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Abstract 

In Norway, killer whales (Orcinus orca) are known to mainly prey on the Norwegian 

Spring Spawning (NSS) Stock of the Atlantic herring (Clupea harengus), following their 

migration up north during the winter. This has led to large assemblies of killer whales 

and herring, which has instigated research on killer whales in the northern regions. 

However, little is known about the distribution of killer whales in the central and 

southern parts of Norway. This study examines the value of citizen science in 

complementing data for killer whale distribution, while using this data for the creation 

of a species distribution model that produces relevant ecological knowledge on the 

distribution of killer whales. This was done by collecting observational data on killer 

whales through a variety of sources, including citizen science, to create a species 

distribution model using the maximum entropy (MaxEnt) method. Three different 

season-specific models were fitted, based on the seasonal migration patterns of the 

NSS herring (season 1 = Sept - Jan, season 2 = Feb - March, season 3 = April - 

August). In addition, a questionnaire survey was generated to investigate new 

distribution patterns in the two largest fjords in Norway, Sognefjord and 

Hardangerfjord. This study demonstrates that citizen science can be used to map and 

document the presence of cetaceans and that data derived from citizen science can 

be used as a part of ecological modelling applications. Citizen science together with 

other sources, synthesized a large amount of data with a broad spatial coverage, 

resulting in a dataset of 4372 observations. Results from the questionnaire indicated 

that the presence of killer whales in Hardangerfjord and Sognefjord is a new 

phenomenon. The MaxEnt model, which used 3536 of observations from the dataset, 

was able to successfully discriminate distribution patterns for killer whales in Norway 

with AUC levels > 0.9 (season 1 = 0.909, season 2 = 0.907, season 3 = 0.901). The 

most important environmental variables contributing to killer whale distribution in the 

MaxEnt model were herring, distance to coast, salinity, sea bottom temperature and 

chlorophyll a concentration. In addition, this research has highlighted the value of 

citizen science as a tool in ecological research, and established a baseline for the 

distribution of killer whales in Norway, with new knowledge on important environmental 

parameters that can be used in future research. 
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1. Introduction  

Understanding the distribution patterns of a species is an important topic in biology and 

biogeographic research. Species distribution is dependent on specific factors such as 

prey resources and direct physical effects (e.g. temperature and pH) which make a 

habitat suitable (Miller, 2010). Monitoring the species distribution of wide-ranging 

marine predators can be challenging due to the logistical difficulties and high cost 

associated with the tracking of highly mobile species. An approach to mitigate these 

challenges is by collecting data from citizen science initiatives. Additionally, Species 

distribution models (SDMs) constitute a valuable tool, as they provide information on 

distribution and habitat preferences. SDMs can be used in conservation research to 

determine whether any conservational actions are needed (Evans and Hammond, 

2004). 

 

1.1 Citizen science 

Citizen science is aid from the general public to scientific research, with the guidance 

of professional scientists (Earp and Liconti, 2020a). Collecting data using citizen 

science has several benefits for a project, including increased sample size from a 

larger workforce, while reducing cost effects. It’s a beneficial tool that enlists the 

general public in scientific discovery and it is particularly important in biodiversity 

research as large numbers of abundance and density taxa are determined by citizen 

science projects. It is particularly useful in the marine environments, to track widely 

mobile megafauna across larger regions and habitats (Theobald et al., 2015, Burgess 

et al., 2017). As marine legislations are becoming more complex, the use of citizen 

science to collect and obtain data can help with the increased need for larger datasets 

(Hyder et al., 2015). Studies have shown that the use of citizen science can provide 

data on various species, and can help manage populations, e.g., by establishing the 

need for marine protected areas (MPAs) and later monitoring them (Van Strien et al., 

2013, Sullivan et al., 2009). Citizen science can also provide data at a large spatial and 

temporal scale which is helpful in the research on distribution of far ranging coastal 

cetaceans (whales), like the killer whale (Earp and Liconti, 2020b, Delaney et al., 2008, 

Silvertown, 2009). It additionally generates trust and increases interest for a topic in 
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the general public, which can indirectly lead to efficiency in future decision making of 

management and conservation, by motivation fulfilment (Hyder et al., 2015, Glenn et 

al., 2012, Weichselgartner and Kasperson, 2010).  

An ongoing citizen science program by the Cornell Lab of Ornithology (CLO) and the 

National Audubon Society called eBird was launched in 2012, and uses the internet as 

a tool to gather information on birds. A network of human observers provides bird 

observations to monitor the distribution, abundance and potential patterns across 

spatiotemporal scales (Sullivan et al., 2009). This program later developed into a 

collective enterprise with partners of experts within fields of conservation biology, 

population and distribution biology, statistics and quantitative ecology (Sullivan et al., 

2014).  Another ongoing citizen science initiative is the Norwegian Biodiversity 

Information Centre (NBIC), “Artsdatabanken”. The NBIC was established in 2005, as 

a respond to the Norwegian governments increased focus on biodiversity. The 

program was previously a part of the Ministry of Education and Research, but has since 

2018 been independent, under the Ministry of Climate and Environment, but with their 

own board (Artsdatabanken, 2014a). The NBIC collects data from a wide range of 

sources, and collaborate with several experts within the field of biology. The program 

leverages the general public’s observations to gather observational data on species in 

Norway. These observations are then verified by experts. Several million geospatial 

observations have been gathered by the NBIC and are available through maps and 

lists, for everyone to use (Artsdatabanken, 2014b).  

Even though it’s not a new tool, citizen science has recently gained significant 

popularity, as shown by the increased number of studies utilizing it (Earp and Liconti, 

2020b, Burgess et al., 2017). Despite this, it is not fully embraced by the scientific 

community, and guidelines for best practices remain undefined (Cohn 2008; Silvertown 

2009; Bonney et al. 2014; Burgess et al. 2017). One of the main concerns and a 

frequent discussion around the topic of citizen science is the quality control of collected 

data (Crall et al., 2010, Ellwood et al., 2017). Another concern is the lack of structure 

which can disrupt the requirements of strict assumptions for data used in statistical 

analysis. To address this, precise protocols can be implemented when validating 

sampling data to reduce sampling biases and eliminate the need for such strict 

assumptions (McDuffie et al., 2019). Providing quality data is crucial to create 
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credibility, and previous studies have shown that citizen science projects can provide 

sufficient data, where maximum dividend is achieved after data validation and 

verification (Hyder et al., 2015). Another challenge involves engaging the general 

public in a project. Motivating participants to actively get involved is important for the 

success of citizen science projects (Prestopnik and Crowston, 2012, Rotman et al., 

2012). 

When studying the wide ranged distribution of killer whales with daily migrations of 

several kilometres (5-98 km/day) (Dietz et al., 2020), collecting information can require 

large workforces. The Norwegian Orca Survey (NOS) has since 2013 had an ongoing 

monitoring project, recording the year-round occurrence of killer whales in Norway. 

Additionally, they established a citizen science initiative in 2016 to gather observational 

data on killer whales, with an online platform to invite various wildlife enthusiasts, 

photographers and the general public to contribute their killer whale images and 

observations (Jourdain and Karoliussen, 2021). With NOS’ research activities being 

mostly limited to northern Norwegian regions, help from the general public made it 

possible to extend their ongoing monitoring of Norwegian killer whales to also include 

encounters from all parts of Norway (Eve Jourdain, 2017).  A part of their project has 

been to photo-identify killer whales, using the Bigg (1982) method, examining the 

individual’s shape and natural markings of the dorsal fin and adjacent saddle patch. 

Each individual killer whale was given a specific ID-code and the results were put in 

an extensive ID-catalogue that constitutes the foundation of past and ongoing studies 

(Jourdain and Karoliussen, 2021). 

 

1.2 Species distribution models 

Species migration is found in all major animal groups of fish, invertebrates, turtles, 

pinnipeds, sharks, and cetacean’s to track temporal and/or spatial changes in e.g. 

climate, feeding resources and breeding areas (Dingle and Drake, 2007). To examine 

the potential geographic range of a species and the environmental drivers behind its 

spatial distribution, the use of Species distribution models (SDMs) have become widely 

popular (Jones et al., 2019). SDMs are known as habitat suitability models or 

ecological niche models, and have become a fundamental tool in ecology, 

biogeography and conservation (Merow et al., 2014, Guisan et al., 2013, Zimmermann 
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et al., 2010, Franklin, 2010). They have rapidly increased concurrent with the rise of 

good statistical techniques and Geographic Information System (GIS) tools, as well as 

increased availability of ready-to-use environmental datasets (Phillips et al., 2006b, 

Guisan and Zimmermann, 2000). SDMs relate the geographical distribution of a 

species to its present environment, to map suitable habitats and/or distribution (Guisan 

and Zimmermann, 2000). Most of the SDMs approaches rely on both presence and 

absence data to create regression-based models using general statistical methods, 

like the generalized linear model (GLM), the generalized additive models (GAM), or 

classification and regression trees (CART) (Guisan and Zimmermann, 2000). 

However, there is limited availability of absence data, making modeling techniques that 

require only presence data very valuable (Graham et al., 2004). Obtaining absence 

data for cetaceans is particularly difficult as they are highly mobile species. 

Additionally, they can be hard to identify, as encounters often occur from far distances. 

The lack of absence data is particularly found in areas where conservation actions are 

needed and sampling data has been insufficient (Anderson et al., 2002, Ponder et al., 

2001, Soberon, 1999). Detecting a species can be difficult due to the complexity of 

marine habitats, leading to the requirements of e.g. expensive equipment. This is 

particularly the case for offshore and sub-surface studies (MacLeod et al., 2008), which 

specifically regards the cetacean species. Therefore, the interest in SDMs with 

presence-only data has increased (Pearce and Boyce, 2006), and been used in 

several studies researching distribution of cetaceans (Jones et al., 2019, Edrén et al., 

2010).  

A technique using only presence data to model the geographical distribution of a 

species is the Maximum Entropy (Maxent) method by Phillips et al. (2006b). The 

method combines the species environmental requirements from spatial occurrence 

data together with specific environmental parameters. Based on these, the method 

describes important factors impacting distribution of a species and/or its preferred 

habitat (Phillips et al., 2006b). The model assumes that for a short period of time the 

distribution is at equilibrium with relevant environmental factors, while experiencing 

only small disturbances (Hirzel and Guisan, 2002). The MaxEnt algorithm requires a 

collection of geographical occurrence data, such as observational data, and a set of 

ecologically relevant environmental predictors. From this, it generates pseudo-
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absence data from the background points to replace absence data (Phillips et al., 

2006a).  

The principle of the Maximum entropy model is derived from E.T Jaynes (1957) 

approach to finding the best way to estimate the unknown probability of distribution. 

He proposed that the best approach is to ensure that any limitations on the unknown 

distribution are met and the distribution should have maximum entropy within those 

limitations. This is known as the maximum-entropy principle, and the MaxEnt machine 

learning algorithm searches for the probable distribution with the highest entropy 

(defined as a measure for randomness or disorder in a physical system) (Phillips et al., 

2006b, Jaynes, 1957, Ignatov, 2011).  

 

1.3 Killer whale (Orcinus orca, Linnaeus 1758) 

Killer whales (Orcinus orca) are apex predators and the most widely distributed species 

of marine mammals, with patchy distribution across all of the Earth’s oceans (Forney 

et al., 2006). They are most common in coastal areas, particularly in cold to temperate 

waters of high latitudes, nonetheless they also occur in offshore and tropical waters 

(Forney et al., 2006). Killer whales are highly social animals with group structures 

tightly knitted around females in so called matrilineal pods, i.e., the pod is based around 

mothers and their offspring (Bigg et al., 1990, Brent et al., 2015). A pod usually consists 

of mature females, their offspring and a varied proportion of males and post-

reproductive females (Brault and Caswell, 1993a). Social pods use clicks, pulsed calls, 

and whistles to communicate. These differ from each other in vocal repertoire where 

different pods have special dialects of whistles (Brault and Caswell, 1993b, Ford, 1991, 

Au, 1993, Simon et al., 2007). The size of a killer whale pod can range between 

approximately 5 and 63 individuals (Brault and Caswell, 1993a, Katona et al., 1988, 

Hoelzel, 1991), and vary in relation with target prey and prey abundance (Nøttestad et 

al., 2002, Nøttestad et al., 2014, Jourdain et al., 2017).  

Killer whales are considered generalists due to their broad diet consisting of over 140 

known prey species, including mammals, fish, squids, birds and reptiles (Forney et al., 

2006, Jourdain et al., 2017, Ford, 2009). However, regional populations often adopt 

specialized diets and behavior based on prey availability (Nichol and Shackleton, 1996, 
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Ford et al., 1998, Ford and Ellis, 2014, Jourdain, 2020). Behavioral adaptations to 

foraging on a narrow range of prey may, in some cases, lead to social segregation 

caused by cultural barriers. That is, individuals may prefer interacting with others that 

adopt similar feeding behaviors, further restricting social contacts and leading to 

reproductive isolation among ecotypes (Riesch et al., 2012). Ecotypic forms 

documented so far differ in behavior, morphology, pigmentation, acoustics and 

genetics (LeDuc et al., 2008, Ford et al., 2011, Hoelzel et al., 2007, Foote et al., 2011, 

Pilot et al., 2010). In the North Pacific Ocean three distinct ecotypes have been 

described based on these factors: the “resident”, “transient” and “offshore type” 

(Dahlheim et al., 2008, Foote et al., 2009, Ford et al., 1998, Herman et al., 2005). The 

“resident” ecotype primarily feed on fish, and more specifically salmonids, the 

“transient” ecotype specializes on marine mammal prey and the “offshore” ecotype 

appears to primarily feed on sharks and other high trophic level fish (Herman et al., 

2005, Ford et al., 1998). Ecotypic differentiation is less clear in other parts of the world 

(Foote, 2023).  

In the North Atlantic Ocean (NA) two distinct killer whale ecotypes have been 

suggested by Foote et al. (2009), based on tooth-wear and analysis of nitrogen stable 

isotopes. Type 1 is the generalist killer whale, feeding mainly on fish, but also on 

marine mammals to some extent. Type 2 is the potential exclusive mammal eater, 

where the main part of their diet may consist of baleen whales (Foote et al., 2009). It 

has been suggested that the Type 1 fish eating killer whale consists of three different 

populations based on available prey resources: herring (Clupea harengus) - feeding, 

mackerel (Scomber scombrus) - feeding and tuna (Thunnus spp.) - feeding (Foote et 

al., 2011). However, recent research highlighted that classifying North Atlantic killer 

whales into these two ecotypes was over simplistic, in the light of much dietary variation 

occurring within populations. Consequently, these ´types´ should no longer be used 

(Foote, 2023).  

Killer whales are found throughout Norwegian coastal waters with higher abundance 

in areas where the Norwegian spring spawning (NSS) stock of Atlantic herring is also 

abundant, for e.g., at herring wintering and spawning grounds (Similä et al., 1996). 

NSS herring is one of the largest fish stocks in the world and are found in large parts 

of the Norwegian Sea during their feeding period (April-August) (Bachiller et al., 2016). 
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During their wintering period (September-January) the herring gather in northern 

Norwegian fjords. For the last decades, assemblies of killer whales have gathered here 

to feed on the overwintering stock, creating a large aggregation of herring and whales. 

This aggregation has since 2012 occurred off the coast of Troms (Dietz et al., 2020). 

After the wintering period in mid-January, the herring starts migrating southwards. This 

leads to the redistribution of the herring stock throughout several spawning grounds 

between Lofoten and Lista (69N - 58N), with main spawning ground off Møre (64-62) 

(Slotte, 1999). The NSS herring stock’s population dynamics are highly fluctuating, and 

spawning, feeding, and wintering grounds may change from one year to the next (Huse 

et al., 2002, Huse et al., 2012).  

Most of the studies on killer whales in Norway have been conducted in the north, where 

large assemblies of killer whales gather for seasonal feeding on the NSS herring 

(Similä et al., 1996, Bisther and Vongraven, 1995). However, recent studies have 

shown observational evidence of Norwegian killer whales preying on marine mammals 

like the harbour porpoise (Phocoena phocoena), grey seal (Halichoerus grypus) and 

harbour seal (Phoca viulina) (Cosentino, 2015, Vongraven and Bisther, 2014). One of 

these was a longitudinal study by Jourdain et al. (2017) that documented persistent 

feeding on seals in the Norwegian coastal waters for at least 30 years. Additionally, 

lumpfish (Cyclopterus lumpus) was newly documented by Jourdain et al. (2020b) as a 

prey species for Norwegian killer whales. Moreover, the study found behaviour of 

seasonal adaptations between prey resources and feeding strategies within the pods, 

where the pod size adapted over the year according to prey abundance. Another study 

from Jourdain et al. (2020a) further investigated the different dietary variations in 

Norwegian killer whales by looking at stable isotopic nitrogen (δ15N) and carbon 

(δ13C) ratios. The study found possible dietary patterns among Norwegian killer 

whales, ranging from fish eaters (herring and lumpfish) to seal-eaters. The seal-eaters 

were found to have a diverse diet consisting of both fish and marine mammals, eating 

from a higher trophic level throughout the year, with elevated nitrogen values in their 

skin (Jourdain et al., 2020a). Other prey species reported for the Norwegian killer 

whales include cod (Gadus morhua), lumpfish, Atlantic salmon (Salmo salar), Atlantic 

mackerel, saithe (Pollachius virens) and eider duck (Somateria molissima) (Nøttestad 

et al., 2014, Similä et al., 1996, Vester and Hammerschmidt, 2013, Jourdain et al., 

2021). The population size of the Norwegian killer whale has been estimated to consist 
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of 15056 (CV = 0.29,95% CI:  8423–26914) individuals, using line-transect surveys 

(Leonard and Øien, 2020). A study by Jourdain et al. (2021) further investigated the 

abundance of killer whales in Norway. The study highlights line-transect survey 

methods as insufficient for estimating Norwegian killer whale abundance during the 

last 20 years. Here, a smaller and more defined area was used to estimate the 

abundance of killer whales at herring wintering grounds in northern Norway, by using 

a capture-recapture model with photo-identification data spanning 32 years. The model 

estimated a peak in abundance in 2015 with an estimate of 1061 individuals (CV = 

95% CI: 999–1127) and a drop to 513 whales (CV = 95% CI: 488– 540) in 2018.  

 

1.4 Aims 

The initial focus in this study was to analyse observations and acoustic recordings of 

killer whales in Hardangerfjord on the west coast of Norway, to investigate the 

migration patterns of two killer whale pods. The two pods are known to frequently enter 

Hardangerfjord. However, it turned out that the acoustic recordings were not suitable 

to reliably identify killer whales. Therefore, the aim of the study was changed, and the 

scale extended to instead look into the distribution of killer whales along the entire 

Norwegian coast. Because of the initial aim, some of the data collected in a media 

analysis were solely gathered from the west coast. The implications that this may have 

for the results are discussed in section 4. 
 

Almost all studies on killer whales in Norway have been conducted in the northern 

region. The lack of studies in the southern part of Norway represents a missing piece 

in our understanding of the Norwegian killer whale spatial distribution and habitat use. 

Little research south of Lofoten is the consequence of the limited potential for dedicated 

fieldwork, due to logistical challenges like the rough waters outside the coast of e.g., 

Møre. Additionally, the unpredictable killer whale presence in the south, where there is 

no real distribution pattern, has made research challenging. Although there is evidence 

of killer whale occurrence along the entire Norwegian coastline (Christensen, 1988), 

there is no recent observational data to study their distribution. Therefore, 

observational data from a variety of sources were collected over the past 22 years, 

with the majority of observations collected from citizen science initiatives, to examine 

killer whale distribution in the south of Norway. A SDM based on these observations 
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and environmental data was applied to predict suitable locations for killer whales in 

Norwegian waters. Results from the SDM were compared to existing knowledge of 

factors that influence the distribution of killer whales in the north, to validate how the 

model performed. 

The aim of this study is to assess the value of citizen science in complementing data 

on killer whales, combined with a species distribution model that produces relevant 

ecological knowledge on the temporal and spatial distribution of killer whales in 

Norway. 

In assessing this aim, a two-step approach was conducted: (1) First, a comprehensive 

review of killer whale sightings along the entire Norwegian coast was generated using 

observational data, in large parts collected from citizen science, for the period 2000 – 

2022, and (2) Secondly, the collected data were used to fit a maximum entropy model 

which identified the environmental factors that best predicted the presence of killer 

whales in Norway, with an emphasis on the distribution off the central and southern 

coast.  
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2. Method 

2.1 Data collection  

Data on killer whale sightings were collected from four different sources:  

1) Media analysis (of newspaper and magazine archives) 

2) The Norwegian Biodiversity Information Centre (NBIC) 

3) The Norwegian Orca Survey (NOS) and 

4) The Institute of Marine Research (IMR).  

 

Media analysis 

Web archives of newspapers, magazines, scientific papers and other publications hold 

valuable historical data that can be used for research purposes. Accessing these 

archives can be complicated due to copyright concerns and other limitations 

(Huurdeman et al., 2013). But in some cases, it may be possible to apply for research 

access. The use of archive methods (searching and extracting information from 

archives of newspapers and magazines) for researching killer whale distribution in 

Norway, have never been applied before. Hence, data on observed killer whales along 

the Norwegian coast between the years 2000 to 2022, were collected. The information 

gathered with the archive method were compiled in a large dataset.  

The media analysis consisted of broad searches through three relevant archives: 1) 

“Bergens Tidende”, 2) “Nasjonalbiblioteket” and 3) “Atekst retriever”. The observational 

data were examined, and to exclude false positives and create a credible dataset, the 

following inclusion/exclusion rules were applied: Observations without information on 

date, time or place were not included. In e.g., sailboat magazines, some articles were 

found with limited information, stating observations of killer whales made earlier that 

year or month. In these cases, the encounters were not the central focus of the article, 

and so were considered less credible. Observations made from large distances, or 

longer than two weeks prior to publication were also not included. Photographic 

evidence, found in 2/3 of the articles, were also included in the dataset for verification. 

Unfortunately, due to a computer crash, photographs between the year 2020-2022, 

were lost and could not be restored.   
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1) Bergens Tidene - Since the initial focus was on the Hardangerfjord region, 

searches were conducted in Bergens Tidende, one of the biggest newspapers 

in the Vestland region. Bergens Tidene generously provided access to their 

archive for one month. In the search function, one or more words could be used 

simultaneously, where all the words used needed to appear in the same article. 

Therefore, using a single word in the search function generated a greater 

number of articles compared to using multiple words, as the latter required all 

the words to be present within the same article. A search with the word 

“spekkhogger*” was conducted with the symbol (*), indicating variation of the 

word’s ending, to provide as many outputs as possible. 

2) Nasjonalbiblioteket - The main library institution in Norway, 

Nasjonalbiblioteket, provided access to their publication archive of books, 

newspapers, magazines and digitalized content. The structure of 

Nasjonalbiblioteket’s archive was different from Bergens Tidende. It allowed for 

multiple search words being used simultaneously, without the words being in 

the same article, by the operator “OR”. The search phrase «spekkhogger* OR 

orca* OR staurkval* OR killer whale*» was made to source as many 

observations as possible. The operator broadens the search by including 

several terms related to killer whales. The search parameter was limited to the 

Vestland region. 

3) Atekst retriever - The third platform used in the media analysis was Atekst 

retriever, a comprehensive database that contains an extensive range of 

Norwegian newspapers, magazines, and other news sources. Atekst retriever 

generously provided access to their archive for one month. Here, the search 

functions were similar to the one in Nasjonalbiblioteket, where the use of 

multiple words in a single search could be generated by including the operator 

“OR”. The same phrase as in the Nasjonalbiblioteket search was used: 

«spekkhogger* OR orca* OR staurkval* OR killer whale*». Different parameters 

could be chosen to specify the search, where “web” and “Norwegian sources” 

were chosen.  
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The Norwegian Biodiversity Information Centre (NBIC) 

Observational data on killer whales were also obtained from NBICs database 

(https://artskart.artsdatabanken.no/) for the study period 01.01.2000 - 31.01.2022.  

 

The Institute of Marine Research  

Additionally, observational data for 1984-2022 were provided by the Institute of Marine 

Research (IMR). Most of this was opportunistically sampled data, e.g., collected with 

IMR research vessels during any one of numerous IMR surveys. The IMR also 

routinely receives reports of marine mammal sighting from the navy and the coast 

guard. Additionally, as a national research institute with a high profile and large public 

visibility, the IMR occasionally receives pictures, videos and reports of marine mammal 

activity from the public. The latter could be considered citizen science, but records 

where this was the case were not practically possible to identify. All IMR data included 

the date of the observation, the number of whales and the longitude and latitude of 

where the whales were spotted.  

 

The Norwegian Orca Survey 

Lastly, observational data collected through citizen science were provided by the 

Norwegian Orca Survey (NOS), with observations from the year 2009-2023. The data 

included mostly observations from Vestlandet. Date, location and region for the study 

period were included in the final dataset. 

  

2.1.1 Data processing  

All observations from the abovementioned sources were compiled into a 

comprehensive dataset. The collected data were organized into “database”, “date”, 

“source”, “region”, “location”, “x” and “y” representing coordinates of latitude and 

longitude, and “comments” for additional relevant information. While data from 

Artsdatabanken and IMR already included coordinates, the remaining data sources 

(Bergens Tidende, Nasjonalbiblioteket, Atekst retriever and NOS) lacked this 

https://artskart.artsdatabanken.no/
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information. In these cases, approximate coordinates were obtained from Google 

Maps, by using the “region” and “location” details (Figure 1).  

To assess potential biases, and differences in these biases, in data collected through 

citizen science and by the IMR, plots/graphs were made showing the number of killer 

whales sighted per year, using data from 1) only citizen science, 2) only IMR, 3) the 

full combined dataset. 

 

Figure 1: An example illustrating how corresponding coordinates of location and region described in the 

final dataset were obtained from Google Maps. 

 

2.2 Questionnaire  

A questionnaire was designed to focus on Norway’s two largest fjords, Sognefjord and 

Hardangerfjord, where the presence of killer whales has been well known for the past 

years through monitoring organized by the Norwegian Orca Survey (Jourdain et al., 

2022). The two fjords are located in Vestland county, with Sognefjord being the largest 

fjord in Norway, and the longest open fjord in Europe stretching 205 km inland, with a 
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maximum depth of 1303 meter (Thorsnæs, 2021b). Hardangerfjord is the second 

largest fjord in Norway, with a length of 180 km and a maximum depth of 852 meter. 

Its main fjord has a width ranging from 2-10 km with many smaller fjords branching out 

(Thorsnæs, 2021a). The questionnaire was generated to assess whether the presence 

of killer whales in the two fjords is a new phenomenon. It was distributed to the citizens 

of Hardangerfjord and Sognefjord and consisted of six questions: 

 

1. Have you ever observed killer whales in Hardangerfjord/Sognefjord? 

2. When was the first time you observed killer whales in 

Hardangerfjord/Sognefjord? 

3. What time of the year did you observe the killer whales? 

4. How many times have you observed killer whales in 

Hardangerfjord/Sognefjord? 

5. Have you ever observed killer whales attack porpoises in 

Hardangerfjord/Sognefjord? 

6. Have you ever observed killer whales attack seals in 

Hardangerfjord/Sognefjord? 

 

Regarding what time of the year observations were made, participants had the option 

to select multiple answers, in case some of them had observed killer whales at different 

times of the year.  

The questionnaire was created using the online survey platform, Survio  

(https://www.survio.com/Hardangerfjord/ https://www.survio.com/Sognefjord) and 

distributed on the Facebook group “Spekkhoggara i Hardanger” on the 28th of May 

2022, and again on the 23rd of January 2023. It was later distributed on a Facebook 

group that share information about killer whales in Sognefjorden, “Spekkhoggere i 

Sognefjorden” on the 10th of February 2023. Results were gathered from the online 

platform and summarized in Microsoft excel. 

 

https://www.survio.com/Hardangerfjord/
https://www.survio.com/survey/d/C8U7Q2Q4Q1L8I4Q1F?fbclid=IwAR2iFqJaXSh75_MQlZ5gP0H6Y4ie4VBHizFsIVHNnU8e47IWi5I9-fOktEo
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2.3 Modeling with Maximum Entropy   

Data Requirements & Pre-processing steps - Since the collected data on killer whales 

consisted of presence-only data,  a MaxEnt model (version 3.4.3) (Phillips et al., 

2006a) was chosen to estimate the habitat and distribution most suitable for killer 

whales. Collected data on observed killer whales between 01.01.2000 – 31.12.2022, 

that remained after applying all quality checks described previously and that remained 

within the study area, were used in the model as data points to represent presence-

only records.  

Study area – The study area for the MaxEnt model was defined within the geographical 

extent that included all but seven of the gathered observational data points. These 

seven data points were located significantly outside the bounds of the other 

observations, and were therefore not included. In accordance with Phillips et al. 

(2006b) limiting the data to fit within the bounds of other data can improve the model 

performance, as background data is subjected to observational data. The study area 

covers the entire coast of Norway, extending nearly to Iceland, including almost the 

entire Norwegian Sea and the Greenland Sea, as well as areas of the Barents Sea, 

North Sea and parts of the Atlantic Ocean. It ranges from the latitudes 56.5’N ̊- 80’N  ̊

and longitudes -10’E ̊ - 34’E ̊ (Figure 2). The Norwegian Sea stretches around 1.1 

million square kilometres. It has a very deep pool, with large parts being more than a 

1000 meters deep and with a maximum depth of nearly 4000 meters (Sælen, 2021).   
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Figure 2: Map of the study area covering the entire Norwegian coast. The map was created using the 

Quantum Geographic Information Systems (QGIS) software program (QGIS, 2022). Here a Google 

satellite layer is displayed in the background with a template layer covering the study area on top. All 

observational points within the outer boundary were used in the model. The coastal area, where the 

highest amount of observational data were collected, is marked with a brighter red colour. 

 

2.3.1 Environmental predictor variables 

Generally, the accuracy of a MaxEnt model depends on the specific environmental 

predictors included in the model (Sutton and Martin, 2022). In this study, the choice of 

environmental parameters was selected based on a review of previous studies on the 

spatial distribution of killer whales (Jones et al., 2019, Viddi et al., 2010, Sahri et al., 

2021). Some of these variables were selected as they presumably influenced the killer 

whales directly, and some because they could have an indirect effect, e.g., mediated 

through the killer whale’s prey.  
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Fourteen environmental variables were chosen for the model:  herring, sea bottom 

temperature (SBT), sea surface temperature (SST), salinity, ocean mixed layer 

thickness (OMLT), depth, seabed substrate, chlorophyll a concentration (chl-a), vessel 

density (VD), stratification, stratification roughness (rstrat), rugosity, seafloor slope and 

distance to coast (DTC) (Table 1). The next sections will explain the environmental 

variables in turn. 

 

Table 1: Overview of the fourteen environmental variables considered for inclusion in the MaxEnt model.  

Variable Source Unit Spatial 

resolution 

Temporal 

resolution 

Year 

 

Herring catch 

 

Sea bottom temperature 

 

Sea surface temperature 

 

Salinity 

 

Ocean mixed layer thickness 

 

Chlorophyll a concentration 

 

Depth 

 

Seabed substrate 

 

Vessel density 

 

Stratification 

 

Stratification roughness 

(rstrat) 

 

Rugosity 

 

Seafloor slope 

 

Distance to coast 

 

Fiskeridirektoratet 

 

Copernicus marine service 

 

Copernicus marine service 

 

Copernicus marine service 

 

Copernicus marine service 

 

Copernicus marine service 

 

EMOD net 

 

EMOD net 

 

EMOD net 

 

Calculated from temperature 

 

Calculated from stratification 

 

 

Calculated from bathymetry 

 

Calculated from bathymetry 

 

Calculated from bathymetry 

 

Kg 

 

°C 

 

°C 

 

‰ 

 

m 

 

mg/m3 

 

m 

 

NA 

 

km2 

 

°C 

 

°C 

 

 

°C 

 

m 

 

m 

 

1/2° 

 

1/12° 

 

1/12° 

 

1/12°               

 

1/12° 

 

1/4° 

 

100m 

 

500m 

 

1 km2 

 

1/12° 

 

1/12 

 

 

125m 

 

125m 

 

125m 

 

NA 

 

Daily 

 

Daily 

 

Daily 

 

Daily 

 

Daily 

 

NA 

 

NA 

 

Monthly 

 

Daily 

 

Daily 

 

 

NA 

 

NA 

 

NA 

 

2000-2022 

 

2000-2019 

 

2000-2019 

 

2000-2019 

 

2000-2019 

 

2000-2019 

 

2022 

 

2019 

 

2017-2022 

 

2000-2019 

 

2000-2019 

 

 

2022 

 

2022 

 

2022 
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Herring - Herring was thought to be an important environmental parameter in the 

model, as the killer whale presence and seasonal distribution correlate with the 

movements of its prey (Similä et al., 1996, Condy et al., 1978, Ford et al., 1996, 

Jourdain et al., 2021), and their main prey along the Norwegian coast is known to be 

the Norwegian spring spawning herring (NSS). NSS herring performs large scale 

seasonal migrations along the Norwegian coast and into the Norwegian Sea. These 

seasonal migrations occur as herring move between wintering grounds (September-

January), spawning grounds (February-March) and feeding grounds (April-August) 

(Similä et al., 1996, Røttingen, 1992, Slotte, 1999). Such species-specific 

considerations are important to include in the MaxEnt model, as it biologically 

motivates the studied species (Araújo and Peterson, 2012). To account for seasonal 

patterns in the spatial distribution of herring, three separate MaxEnt models were fitted, 

each corresponding to one “biological season”. Since distributional data on herring 

were not available for the study area, herring catch data were used as a proxy for the 

presence of herring. Catch data from 2000 to 2020 were downloaded from The 

Norwegian Directorate of Fisheries (fiskeridir.no). The data contained all catch across 

all fishing gears from Norwegian fishing vessels and foreign vessels landing fish in 

Norway. It also included the catch from research and education purposes, as well as 

first hand sales of recreational fishing (Hopland; and Aasheim, 2022).  

Chlorophyll a, Sea surface temperature, Stratification, Ocean mixing layers & 

Stratification roughness (rstrat) - High primary production and upwelling zones have 

been speculated to correlate with the spatial distribution of fish prey (Edrén et al., 

2010). For this reason phytoplankton could presumably influence the prey of killer 

whales through bottom-up mechanisms (Frederiksen et al., 2006). Following Jones et 

al. (2019), mass concentration of chlorophyll a (chl-a) in sea water, together with sea 

surface temperature (SST), were used in the model as an indicator for the amount of 

phytoplankton near water surface. SST is one of the most influential parameters for 

oceanography, as it provides information on thermal features. Additionally, it plays an 

important role in the energy uptake, and moisture exchange between the atmosphere 

and sea surface (Sumner et al., 2003). Primary production depends on sufficient 

sunlight for growth. It also relies on nutrients such as natrium, phosphorus and iron 

being mixed up from the deep, while not being mixed down below the photic zone 

(Wafar et al., 1983, Murphy, 1998, Bristow et al., 2017). Stratification and ocean mixing 
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layer thickness were therefore included in the model. Chl-a, sea surface temperature 

and ocean mixing layers were downloaded from Copernicus Marine Environment 

Monitoring ocean map from the global ocean physics reanalysis for the years 2000-

2019 (Table 1). Roughness of terrain (rstrat) was used in the model to find the 

maximum and minimum variation in stratification roughness of terrain, as it was thought 

to indicate where mixed and stratified waters meet as specified by strong heterogeneity 

(Fogg et al., 1985, Woodson and Litvin, 2015). 

Depth, seabed substrate, slope, rugosity & distance to coast – Seabed substrate and 

depth can both be linked to the distribution of fish prey (Munk et al., 1995, Edrén et al., 

2010) and were used as an indicator for seafloor relief (depth and height of terrain). 

Seafloor relief is recognized as the primary factor for determining the distribution and 

composition of fish populations. It relies on several abiotic factors like temperature, 

light and salinity that contributes to food availability trough primary production and 

habitat availability through the amount of vegetation (Galaiduk et al., 2017, Hill et al., 

2014, Borland et al., 2021). Seabed substrate and depth were downloaded from the 

European Marine Observation and Data Network (EMOD net) from the years 2019 and 

2022, respectively. Spatial variation in terrain metrics is also linked to fish diversity and 

abundance, and therefore rugosity (index of seafloor complexity) and seafloor slope 

(degree of maximum change in elevation) were thought to be important (Hastie et al., 

2004, Bailey and Thompson, 2009). As killer whales are common in coastal areas 

possibly due to higher ocean productivity (Forney et al., 2006), the distance to coast 

was included in the model to find how killer whale occurrences is related to the coast.  

Sea bottom temperature, Salinity & Vessel density - Oceanographic parameters like 

sea bottom temperature and salinity play an important role in community composition 

and species distribution (Mayer and Piepenburg, 1996, Stransky and Svavarsson, 

2010), and were therefore included in the model. Both parameters were downloaded 

from CMS for the years 2000-2019, whereas vessel density, the last variable included 

in the model, was downloaded from EMODnet for the years 2017-2022. EMODnet 

collected data on ship traffic through coastal stations and satellites to create a vessel 

density map, that displays the total monthly number of vessels per square kilometre 

(Falco et al., 2019). Vessel density was included in the model as it causes noise 

pollution that can disturb or attract killer whales leading to behavioural changes (Holt 
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et al., 2017, Barrett-Lennard et al., 1996, Williams et al., 2006, Holt et al., 2009, Mul et 

al., 2020).  
 

Processing predictor variables – All environmental variables were downloaded as GIS 

raster layers from the European Marine Observation and Data Network (EMODnet), 

Copernicus Marine Service’s (CMS) MyOcean Pro and The Norwegian Directorate of 

Fisheries (Table 1). They were processed separately in R Studio, (Version 

2023.03.0+386) as they were downloaded from different platforms and had slightly 

different formats. Due to excessive file sizes, environmental data had to be split up into 

smaller parts within the study area before being downloaded, and later combined to a 

full layer by using the mosaic function in R (Hijmans, 2023). Some of the environmental 

covariates were calculated, from other environmental variables (Table 1). Stratification 

was calculated by subtracting sea bottom temperature from sea surface temperature. 

Stratification was then used to calculate the stratification roughness (rstrat) using the 

roughness of terrain function from the raster R package (Hijmans, 2023). Depth was 

downloaded in many parts and combined into a single raster layer in R, using the 

mosaic function (Hijmans, 2023). From depth, two additional parameters were derived; 

rugosity and seafloor slope, again by using the terrain function in R. Distance to coast 

was found using the distance function in the raster R (Hijmans, 2023) package based 

on the depth GIS layer. 

A raster template covering the spatial extent of the study area was defined using 

coordinates of 56.5’N -̊ 80’N ̊ and 10’E  ̊ - 34’E ̊. All environmental variables were 

projected to the coordinate system UTM33N (EPSG code 32633) with a resolution of 

5000 x 5000 meters and saved as .tiff files. Since the environmental parameters were 

available with different temporal resolutions, varying between hours, days and months 

(Table 1) and downloaded for up to a 20-year period, a mean value for each predictor 

layer was calculated. For SST, SBT, Salinity, chl-a, ocean mixing layers and vessel 

density each of the mean variables were split up into the three biological seasons used 

for killer whales (September-January, February-March and April-August). This resulted 

in three mean predictor layers for each environmental covariate, where each layer 

represented the seasonal average for that covariate.  
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Catch data on herring were summed per season per location and used to create 

season-specific herring raster layers. However, locations given in the fishery data 

referred to cells in a coarse spatial grid used by the Directorate of Fisheries in Norway 

(DOF) to report fishing data, with a resolution of approximately 0.5 degrees (~53 km). 

Under the assumption that fishing effort in each cell was uniformly distributed, catch 

data were mapped from the grid used by the DOF to a new herring raster layer defined 

based on the template grid defined above. This was accomplished by assigning 

catches to raster cells in the herring grid based on the proportion of overlap of each 

template cell with the location cells in the DOF grid. Thus, the value of cells in the raster 

grid that overlapped multiple locations cells in the DOF grid received catches from all 

location cells with which they overlapped. More precisely, 

 

𝐻𝑖 =∑𝑍𝑗 ×

𝑗

𝑃𝑖,𝑗 
(equation 1) 

 

where Hi is the value of cell number i in the herring grid, Zj is the total seasonal landed 

catch of herring in the jth location cell that intersected with cell i in the herring grid, and 

Pi,j, is the proportion of the total area of location cell j covered by herring cell i. Values 

for Hi were calculated separately for each season. For example, if a cell in the herring 

grid covered 5%, 4%, and 2% of the area in each of three location cells, with values 

1000, 500 and 1500, respectively, for season 1, then the value of that cell in the herring 

raster for season 1 would be 0.05*1000 + 0.04*500 + 0.02*1500 = 100. Cells in the 

herring grid that did not overlap with the DOF grid were assigned a value of 0. 

The seabed substrate data included seven different substrate categories: sand, coarse 

sediment, mixed sediment, rock & boulders, mud, sandy mud and muddy sand.  

Extrapolating environmental variables – Since a proportion of the killer whale 

observations intersected cells with missing data in one or more of the environmental 

raster layers (e.g., due to differences in coverage and/or resolution), missing values in 

the environmental raster layers were replaced with the nearest non-missing values, on 

a cell-by-cell basis. 
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Collinearity and Jackknife test – To avoid collinearity that could result in uncertainties 

in model estimates, the model was tested for correlation between environmental 

variables using a method by Pearson (Lee Rodgers and Nicewander, 1988) (Figure 

20). Before dropping any correlated layers from the model, a jackknife test was 

conducted to account for variable importance. The jackknife runs a series of models, 

excluding and isolating each variable in turn, before running the model with all variables 

together. From this, the variable importance of each variable can be estimated from 

the increase in model gain with and without each variable included, and by only 

including the isolated variable (Liu et al., 2018). After conducting the jackknife test, 

variables with high correlation and low ecological significance were dropped from the 

model, using the variance inflation factor for collinearity, vifcor function in R (Naimi et 

al., 2014). Any layers with highly correlated environmental variables above the 

threshold of 70% were dropped out from the model. 70% indicates when collinearity 

begins to severely mislead the model estimation and prediction (Dormann et al., 2013, 

Smith and Santos, 2020, Sony et al., 2018). 

Sensitivity analysis – Leverage was calculated for each of the observational points 

used to fit the model. Following the method by Daniel (2014), the estimated leverage 

scores were used to determine if the impact of any one observational data point was 

so large that it should be considered as an outlier. Outliers could have a 

disproportionate effect on the model (McCullagh and Nelder, 1989). No outliers were 

identified this way; therefore, all observational data were included in the model.  

Creating the MaxEnt model – The software package used to fit the MaxEnt model, was 

the dismo R package, version 1.3-14 (Hijmans et al., 2017). Coordinates from killer 

whale observations collected from citizen science were used in the model as presence 

data. The environmental prediction layers describing spatial variability in the three 

seasons were placed in a raster stack, so there was one stack for each season, to be 

used in three different seasonal MaxEnt models. Recommendations by Phillips (2008) 

and Fourcade et al. (2014) suggest to use 10000 background points, which is the 

default and common practice for MaxEnt. However, a study by Lissovsky and Dudov 

(2021) questions the representativeness of this default setting for the use in any 

territory, and exemplifies studies using 75000 – 300000 background points (El‐Gabbas 

and Dormann, 2018). With the study area being of substantial size (309602 cells of 
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5000 x 5000 meter), it’s possible that more random background points would be 

needed to fully capture the heterogeneity of the conditions in the study area. Therefore, 

the model was run with 10000, 15000 and 20000 background points, and the model 

that performed best, as measured by regularized training gain, was used for further 

analysis. With these settings, three different seasonal models were fitted using the 

MaxEnt function. A schematic overview with information on how the models were 

created is shown in Figure 3. 

Model output - For each model, probability maps, threshold maps and variable 

response curves were generated. The probability map is represented by a 

Complementary Log-log (cloglog) transformation of the model’s predictions. MaxEnt 

has four output formats for model values (raw, cumulative, logistic and cloglog), with 

cloglog being the default output (Phillips, 2005). Cloglog maps the predictions on a 

transformed scale between 0 and 1 of probability of presence, where higher values 

demonstrate areas with more suitable conditions for killer whales. The size of grid cells 

in the model plays an important role as the model is structured to estimate probability 

of presence by assuming that each cell holds one individual per cell (Phillips, 2005). 

The MaxEnt model produces response curves to represent probability of presence 

(POP) for each environmental variable. The response curves plot POP (y-axis) against 

a series of values within each parameter (x-axis). Each plot ranges between a 

threshold where the suitability for presence is highest (Fitzgibbon et al., 2022). The 

response curves provide information on how each variable influence the model. 

Furthermore, the model will predict suitability in areas where most of the parameters 

have highest suitable conditions. If the response curve is flat it implies that the 

parameter will not influence the POP. However, higher ranging curves implies that the 

parameter is important for POP in the model, where the model is able to distinguish 

between suitability and not (Fitzgibbon et al., 2022).  

Model testing – Some methods are established to evaluate SDMs, like the MaxEnt 

model. This includes evaluations within the receiver operator curve (ROC), which finds 

the Area Under the Curve (AUC) and the True Positive Rates (TPR) (Fitzgibbon et al., 

2022). The AUC ranges from 0 to 1, where 1 is perfect performance and 0.5 is 

equivalent to a random prediction. A random prediction would mean that the model is 

indifferent and does not help with identifying presence and absence. Well performing 
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models are recognized to have AUC values above 0.9 (Swets, 1988). 

Recommendations from (Swets, 1988) were followed to assess the AUC values, where 

> 0.90 = excellent, 0.80-0.90 = good, 0.70-0.80 = fair, 0,60-0,70 = poor and < 0.60 = 

fail. To assess the accuracy of the three models, each dataset was split up into two 

subsamples, one with training data (80% of the observations), used to fit the model 

and one with testing data (20% of the observations), used to create predictions on 

“unseen” data.  

In accordance with Phillips et al. (2006b), the model performance was tested using the 

evaluate function in R (Hijmans et al., 2023) and analysed using the Area Under the 

Curve (AUC) of the Receiver Operator Characteristic (ROC) analysis to evaluate its 

success. ROC and AUC were chosen to measure the accuracy of the models because 

of its popularity within SDMs and especially within MaxEnt literature (Elith et al., 2006, 

Ma and Sun, 2018, Yuan et al., 2015). They measure the rate of classification error 

when applying a model to the test data (Hastie et al., 2009). AUC is a threshold 

independent evaluator that provides a single measure of accuracy. It traditionally 

evaluates how well the model predictions can distinguish between locations of 

presence data and absence data, but for presence-only data used in this model, it 

compares presence data with background points (pseudo-absence data) (Fielding and 

Bell, 1997, Merow et al., 2013). From the evaluation of each model, a threshold map 

was made using the best performing threshold given by ROC, to identify potential areas 

of high occurrence. The threshold finds the lowest value for predicted occurrence by 

finding the lowest suitable value point from where an observation of a killer whale has 

been made and uses it to make a map to predict killer whale presence/absence 

(Phillips et al., 2006b). Each of the model performances were also tested by evaluating 

the true positive rate (TPR) at the specific threshold given by ROC. 
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Figure 3: Schematic representation of procedure for making and testing MaxEnt model for killer whale 

distribution in Norwegian waters. Inspiration for schematic representation gathered from Pan et al. 

(2023). 
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2.4 Source for analysis  

The full dataset containing all observations from the four different sources, as well as 

observations gathered from Atekst retriever, and all R-scripts used in the model 

analysis can be obtained from the available GitHub repository 

(https://github.uio.no/ullaaf/Masterthesis ). Environmental data were downloaded from 

three sources: the Copernicus Marine Service (CMS), European Marine Observation 

and Data Network (EMODnet), and the Norwegian Directorate of Fisheries. The data 

contained varying temporal resolutions between days, months and years (Table 1). 

Sea bottom temperature, sea surface temperature, salinity, ocean mixed layer 

thickness and chlorophyll a concentration were obtained from CMS 

(https://data.marine.copernicus.eu/products), and contained daily records for the years 

2000-2019. From EMODnet (https://emodnet.ec.europa.eu) depth was obtained with 

data from 2022, seabed substrate with data from 2019 and vessel density with data of 

monthly records for the years 2017-2022. Herring catch records was obtained from the 

Norwegian Directorate of Fisheries (https://www.fiskeridir.no) and contained data for 

the entire study period.  

 

 

 

 

 

 

 

 

 

 

 

https://github.uio.no/ullaaf/Master-thesis.git
https://data.marine.copernicus.eu/products
https://emodnet.ec.europa.eu/
https://www.fiskeridir.no/


 

 

27 

3. Results 

3.1 Killer whale sighting 

The final dataset of killer whale observations contained 4372 records (Figure 4 & 5). 

The highest sighting rates were recorded in 2020, with over 400 reported sightings 

(Figure 6). An overall increase can be seen in reported sightings of killer whales 

throughout the years of the study period (Figure 6). 

 

Figure 4: Map illustrating the distribution of 4372 collected observations of killer whales. Each source 

(Artsdatabanken, Atekst retriever, Bergens Tidende Arkiv, IMR, Nasjonalbiblioteket and NOS – data) is 

represented by a different colour.  
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Figure 5: Map illustrating distribution of observed killer whales collected from citizen science, excluding 

observations from IMR, to better see the results. Each source (Artsdatabanken, Atekst retriever, 

Bergens Tidende Arkiv, Nasjonalbiblioteket and NOS – data) is represented by a different colour.  
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Figure 6: Observations of killer whales compiled from all collected data spanning from 2000 to 2022. 

 

Media analysis – Of the total 4372 observations, 504 were gathered from the media 

analysis. 14 records were found in Bergens Tidende and 20 in Nasjonalbiblioteket. The 

most comprehensive media search was conducted in Atekst retriever and resulted in 

6969 articles that matched the search keywords. 470 of these passed the inclusion 

criteria. More than half of these articles included photographs.  

The Norwegian Biodiversity Information Centre (NBIC) – Observations collected 

from Artsdatabanken included reported sightings from two different research institutes 

and a biologist: “Norsk Zoologisk Forening,” “Global Biodiversity Information Facility” 

(GBIF) outside of Norway, and from biologist John Bjarne Jordal (JB Jordal) (Figure 

7). The dataset yielded a total of 935 observational records. 
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Figure 7: Picture collected from Artsdatabanken, illustrating observations of orcas made by three 

different sources, resolved by color “Norsk Zoologisk Forening”, “GBIF-noder outside of Norway” and 

“JB. Jordal”.  

 

Norwegian Orca Survey (NOS) – NOS data contained records of 277 killer whale 

encounters, mainly from the Vestlandet region.  

Institute of Marine Research (IMR) – Lastly, data provided from IMR contained a total 

of 2656 observations of incidental sightings. 

 

The total number of observations per year, when excluding IMR data, exhibits a clearly 

increasing trend (Figure 8a). There was a limited number of observations reported 

before 2014, followed by a steep increase in observations starting in 2014. The largest 

increase was between 2019 to 2020, resulting in over 300 observations reported in 

2020. Number of killer whale sightings per year only including IMR data showed a 

gradual decrease in observations collected during the study period (Figure 8b)  
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Figure 8a: Observations collected from citizen science excluding IMR data during the period of 2000 

to 2022.  

 

 

Figure 8b: Observations in IMR data during the period of 2000 to 2022. 
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The total monthly number of collected observations of killer whales was found to be 

spread evenly throughout the months of the year (Figure 9). Most observations were 

made in May, with around 500 observations. Slightly fewer observations were made in 

June and August, and in December, less than 200 observations.  

 

 

Figure 9: Number of monthly observations of Killer whales compiled from all collected data (Media 

Analysis, Artsdatabanken, NOS and IMR) spanning from 2000 to 2022. 

 

3.2 Questionnaire 

3.2.1 Hardangerfjord  

116 participants responded to the questionnaire about killer whales in Hardangerfjord. 

Out of the contributing participants, 114 had observed killer whales in Hardangerfjord 

(Figure A1). Regarding the first time killer whales were observed, three participants 

responded that they were not sure (Figure A2), while one participant answered that an 

observation was made as early as in 1918 (Figure 10). Another answered that he/she 

had observed one for the first time in 1985. The observation from 1918 could be a 

potential source of error as it was not observed directly by the participant. When 

excluding these two observations, the majority of observations were made in the last 
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10 years, with a clear increase in observations reported in the past five years, between 

2017-2022 (Figure 11).  

 

 

Figure 10: First observations of killer whales in the Hardangerfjord based on citizen science, including 

an observation from 1918 (could be a potential source of error). 

 

 

Figure 11: First observations of killer whales in the Hardangerfjord based on citizen science, not 

including an observation from 1918.  
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198 answers were given, regarding the month observations were made (Figure 12 & 

A3). The survey shows that the frequency of killer whale observations in the 

Hardangerfjord is higher during the winter and early spring months, with the highest 

number of observations being recorded in April (Figure 12). In contrast, very few 

observations were reported between June and November, with no observations 

recorded in October.  

 

 

Figure 12: Monthly observations of killer whales recorded in Hardangerfjord. 

 

The majority of participants had encountered killer whales in the Hardangerfjord 

multiple times. Specifically, 24 participants had observed them more than 10 times, 

while 20 had observed them twice (Figure 13 & A4).  
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Figure 13: Histogram illustrating number of times each participant has observed killer whales in 

Hardangerfjord.   

 

The last two questions concerned attacks on marine mammals by killer whales in 

Hardangerfjord (Figure A5 & A6). Out of the 198 observations made by the 114 

observers, 38 had observed attacks on harbour porpoises and 11 had observed 

attacks on seals. This correlates with the high abundance of harbour porpoises in the 

Hardangerfjord, which appears to be the reason the whales frequently move in and out 

of the fjord, to feed on the porpoises (Åslein, 2023).  

 

3.2.2 Sognefjord  

40 participants contributed to the questionnaire on killer whales in the Sognefjord. 

Here, 39 reported having observed killer whales in Sognefjord, and only one had not 

(Figure A7). Regarding first-time killer whales were observed in Sognefjord, one 

participant answered having observed one in 1986. This record was made in Leikanger 

and the participant responded to also having observed killer whales in Sognefjord “the 

last four years”. Another participant answered with “I’ve seen them every year the past 

years”, which was considered to be the last three years. Besides the record from 1986, 
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all other observations were made the last nine years, with no observations made 

between the years 1986 and 2015 (Figure 14). A clear increase in observations were 

made in 2016 and another again in 2020 (Figure 14 & 15). This trend in observations 

argue that killer whales in Sognefjord could be a new phenomenon.  

 

Figure 14: Yearly observations of killer whales in Sognefjord based on citizen science, including the 

observation from 1986. 

 

Figure 15: Yearly observations of killer whales in Sognefjord based on citizen science, excluding the 

observation from 1986 (could be a potential source of error). 
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Concerning the timing of observations, participants had the option to select multiple 

answers, resulting in 76 answers (Figure A9). The results show a clear trend towards 

increased observations of killer whales during the winter months, between November 

and March, with the highest number of observations counted in January (Figure 16). 

Few observations were made between April and October.  

 

Figure 16: Observations of killer whales from questionnaire in Sognefjorden showed by months. 

 

1/4th of the participants had observed killer whales in the Sognefjord twice. Nine had 

observed killer whales one time, and eight answered more than 10 times (Figure 17 & 

A10).  

 

Figure 17: Number of times killer whales were observed in Sognefjord. 
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Regarding questions concerning killer whale attacks on marine mammals (Figure A11 

& A12), 17 out of the 40 participants had observed attacks on porpoises, and 10 had 

observed attacks on seals.  

 

3.3 MaxEnt model   

3.3.1 Observational data  

The 4372 observations collected through opportunistically sampled data and citizen 

science were used in the model as presence data. Before the environmental variables 

were extrapolated, 1732 observations were lost from falling beyond the confines of the 

study area or from intersecting with missing environmental values. After extrapolating 

the environmental spatial layers by replacing missing values with non-missing values, 

only 851 observations were lost. This approach preserved 881 observations, leaving 

3536 observational records to be used in the model as presence data. 

3.3.2 Model performance and validation of MaxEnt 

Area Under the Curve (AUC) – The AUC was used to test the model performance for 

the three models. Each model (season 1 = September-January, season 2 = February-

March & season 3 = April-August) was able to sufficiently discriminate distribution 

patterns for killer whales with an AUC > 0.9. The receiving operating characteristics 

(ROC) curves (Figure 18) showed that AUC for the three models were respectively S1 

= 0.909, S2 = 0.907, S3 = 0.901, indicating that the models were able to classify true 

positives (model predicts where killer whales are present) at a much higher rate than 

false positives (model falsely predicts killer whales’ presence, where they are not 

present). This indicates a strong performance for all three models in discriminating 

suitable and unsuitable habitats for killer whales. 
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Figure 18: Receiving operating characteristics (ROC) curves for the three MaxEnt models (season 1 to 

the left; season 2 in the middle & season 3 to the right) with associated AUC demonstrating the 

performance of the three models with performance of 0.909, 0.907 and 0.901. 

 

True Positive Rate (TRP) - The best performing threshold given by ROC was used to 

find the true positive rate for each separate model. The TPR curves (Figure 19) for the 

three seasons were 0.8, 0.84 and 0.81, indicating how well the model correctly 

identifies true positives. This is opposed to the true negative rate, where the model 

correctly indicates not suitable environment for killer whales, which is the complement 

of TPR (20%, 26% and 19%) (Fitzgibbon et al., 2022).  

 

 

Figure 19: True positive rate curves (TPR) at different threshold levels from the best performing 

threshold given by ROC, for the three seasons (season 1 to the left; season 2 in the middle & season 3 

to the right) 
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Collinearity and Jackknife test – From Pearson’s collinearity test (Figure 20) rugosity 

and slope were found to have the highest correlation of 97%, followed by depth and 

distance to coast with a correlation of 77%, and lastly depth and sea bottom 

temperature with a correlation of 75%. After assessing the jackknife test for variable 

importance for regularized training gain, rugosity and depth was found to have little 

regularized training gain for the three models, neither isolated nor excluded (Figure 

21). Consequentially, as the two parameters had high correlation, they were dropped 

from the model. This left 12 predictor variables to be used in the model: herring, sea 

surface temperature, sea bottom temperature, salinity, ocean mixed layer thickness, 

seabed substrate, chlorophyll a concentration, vessel density, slope, stratification, 

stratification roughness (rstrat) and distance to coast.  
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Figure 20: Pearson pairwise correlation matrix of 14 environmental predictor variables illustrated from 

model of season 1. Correlation coefficient (Pearson’s r) is showed on the bottom left, whiles a graphic 

presentation of the correlation is showed on the top right. Larger circles and stronger colours represent 

stronger correlation. Blue coloured circles represent positive correlation and red coloured circles 

represents negative correlations. Similar outputs were given for all three seasons, where the strongest 

correlation was seen between rugosity and seabed of 97% and depth and distance to coast with a 

correlation of 77%, followed by depth and sea bottom temperature with a correlation of 75% (66% for 

season 2 and 71% for season 3). 

 

Furthermore, the jackknife test (Figure 21) revealed distinct results between the three 

seasons. Herring exhibited the most significant isolated training gain in season 1 and 

2 (September-January & February-March). In season 3 (April – August), the variable 

with highest isolated training gain was distance to coast, followed by sea surface 

temperature and sea bottom temperature. This indicates a good fit to the training data. 
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High isolated training gain indicates that the predictors, when used in isolation, have 

the most useful information for the model. For season 1 particularly, herring exhibited 

high training gain in isolation, with levels almost as high as when considering all 

parameters together. In contrast, slope followed by rugosity showed the least training 

gain in isolation. In the three models, omitting any of the environmental variables 

resulted in a similar decrease in model gain. The exclusion of any parameter had a low 

impact on the models. However, sea surface temperature decreased the gain the most 

in season 1, chlorophyll a concentration, herring and sea surface temperature in 

season 2, and herring, salinity and sea surface temperature in season 3. Meaning 

these variables hold important information that is not present in the other variables, 

making the parameters important factors in the model (Jones et al., 2019).  

 

 

Figure 21: Jackknife output plots from the three different seasons (September- January displayed left, February 

– March displayed top right and April – August displayed bottom right) assessing the training gain for each 14 

parameters for the model. This estimates the importance of each predictor variable in the model. Each variable 

is excluded in turn when the model is created, illustrated in light blue – without variable. Then each model is 

created with only one parameter in isolation, illustrated in dark blue – isolated parameter, before a model is 

created with all the parameters together, illustrated in red – all parameters.  
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Sensitivity analysis – The sensitivity analysis for the three models did not reveal any 

observational points with significantly high leverage. The observational points with the 

highest leverage in the three models (season 1, season 2 and season 3) were 0.0047, 

0.0038 and 0.0033 suggesting relatively low impact on the model’s predictions. 

Consequently, all observational points were kept in the model.  

Background points – Results from testing the model with 10000, 15000 and 20000 

random background points, found the best performing model to be with 20000 random 

background points. Accordingly, regularized training gain for the three models gave a 

gain of 0.6-0.63 with 10000 background points, 0.735 – 0.795 with 15000 background 

points, and 0.862 - 0.929 with 20000 background points. 

 

3.3.3 Environmental variables describing distribution 

The variable contribution varied among the three seasons. Contribution was more 

similar for season 1 and 2, than for season 3 (Figure 22, Table 2). The variable 

contribution plot (Figure 22) showed that for season 1 and 2, the highest rate of overall 

relative contribution, from the 12 environmental variables, was from herring with 60% 

contribution in season 1 and 52% contribution in season 2. The second most influential 

environmental variable was distance to coast with a relative contribution of 18.6% and 

18.2% for seasons 1 and 2, respectably. In season 1, sea surface temperature and 

sea bottom temperature were the third and fourth most influential environmental 

variables with relative contribution of 7.1% and 4.9%. In season 2, chlorophyll a 

concentration was the third most influential variable with relative contribution of 9.8%, 

and thereafter sea surface temperature with 7.6% relative contribution. The most 

influential environmental variable in season 3 was distance to coast with 28.8% relative 

contribution. The second most influential variable in season 3 was sea surface 

temperature with a relative contribution of 25.4%. The third and fourth most influential 

variables were salinity with 15% relative contribution and herring with 12.3% relative 

contribution. Recurring parameters with high relative contribution within the three 

seasons were herring, distance to coast, salinity and sea surface temperature. 

Additionally, sea bottom temperature had some contribution value in season 1 and 3, 

and chlorophyll a had a significant contribution in season 2. The remaining 

environmental variables (vessel density, seafloor slope, stratification, stratification 
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roughness, seabed and ocean mixing layers) were inadequate to significantly 

contribute in the models.  

 

 

Figure 22: Variable contribution for each environmental parameter for season 1(top left, season 2 (top 

right) and season 3 (bottom left).  
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Table 2: Percent contribution and the permutation importance for each 14 parameters, in the three 

seasons (1 = September – January, 2 = February – March & 3 = April – August) affecting the distribution 

of killer whales.   

Variable                                                    Percent contribution                    Permutation importance 
 

Season 1 

Herring                                                                   60           22.9 

Distance to coast   18.6 11.5 

Sea surface temperature 7.1 27.6 

Sea bottom temperature  4.9 3.1 

Salinity                                                                  3.6                                                  20.7 

Vessel density 1.6 0.2 

Seabed substrate 1.6 2 

Chlorophyll a 1.1 6.8 

Stratification roughness 0.8 0.5 

Stratification 0.4 1.3 

Slope 0.1 1 

Ocean mixing 1.1 2.4 

 

Season 2 

Herring  52  4 

Distance to coast 18.2 9.9 

Chlorophyll a 9.8 15.5 

Sea surface temperature 7.6 25.5 

Salinity 5.9 14.4 

Ocean mixing 1.8 21.5 

Seabed substrate 1.5 2.3 

Vessel density 1.4 0.2 

Stratification 0.6 2.3 

Sea bottom temperature 0.5 1.9 

Slope 0.5 2.3 

Stratification roughness 0.1 0.2 

 

Season 3 

Distance to coast   28.8 1.1 

Sea surface temperature   25.4 38.83 

Salinity 15 38.5 

Herring   12.3 6.1 

Sea bottom temperature 7.1 3.1 

Chlorophyll a  3.3 7.7 

Seabed substrate  3.1 1.7 

Slope  2.6 1.1 

Ocean mixing 1.1 0.5  

Vessel density 0.6 0.7 

Stratification  0.5 0.3 

Stratification roughness   0.4 0.3 
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3.3.3.1 Response curves  

The response curves (Figure 23a, b & c) plot probability of presence (POP) against a 

series of values within each environmental variable. The probability of presence for 

recurring environmental parameters contributing in the three models are explained in 

turn in the next section. Response curves for environmental parameters inadequate to 

significantly contribute in the models (vessel density, seafloor slope, stratification, 

stratification roughness, seabed and ocean mixing layers) will not be analysed.  

Herring – The response curves for herring (Figure 23a, b & c) showed that greater 

concentrations gave higher probability of presence in all three seasons, where POP 

increased relatively with herring catches. POP peaked at herring catches of 

respectably ca. 518000 kg in season 1, 134300 kg in season 2, and 83830 kg in season 

3. 

Distance to coast – The probability of presence was higher towards distances of 500 

meters and 400 km from the coast in the three seasons, although relatively high levels 

of POP persisted between 500 meters and 400 km in season 2 and 3. In season 1 and 

2, POP was higher towards distances of 500 meter from the coast. For season 1, the 

response curve (Figure 23a) shows POP decreasing slowly with increasing distances 

from the coast. In season 2, the response curve (Figure 23b) shows a decrease in 

POP followed after high POP at 500 meter distance. This was followed by a gentle 

increase, up to a peak in POP at 400 km from the coast. Similarly, in season 3 (Figure 

23c) the POP was slightly higher towards a distance of 400 km from the coast. 

Temperature – In terms of temperature suitability, the response curves for POP 

demonstrated distinct patterns for all three seasons (Figure 23a, b & c). In season 1 

(Figure 23a), there was a gradual increase in POP within the range of sea surface 

temperatures from 0-9°C followed by a steep increase, peaking at approximately 

10.37°C. Afterward, a rapid decline followed, resulting in higher temperatures having 

a probability of zero. A similar trend was found in season 2 (Figure 23b), characterized 

by a constant increase in POP between the temperatures of 0-6°C, peaking at 

approximately 6.1°C, followed by a sharp decline to a POP of zero at higher 

temperatures. In season 3, the response curve (Figure 23b) showed an increase in 

POP between 3-10°C degrees, with a peak between approximately 8.5 - 9.5°C. This 

was followed by a decline in POP, although some level of POP persisted at higher 
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temperatures. Regarding sea bottom temperatures, in season 1, higher POP was 

found for temperatures between -10 and 9°C, peaking at 9°C, followed by no POP at 

any higher bottom temperatures. In season 2, optimal conditions for POP were 

observed (Figure 23b) at higher bottom temperatures, with a peak at 8°C, followed by 

a decline. However, a persistent level of POP persisted up to 20°C for bottom 

temperature in season 2. In season 3 the response curve (Figure 23c) demonstrated 

a contrasting pattern. Here, higher POP was observed at colder temperatures between 

-10 and -2°C, followed by a decrease in POP as temperatures increased.  

Salinity – Concerning optimal salinity conditions for presence, the response curve for 

season 1 (Figure 23a) showed a gradual increase in POP from 10 PSU (practical 

salinity units) up to its highest levels within the range of 29-33 PSU, followed by a 

decline, where no POP was found at any higher salinity levels. Season 2 was 

characterized by sustained POP at high salinity levels (Figure 23b). Here, an increase 

in POP was present between 10 PSU up to 32 PSU, followed by a small decrease, but 

with POP remaining relatively elevated within the range of 40 – 50 PSU. In season 3 

(Figure 23c), similar patterns as for season 1 was found. Here, a steep increase in 

POP was found, with a peak at 26-34 PSU, followed by a steep decline, resulting in no 

POP at any higher salinity levels. 

Chlorophyll a concentration – The optimal chlorophyll a concentration varied among 

the three seasons. In season 1, concentrations of chlorophyll a did not affect POP. 

Here, the response curve (Figure 23a) shows the highest POP at negative chlorophyll 

a concentration, followed by a complete absence of POP at higher concentrations. In 

season 2 (Figure 23b) chlorophyll a had highest POP at 0,2-0,4 mg/m3 concentrations, 

with no POP at either higher or lower concentrations. In season 3 (Figure 23c) POP 

increased greatly when chlorophyll a concentration exceeded 0 mg/m3. 
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Figure 23a: Response curves for season 1 for 12 environmental parameters, each curve displaying the 

most suitable ranges and variations for each parameter. The model predicts suitable areas from where 

most of the parameters have high suitability.  
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Figure 23b: Response curves for season 2 for 12 environmental parameters, each curve displaying the 

most suitable ranges and variations for each parameter. The model predicts suitable areas from where 

most of the parameters have high suitability. 
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Figure 23c: Response curves for season 3 for 12 environmental parameters, each curve displaying the 

most suitable ranges and variations for each parameter. The model predicts suitable areas from where 

most of the parameters have high suitability. 

 

3.3.4 Predicted distribution patterns 

Predicted distribution patterns for killer whales were represented by probability maps 

with the default cloglog output (0 - 1) (Figure 24a, b & c). The maps found areas with 

higher prediction values predominantly in areas close to the shore, along the entire 

Norwegian coast, for all three seasons.  In season 1, the probability map (Figure 24a) 

showed that probability of presence was noticeably higher in the north than in the 

south. For season 2, the highest probability of presence (Figure 24b) moved slightly 

further south along the coast and outwards into the open waters. Season 3 (Figure 

24c), showed the highest probability of presence in both the north and the south, with 
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less probability in the central coast of Norway. Season 3 has the most probability of 

presence in the south, out of all three seasons, where probability of presence was 

found further offshore.  

 

 

Figure 24a: Map predicting distribution of killer whales in Norway for season 1. Green color indicates 

areas the model predicted as more suitable for killer whales based on observational points and 

environmental parameters. 
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Figure 24b: Map predicting distribution of killer whales in Norway for season 2. Green color indicates 

areas the model predicted as more suitable for killer whales based on observational points and 

environmental parameters 
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Figure 24c: Map predicting distribution of killer whales in Norway for season 3. Green color indicates 

areas the model predicted as more suitable for killer whales based on observational points and 

environmental parameters 

 

3.3.4 Threshold map 

The results from the three threshold maps can be found in appendix (Figure A13a, b 

& c) and show predicted presence of killer whales at the lowest suitable value point for 

occurrence, for each season. The threshold map illustrates areas suitable for presence 

above the threshold values for lowest predicted presence (green) and below (white). 

The three seasons had different values for lowest predicted presence, S1 = 0.35, S2 

= 0.38 and S3 = 0.44, respectively. The maps show some variation in the three models. 

The predicted presence was lowest in season 3 (Figure A13c), compared with the two 

other seasons. Most predicted presence at the lowest suitable value point was in 
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season 2 (Figure A13b), with a large area suitable for presence. The threshold map 

for season 1 (Figure A13a) illustrates a similar pattern in the north as the probability 

map for season 1.  
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4. Discussion 

This study investigated the use of an alternative approach to model the spatiotemporal 

distribution of the killer whale, a far-ranging, migrating cetacean species that spends 

most of its time below the sea surface. This was done by collecting observational data 

on killer whales through a variety of sources, including citizen science, and thereby 

avoiding the costs of carrying out regular research surveys. The data collected were 

used to create a species distribution model that contributes to our understanding of 

which environmental factors influence the distribution of killer whales in Norwegian 

waters. Ultimately, this study has synthesized a great amount of data with a broad 

spatial coverage, covering many geographical regions of Norway.  

 

4.1 The value of citizen science as a tool in research  

From the final dataset containing 4372 records, a total of 1716 records came from 

citizen science observations. The trend in reported observations of killer whales, 

including observations from all four sources, gradually increased during the study 

period (Figure 6). This increase in reported observations could possibly reflect 

distributional shifts and/or changes in killer whale abundance, but it could also indicate 

increased involvement from the general public (Jourdain et al., 2019). This trend was 

further investigated by excluding opportunistically sampled data from the Institute of 

Marine Research, to assess the trend in collected data from citizen science initiatives, 

as IMR observations are not exclusively gathered from citizen science and the general 

public. Without the IMR data, a distinct increase in number of reported observations 

were found for the study period (Figure 8a), and was especially prominent from 2014 

to 2021. This was opposed to a gradual decrease in observations collected from IMR 

(Figure 8b). The IMR dataset consists of a combination of opportunistically sampled 

data and citizen science data reported from the coast guard, the navy, IMR research 

vessels, fishermen and the general public. A possible explanation for the increase in 

observations made by the NBIC, NOS and media analysis could be recognised from 

larger efforts made by NOS and the NBIC, then of IMR, to gather the public’s attention. 

Another explanation could be that NOS’s and NBIC’s report systems are more 

accessible, than the IMR’s, making it easier for the general public to report 

observations of killer whales. This could be attributed to IMR primarily being a research 
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institute, with observations collected from a variety of sources. Consequently, IMR data 

does not reflect the increasing trend in citizen science observations. Yet another 

explanation for the increased reporting’s from citizen science may be the Covid19 

pandemic, which gave people more time to be outside in nature. Furthermore, a 

potential explanation describing the decrease in observations collected from IMR could 

indicate a decrease in killer whale populations in Norway. Although, there is low 

possibility of this as killer whale numbers appear to be stable, or even increasing, 

around Norway, despite numerous anthropogenic threats (Jourdain et al., 2019). 

Lastly, the increased trend in observations collected from citizen science indicates that 

it has become a more valuable tool. This highlights the use of citizen science as a tool 

to gather observational data for a larger dataset. Spreading the knowledge of its 

usefulness, could lead to the enhancement of data quality, as the general public may 

be more inclined to report observations and contribute to a project. The quality of such 

observations could also be improved by having established reporting platforms, and 

not just relying on mass media and social networks. 

Over the past decades, there has been a shift in approaches to conservation of wildlife, 

moving from exploitation to preservation (Reeves and Reijnders, 2002, Reeves, 2009). 

For cetaceans like the killer whale, a clear change is evident, with a shift from whaling 

and capturing of killer whales for entertainment purposes, to encountering significant 

opposition against these practices (Wells et al., 1998, Simon et al., 2009, Kuningas, 

2014). This shift, with growing interest in the wildlife, may potentially explain the 

increased reported killer whale observations through citizen science, evidenced in this 

study (Figure 6 & 8a). Higher efforts to involve the general public in scientific work, 

through citizen science, can be a contributing factor to the increase rate of reported 

observations. Motivating the general public is crucial to ensure the success and 

sustainability of a project, and poses a challenge to the citizen science approach 

(Prestopnik and Crowston, 2012, Rotman et al., 2012). However, in this thesis, the 

study species is a well-known charismatic species that easily captivates the attention 

of the public. This makes the process of motivating participants to enrol in citizen 

science initiatives significantly easier. Another way of motivating participants to 

contribute in a project is by choosing a specific area of interest, or a specific activity 

(Hyder et al., 2015, Carcia-Soto and van der Meeren, 2017). Such initiatives have been 

made in the Hardangerfjord region, where NOS has successfully gathered the public’s 
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attention through shared information on two killer whale pods, frequently moving in and 

out of the fjord, feeding on the harbour porpoise population (Åslein, 2023).  

The rise of social media platforms, as well as the use of smartphones, may have 

contributed to the increased rate of reported killer whale observations (Figure 6 & 8a). 

These platforms have allowed for information to be shared, and thereby contributed by 

engaging the general public. Additionally, it has created an accessible platform where 

observations can easily be reported. Social media platforms can be useful for research 

purposes, serving as a means to collect information that can be used in more 

systematic reviews after controlling the quality of the collected data. The Norwegian 

Orca Survey has made substantial efforts to engage the general public by raising 

awareness and increasing the knowledge on killer whales, e.g., through social media 

platforms. The NOS is an example of an organization that has successfully used citizen 

science as a tool in collecting observational data, where the growing interest in killer 

whales over the last years, have been extremely beneficial in their research (Jourdain 

and Karoliussen, 2021). Furthermore, by establishing an online platform, they have 

made it possible for the general public to access and contribute to research, e.g., by 

submitting photographs of killer whale encounters for identification. 

Results from the questionnaire assessing whether the presence of killer whales in 

Hardangerfjord and Sognefjord is a new phenomenon gave similar results. This 

displayed a clear increasing trend in number of observations made the past few years 

(Figure 11 & 15). There is high awareness of killer whales in the Hardangerfjord, 

partially due to the efforts of the NOS to involve the general public in citizen science. 

These initiatives have facilitated the collection of data in this thesis through high 

response rates in the questionnaire (116 participants). Two killer whale pods have 

been found frequently moving in and out of the Hardangerfjord the past years, between 

the months of December and May (Jourdain et al., 2022, Åslein, 2023). This coincides 

with findings in the questionnaire (Figure 12), and could indicate new distribution 

patterns. Killer whale distribution patterns are highly associated with the dynamic 

distribution of prey resources. Potentially, discovering the large harbour porpoise 

population in Hardangerfjord (Bjørge et al., 2019), could therefore be the reason for 

this new distribution pattern. Additionally, this coincides with the high percentage (33%) 

of participants, who have observed attacks on harbour porpoises in the 
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Hardangerfjord. However, another potential explanation for the increased rate of 

observed killer whales in the Hardangerfjord could be described by the increased 

attention on marine mammals. Furthermore, with less efforts made in the past to 

involve the general public, potential biases in the results may occur, exaggerating the 

presence of killer whales in the Hardangerfjord.  

Accordingly, similar initiatives to involve the general public have been made in the 

Sognefjord, by the NOS. Here, the response rate of contributing participants (40 

participants) was evidently lower than in the Hardangerfjord. An explanation for this 

lower rate could be posed by lower efforts made to involve the general public. The 

Sognefjord questionnaire survey showed a similar trend of increased observations the 

past years. Comparable explanations for the increased rate can be applied as for those 

discussed regarding the Hardangerfjord. One potential explanation is that fjord 

systems are nutrient dense ecosystems (Nielsen and Andersen, 2002). This leads to 

higher abundance of species, including possible prey species for killer whales (Menge, 

1992). Another potential explanation for the increased rate of observations in the 

Sognefjord could, similarly as for the Hardangerfjord, be the high harbour porpoise 

population inhabiting the fjord (Bjørge et al., 2019) Results from the questionnaire 

indicate an even higher observational rate of porpoise attacks in the Sognefjord 

compared to the Hardangerfjord, with 42.5% of the participants having observed an 

attack. However, more research is needed to find direct potential explanations that 

relates killer whale presence to the Sognefjord. Additionally, the two questionnaire 

surveys distributed to citizens in the Hardangerfjord and Sognefjord, identified high 

rates of observed killer whale attacks on seals. This may indicate that the two killer 

whale pods, identified as NKW-704s and NKW-280s, entering the fjords are mammal 

(seals and porpoises) eating killer whales, that consume from a higher trophic level 

throughout the year (Jourdain, 2020). 

All collected data in this study were obtained either directly from citizen science 

initiatives (i.e., questionnaire, media analysis) or through incidental sightings reported 

to affiliated institutes working with biodiversity of species, particularly in the case of 

killer whales (i.e., IMR, Artsdatabanken and NOS). NOS was not able to provide all 

their collected data from the northern regions, as this study initially intended to only 

research the west coast of Norway. Later, when the research area expanded to include 



 

 

59 

the entire Norwegian coast, NOS had insufficient time to organize observational data 

for the northern region. Subsequently, this could potentially lead to some biases 

concerning the species distribution model, as observations in the northern region may 

not be highlighted to the extent it should be. Nevertheless, the other sources, especially 

IMR, provided enough data to capture the high abundance patterns of killer whales in 

the north.  

 

4.1.1 Limitations with the citizen science approach 

Citizen science as a tool in research has gained a lot of positive attention lately, but is 

still not fully embraced by the scientific community (Earp and Liconti, 2020b, Burgess 

et al., 2017). One of the main concerns when utilizing citizen science, is the quality 

control of collected data (Ellwood et al., 2017), which subsequently was the main 

concern in this thesis. When collecting data through a media analysis, some biases 

may occur. Conducting a comprehensive search in newspaper and magazine archives 

could potentially lead to wrongful inclusions of encounters, from the lack of information 

on individual encounters. Initially, only encounters with associated photographs were 

intended to be included in the media analysis. This had to be adjusted as the study 

period stretches all the way back to 2000, where none of the archived articles included 

photographs, with the first photograph being included in 2008. Therefore, encounters 

with enough information, giving specific details, were considered valid and included in 

the analysis. Another concern, when working with collected opportunistic data from the 

general public, is duplications of the same encounters, as numerous of newspaper 

articles frequently depicted the same killer whale encounter.  

Another limitation associated with data collected through citizen science, is a lack of 

systematic structure, where it can fail to provide equal probability of coverage of killer 

whale presence (Viddi et al., 2010). This leads to geographical biases, where the 

amount of collected observations adjusts with its surrounding environment. There are 

substantial differences in the number of inhabitants throughout the coast of Norway, 

where some areas are geographically harder to access. Additionally, some areas are 

more visited than others, as they are more aesthetically or biologically interesting, 

making probability of observations considerably greater. This can lead to reported 



 

 

60 

encounters being biased towards reachable and inhabited areas, e.g. coastal areas 

with more inhabitants.  

Additional challenges arise when setting up systematic surveys for migrating 

cetaceans. As cetaceans exploit the environment disproportionally, clear distribution 

patterns are lacking to setup surveys, which make them inherently challenging (Viddi 

et al., 2010). This includes logistical challenges, which plays a significant role in the 

lack of studies conducted south of Lofoten. As an example, the waters outside of Møre 

are considered the most dangerous area along the Norwegian coast, where many 

ships have been wrecked (Rikskringkasting, 2003, Aftenposten, 2018, Ariansen, 

2018). These kinds of issues may have made it very difficult to conduct systematic 

surveys in this region, of which killer whales have been known to frequently visit, 

feeding on the spawning herring (Similä et al., 1996). These challenges have made it 

considerably important to create good SDMs that can predict occurrences, while 

studying species distribution in a safe environment.   

 

4.2 Predicting presence of killer whales 

The MaxEnt model identified the highest predicted presence of killer whales for the 

north region, during season 1 (September – January), compared to the rest of the coast 

(Figure 24a). This finding supports previous literature, indicating killer whale 

abundance in the north during the winter months, for feeding on the overwintering 

herring (Bisther and Vongraven, 1995). This may suggest strong model performance, 

as the model successfully reflects the importance of herring in the north during the 

winter. Furthermore, this in turn may indicate accurate model predictions in the 

southern regions. 

In season 2 (February – March), the probability map predicted distribution of killer 

whales towards the open waters, and slightly towards the south, compared to season 

1. This predicted southward movement coincides with the migration of herring towards 

spawning grounds between Lofoten and Lista (69°N - 58°N) (Slotte, 1999). 

Additionally, a more evident predicted presence was found along the central- and south 

coast of Norway in season 2, compared to season 1. For season 3 (April – August), 

the probability map predicted presence along the north and south coast of Norway, 
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with less predicted presence on the central coast. Contrary to the herring’s migration 

patterns, the killer whales were predicted to occur in close proximity to the coastline 

during season 3. During this period, herring is found in large parts of the Norwegian 

Sea (Slotte, 1999). Furthermore, the probability map predicted presence in the south 

of Norway slightly towards the open waters of the Northern Sea. This may be explained 

by other available prey resources, indirectly affecting the presence of killer whales 

through other environmental variables. This includes environmental variables that may 

have contributed to warmer water temperatures (sea surface temperature & sea 

bottom temperature) and higher nutrient levels (chl-a) impacting the ecosystem by 

bottom up control (Frederiksen et al., 2006).  

Little is known about the eastern North Atlantic killer whale’s migration and foraging 

patterns, especially during the summer months (Dietz et al., 2020). Nonetheless, 

previous studies have suggested that killer whales may have highly variable summer 

distribution patterns (Leonard and Øien, 2019). Additionally, as they are strongly 

associated with prey dynamic resources, they are susceptible toward year to year 

variations (Nøttestad et al., 2015). This was evident when the Atlantic mackerel 

population increased between the years 2007-2014. During this period the killer whales 

were found feeding on mackerel even while herring was present (Nøttestad et al., 

2015). A study using the citizen science approach, investigated movement and 

abundance of killer whales in Norway using opportunistic data collected through 

questionnaire surveys, found results consistent with those discussed here. It identified 

the presence of killer whales along the entire Norwegian coast, throughout the years 

of 1982-1987 (Christensen, 1988). Additionally, it found remarkably high 

concentrations of killer whales in Lofoten and Møre, which corresponds with herrings 

overwintering and main spawning ground, respectively (Slotte, 1999). Furthermore, 

seasonality in distribution was found in decreasing numbers in March, in Lofoten 

(1987), corresponding with herring being present at spawning grounds further south 

during this period (Christensen, 1988, Slotte, 1999). These findings coincide with 

findings in this thesis, of killer whales moving south in the months of February – March 

(season 2). The study additionally found killer whales to occur in the offshore banks 

and over the continental slope during summer months (Christensen, 1988). However, 

this is not reflected in the findings in this thesis, where predicted distribution in season 

3 was in close proximity to the coastline (figure 24c). Reasons for predicted distribution 
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along the coast in season 3 may reflect other environmental variables contributing in 

the model, or the relative importance of herring as prey, during this season.  

A novel study by Dietz et al. (2020) assessed the migration of 15 killer whales in 

northern Norway and found that the majority of killer whales follow the NSS herring 

after the winter aggregation in northern Norway down south to their spawning grounds. 

However, three of the individuals migrated north to the Barents Sea. The study 

suggested that all killer whales aggregate in the north of Norway to feed on the 

overwintering herring, but once it ends, the foraging and migratory behaviour may differ 

among different pods. Some pods may choose to follow the herring south; others may 

move to regions with other prey species; some may still remain in the area and feed 

on other available prey species. Factors like abundance of prey and suitability of the 

remaining prey may influence these choices. The presented probability map provides 

some indications on where the killer whales are present during the different seasons 

of herring migration, and can be used to further investigate movement patterns of killer 

whales. However, it is important to note that the findings here are results from an 

innovative study. Naturally this comes with a degree of associated uncertainty, and 

one should exercise caution when interpreting the result.  

 

4.2.1 Environmental variables associated with killer whale distribution  

Investigating which environmental parameters to use is very important when building 

a MaxEnt model, as it assumes that species distribution is not random, but influenced 

by specific environmental parameters (Esteban et al., 2014). 12 environmental 

parameters influencing killer whale distribution along the Norwegian coast were used 

in the model to illustrate the climatic environment of the study area (Table 1).  

The MaxEnt model performed well in demonstrating complex interactions between 

environmental parameters that describe killer whale distribution. The variable 

contribution plots (Figure 22) found herring and distance to coast to be most influential 

parameters, in season 1 and 2. In season 3, distance to coast and sea surface 

temperature (SST) were the most influential variables. Additional important variables 

were salinity, sea bottom temperature (SBT) and chlorophyll a concentration, recurring 

in the three seasons. In season 1 and 2, herring was the most influential variable, with 
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52% and 60% of contribution, providing significant information to the model. Predicted 

presence was highest with greater densities of herring catch, in all three seasons 

(Figure 23a, b & c). This coincides with prey resources being the most direct driver for 

determining movement patterns for killer whales, and herring being its main prey 

(Similä et al., 1996). In season 1, the jackknife test found herring to have almost as 

high isolated training gain alone, as all environmental parameters together (Figure 21). 

This underlines that the distribution of killer whales seems to be highly dependent on 

their main prey species in these months, a fact which coincides with previous studies 

(Similä et al., 1996, Dietz et al., 2020). Herring is also the most important parameter in 

season 2, which corresponds to killer whales predating on herring assembled at 

spawning grounds (Christensen, 1988). The slightly lower contribution value in season 

2 (52%) may indicate potential shifts in killer whale migratory and foraging behaviour 

towards becoming less dependent on herring exclusively, after feeding on the 

overwintering herring in season 1 (Dietz et al., 2020). Still, herring remains the most 

influential parameter for distribution in season 2. Another reason for the slightly lower 

contribution value in season 2 than in season 1, is that there is lower herring catch 

densities indicating lower herring abundance. This can explain the lower contribution 

value in season 2, compared to season 1. In season 3, herring was found to have lower 

valuable contribution than in the other two seasons, with only 12.3%. Consequently, 

this result may indicate a strong model performance, as it correlates with migration 

patterns of herring during their feeding period. Herring migrate out to the open waters 

of the Norwegian Sea, (Slotte, 1999) where they are not found in large aggregations, 

making it more challenging for killer whales to feed on them. However, another possible 

explanation for the lower contribution value could simply be reflected by the reduced 

densities of herring catch data, as it decreases for each season. Further, there is still 

a need for more research on environmental parameters as potential drivers for killer 

whale distribution in Norway. 

 

Predicted distribution of killer whales, regarding distances to the coast, was found to 

be most similar in season 2 and 3. In these two seasons, the highest probability of 

presence was found around 500 meters, and 400 km from the coast. Although, 

relatively high probability of presence persisted between these distances. In season 3, 

the probability of presence was found to be slightly more towards distance of 400 km 

from the coast, than in season 2. For season 1, predicted distances for killer whale 
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presence were approximately 500 meters from the coast, where POP decreased with 

increasing distances to the coast. Distance from coast was the second most important 

variable in season 1 and 2, and the most important variable in season 3. A possible 

explanation for predicted presence in close proximity to the coast (500 meters), may 

be described by killer whales particularly being found in coastal areas of higher 

latitudes, potentially as a result of higher ocean productivity (Forney et al., 2006). 

Alternatively, high probability of presence predicted near the coast could be described 

by sampling biases in observational records (Figure 4 & 5). These biases include 

uneven efforts across the study area due to geographical biases. This bias was 

expected, given that the majority of observations collected from the general public were 

encounters made from, or in close proximity to, the coastline. Consequently, this bias 

can lead to model errors as presence-data is insufficiently spread throughout the study 

area. Another study on killer whale distribution in Australia, by Jones et al. (2019), 

found predicted distances to shelf breaks, to be at approximately 5000 meters. 

Reasons for the contrary findings are unknown, but could be described by very different 

environments or different datasets in the two studies.  

While oceanographic parameters may not impact killer whale presence directly, it can 

affect killer whales indirectly by affecting its prey (Mayer and Piepenburg, 1996, 

Majewski et al., 2013). Sea surface temperature was an important parameter, recurring 

in all three seasons. The sea surface temperature that predicted highest probability of 

presence for killer whales was 10.37°C in season 1, 6.1°C in season 2 and between 

approximately 8.5 and 9.5°C in season 3. Higher temperature in the seasons 1 and 2 

gave no probability of presence, while temperatures above 9.5 °C in season 3, gave 

lower probability of presence. Killer whales are known to be abundant in temperate to 

cold waters with high productivity, which can explain the preferred temperatures found 

in this study (Forney et al., 2006). Since biological seasons were added to the model 

to investigate the temporal distribution, sea surface temperature and chlorophyll a was 

used as an indicator for the amount of phytoplankton near water surface, indicating the 

availability of nutrients (Murphy et al., 2001, Sumner et al., 2003). Chlorophyll a is often 

used as an index to determine phytoplankton production, which, in turn, supports 

higher abundance of zooplankton, fish, seabirds and cetaceans (Moors-Murphy, 

2014). Chlorophyll a was most important during season 2 (9.8% contribution), which 

covers the early spring months. In season 2, higher concentrations of chl-a affected 
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higher probability of killer whale presence. The importance of chl-a concentrations in 

season 2 corresponds to high chl-a levels associated with phytoplankton blooms in 

early spring months, providing validation to the model. This observation is consistent 

with previous studies (Bagøien et al., 2012, Broms and Melle, 2007). This finding 

highlights the role of phytoplankton at the base of the food chain, supporting nutrient 

and energy to the entire ecosystem, all the way up to apex predators like the killer 

whale. During the summer months (season 3), phytoplankton can become nutrient 

limited, as limited amounts of nutrients are being mixed up from the deep to the water 

surface (Wafar et al., 1983). However, chl-a had a degree of importance during the 

summer (season 3) with 3.3% contribution. During the winter months (season 1), chl-

a had no significant impact on the model with 1.1% contribution. This finding may 

validate the model performance by accurately describing seasonal patterns for 

phytoplankton occurrence in temperate waters.  

Sea bottom temperature and salinity were expected to indirectly impact killer whale 

distribution as factors conditioning the growth of fish species (Bœuf and Payan, 2001). 

Salinity is a crucial factor in marine ecosystems, impacting metabolic and physiologic 

processes in marine animals. Consequently, affecting the development, growth rate 

and metabolic costs of adult and juvenile fish (Bœuf and Payan, 2001). Additionally, 

sea bottom temperature and salinity affects prey abundance, through community 

composition and species distribution (Mayer and Piepenburg, 1996, Stransky and 

Svavarsson, 2010). Sea bottom temperature had lower variable contribution in the 

three models than expected. In season 1 and 3, a small contribution for POP were 

found, with respectively 4.9% and 7.1%. The response curves (Figure 23a & c) 

predicted higher POP for killer whales with lower sea bottom temperatures. This was 

especially seen in season 3, which describes the summer months of April to August. 

In season 2, the response curve (Figure 23b) unexpectedly predicted presence at 

higher sea bottom temperatures. However, sea bottom temperature contributed with 

little information to the model (0.8%) in season 2. This indicates low variable 

importance for sea bottom temperature, possibly as a result from the unexpectedly 

high bottom temperatures. Salinity was an influential variable recurring in all three 

seasons (Table 2). The results showed similar patterns in optimal salinity levels for 

predicted presence in all three seasons. Here, the POP increased to a threshold of S1 

= 29-33 PSU, S2 = 32 PSU and S3 = 26-34 PSU in the three seasons respectively, 
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followed by a steep decline. The salinity levels found to influence killer whale presence 

may offer valuable insight to how salinity effects killer whale distribution. 

Correspondingly, other studies have found salinity to be of high importance to cetacean 

distribution (Stalder et al., 2020, van Beest et al., 2018). A study by van Beest et al. 

(2018) suggests salinity to be a good indicator to find suitable feeding areas for harbour 

porpoises. This could in turn explain the high relative importance for salinity in the three 

models. However, there are still need for research to link salinity more directly to killer 

whale distribution. 

Other relevant parameters, like depth, seafloor slope, rugosity and sea bottom 

substrate, contributed with relatively little information to the models. This was contrary 

to a study conducted in Australia finding depth to be the most influential environmental 

variable for killer whale presence (Jones et al., 2019). In this thesis, depth and rugosity 

had to be removed from the model due to collinearity problems. This decision was 

made after accounting for their variable contribution, which was found to be low from 

the jackknife test (Figure 21). Seabed substrate and seafloor slope were expected to 

impact prey abundance, but this was not reflected in the models, as both contributed 

with relatively little information. Seabed substrate and seafloor slope contributed the 

most to the models in season 3, where seabed substrate had a variable contribution 

of 3.1% and seafloor slope of2.6%. Additionally, vessels had little contribution to the 

three models, illustrating that the models were unable to pick up possible altered 

foraging and diving behaviour triggered by physiological stress that vessels pose on 

killer whales (Lusseau et al., 2009). In Norway, recent studies have emphasised the 

importance of sound production for killer whales, when feeding on herring (Samarra 

and Miller, 2015). Noise pollution from sonars and other anthropogenic sources impact 

feeding and diving behaviour by source avoidance for killer whales, which can possibly 

lead to group separation and reduced foraging success (Samarra and Miller, 2016). 

These effects of noise pollution have been verified in the Pacific Ocean (Lusseau et 

al., 2009), but not yet assessed in the North Atlantic Ocean (Jourdain et al., 2019). 

This thesis was not able to verify the effects of noise pollution in the North Atlantic 

Ocean. Stratification, stratification roughness and ocean mixing were expected to 

indirectly impact the phytoplankton growth by supplying nutrients from the deep, while 

keeping phytoplankton in the photic zone. This, in turn, sustains higher abundance of 

marine species up the food chain. (Wafar et al., 1983, Bristow et al., 2017, Murphy, 
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1998). However, the three parameters exhibited low impact on the seasonal models, 

indicating higher importance from other environmental variables included in the model. 

 

4.2.2 Limitations to the MaxEnt model 

Environmental data obtained from Copernicus marine service and EMODnet did not 

include data for the entire study area. This first led to some limitations in the model, 

where observational points were lost from missing values in the environmental raster 

layer. This limitation was resolved by replacing missing values with the nearest non-

missing value within the study area. This approach aimed to preserve data from as 

many observational points as possible. However, it could potentially introduce some 

biases to the model, as locations were regarded more similar than they actually are. 

Additionally, this contradicts the requirements for data points to be independent, 

emphasized by Renner and Warton (2013), which may lead to the misrepresentation 

of a location due to the inclusion of altered values for a specific data point. Several 

factors contribute to the extent of this limitation, including the size of the missing data 

location. This could lead to the misallocation of patterns in the data, potentially resulting 

in incorrect values that, in turn, can affect variable contribution. Nonetheless, this 

approach was considered the most optimal solution, as opposed to losing numerous 

of valuable observational points. 

Another limitation in the model includes herring data being downloaded as catch data 

instead of obtaining herring population measures. This was used in the model, as no 

other available data for herring was found for the study area. Herring catch data were 

used as an indicator, in the model, for herring abundance. As a consequence, this 

could lead to an incorrect representation of the population size, potentially affecting the 

models’ evaluation of herring’s importance. Moreover, herring could create a bias in 

the models, as killer whale seasonality is based on herring migration. A consequence 

of this includes that herring as a variable predictor may exceed its actual importance 

in the model. Nonetheless, herring was considered important for distribution, as main 

prey for the North Atlantic killer whale population. Despite these weaknesses, it was 

therefore included in the model. 
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4.3 Future studies 

The lack of research in the central and south coast of Norway became evident, by 

reviewing previous studies on killer whale distribution. This thesis highlights the need 

for future studies regarding killer whale’s movement and abundance in Norwegian 

waters south of Lofoten. The MaxEnt model is a good tool to research environmental 

variables affecting killer whale distribution, and future studies should utilize this 

approach to investigate smaller areas along the Norwegian coast to gain further 

knowledge on distribution. This could then be compared with environmental variables 

found to be important in this study, to get a better understanding of local environmental 

contribution. Additionally, surveys conducted on extensive offshore areas could be a 

potential option to get a better understanding of spatial distribution, and to avoid biases 

towards the coast.  

Furthermore, two separate models should be generated, excluding and including 

herring data, to investigate whether the herring can create bias on the models. 

Excluding herring as a parameter could potentially generate more information on other 

environmental variables influencing killer whale distribution in Norway. Additionally, 

more exact data on herring is needed since only catch data was available for the use 

in the model.  

Finally, the study failed to include other specific prey species, then herring, related to 

killer whale distribution. This should be taken into consideration for future studies, to 

improve the MaxEnt model. A platform for downloading data on different prey 

resources, namely Global Biodiversity Information Facility (GBIF), was discovered too 

late during the modelling process. Therefore, future studies should include additional 

prey when investigating the distribution of killer whales. 
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5. Conclusion  

First, the use of citizen science as a tool in complementing observational data made it 

possible to synthesize a unique dataset containing 4372 killer whale observations, of 

which 1716 came from citizen science initiatives. This dataset was collected from a 

variety of sources, covering many geographical regions in Norway over a span of 22 

years. Findings from citizen science initiatives demonstrated a clear increase from 

2014, highlighting its increased value as a tool in recent years. By using the collected 

observational data to fit a species distribution model using the MaxEnt method, it was 

possible to explore the distribution patterns of killer whales and examine environmental 

factors contributing to their distribution. The MaxEnt model used 3536 observations 

from the unique dataset and was able to successfully discriminate distribution patterns 

for killer whales in Norway with AUC levels > 0.9 (season 1 = 0.909, season 2 = 0.907, 

season 3 = 0.901). The model predicted killer whale presence along the entire 

coastline, with a clearly higher prediction rate near the coast. Further, the predicted 

presence of killer whales was found to coincide with herring migration in season 1 

(Sept – Jan) and 2 (Feb – March), but not in season 3 (April – Aug), indicating higher 

reliance on other available prey species, during season 3, which describes herrings 

feeding period, when they are found in the open waters of the Norwegian 

Sea. Additionally, the model found herring to be the main contributing 

factor determining killer whale presence in season 1 and 2, and distance to coast to 

be the main contributing factor in season 3. This was followed by salinity and sea 

surface temperature in all three seasons. These findings provide insight into species 

distribution patterns for killer whales south of Lofoten. Additionally, the environmental 

factors found to influence killer whale presence could be useful for further investigating 

killer whale distribution south of Lofoten. However, more research is still needed to 

definitely conclude presence in the south and central regions. 

Secondly, the questionnaire surveys in both Hardangerfjord and Sognefjord clearly 

indicated that the presence of killer whales in the fjords was a new phenomenon, that 

could possibly be explained from the killer whales' discovery of the harbour porpoise 

populations in the two fjords. This finding supports the theory of prey availability being 

the main driver behind killer whale distribution. However, further research is still 
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required to identify the exact cause of their altered distribution patterns, of frequently 

inhabiting the two fjords in the Vestland region.   
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Appendix 

Questionnaire survey distributed to the citizen in Hardangerfjord 

 

Figure A1: First question in survey on Killer whale presence in Hardangerfjord. 

 

 

Figure A2: Second question in survey on Killer whale presence in Hardangerfjord. 
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Figure A3: Third question in survey on Killer whale presence in Hardangerfjord.  

 

 

Figure A4: Fourth question in survey on Killer whale presence in Hardangerfjord.  
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Figure A5: Fifth question in survey on Killer whale presence in Hardangerfjord.  

 

 

Figure A6: Sixth question in survey on Killer whale presence in Hardangerfjord.  



 

 

88 

 

Questionnaire survey distributed to the citizen in Sognefjord 

 

Figure A7: First question in survey on Killer whale presence in Sognefjord. 

 

Figure A8: Second question in survey on Killer whale presence in Sognefjord. 
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Figure A9: Third question in survey on Killer whale presence in Sognefjord. 

 

 

Figure A10: Fourth question in survey on Killer whale presence in Sognefjord. 
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Figure A11: Fifth question in survey on Killer whale presence in Sognefjord. 

 

 

Figure A12: Sixth question in survey on Killer whale presence in Sognefjord. 
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Threshold map showing predicted presence for killer whale 

distribution at lowest suitable value  

 

Figure A13a: Threshold map for season 1 showing predicted area of presence where killer whales can 

occur above the threshold of 0.39 
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Figure A13b: Threshold map for season 2 showing predicted area of presence where killer whales can 

occur above the threshold of 0.33 
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Figure A13c: Threshold map for season 3 showing predicted area of presence where killer whales can 

occur above the threshold of 0.39 
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