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Chapter 1

Introduction

Given a projective variety X, we wish to classify all morphisms from X to other projective
varieties. This is equivalent to classifying all morphisms to projective spaces. Given
such a morphism φ : X → PN , we can produce a line bundle L = φ∗OPN (1) and a
collection of global sections φ∗x0, . . . , φ

∗xN ∈ Γ(X,L). Conversely we can attempt to
create morphisms from X to projective spaces from line bundles by choosing some finite
set of global sections and ‘inserting colons between them’ — we succeed if the sections do
not all vanish at a common point. This sets up an imperfect correspondence between the
maps from X to projective spaces and the line bundles on X, and thus the classification
of maps from X to projective spaces is closely tied to the classification of line bundles on
X.

The line bundles on a projective variety that arise as pullbacks of O(1) through such
morphisms are precisely the globally generated ones. An interesting feature of globally
generated line bundles is that they are nef — they have nonnegative intersection products
with every curve in the variety. Not all nef line bundles are globally generated, but a
consequence of the Abundance conjecture [KM98, Conjecture 3.12] is that all nef line
bundles on Calabi-Yau varieties have some globally generated tensor power.

Unlike global generation, nefness is preserved by tensor products and a tensor power
of a nef line bundle is nef if and only if the line bundle itself is nef. Thus the collection
of nef line bundles, viewed as a subset of the Picard group, satisfies conditions analogous
to those of a convex cone in a rational vector space. This analogy can be made literal by
formally extending the intersection product from PicX to the vector space PicX ⊗Z Q
and defining a class in PicX ⊗Z Q to be nef if it intersects all curves in X nonnegatively.
The nef classes now form a convex cone in this possibly infinite-dimensional vector space.
In fact we are better off if we modify this construction a little by quotienting out by the
subgroup of those line bundles that have zero intersection product with all curves, called
numerically trivial line bundles, and tensor with R in place of Q.

So far, we have simplified the problem of classifying morphisms from X into projective
spaces to the problem of computing a cone in a finite-dimensional real vector space,
admittedly losing some information along the way. This cone is in general hard to compute
since it is a priori described by infinitely many inequalities, one for each irreducible
curve in X. Many of these inequalities are redundant and can be discarded using convex
geometry as follows. We first define the Néron-Severi space of curves N1(X)R in a
similar manner to the Néron-Severi space of line bundles described above and notice
that the intersection pairing descends to a perfect pairing N1(X)R ×N1(X)R → R. Next
we identify those classes in this space that correspond to actual curves. An element
of N1(X)R will be nonnegative on these classes if and only if it is nonnegative on the

1



Chapter 1. Introduction

closure of the convex cone they generate, called the closed cone of effective curves in X.
Being nonnegative on this cone is in turn equivalent to being nonnegative on any set of
generators for it.

This naturally leads us to look for a small set of generators for the closed cone of
effective curves. For general varieties no such set can be found — the closed cone of
effective curves may for example be a circular cone, in which case every ray in the
boundary is required to generate it. There are two cases in which we have a good chance
at computing the cone of effective curves: Fano varieties and Calabi-Yau varieties.

The three main classes of varieties of interest in birational geometry are Fano, Calabi-
Yau and canonically polarised varieties. These are roughly speaking varieties whose
canonical divisors are respectively ‘negative’, ‘zero’ and ‘positive’. Fano varieties are
fairly well understood in low dimension, while very little is understood about canonically
polarised varieties. Since Calabi-Yau varieties sit ‘in between’ these two classes, they
tend to exhibit very interesting behaviour.

For Fano varieties, Mori’s Cone theorem (Theorem 2.13) tells us that the closed cone
of effective curves is rational polyhedral; that is, it is generated by finitely many classes of
positive rational (equivalently, integral) linear combinations of curves. Since the nef cone
and the closed cone of effective curves are dual under the intersection pairing, the nef
cone is rational polyhedral too. Hence we can compute both the closed cone of effective
curves and the nef cone simply by finding their generators.

The Cone theorem gives no useful information for Calabi-Yau varieties, but in its
place we have the Morrison-Kawamata cone conjecture (Conjecture 2.22(i)), which loosely
speaking says that the only way the nef cone of a Calabi-Yau variety can fail to be
rational polyhedral is if the variety has a large automorphism group.

Another divisor cone attached to a projective variety is the movable cone. This too is
known to be rational polyhedral for Fano varieties (combine [Bir+10, Corollary 1.3.2])
with the description of Mori dream spaces in [HK00, Definition 1.10 and Proposition
2.9]). For Calabi-Yau varieties there is another Morrison-Kawamata cone conjecture
(Conjecture 2.22(ii)) which roughly predicts that the only way the movable cone of a
Calabi-Yau variety can fail to be rational polyhedral is if its birational automorphism
group is large.

1.1 Outline

This thesis consists of three further chapters. Chapter 2 contains mostly statements
of definitions and results that will be used in later computations. We also show an
example computation of the nef, movable and effective divisor cones for the blowup of the
projective plane in one and two points. The other two chapters are devoted to explicit
computations of divisor cones on families of Calabi-Yau varieties.

Chapter 3 begins by studying the complete intersection of five general bilinear forms
on P4 × P4. We show that such varieties are Calabi-Yau threefolds and compute their
cones of nef, movable and effective divisors. The effective and movable cones coincide and
are irrational. Using ideas from linear algebra, we construct a countably infinite number
of small Q-factorial modifications and show that the pullbacks of nef cones through
these modifications cover the movable cone. We infer that our list of small Q-factorial
modifications is exhaustive and prove that the automorphism group is finite. These
results generalise to higher dimensions. We then study the degenerate case of where the
bilinear forms are general amongst symmetric bilinear forms. In this case we only get
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three small Q-factorial modifications and rational polyhedral divisor cones. We verify
that the Morrison-Kawamata cone conjectures hold in all cases.

Chapter 4 is devoted to general sections of the anticanonical divisor in the blowup
of P4 in two lines. Here we find that the nef, effective and movable divisor cones are
all rational polyhedral. The nef and effective divisor cones are similar to those of the
blowup of the projective plane in two points, but an unexpected divisor shows up in the
movable cone. We suggest a possible construction of a small Q-factorial modification
explaining this divisor.
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Chapter 2

Background

All schemes considered in this thesis are defined over the field complex numbers.

2.1 Minimal models

The minimal model program very roughly aims to deconstruct ‘sufficiently non-singular’
projective varieties into three different types: Fano, Calabi-Yau and canonically polarised.
We record some basic facts from minimal model theory here.

Definition 2.1. Let X be a nonsingular projective variety.

• X is Fano if the canonical sheaf is anti-ample.

• X is Calabi-Yau if the canonical sheaf is trivial and H1(X,OX) = · · · =
Hn−1(X,OX) = 0 where n = dimX.

• X is canonically polarised if the canonical sheaf is ample.

Definition 2.2. A nonsingular projective variety is minimal if its canonical divisor is
nef.

In particular, Calabi-Yau and Fano varieties are minimal.

Proposition 2.3 ([Mat02, Proposition 12-1-2]). A birational map φ : X 99K Y between
two minimal varieties is an isomorphism in codimension one.

2.2 Néron-Severi spaces

We are interested in classifying line bundles on projective varieties according to their
‘positivity properties’. This term refers to a loosely defined class of properties that seek to
characterise the different ways a line bundle may admit many global sections, generally
inspired by the observation that the line bundles OPn(m) behave very differently for m
positive and m negative.

We postpone the definitions of the precise properties of interest to us to the next
chapter. They will mostly be stable under tensor products, and a line bundle L should
enjoy the property if and only if any positive tensor power L⊗m does, if and only if all
positive tensor powers do. Thus the line bundles satisfying a given positivity property
should essentially form a convex cone. In order to make this precise, we will map the
Picard group into a finite-dimensional vector space called the Néron-Severi space.
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Chapter 2. Background

Let X be a projective variety. Taking the degree of restrictions of line bundle to
curves in X induces an intersection form

PicX × Z1(X) → Z

between line bundles and one-cycles (formal sums of integral curves) in X.

Definition 2.4.

• A line bundle on X is numerically trivial if its intersection product with every
integral curve is zero. A curve is numerically trivial if its intersection product with
every line bundle is zero.

• The Néron-Severi group of divisors on X is the quotient N1(X) of PicX by the
numerically trivial line bundles. The Néron-Severi group of curves in X is the
quotient N1(X) of Z1(X) by numerically trivial curves.

• The real Néron-Severi spaces of respectively divisors and curves are the spaces
N1(X)R and N1(X)R obtained from N1(X) and N1(X) by tensoring with R.
Rational Néron-Severi spaces are defined similarly.

The first step in the formation of the Néron-Severi space of divisors, quotienting
out by the numerically trivial divisors, can be very drastic in certain cases. However
in practice there are many cases where the Néron-Severi space is equal to the Picard
group modulo torsion; this will be the case for all varieties considered in this thesis.
Since this first step already kills all the torsion elements, the second step, tensoring with
R or Q, gives an injective map. Thus for the purposes of this thesis we may think of
the Néron-Severi space of divisors as essentially the space of isomorphism classes of line
bundles with coefficients in the appropriate field.
Remark 2.5. If L1, . . . ,Lk are line bundles on a variety and V is a k-dimensional subvariety
then the intersection number L1 · · · · Lk · V is completely determined by the numerical
equivalence classes of the Li on X. Hence we can make sense of intersection numbers of
Néron-Severi classes with arbitrary subvarieties.

Theorem 2.6 (Theorem of the base [Laz04, Theorem 1.1.16]). The Néron-Severi group
of a projective variety is a finitely generated abelian group. Equivalently, the rational and
real Néron-Severi spaces are finite-dimensional vector spaces.

2.3 Positivity properties of line bundles

In this section we introduce the properties of line bundles that will occupy us for the
rest of this thesis, starting with those directly related to morphisms to projective space,
amplitude and global generation.

Definition 2.7. Let L be a line bundle on a projective variety.

• L is very ample if its global sections determine a closed embedding into some
projective space; equivalently, if there exists a closed embedding φ : X ↪→ Pn such
that L is isomorphic to φ∗OPn(1).

• L is globally generated if its global sections determine a map to projective space;
equivalently if for every point in X we can find a global section of L not vanishing
there.
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2.3. Positivity properties of line bundles

Neither of these are ‘stable under division’ — there are line bundles that are neither
very ample nor globally generated but still admit a positive tensor power which is very
ample and hence globally generated. Stability under division will be forced upon us when
we pass to cones in Néron-Severi space, so we introduce the stable properties already at
the level of line bundles.

Definition 2.8. Let X be a projective variety.

• A line bundle on X is ample if some positive tensor power of it is ample and
semiample if some positive tensor power of it is globally generated.

• A class in the Néron-Severi space of divisors on a projective variety is respective
ample or semiample if it can be written as a linear combination of classes of ample
or semiample line bundles with positive coefficients.

This definition demonstrates the most common way to transport properties from
the Picard group to Néron-Severi spaces. Amplitude of line bundles is characterised
numerically by the Nakai-Moishezon criterion [Laz04, Theorem 1.2.23] which states that
a line bundle L is ample if and only if it has positive self-intersection numbers LdimV · V
on every subvariety V of X. This inspires an obvious alternative definition of amplitude
of Néron-Severi classes which is easily checked to be equivalent to the given one for
rational coefficients and surprisingly hard to check [Laz04, Theorem 2.3.18] is equivalent
for real coefficients (real classes in Néron-Severi space have the disadvantage that we are
not guaranteed that some multiple can be represented as the class of a line bundle).

Weakening this numerical condition for amplitude produces the crucial notion of nef
line bundles and Néron-Severi classes:

Definition 2.9. A line bundle or Néron-Severi class on a projective variety is nef if its
intersection product with every curve is nonnegative.

Notice that our definition allows for a Néron-Severi class to be nef even if it cannot
be written as a convex combination of classes of nef line bundles. The property of
being nef is much more flexible than amplitude; for example, the pullback of a nef class
along a morphism is nef. The projection formula from intersection theory shows that
pseudoample line bundles are nef. Conversely the Abundance conjecture predicts that
every nef divisor on a Calabi-Yau is semiample. Thus computing the nef cones on a
Calabi-Yau threefold will take us very close to classifying its morphisms to projective
space.

Definition 2.10. The ample cone of a projective variety X is the subset Amp1X of
N1(X)R consisting of ample classes. Similarly the cone of nef divisors is the subset
Nef1X of nef classes.

We will introduce many more divisor cones shortly. The benefit of working with real
coefficients is that convex cones may have irrational extremal rays, even if generated by
(infinitely many) rational rays.

The nef cone is closed and contains the ample cone by the above. In fact their
relationship is much stronger than this:

Theorem 2.11 (Kleiman’s theorem [Laz04, Theorem 1.4.23]). Let X be a projective
variety. The cone of nef divisors in N1(X)R is the closure of the cone of ample divisors
and the cone of ample divisors is the interior of the cone of nef divisors.

We next recall the definition of the closed cone of effective curves from the introduction:
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Chapter 2. Background

Definition 2.12.

• The cone of effective curves is the cone Eff1X ⊂ N1(X)R generated by the classes
of effective curves. Its closure Eff1X is the closed cone of effective curves.

• The cone of nef curves is the cone Nef1X ⊂ N1(X)R consisting of classes that have
nonnegative intersection with every effective line bundle on X.

As explained in the introduction, the cone of nef divisors is dual to the closed cone of
effective curves by definition, and so determining one is equivalent to determining the
other. Both of these cones can be complicated in general, but Mori’s Cone theorem tells
us the part of Eff1X consisting on curves which are negative on the canonical is easy:

Theorem 2.13 (Cone theorem [Laz04, Theorem 1.5.33]). Let X be a smooth projective
variety whose canonical divisor KX is not nef.

(i) The closed cone Eff1X of effective curves in X is generated by all curves that
intersect KX nonnegatively together with a countable family of rational curves C
satisfying 0 ≤ −KX · C ≤ dimX + 1.

(ii) For a fixed ε > 0 and ample divisor H on X, only finitely many of the rational
curves in the previous part will satisfy −KX · C ≤ εH · C.

Definition 2.14.

• A line bundle L is movable if its base locus is of codimension at least two. The
cone of movable divisors is convex cone Mov1X ⊂ N1(X)R spanned by classes of
movable divisors. The closed cone of movable divisors is its closure Mov1

X.

• A line bundle is effective if it admits global sections. The cone of effective divisors
is the convex cone Eff1X ⊂ N1(X)R generated by classes of effective line bundles.
The closed cone of effective divisors is its closure Eff1

X.

• A line bundle is big if the global sections of some positive tensor power defines a
rational map to projective space whose image is of the same dimension as that of
X. The big cone is the convex cone Big1X ⊂ N1(X) spanned by classes of big line
bundles.

A divisor can be shown to be big if and only if the global sections of some tensor
power defines a birational map to its image in projective space [Laz04, Corollary 2.2.7].
The big cone is the interior of the effective cone and the effective cone is the closure of
the big cone [Laz04, Theorem 2.2.26].

Lemma 2.15. For any nonsingular projective variety X we have

Nef1X ⊂ Mov1
X ⊂ Eff1

X.

Proof. The nef cone is the closure of the ample cone, which is spanned by classes of very
ample line bundles. The first containment thus follows from that ample line bundles are
movable. The second containment follows from that movable line bundles are effective.

Lemma 2.16. Let X be an n-dimensional projective variety. The intersection of n− 1
nef divisor classes is a nef curve class.
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2.4. Examples

Proof. We first show the result for ample divisor classes, so let A1, . . . , An−1 be ample
divisors and let D be an effective divisor on X. The claim is that the intersection
number A1 · · ·An−1 ·D is positive. After scaling we may replace the Ai with very ample
divisors corresponding to closed embeddings φ1, . . . , φn−1 into projective spaces. Let
φ : X ↪→ PN1 × · · · × PNn−1 be the product of these maps. Then Ai is the pullback along
φ of O(0, . . . , 0, 1, 0, . . . , 0), with the one in the ith position. Now the push-pull formula
for φ together with the description of the Chow ring of products of projective spaces give
that A1 · · ·An−1 ·E is nonnegative. The intersection product of n divisors is a multilinear
map on finite-dimensional Néron-Severi spaces and in particular are continuous. Hence
we are done since the nef cone is the closure of the ample cone.

Lemma 2.17. The closed effective cone of a nonsingular projective variety does not
contain any lines.
Proof. [Cas+14, Lemma 2.3] shows that every nonzero divisor in the closed effective cone
Eff1

X is strictly positive on the product of dimX − 1 ample classes. Hence the only way
both D and −D may lie in this cone is if D = 0 in N1(X)R.

2.4 Examples

In order to get a feel for the divisor cones introduced above, we compute them for the
blowup of the projective plane in one and two points.

2.4.1 blowup of one point in the plane

Let X be the blowup of one point p in P2. Since this is a nonsingular variety, we may
identify the Picard group with the Weil class group. Since it is also a surface, we may
further identify these with the group of one-cycles up to rational equivalence. It is well
known that ClX = Z{H,E} where H is the class of a pullback of a general hyperplane
section and E is the exceptional divisor. We have the following intersection numbers
[Har77, Proposition V.3.2]:

H2 = 1, H · E = 0, E2 = −1.

Hence we get identifications PicX = ClX = N1(X) = N1(X).
Clearly E is an effective divisor, as is the strict transform of a line through the point

in the centre of the blowup. This latter can be computed to be H−E [Har77, Proposition
V.3.6]. Thus we have that

Eff1X = Eff1X ⊃ R+{H − E,E}.

The global sections of the line bundle associated to H determines the blowup morphism
Bl1 P2 → P2 and the global sections of the line bundle associated to H − E gives the
morphism to P1 that ‘maps a point to the slope of the line through it and p’. Thus these
are nef as divisors, hence also as curves:

Nef1X = Nef1X ⊃ R+{H,H − E}.

We claim that we have found all nef divisors. Indeed let aH + bE be a nef divisor. Then
it must have positive intersection with all effective curves. Its intersection products with
H −E and E are respectively a+ b and −b, and the inequalities a+ b ≥ 0 and −b ≥ 0
cut out precisely the cone R+{H,H − E}. Since the cone of nef divisors both contain
and is contained in this cone, it must be equal to it. Exactly the same argument shows
that we have found all effective divisors.

9



Chapter 2. Background

Lemma 2.18. The closed movable cone and the cone of nef divisors coincide on surfaces.

Proof. The nef cone is always contained in the closed movable cone. Conversely if a
movable divisor has negative intersection with some effective curve, all linearly equivalent
divisors must contain this curve. Hence that curve is a divisor in the base locus,
contradicting movability. Hence movable divisors are nef.

In our case we see that the divisors H and H −E on the nef boundary correspond to
globally generated sheaves and hence are movable. Thus we have

Nef1X = Mov1X = R+{H,H − E}
Eff1X = R+{E,H − E}.

H

E

H − E

Figure 2.1: Divisor cones for the blowup of P2 in one point

The nef cone is the orange cone and the effective cone is the union of the orange and
the blue cones.

2.4.2 blowup of two points in the plane

Let Y be the blowup of two points p1 and p2 in P2. This time we have

PicY = ClY = N1(Y ) = N1(Y ) = {Z, E1, E2}

where H is still the strict transform of a hyperplane and E1 and E2 are the two exceptional
divisors, with intersection numbers

H2 = 1, H · E1 = H · E2 = E1 · E2 = 0, E2
1 = E2

2 = −1.

Similar to the above case, we spot some effective cycles

Eff1X = Eff1X ⊃ R+{E1, E2,H − E1 − E2},

where H − E1 − E2 corresponds to the strict transform of the line through both points.
We also spot some morphisms to projective space and see that

Nef1X = Nef1X ⊃ R+{H,H − E1,H − E2}

where H corresponds to the blowup morphism and H − E1 and H − E2 correspond to
the two maps to P1 that ‘map points to the slopes of the lines through it and respectively
p1 and p2’. By a similar argument as above we can use intersection numbers to conclude
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2.5. Pullbacks of line bundles through isomorphisms in codimension one

that we have found the entire nef and effective cones. By Lemma 2.18 we have also found
the closed movable cone, and this is equal to the movable cone itself since the extremal
rays correspond to globally generated line bundles.

Nef1X = Mov1X = R+{H,H − E1,H − E2}
Eff1X = R+{E1, E2,H − E1 − E2}.

Since these cones are three-dimensional, it is easier to draw their intersection with an
appropriate plane than to draw the entire cones. In our case we draw the intersection
with the plane of divisors aH + bE1 + cE2 for which 3a+ b+ c = 1.

H − E1 − E2

E1

E2

H
H − E1

H − E2

Figure 2.2: Divisor cones for the blowup of two points in the plane

2.5 Pullbacks of line bundles through isomorphisms in codimen-
sion one

Lemma 2.19. Let U ↪→ X be an open subscheme of a nonsingular projective variety
whose complement is of codimension at least two.

(i) Every line bundle on U extends uniquely to a line bundle on X.

(ii) If L is a line bundle on X then every section in L(U) extends uniquely to a global
section of L.

Proof.

(i) Since U and X schemes are nonsingular, separated and noetherian, there are
canonical isomorphisms PicX = ClX and PicU = ClU . Combining this with the
class group sequence gives the following diagram

0 = Cl(X \ U) ClX ClU 0

PicX PicU

∼ ∼

where the top row is exact and the bottom row is the restriction map. Hence
restriction is an isomorphism on Picard groups, so every line bundle on U extends
uniquely to a line bundle on X.

11



Chapter 2. Background

(ii) Given a section s ∈ L(U) and a point x ∈ X \ U , let V = SpecA be an affine
open subset around x trivialising L. Then U ∩ V contains all height one primes
of SpecA so by Hartogs’ theorem [Har77, Proposition II.6.3A] the restriction map
Γ(V,L) → Γ(U ∩ V,L) is an isomorphism. Thus we may extend s to a section
of U ∪ V . Repeatedly extending like this must eventually terminate since the
underlying topological space of our scheme is noetherian. Thus we eventually
produce the desired global section.

Definition 2.20. Let φ : X 99K Y be an isomorphism in codimension one between
nonsingular projective varieties. Then we may find inclusions i : U ↪→ X and j : U ↪→ Y
of the same scheme U as an open subscheme in both X and Y whose complement is
of codimension at least two such that φ = j ◦ i−1. Using the above lemma, define the
induced pullback map of line bundles to be the isomorphism (i∗)−1 ◦ j∗ : PicY → PicX.
We define the pullback of a global section of a line bundle through φ by restricting it to
U and extending it by the uniqueness statement above.

One checks that the above gives us well-defined notions of pullbacks that interact
nicely with intersection products.
Corollary 2.21. Let φ : X 99K Y be an isomorphism in codimension one between
nonsingular projective varieties.

(i) The pullback through φ of an effective line bundle is effective.

(ii) The pullback through φ of a movable line bundle is movable.

2.6 The Morrison-Kawamata cone conjectures

The cone conjectures were introduced by Morrison and Kawamata in [Col93; Mor94;
Kaw97]. The versions we cite are simplified from the statement appearing in [Tot10,
Conjecture 2.1].
Conjecture 2.22 (Morrison-Kawamata cone conjectures). Let X be smooth Calabi-Yau.

(i) There exists a rational polyhedral cone Π which is a fundamental domain for the
action of AutX on the nef effective cone Nef1X ∩ Eff1X.

(ii) There exists a rational polyhedral cone Π′ which is a fundamental domain for the
action of BirAutX on the movable effective cone Mov1

X ∩ Eff1X.

2.7 Further background results

Lemma 2.23. Let X be a projective variety and let {φα : X 99K Xα} be a family of
isomorphisms in codimension one such that the movable cone of X is covered by the
pullbacks of nef divisor cones through these maps. Then every isomorphism in codimension
one φ : X 99K Y is isomorphic to one of the isomorphisms in the given family.

Proof. The pullback of the ample cone on Y to X is an open cone contained in the
movable cone. Hence it intersects the pullback of the ample cone of some Xα in an open
subset. Replacing X with Xα and φ with the composition φ ◦ φ−1

α , we now have an
isomorphism in codimension one φ : X 99K Y where the pullback of the ample cone of Y
meets the ample cone of X. Thus we can choose a line bundle L on Y so that both it and
its pullback φ∗L to X are very ample. We thus see that X and Y embed as the same
closed subvariety of projective space through the map determined by this line bundle.

12



2.7. Further background results

2.7.1 Bertini, Lefschetz and Kawamata-Viehweg

The main examples studied in this thesis are defined as general elements of a suitable
basepoint free linear system on a nonsingular projective variety. Bertini’s theorem shows
that these are themselves nonsingular.

Theorem 2.24 (Bertini’s theorem [Har77, Corollary III.10.9]). The general element of
a linear system on a nonsingular projective variety over an algebraically closed field of
characteristic zero is nonsingular away from the base points of the system.

Before we try to compute divisor cones on such varieties we must understand the
ambient Néron-Severi space. In the cases considered in this thesis all the hard work is
done for us by the Lefschetz theorem.

Theorem 2.25 (Lefschetz theorem for Picard groups [Laz04, Example 3.1.25]). Let X be
a smooth projective complex variety of dimension at least four and let D ⊂ X be a reduced
effective ample divisor. Then the restriction map PicX → PicD is an isomorphism.

We will need the following vanishing theorem as a technical ingredient in some
cohomology calculations later on.

Theorem 2.26 (Kawamata-Viehweg vanishing [Laz04, Theorem 4.3.1]). Let D be a nef
and big divisor on a smooth complex projective variety. Then H i(X,OX(KX +D)) = 0
for all i > 0.
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Chapter 3

Determinantal quintic threefolds

In this chapter we study the divisor cones for the complete intersection X of five general
sections of O(1, 1) in P4 × P4. Such varieties are studied from the point of view of
mirror symmetry in [HT14]. We can think of such a variety as being given by a general
five-dimensional subspace of the vector space ΓOP4×P4(1, 1) or, choosing a basis for this
subspace, by five bihomogeneous polynomials in C[x0, . . . , x4][y0, . . . , y4] of bidegree (1, 1).
We may write these equations as ∑

i,j

Aijkxiyj = 0

where Aijk are coefficients in C and k ranges from zero to four. Thus if we think of Aijk
as a 5 × 5 × 5-tensor then the five-dimensional space of global sections of OP4×P4(1, 1)
cutting out X can be represented by contracting A against the vectors (x0, . . . , x4),
(y0, . . . , y4) and (z0, . . . , z4) in the indices i, j and k respectively, where (z0, . . . , z4) ranges
over vectors in k5. At this point we have already involved three distinct copies of P4,
coordinatised by the xi, the yj and the zk respectively. For the sake of clarity we will
write P4

x, P4
y and P4

z to distinguish these.
Changing the roles of the indices, a general 5 × 5 × 5-tensor Aijk gives rise to three

varieties in this way:

X1 = {(y0 : · · · : y4) × (z0 : · · · : z4) :
∑
j,k

Aijkyjzk = 0 for all i} ⊂ P4
y × P4

z

X2 = {(x0 : · · · : x4) × (z0 : · · · : z4) :
∑
i,k

Aijkxizk = 0 for all j} ⊂ P4
x × P4

z

X = X3 = {(x0 : · · · : x4) × (y0 : · · · : y4) :
∑
i,j

Aijkxiyj = 0 for all k} ⊂ P4
x × P4

y.

The image of X under the first projection to P4
x consists of those points (x0 : · · · : x4) such

that the 5 × 5-tensor ∑iAijkxi contracts along the j-index against some (y0 : · · · : y4) to
the zero vector. In other words, the image is the vanishing locus of the determinant of∑
iAijkxi viewed as a matrix indexed by j and k. Notice that by symmetry this is also

the image of X2 under its projection to P4
x. So in this way we obtain three more varieties

Y1 = {(x0 : · · · : x4) : det(
∑
i

Aijkxi)jk = 0} ⊂ P4
x

Y2 = {(y0 : · · · : y4) : det(
∑
j

Aijkyj)ik = 0} ⊂ P4
y

Y3 = {(z0 : · · · : z4) : det(
∑
k

Aijkzk)ij = 0} ⊂ P4
z.

15



Chapter 3. Determinantal quintic threefolds

These six varieties together with their projection morphisms fit into an infinite
commutative diagram:

X1 X2 X3 X1 X2

Y2 Y3 Y1 Y2 Y3 Y1

p q

ψ

φ
p q

ψ

φ
p q

ψ

φ
p q

ψ

φ
p q

Figure 3.1: Birational models of X

By abuse of notation we denote all projection maps to the left by p and all projection
maps to the right by q. In Lemma 3.3 below we show that p and q are birational. Thus
we get birational maps φ = q−1 ◦ p and ψ = p−1 ◦ q, again abusing notation. Composing
three φ’s or three ψ’s give birational automorphisms of X which will turn out to have an
interesting action on the Néron-Severi space of X; see Lemma 3.8 below. In particular,
these are not the identity automorphism of X3.

Lemma 3.1. Let M be a singular n× n matrix. Then the columns of adjM all lie in
the kernel of M and the jth column is nonzero if and only if all rows of M except the jth
form a linearly independent set. In particular adjM has a nonzero column if and only if
M is of corank one, and in this case we moreover have that the columns of adjM are all
proportional.

Proof. It is a well-known linear algebra fact that M adjM = I detM for any matrix,
and the rhs is zero since M is singular. This shows that the columns of adjM all lie in
the kernel of M . The condition for the jth column to be nonzero follows immediately
from the definition of adjugate matrices. The ‘moreover’ part holds because the identity
(adjM)M = 0 imposes n−1 linearly independent conditions on the columns of adjM .

Lemma 3.2. Let Aijk be a general 5 × 5 × 5-tensor. The loci in respectively Y1, Y2 and
Y3 where the matrices (∑iAijkxi)jk, (∑j Aijkyj)ik and (∑k Aijkzk)ij are of rank three
are nonempty and zero-dimensional. The loci where the matrices are rank at most two
are empty.

Proof. By symmetry, it suffices to check the rank three locus of (∑iAijkxi)jk in Y1.
We have a morphism A5

x → Mat5×5 ∼= A25 given by (x0, . . . , x4) 7→ (∑iAijkxi)jk.
Observe that this is an embedding of vector spaces, hence induces a closed embedding
P4
x ↪→ P(Mat5×5) ∼= P24. We want to compute the dimension of the preimage of the locus
Z ⊂ P(Mat5×5) consisting of rank three matrices. Since any linear map A5 → Mat5×5
can be obtained by choosing A and we only care about the general A, it suffices to prove
that Z is a closed subset of P(Mat5×5) of codimension four.

The locus Z ⊂ P(Mat5×5) consisting of matrices of rank three is described as the
vanishing locus of the four by four minors, hence is a closed subset. For every choice
of three out of the five columns, we can ask for the subset of Z consisting of matrices
where these three chosen columns are linearly independent. This gives an open cover
of Z consisting of

(5
3
)

= 10 open sets, and it suffices to compute the dimension of each
of these. A choice of a rank three 5 × 5-matrix whose first three columns are linearly
independent is the same as first choosing the three linearly independent columns (a
Zariski open subset of a 15-dimensional affine space) and then choosing the final two
columns as linear combinations of the first three columns (a 6-dimensional affine space).
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Hence after quotienting by scaling we get that the open sets covering Z are of dimension
15 + 6 − 1 = 20. Hence Z is of codimension four in P24.

Finally the loci where the matrices are rank two are empty by the same argument
since the corresponding Z is codimension nine.

Lemma 3.3. The projection morphisms p and q in Figure 3.1 are small contractions;
that is, they are birational morphisms and isomorphisms in codimension one.
Proof. For each j = 0, . . . , 4 let Uj be the open subscheme of Y1 consisting of those
(x0 : · · · : x4) such that all but the jth row of the matrix (∑iAijkxi)jk forms a linearly
independent subset. Then the union of U0, . . . , U4 consists of all the points (x0 : · · · : x4)
for which (∑iAijkxi)jk is of rank four. By Lemma 3.2 the complement of U0 ∪ · · · ∪ U4
is a zero-dimensional closed subscheme of Y1 and its preimage is a union of P1’s, one for
each point in the complement of U0 ∪ · · · ∪ U4. Thus it suffices to construct an inverse
over U0 ∪ · · · ∪U4. By Lemma 3.1 the jth column of the adjugate matrix of (∑iAijkxi)jk
serves as an inverse over Uj , and since the columns of the adjugate are proportional they
agree on overlaps. We thus get the desired inverse over U0 ∪ · · · ∪ U4.

Remark 3.4. It follows from this proof that the singular loci of Y1, Y2 and Y3 are contained
in the rank three loci of the matrices in Lemma 3.2. In fact one can show that the
singular loci are equal to the respective rank three loci. We compute the degrees of these
determinantal rank loci using the formula by Harris and Tu [HT84, Proposition 12(a)]
and find that the singular loci of Y1, Y2 and Y3 are zero-dimensional schemes of degree
50.
Lemma 3.5. The varieties X1, X2, X3 are smooth Calabi-Yau threefolds.
Proof. That X is smooth follows from Bertini’s theorem 2.24 applied five times. The
canonical divisor of X is trivial by five applications of the adjunction formula. It remains
to check that H1(X,OX) vanishes. The Koszul complex for X is exact since X is locally
Cohen-Macaulay [Laz04, Appendix B.2]:

0 OP4×P4(−5,−5)⊕(5
5) · · · OP4×P4(−1,−1)⊕(5

1) OP4×P4 OX 0.d5 d2 d1 d0

Breaking this up into short exact sequences and using the Künneth theorem to compute
cohomology of sheaves on P4 × P4, we get that the dimensions of the cohomology groups
of OX are (h0, . . . , h3) = (1, 0, 0, 1). In particular H1(X,OX) = 0. By symmetry the
same applies to X1 and X2.

Lemma 3.6. The Picard group of X is PicX = Z{p∗H, q∗H}, generated by the
pullbacks of hyperplane sections through the projections p : X → Y1 and q : X → Y2.
The intersection numbers of divisors on X are

(p∗H)3 = 5, (p∗H)2 · q∗H = 10, p∗H · (q∗H)2 = 10, (q∗H)3 = 5.
By symmetry the same is true for X1 and X2.
Proof. The statement about the Picard group holds by five applications of the Lefschetz
theorem for Picard groups (Theorem 2.25) and the fact that Pic(P4

x × P4
y) is the free

abelian group on the corresponding two hyperplane sections, which we also denote by
p∗H and q∗H by slight abuse of notation. The push-pull formula for the inclusion map
X ↪→ P4

x × P4
y gives that∫

X
(p∗H)3 =

∫
P4×P4

(p∗H)3 · [X] =
∫
P4×P4

(p∗H)3 · (p∗H + q∗H)5 = 5.

The other intersection products are similar.
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Chapter 3. Determinantal quintic threefolds

3.1 Nef cone

Proposition 3.7. The cone of nef divisors on X is Nef1X = R+{p∗H, q∗H}.

Proof. Since the projection map p contracts any curve C in the preimage of a point in
the singular locus of Y1 we have that p∗H · C = 0. On the other hand, C projects to a
curve in Y2 so q∗H · C is positive. Hence any nef divisor aH1 + bH2 must satisfy a ≥ 0,
and by symmetry also b ≥ 0. So the nef cone is contained in the one specified in the
statement. Conversely p∗H and q∗H are semiample and in particular nef.

3.2 Pullbacks of divisor classes through birational maps

Lemma 3.8. The maps φ : Xl 99K Xl−1 and ψ : Xl 99K Xl+1 in Figure 3.1 induce the
following pullback maps on divisor class groups

φ∗ : ClXl−1 → ClXl

p∗H 7→ 4p∗H − q∗H

q∗H 7→ p∗H

ψ∗ : ClXl+1 → ClXl

p∗H 7→ q∗H

q∗H 7→ −p∗H + 4q∗H

Here H denotes the class of a hyperplane section in the appropriate copy of P4.

Proof. By Lemma 3.3 these birational maps are isomorphisms in codimension one, so
they do indeed induce pullbacks on class groups. By Lemma 3.6 the expressions given
for φ∗ and ψ∗ completely determine them.

That φ∗ sends q∗H 7→ p∗H follows from the fact that q ◦ φ = p. To check that φ∗

also sends p∗H 7→ 4p∗H − q∗H we must compute the pullback of a hyperplane section
through the map p ◦ φ : Xl 99K Yl. By symmetry it suffices to do this for l = 3. Hence we
are pulling back a hyperplane section through the map X3 99K Y3 obtained by composing
maps in the following commutative diagram:

X2 X3

Y3 Y1

p q p

φ

We construct the map X3 99K Y3 explicitly using similar ideas as in the proof of
Lemma 3.3. Given a point (x0 : · · · : x4) × (y0 : · · · : y4) ∈ X3, we first project it down
to (x0 : · · · : x4), then take the generally unique lift (x0 : · · · : x4) × (z0 : · · · : z4) ∈ X2
and project it down to (z0 : · · · : z4) ∈ Y3. That is, the desired map takes a general
point (x0 : · · · : x4) × (y0 : · · · : y4) ∈ X to the one-dimensional kernel of the matrix
M = (∑iAijkxi)jk. Lemma 3.1 tells us that this can be described as the one-dimensional
column space of adjM . Hence taking z to be the jth column cj of adjM would describe
the map over the locus in X where this jth column is nonzero.

Unfortunately the above description only gives the desired rational map over the
complement of the divisor {yj = 0} ⊂ X and hence fails to be an isomorphism in
codimension one. Luckily we can glue these five rational maps together as follows. Recall
that (adjM)M = detM = 0 when (x0 : · · · : x4) × (y0 : · · · : y4) ∈ X3 and observe that
(y0, . . . , y4)M = 0. Since adjM is rank one and M is rank four, it follows that c0

y0
, . . . , c4

y4
are defined on the opens {y0 6= 0}, . . . , {y4 6= 0} ⊂ X and agree on overlaps. Hence
they glue to a vector of five global sections of OX3(4p∗H − q∗H) which is nonzero over
the complement of the singular locus of Y1. These five sections in turn give the desired
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3.2. Pullbacks of divisor classes through birational maps

rational map X3 99K Y3. Hence the class of hyperplane sections of Y3 pulls back to the
divisor class 4p∗H − q∗H on X3, completing our computation of φ∗. The expression for
ψ∗ follows either by symmetry or by inverting φ∗.

We can restate the above lemma as saying that the pullback maps through φ and ψ
are represented by the matrices

[φ∗] =
(

4 1
−1 0

)
, [ψ∗] =

(
0 −1
1 4

)

with respect to the ordered bases p∗H, q∗H for each ClXi. We diagonalise these matrices
in order to understand the asymptotic behaviour of pulling back divisors through repeated
compositions. Since φ∗ and ψ∗ are inverse, they share the same eigenvectors with
eigenvalues given in the following table:

eigenvector eigenvalue for φ∗ eigenvalue for ψ∗

v1 = (2 +
√

3) p∗H − q∗H 2 +
√

3 2 −
√

3
v2 = (2 +

√
3) q∗H − p∗H 2 −

√
3 2 +

√
3

Beware that we are here implicitly using that φ and ψ are isomorphisms in codimension
one and hence induce isomorphism on Néron-Severi spaces to identify the Néron-Severi
spaces of X1, X2 and X3. We now subdivide these Néron-Severi spaces according to the
eigenspaces as shown in the following picture:

p∗H

q∗H

−v1

v1

−v2

v2

AB

C D

Pulling back a divisor in one of the four regions A, B, C or D through φ or ψ gives
another divisor in the same region since the eigenvalues of φ∗ and ψ∗ are all positive.
Repeatedly pulling back a ray in A or D through φ will produce a sequence of rays
converging to the ray spanned by v1 and repeatedly pulling back a ray in B or C will
produce a sequence converging to the ray spanned by −v1. Similarly repeatedly pulling
back through ψ will produce a sequence of rays converging to ±v2 depending on whether
the original ray lies in A ∪B or C ∪D. Using this description of repeated pullbacks, we
can now easily show the following:

Proposition 3.9. The closed cones of effective and movable divisors on X are

Mov1
X = Eff1

X = R+{(2 +
√

3) p∗H − q∗H, (2 +
√

3) q∗H − p∗H}.

This is the closure of the region labelled A in the above diagram.
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Chapter 3. Determinantal quintic threefolds

Proof. By Lemma 2.15 it suffices to show that the divisor classes in A are movable and
that those outside Ā fail to be effective. Nef divisors are movable and pullbacks of a
movable divisors through isomorphisms in codimension on are movable by Corollary 2.21.
Since every divisor class in A is obtained as the pullback of a nef divisor class through
an appropriate number of φ’s or ψ’s, it follows that divisor classes in A are movable.

It remains to check that divisors outside Ā fail to be effective. Since effective classes
are preserved under pullbacks through isomorphisms in codimension one by Corollary 2.21,
we see that if any divisor in one of the regions B, C or D is effective then so is every
divisor in this region. The closed cone of effective divisors cannot contain a line by
Lemma 2.17, so no divisor class outside of Ā can be effective.

Remark 3.10. The effective cone was computed by [Fry01, page 4] by similar methods.

(2 +
√

3) q∗H − p∗H
q∗H

p∗H

(2 +
√

3) p∗H − q∗H

ψ
∗
ψ

∗
N

ef 1
X

2

ψ
∗

N
ef 1

X
1

Nef1X3

φ∗ Nef1X2
φ∗
φ∗

Nef 1
X1

Figure 3.2: Divisor cones of a general determinantal quintic threefold

Corollary 3.11. X satisfies the Morrison-Kawamata cone conjectures (Conjecture 2.22).

Proof. The nef effective cone of X is just the nef cone. Since pullbacks of nef divisors
through automorphisms are nef, the automorphism group of X must act on N1(X)R in
a way that preserves the nef cone. Moreover the action must send ray generators to ray
generators, hence either fixes or swaps p∗H and q∗H. If every automorphism fixes the
ray generators, Nef1X is itself a rational polyhedral fundamental domain for the action.
If there exists some automorphism which swaps the two generators, we may divide this
cone in half along the diagonal ray generated by p∗H + q∗H and choose one of the two
halves as our rational polyhedral fundamental domain. In either case the conjecture
holds for the nef cone.

Since the pullbacks of nef cones cover the movable cone, we know from Lemma 2.23
that we have all isomorphisms in codimension one from X to other varieties up to
isomorphism. Since X is a Calabi-Yau variety and thus a minimal model, every birational
automorphism of X is an isomorphism in codimension one (Proposition 2.3), hence is
among the maps already discovered. Thus the birational automorphism group acts on
the rays of the nef cones in the above figure and preserves adjacency of two rays; in other
words, we have a group homomorphism

BirAutX → D∞ = 〈r, s : s2 = 1, srs = r−1〉
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3.3. Automorphism group

from the birational automorphism group to the infinite dihedral group such that the
action of X is taken to the obvious action of D∞ on the set of rays in the above figure.
The rational polyhedral fundamental domain we choose depends only on the image of
this group homomorphism. Notice that φ3 and ψ3 are birational automorphisms of X,
hence the image of this group homomorphism contains the subgroup generated by r3.
This is a normal subgroup of index six whose quotient is the ordinary dihedral group
D6 ∼= S3. Thus we have narrowed the possible images of the above group homomorphism
down to the six different subgroups of D6. We split into cases depending on which of the
six subgroups appear.

• The trivial subgroup of D6 corresponds to 〈r3〉 ⊂ D∞, which acts by ‘shifting the
nef cones multiples of three steps along’ in the above diagram. Thus we can take the
union ψ∗ Nef1X1 ∪ Nef1X3 ∪ φ∗ Nef1X2 as a fundamental domain for the action.

• The unique subgroup of D6 of order three corresponds to 〈r〉 ⊂ D∞, which acts by
‘shifting nef cones an integral number of steps along’ in the above diagram. Thus
we can take Nef1X3 to be fundamental domain in this case.

• The group D6 itself corresponds to the action of all of D∞, thus we can take for
example the half of Nef1X3 below the diagonal ray generated by p∗H + q∗H as
our rational polyhedral fundamental domain.

• The order two subgroup 〈s〉 ⊂ D6 corresponds to the subgroup 〈r3, s〉 ⊂ D6, thus
we can take for example the union of φ∗ Nef1X2 and the lower half of Nef1X3 as
our rational polyhedral fundamental domain. The other two order two subgroups
are similar.

In any case we find a rational polyhedral fundamental domain for the action of the
birational automorphism group of X on its movable effective cone.

3.3 Automorphism group

As an application of our knowledge of the divisor cones of X, we give a partial computation
of its automorphism group. The key observation is that an automorphism of X must
induce an automorphism of Néron-Severi spaces preserving the nef cones and the lattice
structure. Hence the pullback on Picard groups either fixes the isomorphism classes of
OX(1, 0) and OX(0, 1) or swaps them.

Lemma 3.12. The natural maps ΓOP4
x
(1) → ΓOX(1, 0) and ΓOP4

y
(1) → ΓOX(0, 1) are

isomorphisms.

Proof. For the first isomorphism, notice that we can factor it as ΓOP4
x
(1) →

ΓOP4
x×P4

y
(1, 0) → ΓOX(1, 0) and that the first of these maps is an isomorphism. Hence it

suffices to show that the second arrow is also an isomorphism. The Koszul complex is exact.
Splitting it up into short exact sequences we see that the map OP4×P4(1, 0) → OX(1, 0)
induces isomorphisms in all cohomology groups and in particular induces isomorphisms
on global sections. The second isomorphism follows by symmetry.

Lemma 3.13. Every automorphism of X extends to an automorphism of P4
x × P4

y.
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Chapter 3. Determinantal quintic threefolds

Proof. Let α be an automorphism of X. As remarked above, pullback through α must
either fix or swap the isomorphism classes of OX(1, 0) and OX(0, 1). Suppose α fixes
these; the other case is similar. Then α∗OX(1, 0) admits an isomorphism to OX(1, 0).
Moreover an automorphism of a line bundle corresponds to an element of (ΓOX)∗ = k∗,
so this isomorphism φ is unique up to scaling by an element of k∗. Composing the
natural map OX(1, 0) → α∗α

∗OX(1, 0) with α∗φ gives a map OX(1, 0) → α∗OX(1, 0).
Now applying the global sections functor gives a map ΓOX(1, 0) → ΓOX(1, 0), again
defined up to scaling. One can check that this association is contravariant functorial.
Therefore since α is an automorphism, so are the maps ΓOX(1, 0) → ΓOX(1, 0). By the
previous lemma, we can interpret this as an automorphism of ΓOP4

x
(1) which in turn

induces an automorphism of P4
x. Similarly by considering the pullback of OX(0, 1) we

get an automorphism of P4
y, and together these determine an automorphism of P4

x × P4
y

(automorphisms which swap OX(1, 0) and OX(0, 1) induce automorphisms of P4
x×P4

y that
swap the two factors). One then checks that this restricts to the original automorphism
of X.

Proposition 3.14. The automorphism group of X is finite.

Proof. The subgroup consisting of automorphisms which fix OX(1, 0) and OX(0, 1) is of
index at most two, so it suffices to show that it is finite. This subgroup is in turn a closed
subscheme of the compact algebraic group PGL5 × PGL5, so it suffices to show that it
is discrete or equivalently that the component containing the identity consists only of
the identity. If this was not the case, there the automorphism group would contain a
curve containing the identity. Small translations along this curve produces a nonzero
global section of the tangent bundle of X. We show that H0(X, TX) = 0 to reach a
contradiction.

We have a perfect pairing ΩX × Ω2
X → Ω3

X = ωX ∼= OX given by the wedge product.
This gives an isomorphism Ω2

X
∼= TX , so

H0(X, TX) ∼= H0(X,Ω2) ∼= H2(X,OX) = 0

where the second isomorphism is by Hodge symmetry and the final equality is because
X is Calabi-Yau.

We expect that the automorphism group is trivial, although it is easy to find 5×5×5-
tensors Aijk for which the automorphism group becomes nontrivial.

3.4 Generalising to higher dimension

We observe that the calculations we have done so far work the same in higher dimensions.

Proposition 3.15. Let n ≥ 4. The complete intersection X of n+ 1 general O(1, 1)-
divisors in Pn × Pn is a smooth Calabi-Yau (n− 1)-fold. The Néron-Severi space of X is
N1(X)R = R{H1,H2} where H1 and H2 are the pullbacks of the hyperplane sections of
the two copies of P4. The closed cones of nef, movable and effective divisors on X are

Nef1X = R+{H1,H2}

Mov1
X = Eff1

X = R+{(n2 + 1
2

√
n2 − 4)H1 −H2, (n2 + 1

2

√
n2 − 4)H2 −H1}.
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3.5. Symmetric matrices

Proof. This calculation is essentially the same as the case n = 4 done above, so we only
highlight the differences. Notice that we need n ≥ 4 in order for the Lefschetz theorem
on Picard groups to apply. X still fits into a diagram such as Figure 3.1. The projection
maps p and q contract n-cycles (in fact copies of Pn) to points over loci in the Yi of
codimension n2 + 2n. In particular there are curves that contract to points (again using
that n ≥ 4) and no divisors are contracted. The curves that contract to points impose
conditions on nef divisor classes, proving that Nef1X is as stated. That no divisors are
contracted shows that φ and ψ are still isomorphisms in codimension one, hence pullbacks
under these preserve nef and movable divisor classes. The pullback maps induced by φ
and ψ this time are represented by the matrices

[φ∗] =
(
n 1

−1 0

)
, [ψ∗] =

(
0 −1
1 n

)
.

As before we use the symmetry of the problem to identify the source and target spaces
of these pullbacks and diagonalise with respect to p∗H = H1 and q∗H = H2.

eigenvector eigenvalue for φ∗ eigenvalue for ψ∗

v1 = (n2 + 1
2
√
n2 − 4)H1 −H2

n
2 + 1

2
√
n2 − 4 n

2 − 1
2
√
n2 − 4

v2 = (n2 + 1
2
√
n2 − 4)H2 −H1

n
2 − 1

2
√
n2 − 4 n

2 + 1
2
√
n2 − 4.

Hence by the same argument as before we get the specified movable and closed effective
cones.

Notice that the extremal rays in the movable and closed effective cones are always
irrational. By exactly the same argument as before, we have that:

Corollary 3.16. X in the above proposition satisfies the Morrison-Kawamata cone
conjecture.

3.5 Symmetric matrices

Next we study the subvariety of P4 × P4 cut out by five general symmetric bilinear forms.
That is, we take A to be a 5×5×5-tensor satisfying the condition Aijk = Ajik for all i, j, k
and study the corresponding variety X. Again we form the diagram in Figure 3.1. The
crucial difference is that the closed subset of Y3 consisting of those points (z0 : · · · : z4)
such that the matrix (∑k Aijkzk)ij is of rank at most three becomes a one-dimensional
scheme.

Lemma 3.17. The closed subset of Y3 consisting of points (z0 : · · · : z4) whose associated
matrix (∑k Aijk)ij is of rank at most three is one-dimensional and of degree 20. The
corresponding subsets of Y1 and Y2 are still zero-dimensional and the rank two loci here
remain empty.

Proof. The argument is similar to the proof of Lemma 3.2. We have a map A5
z →

SymMat5×5
∼= A15 given by mapping (z0, . . . , z4) 7→ (∑k Aijkzk)ij . This is a general

embedding of vector spaces (since A is general amongst tensors symmetric in the first
two indices) so induces a closed embedding of projective spaces. We want to compute the
dimension and degree of the intersection with the closed subset Z of symmetric matrices
of rank at most three.

The dimension of Z can be computed on the open subset of symmetric matrices
of rank at most three whose first three columns are linearly independent. We have a
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Chapter 3. Determinantal quintic threefolds

twelve-dimensional family of choices in the first three columns (fifteen entries with three
symmetry relations). Now symmetry and the requirement that the last two columns be
linear combinations of the first three specify the rest of the matrix. Projectivising we
get that Z is an eleven-dimensional closed subset of P(SymMat5×5). Hence it intersects
the copy of P4

z in a codimension three, equivalently one-dimensional closed subset. The
degree of Z is easily computed to be 20 by the formula in [HT84, Proposition 12(b)].

The statements for Y1 and Y2 are essentially proved in Lemma 3.2.

Lemma 3.18. Let A be general among 5 × 5 × 5-tensors symmetric in swapping the two
first indices. Then the projections in Figure 3.1 down to Y1 and Y2 are isomorphisms in
codimension one which contract a finite number of curves each. The projections down
to Y3 contract a divisor, namely the preimages of the rank three locus in Y3. Moreover
the birational equivalence of X1 and X2 extends to an isomorphisms as in the following
diagram:

X3 X1 X2 X3 X1 X2

Y2 Y3 Y1 Y2 Y3 Y1

q

ψ

swap

φ
p q

∼

p q

ψ

φ
p q

ψ

φ
p q

∼

p q

The birational automorphism of X3 obtained by composing from the X3 on the left to the
X3 in the middle is the automorphism given by (x0 : · · · : x4) × (y0 : · · · : y4) 7→ (y0 : · · · :
y4) × (x0 : · · · : x4) which swaps the coordinates. That tracing through from the left to
the middle produces the birational automorphism equal to the automorphism which swaps
coordinates is an easy exercise in composing maps.

Proof. The first two statements follow directly from the previous lemma. To see that the
birational equivalence extends to an isomorphism, just notice that p−1 ◦ q : X1 99K X2 is
the map which sends (y0 : · · · : y4) × (z0 : · · · : z0) to itself over the complement of the
rank three locus in Y3.

Lemma 3.19. The preimages D1 ⊂ X1 and D2 ⊂ X2 of the rank three locus in Y3 are
divisors of class

D1 = 4q∗H − 2p∗H (in X1), D2 = 4p∗H − 2q∗H (in X2).

Proof. Write C for the rank three locus in Y3. We compute D2 using the method of
undetermined coefficients. Write D2 = ap∗H + bq∗H. Now intersecting both sides with
p∗H2 and p∗H · q∗H and applying Lemma 3.6 gives

5a+ 10b = D2 · p∗H2 = 0
10a+ 10b = D2 · p∗H · q∗H = 20.

In the first equation we have used that D2 · p∗H2 = p∗(C · H2) and that planes in P4

can be chosen to miss the curve C. In the second equation we used that degrees can be
computed on pushforwards by q and the projection formula

q∗(D2 · p∗H · q∗H) = q∗p
∗(C ·H) ·H = 20.

This last equality follows from that C is a curve of degree 20, so that q∗p
∗(C ·H) is the

class of the lines in Y1 ⊂ P4
x that contract to the 20 points on C ·H. Solving the above

equations give a = 4 and b = −2 as desired.
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q∗H

p∗H

ψ
∗

N
ef 1

X
1

Nef1X3

φ∗ Nef1X2

Proposition 3.20. The nef, effective and movable cones of X are

Nef1X = R+{p∗H, q∗H}

Mov1
X = R+{4p∗H − q∗H, 4q∗H − p∗H}

Eff1
X = R+{7p∗H − 2q∗H, 7q∗H − 2p∗H}.

Proof. Since the projections p and q are morphisms to projective space which contract
curves, p∗H and q∗H are on the boundary of the nef cone. The same argument holds
for the birational models X1 and X2, and since the maps φ and ψ are isomorphisms in
codimension one, the pullbacks of the nef cones of X1 and X2 remain movable divisors
on X. Hence the movable cone contains R+{4p∗H − q∗H, 4q∗H − p∗H}. To see that
4p∗H − q∗H is extremal in the movable cone, note that it is the pullback of p∗H from
X2. Since the fibre f of the map p : X2 → Y3 over a general point in the rank three locus
has intersection numbers p∗H · f = 0 and q∗H · f = 1 on X2, any divisor ap∗H + bq∗H
on X2 with b < 0 must contain this fibre and hence must contain the entire divisor D2
from Lemma 3.19. In particular such divisors are not movable, so p∗H is extremal in the
movable cone on X2 and hence its pullback 4p∗H − q∗H is extremal in the movable cone
on X. By symmetry, so is 4q∗H − p∗H, hence we have now computed the movable cone
on X.

The ray 7p∗H − 2q∗H is the pullback of (half of) the divisor D2 = 4p∗H − 2∗H on
X2. Since this is the preimage under p of the rank three locus in Y3, it is an effective
divisor, and since it vanishes on the nonzero nef curve p∗H2 on X2 it is extremal in the
effective cone. By symmetry this computes the effective cone of X.
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Chapter 4

Quintic hypersurface in the blowup of
P4 in two lines

Let l1 and l2 be two disjoint lines in P4 and consider the blowup Y = Bll1,l2 P4 together
with its blowup morphism π : Y → P4. We define H to be the divisor class of the pullback
π∗OP4(1) and E1 and E2 to be the exceptional divisors over the two lines. In this chapter
we show that the line bundle associated to 5H − 2E1 − 2E2 admits global sections and
that its general section is a Calabi-Yau threefold. We then compute the cones of nef and
effective divisors for this threefold.

4.1 Preliminaries on the blowup of two lines

For the rest of this chapter, we assume that the coordinates on P4 are chosen so that
l1 = V(x0, x1, x2) and l2 = V(x2, x3, x4).

Lemma 4.1.

(i) Y is isomorphic to the closed subscheme of P4 × P2 × P2 cut out by the maximal
minors of the two matrices(

u0 u1 u2
x0 x1 x2

)
,

(
v2 v3 v4
x2 x3 x4

)
.

Under this isomorphism, the blowup morphism π is identified with the projection
onto the P4.

(ii) The exceptional divisors E1 and E2 are both isomorphic to P1 ×P2. The morphisms
Ei → li are the projections onto the P1 factor.

(iii) We have the following relation between (the sheaves associated to) the divisor classes
H,E1, E2 and the pullbacks of OP4×P2×P2(a, b, c):

H = OY (1, 0, 0) OY (1, 0, 0) = H

E1 = OY (1,−1, 0) OY (0, 1, 0) = H − E1

E2 = OY (1, 0,−1) OY (0, 0, 1) = H − E2.

In particular the maps to P4
x,P2

u and P2
v correspond to respectively H,H − E1 and

H − E2.
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Chapter 4. Quintic hypersurface in the blowup of P4 in two lines

(iv) The maps induced on Picard groups by the inclusion maps Ei ↪→ Y satisfy

PicY → PicE1 PicY → PicE2

OY (a, b, c) 7→ OP1×P2(a+ c, b) OY (a, b, c) 7→ OP1×P2(a+ b, c)

under the identifications of the exceptional divisors with P1 × P2. (Below we show
that these are all elements of PicY , so we have in fact determined the map on
Picard groups.) In particular the normal sheaves OE1(E1) and OE2(E2) are both
identified with OP1×P2(1,−1).

Proof.

(i) In this proof, a matrix in a denominator should be interpreted as the ideal generated
by the maximal minors of that matrix. The statement is equivalent to that the
morphism

π : Proj C[x0, . . . , x4][u0, u1, u2][v2, v3, v4]
( u0 u1 u2
x0 x1 x2 ), ( v2 v3 v4

x2 x3 x4 ). → ProjC[x0, . . . , x4] = P4

induced by the inclusion of rings satisfies the universal property of a blowup.
Here the ring on the left is a trigraded polynomial ring in the obvious way. This
universal property can be checked locally on the target. The above morphism is
an isomorphism over the complement of the two lines, so we only need to check
that it is the blowup morphism over opens covering the two lines. Notice that l1
is covered by D+x3 and D+x4 and that both of these are disjoint from l2. Over
D+x3 we can identify π with the diagonal map in the following diagram, which we
recognise as the blowup of D+x3 ∼= A4 in the line l1 ∩D+x3 = V(x0/3, x1/3, x2/3).

Proj C[x0/3,...,x4/3][u0,u1,u2][v2,v3,v4]
( u0 u1 u2
x0/3 x1/3 x2/3 ),(

v2 v3 v4
x2/3 1 x4/3 )

Proj C[x0/3,...,x4/3][u0,u1,u2]
( u0 u1 u2
x0/3 x1/3 x2/3 )

D+x3

π|D+x3

∼

By symmetry we also have that π is the desired blowup morphism over D+x0, D+x1
and D+x4. Hence π is indeed to blowup of P4 in l1 ∪ l2.

(ii) The exceptional divisor is the preimage of the two lines. The preimage of l1 is
the closed subscheme cut out by x0, x1, x2, hence is naturally identified with the
trigraded Proj of the ring

C[x3, x4][u0, u1, u2][v2, v3, v4]
(v2x3, v2x4, v3x4 − v4x3) .

This ring receives an inclusion map from the ring C[x3, x4][u0, u1, u2] which is
easily seen to induce an isomorphism on projective schemes, giving the desired
isomorphism E1 ∼= P1 × P2. The projection down to l1 corresponds to the inclusion
of the subring C[x3, x4] which in turn corresponds to the projection P1 × P2 → P1.
By symmetry the same holds for E2 and l2.

(iii) That H corresponds to the sheaf OY (1, 0, 0) is essentially the definition of H.
We compute the ideal sheaf IE1 of the exceptional divisor E1 in Y . This is
the image of the natural map π∗Il1 → π∗OP4 → OY . Precomposing with the
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4.1. Preliminaries on the blowup of two lines

pullback of the surjection (x0, x1, x2) : OP4(−1)⊕3 → Il1 , it suffices to describe
the image of π∗OP4(−1)⊕3 → OY . This is just the submodule generated by
rational sections of the form xi

xj
where i ∈ {0, 1, 2} and j ∈ {0, . . . , 4} over

appropriate opens. But this in turn can be described as the image of the
injective map x0

u0
= x1

u1
= x2

u2
: OY (−1, 1, 0) → OY . Hence the ideal sheaf of E1 is

IE1
∼= OY (−1, 1, 0) and consequently the sheaf associated to E1 is OY (1,−1, 0).

The computation of the sheaf associated to E2 is similar.

(iv) To compute the map Pic(P4 × P2 × P2) → PicE1, observe that the inclusion
E1 ∼= P1 × P2 ↪→ P4

x × P2
u × P2

v is the map

P1 × P2 → P4 × P2 × P2

(x3 : x4) × (u0 : u1 : u2) 7→ (0 : 0 : 0 : x3 : x4) × (u0 : u1 : u2) : (0 : x3 : x4).

The description of the restriction map PicY → PicE1 now follows, and we get the
restriction map to E2 by symmetry.

Lemma 4.2. PicY = Z{H,E1, E2}. In particular, the pullback map Pic(P4 ×P2 ×P2) →
PicY is an isomorphism.

Proof. Since Y is nonsingular, the Picard group coincides with the Weil class group. We
have the exact sequences

Z{l1, l2} ClP4 Cl(P4 \ (l1 ∪ l2)) 0

Z{E1, E2} ClY Cl(Y \ (E1 ∪ E2)) 0.

0 ∼

∼

ClP4 is the free abelian group on a hyperplane section. We claim that the map
Z{E1, E2} → ClY is injective. It will then follow that the bottom row is a split
short exact sequence, giving a canonical isomorphism PicY = ClY = Z{H,E1, E2} as
desired.

To prove the claim, suppose aE1 + bE2 is trivial in ClY . Then the associated sheaf
OY (a+ b,−a,−b) is trivial in the Picard group. Pulling this back further to E1 ∼= P1 ×P2

gives that the sheaf OP1×P2(a,−a) is trivial in Pic(P1 × P2), from which we can conclude
that a = 0. By symmetry we also have b = 0, hence the map is injective.

Lemma 4.3. The canonical divisor on the blowup of P4 in two lines is KY =
−5H + 2E1 + 2E2 = OY (1, 2, 2).
Proof. Since the blowup morphism π restricts to an isomorphism over the complement
of the two exceptional divisors and Y is nonsingular, the canonical sheaf must be of
the form ωY ∼= π∗ωP4 ⊗ OY (aE1) ⊗ OY (bE2) for integers a, b to be determined. Using
Lemma 4.1 (iii) we can rewrite this as ωY ∼= OY (−5 + a+ b,−a,−b). Restricting both
sides to E1 using Lemma 4.1 (iv) now gives

ωY |E1
∼= OP1×P2(−5 + a,−a)

under the identification E1 ∼= P1 × P2. On the other hand, the adjunction formula for E1
as a divisor in Y says ωE1

∼= ωY |E1 ⊗ OE1(E1), which rearranges to

ωY |E1
∼= ωP1×P2 ⊗ OP1×P2(−1, 1) ∼= OP1×P2(−3,−2)

again using Lemma 4.1 to transport line bundles over the identification E1 ∼= P1 × P2.
Combining the two displayed equations above now lets us solve for a, giving a = 2. By
symmetry we also have that b = 2.
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Chapter 4. Quintic hypersurface in the blowup of P4 in two lines

Let X be a general section of the sheaf OY (−KY ) = OY (5H − 2E1 − 2E2) =
OY (1, 2, 2).

Lemma 4.4. X is a Calabi-Yau threefold whose Picard group is canonically isomorphic
to that of Y via the pullback map.

Proof. X is smooth by Bertini’s theorem 2.24 and the pullback map on Picard groups is
an isomorphism by the Lefschetz theorem 2.25. The adjunction formula tells us that the
canonical divisor is ωX ∼= ωY |X ⊗ OX(X) ∼= OX .

To see that the middle cohomology groups of the structure sheaf vanish we use the
ideal sheaf sequence for X as a divisor in Y ,

0 OY (−5H + 2E1 + 2E2) OY OX 0.

Since 5H − 2E1 − 2E2 is an ample divisor (it is the pullback of O(1, 2, 2) through the
embedding into P4 ×P2 ×P2), the Kawamata-Viehweg vanishing theorem (Theorem 2.26)
tells us that the sheaf on the left has no cohomology except possibly in degree four. In
particular the map OY → OX induces an isomorphisms on cohomology in degree one and
two. Hence it suffices to show that H1(Y,OY ) and H2(Y,OY ) both vanish. This follows
from a special case of the Leray spectral sequence [Har77, Exercise III.8.1] for the blowup
morphism π : Y → P4 using that π∗OY = OP4 and that the remaining right derived
pushforwards Riπ∗OY vanish for i > 0 (these last two are proved using the Theorem
on formal functions similarly to the proof of [Har77, Proposition V.3.4]). Hence X is a
Calabi-Yau threefold.

4.2 Intersection products

Lemma 4.5. We have the following intersection products on Y

H4 = 1, H · E3
1 = H · E3

2 = 1, E4
1 = E4

2 = 3.

and all other degree four monomials in H,E1, E2 vanish.

Proof. This follows from the following calculations:

• E1 · E2 = 0
This holds simply because these two divisors are disjoint.

• H2 · E1 = H2 · E2 = 0
These follow from the push-pull formula for the map π : Y → P4 since π∗Ei = 0.

• H4 = 1
Since pullback through maps of smooth quasi-projective varieties is a ring
homomorphism, it suffices to compute the pullback of OP4(1)4, which is clearly the
class of a reduced point.

• H · E3
1 = H · E3

2 = 1
The push-pull formula tells us that the first of these can be computed as the
intersection product OE1(H) · OE1(E1)2 on E1. Identifying E1 with P1 × P2, this
intersection product becomes OP1×P2(1, 0) · OP1×P2(1,−1)2 = 1. By symmetry we
get the same value for H · E3

2 .
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4.3. Finding special curves

• E4
1 = E4

2 = 3
The push-pull formula gives E4

1 = OE1(E1)3. This in turn is equal to
OP1×P2(1,−1)3 = 3. By symmetry we get the same value for E4

2 .

Lemma 4.6. The intersection numbers of divisors on X are

H3 = 5, H · E2
1 = H · E2

2 = −2, E3
1 = E3

2 = −1

and all other degree three monomials in H,E1, E2 vanish.

Proof. These follow immediately from the intersection numbers on Y and the push-pull
formula for the inclusion of X. For example we compute H3 on X as H3 ·(5H−2E1−2E2)
on Y . Expanding brackets and using the known intersection theory on Y gives H3 = 5.
The others are similar.

4.3 Finding special curves

Lemma 4.7. The fibres C1 and C2 of the restriction of the blowup morphism π|X : X →
P4 over a general point in respectively l1 and l2 are curves with the following intersection
numbers with divisors on X:

H · C1 = 0, E1 · C1 = −2, E2 · C1 = 0,
H · C2 = 0, E1 · C2 = 0, E2 · C2 = −2.

Proof. The intersection of X with E1 can be obtained as the zero locus of the restriction
of the section determining X. This is a section of OY (1, 2, 2) which restricts to a section
of OP1×P2(3, 2) on E1 ∼= P1 × P2. Let C1 be the fibre of this over a general point in
P1 ∼= l1. This is clearly an effective curve in X.

By the push-pull formula the intersection numbers of this curve with divisors in X is
the same as the intersection numbers with the corresponding divisors on Y . By definition
C1 is a curve in E1 of type OP1×P2(3, 2) · OP1×P2(1, 0). Denote by i the inclusion E1 ↪→ Y .
Then we may write the class of C1 as i∗OY (1, 2, 2) · i∗OY (1, 0, 0). Using the push-pull
formula for i, the intersection numbers of C1 with the divisors H,E1, E2 on Y equal the
intersection numbers of OY (1, 2, 2)·OY (1, 0, 0)·OY (1,−1, 0) = (5H−2E1 −2E2)·H ·E1 =
−2H · E2

1 with the same divisors:

H · C1 = H · (−2H · E2
1) = 0

E1 · C1 = E1 · (−2H · E2
1) = −2

E2 · C1 = E2 · (−2H · E2
1) = 0.

The intersection numbers for C2 follow by symmetry.

Lemma 4.8. X contains an effective curve C such that

H · C = 1, E1 · C = 1, E2 · C = 1.

Geometrically, C is the strict transform of a line meeting both l1 and l2.

Proof. We show that the image of X under the blowup map to P4 contains a line
intersecting both of the given lines. This is a statement about the intersection of X with
the strict transform S of the hyperplane in P4 containing the two lines. Since this strict
transform is represented by the divisor H − E1 − E2 we get the ideal sheaf sequence
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0 OY (4H − E1 − E2) OY (5H − 2E1 − 2E2) OS(5H − 2E1 − 2E2) 0.

Writing 4H − E1 − E2 = 2H + (H − E1) + (H − E2), this divisor is clearly nef and big,
hence the leftmost sheaf has no higher cohomology by Kawamata-Viehweg vanishing
(Theorem 2.26). Hence we see that all global sections of the line bundle associated
to 5H − 2E1 − 2E2 restricted to S arise as restrictions of sections of the original line
bundle. By functoriality of blowups we can realise S as the blowup of P3 in two lines,
and the new line bundles H,E1, E2 will coincide with the restrictions of the old ones. In
particular the intersection of X with S is a general section of OBll1∪l2 P3(5H− 2E1 − 2E2).
Since π∗OBll1∪l2 P3(5H − 2E1 − 2E2) = I2

l1∪l2(5), global sections correspond to quintic
polynomials in the ideal (x0, x1)2(x2, x3)2. In particular, the image of X intersects the
hyperplane through the two lines in the vanishing locus of a general quintic polynomial
in this ideal.

For fixed points (a : b : 0 : 0) and (0 : 0 : c : d) on the two lines, the condition that the
line joining them is contained in the image of X is equivalent to that the quintic equation
in the above ideal vanishes at (λa : λb : µc : µd) for all λ and µ. We decompose f as a
sum of two polynomials in C[x0, x1][x2, x3], one of bidegree (3, 2) and one of bidegree
(2, 3), and find that the coefficients of λ3µ2 and λ2µ3 cut out loci in P1

a,b×P1
c,d of bidegree

(3, 2) and (2, 3) respectively. These generally intersect in twelve points. This gives twelve
lines in the image of X meeting both of the original lines. The strict transform of any of
these serves as the desired C.

4.4 Computing divisor cones

Theorem 4.9. The nef, closed movable and closed effective cones of X are

Nef1X = R+{H,H − E1,H − E2}

Mov1
X = R+{H,H − E1,H − E2, 5H − 3E1 − 3E2}

Eff1
X = R+{H − E1 − E2, E1, E2}.

Before proving this, we draw the cones by drawing their intersections with a plane
in the Néron-Severi space. In our case we choose the hyperplane consisting of divisors
aH + bE1 + cE2 for which 3a+ b+ c = 0.

H
H − E1

H − E2

H − E1 − E2

E1

E2

5H − 3E1 − 3E2

Figure 4.1: Intersection of divisor cones with hyperplane
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The big triangle represents the effective cone, the orange quadrilateral bounds the
movable cone and the shaded region is the nef cone.

We split the proof into three lemmas.

Lemma 4.10. The cone of nef divisors on X is Nef1X = R+{H,H − E1,H − E2}.

Proof. The three generators for the specified cone are nef since their associated line
bundles determine the projection maps to the three factors of P4 × P2 × P2. Conversely
suppose aH + bE1 + cE2 is a nef divisor on X; then it must have nonnegative intersection
with all effective curves. In particular it must have nonnegative intersections with the
curves C1, C2 and C from the previous two lemmas. This translates to the inequalities

−2b ≥ 0
−2c ≥ 0

a+ b+ c ≥ 0

which cut out the specified cone.

Lemma 4.11. The closed cone of effective divisors on X is

Eff1
X = R+{H − E1 − E2, E1, E2}.

Proof. First note that the two exceptional divisors are effective by definition and that
H−E1 −E2 is linearly equivalent to the intersection of the strict transform of the unique
hyperplane containing the two lines in P4 with X. This shows that the cone in the
statement is contained in the effective cone. Conversely suppose aH + bE1 + cE2 lies
in the closed cone of effective divisors; then it must have nonnegative intersection with
all nef curve classes in X. By Lemma 2.16 the intersection product of two nef divisor
classes is a nef curve class, so in particular H2, (H − E1)2 and (H − E2)2 are classes of
nef curves. Intersecting these with our divisor gives the three inequalities

5a ≥ 0
3a+ 3b ≥ 0
3a+ 3c ≥ 0

which cut out the specified cone.

Lemma 4.12. The closed cone of movable divisors on X is

Mov1
X = R+{H,H − E1,H − E2, 5H − 3E1 − 3E2}.

Proof. We first show that the closed movable cone is contained in the specified cone, so
let aH + bE1 + cE2 be a movable divisor. If this divisor is negative on the class C1 of the
fibre in X over a general point in l1, then any linearly equivalent divisor must contain
every curve arising as such a fibre. These curves swipe out a divisor, contradicting that
our divisor is movable. Hence aH + bE1 + cE2 must be nonnegative on C1, and the same
is true for the fibre C2 over a general point in l2. Hence by the intersection numbers in
Lemma 4.7 we get the two equalities

b ≥ 0
c ≥ 0.
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The strict transform S of the hyperplane containing the two lines to the blowup is a
divisor of class H − E1 − E2. By functoriality of blowups we may identify S with the
blowup of this hyperplane in the two lines. Now restricting the divisor H − E1 to S
produces the class of all strict transforms of planes through l1 to S. In particular, the
divisor H−E1 traces out all of S. Restricting the above to X, we see that the curve class
(H−E1 −E2)(H−E1) on X swipes out the entire divisor S∩X. Thus if aH+ bE1 + cE2
is negative on the curve class (H−E1 −E2)(H−E1) then every divisor linearly equivalent
to it must contain the entire divisor S, again contradicting movability. The same is true
if we swap the roles of E1 and E2, so we get two more conditions on our movable divisor:

3a+ 3b+ 2c ≥ 0
3a+ 2b+ 3c ≥ 0.

The four displayed inequalities so far cut out the specified movable cone.
It remains to check that the four generators for the specified cone indeed belong to

the closed movable cone. H, H − E1 and H − E2 are movable since they are globally
generated. To see that D = 5H − 3E1 − 3E2 is movable requires a bit more work.
Rewriting it as 2(H − E1) + 2(H − E2) + (H − E1 − E2) we see that its base locus is
contained in the intersection of S with X, so it suffices to find some section which does
does not vanish identically on this intersection; equivalently to show that the left map in
the following short exact sequence is not surjective on global sections.

0 OX(D − S) OX(D) OX∩S(D) 0

The sheaf on the left is the line bundle associated to the divisor 4H − 2E1 − 2E2 =
2(H − E1) + 2(H − E2). This line bundle is nef and big since it corresponds to the
map X → P2

u × P2
v postcomposed with the Segre embedding followed by the second

Veronese embedding. Hence by the Kawamata-Viehweg vanishing theorem 2.26 and that
the canonical divisor on X is trivial, the sheaf on the left has no cohomology in nonzero
degrees. Thus it suffices to check that the sheaf on the right admits a global section. We
show this by considering the ideal sheaf sequence

0 OS(D −X) OS(D) OX∩S(D) 0

It suffices to show that H1 of the sheaf on the left is one-dimensional and that both H0

and H1 of the middle sheaf vanish. These sheaves can be identified with the line bundles
OBll1∪l2 P3(−E1 −E2) and OBll1∪l2 P3(5H−3E1 −3E2) on the blowup of P3 in two disjoint
lines (notice that we are now reusing E1 and E2 as notation for the exceptional divisors
in the blowup of P3). To compute cohomology of the sheaf on the left, use the ideal sheaf
sequence

0 OBll1∪l2 P3(−E1 − E2) OBll1∪l2 P3 OE1∪E2 0.

The cohomology of the sheaf in the middle is isomorphic to the cohomology of P3 by
derived pushforwards and the Leray spectral sequence as in the proof of Lemma 4.4. The
sheaf on the left is the structure sheaf on two disjoint copies of P1 × P1. The map on
the right in the sequence is clearly injective on global sections, so we get in particular
that H1(S,OS(D −X)) = 1. Finally we compute the cohomology of OS(D) by derived
pushforwards to P3, again using that the higher right derived pushforwards vanish (this
holds by the Theorem on formal functions essentially because the line bundles on the fibres
are OP1(3)’s and the degenerate case of Leray spectral sequence. Thus the cohomology
of OS(D) is isomorphic to that of I3

l1∪l2(5) on P3. This sheaf has zero cohomology in all
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degrees, as can be seen from the ideal sheaf sequence for the subscheme of P3 cut out by
(x0, x1)3(x3, x4)3, thus completing the proof.

Corollary 4.13. X satisfies the Morrison-Kawamata cone conjecture (Conjecture 2.22).

Proof. This is a simpler version of the proof of Corollary 3.11. The automorphism
group must act on the minimal integral ray generators for the nef cone, and this action
determines the action on N1(X)R. We quotient out by the kernel of the action and
separately study the six possible subgroups of Sym{H,H − E1,H − E2} ∼= S3 that may
arise. It is clear that all of these admit rational polyhedral fundamental domains, thus
the Morrison-Kawamata cone conjecture for the nef cone holds. Similarly the birational
automorphism group acts on the minimal integral ray generators of the movable cone,
hence maps into Sym{H,H − E1, 5H − 3E1 − 3E2,H − E2} ∼= S4. Moreover the action
must send adjacent generators to adjacent generators, hence the image is contained in
D8 ⊂ S4. Again considering all ten possible subgroups individually, we easily spot the
rational polyhedral fundamental domains.

Remark 4.14. The set-theoretic difference between the movable cone and nef cone should
correspond to a small Q-factorial modification of X. We give an indication of how this
can be found. X is cut out from P4 × P2 × P2 by an equation of the form

x0f0 + · · · + x4f4 = 0

where the fi are bihomogeneous of bidegree (2, 2) in coordinates (u, v) together with the
maximal minors of the matrices(

u0 u1 u2
x0 x1 x2

)
and

(
v2 v3 v4
x2 x3 x4

)
.

Multiply the first equation by u2v2, rewrite using minors and divide by x2
2:

u0v2f0
x2

+ u1v2f1
x2

+ u2v2f2
x2

+ u2v3f3
x2

+ u2v4f4
x2

= 0.

Here we notice that the first three terms are all regular as long as one of x2, x3, x4 are
nonzero (that is, away from E2) since we can rewrite v2

x2
= v3

x3
= v4

x4
. Similarly the last

three terms are all regular as long as one of x0, x1, x2 are nonzero (that is, away from
E1). Notice especially that the middle term is regular over all of X. We therefore have
two distinct ways of rearranging this equation

s := u0v2f0
x2

+ u1v2f1
x2

+ u2v2f2
x2

= −
(u2v3f3

x2
+ u2v4f4

x2

)
t := u0v2f0

x2
+ u1v2f1

x2
= −

(u2v2f2
x2

+ u2v3f3
x2

+ u2v4f4
x2

)
such that at every point, one of the two sides is well-defined. Thus gluing these gives us
two distinct sections s, t of the sheaf OX(1, 2, 2) = OX(5H − 3E1 − 3E2) which together
determine a rational map to P1. We predict that the map X 99K P2 × P2 × P1 given by

(x0 : · · · : x4) × (u0 : u1 : u2) × (v2 : v3 : v4) 7→ (u0 : u1 : u2) × (v2 : v3 : v4) × (s : t)

is the desired modification.
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