
0.8071 and an R2 value of 0.9953 with a total runtime of just 20 seconds on
the local system. The model’s mean day-to-day forecasting error is 12.3756
index points, as shown by its RMSE value. The line plot in Figure 5.1 shows
that the simple repeating pattern forecast is closely intertwined with the
true values. If weekends were to be included, the RWMs forecast would be
a perfect 1-day forward-shifted copy of the true OSEAX values. This is not
the case here as the dataset only represents b-days.

71

Figure 5.1
Line plot - RWM forecast

Table 5.3
Metrics - RWM and RWD forecasts

Model Metric

MAPE RMSE R2 Runtime

RWM 0.8072 12.3757 0.9953 00:00:20
RWD 0.8074 12.3736 0.9953 00:00:20

5.3.2 RWD
Outlined in Table 5.3, the resulting metrics from the RWD model’s forecast
do not differ much from the simpler RW model in Subsection 5.3.1. Despite
having to compute the mean 1-day growth over the training set addition-
ally, the RWD finishes within the same 20 seconds of runtime as its sim-
pler, no-drift version. With a MAPE of 0.8073, it underperforms the RW
with a mere 0.0247% accuracy-wise. For the RMSE, it underperforms with
0.0170%. When rounded to four digits, the R2 value is identical. In the line
plot in Figure 5.2, the forecast looks identical to its RWM sibling.

5.3.3 LSTM
The first of the two DL implementation results to be presented is the LSTM.
Its results are split into two subsections. The first contains the results from
the standardized, fixed hyperparameters experiments, and the second from
the (tuned) models trained with hyperparameters found through the hyper-

72

Figure 5.2
Line plot - RWD forecast

Table 5.4
Metrics - standard LSTM forecasts

Dataset Metric

MAPE RMSE R2 Runtime

Univariate 1.1523 (0.0072) 17.4580 (0.0873) 0.9907 (9.3e-5) 02:11:41
RF strict 1.1639 (0.0120) 17.6283 (0.1411) 0.9905 (1.5e-4) 02:10:19
RF top-7 1.1818 (0.0228) 17.8911 (0.2773) 0.9902 (3.1e-4) 02:12:58
Selected 1.3086 (0.0664) 19.9013 (1.1693) 0.9878 (0.0015) 02:00:25

Mean metric values (standard deviation) over 30 unique models for each LSTM-
dataset instance trained with standard (non-tuned) hyperparameters on 1-day fore-
casting. The best values and standard deviations for each metric are in bold.

parameter optimization search.

Standardized hyperparameter forecasts

The results from the standard (non-tuned) LSTM experiments are presented
in Table 5.4 as mean metrics and in Figure 5.4 as box plots. In summary,
the standard LSTM performs best on the univariate dataset, achieving a
MAPE score of 1.1523 and a standard deviation of 0.0072. The same can be
observed in the remaining metrics, excluding runtime, where the univariate
model spends about the same time as the other models, about over 2 hours.
From the line plot in Figure 5.3, a good fit can be observed, and no error
bands are visible. In second to the univariate 2-feature dataset performance

73

Figure 5.3
Line plot - LSTM standard univariate average forecast

Table 5.5
Metrics - tuned LSTM forecasts

Dataset Metric

MAPE RMSE R2 Runtime

Univariate 1.2113 (0.0229) 18.3565 (0.3322) 0.9900 (3.7e-4) 02:10:36
RF strict 1.1685 (0.0162) 17.8504 (0.1912) 0.9902 (2.1e-4) 03:55:05
RF top-7 1.1973 (0.0227) 18.0686 (0.2435) 0.9900 (2.7e-4) 02:58:36
Selected 1.2445 (0.0295) 18.7615 (0.4183) 0.9896 (4.6e-4) 02:09:52

Mean metric values (standard deviation) over 30 unique models for each LSTM-
dataset instance trained with optimized hyperparameters on 1-day forecasting. The
best values and standard deviations for each metric are in bold.

comes the 5-feature RF strict.

Both the nine feature RF top-7 and selected datasets perform the worst,
with the manually selected selected dataset being the decidedly inferior.
When training the LSTM at 1-day forecasting with nine features, RF-FS out-
matches the manual. This is evident in the Figure 5.4 box plots, where the
selected dataset’s poor performance, both in accuracy and precision, skews
all the other boxes. None of the standard 1-day forecasting LSTM dataset
instances achieves metrics better than the RW models while at the same
time requiring more computing resources for a longer duration of time.

74

Figure 5.4
Box plots - standard LSTM forecasts

75

Figure 5.5
Line plot - LSTM tuned RF strict average forecast

Tuned hyperparamterer forecasts

Mean metrics are presented in Table 5.5, and their distributions by box plots
in Figure 5.6.

Table 5.5 shows that all LSTM-dataset instances, except for selected, have
obtained worse accuracies than the standardized LSTM. The selected dataset
is still the least performing of the four but no longer skews the figure. Re-
garding MAPE, RMSE, and R2 value, the RF strict has now dethroned the
univariate dataset, albeit both have slightly worse accuracies than before.
The LSTM tuned’s forecast line plot in Figure 5.5 is similar to the stan-
dard LSTM’s best forecasting model. Figure 5.6 shows that the models’ met-
rics score distribution has become more equalized than the standard LSTM.
Looking at runtime, both RF-FS-based datasets have increased their time
expenditure by quite a lot.

The now-dethroned univariate dataset suffers the most and performs worse
than both RF-FS-based datasets. Compared to the standardized univariate
LSTM model, the error has increased by 5.12% for MAPE and 5.15% for
RMSE. For the R2 value, the difference is relatively slight, with a 0.08%
reduction in variance explainability.

None of the LSTM implementations have managed to outperform any of the
baselines. So far, the best-performing model is the most basic RWM. Of
the LSTMs, the model trained with standard parameters on the univariate
dataset performs the best. The results of the TFT model will be presented
and examined in the next subsection.

76

Figure 5.6
Box plots - tuned LSTM forecasts

77

Table 5.6
Metrics - Standard TFT forecasts

Dataset Metric

MAPE RMSE R2 Runtime

Univariate 2.4530 (0.6574) 36.9051 (15.1442) 0.9514 (0.0690) 04:28:50
RF strict 2.6110 (1.0731) 37.7847 (14.0406) 0.9504 (0.0549) 05:24:53
RF top-7 2.4374 (0.2361) 35.4544 (3.6894) 0.9611 (0.0083) 06:10:13
Selected 2.4747 (0.1835) 36.0224 (2.5656) 0.9600 (0.0059) 05:26:13

Mean metric values (standard deviation) over 30 unique models for each TFT-dataset
instance trained with standard (non-tuned) hyperparameters on 1-day forecasting.
The best values and standard deviations for each metric are in bold.

Figure 5.7
Line plot - TFT standard RF top-7 average forecast

5.3.4 TFT
Like the LSTM, the TFT’s results are split into two sections, one for the
model trained with standardized hyperparameters and one for the model
trained with tuned hyperparameters.

Standardized hyperparameter forecasts

Starting with the standardized hyperparameter TFT, the mean metrics are
presented in Table 5.6. The metrics’ distribution is illustrated with box plots
in Figure 5.8. From analyzing the metrics in Table 5.6, the following can be
observed: The standard TFT model trained on the RF top-7 obtains all the
best error-related metrics but not the lowest standard deviations. Looking at

78

Figure 5.8
Box plots - standard TFT forecasts

79

MAPE, the RF Top-7 instance has the lowest MAPE value of 2.4374%, mak-
ing it the best performer of the datasets. For RMSE, it also scores the best,
obtaining the lowest value of 35.4544. For the R2 value, it scores 0.9611.
Large standard deviations can be observed in the line plot in Figure 5.7
through the error bands around the average forecast.

For the remaining three datasets, the results are a bit mixed. Regarding
standard deviations, the selected dataset is the most precise, scoring the
lowest standard deviation across all metrics. The selected dataset also per-
forms second best in RMSE and R2 score. But when looking at MAPE, the
univariate dataset takes second place with its 2.4530% rate. For the stan-
dard TFT model, the larger datasets seem to give the most accurate results.

The metrics distribution in Figure 5.8 shows that the different data sets are
more equal in performance compared to the LSTM experiments. The plots
are not as skewed, and the boxes are more aligned. The top performing RF
top-7 seems to have a much larger distribution of MAPE scores than the
others. This is also observed to a lesser degree in its other metrics.

Among the different datasets, the TFT model trained on the RF top-7 dataset
scores the best accuracy, while the model trained on the selected dataset has
the highest precision. The former makes, on average, the best predictions,
while the latter is more confident and decisive in its forecast.

Compared to the LSTM and RWM implementations, the standard TFT un-
derperforms quite a bit. The best TFT and dataset combination, RF top-7,
underperforms the RW with a 201.9574% increase in error by MAPE. For
RMSE, the increase in error is 186.4840%, and by R2 value 3.4361%. Look-
ing at the runtime scores, it also consumes more than double the computing
resources, in some cases triple, compared to the LSTM models.

Tuned hyperparameter forecasts

The tuned TFT experiment’s mean metrics are presented in Table 5.7, while
their distributions are visualized as box plots in Figure 5.10.

Unlike the LSTM, the tuning procedure has drastically improved all TFT
and dataset combinations. Looking at Table 5.7, the MAPE and RMSE er-
rors have been more than halved compared to the standard TFTs result
in Table 5.6. The R2 values have also been improved. It is also evident
that all dataset-model-instances are very similar in performance over every
measured metric. This excludes total runtime, as all instances have very
dissimilar time expenditures. The runtimes differ greatly from previous

80

Table 5.7
Metrics - Tuned TFT forecasts

Dataset Metric

MAPE RMSE R2 Runtime

Univariate 1.2215 (0.0053) 18.5077 (0.0542) 0.9904 (5.5e-5) 26:32:32
RF strict 1.2069 (0.0324) 18.1231 (0.4209) 0.9899 (4.7e-4) 14:15:52
RF top-7 1.2170 (0.0353) 18.2562 (0.4874) 0.9898 (5.5e-4) 58:21:00
Selected 1.2222 (0.0219) 18.4233 (0.2730) 0.9900 (3.0e-4) 41:03:48

Mean metric values (standard deviation) over 30 unique models for each TFT-
dataset instance trained with optimized hyperparameters on 1-day forecasting. The
best values and standard deviations for each metric are in bold.

Figure 5.9
Line plot - TFT tuned RF strict average forecast

81

Figure 5.10
Box plots - tuned TFT forecasts

82

experiments: the tuned TFT models now may take over one day to train,
compared to a range of 2-6 hours for all previous experiments.

With tuned hyperparameters, the TFT has advanced closer to the perfor-
mance territory of the best LSTM models. Two dataset instances stand out.
The univariate dataset gets the best results over every measured standard
deviation, making it the more precise model. It also achieves the best R2

with a value of 0.9904, which is better than most models in the 1-day fore-
casting experiment. Measured by MAPE, RMSE, and runtime, the RF strict
dataset performs the best. With its 1.2069% MAPE, the error has been re-
duced by 53.7763% compared to the MAPE achieved by the same dataset
on the standard TFT. In Figure 5.9, the wide error bands present in the
standard model have now shrunk dramatically.

Measuring total runtime, the RF strict trained model is the most time-
efficient of the four tuned TFTs, with a runtime of 14:15:52. The TFTs
trained with the RF top-7 and selected perform close to the two others, but
their runtimes of 58:21:00 and 41:03:48, respectively, are of quite another
dimension. The former’s runtime extends beyond two days on the FOX HPC
cluster.

From the box plots in Figure 5.10, the distribution is no longer as even for
the standardized TFT. All non-univariate datasets seem to have a wider
distribution than the univariate, also evident in Table 5.7’s standard devi-
ations. It is interesting to note the distribution difference between the two
most accurate dataset-model instances. The univariate dataset is, as men-
tioned, the most precise instance and also has the lowest distribution. At
the same time, the RF strict instance has the widest distribution (albeit not
standard deviation) of all the models. Cross-model forecasting volatility does
not reduce the MAPE and RMSE accuracy scores for the RF strict compared
to the other instances. The TFT can use features that are possible to be
aware of in the future as future covariates. In this case, these features are
the date and time variables. With this capability, the TFT can know if the
forecast date is a holiday or which weekday it is, something it can utilize in
its calculations.

Compared to the best-performing LSTM and baseline RW-based models,
neither the tuned TFT univariate nor the RF strict datasets achieves a
better accuracy. Focusing on MAPE, the tuned TFT trained with the RF
strict dataset has a 4,7383% higher error rate than the standard univari-
ate-trained LSTM. Against the RW model, the increase in MAPE error is as
high as 49,4798%.

83

Figure 5.11
Summarized results for all models by MAPE

5.4 Summary
With all forecasting experiments finished, the results are summarized in
this section. As MAPE is the primary evaluation metric, the summary will
be based on it. A general overview is presented with a descending bar plot
in Figure 5.11, including standard deviations for the DL models. For a more
absolute view of the final mean MAPEs in numbers, please see Table 5.8.

84

Table 5.8
MAPE scores for all forecasting experiments

Model Parameters Dataset

Univariate RF Strict RF Top-7 Selected

LSTM Standard 1.1523 1.1639 1.1818 1.3086
Optimized 1.2113 1.1685 1.1973 1.2445

TFT Standard 2.4530 2.6110 2.4374 2.4747
Optimized 1.2215 1.2069 1.2170 1.2222

RWM 0.8072
RWD 0.8074

Mean MAPE values over 30 unique sub-models by model type and dataset. Best
model’s MAPE in bold.

5.4.1 Top five most accurate models
By this MAPE comparison, none of the DL implementations achieves better
accuracies than the baseline RW models in this experiment’s (1-day horizon)
environment. By MAPE score, the five best models are ranked as follows:

1. RWM 0.8072
2. RWD 0.8074 (+ 00,02% error/best)
3. LSTM standard univariate 1.1523 (+ 42,75% error/best)
4. LSTM standard RF strict 1.1639 (+ 44,19% error/best)
5. LSTM optimized RF strict 1.1685 (+ 44,76% error/best)

85

Chapter 6

Discussion

This chapter is dedicated to discussing the results obtained through the ex-
periments from the previous chapter. Section 6.1 will first discuss the fea-
ture selection results. Following this, Section 6.2 will discuss tuning proce-
dure results. The main experiment forecasting results will be talked about
in Section 6.3. Finally, the most important observations will be discussed in
Section 6.4

6.1 Feature selection results
Before presenting the main forecasting experiments results, results from
the pre-occurring procedures will be discussed. This section discusses the
results from the feature selection procedure, mainly the RF-FS results.

6.1.1 A preference for the target variable
An interesting discovery from the RF-FS feature selection process is that
it favors the same approach as the already built univariate dataset. It se-
lects the target variable only, disregarding all other 71 features, favoring
the same univariate dataset used by the RW-based models. In essence, the
univariate is the true strict-form of the RF-FS dataset, as the originally in-
tended RF-FS strict approach was only to use whichever features the selec-
tion algorithm returned.

The OSEAX preference indicates that the RF algorithm finds the most in-
formational value in the target feature. As presented in the RWM results
in Subsection 5.3.1, the last observed target value explains 99.53 % of the

86

next day’s true value (as read by R2 value). In essence, the point that only
0.47 % is left of the next-day valuation is to be attributed to the remain-
ing 71 features or any other influence outside the scope of this thesis. The
RF-FS results may indicate that there are no more potential forecasting per-
formance gains to be retrieved from the remaining features or that it is so
small that it cannot be identified.

6.1.2 RF-FS promoting technical indicators
When altering the RF-FS implementation to return the n-highest ranked
features instead, it becomes clear that it prefers technical indicators for this
1-day forecasting environment. The RF top-7 dataset includes all available
technical indicators: the 50d MA, 200d MA, RSI, and MACD. Although not
explicitly selecting them (only the OSEAX got strictly selected), this can
be an explanation for the findings of Kumbure et al., stating that 62 % of
features used in stock market forecasting applications consist of technical
indicators [50]. They might be better indicators in the short term, support-
ing that short-term fluctuations in the stock markets are mostly forecasted
with technical indicators [17].

6.2 Tuning results
This section discussed the results from the tuning process that commenced
on the LSTM and TFT models before training. Several observations are
made from the results.

6.2.1 Overfitting LSTMs
From the results presented in Table 5.1, it can be observed each of the LSTM
instances adopts quite different architectures and training parameters. The
exception is for the optimizer and the date and time feature inclusion, where
the latter shows that the LSTM does not benefit much from adding date and
time values to its training set in this environment. This is not unexpected,
as the BlockRNNModel’s (Block) LSTM architecture can not utilize the time
and date features as future covariates, which reduces their informational
purposes.

It is observed that for the LSTMs trained with the RF-FS datasets, the num-
ber of nodes increases while the input depth narrows compared to the uni-
variate and selected parameters. Considering that the model now has more
features to compare, it may not be as necessary to learn from intra-feature

87

patterns as the univariate dataset, explaining the narrowing input depth.
Another explanation may be that the models get overwhelmed by a too-
large total input window when additional features increase the input width.
Learning patterns over multiple features may also require more nodes, ex-
plaining the increment in nodes per layer.

Considering the results for the tuned LSTM implementations, the tuning
shows signs of overfitting. This may be due to the too many complex vari-
ables and maybe a too small validation set. In hindsight, a less complex
tuning procedure would probably be more beneficial in this first instance
of the system, while the more advanced tuning scheme used in this thesis
would be better suited to future works.

6.2.2 An improved TFT
As seen by the results in Subsection 5.3.4, the tuning greatly improves the
TFT’s performance. Unlike the LSTM, it does not overfit, at least not to the
same extent. There is some consensus over the different TFT-dataset combi-
nations The TFT algorithm tuning results point toward them preferring the
same training parameters: smaller batch sizes of 2-4, the Adam optimizer,
and a starting learning rate of 0.001 0.0001, which is mostly fixed (no use of
LR schedulers except for the univariate set).

Regarding date and time features, the different models seem to "make it
or break it": the models either chose to include 3-5 or completely exclude
them all. The latter is done by the RF strict TFT, which is also the worst-
performing of the tuned TFT models in the forecasting experiments. This
may indicate that it overfits or that the tuning algorithm did not get enough
trials to discover the relationship between the time and date features.

Architecturally, there is a lot of variance. The same trend of a deeper in-
put window for the univariate model, while it is much more shallow for the
datasets with more features. Most models adopt a single-layered architec-
ture, but the number of nodes per hidden layer varies widely. It is possible
the tuning algorithms have struggled to find a global optimum and have
rather settled in the first encountered local ones. A simpler approach, let-
ting the tuning choose from a set of predefined node counts (e.g. 8, 16, 32,
64), might have been a better approach in this first implementation. The
same goes for the continuous processing layer nodes and can possibly be at-
tributed to this implementation not using static covariates. Attention head
count seems to increase as the number of features exceeds seven, possibly
explained by the more features, the more attention capacity is required.

88

6.3 Forecasting results
This section discusses the results obtained from the experiments, highlight-
ing the key findings.

6.3.1 RWM: Performs the best
As summarized in Table 5.8 on page 85, the RWM is the best-performing
forecasting model in this experiment. This shows that the RW still holds for
this short 1-day forecasting environment. The DL implementations do not
even come close to their accuracy, achieved with a simple strategy. It also
underlines the strength of a buy-and-hold strategy: if nothing can forecast
the price, but you know things will increase (unpredictably) over time, it is
better to buy and hold the (OSEAX) index [59].

From the RWM results in Subsection 5.3.1, there are several observations.
First and foremost, the model’s high R2 value. Since the RW model repeats
today’s observed valuation, the R2 value indicates that today’s valuation ac-
counts for 99.53% of the next-day OSEAX valuation variation. This leaves
just 0.47% for other variables and noise. The high R2 value is not unex-
pected, as the day-to-day variation within the OSEAX’s valuation is quite
tiny, relatively close to yesterday’s value. This shows why this simple model
can be so hard to beat. An exemplary ML forecasting implementation must
be capable of discovering this relationship to forecast over shorter-term hori-
zons accurately, especially over a 1-day horizon. This concludes that the RW
is a good benchmark for assessing the DL models’ performances and should
be included in any respectable ML stock market forecasting approach.

Secondly, by making direct MAPE comparisons, the RW model outperforms
Wang et al.s Transformer implementation on the CSI 300 Index (MAPE of
0.9549) with an 18.31% lower error rate [91]. Bhandari et al.’s single-layered
LSTM implementation outperforms the RW with a MAPE of 0.7989 when
forecasting the S&P 500 index [9], a performance with 1.02% less error than
the RW on the OSEAX. A study that vastly outperforms the RW is Wang et
al.s’ Reservoir Computing models [92], achieving MAPEs between 0.5500-
0.7600 for their models, all of which are below the RW’s MAPE. In this envi-
ronment, the simple RW implementation seems capable of competing with
heavy-weighting DL models. However, it is essential to note that none of the
above-listed studies can directly speak for the OSE and the OSEAX, as they
have been conducted on other indices in different periods.

89

6.3.2 RWD: Drift does not improve accuracy
From the results in Subsection 5.3.2, the RWD slightly underperforms the
RW model. These results may indicate that the underlying growth in the
OSEAX index may happen too randomly and abruptly to be modeled by step-
wise adding, considering a 1-day horizon. In summary, gradually adding
mean growth over every step for this experiment’s short-term forecasting
environment degrades the model’s performance. However, this does not in-
dicate worse performance over longer time horizons, which might be more
viable applications for this model.

6.3.3 LSTM standard: Most accurate DL model
As seen from the results in Subsection 5.3.3, the LSTM implementation per-
forms the best on the univariate feature-reduced dataset. This is also the
best DL model-dataset-tuning combination, achieving the third-best MAPE,
as seen in Subsection 5.4. Still, it underperforms the RWM with a whole
42,75 % larger MAPE error.

A trend indicating decreased performance per added feature is observed:
In second place to the univariate 2-feature dataset forecasts comes the 5-
feature RF strict’s performance. The RF strict forecasts being more inaccu-
rate than the univariate trained model indicates that neither extra OSEAX-
target variable-related technicals nor the MSCI-W index enhances accuracy.
This is interesting, as the MSCI-W could give the model a little "foresight"
into the next day. The possible foresight could be expected to happen be-
cause of the OSEAX having an earlier closing time, while at the same time,
the two are somewhat correlated. The movement in the MSCI-W after the
OSEAX has closed could give the model an edge over the RW model by pro-
viding the LSTM the possibility of baking the post-close movement of the
MSCI-W into the next-day forecast. Nevertheless, this is not being captured
(enough) by the model to give it an edge in this experiment.

None of the dataset instances manages to score MAPEs as low as Bhandari
et al.’s best LSTM implementation [9] conducted on the S&P 500 index, but
again, this is in another index tested over a different time span. It is also
noted that both nine feature datasets perform the worst, with the manu-
ally selected Selected dataset being the decidedly inferior. Referring to the
boxplots in Figure 5.4 on page 75, where the selected dataset’s poor perfor-
mance, both in accuracy and precision, skews all the other boxes.

When training the LSTM for a 1-day forecast with nine features, RF-based
feature selection outmatches the manual one. This may be explained by the

90

Selected dataset’s high content of longer-term macro variables. At the same
time, the RF top-7 set is comprised of shorter-term indicators, including all
the available technicals. This shows the strength of the RF-based feature
selection and that it is better suited to identify the most important features
in this instance. Further fortifying this is that the RF feature selection
only chose the OSEAX target series for the 1-day forecast horizon. With the
univariate dataset included in the best performing DL model, the standard
univariate LSTM, it shows that the RF feature selection method selected
the best possible feature.

By the total runtime, the selected trained model scores the best, probably
caused by the model’s validation loss reduction tapering off faster. As the
model does not find more patterns to learn from, it gets stopped by the
pruner earlier than the other dataset-model instances.

In summary, none of the standard LSTM-dataset combinations score metrics
better than the RW-based models when 1-day forecasting. At the same time,
they require heavier computing resources for a longer duration of time. For
this 1-day horizon LSTM experiment, adding additional features, both man-
ually and machine learning selected, makes the accuracy worse. Neither
technical nor macroeconomic indicators positively affect the model’s accu-
racy results compared to a univariate data set.

6.3.4 LSTM tuned: Overfits
As discussed in Subsection 6.2.1, it looks like the tuning is overfitting the
models to the validation set. Compared to the standard LSTM, the hyperpa-
rameter optimization process has pulled the best-performing models back-
ward and improved the previous worst performer instead of enhancing per-
formance overall. When looking at the R2 value, the difference is relatively
slight. This can be attributed to the forecasted target OSEAX index’s slight
variance over a one-day horizon.

It is not very unexpected to find that the tuning has reduced the perfor-
mance of most of the forecasts. There are a lot of tunable parameters avail-
able in this implementation, posing a risk of overfitting. This is caused by
either the 15%-share validation set being too small or the search being too
thorough. Also, the algorithms may get stuck in local optima, or the num-
ber of parameters may be too many, making the search space too complex.
Lastly, there may be too much noise, misguiding the algorithm, resulting
in the search algorithm optimizing for noise rather than an underlying pat-
tern.

91

6.3.5 TFT standard: Suboptimal architecture
In overview, the standard parameter-trained TFT greatly underperforms all
the other forecasting models. As seen in Table 5.8, it mostly has more than
double the error rate of the LSTM implementations. Among the different
datasets, the standard TFT trained on the RF top-7 dataset scores the best
accuracy, while the model trained on the selected dataset has the highest
precision. The former makes, on average, the best predictions, while the
latter is more confident and decisive in its forecast. Both the mentioned
datasets contain the most features of the 4, indicating that in this experi-
ment, the TFT prefers more complex datasets.

Being a more advanced model, the TFT may overfit to noise or find patterns
in the data that were relevant in the 1990s or 2000s but not in the period of
the training set. Most probably, the architecture and training hyperparam-
eters of the standard TFT are suboptimal for this environment because of
the improved result obtained with the tuned model, as discussed in the next
subsection.

6.3.6 TFT tuned: Closing in on the LSTMs
From the results in Subsection 5.3.4, a drastic improvement can be ob-
served over the standard TFT. In summary, the hyperparameter optimiza-
tion search has greatly improved all instances. This may indicate that the
standard hyperparameters for the TFT, as mentioned, are a mismatch for
this environment, hence highlighting the importance of the tuning proce-
dure. The search has not overfitted, at least to the same notifiable extent
as for the LSTM models. As seen in Table 5.8, the tuned TFT closes in on
the accuracy performance of the LSTM models but does not quite get there.
Compared to the RW-based models, it is miles behind, with the best configu-
ration, the tuned TFT-RF strict having a 49.48 % higher MAPE. The TFT is
not capable of outperforming the LSTM and RW-based models in the 1-day
horizon environment.

An interesting observation is that the metrics across the different tuned
TFT configurations are quite similar. With all the model-dataset instances
scoring such equal metric values, it may indicate that the TFT is capable
of extracting the most relevant information while at the same time filtering
out irrelevant noise. With the univariate and RF strict dataset performing
the best, it is possible that the features strictly chosen by the RF, or just the
OSEAX alone, are the most important in this setting. The extra features
added in the RF top-7 and selected dataset may contain noise, but the model

92

may be capable of identifying this and ignoring these features. This may
be attributed to the attention mechanism, and it seems like the tuning has
allowed it to show its full potential. Still, this is not enough to lift the TFT’s
performance to beat the LSTM, let alone compete with the RW.

Finally, the model architectures found by the search are quite computation-
ally expensive. This may be caused by the small batch sizes, the many pa-
rameters, and all the required calculations within the complex model net-
work.

6.4 Summary
This section summarizes the findings from the above-discussed results. The
findings are consolidated and further discussed to establish why the results
came out as they did.

6.4.1 The random walk remains undefeated
The results demonstrate that despite being the simplest model and calcu-
lating for about 20 seconds on a simple system, the RWM and RWD stand
uncontested in the 1-day OSE/OSEAX forecasting environment. Complex
models with long and short-term memory and attention mechanisms get
well above 40% more error on their forecasts. Sophisticated hyperparame-
ter searches and "foresight" through future covariates and indices that close
later than the target OSEAX neither help. This illustrates how noisy and
complex stock index forecasting and economic data can be.

If hypothetically assuming the RW approach is the most accurate forecast-
ing technique possible, one could expect that the DL models’ performance
would be at a tangent with the RW-based models, as the RW follows a very
simple "repeat last days value" instruction. However, the models do not
seem capable of learning this pattern.

6.4.2 Why the deep learning models are inaccurate
There may be several reasons why this is happening. Due to the type of
data and the problems associated with stock market forecasting discussed
in Subsections 2.1.5-2.1.7, the models may overfit to noise in the data. There
may be too much noise and too little graspable information for the models to
identify the "repeat last" pattern. Additionally, the new information may get

93

priced into the OSEAX before any algorithms reach the information through
the datasets, hence the EMH.

It is possible the patterns of the RW-based models, which may seem obvi-
ous to a human reader, are hard to grasp for an ML model in the noisy
dataset. To learn the RW’s "repeat last observed" method, the models must
receive positive feedback if forecasting the same as the same-day target
value. Since the OSEAX valuation must be differentiated before being fed to
the DL implementations, it becomes much harder to grasp this relationship.
One would preferably not differentiate this data, but the early experiments
showed that differentiating is necessary for these implementations. Addi-
tionally, the pattern may be hard for the model to discover since the data is
so noisy, and at the same time, seemingly rewarding patterns emerge else-
where from this noise during training. These patterns may not necessarily
be noise but also outdated patterns that do not foresee the same future OS-
EAX index movements in the test set as in the training set. Also, the model
may forecast something that deviates from the RW method and, at the same
time, get a better score than the RW would have for some instances.

6.4.3 Arbitrage and noise
An important note is that the potential for forecasting stock markets may
have been arbitraged out of the market, leaving only unpredictable noise.
Many studies have found signs of the LSTM (or more capable algorithms)
already being used in the markets since the 2000s, with an explosion af-
ter 2010 [32]. Maybe all possibilities of achieving good accuracies on stocks
and stock indices are priced out by actors in the market. The result is ta-
pering excessive profits for the algorithm utilizing these models in trading
strategies. An important question is if this "pricing out" just leaves noise in
the markets, making further forecasts harder (or less effective) for the same
models. If so, some of the deficiencies of the DL models may be attributed to
this.

6.4.4 Additional reasons for the observed performance
In the previous two subsections, the general attributes of why the DL models
fail to outcompete the RW implementations have been discussed. However,
there may also be more experiment-specific explanations for the poor DL
results. These are the following:

94

The dataset is too small: As DL models are data-intensive, the dataset
may still be too short for the selected models. Increasing the length or the
granularity may result in better performance.

The dataset is too long: A completely opposite causation may be that
the information in the long dataset is outdated, hampering the DL mod-
els when forecasting in today’s market environment. Markets are dynamic
and noisy, so one type of correlation can mean a completely different thing
during different time periods. Training on a smaller dataset or splitting a
large dataset into many smaller parts, as done by Fischer and Krauss [32],
may increase performance. Many well-performing studies discussed in the
Related Works (Section 2.5) use a smaller, more recent dataset.

Overfitting tuning procedure: As observed in the LSTM tuning exper-
iment, it shows signs of overfitting. The complicated tuning procedure may
cause this. Although the tuning gives the TFT a great performance increase,
it may still be overfitting. A simpler, more explicitly defined tuning imple-
mentation may increase the performance of the tuned model experiments.

The large buffer: As the exact publication time of some different macroe-
conomic features is hard to estimate, it was decided to add a large buffer to
the data to prevent "look-ahead" bias. This buffer may have been too large,
making the DL models incapable of efficiently utilizing its informational
value regarding 1-day horizon OSEAX forecasts. In hindsight, it would have
been better to remove the buffer and only add and increase it if the results
were unexpectedly accurate.

Loss function: This experiment has been limited to the MSE loss. Other
loss functions may be more appropriate, such as the MAPE and SMAPE,
noted by Hu’s paper on the TFT S&P implementation [40]. These loss func-
tions may allow DL models to achieve better results with non-differentiated
data as well, due to their size indifference and relativeness (as discussed in
Subsection 5.2.3.

Inclusion of datetime in the univariate datasets: It is possible that
including the datetime feature does not add any informational value and
decreases the models’ performances by introducing noise.

Choice of models: This thesis focuses on the DL spectrum within the field
of ML. However, it might be that other types of ML implementations may

95

be better suited for this application, such as tree-based ensemble models.
Additionally, many variations of DL implementations may function much
better, such as the convolutional neural net-LSTM ensemble models, which
have gained lots of attention lately [50].

Missing features: Many features considered important for forecasting
recent market environment valuations are not included because of their
shorter data history or no availability. Some of these are the Norwegian
consumer confidence index, Chicago Board Options Exchange’s volatility in-
dex, and the EUR/NOK exchange rate.

96

Chapter 7

Conclusions

This chapter will conclude with the results obtained from the research. Sec-
tion 7.1 will summarize what was performed in this study. Section 7.2 will
formally answer the research questions that were formulated in Section 1.2.
Following that, Section 7.3 will elaborate on the main contribution this the-
sis has given to the field of stock market forecasting. Finally, Section 7.4 will
discuss the future work that has emerged from this research.

7.1 Summary
This thesis explores if the state-of-the-art stock market forecasting tech-
niques can outperform the RW when forecasting the OSEAX index, repre-
senting the compound valuation of the stocks listed at the OSE. To achieve
this, two DL models have been set up against each other: the highly promi-
nent LSTM-based architecture and the recently emergent TFT. In addition,
this thesis seeks to test whether said algorithms perform better when train-
ing on an extensive and diverse economic dataset.

To explore the selected models’ capabilities within this defined system, this
thesis presents a new framework for testing OSE-related indices with ML
based on a comprehensive 72-feature economic dataset. The framework in-
cludes an ADF-stationarity detection routine, an RF-based feature selec-
tion process, and a Bayesian TPE-based hyperparameter optimization tech-
nique. Finally, it also includes two baseline evaluation models based on the
central financial theories of the RW (and EMH) to test forecasting capabili-
ties thoroughly.

Utilizing this framework, the experiment results indicate that neither the

97

LSTM nor the TFT comes close to the RW-based baseline models. The most
precise RW-based model, the RWM, achieves the lowest MAPE of 0.8072.
Meanwhile, the best DL model, the LSTM trained on an OSEAX target
variable-only dataset, achieves a MAPE of 1.1523, a 42,75 % higher error
rate. The research also finds that the TFT is not capable of dethroning the
LSTM within this environment. Additionally, experiments show that adding
additional features from the large dataset does not increase forecasting per-
formance.

7.2 Answering the research questions
Finally, the research questions formulated in Section 1.2 will be formally
answered based on the results and the discussion.

Research question 1

(1) Are the state-of-the-art DL models TFT and LSTM capable of
achieving higher accuracies than the random walk model when
forecasting short-term OSE valuations?

In the 1-day horizon forecasting experiments conducted in this thesis, nei-
ther the LSTM nor the TFT can outperform the RWM nor the RWD. The
results indicate that the RW and EMH still remain uncontested within this
environment for a 1-day horizon.

Research question 2

(2) For the TFT and LSTM DL models forecasting future val-
uation of the OSE: To what extent does include economic and
technical indicators enhance performance for these algorithms
in this environment?

For a 1-day forecasting horizon, the results show that the more additional
features are added, the worse performance gets. This is another win for the
RWM and EMH because of the following:

1. The univariate dataset performs the best in most cases and on all the
best models. This shows that, for this environment, the most valuable
data to use for 1-day forecasts are past prices - all the others add noise
and reduce accuracies. With no other data than the historical prices,
strong and semi-stong from EMH remains uncontested.

98

2. Since none of the DL models can outperform the random walk on the
univariate (historical prices) dataset, the weak-form EMH remains un-
challenged.

The final answer to the research question is: For a 1-day forecasting horizon,
neither economic, technical, nor any other indicators enhance performance;
they degrade it.

Research question 3

(3) Is the TFT architecture capable of outperforming the LSTM
when forecasting future 1-day valuations of the compound OSE?

The LSTM generally outperforms the TFT when forecasting over a 1-day
horizon. There are a few instances where the TFT can beat the LSTM on
certain dataset variations, but in most cases, the LSTM implementations
have the best accuracy. The best-performing models of the DL algorithms
are all based on the LSTM architecture. To answer the question, no, the
TFT is not capable of outperforming the LSTM when forecasting future val-
uations of the compound OSE for a 1-day horizon in this environment.

7.3 Main contributions
During this thesis research, multiple novel contributions have been made to
the stock market forecasting field. These are:

• Presenting a preprocessing, RF-FS feature selection, hyperparameter
tuning, and performance evaluation framework for thoroughly eval-
uating stock index (and other financial assets) regression-based fore-
casting models against the random walk hypothesis using larger eco-
nomic datasets.

• Provide the first identified attempt at introducing the TFT architecture
at forecasting an OSE-based index.

• Prove that the financial hypotheses of RW and EMH remain uncon-
tested in a 1-day OSEAX valuation forecasting environment.

• Present an optimal dataset composition, architecture, and training pa-
rameters for both the LSTM and TFT in such an environment.

• Gathered and built an extensive 1-day granularity, 72-feature economic
dataset consisting of OSEAX and Norwegian economy-related indica-
tors as features, spanning over 35 years.

99

• Provided evidence that including additional features in the covered
forecasting approaches degrades performance: training on a series of
the target OSEAX variable alone produces the best results.

7.4 Future Work
Stock market forecasting is a broad field accompanied by multiple other re-
search areas. Because of this, there are multiple routes to explore further.
In the setting of this thesis, the most notable are the following future work:

Applying other ML approaches to the framework: There exists a
myriad of different algorithms that remain to be implemented and exper-
imented with, counting both as standalone and in stacked ensemble mod-
els. The most interesting approaches may be experimenting with ensemble
learning models like the RF and Extreme Gradient Boosting or stacked DL
models like a CNN-LSTM system [50].

Longer or shorter forecasting horizons: Experiment with different
forecasting horizons other than one day is an alternative route. For shorter
ones, high-frequency trading can be applicable, while the longer forecasting
horizons can explore the relationship between economic indicators and fu-
ture OSE index valuations. For this thesis data and framework, the longer-
spanning horizons are the most appealing future works. Especially a one-
year horizon due to the possible macroeconomic indicator relationships.

Longer or shorter datasets: As discussed in Subsection 6.4.4, the lack-
luster DL model performance may be caused by the dataset being too long
or too short. A too-long dataset may let the models learn old, outdated pat-
terns, while a too-small dataset may have too few samples and lack diver-
sity. Further research into this problem may be conducted to see if it ham-
pers performance. For example, a shorter dataset span can be thoroughly
explored by the "study period" implementation (splitting the large dataset
into smaller parts) done by Fischer and Krauss [32].

Including other features: As mentioned in Subsection 6.4.4, some fea-
tures that may be considered important were excluded from the dataset due
to a too short time span or being unavailable. This can be solved by con-
ducting further research on how to attain these indicators or by shortening

100

the span of the overall dataset so that shorter history features like the EU-
R/NOK rate, VIX, and Norwegian CCI can be included.

A simpler tuning regime: The complex tuning procedure utilized in this
thesis may have resulted in overfitting. Simplifying and restraining the
search may prevent overfitting and increase performance for the tuned mod-
els.

Removing macro data time buffers: A large buffer was added to the
less frequently updated macroeconomic data to prevent look-ahead bias.
This buffer may have been too large, making the DL models incapable of ef-
ficiently utilizing macroeconomic features’ informational value for a shorter
1-day horizon OSEAX forecast. Experiment without the buffer is an appeal-
ing future work to test if and how much it hampers performance.

Quantile regression: The TFT and many other ML implementations have
the ability to perform probabilistic forecasts, or "quantile regression." Con-
ducting experiments with this technique instead of standard point estima-
tion regression or classification may be an interesting approach for further
work.

Applying other preprocessing techniques: Using different preprocess-
ing techniques may enhance performance. For example, many stock market
forecasting implementations use discrete wavelet transforms to denoise the
data prior to model training [9, 57, 50], a method which was not included in
this thesis implementation. In addition, using a different loss function may
alleviate the need to differentiate the data, as discussed in Subsection 6.4.4.

101

Bibliography

[1] About EIA. U.S. Energy Information Administration. URL: https://
www.eia.gov/about/ (visited on 23.3.2023).

[2] Advantages and Disadvantages of Machine Learning Language. DataFlair.
2021. URL: https://data-flair.training/blogs/advantages-
and-disadvantages-of-machine-learning/ (visited on 6.4.2023).

[3] Charu C. Aggarwal. “An Introduction to Outlier Analysis.” In: Outlier
Analysis. Cham: Springer International Publishing, 2017, pp. 1–34.
ISBN: 978-3-319-47578-3. DOI: 10.1007/978-3-319-47578-3_1.
URL: https://doi.org/10.1007/978-3-319-47578-3_1.

[4] Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook.
1st. Springer Publishing Company, Incorporated, 2018. ISBN: 3319944622.
DOI: 10.1007/978-3-319-94463-0.

[5] Takuya Akiba et al. “Optuna: A Next-generation Hyperparameter Op-
timization Framework.” In: CoRR abs/1907.10902 (2019). arXiv: 1907.
10902. URL: http://arxiv.org/abs/1907.10902.

[6] Wilshire Associates. Wilshire 5000 Price Index (WILL5000PR). Ac-
cessed: 2023-04-22. 2023. URL: https://fred.stlouisfed.org/
series/WILL5000PR.

[7] George S. Atsalakis and Kimon P. Valavanis. “Surveying stock market
forecasting techniques – Part II: Soft computing methods.” In: Expert
Systems with Applications 36.3, Part 2 (2009), pp. 5932–5941. ISSN:
0957-4174. DOI: https://doi.org/10.1016/j.eswa.2008.
07.006. URL: https://www.sciencedirect.com/science/
article/pii/S0957417408004417.

[8] Mariette Awad and Rahul Khanna. “Machine Learning.” In: Efficient
Learning Machines: Theories, Concepts, and Applications for Engi-
neers and System Designers. Berkeley, CA: Apress, 2015, pp. 1–18.
ISBN: 978-1-4302-5990-9. DOI: 10.1007/978-1-4302-5990-9_1.
URL: https://doi.org/10.1007/978-1-4302-5990-9_1.

102

https://www.eia.gov/about/
https://www.eia.gov/about/
https://data-flair.training/blogs/advantages-and-disadvantages-of-machine-learning/
https://data-flair.training/blogs/advantages-and-disadvantages-of-machine-learning/
https://doi.org/10.1007/978-3-319-47578-3_1
https://doi.org/10.1007/978-3-319-47578-3_1
https://doi.org/10.1007/978-3-319-94463-0
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
http://arxiv.org/abs/1907.10902
https://fred.stlouisfed.org/series/WILL5000PR
https://fred.stlouisfed.org/series/WILL5000PR
https://doi.org/https://doi.org/10.1016/j.eswa.2008.07.006
https://doi.org/https://doi.org/10.1016/j.eswa.2008.07.006
https://www.sciencedirect.com/science/article/pii/S0957417408004417
https://www.sciencedirect.com/science/article/pii/S0957417408004417
https://doi.org/10.1007/978-1-4302-5990-9_1
https://doi.org/10.1007/978-1-4302-5990-9_1

[9] Hum Nath Bhandari et al. “Predicting stock market index using LSTM.”
In: Machine Learning with Applications 9 (2022), p. 100320. ISSN:
2666-8270. DOI: https://doi.org/10.1016/j.mlwa.2022.
100320. URL: https : / / www . sciencedirect . com / science /
article/pii/S2666827022000378.

[10] Leo Breiman. “Random forests.” In: Machine learning 45 (2001), pp. 5–
32. ISSN: 1573-0565. DOI: https://doi.org/10.1023/A:1010933404324.

[11] Jason Brownlee. A Gentle Introduction to the Random Walk for Times
Series Forecasting with Python. Accessed: 2023-11-06. 2020. URL: https:
//machinelearningmastery.com/gentle-introduction-random-
walk-times-series-forecasting-python/.

[12] Lukas Budach et al. “The effects of data quality on machine learn-
ing performance.” In: arXiv preprint arXiv:2207.14529 (2022). DOI:
https://doi.org/10.48550/arXiv.2207.14529. arXiv: 2207.
14529 [cs.DB].

[13] Colin M.L. Burnett. An example artificial neural network with a hid-
den layer. Wikimedia Foundation. Feb. 22, 2011. URL: https : / /
commons.wikimedia.org/wiki/File:Artificial_neural_
network.svg (visited on 8.4.2023).

[14] Dario Caldara and Matteo Iacoviello. Geopolitical Risk Index (GPR)
database. Accessed: 2023-04-16. 2023. URL: https://www.matteoiacoviello.
com/gpr.htm.

[15] Dario Caldara and Matteo Iacoviello. “Measuring Geopolitical Risk.”
In: American Economic Review 112.4 (Apr. 2022), pp. 1194–1225. DOI:
10 . 1257 / aer . 20191823. URL: https : / / www . aeaweb . org /
articles?id=10.1257/aer.20191823.

[16] Chris Chatfield. Time-series forecasting. 1st ed. New York: Chapman
and Hall/CRC, 2000. ISBN: 9780429126352. DOI: 10.1201/9781420036206.

[17] James Chen. Technical Indicator: Definition, Analyst Uses, Types and
Examples. Accessed: 2023-11-06. 2021. URL: https://www.investopedia.
com/terms/t/technicalindicator.asp.

[18] Yingjun Chen and Yongtao Hao. “A feature weighted support vector
machine and K-nearest neighbor algorithm for stock market indices
prediction.” In: Expert Systems with Applications 80 (2017), pp. 340–
355. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa.
2017.02.044. URL: https://www.sciencedirect.com/science/
article/pii/S0957417417301367.

103

https://doi.org/https://doi.org/10.1016/j.mlwa.2022.100320
https://doi.org/https://doi.org/10.1016/j.mlwa.2022.100320
https://www.sciencedirect.com/science/article/pii/S2666827022000378
https://www.sciencedirect.com/science/article/pii/S2666827022000378
https://doi.org/https://doi.org/10.1023/A:1010933404324
https://machinelearningmastery.com/gentle-introduction-random-walk-times-series-forecasting-python/
https://machinelearningmastery.com/gentle-introduction-random-walk-times-series-forecasting-python/
https://machinelearningmastery.com/gentle-introduction-random-walk-times-series-forecasting-python/
https://doi.org/https://doi.org/10.48550/arXiv.2207.14529
https://arxiv.org/abs/2207.14529
https://arxiv.org/abs/2207.14529
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
https://www.matteoiacoviello.com/gpr.htm
https://www.matteoiacoviello.com/gpr.htm
https://doi.org/10.1257/aer.20191823
https://www.aeaweb.org/articles?id=10.1257/aer.20191823
https://www.aeaweb.org/articles?id=10.1257/aer.20191823
https://doi.org/10.1201/9781420036206
https://www.investopedia.com/terms/t/technicalindicator.asp
https://www.investopedia.com/terms/t/technicalindicator.asp
https://doi.org/https://doi.org/10.1016/j.eswa.2017.02.044
https://doi.org/https://doi.org/10.1016/j.eswa.2017.02.044
https://www.sciencedirect.com/science/article/pii/S0957417417301367
https://www.sciencedirect.com/science/article/pii/S0957417417301367

[19] Corinna Cortes and Vladimir Vapnik. “Support-vector networks.” In:
Machine learning 20 (1995), pp. 273–297. DOI: https://doi.org/
10.1007/BF00994018.

[20] Kent Daniel, David Hirshleifer, and Avanidhar Subrahmanyam. “In-
vestor Psychology and Security Market under- and Overreactions.” In:
The Journal of Finance 53.6 (1998), pp. 1839–1885. ISSN: 00221082,
15406261. URL: http://www.jstor.org/stable/117455.

[21] DatabaseCamp. LSTMs. https : / / databasecamp . de / en / ml /
lstms. Accessed: 13-Nov-2023. 2023.

[22] Pasquale De Luca. Corporate finance: fundamentals of value and price.
eng. Springer texts in business and economics. Cham, Switzerland:
Springer, 2023. ISBN: 9783031183003. DOI: 10.1007/978-3-031-
18300-3. URL: https://ideas.repec.org/b/spr/sptbec/978-
3-031-18300-3.html.

[23] David A. Dickey and Wayne A. Fuller. “Distribution of the Estima-
tors for Autoregressive Time Series With a Unit Root.” In: Journal of
the American Statistical Association 74.366 (1979), pp. 427–431. ISSN:
01621459. URL: http://www.jstor.org/stable/2286348 (visited
on 7.11.2023).

[24] Paul Dix. Time series forecasting methods. InfluxData. Aug. 25, 2021.
URL: https://www.influxdata.com/time-series-forecasting-
methods/ (visited on 10.4.2023).

[25] Lucas Downey. Oslo Stock Exchange (OSL): Meaning, History, Associ-
ated Markets. Ed. by Thomas Brock. https://www.investopedia.
com/terms/o/oslobors.asp. Accessed: 2023-11-04. 2022. (visited
on 4.11.2023).

[26] Euronext. Euronext Oslo Børs. https://www.euronext.com/en/
markets/oslo. Accessed: 2023-11-03. 2023.

[27] Europe Brent Spot Price FOB. U.S. Energy Information Administra-
tion. 2023. URL: https://www.eia.gov/dnav/pet/hist/RBRTED.
htm (visited on 30.1.2023).

[28] Eugene F Fama. “Market efficiency, long-term returns, and behav-
ioral finance.” In: Journal of financial economics 49.3 (1998), pp. 283–
306. ISSN: 0304-405X. DOI: https://doi.org/10.1016/S0304-
405X(98)00026-9. URL: https://www.sciencedirect.com/
science/article/pii/S0304405X98000269.

104

https://doi.org/https://doi.org/10.1007/BF00994018
https://doi.org/https://doi.org/10.1007/BF00994018
http://www.jstor.org/stable/117455
https://databasecamp.de/en/ml/lstms
https://databasecamp.de/en/ml/lstms
https://doi.org/10.1007/978-3-031-18300-3
https://doi.org/10.1007/978-3-031-18300-3
https://ideas.repec.org/b/spr/sptbec/978-3-031-18300-3.html
https://ideas.repec.org/b/spr/sptbec/978-3-031-18300-3.html
http://www.jstor.org/stable/2286348
https://www.influxdata.com/time-series-forecasting-methods/
https://www.influxdata.com/time-series-forecasting-methods/
https://www.investopedia.com/terms/o/oslobors.asp
https://www.investopedia.com/terms/o/oslobors.asp
https://www.euronext.com/en/markets/oslo
https://www.euronext.com/en/markets/oslo
https://www.eia.gov/dnav/pet/hist/RBRTED.htm
https://www.eia.gov/dnav/pet/hist/RBRTED.htm
https://doi.org/https://doi.org/10.1016/S0304-405X(98)00026-9
https://doi.org/https://doi.org/10.1016/S0304-405X(98)00026-9
https://www.sciencedirect.com/science/article/pii/S0304405X98000269
https://www.sciencedirect.com/science/article/pii/S0304405X98000269

[29] Eugene F. Fama. “Efficient Capital Markets: A Review of Theory and
Empirical Work.” In: The Journal of Finance 25.2 (1970), pp. 383–417.
ISSN: 00221082, 15406261. URL: http://www.jstor.org/stable/
2325486 (visited on 6.2.2023).

[30] Eugene F. Fama. “The Behavior of Stock-Market Prices.” In: The Jour-
nal of Business 38.1 (1965), pp. 34–105. ISSN: 00219398, 15375374.
URL: http://www.jstor.org/stable/2350752 (visited on 6.2.2023).

[31] Yahoo Finance. OSEAX historical data. https://finance.yahoo.
com/quote/%5EOSEAX/history?period1=1362528000&period2=
1672444800&interval=1d&filter=history&frequency=1d&
includeAdjustedClose=true. Accessed on March 17, 2023. 2022.

[32] Thomas Fischer and Christopher Krauss. “Deep learning with long
short-term memory networks for financial market predictions.” In:
European Journal of Operational Research 270.2 (2018), pp. 654–669.
ISSN: 0377-2217. DOI: https://doi.org/10.1016/j.ejor.2017.
11.054. URL: https://www.sciencedirect.com/science/
article/pii/S0377221717310652.

[33] Ligita Gaspareniene et al. “Modelling of S&P 500 Index Price Based
on U.S. Economic Indicators: Machine Learning Approach.” In: Engi-
neering Economics 32 (Oct. 2021), pp. 362–375. DOI: 10.5755/j01.
ee.32.4.27985.

[34] Øystein Gjerde and Frode Sættem. “Causal relations among stock re-
turns and macroeconomic variables in a small, open economy.” In:
Journal of International Financial Markets, Institutions and Money
9.1 (1999), pp. 61–74. ISSN: 1042-4431. DOI: https://doi.org/10.
1016/S1042-4431(98)00036-5. URL: https://www.sciencedirect.
com/science/article/pii/S1042443198000365.

[35] Isabelle Guyon and André Elisseeff. “An introduction to variable and
feature selection.” In: Journal of machine learning research 3 (Jan.
2003), pp. 1157–1182. DOI: 10.1162/153244303322753616.

[36] Yuval Noah Harari. Sapiens: A brief history of humankind. Harper,
2015. ISBN: 9780062316103. URL: https://books.google.no/
books?id=FmyBAwAAQBAJ.

[37] Md Al Mehedi Hasan et al. “Feature selection for intrusion detection
using random forest.” In: Journal of information security 7.3 (2016),
pp. 129–140. DOI: http://dx.doi.org/10.4236/jis.2016.
73009.

105

http://www.jstor.org/stable/2325486
http://www.jstor.org/stable/2325486
http://www.jstor.org/stable/2350752
https://finance.yahoo.com/quote/%5EOSEAX/history?period1=1362528000&period2=1672444800&interval=1d&filter=history&frequency=1d&includeAdjustedClose=true
https://finance.yahoo.com/quote/%5EOSEAX/history?period1=1362528000&period2=1672444800&interval=1d&filter=history&frequency=1d&includeAdjustedClose=true
https://finance.yahoo.com/quote/%5EOSEAX/history?period1=1362528000&period2=1672444800&interval=1d&filter=history&frequency=1d&includeAdjustedClose=true
https://finance.yahoo.com/quote/%5EOSEAX/history?period1=1362528000&period2=1672444800&interval=1d&filter=history&frequency=1d&includeAdjustedClose=true
https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.054
https://www.sciencedirect.com/science/article/pii/S0377221717310652
https://www.sciencedirect.com/science/article/pii/S0377221717310652
https://doi.org/10.5755/j01.ee.32.4.27985
https://doi.org/10.5755/j01.ee.32.4.27985
https://doi.org/https://doi.org/10.1016/S1042-4431(98)00036-5
https://doi.org/https://doi.org/10.1016/S1042-4431(98)00036-5
https://www.sciencedirect.com/science/article/pii/S1042443198000365
https://www.sciencedirect.com/science/article/pii/S1042443198000365
https://doi.org/10.1162/153244303322753616
https://books.google.no/books?id=FmyBAwAAQBAJ
https://books.google.no/books?id=FmyBAwAAQBAJ
https://doi.org/http://dx.doi.org/10.4236/jis.2016.73009
https://doi.org/http://dx.doi.org/10.4236/jis.2016.73009

[38] Julien Herzen et al. “Darts: User-Friendly Modern Machine Learning
for Time Series.” In: Journal of Machine Learning Research 23.124
(2022), pp. 1–6. URL: http://jmlr.org/papers/v23/21-1177.
html.

[39] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Mem-
ory.” In: Neural Computation 9.8 (1997), pp. 1735–1780. DOI: 10 .
1162/neco.1997.9.8.1735.

[40] Xiaokang Hu. “Stock Price Prediction Based on Temporal Fusion Trans-
former.” In: 2021 3rd International Conference on Machine Learning,
Big Data and Business Intelligence (MLBDBI). 2021, pp. 60–66. DOI:
10.1109/MLBDBI54094.2021.00019.

[41] Jørgen Husby. “Hvordan påvirkes aksjene notert på Oslo Børs av den
amerikanske- og den europeiske sentralbankens kvantitative lettelser
i perioden 2005-2015?” MA thesis. Nord University, 2019. URL: https:
//nordopen.nord.no/nord-xmlui/handle/11250/2619750?
show=full.

[42] Rob J Hyndman and George Athanasopoulos. Some Simple Forecast-
ing Methods. Accessed: 2023-11-06. 2023. URL: https://otexts.
com/fpp2/simple-methods.html.

[43] Bank for International Settlements. BIS Residential Property Price
database. Accessed: 2023-04-24. Copyright, 2016, Bank for Interna-
tional Settlements (BIS). Retrieved from FRED, Federal Reserve Bank
of St. Louis. 2023. URL: http://www.bis.org/statistics/pp.
htm.

[44] Investing.com. Commodities database. Accessed: 2023-04-17. 2023. URL:
https://www.investing.com/commodities/.

[45] Abhinav Jain et al. “Overview and Importance of Data Quality for Ma-
chine Learning Tasks.” In: Proceedings of the 26th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining. KDD
’20. Virtual Event, CA, USA: Association for Computing Machinery,
2020, pp. 3561–3562. ISBN: 9781450379984. DOI: 10.1145/3394486.
3406477. URL: https://doi.org/10.1145/3394486.3406477.

[46] Sujata Kapoor and Jaya M. Prosad. “Behavioural Finance: A Review.”
In: Procedia Computer Science 122 (2017). 5th International Confer-
ence on Information Technology and Quantitative Management, ITQM
2017, pp. 50–54. ISSN: 1877-0509. DOI: https://doi.org/10.
1016/j.procs.2017.11.340. URL: https://www.sciencedirect.
com/science/article/pii/S1877050917325693.

106

http://jmlr.org/papers/v23/21-1177.html
http://jmlr.org/papers/v23/21-1177.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/MLBDBI54094.2021.00019
https://nordopen.nord.no/nord-xmlui/handle/11250/2619750?show=full
https://nordopen.nord.no/nord-xmlui/handle/11250/2619750?show=full
https://nordopen.nord.no/nord-xmlui/handle/11250/2619750?show=full
https://otexts.com/fpp2/simple-methods.html
https://otexts.com/fpp2/simple-methods.html
http://www.bis.org/statistics/pp.htm
http://www.bis.org/statistics/pp.htm
https://www.investing.com/commodities/
https://doi.org/10.1145/3394486.3406477
https://doi.org/10.1145/3394486.3406477
https://doi.org/10.1145/3394486.3406477
https://doi.org/https://doi.org/10.1016/j.procs.2017.11.340
https://doi.org/https://doi.org/10.1016/j.procs.2017.11.340
https://www.sciencedirect.com/science/article/pii/S1877050917325693
https://www.sciencedirect.com/science/article/pii/S1877050917325693

[47] Ku Chhaya A Khanzode and Ravindra D Sarode. “Advantages and
disadvantages of artificial intelligence and machine learning: A lit-
erature review.” In: International Journal of Library & Information
Science (IJLIS) 9.1 (2020), p. 3. DOI: https://doi.org/10.17605/
OSF.IO/GV5T4.

[48] Kathleen M. Kingsmore et al. “An Introduction to Machine Learning
and Analysis of Its Use in Rheumatic Diseases.” In: Nature Reviews
Rheumatology 17.12 (2021), pp. 710–730. DOI: 10.1038/s41584-
021-00708-w. URL: https://doi.org/10.1038/s41584-021-
00708-w.

[49] George Klir and Bo Yuan. Fuzzy sets and fuzzy logic. Vol. 4. Prentice
Hall New Jersey, 1995. URL: https://api.semanticscholar.
org/CorpusID:46622061.

[50] Mahinda Mailagaha Kumbure et al. “Machine learning techniques
and data for stock market forecasting: A literature review.” In: Expert
Systems with Applications 197 (2022), p. 116659. ISSN: 0957-4174.
DOI: https://doi.org/10.1016/j.eswa.2022.116659. URL:
https://www.sciencedirect.com/science/article/pii/
S0957417422001452.

[51] Jonathan Law. A Dictionary of Finance and Banking. Oxford Uni-
versity Press, 2018. ISBN: 9780191831430. DOI: 10.1093/acref/
9780198789741.001.0001. URL: https://www.oxfordreference.
com/view/10.1093/acref/9780198789741.001.0001/acref-
9780198789741.

[52] Bryan Lim et al. “Temporal Fusion Transformers for interpretable
multi-horizon time series forecasting.” In: International Journal of
Forecasting 37.4 (2021), pp. 1748–1764. ISSN: 0169-2070. DOI: https:
//doi.org/10.1016/j.ijforecast.2021.03.012. URL: https:
//www.sciencedirect.com/science/article/pii/S0169207021000637.

[53] Kian-Ping Lim and Robert Brooks. “The evolution of stock market ef-
ficiency over time: A survey of the empirical literature.” In: Journal of
Economic Surveys 25.1 (2011), pp. 69–108. DOI: https://doi.org/
10.1111/j.1467-6419.2009.00611.x.

[54] Craiyon LLC. AI Generated Image. Accessed: 2023-04-09. 2023. URL:
https://www.craiyon.com/.

107

https://doi.org/https://doi.org/10.17605/OSF.IO/GV5T4
https://doi.org/https://doi.org/10.17605/OSF.IO/GV5T4
https://doi.org/10.1038/s41584-021-00708-w
https://doi.org/10.1038/s41584-021-00708-w
https://doi.org/10.1038/s41584-021-00708-w
https://doi.org/10.1038/s41584-021-00708-w
https://api.semanticscholar.org/CorpusID:46622061
https://api.semanticscholar.org/CorpusID:46622061
https://doi.org/https://doi.org/10.1016/j.eswa.2022.116659
https://www.sciencedirect.com/science/article/pii/S0957417422001452
https://www.sciencedirect.com/science/article/pii/S0957417422001452
https://doi.org/10.1093/acref/9780198789741.001.0001
https://doi.org/10.1093/acref/9780198789741.001.0001
https://www.oxfordreference.com/view/10.1093/acref/9780198789741.001.0001/acref-9780198789741
https://www.oxfordreference.com/view/10.1093/acref/9780198789741.001.0001/acref-9780198789741
https://www.oxfordreference.com/view/10.1093/acref/9780198789741.001.0001/acref-9780198789741
https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.03.012
https://www.sciencedirect.com/science/article/pii/S0169207021000637
https://www.sciencedirect.com/science/article/pii/S0169207021000637
https://doi.org/https://doi.org/10.1111/j.1467-6419.2009.00611.x
https://doi.org/https://doi.org/10.1111/j.1467-6419.2009.00611.x
https://www.craiyon.com/

[55] Christoph Lohrmann and Pasi Luukka. “Classification of intraday S&P500
returns with a Random Forest.” In: International Journal of Forecast-
ing 35.1 (2019). Special Section: Supply Chain Forecasting, pp. 390–
407. ISSN: 0169-2070. DOI: https://doi.org/10.1016/j.ijforecast.
2018.08.004. URL: https://www.sciencedirect.com/science/
article/pii/S0169207018301481.

[56] Lollixzc. AI hierarchy. Wikimedia Foundation. Apr. 3, 2023. URL: https:
//commons.wikimedia.org/wiki/File:AI_hierarchy.svg
(visited on 8.4.2023).

[57] Henrik Lund and Jonas Løvas. “Employing Deep Learning for Stock
Return Prediction on the Oslo Stock Exchange.” MA thesis. Norwegian
School of Economics, 2018. URL: http://hdl.handle.net/11250/
2586263.

[58] Macrotrends. Commodities database. Accessed: 2023-04-16. 2023. URL:
https://www.macrotrends.net/charts/commodities.

[59] B.G. Malkiel. A Random Walk Down Wall Street: The Time-tested Strat-
egy for Successful Investing. Business book summary. W.W. Norton,
2007. ISBN: 9780393062458. URL: https://books.google.no/
books?id=_0LM5sH5FhEC.

[60] Burton Malkiel, Sendhil Mullainathan, and Bruce Stangle. “Market
efficiency versus behavioral finance.” In: Journal of Applied Corpo-
rate Finance 17.3 (2005), pp. 124–136. URL: https://ssrn.com/
abstract=3396133.

[61] Stephen Marsland. Machine Learning: An Algorithmic Perspective, Sec-
ond Edition. 2nd. Chapman & Hall/CRC, 2014. ISBN: 1466583282.
DOI: https://dl.acm.org/doi/10.5555/2692349.

[62] J.B. Maverick. Key Indicators for Following the Stock Market and Econ-
omy. Investopedia. Sept. 18, 2022. URL: https://www.investopedia.
com/ask/answers/032415/what-are-most-common-market-
indicators-follow-us-stock-market-and-economy.asp (vis-
ited on 6.4.2023).

[63] Wes McKinney. “Data Structures for Statistical Computing in Python.”
In: Proceedings of the 9th Python in Science Conference. Ed. by Stéfan
van der Walt and Jarrod Millman. 2010, pp. 56–61. DOI: 10.25080/
Majora-92bf1922-00a.

108

https://doi.org/https://doi.org/10.1016/j.ijforecast.2018.08.004
https://doi.org/https://doi.org/10.1016/j.ijforecast.2018.08.004
https://www.sciencedirect.com/science/article/pii/S0169207018301481
https://www.sciencedirect.com/science/article/pii/S0169207018301481
https://commons.wikimedia.org/wiki/File:AI_hierarchy.svg
https://commons.wikimedia.org/wiki/File:AI_hierarchy.svg
http://hdl.handle.net/11250/2586263
http://hdl.handle.net/11250/2586263
https://www.macrotrends.net/charts/commodities
https://books.google.no/books?id=_0LM5sH5FhEC
https://books.google.no/books?id=_0LM5sH5FhEC
https://ssrn.com/abstract=3396133
https://ssrn.com/abstract=3396133
https://doi.org/https://dl.acm.org/doi/10.5555/2692349
https://www.investopedia.com/ask/answers/032415/what-are-most-common-market-indicators-follow-us-stock-market-and-economy.asp
https://www.investopedia.com/ask/answers/032415/what-are-most-common-market-indicators-follow-us-stock-market-and-economy.asp
https://www.investopedia.com/ask/answers/032415/what-are-most-common-market-indicators-follow-us-stock-market-and-economy.asp
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a

[64] Thorvald G. Moe, Jon A. Solheim, and Bent Vale. The Norwegian Bank-
ing Crisis. Accessed: 2023-11-06. Norges Bank, 2004. URL: https://
www.norges-bank.no/contentassets/ed5dd397dce345338046a22c7e07f959/
hele_heftet.pdf?v=03/09/2017122240.

[65] MSCI. MSCI World Index. Accessed: 2023-11-06. 2023. URL: https:
//www.msci.com/documents/10199/178e6643-6ae6-47b9-
82be-e1fc565ededb.

[66] Randi Næs, Johannes A Skjeltorp, and Bernt Arne Ødegaard. What
factors affect the Oslo Stock Exchange? Norges Bank, 2009. ISBN: 978-
82-7553-530-4. URL: http://hdl.handle.net/11250/2497617.

[67] Robert Nau. Statistical forecasting: notes on regression and time series
analysis. Accessed: 2023-11-06. 2023. URL: https://people.duke.
edu/~rnau/411rand.htm.

[68] Norges Bank’s datatorg. Norges Bank. 2023. URL: https://app.
norges-bank.no/query/index.html#/no/ (visited on 24.3.2023).

[69] Kofi O Nti, Adebayo Adekoya, and Benjamin Weyori. “Random forest
based feature selection of macroeconomic variables for stock market
prediction.” In: American Journal of Applied Sciences 16.7 (July 2019),
pp. 200–212. DOI: 10.3844/ajassp.2019.200.212.

[70] Bernt Arne Odegaard. Bernt Arne Odegaard’s Website. 2023. URL: https:
//ba-odegaard.no/ (visited on 2.3.2023).

[71] Bernt Arne Odegaard. Norwegian Financial Data from B.A. Odegaard.
https://ba-odegaard.no/financial_data/index.html. Ac-
cessed: 02.03.2023.

[72] OECD. Main Economic Indicators - complete database. Accessed: 2023-
04-22. Copyright, 2016, OECD. Reprinted with permission. Retrieved
from FRED, Federal Reserve Bank of St. Louis. 2023. DOI: https:
//dx.doi.org/10.1787/data-00052-en.

[73] University of Oslo. Fox – High Performance Computing cluster for
Educloud Research users. Accessed: 2023-11-06. 2023. URL: https:
//www.uio.no/english/services/it/research/hpc/fox/.

[74] Oslo Børs All-Share Index Factsheet. Euronext Oslo. 2022. URL: https:
//live.euronext.com/sites/default/files/documentation/
index-fact-sheets/Oslo_Bors_All-share_Index_Factsheet.
pdf (visited on 22.2.2023).

109

https://www.norges-bank.no/contentassets/ed5dd397dce345338046a22c7e07f959/hele_heftet.pdf?v=03/09/2017122240
https://www.norges-bank.no/contentassets/ed5dd397dce345338046a22c7e07f959/hele_heftet.pdf?v=03/09/2017122240
https://www.norges-bank.no/contentassets/ed5dd397dce345338046a22c7e07f959/hele_heftet.pdf?v=03/09/2017122240
https://www.msci.com/documents/10199/178e6643-6ae6-47b9-82be-e1fc565ededb
https://www.msci.com/documents/10199/178e6643-6ae6-47b9-82be-e1fc565ededb
https://www.msci.com/documents/10199/178e6643-6ae6-47b9-82be-e1fc565ededb
http://hdl.handle.net/11250/2497617
https://people.duke.edu/~rnau/411rand.htm
https://people.duke.edu/~rnau/411rand.htm
https://app.norges-bank.no/query/index.html#/no/
https://app.norges-bank.no/query/index.html#/no/
https://doi.org/10.3844/ajassp.2019.200.212
https://ba-odegaard.no/
https://ba-odegaard.no/
https://ba-odegaard.no/financial_data/index.html
https://doi.org/https://dx.doi.org/10.1787/data-00052-en
https://doi.org/https://dx.doi.org/10.1787/data-00052-en
https://www.uio.no/english/services/it/research/hpc/fox/
https://www.uio.no/english/services/it/research/hpc/fox/
https://live.euronext.com/sites/default/files/documentation/index-fact-sheets/Oslo_Bors_All-share_Index_Factsheet.pdf
https://live.euronext.com/sites/default/files/documentation/index-fact-sheets/Oslo_Bors_All-share_Index_Factsheet.pdf
https://live.euronext.com/sites/default/files/documentation/index-fact-sheets/Oslo_Bors_All-share_Index_Factsheet.pdf
https://live.euronext.com/sites/default/files/documentation/index-fact-sheets/Oslo_Bors_All-share_Index_Factsheet.pdf

[75] Robert Parrino. Fundamentals of corporate finance. eng. 2nd ed. Place
of publication not identified: Wiley, 2012. ISBN: 9781118213759. URL:
https://books.google.no/books?id=cewbAAAAQBAJ.

[76] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library.” In: CoRR abs/1912.01703 (2019). arXiv: 1912.
01703. URL: http://arxiv.org/abs/1912.01703.

[77] Theophilos Papadimitriou Periklis Gogas. “Machine Learning in Eco-
nomics and Finance.” In: Computational Economics 57 (2021), pp. 1–4.
DOI: https://doi.org/10.1007/s10614-021-10094-w.

[78] Alexander Andersen Sandvik and Lars Røberg Følgesvold. “Causal re-
lations between stock market returns and macroeconomic variables:
cointegration evidence from the Norwegian stock market.” MA thesis.
NHH Norwegian School of Economics, 2016. URL: https://openaccess.
nhh.no/nhh-xmlui/handle/11250/2432672.

[79] Mark R Segal. “Machine learning benchmarks and random forest re-
gression.” In: Technical Report, Center for Bioinformatics Molecular
Biostatistics, University of California, San Francisco (May 2003). URL:
https://www.researchgate.net/publication/228861739_
Machine_Learning_Benchmarks_and_Random_Forest_Regression.

[80] Bloomberg Professional Services. Data. Accessed: 2023-11-06. 2023.
URL: https://www.bloomberg.com/professional/product/
data/.

[81] Martin Sewell. “History of the efficient market hypothesis.” In: Rn
11.04 (2011), p. 04. URL: http://www.cs.ucl.ac.uk/fileadmin/
UCL-CS/images/Research_Student_Information/RN_11_04.
pdf.

[82] Shveta Singh and Surendra S Yadav. Security Analysis and Portfolio
Management: A Primer. eng. 1st Edition 2021. Classroom Compan-
ion: Business. Singapore: Springer, 2021. ISBN: 9789811625190. URL:
https://link.springer.com/book/10.1007/978-981-16-
2520-6.

[83] Federal Reserve Bank of St. Louis. FRED - Federal Reserve Bank of St.
Louis Economic database. Accessed: 2023-04-10. 2023. URL: https:
//fred.stlouisfed.org/categories.

[84] Statistics Norway’s StatBank database. Statistics Norway. 2023. URL:
https://www.ssb.no/en/statbank/ (visited on 27.3.2023).

110

https://books.google.no/books?id=cewbAAAAQBAJ
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/https://doi.org/10.1007/s10614-021-10094-w
https://openaccess.nhh.no/nhh-xmlui/handle/11250/2432672
https://openaccess.nhh.no/nhh-xmlui/handle/11250/2432672
https://www.researchgate.net/publication/228861739_Machine_Learning_Benchmarks_and_Random_Forest_Regression
https://www.researchgate.net/publication/228861739_Machine_Learning_Benchmarks_and_Random_Forest_Regression
https://www.bloomberg.com/professional/product/data/
https://www.bloomberg.com/professional/product/data/
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/images/Research_Student_Information/RN_11_04.pdf
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/images/Research_Student_Information/RN_11_04.pdf
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/images/Research_Student_Information/RN_11_04.pdf
https://link.springer.com/book/10.1007/978-981-16-2520-6
https://link.springer.com/book/10.1007/978-981-16-2520-6
https://fred.stlouisfed.org/categories
https://fred.stlouisfed.org/categories
https://www.ssb.no/en/statbank/

[85] Paweł Stężycki. Using AI in Finance? Consider These Four Ethical
Challenges. Netguru. June 15, 2021. URL: https://www.netguru.
com/blog/ai- in- finance- ethical- challenges (visited on
6.4.2023).

[86] Øyvind Svarttjernet and Joachim Ulsrud. “Makroøkonomiske faktor-
ers påvirkning på Oslo Børs.” Accessed: 2023-08-22. MA thesis. NHH
Norwegian School of Economics, 2016. URL: https://openaccess.
nhh.no/nhh-xmlui/bitstream/handle/11250/2407191/masterthesis.
PDF?sequence=1.

[87] TITLON Financial Database. OSEAX historical data. https://titlon.
uit.no/download.php?p=getdata&d=equityindex&t=stocks.
Accessed: 02.03.2023.

[88] Unadkat, Ciocoiu, and Medsker. “Chapter 1: Introduction.” In: Re-
current Neural Networks: Design and Applications. CRC Press, 1999.
ISBN: 9781420049176. URL: https://books.google.no/books?
id=ME1SAkN0PyMC.

[89] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual.
Scotts Valley, CA: CreateSpace, 2009. ISBN: 1441412697. URL: https:
//dl.acm.org/doi/book/10.5555/1593511.

[90] Ashish Vaswani et al. “Attention is All you Need.” In: Advances in Neu-
ral Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Cur-
ran Associates, Inc., 2017. URL: https://proceedings.neurips.
cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf.

[91] Chaojie Wang et al. “Stock market index prediction using deep Trans-
former model.” In: Expert Systems with Applications 208 (2022), p. 118128.
ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa.2022.
118128. URL: https : / / www . sciencedirect . com / science /
article/pii/S0957417422013100.

[92] Wei-Jia Wang et al. “Stock market index prediction based on reservoir
computing models.” In: Expert Systems with Applications 178 (2021),
p. 115022. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.
eswa.2021.115022. URL: https://www.sciencedirect.com/
science/article/pii/S0957417421004632.

[93] Shuhei Watanabe. “Tree-structured Parzen estimator: Understanding
its algorithm components and their roles for better empirical perfor-
mance.” In: arXiv preprint arXiv:2304.11127 (2023). URL: https://
doi.org/10.48550/arXiv.2304.11127.

111

https://www.netguru.com/blog/ai-in-finance-ethical-challenges
https://www.netguru.com/blog/ai-in-finance-ethical-challenges
https://openaccess.nhh.no/nhh-xmlui/bitstream/handle/11250/2407191/masterthesis.PDF?sequence=1
https://openaccess.nhh.no/nhh-xmlui/bitstream/handle/11250/2407191/masterthesis.PDF?sequence=1
https://openaccess.nhh.no/nhh-xmlui/bitstream/handle/11250/2407191/masterthesis.PDF?sequence=1
https://titlon.uit.no/download.php?p=getdata&d=equityindex&t=stocks
https://titlon.uit.no/download.php?p=getdata&d=equityindex&t=stocks
https://books.google.no/books?id=ME1SAkN0PyMC
https://books.google.no/books?id=ME1SAkN0PyMC
https://dl.acm.org/doi/book/10.5555/1593511
https://dl.acm.org/doi/book/10.5555/1593511
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.eswa.2022.118128
https://doi.org/https://doi.org/10.1016/j.eswa.2022.118128
https://www.sciencedirect.com/science/article/pii/S0957417422013100
https://www.sciencedirect.com/science/article/pii/S0957417422013100
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115022
https://doi.org/https://doi.org/10.1016/j.eswa.2021.115022
https://www.sciencedirect.com/science/article/pii/S0957417421004632
https://www.sciencedirect.com/science/article/pii/S0957417421004632
https://doi.org/10.48550/arXiv.2304.11127
https://doi.org/10.48550/arXiv.2304.11127

[94] J.M. Wooldridge, M. Wadud, and J. Lye. Introductory Econometrics:
Asia Pacific Edition with Online Study Tools 12 Months. Cengage Learn-
ing Australia, 2016. ISBN: 9780170350839. URL: https://books.
google.no/books?id=wXdLDwAAQBAJ.

112

https://books.google.no/books?id=wXdLDwAAQBAJ
https://books.google.no/books?id=wXdLDwAAQBAJ

Appendix A

Additional Information

A.1 Data sources
TITLON Financial Database: A financial database for Norwegian aca-
demic institutions. It contains large amounts of data on stocks, bonds, in-
dices, and more [87].

Yahoo Finance: A website that provides financial news, data, and in-
sights for investors and traders. It offers a wide range of financial infor-
mation and covers a variety of financial markets [31].

Bernt Arne Ødegaard: A Norwegian finance professor at the University
of Stavanger. His financial research and related data are openly available
through his personal website [70].

U.S. Energy Information Administration: A U.S. government agency
responsible for energy information. They openly provide a wide range of
related data on their website [1].

Norges Bank: The Central Bank of Norway. It is responsible for promot-
ing economic stability within the country through monetary policy. They
offer data through their database Norges Banks datatorg [68].

Statsistisk Sentralbyrå (SSB): The Norwegian central government agency
for official statistics and the country’s national statistical institute. SSB’s
data is available through their database Statbank [84].

113

Bloomberg: Bloomberg Professional Services provides an extensive finan-
cial database, processing 200 billion data points daily [80].

OECD: The Organization for Economic Cooperation and Development’s
iLibrary contains seven billion data points across 44 databases, including
economic, employment, and financial data [72].

Dario Caldara and Matteo Iacoviello: These two researchers provide
an open database for their geopolitical risk indices that reads the sentiment
from the electronic archives of 10 global-spanning newspapers [14].

Macrotrends: A research platform that contains data for stocks, com-
modities, precious metals, oil, gas, and global metrics [58].

Investing.com: Investing.com is a financial markets platform that offers
real-time data, quotes, charts, financial tools, breaking news, and analysis
across 250 exchanges worldwide [44].

BIS: The Bank for International Settlements (BIS) is an international fi-
nancial institution that aims to ensure monetary and financial stability
through international cooperation [43].

Wilshire: Wilshire is a global advisory company specializing in invest-
ment solutions, consulting services, technology solutions, and market in-
dexes [6].

FRED: The Federal Reserve Economic Data (FRED) is an online database
that contains economic time series data from numerous national, interna-
tional, public, and private sources [83].

A.2 Front page illustration:
The front page illustration image is generated with Craiyon, an AI image-
generating model related to the DALL-E mini from OpenAI [54].

Date generated: 09.04.2023

Prompt: "Something that depicts deep learning technology deployed in the
stock markets. Include a candlestick chart."

114

Appendix B

Additional Tables

Table B.1
ADF critical values

1% 5% 10%

Critical Values -3.43 -2.86 -2.57

Table B.2
ADF test results

Feature ADF statistic P-value Stationary

OSEAX -0.75 0.83 false
MSCI-W -1.60 0.48 false
WILL5000 -1.25 0.65 false
GDP 1.93 1.00 false
CAB -1.31 0.63 false
Trade -1.49 0.54 false
CPI -0.80 0.82 false
PPI 2.09 1.00 false
Production -2.37 0.15 false
Wages 2.39 1.00 false
Unemployed -1.98 0.30 false
Vacancies -0.77 0.83 false
C govt. 2.30 1.00 false
C priv. 2.02 1.00 false
RTI 0.56 0.99 false

115

Table B.2 continued from previous page
Feature ADF statistic P-value Stationary

New cars -1.64 0.46 false
M0 -3.06 0.03 true
M1 1.19 1.00 false
M2 2.94 1 false
M3 2.85 1 false
I-reserves -1.02 0.74 false
Policy rate -2.20 0.20 false
3m NIBOR -2.21 0.20 false
3m T-bill -2.23 0.20 false
6m T-bill -2.23 0.20 false
12m T-bill -2.30 0.17 false
3y G-bond -2.17 0.22 false
5y G-bond -2.08 0.25 false
10y G-bond -2.01 0.28 false
D public 6.37 1 false
D corporate 3.69 1 false
D households 6.67 1 false
D cent. govt. -0.46 0.90 false
D mun. govt. 5.65 1 false
Home price 2.31 1.00 false
Build costs 3.48 1 false
Home starts -4.30 0.00 true
Crude oil -1.22 0.67 false
Natural gas -2.61 0.09 false
Gold 2.56 1.00 false
Copper -1.16 0.69 false
Lumber -3.56 0.01 true
CCI EU -3.23 0.02 true
BCI NOR -5.71 0 true
10y/3m NOR -2.41 0.14 false
10y/3m U.S. -2.26 0.19 false
Bankruptcies -5.47 0 true
GPR -7.03 0 true
GPR 7d MA -7.11 0 true
GPR 30d MA -6.33 0 true
GPRA -7.13 0 true
GPRT -6.62 0 true
GPR NOR -7.83 0 true

116

Table B.2 continued from previous page
Feature ADF statistic P-value Stationary

GPRH NOR -8.48 0 true
NOK-TWI -3.01 0.03 true
USD/NOK -2.09 0.25 false
GBP/NOK -1.65 0.45 false
SEK/NOK -2.11 0.24 false
DKK/NOK -2.90 0.05 true
JPY/NOK -1.97 0.30 false
CAD/NOK -3.50 0.01 true
50d MA -1.05 0.74 false
200d MA -1.31 0.63 false
RSI -10.15 0 true
MACD -14.29 0 true
Year -0.21 0.94 false
Month -8.29 0 true
Day -21.54 0 true
Week -8.54 0 true
Day/week -2.16M 0 true
Holidays -11.11 0 true
Datetime 35.31 1 false

117

	Introduction
	Motivation
	Problem statements
	Delimitations
	Ethical considerations
	Main contributions
	Thesis outline

	Background and Related Works
	Stock market forecasting
	Stock markets and exchanges
	Stock market indices
	Traditional forecasting approaches
	Modern forecasting approaches
	A challenging domain
	Random walk hypothesis
	Efficient market hypothesis

	Machine learning
	Data
	Loss
	Overfitting
	Artifcial neural networks

	Deep learning
	Recurrent neural networks
	Long short-term memory networks
	Transformer models
	Temporal fusion transformers

	Feature selection
	An overview
	Random forest based feature selection

	Related works
	LSTM applications
	Transformer and TFT applications
	Utilization of wider economic datasets

	Methodology
	Experiment design
	Formalizing the problem-solving framework
	Target variable: Oslo Børs all-share index
	Data granularity and frequency
	Forecasting horizons
	Software
	System, hardware, and setup
	An overview of the final experiment framework

	Data research and retrieval
	Selection criteria
	Research
	Data sources
	Retrieval

	Data preprocessing
	Forward filling and frequency handling
	Outlier detection
	Splitting
	Managing stationarity
	Normalization

	Feature Selection
	Research-based manual feature selection
	Random forest-based feature selection
	Hyperparameter optimization feature selection

	Forecasting models
	Random walk model
	Random walk with drift
	LSTM
	TFT

	Training and evaluation
	RW models
	DL models
	Evaluation metrics

	Hyperparameter optimization search
	Tuning machine learning models
	Implementation
	Overview of the tuning process

	The Economic Dataset
	Composition
	Length, size, and span
	Categorization

	Preprocessing results
	Detecting and handling outliers
	Managing non-stationary features

	Feature selection
	A target feature baseline
	Research based selection
	RF-FS based selection

	Experiments & Results
	Hyperparameter tuning results
	LSTM
	TFT

	Experiment procedure
	Reiteration of final components and rationale
	Procedure
	Results presentation

	Forecasting results
	RWM
	RWD
	LSTM
	TFT

	Summary
	Top five most accurate models

	Discussion
	Feature selection results
	A preference for the target variable
	RF-FS promoting technical indicators

	Tuning results
	Overfitting LSTMs
	An improved TFT

	Forecasting results
	RWM: Performs the best
	RWD: Drift does not improve accuracy
	LSTM standard: Most accurate DL model
	LSTM tuned: Overfits
	TFT standard: Suboptimal architecture
	TFT tuned: Closing in on the LSTMs

	Summary
	The random walk remains undefeated
	Why the deep learning models are inaccurate
	Arbitrage and noise
	Additional reasons for the observed performance

	Conclusions
	Summary
	Answering the research questions
	Main contributions
	Future Work

	Additional Information
	Data sources
	Front page illustration:

	Additional Tables

