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Abstract

Synthetic data has gained attention over the last years because of its ability to
safeguard the privacy of real data points while still ensuring data utility. These
properties are beneficial in many domains and sectors working with sensitive
data, particularly to public agencies, which govern large amounts of data on
individuals. Most previous works on synthetic data centres around tabular data,
and while some research has been done on synthetic survival data, the topic of
synthetic multi-state time-to-event (MS-TTE) data has yet to be considered.
In this thesis, we develop a novel semi-parametric approach to synthesising
MS-TTE data, which combines a non-parametric tabular synthesiser with a
parametric multi-state survival regression model. We use Weibull regression and
both clock-reset and clock-forward models. Moreover, we extend our approach
into an MS-TTE model with a differential privacy guarantee. We also introduce
a novel differentially private Weibull regression model.

We review selected evaluation methods for synthetic data in terms of privacy
and utility evaluation. The standard approach evaluates synthetic data based
on a single data set, which does not account for the variance between synthetic
data sets generated from the same synthesiser. We propose a distance-based
evaluation framework which adjusts for this variance.

Using an open-access data set, we demonstrate our proposed synthesisers
for MS-TTE data with and without differential privacy. Furthermore, we
exemplify the evaluation of these synthesisers and their synthetic data by
adapting reviewed methods to an MS-TTE setting and utilising our proposed
evaluation framework.
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Introduction
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1.1. Background and Motivation

1.1 Background and Motivation

In 2020, the Norwegian Government published a National Strategy for
Artificial Intelligence (NSAI) (Norwegian Ministry of Local Government and
Modernisation, 2020), in which they presented a framework for the development
and use of artificial intelligence (AI) within the public and private sector.
Motivated by the possibilities of increasing efficiency and improving services,
public agencies are encouraged to actively explore the possibilities of AI. The
Norwegian Labour and Welfare Administration (NAV) established an AI-lab in
2017 and has since worked on the development of responsible AI. Responsible
AI covers aspects such as fairness, explainability and privacy (Vidnes Jensen
and Pihl Lyngstad, 2019).

Data is essential for developing AI and machine learning models. NAV
administers more than one-third of the Norwegian National Budget through
welfare benefits such as child benefits, sickness benefits and pensions (NAV,
2019). Through these services, NAV collects personal data on most citizens at
multiple stages of their lives. Data on unemployment and sickness can be of a
sensitive nature. Thus, ensuring the their users’ privacy is a central challenge in
NAV’s development of responsible AI. Using anonymised data to train models
is a possible and commonly used solution. However, with re-identification
attacks getting increasingly sophisticated, this can no longer be regarded as
a satisfactory method for protecting the privacy of individuals in the data
(Rocher, Hendrickx and Montjoye, 2019).

Another challenge of using personal data is the requirement of informed
consent for each purpose, which can be a lengthy process and can introduce
consent bias in the data (El Emam, 2020). Data collected for the public sector
is often excepted from these regulations through specific statutory provisions
(Norwegian Ministry of Local Government and Modernisation, 2020). However,
because they were written prior to the development of today’s technological
advancements in AI, further clarifications are necessary (Norwegian Data
Protection Authority, 2022). In a regulatory sandbox project between NAV and
the Norwegian Data Protection Authority (NDPA), NAV presented a predictive
model based on personal data. NDPA concluded that using the model was
allowed within the current legislation. Nevertheless, it was unclear if personal
data could legally be used as training data for such a model (Norwegian Data
Protection Authority, 2022).

NSAI proposes synthetic data as a possible solution to the challenges of
personal data. Synthetic data with sufficient utility can be used instead of
real data in developing machine learning models. Another benefit is that
synthetic data can, in principle, be openly shared within and outside the
agency, encouraging more innovation and research (Norwegian Ministry of Local
Government and Modernisation, 2020).

In practice, synthetic data still poses a privacy risk (Stadler, Oprisanu and
Troncoso, 2022), and the legal debate around the use of synthetic data is in
its early stages. This discussion is naturally outside the scope of this thesis,
and we refer the reader to Bellovin, Dutta and Reitinger (2019) and Gal and
Lynskey (2023) for analyses of the legal implications of synthetic data. Even so,
the legal aspect of synthetic data highlights the need for thorough quantitative
evaluations and risk assessments of the privacy of synthetic data.

This master project was induced by NAV’s aspirations to explore synthetic
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1.2. Problem Statement

data and how they can use it within their AI and machine learning research.
However, this thesis aims for a more general scope and can be relevant to many
sectors and industries.

1.2 Problem Statement

In this thesis, we will explore the novel concept of synthetic multi-state time-to-
event (MS-TTE) data, which requires different methods in terms of synthesis
and evaluation than common data types like synthetic tabular, text and image
data. MS-TTE data can be used to model how individuals move between
states over time. NAV data has previously been used to analyse individuals’
transitions between work, partial and full sick leave, work assessment allowance
and disability pensions through multi-state models (Gran et al., 2015). With
synthetic MS-TTE data, such studies can more easily meet privacy requirements.

MS-TTE data is a type of survival data, and limited work has been done
on synthetic survival data thus far. During the work on this thesis, Norcliffe
et al. (2023) published SurvivalGAN, a machine learning model for synthesising
survival data. However, it does not provide a method for synthesising MS-TTE
data. To the best of our knowledge, this data type has not been discussed
in a synthetic data context before. Therefore, we develop novel MS-TTE
synthesisers based on existing parametric survival regression methods and
tabular synthesisers. Then, we discuss how existing and proposed privacy and
utility evaluation methods should be applied to this data type. The main
objective of this thesis is not to create a complex model that generates synthetic
data with perfect utility, which is to be used interchangeably with real data.
Instead, we focus on providing a starting point for MS-TTE synthesis and
utilise our proposed MS-TTE synthesiser models to illustrate various evaluation
measures.

1.3 Chapter Outline

Chapter 2 offers an introduction to the field of synthetic data. We present
the definitions and terms used in this thesis and discuss possible use cases.
Next, we offer a short survey of existing work on the types of synthetic data we
will encounter, namely tabular, sequential and survival data. Furthermore, we
review a selection of utility evaluation metrics used for synthetic data. Different
types of privacy disclosure applied to a synthetic data setting are discussed, and
we consider the privacy challenge to membership inference attacks (MIAs), for
which we provide a novel variant. Moreover, we introduce differential privacy
and discuss how it can be applied to synthetic data. Finally, we explain how
proximity measures can be used to evaluate both the privacy and utility of
synthetic data. Our main contribution in this chapter is a novel evaluation
procedure which utilises existing distance metrics and repeated synthesis steps
for evaluating a synthesiser and not simply a specific synthetic data set.

In Chapter 3, we provide the requisite theoretical framework for survival
analysis and multi-state models that is needed for the remainder of this work. We
discuss survival regression models and Weibull regression in particular. Further,
we consider censoring and time inhomogeneous multi-state models. Our first
major contribution in this chapter is an algorithm which combines tabular
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1.3. Chapter Outline

synthesis and multi-state simulation, which can generate synthetic MS-TTE
data. We propose both clock-forward and clock-reset MS-TTE synthesisers.
The chapter concludes with a discussion of differential privacy for survival
data in general and MS-TTE data in particular. We expand on prior work by
providing a novel differentially private Weibull regression model. Our second
main contribution is a differentially private multi-state model.

We demonstrate the generation of an MS-TTE synthetic data set in Chapter
4 using an open-access data set. First, we show how naive synthesis methods
fall short for MS-TTE applications. Then, we use our proposed methods to
generate synthetic data sets with both clock-forward and clock-reset properties.
We evaluate the data using the evaluation procedures described in Chapter 2.
Finally, we carry out an MIA targeting the synthetic data.

Chapter 5 picks up the differentially private MS-TTE model presented in
Chapter 2, which we use to generate synthetic data with a differentially private
guarantee, using the same example data set as in Chapter 4. We show how the
hyper-parameters can be tuned and evaluate the differentially private synthetic
data in terms of privacy and utility.

We conclude and provide directions for further work in Chapter 6. In
Appendix B, we provide an overview of the source code, which is available on
GitHub.

4

https://github.com/ingriiser/Synthetic_MSTTE_Data


CHAPTER 2

Synthetic Data

5



2.1. Introduction to Synthetic Data

2.1 Introduction to Synthetic Data

2.1.1 Early Developments

Fully synthetic data was first proposed by Rubin (1993) as a way to protect
tabular microdata against privacy attacks. He proposed to release synthetic
data in place of sensitive real data and performed synthesis based on multiple
imputation methods for missing values (Drechsler, 2011; Rubin, 1987). For a
cost of higher variance in the synthetic data, this method protected the privacy
of real individual points, as none of the synthetic data points were mapped
directly from single real points. Synthetic data was presented as a more radical
approach than other statistical disclosure control (SDC) methods used at the
time, such as record swapping, adding random noise and other data masking
techniques (Drechsler, 2011; Raab, Nowok and Dibben, 2016).

2.1.2 A Tailored Definition

Synthetic data has evolved in numerous directions over the last three decades.
Today, the term can be used to describe all sorts of data types, such as generated
text, audio and images, as well as tabular, sequential and survival data (Creswell
et al., 2018; Jordon, Szpruch et al., 2022; Norcliffe et al., 2023). To define such
a broad term is a challenging task, and the literature on synthetic data offers
various definitions. We paraphrase three of them in Definition 2.1.1, Definition
2.1.2 and Definition 2.1.3, and we wish to discuss their similarities, where they
differ and possible limitations before we present our own definition.

Definition 2.1.1 [Synthetic data according to Duncan, Elliot and Salaz-
ar-González (2011)]

Synthetic data is data intended to be released as a replacement for real
data. It is generated from a probabilistic model fitted to this real data,
whose purpose is generating synthetic data which can be of general use.

Beginning with Definition 2.1.1, a probabilistic model allows for non-direct
linkage between the real input data and synthetic output data of the model,
as there is a probability attached to any given input and output combination
(Duncan, Elliot and Salazar-González, 2011). This is analogous to a randomised
algorithm, as defined by Dwork and Roth (2014, Defintion 2.2). Both parametric
and non-parametric models can be used as probabilistic models (Drechsler and
Reiter, 2011). Because probabilistic models can return many different outputs
based on one input signal, it means that we can generate as much synthetic data
as we wish, regardless of the size of the real input data. A possible limitation
of Definition 2.1.1 is that it makes little distinction between synthetic and
simulated data since the latter is also generated from a model that has often
been fitted to real data. The two terms are sometimes used interchangeably
(Beaulieu-Jones et al., 2019).

Definition 2.1.2 [Synthetic data according to Jordon, Szpruch et al. (2022)]

6



2.1. Introduction to Synthetic Data

Synthetic data is generated by means of a purpose-built mathematical
model or algorithm, with the aim of using the data to solve data science
tasks.

Definition 2.1.2 is similar to the definition of Duncan, Elliot and Salazar-
González in the sense that the synthetic data should be generated from a model
built for that purpose, which we argue can be too limiting. A wide range of
models can easily be extended into synthetic data generators. To illustrate,
say that a linear regression model is fitted to real data with the purpose of
performing inference. If we intend to use it to generate synthetic data, we can
begin by sampling from the (joint) distribution of the covariate(s). Next, the
response variable is generated by applying the estimated regression model to
the sampled covariates and adding a random noise term. Combined, we then
have a synthetic data set consisting of the covariate(s) and a response variable.
Another example is autoencoders, which are composed of an encoder and a
decoder. They can be used to compress and restore data, but the decoder can
double up as a data generator (Spinner et al., 2018). One can argue that the
definition by Jordon, Szpruch et al. still hold, as both models need adjustments1

before they can be used to create synthetic data. In the regression case, we
say that the regression model is the original model, and the adjusted model
is the combined covariate sampler and regression model. Therefore, one may
claim that the adjusted model is purpose-built for synthesis. However, we
seek a definition that avoids any such confusion by not enforcing unnecessary
restrictions on the type of models used.

Definition 2.1.3 [Synthetic data according to Templ (2017)]

Templ’s definition calls for synthetic data of a certain quality. Firstly, the
real and synthetic data should be close to equal in terms of distribution,
correlation structure and heterogeneity between subgroups. Secondly, the
synthetic data should ensure data confidentiality of the real data, and
synthetic data points should not be directly mapped from unique real data
points.

In Definition 2.1.3, Templ defines synthetic data in terms of its quality. He
is not, like Duncan, Elliot and Salazar-González and Jordon, Szpruch et al.,
concerned with the model used to generate the synthetic data. The two criteria
refer to the concepts of data privacy and utility (El Emam, 2020), which are
subject to further discussion in Section 2.3. Duncan, Elliot and Salazar-González
and Jordon, Szpruch et al. also comment on the utility of the synthetic data,
as they require that the synthetic data is useful in a general sense and for
data science tasks, respectively. However, they do not place specific statistical
requirements, as we see in Definition 2.1.3. Furthermore, as opposed to Duncan,
Elliot and Salazar-González, we note that Definition 2.1.3 separates between
synthetic and simulated data since the latter is generally not required to meet
privacy and utility requirements.

1Standard autoencoders often perform poorly at generating data (Nikolenko, 2021), and
Variational autoencoders (VAEs) (Kingma and Welling, 2014), which are mostly used as
synthetic data generators (Figueira and Vaz, 2022; Nikolenko, 2021), underperform on data
compression tasks (Spinner et al., 2018).
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2.1. Introduction to Synthetic Data

Based on these definitions, we create our own that aims to be both general
and suitable for the scope of this thesis. As discussed, we do not wish to limit
the synthesiser model to be purpose built, as Definition 2.1.1 and 2.1.2 require.
Nevertheless, we shall explicitly state that the purpose of the synthetic data
is to substitute real data, which is in line with Definition 2.1.1. We prefer to
have a clear distinction between synthetic and simulated data, which is why we
choose to include requirements of privacy and utility, like in Definition 2.1.3.
The terms privacy and utility ought to be used explicitly in the definition, as
they are widely used terms for the evaluation of the synthetic data (Bellovin,
Dutta and Reitinger, 2019; El Emam, 2020; Snoke et al., 2018).

Definition 2.1.4 [Synthetic data]

A synthetic data set Ds is generated from a synthesiser S with the purpose
of substituting some real data set Dr. S is fitted to Dr and is used
to generate synthetic data with satisfactory utility with respect to the
intended use, but without a concerning cost of data privacy of individual
data points in Dr.

We state that the purpose of Ds is to substitute Dr, meaning that Ds can
be used to perform the same tasks in a similar fashion to Dr. The utility is a
measurement of how well Ds performs at these tasks compared to Dr, and can
refer to both statistical similarity, like in definition three, and performance
of specific machine learning tasks, like in definition two. Definition 2.1.4 is
deliberately vague by not specifying what is regarded as a satisfactory utility or
a concerning privacy cost. These bounds should be set in accordance with the
purpose of the synthetic data, which we discuss in Section 2.1.3. Additionally,
synthetic data with poor data privacy or low utility should still be regarded as
synthetic data, even when the quality is dubious.

If we assume that Dr is sampled from a true model, T , we can think of S
as an estimate of T . If S = T , then Dr and Ds are independent samples from
the same model (Duncan, Elliot and Salazar-González, 2011). Raab, Nowok
and Dibben (2016) refer to this as the Synthesising Distribution Assumption.
This guarantees a Ds with full utility and full privacy, which would be an ideal
synthetic data set. However, independence between the two sets Dr and Ds

is not achievable in practice since T is unknown (and will likely not exist in
practice), and S is fitted to Dr. Thus, we need a quantifiable evaluation of the
privacy and utility of Ds. This evaluation can be included in S, but can also be
implemented as post-processing steps. We continue this discussion in Sections
2.3-2.6.

Here, we use the term synthesiser to refer to the synthetic data generator,
while generator is also commonly used. In Definition 2.1.5, we propose a
definition of a synthesiser S that holds in the general case. Based on Definition
2.1.1, which refers to probabilistic models, the architecture of the generators
of GANs2 (Creswell et al., 2018) and partly inspired by the notation of a
mechanism in Dwork and Roth (2014), we present the following definition:

2Generative adversarial networks (GANs) take a random noise input.
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2.1. Introduction to Synthetic Data

Definition 2.1.5 [Synthesiser]

A synthesiser, S, is a probabilistic that generates a synthetic data set
Ds. It is fitted to a real data set Dr containing m data points, each with
domain X . Given any random number generator on R, S can generate n
synthetic data points from X .

S : R→ Xn.

A shortcoming of Definition 2.1.5 is the exclusion of augmented synthetic
data, which can be used to create synthetic data points of a larger domain than
the real data points. For instance, augmented generated image data can include
captions, even when the real training data does not (Jordon, Szpruch et al.,
2022). We use Definition 2.1.5 since data augmentation is outside the scope of
this thesis. Note that some synthesisers, such as autoencoders, require that the
noise signal is a vector so that S maps from Rk, where k ∈ N.

2.1.3 General Use Cases

In Definition 2.1.4, we state that the role of synthetic data is to substitute real
data. The distinction between a substitute and a replacement is important
because the synthetic data should not be treated as a perfect equivalent of the
real data. Breugel, Qian and M. v. d. Schaar (2023) demonstrate how a naive
approach to synthetic data, namely using it as if it was real, causes inaccurate
results when the synthetic data is applied to various tasks. This is a result
of inadequate utility. The level of privacy will also depend on the purpose.
For instance, data shared internally within an organisation or company will
require less privacy than externally shared data. In this section, we will discuss
a selection of general use cases and their requirements for privacy and utility.

Test data

Synthetic data is often used for testing purposes, like tests of information systems.
In scenarios where external partners execute tests or when the development
process requires a constant supply of test data, synthetic test data is especially
useful. This is because the process of getting access to real data can be tedious
(Behjati et al., 2019; El Emam, 2020). In other cases, synthetic data is used as
test data because there is not enough real data available (El Emam, 2020).

Behjati et al. (2019) discuss how it can be useful for several public agencies
and administrations to have access to the same test data since many systems
rely on a data flow between different entities. This can enable more complex
testing scenarios. Test Norway (Tenor) data3 is such a system maintained
by the Norwegian Tax Administration. The system is developed for testing
purposes and contains a synthetic version of the Norwegian population. Tenor
data can be used in Dolly, which is NAV’s own system for generating synthetic
data for specific testing purposes (NAV, 2022).

3Norwegian: Test-Norge.
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2.1. Introduction to Synthetic Data

In summary, the level of privacy of the synthetic test data depends on
whether the testing is performed internally or externally. In terms of utility,
the synthetic test data is generally not required to closely follow the same
distribution as the real data, but they need to contain enough outliers so that
unusual events are covered (El Emam, 2020). Moreover, it is important that the
synthetic data has the same data structure as the real data (Jordon, Szpruch
et al., 2022), meaning that they have the same columns and data types of each
column. Because of this, data that is generated by a theoretical model can
be used (El Emam, 2020). A theoretical model can be interpreted as a prior
distribution, and it represents believes about the population without looking at
the real data. Because the theoretical model is not trained on real data, such
data cannot be described as synthetic data in accordance with Definition 2.1.4.
Instead, we call it simulated data.

Machine learning and AI

Synthetic data is used for both model selection and model training. A typical
model selection task consists of finding the most suitable model for a given
task, say classification, among a set of candidates (Breugel, Qian and M. v. d.
Schaar, 2023; Jordon, Szpruch et al., 2022). Since this is typically done in
an exploratory phase, permissions for accessing the real data may not yet be
in place, which makes synthetic data a useful substitute. Through a single
test-train split of the synthetic data or cross-validation, the model with the
smallest test error is selected. Breugel, Qian and M. v. d. Schaar (2023) perform
such an experiment and conclude that synthetic data sets tend to favour models
with similar structures as their synthesisers rather than the model with the best
result on real data. They used a complex deep learning based synthesiser4, and
their conclusion does not necessarily generalise to less complex synthesisers.

Example 2.1.6 [Using synthetic data for model selection]

Picture a common scenario where an analyst wants to fit a predictive model
to a set of training data. The training data contains many covariates, but
only some of them are significant to the response variable. The significant
covariates are not known beforehand, and all the covariates need to be
included in the model selection process. However, the analyst is not granted
access to all the variables, due to privacy constraints. Suppose the model
selection process can be carried out on a synthetic data set instead. In that
case, the analyst can use synthetic data to find the subset of the covariates
that are significant. The training data containing these covariates are then
handed over to the analyst for the training of the final model.

After the model selection, the synthetic data may also be used to fit the
model. However, Snoke et al. (2018) find in their review that while it is
conventional to use synthetic data for model exploration and selection, final
models are fitted to real data. Jordon, Szpruch et al. (2022) suggest that
synthetic data should only be used for the pre-training of a model, meaning
that real data should be used to tune the final model.

4CT-GAN
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These views represent a more careful and conservative approach to synthetic
data, and more optimistic views exist. A much cited prediction by the tech
research and consulting company Gartner is that "by 2030, synthetic data will
completely overshadow real data in AI models" (Laurence Goasduff, 2022). This
is a bold claim, in our opinion. The "garbage in, garbage out" principle means
that if the utility of the synthetic data is lacking, then the resulting model will
also have low utility. This is a current issue, because as the GPT models have
gained popularity, an increasing amount of text data on the internet has become
synthetic. Large language models (LLMs) are trained on vast amounts of text
data from the internet, making it challenging to filter out synthetic text from
the training material. An increasing amount of synthetic text in the training
data can cause weaker models (Shumailov et al., 2023).

We argue that machine learning is an important use case for synthetic
data, but it is important that the synthetic data used for training is clearly
marked as such, so the confidence in the results can be adjusted accordingly.
Esteban, Hyland and Rätsch (2018), Xie et al. (2018) and Zhao et al. (2021) all
demonstrate how synthetic data can be used to fit a final model for supervised
learning tasks.

Satisfactory utility in this context means that the synthetic data will reach
the same conclusion as the real data when performing model selection and that
a model fitted to the synthetic data is close to the same as a model fitted to
the real data. As we have discussed, this can be difficult to obtain. We will
return to a discussion on how this can be assessed in Section 2.4.

The amount of privacy necessary will again depend on how the synthetic data
will be distributed. It is important to note that this does not only apply to the
data itself, but also to the distribution of any model fitted to the synthetic data.
This is due to linkage and membership inference attacks (Stadler, Oprisanu
and Troncoso, 2022).

Statistical inference

Synthetic data used for statistical inference tasks such as hypothesis testing,
point and interval estimations must be of high utility. Even so, the conclusions
will be weaker than compared to using real data, because of added noise,
which may require hypothesis tests to have adjusted significance levels (Jordon,
Szpruch et al., 2022) and increased confidence intervals (Drechsler, 2011). Raab,
Nowok and Dibben (2016) derive several estimates of the variance of point
estimates from synthetic data, but the results only hold for large samples of
real data and where the synthetic data meets the Synthesising Distribution
Assumption (Raab, Nowok and Dibben, 2016) discussed in Section 2.1.2. Since
this is often not the case, Raab, Nowok and Dibben (2016) strongly discourage
using synthetic data for any final inferential analysis.

2.2 A Short Survey of Selected Synthetic Data Types and
Synthesisers

In this section, we present a short survey of synthetic data types relevant to
this thesis and examples of previous work on synthesisers tailored to each data
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type. While not an exhaustive list, this serves as an introduction to topics we
will return to in later chapters.

2.2.1 Tabular Data

Tabular data is stored in two-dimensional tables, where generally each column
represents a variable and each row is an observation. Because this is a
particularly common data structure, tabular synthetic data is a heavily
researched field (Hernandez et al., 2022; Kiran and Kumar, 2023; Rajabi
and Garibay, 2022; Sauber-Cole and Khoshgoftaar, 2022; L. Xu, Skoularidou
et al., 2019; Zhao et al., 2021).

There are several challenges to synthetic tabular data generation that do not
apply to simpler data types such as image generation. For image data, the pixel
values follow a normal distribution, whereas tabular variables can follow more
complex distributions (L. Xu, Skoularidou et al., 2019). Other challenges include
mixed data types, with both continuous and discrete variables, multi-modal
distributions and imbalanced discrete data (L. Xu, Skoularidou et al., 2019;
Zhao et al., 2021). We will now survey three classes of synthetic tabular data
synthesisers.

synthpop

The R package synthpop (Nowok, Raab and Dibben, 2016) was initially
developed for synthesising tabular census data. synthpop models a joint
distribution through a series of conditional distributions. The default option
is to first model the marginal distribution of a selected starting variable, and
then conditional distributions of the following variables, each conditioned on
the preceding variables. This uses the following rule:

p (x1, . . . , xn) = p (x1) · p
(
x2|x1

)
· . . . · p

(
xn|x1, . . . , xn−1

)
.

The user can specify the order of the variables, which is named the visiting
sequence, and there is also support for conditioning on only a specified set of
predictor variables for each predicted variable, as long as all predictors are listed
prior to the predicted variable in the visiting sequence. For example, if the
visiting sequence is x1, x2 . . . , xn, we can use p

(
x3|x1

)
instead of p

(
x3|x1, x2

)
.

synthpop supports many parametric and non-parametric synthesising methods
for both continuous and discrete variables, which can be specified for each
conditional distribution. Additionally, there is support for handling missing
values and specifying rules for restricted values and dependent variables (Nowok,
Raab and Dibben, 2016).

In summary, synthpop is a flexible package which is easy to implement and
meets many of the challenges of generating synthetic tabular data. It handles
a mixture of data types and includes correlations and dependencies between
variables in the synthesising model. However, it may be limited for unbalanced
and sparse data and other complex distributions.

Generative adversarial networks (GANs)

A generative adversarial network (GAN) is a deep learning model, and the
interest in synthetic data escalated in the years after it was first proposed by
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Goodfellow et al. (2014). While it may be that GANs are most known for
synthetic image generation (Creswell et al., 2018), they are also frequently used
for tabular data (Engelmann and Lessmann, 2021; Rajabi and Garibay, 2022;
L. Xu, Skoularidou et al., 2019; Zhao et al., 2021).

This method consists of a generator and a discriminator, which in most
applications are neural networks. The generator performs a mapping from a
random noise signal to synthetic data, similar to our definition of a synthesiser
in Definition 2.1.5. The discriminator is then given real and synthetic data
samples, and returns predicted probabilities of the inputs being real. The two
components have opposing objectives, since the discriminator aims to minimise
the classification error, whereas the generator’s objective is that the discriminator
will fail to distinguish between the real and synthetic data. For each iteration,
the parameters of the generator and discriminator are updated in turn. This
iteration process guides the generator to provide synthetic data gradually closer
to the distribution of real data, without directly seeing any real data, and the
discriminator will detect increasingly subtle differences. The iteration process
continues until convergence or when a predefined stopping criteria is reached.
If we have converged to the optimal solution, the discriminator will predict
0.5 regardless of the entry being real or synthetic. This is the optimal stage
of the generator, as the real and synthetic data have become indistinguishable
(Creswell et al., 2018; Goodfellow et al., 2014).

Variants. There are many variants to the standard GAN, where some have
different loss functions and others have an updated architecture. We will briefly
introduce some of these, focusing on relevancy for tabular data.

The Conditional GAN (CGAN) (Mirza and Osindero, 2014) differs from
the general GAN structure by having a condition c as an additional input to
both the discriminator and generator. The condition can, for example, be a
class, a specific value or an interval a variable is allowed to take. This makes it
possible to generate synthetic data with specific properties, as the generator of
the Conditional GAN (CGAN) returns synthesised data that follows condition
c. The discriminator is given c along with real and synthetic data which follow
condition c as an input.

The standard GAN and CGAN are not designed for tabular data, which
makes them unfit for tabular data with variables following more complex
distributions than the normal distribution, especially multi-modal distribution
and long-tailed distributions. They are also not up to par for handling mixed
data types and unbalanced categorical variables (L. Xu, Skoularidou et al.,
2019). As a solution to this problem L. Xu, Skoularidou et al. (2019) developed
the variant Conditional Tabular GAN (CTGAN), which supports data with
mixed data types and multi-modal distributions. However, it lacked support
for modelling missing values for continuous variables, and Zhao et al. (2021)
made CTAB-GAN to solve this issue. CTAB-GAN also improved the synthesis
of long-tailed distributions and sparse categorical distributions.

Challenges and disadvantages. An obstacle to using GANs is that it can
be difficult to converge at an equilibrium state, which can often happen when
the discriminator converges too quickly (Creswell et al., 2018). This is a variant
of the vanishing gradient problem (Figueira and Vaz, 2022). Mode collapse
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is another issue, which is when the synthetic data returned by the generator
contains very similar observations, losing the multi-modality and heterogeneity
of the real data (Creswell et al., 2018). This occurs because the generator has
identified a few observations that the discriminator repeatedly classifies as real,
making the generator focus on these observations instead of further exploring
the data domain (Figueira and Vaz, 2022). This can be a great privacy challenge
if the repeated data points are actual real data points. A general pitfall of
neural networks is that they can overfit to the real data and memorise individual
data points (Kuppa, Aouad and Le-Khac, 2021), and this also applies to GANs.

Other drawbacks relate to the fact that GANs are complex models. It can be
hard to tune hyperparameters (Figueira and Vaz, 2022), and the computational
cost is high. Additionally, since both the generator and discriminator are neural
networks, the black box problem applies. There is no straight-forward way to
tell what the GAN has learnt about the real data, contrary to synthpop, for
which the joint distribution is explicitly defined.

2.2.2 Sequential Data

Sequential data differs from tabular data, as each observation consists of a data
sequence, possibly of different lengths. The observations can also have constant
covariates. This is a common data structure for health and sensor data, where
measurements are taken at regular or irregular intervals (K. Zhang, Patki and
Veeramachaneni, 2022). The goal is to generate synthetic sequential data where
the dependence between the items in the sequence remains.

The Recurrent GAN (RGAN) and Recurrent Conditional GAN (RCGAN)
were proposed by (Esteban, Hyland and Rätsch, 2018) and generate synthetic
real-valued sequential data. They have the same frameworks as the GAN and
CGAN, except that the discriminator and generator are both recurrent neural
networks (RNNs). RNNs have a recursive structure, where the output is fed
back into the network. This makes RNNs suitable for sequential data, since
it can generate sequences where each element depends on previous elements
(Bianchi et al., 2017).

Another synthesiser developed for sequential data is the Conditional Prob-
abilistic Auto-Regressive (CPAR) model (K. Zhang, Patki and Veeramachaneni,
2022), where each element in a generated sequence also depends on the previous
elements. CPAR has a single neural network structure and offers support for
categorical and discrete data types. The model is available in the Python library
Synthetic Data Vault.

2.2.3 Survival Data

Survival data or time-to-event data measures the time until an event occurs
or is censored, and this event can also be correlated to a set of covariates. A
proper introduction to survival analysis is given in Chapter 3. The field of
synthetic survival data with censoring times is still in its early stages compared
to tabular or sequential data. Recently, Norcliffe et al. (2023) presented the
SurvivalGAN, which generates synthetic censored survival data. In short,
SurvivalGAN consists of several synthesisers. First, it uses a tabular synthesiser
to generate the covariates. Norcliffe et al. (2023) use Conditional Tabular GAN
(CTGAN) for this purpose. Then, the covariates are entered into a survival
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function fitted to the real data, which samples the time an event or censoring
occurs. In another recent paper, Guillaudeux et al. (2023) present their Avatar
method which is used to synthesise both survival and tabular patient data.
Their method generates a synthetic avatar for each individual patient. The
avatar is randomly drawn from the patient’s local area, defined by its k nearest
neighbours.

2.3 Privacy and Utility Trade-Off

In Definition 2.1.4 and the previous section, we alluded to that privacy and
utility are two opposing goals and that we need to find a compromise between
them. This is often referred to as a privacy and utility trade-off (Bellovin, Dutta
and Reitinger, 2019; El Emam, 2020). Before we consider privacy and utility
separately, we offer a short discussion of this trade-off.

We have two main objectives for the synthesiser S. Firstly, the synthetic
data Ds should hold the same properties as the real data Dr, meaning that
it is possible to get close to equal results from the two data sets in terms of
inference, classification or other statistical or machine learning tasks. We refer
to this aim as utility, which is a general term for the usefulness of the data
(El Emam, 2020). Our second objective concerns privacy. The synthetic data
should remain confidential and not disclose any real data points.

Drechsler (2011) bluntly states that it is impossible to generate a synthetic
data set which is both completely private and provides high utility with respect
to all potential use, meaning that a trade-off is unavoidable. By picturing
two extremes, we can illustrate how the trade-off plays out. First, we want
Ds to have full utility. As we recall from the discussion of the Synthesising
Distribution Assumption (Raab, Nowok and Dibben, 2016) in Section 2.1.2, to
obtain this we must generate Ds from the true model T , so that Dr and Ds are
samples from the same distribution. Unless the true model is previously known,
we cannot find an S which is exactly equal to T . Therefore, the only way to
obtain Ds with full utility is to define Ds := Dr. This will ensure that the
two data sets share the exact same properties and structure, but will naturally
breach every privacy concern. Oppositely, to ensure a fully private Ds, it must
be independent from Dr. Then Dr cannot be used to fit S, and consequently
Ds will be unfit as a substitute for Dr (El Emam, 2020). Additionally, Ds no
longer follows Definition 2.1.4, making it simulated and not synthetic data.

We can view this balancing act in a similar fashion as the bias-variance
trade-off. A more complex S can provide higher utility, since we get a closer fit
to the training data Dr. If S is overfitted to Dr, then S has high variance and
low bias (Hastie, Tibshirani and Friedman, 2009). This can be at the expense of
the data privacy of Dr (Bellovin, Dutta and Reitinger, 2019), because instead
of learning the underlying data structure, S will generate Ds too close to Dr.
In the case where S is underfitted to Dr and has high bias and low variance, the
model might not be complex enough to generate realistic Ds with high utility,
but the privacy risk is low.

A delicate balance between privacy and utility must keep the sensitivity
of the real data and the applications of the synthetic data in mind. In many
situations, the privacy of the synthetic data cannot be compromised beneath
a certain threshold. Thus, we need to find the synthetic data set with the
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highest utility score with regards to this privacy threshold (Bellovin, Dutta and
Reitinger, 2019; El Emam, 2020). If the search results in synthetic data with a
too low utility score, it may be necessary to backtrack and attempt to develop
a better synthesiser instead of releasing synthetic data with insufficient utility
standards. In the remaining sections in this chapter, we will discuss specific
ways of evaluating the privacy and utility, so that a meaningful tradeoff can be
reached.

2.4 Utility Evaluation

We aim for synthetic data Ds that is indistinguishable from real data Dr in
terms of utility, but how should this be measured? Beaulieu-Jones et al. (2019)
ask domain experts to attempt to separate between Dr and Ds as a way of
evaluating the utility. This is both time consuming and costly, and human
domain experts may not be able to distinguish between the data as well as
statistical and machine learning procedures, which is the standard approach.

The goal is to measure how well synthetic data performs as a substitute of
real data, and we can do so by evaluating the performance of Ds compared
to Dr on the intended tasks. It is more challenging to evaluate the utility of
versatile synthetic data, which is required to perform well on many different
tasks, most of which may not be known to us when we develop the synthesiser
S and evaluate Ds. Snoke et al. (2018) separate between specific utility and
general utility, where the former evaluates how well Ds performs on specific
statistical or machine learning tasks, and the latter evaluates the differences in
distributions.

Figueira and Vaz (2022) and Kuppa, Aouad and Le-Khac (2021) use the
terms fidelity and diversity instead of utility. Fidelity is closely linked to how
we have defined utility so far, and is defined as a measure of how similar Ds is
to Dr in terms of realism. Considering individual synthetic data points, could
they be mistaken for real data points? The second term, diversity, refers to if
Ds has the same variability and heterogeneity as Dr. An S that only produces
homogeneous data cannot have high utility, even if the synthetic data sets score
high on fidelity. This is because S is unable to generate samples from the full
domain space of Dr. This is referred to as mode collapse in GAN literature
(Creswell et al., 2018).

In this section we will present and discuss some commonly used evaluation
methods for measuring the utility of synthetic data. We use utility as an
umbrella term, and we will separate the evaluation methods into general and
specific utility evaluation.

2.4.1 General Utility Evaluation

It is recommended to first start with general utility evaluation (Raab, Nowok
and Dibben, 2021), as it is quicker to discover differences in distributions than
performance on specific tasks. This is also typically done before any privacy
specific evaluation. There exists many methods for this purpose, and while
attempts have been made (Patki, Wedge and Veeramachaneni, 2016; Qian,
Cebere and M. v. d. Schaar, 2023), there is no generally accepted framework.
We will now introduce selected commonly used methods from the literature
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which will be demonstrated in later chapters. These methods are primarily
used for tabular data.

Plotting marginal distributions

For most data related tasks, it is good practice to begin by looking at the data.
This also applies to evaluating the utility of synthetic data, and it is a common
preliminary step (El Emam, 2020; Figueira and Vaz, 2022; Tucker et al., 2020).
First, we check if the data format is the same for Dr and Ds, which means
inspecting if the variables have the same data types and that there are no illegal
values. Next, we plot the marginal probability density functions (PDFs) of
continuous variables for both Dr and Ds and visually determine if they are
similar or not. The probability mass function of finite discrete variables can be
compared through frequency tables or histograms. If the marginal distributions
of Dr and Ds look very different, we should adjust S rather than evaluating Ds

further.

Kolmogorov-Smirnov (KS) test

It is not sufficient to state that two marginal distributions look the same, and
we need a specific method to measure the distance between the distributions.
For continuous variables we can use the two-sided Kolmogorov-Smirnov (KS)
test, which is commonly used for utility evaluation of synthetic data (El Emam,
2020; Tucker et al., 2020).

The KS test compares continuous distributions by considering the maximum
absolute distance between their cumulative graphs (Kauermann, Küchenhoff
and Heumann, 2021). The null hypothesis H0 is that the real and synthetic
samples are drawn from the same distribution (R Core Team, 2023).

Keep in mind that the test can reveal a significant difference even for samples
with small differences when the number of observations is large (Tucker et al.,
2020). If the distances are too close, this can potentially indicate overfitting, so
a small distance might be preferable. We will expand on this idea in Section
2.6.

Chi-square goodness-of-fit test

For categorical and discrete variables, a chi-square goodness-of-fit test is often
used to evaluate the difference in expected frequencies between real and synthetic
marginal distributions (El Emam, 2020; Steinbakk, Langsrud and Løland, 2020;
Tucker et al., 2020).

Definition 2.4.1 [Chi-square goodness-of-fit test]

Say we have a sample of synthetic values X1, . . . , Xn and a sample of real
values Y1, . . . , Yn, which can take K categorical values. The counts of each
value are ik =

∑n
l=1 1Xl=k for the synthetic values and jk =

∑n
l=1 1Yl=k

for the real values. PX (X = k) = pk are the probabilities of the synthetic
values, and we want to test if they are equal to the frequencies of Dr,
P̂k = jk/n. Then, we have the following hypotheses:
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H0 : p1 = j1

n
, . . . , pK = jK

n

Ha : H0 is not true.

The test statistic is

χ2 =
K∑

k=1

(ik − jk)2

jk
.

Under H0, χ2 approximately follows a chi-squared distribution with K − 1
degrees of freedom. A α level test rejects H0 if

χ2 ≥ χ2
α,K−1

(Devore, Berk and Carlton, 2021; Kauermann, Küchenhoff and Heumann,
2021).

As for the KS test, we must remember that the chi-square goodness-of-fit
test can reject H0 when the differences are small if n is large.

Correlation

Similar marginal distributions are of little value if the correlation structure is
not maintained. This is emphasised in Definition 2.1.3. In order to control that
joint distributions are similar, we can compare pairwise correlation matrices
of Dr and Ds. This is a commonly used method for evaluating synthetic data.
Both Pearson and Spearman correlation are used (Beaulieu-Jones et al., 2019;
Figueira and Vaz, 2022; Zhao et al., 2021).

The mean difference in pairwise correlations is used as an evaluation metric
(Kokosi et al., 2022; Steinbakk, Langsrud and Løland, 2020). This also allows
for assigning more weight to specified correlations, which can be useful in cases
where it is important that the correlations between certain pairs of variables
are correctly represented in Ds.

2.4.2 Specific Utility Evaluation

A separation between specific and general utility can be misleading, because
the specific utility evaluation methods also aim to provide a general evaluation.
This is because we aim for creating synthetic data that can be used for a wide
range of tasks. If we know what kinds of tasks the synthetic data is intended
for, we will evaluate based on them. However, we need a general mindset,
because these tasks may not be known. Specific utility evaluation compares
the performance of the real and synthetic data on a broad range of specific
tasks, with the aim of measuring how well the synthetic data generalise to new
unattempted tasks.

Compare point estimates and confidence intervals

Easing into specific utility tasks, we begin with a comparison of point estimates
and confidence intervals of statistics from Dr and Ds (Snoke et al., 2018). We
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can for example use summary statistics of the marginal distributions, such
as their estimated means, standard errors and selected percentiles (Figueira
and Vaz, 2022; Steinbakk, Langsrud and Løland, 2020). Parameters of simple
parametric models such as coefficients of regression models (Snoke et al., 2018)
or hazard ratio coefficients for survival data (Guillaudeux et al., 2023) can also
be useful. While this is similar to the general utility evaluation, Snoke et al.
(2018) place this in the specific utility evaluation category as it is an inference
task, relating to the use cases discussed in Section 2.1.3. If Dr and Ds have
similar point estimates, this indicates good utility.

As an overall metric, Snoke et al. (2018) recommends the standardised
difference utility metric:

Definition 2.4.2 [Standardised difference utility metric]

For a statistic η, where the estimate from Dr and Ds are η̂s and η̂r

respectively, with standard errors se (η̂s) and se (η̂r). the standardised
difference utility metric is

SDU = |η̂r − η̂s|
se (η̂r) .

For confidence intervals, we can use the interval overlap utility metric, which
is defined below.

Definition 2.4.3 [Interval overlap utility metric]

Given any statistic, the estimate from Ds has the confidence interval
[Ls, Us] and the estimate from Dr has the confidence interval [Lr, Ur].
Then the interval overlap metric is

IOU = min (Us, Ur)−max (Ls, Lr)
2 (Ur − Lr) + min (Us, Ur)−max (Ls, Lr)

2 (Us − Ls)

(Drechsler, 2011; Snoke et al., 2018).

When the intervals fully overlap, IOU is equal to 1, which is the best utility
score. When there is no overlap, the metric is negative. Both SDU and IOU
are implemented in synthpop (Nowok, Raab and Dibben, 2016).

Machine learning efficacy

It is common to use machine learning tasks for specific utility evaluation, and
particularly supervised learning tasks. They are suitable for utility evaluation,
because the difference in performance between Dr and Ds for a specific model
is easy to interpret. Machine learning tasks are also a common use case for
synthetic data, as discussed in Section 2.1.3.

To the best of our knowledge, Esteban, Hyland and Rätsch (2018) were first
to propose the method "Train on synthetic, test on real" (TSTR), which has
since been widely adopted under various names (Breugel, Qian and M. v. d.
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Schaar, 2023; Jordon, Yoon and M. v. d. Schaar, 2018; Norcliffe et al., 2023;
Tucker et al., 2020; Xie et al., 2018). The method assesses how well models
fitted to synthetic data perform on unseen real data. Zhao et al. (2021) pair
them with another method that we for continuity will name "Train on real, test
on real" (TRTR), and Norcliffe et al. (2023) present a variant which they call
"Train on synthetic, test on synthetic" (TSTS).

Algorithm 1 provide TSTR and TRTR jointly. It is closely based on
Algorithm 1 in Esteban, Hyland and Rätsch (2018), but with some differences.
In the original algorithm the model SL is a classifier with a specified target
variable, and it does not contain line 4 and 6, as this relates to TRTR. In line
1, we separate the real data into a training and test set. It is important that
the data D(test)

r used to evaluate the model fitted to the synthetic data, SLs,
is completely separate from the data used to train the synthesiser, D(train)

r .
Despite that D(train)

r is not used to train SLs, it can still influence the model
through Ds. In line 2 we generate Ds using the synthesiser S. Next, in lines 3−4,
we fit an arbitrary supervised learning model to Ds and D(train)

r respectively.
Lastly, in lines 5 − 6, we find the performance of the fitted models on the
separate real data set D(test)

r .

Algorithm 1 "Train on synthetic, test on real" (TSTR) and "train on real, test
on real" (TRTR)
Input:
Dr ← real data
S ← synthesiser
SL ← supervised learning model

Output:
evals ← performance score for Ds

evalr ← performance score for Dr

1: D(train)
r ,D(test)

r ← split (Dr)
2: Ds ← S

(
D(train)

r

)
3: SLs ← train (SL,Ds)
4: SLr ← train

(
SL,D(train)

r

)
5: evals ← score

(
D(test)

r ,SLs

)
6: evalr ← score

(
D(test)

r ,SLr

)
Classifiers are a popular choice of model, and is paired with the area under the

receiver operating characteristic (AUROC) curve to evaluate the performance
(Breugel, Qian and M. v. d. Schaar, 2023; Guillaudeux et al., 2023; Tucker et al.,
2020; Zhao et al., 2021), but in principle any supervised learning model with a
suitable scoring function can be used.

The choice of appropriate models for utility evaluation also depends on the
data type. For survival data, we can test if Dr and Ds come from the same
underlying distribution by comparing the Kaplan-Meier survival curves (Norcliffe
et al., 2023) using a log-rank test (Guillaudeux et al., 2023; Kleinbaum and
Klein, 2005). Survival curves are formally introduced in Chapter 3. Moreover,
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models that allow for a variable importance ranking, such as random forests,
can be used to check if Dr and Ds provide a similar ranking (Beaulieu-Jones
et al., 2019; Fan, 2020).

Norcliffe et al. (2023) use TSTS to evaluate the utility of Ds for model
selection, which we have discussed in Section 2.1.3. For a selection of models,
we can both train and test them on separate sets from Dr and Ds. If the models
trained and tested on Ds are ranked equally in terms of performance as the
same models trained and tested on Dr, this indicates that Ds can be used for
model selection.

2.5 Privacy Evaluation

When Rubin (1993) first proposed synthetic data, he argued that since no
individual’s data would ever be released, this would automatically meet any
privacy requirements. Similarly, Duncan, Elliot and Salazar-González (2011)
stated that synthetic data makes identity disclosure almost impossible in most
cases. This turned out to be too optimistic. Despite being considered safer
than anonymisation and augmentation methods, synthetic data also poses a
risk of identity disclosure (Stadler, Oprisanu and Troncoso, 2022). Since we
learn S from Dr, it is inevitable that some information about individual points
in Dr leaks into Ds. Consequently, is it important that this information leakage
is controlled and limited.

2.5.1 Types of Privacy Disclosure

Identity disclosure is one of three common categories of privacy disclosure,
together with attribute disclosure and inferential disclosure (El Emam, 2020;
Shlomo, 2018). In this section we define each of these terms and discuss how
they relate to the privacy of synthetic data and adversarial attacks.

Identity disclosure occurs when we can identify individuals from released
data sets. This is usually discussed in relation to pseudonymised data sets and
linkage attacks (Shlomo, 2018), where an observation is linked to a specific
identity using prior knowledge (El Emam, 2020). Most synthesisers do not map
individual points from the real data to a specific synthetic point. Instead, the
synthetic data points are generated based on knowledge of a set of real points.
Then, it is not possible to match a synthetic point to a single real identity.
However, identity disclosure can take place based on the whole synthetic data
set. We will explore this further in Section 2.5.2.

Attribute disclosure is a case where an adversary gains information about
an individual without being able to correctly assign their identity to a specific
observation. Say that an adversary knows that an individual is in the data set,
and has access to enough of its attribute values to assign the individual to a
group. If every member of the group has the same value for some attribute,
then the adversary knows that this is also the case for the targeted individual
(El Emam, 2020; Shlomo, 2018). This can also be an issue for synthetic data
sets. If the synthetic data contains groups with (close to) no variation with
respect to some attribute, then this is likely the case in the real training data as
well. Therefore, it is important that the synthesising process allows for added
noise. Smaller groups and outliers require more noise than larger groups.
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Inferential disclosure is a related issue, where group membership can
cause high confidence in that an individual has a specific attribute value, even
when this individual is not in the real training data of the synthesiser (Shlomo,
2018). El Emam (2020) argues that since this information gain is not absolutely
certain, this should not be an issue. Further, he states that by not allowing
for inferential disclosure, we will in practice not be able to use the synthetic
data for any type of data analysis task, defeating the point of synthetic data
altogether.

A general trend is that using larger real data set to fit the synthesiser leads
to less privacy exposure of individual observations, since the synthesiser has
access to more data material and single observations have less weight. This
also makes it less likely for groups to have exactly the same values for certain
attributes. However, outliers can still be at risk and should be accounted for
during the privacy evaluation process.

2.5.2 Membership Inference Attacks

Membership inference attacks (MIAs) are an increasing concern today. In these
attacks, an adversary uses machine learning models to identify individual points,
members, in an unknown training data set. They do so by targeting a known
model fitted to the training data (Chen, Yu et al., 2020; Shokri et al., 2017). The
attack utilises weaknesses in overfitted models that contain information about
specific members in the training data, and attempts to reveal this information.
MIAs are also a concern for synthetic data. Even when the synthesiser S is not
released, an adversary can conduct an MIA by using the output Ds to predict
if a data point is present in the real training data Dr or not.

Kuppa, Aouad and Le-Khac (2021) present a method for performing such
synthetic data attacks, building on ideas of model attacks proposed by Shokri
et al. (2017). Their method requires that the adversary has access to a data
set similar to Dr, which we name B. The goal is to use B to train a classifier
that given a synthetic data set Ds and a point x can predict if x ∈ Dr, i.e. if x
is a member of the training data set used to synthesise Ds. We say that x is
a suspected member of Dr and the candidate of the attack. The classifier is
trained by using bagging to obtain many labelled synthetic data sets.

Shokri et al. (2017) refers to such a classifier as an attack model, and
Algorithm 2 describes how we can train it. If x ∈ B, we will first remove it
(line 1-2). By bootstrap sampling from B, we obtain B1, . . . , Bk of size n← |B|
in line 6. We call them shadow data sets. The synthesiser S is unknown, but
we use the shadow data sets to fit imitations that we call shadow synthesisers.
Information about the model structure, for example that S is a GAN, might
be known to an adversary. However, if no such information is available, the
adversary needs to make an educated guess on the model structure. For each
B1, . . . , Bk we fit synthesisers of the chosen model structure and get the shadow
synthesisers S1, . . . , Sk, which generate the synthetic data sets Ds,1 . . . Ds,k

respectively, all of size n (line 7-8). In a similar for loop (line 10-15), this is
repeated, but now each bootstrap sample will be of size n − 1, and then we
add x to each B′

1, . . . , B′
k (line 12). We then fit new shadow synthesisers and

obtain the synthetic data sets D′
s,1 . . . , D′

s,k. While the synthetic data sets
Ds =

{
Ds,1, . . . , Ds,k

}
do not have the candidate data point x in the training
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sets of their shadow synthesisers, this is the case for D′
s =

{
D′

s,1, . . . , D′
s,k

}
.

Therefore, sensitive information about x may be present in the synthetic data
sets in D′

s. We attach the label 0 to each set in Ds and 1 to each set in D′
s,

and fit a synthesiser that given a synthetic data set will predict 0 or 1.

Algorithm 2 Preparing an MIA on synthetic data
Input:
B ← data set similar to Dr

k ← amount of synthetic data set pairs
x← candidate data point

Output:
Cx ← classifier which given Ds can predict if x ∈ Dr

1: if x ∈ B then
2: B ← B \ {x}
3: end if
4: n← |B|
5: for i ∈ {1, . . . , k} do
6: Bi ← Bootstrap sample from B of size n
7: Fit Si to Bi

8: Ds,i ← n synthetic data points generated from Si

9: end for
10: for i ∈ {1, . . . , k} do
11: B′

i ← Bootstrap sample from B of size n− 1
12: Add x to B′

i

13: Fit S′
i to B′

i

14: D′
s,i ← n synthetic data points generated from S′

i

15: end for
16: Use Ds and D′

s to train a classifier Cx

For each candidate data point x, an adversary can train a classifier Cx, and
use it to predict if x is a member of the training set used to fit the synthesiser
S that Ds is generated from. If Cx returns 1 it predicts that x ∈ Dr, and 0
predicts that x /∈ Dr. The classifier may also return the confidence score of this
prediction.

In many cases, the adversary will not have a specific suspected data point
in mind. We propose a novel form of attack, where Cx (Ds) is treated
as a function of x, and then we search through the domain X to find values
x ∈ X for which Cx (Ds) returns a high score. This assumes that Cx returns the
confidence score of its prediction. A possible search algorithm is hill-climbing,
which is used in Algorithm 3. We begin by a randomly selecting a point x ∈ X
in line 1. Next, we use Algorithm 2 to fit a classifier in line 2, which gives us a
confidence score S = Cx (Ds) in line 2− 3. We then consider all neighbouring
points of x, fit corresponding classifiers (line 6), and select the neighbour with
the highest score (line 11. The search terminates when we find a local optimum,
meaning that there are no neighbouring points with higher scores. By repeating
Algorithm 3 multiple times, we can find many candidates for data points in Dr.

Algorithm 3 can also be used for attribute disclosure. If an adversary knows
that a specific member was present in the training data, but only knows parts
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Algorithm 3 Hill-climbing in an MIA
Input:
B ← data set similar to Dr

k ← amount of synthetic data set pairs
Ds ← synthetic data set

Output:
x∗ ← local maximum

1: Randomly select x∗ from X
2: Cx∗ ← Algorithm 2(B, k, x∗)
3: S = Cx∗ (Ds)
4: while S is unconverged do
5: for each x′

i ∈ neighbour(x) do
6: Si = Cx′

i
(Ds)

7: end for
8: S∗ = max {S1, . . . , §i, . . .}
9: if S∗ > S then

10: S = S∗
11: x∗ ← x-value corresponding to S
12: end if
13: end while

of the attributes of the member, they can do a search conditioned on the
known attributes. The returned optimum will be a data point with the known
attributes values and highly probable values for the unknown attribute values.

The idea of using hill-climbing to identify highly probable members is closely
inspired by Shokri et al. (2017), which performs an attack on the training set
of a classifier. Their idea is built on the assumption that probabilistic classifier
returns higher probabilities of members in its training set than unseen data.
Thus, the classifier can be used to generate the data set B when real data
similar to the training data is not accessible to the adversary. They do this by
searching through the domain space using hill-climbing like above, and collect
local optimums in B. Our idea differs, as we perform hill-climbing using the
attack model instead of a targeted classifier. Moreover, we wish to find data
points with a high probability of being members of the training data, whilst
Shokri et al. (2017) aim to generate the data set B used for the attack. Due to
time and computational constraints, this novel type of attack is not included in
our MIA experiment in section 4.6.

There are several weaknesses to an MIA on synthetic data. Firstly, in many
cases it will be hard for an adversary to get access to a real data set B that it
is close to Dr. In the case B is available, the adversary cannot know how close
it is to Dr, and by that know how accurate Cx is. The solution by Shokri et al.
(2017) sketched out above of using the target model to generate B will not work
in the same way, as the target model S is not a classifier. In our case it is more
straightforward to use S to generate a data set, which opens for the possibility
of using another synthetic data set in place of B. Secondly, if the adversary in
addition needs to guess the structure of S, the results will be more dubious.
However, successful MIAs have been made even when the attacked model is a
complete black box and the available data set B is not very similar to Dr (Shokri
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et al., 2017). Thirdly, Algorithm 3 has the potential of being computationally
demanding, since it requires that many synthesisers are trained. For larger data
sets it can also be a challenge to check how sensitive each point in Dr is to
MIAs. On the contrary, increasing the size of Dr decreases the accuracy of an
attack (Fan, 2020; Lin, Sekar and Fanti, 2021; C. Xu et al., 2019).

In this section we have discussed attacks that utilises how two synthesisers
fitted to data sets that differ by a specific observation are different, and how
these differences can be discovered from their generated synthetic data sets.
These attacks allow for a measurement of the identity disclosure risk of each
member in Dr, but they are no guarantee against future successful attacks.
In the next section we will discuss a method that formally limits the identity
disclosure risk of every point in Dr.

2.5.3 Differential Privacy

Differential privacy is a property of a mechanism that offers a formal privacy
guarantee. Because of this, there is great interest in differentially private
synthesisers (Beaulieu-Jones et al., 2019; Bonomi, Jiang and Ohno-Machado,
2020; Bowen and Snoke, 2021; Chen, Cheung et al., 2021; Esteban, Hyland
and Rätsch, 2018; Jordon, Yoon and M. v. d. Schaar, 2018; Ping, Stoyanovich
and Howe, 2017; Xie et al., 2018). By making a synthesiser S differentially
private, the privacy protection task is incorporated into the synthesis process,
which we mentioned in Section 2.1.2. Therefore, every synthetic data set Ds

generated by S will uphold a given level of privacy for all points in the real
training data Dr. In this section we present the basic definitions and concepts
of differential privacy. We will mostly follow the notation of Dwork and Roth
(2014) and Dwork and Smith (2010), which use mechanism as a general term
for any algorithm which takes a data set as input and returns an arbitrary
output. We first consider differential privacy for a general mechanism, and then
examine differential privacy through a synthetic data lens.

Differential privacy determines how much a single data point can contribute
to the output of a mechanism. Say that M : Rn×m → O is an arbitrary
randomised mechanism, and that D ∈ Rn×m and D′ ∈ Rn×m are two data
sets that differ by a single row. This means that for D = (x1, . . . ,xn) and
D′ = (y1, . . . ,yn), we have that xi = yi for all i ̸= j, where j is a single index
in {1, . . . , n} . If M is differentially private then the probability of obtaining
any output in a subspace S ⊆ O should be close to the same when we use D or
D′ as input. Then, there is a limit to the amount of information about a single
observation that can be revealed from the output of M.

Definition 2.5.1 [ε-differential privacy]

A randomised mechanism M : Rn×m → O is ε-differentially private if for
all data sets D, D′ ∈ Rn×m differing by at most one row, and for all S ⊆ O,
where O is an arbitrary output space, we have that

P
[
M (D) ∈ S

]
≤ exp (ε) P

[
M
(
D′) ∈ S

]
,

where ε ≥ 0 (Dwork and Roth, 2014, Definition 2.4).
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This definition can be difficult to interpret, but if the inequality is rewritten
into

P
[
M (D) ∈ S

]
P
[
M (D′) ∈ S

] ≤ exp (ε) , (2.1)

this motivates an alternative interpretation of ε. The left hand side of the
inequality (2.1) is the ratio between the probabilities that M will return a
value in S conditioned on the inputs D and D′ respectively. If the probabilities
are the same and ε = 0, then all x ∈ D and y ∈ D′ have full privacy, and
the output space S is independent of both x and y (Dwork and Roth, 2014).
However, this means that M cannot learn anything from neither D nor D′,
and we have again encountered a privacy and utility tradeoff. Increasing values
of ε allow for a larger difference between the probabilities, and thus a larger
dependence between a single point x ∈ D and the output. This increases utility
and decreases privacy.

We often refer to ε as the privacy budget of M. Each time we get an
output of an ε−differentially private mechanism, we use a privacy budget of
ε. This makes intuitively sense, since queries about a data set that in itself
poses a small privacy treat can grow to become a great concern if we aggregate
information by many queries. If we need to keep the same level of privacy, the
amount of noise must increase with the number of queries. Dwork and Roth
(2014) call this the query release problem. This relates to the composition
property of differential privacy, which states that a mechanism consisting of
n ε−differentially private mechanisms is nε−differentially private (Dwork and
Roth, 2014). The composition property allows us to control the combined
privacy budget of multiple mechanisms.

Another important property is the post-processing property. It states that
no post-processing step performed on the output of an ε−differentially private
mechanism can reduce the guarantee (Dwork and Roth, 2014, Proposition 2.1).
This means that no matter the complexity of adversarial attacks, ε regulates
how much information it is possible to collect from a single output of an
ε−differentially private mechanism.

The Laplace mechanism

Definition 2.5.1 requires that the mechanism must be randomised in order to be
differentially private. This is essential, because randomised noise complicates a
potential mapping between input and output. The amount of noise should be
proportional to how much a single data point can contribute to the outcome.
One way to measure this contribution is through l1 sensitivity, which states the
maximum contribution of one data point to the outcome of a function.

Definition 2.5.2 [l1 sensitivity]

Given a function f : Rn×m → O, for any D, D′ ∈ Rn×m that differ by at
most one row, the l1 sensitivity of f is

∆f = max
D,D′∈Rn×m

∥f (D)− f
(
D′)∥1,
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where ∥∥1 is the L1-distance (Dwork and Roth, 2014, Definition 3.1).

By adding randomised noise of the same magnitude as the l1 sensitivity
to the output, we can obtain differential privacy. This is called the Laplace
mechanism (Dwork and Roth, 2014; Dwork and Smith, 2010).

Definition 2.5.3 [The Laplace mechanism]

A function f : Rn×m → Rl has l1 sensitivity ∆f . The Laplace mechanism
ML satisfies ε-differential privacy and is defined as

ML (D, f, ε) = f (D) + (Y1, . . . , Yl) ,

where Y
iid∼ Lap

(
∆f/ε

)
. (Dwork and Roth, 2014, Definition 3.3; Dwork

and Smith, 2010, Theorem 6).

We include the proof presented by Dwork and Roth (2014), because it
utilises techniques that will be of later use.

Proof. Following Definition 2.5.1, our task is to show that for any z ∈ Rl we
have that

P
(
ML (D, f, ε) = z

)
P
(
ML (D′, f, ε) = z

) ≤ exp (ε) (2.2)

for data sets D, D′ ∈ Rn×m differing by one row.
If Y

iid∼ Lap
(
∆f/ε

)
, then its PDF is

pY

(
y|∆f/ε

)
= ε

2∆f
exp

(
−ε|x|

∆f

)
.

By using that Y
iid∼ Lap

(
∆f/ε

)
, we show that

P
(
ML (D, f, ε) = z

)
= P

(
f (D) + (Y1, . . . , Yl) = z

)
=

l∏
i=1

pY

(
zi − f (D)i |∆f/ε

)
.

We can then write the left hand side of inequality (2.2) as
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P
(
ML (D, f, ε) = z

)
P
(
ML (D′, f, ε) = z

) =
l∏

i=1

pY

(
zi − f (D)i |∆f/ε

)
pY

(
zi − f (D′)i |∆f/ε

)
=

l∏
i=1

exp
((
−ε/∆f

)
|zi − f (D)i|

)
exp

((
−ε/∆f

)
|zi − f (D′)i|

)
=

l∏
i=1

exp
(

ε

∆f

(
|zi − f

(
D′)

i
| − |zi − f (D)i|

))

≤
l∏

i=1
exp

(
ε

∆f

(
|zi − f

(
D′)

i
− zi + f (D)i|

))

= exp

 ε

∆f

 l∑
i=1
|f (D)i − f

(
D′)

i
|




= exp
(

ε

∆f
∆f

)
= exp (ε) .

The inequality follows from the triangle inequality, and

l∑
i=1
|f
(
D′)

i
− f (D)i| = ∆f

follows from Definition 2.5.2. ■

The exponential mechanism

The l1 sensitivity finds the maximum possible difference between any two
neighbouring data sets, which means that potential outliers have a great influence
on the sensitivity. Most neighbouring data sets are closer than the l1 sensitivity,
but in order to protect any x ∈ Rm equally, the Laplace mechanism takes the
worst case scenario into account. As a consequence, there is a risk that the
amount of added noise will conceal any meaningful signal to the output. This
balance between signal and noise is another case of the privacy-utility trade-off.
We wish to secure the training data by adding noise to the output, but in such
a way that the output of the differentially private mechanism is still useful. The
exponential mechanism (Dwork and Roth, 2014) offers a way of controlling the
noise signal’s influence on the utility, by making an output with high utility
more probable. For a given ε, we need to find the optimal ε−differentially
private mechanism in terms of utility. To do so, we need a utility function
u (D,z), which maps the input and output of the mechanism to a utility score
(Dwork and Roth, 2014).

Definition 2.5.4 [The exponential mechanism]

An exponential mechanism ME (u, D) takes input data D ∈ Rn×m, and a
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utility function u (D,z) with l1 sensitivity ∆u. If

P
(
ME (u, D) = z

)
∝ exp

(
ε · u (D,z)

2∆u

)
,

for any value z ∈ Z, thenME is ε−deferentially private (Dwork and Roth,
2014; Nguyên and Hui, 2018).

We include the proof from Dwork and Roth (2014), with some adjustments.
In our version of the proof, Z is a continuous, and not discrete, space.

Proof. For two neighbouring data sets D and D′, we have that for any z ∈ Z

P
(
ME (U, D) = z

)
P
(
ME (U, D′) = z

)
=

(
exp

(
ε · u (D,z) /2∆u

))
/

(∫
z′∈Z exp

(
ε · u

(
D,z′) /2∆u

)
dz′
)

(
exp

(
ε · u (D′, z) /2∆u

))
/
(∫

z′∈Z exp
(
ε · u (D′, z′) /2∆u

)
dz′
)

=
exp

(
ε · u (D,z) /2∆u

)
exp

(
ε · u (D′, z) /2∆u

) · ∫z′∈Z exp
(

ε · u
(
D′, z′) /2∆u

)
dz′∫

z′∈Z exp
(
ε · u (D,z′) /2∆u

)
dz′

≤ exp

ε
(

u (D,z)− u
(
D′, z

))
2∆u

 ·
∫

z′∈Z exp
(

ε ·
(

u
(
D,z′)+ ∆u

)
/2∆u

)
dz′∫

z′∈Z exp
(
ε · u (D,z′) /2∆u

)
dz′

= exp
(

ε∆u

2∆u

)
·

exp
(
ε∆u/2∆u

) ∫
z′∈Z exp

(
ε · u

(
D,z′) /2∆u

)
dz′∫

z′∈Z exp
(
ε · u (D,z′) /2∆u

)
dz′

= exp
(

ε

2

)
· exp

(
ε

2

)
= exp (ε) .

■

Another difference between the version in Dwork and Roth (2014) and ours,
is that we explicitly show that the inequality follows from that U

(
D′, z′) ≤

U
(
D, z′)+ ∆u. In their version, it is directly stated that∫

z′∈Z exp
(

ε · u
(
D′, z′) /2∆u

)
dz′∫

z′∈Z exp
(
ε · u (D,z′) /2∆u

)
dz′

≤
exp

(
ε∆u/2∆u

) ∫
z′∈Z exp

(
ε · u

(
D,z′) /2∆u

)
dz′∫

z′∈Z exp
(
ε · u (D,z′) /2∆u

)
dz′ ,

and we choose to include an extra step to add clarity.

Bayesian methods for ε-differentially private parameter estimation

Through the exponential mechanism we can introduce more complex differen-
tially private mechanisms. We will now consider ways in which we can use
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Bayesian posterior sampling to obtain differentially private point estimators
of parameters. Intuitively, Bayesian methods coincide with the ideas behind
differential privacy, as they introduce randomness through a (possibly noisy)
prior distribution (Nikolenko, 2021; Wang, Fienberg and Smola, 2015).

Wang, Fienberg and Smola (2015) establish a connection between differential
privacy and Bayesian sampling. They prove that if a single observation has
a bounded contribution to the joint likelihood, then a mechanism MB that
draws a single sample from the posterior distribution is differentially private.
We will now introduce their mechanism.

Say that D = {x1, . . . ,xn} is a set of observations, which we wish to fit to a
model with parameters θ ∈ Θ. The prior distribution of the parameters is p (θ),
and the likelihood of a single observation is p

(
xi|θ

)
. From Bayes’ theorem, we

have that the posterior distribution of θ is

p
(
θ|D

)
=

p (θ)
∏n

i=1 p
(
xi|θ

)∫∞
−∞ p (θ)

∏n
i=1 p

(
xi|θ

)
dθ
∝ p (θ)

n∏
i=1

p
(
xi|θ

)
(Gelman, 2013).

Wang, Fienberg and Smola (2015) show that the exponential mechanism
can be used to make the mechanism MB is ε−differentially private. It requires
a utility function u (θ, D), so that the following holds:

p (θ)
n∏

i=1
p
(
xi|θ

)
= exp

(
ε · u (D,θ)

2∆u

)
.

Then it follows from Definition 2.5.4 that a sample from p
(
θ|D

)
is

ε−differentially private. The utility function is defined as

u (θ, D) = log

p (θ)
n∏

i=1
p
(
xi|θ

) .

If we bound the contribution to the likelihood of a single observation
|log

(
p
(
xi|θ

))
| ≤ B for all i ∈ {1, . . . , n} and θ ∈ Θ, then |u (D,θ) −

u
(
D′,θ

)
| ≤ 2B for any two neighbouring data sets D and D′. It is

straightforward to show that if we set ε = 4B, then

exp
(

ε · u (D,θ)
2∆u

)
= exp

4B · log
(

p (θ)
∏n

i=1 p
(
xi|θ

))
2 · 2B

 = p (θ)
n∏

i=1
p
(
xi|θ

)
.

The 4B−differential privacy guarantee ofMB holds regardless of the choice
of prior distribution p (θ) (Wang, Fienberg and Smola, 2015). We emphasise
that the prior distribution must not depend on D. MB does not utilise the
randomness of the prior, as ε is only dependent on the bound of the likelihood.

Non-Bayesian work on differentially private point estimators include Smith
(2008), where the estimate is the average of separate learners with added noise,
and Dwork and Lei (2009) use the field of robust statistics to find differentially
private parameter estimators. While more difficult to implement, they have the
advantage of requiring less computational resources than Bayesian approaches.
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2.5. Privacy Evaluation

Algorithm 4 4B−differentially private mechanism MB

Input:
D ← data set
p (θ)← prior distribution
l
(
D|θ

)
, so that supx∈D,θ∈Θ|l

(
x|θ
)
| = B

Output:
θ̂

1: p
(
θ|D

)
∝ p (θ) l

(
D|θ

)
2: Draw a single sample θ̂ from p

(
θ|D

)
(Wang, Fienberg and Smola, 2015, Algorithm 1).

Differentially private synthetic data.

We now have the necessary framework to explore differentially private
synthesisers, but first we need to clarify the difference between a synthesiser
model and a synthesiser mechanism. Following from Definition 2.1.5, a
synthesiser S is a model and not a mechanism, since it takes a random noise
signal as input and not a data set. However, Ds is fitted to a data set, and the
fitting process is a mechanism which we call MS .

Algorithm 5 Synthesiser mechanism MS : Dr → S
Input:
Dr ← real data set

Output:
S ← synthesiser fitted to Dr

1: Fit S to Dr

If MS is ε−differentially private and outputs S, then it is conventional to
say that S and any synthetic data set Ds generated from S are ε-differentially
private.

If we release a ε−differentially private synthesiser, then we know that it
is impossible for adversaries to conduct attacks that reveal more information
than the guarantee allows for, following from the the post-processing property.
In practice, it is safer to only release a single data set, as it contains less
information, but the property holds for the synthesiser as a whole. A non-
differentially private synthesiser should in most cases not be released, because
MIAs are simpler to perform when the attacker has access to the synthesiser
directly and not just a single synthetic data set, as discussed in Section 2.5.2.
That being said, a differentially private synthesiser is not immune against MIAs.
However, the precision of an attack will decrease when ε decreases and the
guarantee is stronger(C. Xu et al., 2019).

Nevertheless, it is a great advantage to be able to share a synthesiser more
freely. If there is only one synthetic data set available, it might not contain
the necessary information. For example, information system testing scenarios
may require data which includes many outliers. By having direct access to a
synthesiser, it is possible for analysts to generate as many outliers as needed.
When a synthesiser permits conditioning, like CGAN, this is especially useful.
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Another advantage to the post-processing property is that the ε−differential
privacy guarantee also holds for any model fitted to a Ds generated from S.

A requirement for differential privacy, as stated in Definition 2.5.1, is
that MS must be randomised. General non-differentially private synthesiser
mechanisms are not required to be randomised, but a synthesiser model S is
always probabilistic, as stated in Definition 2.1.5. As MS is randomised and
noise is added to the fitting process, we risk that the returned S has low utility,
with the consequence that every Ds generated from S also has low utility. If we
fit S multiple times to lower this risk, this activates the composition property.
Each time we performMS , we spend ε of the privacy budget. This is an example
of how the privacy-utility trade-off applies to differentially private synthesisers.
As a general rule, differentially private synthesisers have worse utility than
non-differentially private synthesisers of the same architecture, and the utility
decreases for smaller values of ε (Stadler, Oprisanu and Troncoso, 2022; Xie
et al., 2018; C. Xu et al., 2019). However, Beaulieu-Jones et al. (2019) have
seen a tendency that for very large data sets, differentially private synthesisers
can perform better, because the differential privacy property reduces overfitting
as a beneficial side effect.

There are many techniques for constructing a differentially privateMS , and
the details are outside the scope of this thesis. However, we will comment on
some possibilities. If S is parametric, it can be fitted to the real data Dr by
using the Bayesian approach in Algorithm 4. Examples of differentially private
GANs are DP-GAN (Xie et al., 2018) where gradient cutting is used to add noise
and PATE-GAN (Jordon, Yoon and M. v. d. Schaar, 2018) where noise is added
by using the average signal from multiple models using the Private Aggregation
of Teacher Ensembles (PATE) mechanism. We will return to differential privacy
in Chapter 3 to study parametric mechanisms for MS-TTE data through the
Bayesian approach.

2.6 Additional Privacy and Utility Evaluation Using
Distance Metrics

In the previous sections, we have discussed privacy and utility evaluation
separately. By utilising that there is a trade-off between privacy and utility,
some methods can evaluate both. This is the case for distance metrics, which
inherently assert both privacy and utility. This makes intuitive sense, as having
Dr and Ds too close indicate that Ds is overfitted to Dr, which causes privacy
concern. Oppositely, if the data sets are too distant this can indicate poor
utility.

2.6.1 Levels of Uncertainty in the Synthetic Data

We have so far discussed evaluation methods with respect to a single synthetic
data set Ds, compared to a single real data set Dr, which is the standard
approach. However, as the synthesiser is a probabilistic model, we will generate
different synthetic data sets each time, which introduces a level of uncertainty.
If we wish to evaluate the synthesiser, and not a specific synthetic data set,
then we must generate multiple synthetic data sets and evaluate each of them
separately.
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In Section 2.5.3, we discussed how the fitting of the synthesiser can be a
randomised mechanism, which we can think of as a second level of uncertainty.
We return to this in Chapter 5.

One can also picture a third level of uncertainty, which stems from the
uncertainty in the sample D(train)

r . If we are interested in synthetic data that
describe the whole population, then a skewed sample of training data can
introduce bias into the synthetic data. This may cause that Ds has low utility
with respect to unseen real data. This can be controlled for by using a test
set, D(test)

r . We will discuss these challenges in this section and how distance
metrics can be applied to control them.

2.6.2 Distance to Closest Record (DCR)

Distances between data sets are not as simple to define as distances between
individual points, wich are also called records. However, we can base the
distance between the two data sets Ds and Dr, ∥Ds−Dr∥, on distances between
individual points in the two data sets. For instance, we can for each point in
Ds find the closest point in Dr. To formalise we say that for each x ∈ Ds we
wish to find the distance to the closest y ∈ Dr:

dcr (x,Dr) = min
y∈Dr

∥x− y∥.

Zhao et al. (2021) refer to this measure as distance to closest record (DCR),
which they use as a privacy metric only. The same idea is briefly discussed in
Esteban, Hyland and Rätsch (2018). The choice of distance metric between the
two points depends on the problem and data type, but ∥x− y∥ needs to be the
same metric for all pairs of points x ∈ Ds and y ∈ Dr.

Example 2.6.1

Figure 2.1 displays 5 synthetic and 5 real randomly generated data points
in a 2-dimensional space. For each synthetic data point we find the closest
real data point using the Euclidean distance. They are connected with
solid lines.

For some values of xi ∈ Ds, we may have that dcr (xi,Dr) = 0, which means
that there exists exact copies of points in Dr in Ds. One might be tempted to
remove points from Ds that are too close to or equal to points in Dr, because
of a wish to protect the privacy of real data points. However, this can be too
restrictive (El Emam, 2020). Firstly, as S is probabilistic, single points from Ds

can appear to be very close, or possibly identical, to observations in Dr purely
by chance. Randomly identical points are mainly a challenge in the discrete
case. Secondly, when the number of observations in Ds increases, the points
of Ds will cover more of the domain space, and the probability of generating
synthetic data points that closely match points in its training data will increase.
Thirdly, by doing so, one can construct "holes" in the domain space of Ds, so
that spaces with missing values in the reduced synthetic data set may indicate
the position of observations in Dr. A final point is that this could lead to utility
loss, since the synthetic data no longer capture the whole data domain.
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Real

Synthetic

Figure 2.1: An illustration of DCR. We have five real and synthetic data points
each. For each synthetic data point, we find the closest real data point.

Example 2.6.2 [Removing exact synthetic matches]

We will demonstrate how removing the exact matches can directly cause
privacy violations. To do so, we use a two dimensional version of the Iris
data set with variables petal length and sepal length, with 150 points as
our Dr. We then generate 15000 synthetic points using the R package
synthpop (Nowok, Raab and Dibben, 2016). We use the default parametric
generative method, normrank, which is a normal linear regression with the
preservation of the marginal distributions. This is a randomised method.
As we generate 100 times as many synthetic points as real points, we
can expect that many of the synthetic points will overlap the real data
by chance. The full synthetic Iris data set and the real Iris data set are
displayed in Figure 2.2. As expected, it looks like we have overlap between
the two, and we remove all exact matches and obtain a reduced synthetic
Iris data set displayed in Figure 2.3. Since we have many points in Ds,
there are clearly visible gaps in the plot, where we can assume that there
are real data points. We see that the real data points fill out these gaps
in Figure 2.4. There are still some empty gaps where one might expect
there to be real data points, illustrating that an adversary cannot know
the exact position of real data points with certainty. Still, this discloses
more information about Dr than intended.

While this is an exaggerated example, since we have many more
synthetic than real data points, it illustrates that we should not blindly
remove exact matches.

The DCR measure finds the distance between single points in a data set,
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Figure 2.2: Scatter plot of the real (a) and full synthetic (b) Iris data sets used
in Example 2.6.2.
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Figure 2.3: Scatter plot of the filtered synthetic Iris data, where all points that
are exact matches of points in the real Iris data are removed.
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Figure 2.4: Scatter plot of the filtered synthetic Iris data and the real Iris data.

and we require a distance metric between two data sets. For each xi ∈ Ds for
i ∈ {1, . . . , n} we can find their DCR values, and obtain the vector of size n

dcr (Ds,Dr) =
(
dcr (x1,Dr) , . . . , . . . dcr (xn,Dr)

)
.

Zhao et al. (2021) use the 5th percentile of the vector dcr (Ds,Dr) as a
metric, which we denote dcr0.05 and Guillaudeux et al. (2023) and Kotelnikov
et al. (2022) use the median, dcr0.5. The latter gives an overall measure of the
distance and is most useful for evaluating the general utility, while the former
provides information about the distances to the points of a higher risk, which
is useful from a privacy perspective. Still, if there are only a few xj that are
too close to Dr, it might not be revealed by dcr0.05. Lower percentiles or the
minimum value can be useful metrics, depending on the number of synthetic
data points. For a general distance metric of the distance between two data
sets with different quantiles α we use the notation

dcrα (Ds,Dr) , α ∈ [0, 1] .

Here, we will define percentiles of a vector in agreement with the quantile
function in Core R (R Core Team, 2023), which is a weighted average of ordered
elements.

Definition 2.6.3 [Percentiles]

For any vector x = (x1, . . . , xn), there exists an ordered vector(
x(1), . . . , x(n)

)
, where

(
x(i) ≤ x(i+1)

)
for all i ∈ {1, . . . , n− 1}. The

α percentile of x, which we denote xα is defined as:

xα = (α + i− nα) x(i) + (1 + nα− α− i) x(i+1),

where i − 1 ≤ nα − α < i, and α ∈ [0, 1]. Then, it follows that
xα=0 = min (x) and xα=1 = max (x) (R Core Team, 2023).

Note that dcrα is non-symmetric, meaning that dcrα

(
D, D′) can be

different from dcrα

(
D′, D

)
when D ̸= D′.
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Real

Synthetic

Figure 2.5: An illustration of NNDR using five real and synthetic data points.
For each synthetic data point, we find the closest (solid line) and second closest
(dotted line) real point.

2.6.3 Nearest Neighbour Distance Ratio (NNDR)

Zhao et al. (2021) introduces another distance metric called nearest neighbour
distance ratio (NNDR). For each x ∈ Ds we now consider the distances to the
two closest matching points in Dr, y1st and y2nd. Then, we say that

nndr (x,Dr) =

 ∥y1st−x∥
∥y2nd−x∥ , ∥y1st − x∥ > 0
0, ∥y1st − x∥ = 0

.

Example 2.6.4

In Figure 2.5 we have the same 5 synthetic and 5 real data points as in
Example 2.6.1. In addition to connecting each synthetic data point to its
closest real data point with a solid line, we also have a dotted line to the
second closest real data point. The NNDR value for each synthetic point
is the ratio between the solid and dotted line.

The metric nndr (x,Dr) is bounded by [0, 1], and low values show that x
has more proximity to a specific point in Dr compared to the surrounding
neighbourhood. This metric is useful to detect synthetic data points that are
too close to real outliers. From a privacy perspective, this is more critical as
opposed to when x has proximity to several data points in Dr, which gives
a NNDR score close to 1. We use the same notation as for DCR. For each
xi ∈ Ds where i ∈ {1, . . . , n}, we find their NNDR values, and get the vector

nndr (Ds,Dr) =
(
nndr (x1,Dr) , . . . , nndr (xn,Dr)

)
,
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which like DCR is also non-symmetric. The α percentile of nndr is denoted

nndrα (Ds,Dr) , α ∈ [0, 1] .

As for DCR, Zhao et al. (2021) use the 5th percentile as evaluation metric.
We argue that the choice of α should depend on the proportion of outliers in the
data set. If the number of outliers is low, α = 0.05 will not detect infringement
of privacy for the outliers.

2.6.4 Distinguishing Between Random or Privacy Violating
Proximity

The previous sections presented two different metrics of proximity between data
sets, DCR and NNDR. As we have seen in Example 2.6.2, proximity can be
caused by randomness in the synthesising process as well as because of privacy
violation, and it is unwise to remove exact copies by default. However, the
privacy of real points y ∈ Dr with proximity to synthetic points x ∈ Ds may
still be at risk and should be subject to closer inspection.

Example 2.6.5 [Using distance metrics to expose privacy violation]

In this example we illustrate how distance metrics can be used to expose
privacy violation using a staged and simple example. As previously
discussed, if the Synthesising Distribution Assumption (Raab, Nowok
and Dibben, 2016) holds and the true model T of the data is known, we
can use it as a perfect synthesiser with respect to both privacy and utility.
In such a case, say that Dr = {y1, . . . ,yn} is a sample from a known
bivariate normal distribution, so that for each yi where i ∈ {1, . . . , n} we
have that

yi =
(

yi,1
yi,2

)
∼ N

(0
0

)
,

(
2 −1
−1 1

) .

The first synthesiser, S1, samples from the same distribution, and we
obtain a synthetic data set D(1)

s = {x1, . . . ,xn}. We also fit Dr to another
synthesiser, S2 which generates D(2)

s = {z1, . . . ,zn}. For each yi ∈ Dr, we
have that

zi =
(

yi,1 + εi,1
yi,2 + εi,2

)
,

where εi,1, εi,2 ∼ N
(
0, 0.22). Instead of synthesising based on Dr as a

whole, S2 adds noise signals to each individual real data point. Plots of
the three data sets are displayed in Figure 2.6.

We evaluate the privacy and utility of D(1)
s and D(2)

s through the
distance metrics presented in this section with α ∈ {0.05, 0.5}. The results
are displayed in Table 2.1. We see that the distance between the perfectly
private synthetic data set D(1)

s and Dr is greater than the distance between
D(2)

s and Dr for all four distance metrics.
In this simplified case it is clear that the structure of S2 inherently

allows for privacy leakage from Dr into the synthetic data set D(2)
s . It only
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Figure 2.6: Dr and D(1)
s (a) and Dr and D(2)

s (b) from Example 2.6.5.

adds a small noise signal, which enables a direct link between real and
synthetic observations. Still, we need to ask ourselves if the difference in
distances in Table 2.1 in itself is enough to discard S2. The two distances
are different, but we do not have the necessary information to evaluate
if this difference is large enough to cause concern. This is especially true
for the DCR metrics, because unlike NNDR they are not bounded and
depend on the scale of the data. Another line of argument states that the
proximity between Dr and D(2)

s is not necessarily a fault of S2, but can
rather be caused by the randomness of the synthesis process, which we
discussed in the beginning of this section. A second synthetic data set from
S2 might have sampled higher values of ε, which would result in larger
distances.

Table 2.1: Distances in Example 2.6.5.

dcr0.05 dcr0.5 nndr0.05 nndr0.0

∥D(1)
s −Dr∥ 0.228 0.455 0.409 0.568

∥D(2)
s −Dr∥ 0.145 0.251 0.197 0.399

To distinguish between proximity caused by randomness and privacy
violating proximity, we propose four evaluation procedures using Monte Carlo
methods. The procedures evaluate the synthesiser S rather than a single
synthetic data set. We achieve this by repeatedly synthesising k ∈ {1, . . . , K}
data sets Dk

s from a specified synthesiser S which is fitted to the training data
D(train)

r . Because the synthesising process is randomised, the distance between
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a synthetic data set Dk
s and a fixed real data set such as D(train)

r is stochastic.
We can find metrics such as the average distance between the synthetic data
sets and the training data

∥Ds −D(train)
r ∥ = 1

K

K∑
k=1
∥D(k)

s −D(train)
r ∥.

This measure can be used to estimate how well the training data D(train)
r is fitted

to a synthesiser S. As K increases, the variance caused by the randomisation
of S will decrease. Moreover, the test set D(test)

r can be used to evaluate if
the synthetic data sets are closer to training data than unseen data. Our four
evaluation procedures form a general framework that can be applied to other
distance measures of a similar form to DCR and NNDR, where the distances
between data sets are based upon distances between specific points. We will
demonstrate these procedures using dcrα and nndrα for an α ∈ [0, 1].

Procedure 1

The first procedure follows the same principle as machine learning efficiency
evaluation tests, as we discussed in Section 2.4.2, since a real hold-out test set is
used for comparison. We wish to demonstrate how this principle can be applied
to both privacy and utility evaluation through distance metrics. While similar
ideas have been proposed by others (Guillaudeux et al., 2023), we are not
familiar with any prior work that makes use of repeated synthesis
to distinguish between random and privacy violating proximity with
DCR and NNDR as distance measures.

In this procedure we test if the distance between a synthetic data set and
its real training set is close to the distance between two real data sets. We
formulate the following null hypothesis:

H0 : The true mean of the distribution of the distance ∥Ds − D(train)
r ∥ is

equal to ∥D(test)
r −D(train)

r ∥.

We test this hypothesis by generating k ∈ {1, . . . , K} synthetic data sets
D(k)

s . To ensure a fair comparison, we require that |D(k)
s | = |D(test)

r |. This is
necessary, because the distances between the data sets will decrease as the size
of the data sets increase and the domain space is filled. If D(train)

r is much
closer to the synthetic data sets than to another real data set D(test)

r , then this
indicates that S is overfitted to D(train)

r , which raises a privacy concern (Zhao
et al., 2021). Contrary, if D(train)

r is much closer to D(test)
r than Ds, then this

indicates low utility. Therefore, the procedure can evaluate both the privacy
and utility of S.

The full procedure is described in Algorithm 6. As input we take a real
training and test set, a synthesiser and how many synthetic data sets we wish
to generate, which should depend on the size of Dr and the computational
capacity. It outputs a p-value, mean distances between the synthetic and
training data and the distance between the training and test data which is used
as a benchmark. The latter is calculated in line 1. We then generate a synthetic
data set Ds of the same size as D(train)

r in line 3, and in line 4 we calculate the
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distance between the newly generated Ds and D(train)
r . This is then repeated

K times, so that we have K different Ds and distances ∥Ds −D(train)
r ∥. In line

6 we perform a two-sided one-sample location test, which compares the location
of a to b. The test can be parametric or non-parametric depending on the
distribution of the distances. We will use the non-parametric Wilcoxon signed
rank test (Devore, Berk and Carlton, 2021), as we do not want to assume that
the distances follow a specified parametric distribution.

Algorithm 6 Procedure 1
Input:
D(train)

r ← real training data set
D(test)

r ← real test data set
S ← synthesiser
K ← number of synthetic data sets

Output:
p← p-value
ā← mean of distances between synthetic and training data
b← distance between test and training data

1: b < −∥D(test)
r −D(train)

r ∥
2: for k ∈ (1 : K) do
3: Ds < −S

(
D(train)

r , |D(test)
r |

)
4: ai < −∥Ds −D(train)

r ∥
5: end for
6: p < −p value of a two-sided one-sample location test (a, b)

Procedure 2

The second procedure is also based upon machine learning efficiency evaluation
as it uses a test set D(test)

r . Contrary to the first procedure, we will perform
a one-sided hypothesis test, and we compare the distance between Ds and
D(train)

r to the distance between Ds and D(test)
r . We formulate the following

null hypothesis:

H0 : The true mean of the distribution of the distance ∥Ds − D(train)
r ∥ is

greater than or equal to the true mean of the distribution of the distance
∥Ds −D(test)

r ∥.

This measures the privacy of Ds using a more direct approach than the
first procedure, since we investigate if S is overfitted to D(train)

r . The procedure
is displayed in Algorithm 7, which is similar to Algorithm 6. We now require
that |D(train)

r | = |D(test)
r |, following the same reasoning as before. The synthetic

data set can be of an arbitrary size, and this size is taken as an input. As both
distances involve Ds, they are both stochastic. Thus, we need to perform a
two-sample one-sided test in line 6.
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Algorithm 7 Procedure 2
Input:
D(train)

r ← real training data set
D(test)

r ← real test data set of the same size
S ← synthesiser
K ← number of synthetic data sets
n← size of the synthetic data sets

Output:
p← p-value
ā← mean distance between synthetic and training data
b̄← mean distance between synthetic and test data

1: for k ∈ (1 : K) do
2: Ds < −S

(
D(train)

r , n
)

3: ai < −∥Ds −D(train)
r ∥

4: bi < −∥Ds −D(test)
r ∥

5: end for
6: p < −p-value of a one-sided two-sample test (a, b)

Procedure 3

This procedure based on the evaluation of Zhao et al. (2021), with the difference
that they only considered a single synthetic data set. We extend their evaluation
by applying repeated synthesis. This procedure differs from the first two, since
it does not use separate test sets. This is beneficial when we need to use all
of the real data for training. Instead of using a test set, the method of Zhao
et al. relies on what we will call intra-data base distances, which we define in
Definition 2.6.6.

Definition 2.6.6 [Intra-data set distance for DCR and NNDR metrics]

IDD (D) is the intra-data set distance of D, as opposed to the inter-data
set distance ∥D − D′∥ between D and another data set D′. It measures
the homogeneity of a data set D.

In the DCR case, the intra-data set distance is defined as:

dcr (D,D) =
(

dcr
(
x1,D \ {x1}

)
, . . . , dcr

(
xn,D \ {xn)

})
for D = {x1, . . . , xn}, and likewise for NNDR.

The third procedure requires that |D(k)
s | = |D(train)

r | for each k ∈ {1, . . . , K},
and it tests the following null hypothesis:

H0 : The true mean of the distribution of the distance ∥Ds − D(train)
r ∥ is

equal to IDD
(
D(train)

r

)
.

This is similar to the first hypothesis in the sense that we wish to com-
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pare the distance between Ds and D(train)
r to a distance between real data.

Another similarity is that we compare a distance sample to a single test statistic
and that this tests both the privacy and utility. We aim to generate synthetic
data that is neither too close nor too distant from D(train)

r .

Procedure 4

Lastly, we will perform a procedure that evaluates the general utility of Ds by
comparing the heterogeneity of Ds to that of D(train)

r . This procedure is also
based on the evaluation of Zhao et al. (2021), with the difference that we use
multiple synthetic data sets. The null hypothesis is

H0 : The true mean of the distribution of the distance IDD (Ds) is equal to
IDD

(
D(train)

r

)
.

The procedure requires that |D(k)
s | = |D(train)

r | for each k ∈ {1, . . . , K}.
If Ds is more diverse than D(train)

r , meaning that IDD (Ds) > IDD
(
D(train)

r

)
,

then we have not correctly captured the distribution of D(train)
r . Oppositely,

if D(train)
r is more heterogeneous than Ds it also indicates low utility and can

reveal mode collapse. A two-sided one-sample location test is performed to
check if the difference in distance is significant. Algorithm 8 combines procedure
3 and 4. We can perform them together, because they both use a 50− 50 split
and calculates the distance IDD

(
D(train)

r

)
. This is done in line 1 In line 4,

we find the distance between Ds and Dr which is used in procedure 3, and in
line 5 we find the intra-data set distance of Ds, which we use in procedure 4.
Lastly, in line 6 we perform the one-sample location test of procedure 3, and
line 7 performs the one-sample location test of procedure 4.

We note that even when |Ds| = |Dr|, the comparison between dcr (Ds,Dr)
and dcr (Ds,Ds) is unjust, because of a difference in intra- and inter-data
set distances. The former compares each point in Ds to a data set of size
|Ds| − 1, while the latter compares each point to a data set which contains 1
more observation, which can lead to smaller distances. For larger data sets this
difference becomes negligible, but if deemed necessary one option is to randomly
remove a point from D(train)

r before finding the distance in line 4.
In Chapter 4 we will explore the hypothesis framework for a specific data

set. We are particularly interested in to see if it is beneficial to perform both
procedure 1 and 3, or if they result in the same conclusions.

2.6.5 Notes on Single-Point Distance Metrics

While we have discussed distance metrics between data sets that rely on distance
metrics between single points, we have not considered how single-point distances
∥x− y∥ should be defined. The Euclidean distance is the most common option,
but we are free to choose among other distance metrics. The choice should be
made with the data type, number of dimensions and specific data set in mind.
For example, rotated images can be far apart in Euclidean distance, despite
looking very similar (Hastie, Tibshirani and Friedman, 2009).

43



2.6. Additional Privacy and Utility Evaluation Using Distance Metrics

Algorithm 8 Procedure 3 and 4
Input:
D(train)

r ← training set
S ← synthesiser
K ← number of synthetic data sets

Output:
p1, p2 ← p-values
ā← mean distance between synthetic and training data
b← intra-data set distance of the real data
c̄← mean intra-data set distance of the synthetic data

1: b← IDD
(
D(train)

r

)
2: for k ∈ (1 : K) do
3: Ds < −S

(
D(train)

r , |D(train)
r |

)
4: ai < −∥Ds −D(train)

r ∥
5: ci < −IDD (Ds)
6: end for
7: p1 < −p-value of a two-sided one-sample location test (a, b, two-sided)
8: p2 < −p-value of a two-sided one-sample location test (c, b)

Finding k-nearest neighbours (kNN) can be challenging for high-dimensional
data due to the curse of dimensionality (Hastie, Tibshirani and Friedman, 2009).
Another challenge is finding the kNN of a point when the size of the data set is
large, as the naive method measures the distance to every single point, which
has complexity O (n). More optimised methods such as kd-trees can speed up
the search (Moore, 1990).
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Multi-State Time-to-Event Data
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3.1. Survival Analysis Framework

3.1 Survival Analysis Framework

Time-to-event data is, as the name spells out, data on the time (T ) until an
event occurs. The field of analysing such data is often called survival analysis,
because of its typical applications to survival data. In this section, we will
introduce the basic theoretical framework of survival analysis used within this
thesis.

We begin by considering the PDF of T , which is denoted as f (t). This density
can be parametric, semi-parametric or non-parametric. Among parametric
choices, the exponential or the Weibull distribution are commonly used.
Semi-parametric alternatives include Cox-regression, while the Kaplan-Meier
estimator is a non-parametric method (Aalen, Borgan and Gjessing, 2008).
T can be discrete as well as continuous, but here we will only consider the
continuous case.

A central function in survival analysis is S (t), the survival function of T .
Given a set of processes that all follow f (t), the survival function gives us the
expected proportion of processes that have not made a transition at time t, and
is defined as:

S (t) = P (T > t) =
∫ ∞

t

f (t) dt (3.1)

(Aalen, Borgan and Gjessing, 2008).
Next, we turn to the hazard function,

α (t) = lim
∆t→0

1
∆t

P
(
t ≤ T ≤ t + ∆t|T ≥ t

)
(Aalen, Borgan and Gjessing, 2008), where α (t) gives us the conditional
probability of transitioning at time t, given that a transition has not occurred
before the time t.

The following property shows the relation between the 3 central functions
S (t), α (t) and f (t):

f (t) = S (t) α (t) (3.2)
(Aalen, Borgan and Gjessing, 2008, (A.1)).

3.2 Weibull Regression

3.2.1 The Weibull Distribution

As stated, both the exponential and the Weibull distribution are used to model
f (t). Where the exponential distribution has a constant hazard function, the
Weibull distribution allows for the hazard rate to change over time (Collett,
2015; Kalbfleisch, 2002). A changing hazard rate allows for more complex
models, which motivates the use of the Weibull distribution in this thesis. The
Weibull distribution is parameterised in different ways, and we will follow the
notation used in Collett (2015). The distribution has shape (λ) and scale (σ)
parameters and the PDF

f (t; σ, λ) = λσtλ−1 exp
(
−σtλ

)
, t, λ, σ > 0. (3.3)

For completion, we derive the survival and hazard functions of the Weibull
distribution. By the definition in Equation (3.1), we have that
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3.2. Weibull Regression

S (t; σ, λ) =
∫ ∞

t

λσxλ−1 exp
(
−σxλ

)
dx .

We solve the integral by substitution and use u = σxλ, so that du / dx = λσxλ−1

and get

∫ ∞

σtλ

exp (−u) du = −exp (−u)

∣∣∣∣∣∣
∞

σtλ

.

Then,
S (t; σ, λ) = exp

(
−σtλ

)
.

Following from Equation (3.2), the hazard function becomes

α (t; σ, λ) = λσtλ−1. (3.4)

Note that the exponential distribution is a special case of the Weibull distribution
when λ = 1, and then the hazard function is constant for all t (Kalbfleisch,
2002).

Maximum likelihood parameter estimation

We can fit the shape and scale parameters of the Weibull distribution by
maximum likelihood. For n independent and identically distributed processes
t = (t1, . . . , tn), the likelihood is

L (σ, λ; t) =
n∏

i=1
f (ti; σ, λ) =

n∏
i=1

λσtλ−1
i exp

(
−σtλ

i

)
. (3.5)

We take the log to obtain the log-likelihood

l (σ, λ; t) = n log (λ) + n log (σ) + (λ− 1)
n∑

i=1
log (ti)−

n∑
i=1

(
σtλ

i

)
. (3.6)

The maximum value of the likelihood cannot be found analytically. The most
common and straightforward way of finding the maximum likelihood estimates
(MLEs) of a Weibull distribution is to apply numerical optimisation algorithms
to the log-likelihood (3.6) (Aalen, Borgan and Gjessing, 2008).

3.2.2 Survival Regression Models

So far, we have considered a set of processes with equal distributions, meaning
that each process has an equal probability of an event occurring at time t. In
many situations, we may want t to depend on a set of covariates. We can do
this by introducing survival regression models (Kalbfleisch, 2002). One class of
survival regression models is the Cox proportional hazards model, which defines
the hazard function in terms of a set of covariates x on the following form:

α (t;x,β) = α0 (t) exp (xβ) (3.7)

(Kleinbaum and Klein, 2005).
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3.2. Weibull Regression

Cox proportional hazards models are semi-parametric, because α0 (t), which
is called the baseline hazard, is non-parametric, and exp (xβ), which is called
the exponential relative risk function, is parametric (Aalen, Borgan and Gjessing,
2008). The model holds the proportional hazards assumption, which states that
only the baseline hazard, α0 (t), is dependent on t, whereas the covariates x
are independent of t (Kleinbaum and Klein, 2005). The extended Cox model
does not hold this assumption. Then, the hazard function is

α
(
t;x (t) ,β

)
= α0 (t) exp

(
x (t)β

)
(3.8)

(Kalbfleisch, 2002; Kleinbaum and Klein, 2005). Time-dependent covariates
complicates the likelihood function (Kalbfleisch, 2002) and will not be considered
here.

The proportional hazards name comes from that the coefficients can be
interpreted in terms of the hazard rates. Say that two processes have the
covariate vectors x1 and x2 respectively. x1,k = x2,k for all k ∈ {1, . . . , K} \ j,
and x1,j = x2,j + 1, where j is an arbitrary index in {1, . . . , K}. That is, the
two processes have the same values for all covariates except xj , for which the
first process has a value of one unit higher than the second process. Then the
hazard rate of the two processes is

α0 (t) exp (x1β)
α0 (t) exp (x2β) =

exp
(

βj

(
x2,j + 1

))
exp

(
βjx2,j

) = exp
(
βj

)
(Aalen, Borgan and Gjessing, 2008).

This interpretation does not hold for the extended Cox model in Equation
(3.8), since the covariates are not fixed for every t (Aalen, Borgan and Gjessing,
2008).

3.2.3 Weibull Proportional Hazards Regression (WPHR)

The Weibull proportional hazards regression (WPHR) model (Hosmer, 2008;
Kundu, Darpe and Kulkarni, 2019; Z. Zhang, 2016) is a specific case of the Cox
proportional hazards model (Kalbfleisch, 2002). We let log (σ) be the response
of a linear regression model with K covariates x′ = (1, x1, . . . , xK) independent
of t, and coefficients β′ = (β0, β1, . . . , βK). Then, σ is defined as

σ = exp (β0 + β1x1 + β2x2 + . . . + βKxK) = exp
(
x′β′) . (3.9)

Using Equation (3.4), the hazard function of a WPHR model is

α
(
t;x′, λ,β′) = λ exp

(
x′β′) tλ−1.

If we want to write the hazard function in terms of the Cox proportional hazards
model from Equation (3.7), we need to extract the intercept. Since it is not
related to a covariate, β0 is the same for each process, and must be a part of
the baseline hazard. By redefining the vectors, so that x = (x1, . . . , xK) and
β = (β1, . . . , βK), we get that

α (t;x, λ, β0,β) = λ exp (β0) exp (xβ) tλ−1 = α0 (t, λ, β0) exp (xβ) ,
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3.3. Censored and Uncensored Data

where α0 (t, λ, β0) = λ exp (β0) tλ−1. WPHR is fully parametric, since the
baseline hazard is also parametric. The full PDF of a WPHR model is

f (t;x, λ, β0,β) = λ exp (β0) exp (xβ) tλ−1 exp
(
− exp (β0) exp (xβ) tλ

)
,

t, λ > 0.

3.2.4 Maximum Likelihood Parameter Estimation of a WPHR
model

Because a WPHR model has coefficients β for each covariate in addition to a
shape parameter λ and intercept β0, the likelihood is more complex than the
two-parameter Weibull distribution likelihood in Equation (3.5). Say we have
i ∈ {1, . . . , n} processes with ti and covariates xi = (x1, . . . , xK) independent
of ti. We also assume independence between each process. Further, we define
X = (x1, . . . ,xn). Then, the likelihood of a WPHR model is

L (λ, β0,β; t, X)

=
n∏

i=1
λ exp (β0) exp (xiβ) tλ−1

i exp
(
− exp (β0) exp (xiβ) tλ

i

)
.

(3.10)

Taking the log to obtain the log-likelihood we get

l (λ, β0,β; t, X)

= n log (λ) + nβ0 +
n∑

i=1
xiβ + (λ− 1)

n∑
i=1

log (ti)− exp (β0)
n∑

i=1
exp (xiβ) tλ

i .

(3.11)

Software such as the R package flexsurv (Jackson, 2016) can find the maximum
of Equation (3.11) numerically to obtain the MLEs of the parameters.

3.3 Censored and Uncensored Data

Example 3.3.1 [NAV right-censoring]

At NAV, each registered job seeker gets a digital activity plan to assist
them with getting a job (NAV, 2023). As an hypothetical example, say
that NAV is conducting a trial of a new activity plan system. The study
consists of two groups of job seekers, where one group gets access to a new
system, and the other is a control group. They are interested in the time
it takes to get a job, and the aim of the study is to see if the job seeking
process is quicker for the group using the new system. Over an observation
period, they will record the time t until a participant gets a job. When the
observation period is over, there may still be some job seekers left, which
makes the data incomplete. An incomplete observation may signify that
the job seeker finds a job at some later point, but it can also mean that the
job seeker will never find a job. The only information disclosed by the data
is that they could not find a job during the observation period. Even so,
this is valuable information. Instead of discarding these observations, they
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3.3. Censored and Uncensored Data

can be kept as what is known as right-censored observations (Kalbfleisch,
2002).

Time-to-event data often contains censored observations, which can either
be because the event did not happen before the observation period is over, as
in Example 3.3.1 (right-censoring), or because the event happened before the
observation period began (left-censoring). Complete observations are referred
to as uncensored observations (Aalen, Borgan and Gjessing, 2008).

The censored observations can still be used to find the MLE of the
parameters θ of a survival regression model with probability distribution
f (t;x,θ), and we will demonstrate this for the right-censored case. We define
a vector of independent random variables T = (T1, . . . , Tn) with covariates
X = (x1, . . . ,xn) that follow the distribution f (t;x,θ). For each Ti for
i ∈ {1, . . . , n}, we have a censoring time ci which is independent of Ti. In
the case where Ti > ci, the transition time is not observed, and we say
that the observation is right-censored. Using the definition of a survival
function S (t;θ) in Equation (3.1), the contribution to the likelihood is then
P
(
Ti > ci|xi,θ

)
= S (ci;xi,θ). When Ti ≤ ci, we can observe Ti directly, and

the contribution to the likelihood is f (Ti;xi,θ) (Aalen, Borgan and Gjessing,
2008).

To simplify the definition of the likelihood, we include an indicator vector
d =

(
I (T1 ≤ c1) , . . . , I (Tn ≤ cn)

)
, meaning that if di = 0, the event is right-

censored, and if di = 1, the event is observed. In addition, we will use the
notation ti = min (Ti, ci) (Aalen, Borgan and Gjessing, 2008). We can define
the likelihood as

L
(
θ|t,d, X

)
=
∏

i:di=1
f (ti;xi,θ)

∏
i:di=0

S (ti;xi,θ)

=
n∏

i=1
f (ti;xi,θ)di S

(
ti|xi,θ

)1−di

=
n∏

i=1
α (ti;xi,θ)di S (ti;xi,θ)

(3.12)

(Jackson, 2016; Aalen, Borgan and Gjessing, 2008). The last equality follows
from Equation (3.2). The log-likelihood is

l
(
θ|t,d, X

)
=

n∑
i1

[
di log

(
α (ti;xi,θ)

)
+ log

(
S (ti;xi,θ)

)]
. (3.13)

Here we assume that the censoring times c are known, but it is also possible
to let the censoring times be independent samples from a distribution g (ci;ψ)
which is independent of f (ti;xi,θ), and using the likelihood of the joint
distribution (Aalen, Borgan and Gjessing, 2008). Because this is currently
not supported by the R package flexsurv (Jackson, 2016) we will not consider
it here.
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Figure 3.1: Illustration of a competing risks model with four states and three
competing legal transitions.

3.4 Multi-State Models

3.4.1 Competing-Risks Models

So far, we have considered time-to-event data with only one possible outcome.
In Example 3.3.1, the participants go from unemployed to employed, and
the transition can only happen once. If NAV wants to model other possible
outcomes, such as going from unemployed to receiving sickness benefits or
retirement pension, they can use a competing risks model (Kalbfleisch, 2002).
Then, an event is considered as a transition between states. In Example 3.3.1, we
have two states, unemployed and employed, and t is the time until an individual
transitions from the first to the second state. In a competing risks model
we can add states like sick and retired, as shown in Figure 3.1. Multi-state
models are commonly illustrated in this manner, with boxes represents states,
and arrows representing the permitted transitions (Andersen and Keiding,
2002). In this thesis, we will use a simple approach to competing-risks models,
which assumes independence between the transitions. In many cases, this is an
oversimplification of reality. Still, this is a common assumption, as it lowers the
computational cost of finding the combined likelihood (Jackson, 2022).

We generalise by saying that from the starting state r, it is possible to make
LT ∈ N legal transitions into the states q1, . . . , qLT . Each transition r → qj ,
for each j ∈ {1, . . . , LT}, is modelled as an independent survival regression
model fj

(
t;x,θj

)
(Jackson, 2022), analogous to the models discussed in Section

3.3. The name competing-risks motivates an interpretation of LT events with
independent risks, which compete to become the first to occur. When one event
has taken place, it is not possible for the same process to experience any of
the remaining events. The independence assumption requires that there are
are no constraints to the parameters of the survival regression models across
transitions (Jackson, 2022). That is, θj⊥θj′ for every j ̸= j′.

The combined likelihood of a competing-risks model with censoring is the
product of the likelihoods of each independent transition, which is on a similar
form as Equation (3.12). This follows from the independence assumption.
Say that we have n observations (ti, si, di,xi) for each i ∈ {1, . . . , n}. Each
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si ∈ {1, . . . , LT} indicates a legal transition r → qsi
, ti ∈ [0,∞) indicates the

transition or censoring time, di ∈ {0, 1} is a censoring indicator and xi is a
covariate vector. Since each transition has its own likelihood, one might be
tricked to believe that the observation (si, ti, di,xi) with si = j should only
contribute to the likelihood of the transition r → qj . However, we will also use
this observation to calculate the likelihoods of the other transitions, because we
can think of the observation as a right-censoring of the remaining transitions at
time ti (Jackson, 2022). In this way, we utilise the information that the other
events did not happen before time ti.

The likelihood of a competing risks model is

L
(
θ1, . . . ,θLT |t, s,d, X

)
=

LT∏
j=1

 ∏
i:si=j

[
fj

(
ti;xi,θj

)di
Sj

(
ti;xi,θj

)1−di
] ∏

i:si ̸=j

Sj

(
ti;xi,θj

) .
(3.14)

When we use this notation, any observation (si, ti, di,xi) where di = 0 has an
arbitrary value of si, because the event is censored and none of the transitions
occurred. As a way to explicitly state that each observation contributes to
the likelihoods of all the transitions, and to remove ambiguity for censored
observations, we can use a long format representation (Wreede, Fiocco and
Putter, 2011). In this new representation, we write that each i ∈ {1, . . . , n}
consists of three vectors. First, a covariate vector covariate vector xi, which is
defined as before. Next, we have a vector di of length LT , which keeps track of
the censored transitions. If di,j = 1, then this means that the ith observation
experienced the jth transition. We either have that

∑LT
j=1 di,j = 1, which means

that all transitions except one is censored, or
∑LT

j=1 di,j = 0, if all the transitions
are censored. Finally, we have the vector ti, which consists of LT repetitions
of the transition time ti from before. It indicates the censoring or transition
times of each transition. While this notation may seem overly uncompressed,
it will become useful for the models in Section 3.4.2. Further, it simplifies the
likelihood of a competing-risks model:

L
(
θ1, . . . ,θLT |T, D, X

)
=

LT∏
j=1

n∏
i=1

[
fj

(
ti,j ;xi,θj

)di,j
Sj

(
ti,j ;xi,θj

)1−di,j
]

,
(3.15)

where T = (t1, . . . , tn) and D = (d1, . . . ,dn).
The R package flexsurv (Jackson, 2016) can be used to find the MLE

estimates of the parameters θ1, . . . ,θLT . In this section we have defined
the likelihood based on Equation (1) in Jackson (2016), which states that
the likelihood of the full model is the product of the joint likelihoods of
each transition. However, we have expanded the definition of the likelihoods
in Equation (3.14) and Equation (3.15) by using the notation for censored
likelihoods used in Section 3.3, so that we explicitly show how the censoring is
used in competing-risks models.
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Figure 3.2: Illustration of a multi-state model with three transient states and
one absorbent state. There are nine legal transitions in total.

3.4.2 Multi-State Time-to-Event (MS-TTE) Models

Competing-risks models are not complex enough for many types of data, as they
do not allow for a single process to experience multiple events. For example,
the model in Figure 3.1 is not suitable for a process where an individual goes
from unemployed to employed, and then after some time retires. This becomes
achievable with the introduction of multi-state models (Kalbfleisch, 2002), which
allows a single process to make multiple transitions between states. Such a
model is illustrated in Figure 3.2.

A multi-state time-to-event (MS-TTE) model is used to model the transition
times of stochastic processes that transition between states according to a multi-
state model (Meira-Machado et al., 2009). Like before, we will here consider the
continuous-time case. Similar to how we represented competing-risks models
as a combination of several time-to-event models, we will use the common
approach of modelling MS-TTE data as a combination of competing-risks
models (Jackson, 2022).

In a multi-state model, we say that a state is transient if there are one or
more legal transitions from that state, and otherwise we say that the state is
absorbent (Andersen and Keiding, 2002), meaning that a process will terminate
once it enters an absorbent state. We will use the cause-specific hazards of
competing risks framework (Jackson, 2022) to create MS-TTE models, in which
an MS-TTE model consists of a sub-model for each transient state, and where
each sub-model is a competing-risks model. To do so, we first need to expand
our notation. Say that we have R transient states with indices r ∈ {1, . . . , R},
that each have ltr ∈ N legal transitions. Then, the total number of legal
transitions j in the multi-state model is LT =

∑R
r=1 ltr.

Example 3.4.1

The model in Figure 3.2 is a simplified version of the MS-TTE model used
by Gran et al. (2015), where a multi-state model was applied to NAV data
on sickness absence. Our model has 4 states, where unemployed, employed
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and sick are transient and retired is absorbent. There are 3 legal transitions
from all transient states, which makes the total number of legal transitions
LT = 9.

If we assume independence between each competing-risks model, and as
before, assume independence between each transition, then the likelihood of
an MS-TTE model follows the same principle as Equation (3.14), where the
combined likelihood is the product of independent joint likelihoods of each legal
transition (Jackson, 2022). Each legal transition has its own transition index
j ∈ {1, . . . , LT} and an independent time-to-event regression model fj

(
t;x,θj

)
.

The difference between the likelihood of a competing-risks model and an
MS-TTE model is that each observation can consist of multiple uncensored
transitions. Another difference is that each uncensored transition is not paired
with censored transitions of all the remaining transitions. This is just the
case for the transitions that are in the same competing risks sub-model,
meaning transitions that go from the same state. In Figure 3.2, the transition
Employed → Unemployed should only contribute to the likelihood of this
transition, and to the likelihoods of Employed→ Sick and Employed→ Retired,
which are the competing transitions.

The most straightforward way to represent this is by expanding the long
format representation used in Equation (3.15). Since we can have more than
one uncensored transition, we also introduce a transition vector si for each
observation i, which holds the indices of all the censored and uncensored
transitions. It follows the structure of the multi-state model, so that each
element in si that represents an uncensored transition is followed by elements
representing the censored transitions of the competing-risks sub-model. The
length will vary for each observation, and we say that it has length mi. The
vector ti is also of length mi and stores the transition or censoring times. This
is managed by the censoring indices in vector di. T, D and X are defined as
before, and S = (s1, . . . , sn). The combined likelihood of an MS-TTE model
becomes

L
(
θ1, . . . ,θLT |T, S, D, X

)
=

LT∏
j=1

n∏
i=1

∏
l:si,l=j

[
fj

(
ti,l;xi,θj

)di,l Sj

(
ti,l;xi,θj

)1−di,l
]

.
(3.16)

Besides likelihood calculations, it is most practical to use a short format
representation of each observation i, where si only contains the uncensored
transitions. That is, si is the observed state trajectory. On short-format, the
scalar di indicates if the observation i is censored. If di = 0, then we have not
observed a final transition into an absorbent state. This means that the last
element in ti is a censoring time, while all other elements are transition times.
If we also know the structure of the multi-state model, then this can easily
be extended to the long format representation. The distinction between short
and long format is much used for MS-TTE data (Meira-Machado et al., 2009;
Wreede, Fiocco and Putter, 2011). We will state which format we use in each
case.
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3.5 Time Homogeneity and Inhomogeneity

We have defined the random variable T as the time-to-event. This is
unambiguous for a model with only one possible transition or a competing-risks
model, since each process can only experience one event (Jackson, 2016). For
multi-state models we need to clarify what we consider as the starting time
t0. One option is to define it as the time the process enters its current state,
meaning that we reset the time after each transition. This is assumed to be
the case in Equation (3.16). Such a model is called a clock-reset or a time
homogeneous model. Another alternative is to define t0 as the beginning of
the process, and this is called a clock-forward or time inhomogeneous model
(Incerti and Jansen, 2021; Jackson, 2016; Kalbfleisch, 2002).

3.5.1 Clock-Reset Models

Clock-reset models are simpler to both fit and use, because we do not need to
use conditional probabilities and we can use the same probability distributions
fj

(
t;x,θj

)
for each transition. When we fit transition data to a clock-reset

model, we will for each observation only consider the time spent in the current
state before the next transition occurs, and all information about the total
length of the process is disregarded.

Say that we have an observation i with covariate vector xi that has made
mi transitions si =

(
si,1, . . . , si,mi

)
at times t∗ =

(
t∗
i,1, . . . , t∗

i,mi

)
. None of the

transitions are censored, meaning that the vectors are on short-format. We
consider the times t∗ to be the time since the beginning of the process, which
means that 0 ≤ t∗

i,1 ≤ . . . ≤ t∗
i,mi

. In a clock-reset model, we redefine the
times to ti,l = t∗

i,l − t∗
i,l−1 for all l ∈ {1, . . . , mi}, and we can use the likelihood

function in Equation (3.16) as before.
Under the assumption that θj⊥θj′ for every j ̸= j′, we have that each

ti,l⊥ti,l′ for every l ̸= l′. This is why clock-reset models often are called semi-
Markov models (Jackson, 2022), because the model only considers the time
spent in the current state, and the transition history and the time since the
beginning of the process is disregarded. Thus, the model is memoryless and
follows the Markov assumption.

A clock-reset model is not a good fit in cases where the transition probabilities
are dependent on the total time of the process and the transition history. This
requires that the transition probabilities are adjusted each time a process
reenters a state, which is not possible for a clock-reset model.

Example 3.5.1

For the multi-state model in Figure 3.2 we may wish to increase the risk
of transitioning to state retired as the total time passes, or to include that
the risk of transitioning to state sick depends upon prior sick leave history.
Then a clock-reset model with the Markov property is not suitable.

One solution that sets aside the Markov assumption is to include covariates
which describe the history of the process (Andersen and Keiding, 2002). Explicit
examples include the total time of the process, number of times the states have
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been entered and proportion of time spent in each state, while more implicit
covariates can for example be the age of an individual. While it is possible to
have time-dependent covariates, which we saw in Equation (3.8), this is outside
the scope of this thesis. A common workaround is to let the covariates refer
to the time of entry. Then a covariate like age can refer to age at the last
transition, and the covariate is assumed constant as long as a process remains
in the same state (Andersen and Keiding, 2002; Jackson, 2016). We call this
semi-time-dependent covariates.

3.5.2 Clock-Forward Models

In a clock-forward model, the process does not have a memory of the previous
states as before, but the transition probabilities depends on both the total time
of the process and the time since the last transition. Clock-forward models rely
on left-truncation, which is commonly also referred to as delayed entry (Aalen,
Borgan and Gjessing, 2008).

Say that a process enters a state r at time tl. From r, it is possible
to transition into ltr other states, and each transition has an independent
probability distribution fj (t;θ). In a clock-reset model, t is reset to 0, but a
clock-forward model considers the probability of transitioning at time t ≥ tl

given that the process entered the state at time tl. We do this by conditioning
on t ≥ tl: fj

(
t|t ≥ tl;θj

)
(Jackson, 2016).

In Figure 3.3 (a) we see a Weibull PDF with parameters λ = 1 and σ = 1.5.
In (b), the PDF is left-truncated at t = 1 and in (c) the PDF is left-truncated
at t = 2. Consider these distributions as the probability of a process making
a transition from a state r at time t. In (a), (b) and (c), the process entered
state r at the delayed times t = 0, t = 1 and t = 2 respectively. We observe
that with later entering times, the probability of staying in state r for a short
time increases.

A clock-forward model requires an adjusted likelihood, so that the
distributions are left-truncated at the last transition time. Like in Equation
(3.16), we will use a long format representation to define the likelihood.
Say that each observation i ∈ {1, . . . , n} consists of mi censored and
uncensored transitions and has a covariate vector xi, a vector of transitions
si =

(
si,1, . . . , si,mi

)
, ti =

(
ti,1, . . . , ti,mi

)
contains the transition times,

counting from the time of the beginning of the process, and the vector
di =

(
di,1, . . . , di,mi

)
indicates if a transition is censored or not. As before,

T = (t1, . . . , tn), D = (d1, . . . ,dn), S = (s1, . . . , sn) and X = (x1, . . . ,xn).
The likelihood of a clock-forward model is

L
(
θ1, . . . ,θLT |T, S, D, X

)
=

LT∏
j=1

n∏
i=1

∏
l:si,l=j

[
fj

(
ti,l|ti,l ≥ ti,l−1;xi,θj

)di,l Sj

(
ti,l|ti,l ≥ ti,l−1;xi,θj

)1−di,l
]

.

(3.17)

3.5.3 Maximum Likelihood Estimation using flexsurv

The R package flexsurv (Jackson, 2016) offers support for multi-state models,
both for clock-reset and clock-forward models. The package makes it
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Figure 3.3: A Weibull PDF f (t) with λ = 1.5 and σ = 1 (a), f (t) left-truncated
at t = 1 (b) and f (t) left-truncated at t = 2 (c).

straightforward to find the MLEs of Equation (3.16) and Equation (3.17)
numerically, and it supports many parametric and non-parametric distributions
for each valid transition j ∈ {1, . . . , LT} (Jackson, 2022). We refer to the
documentation for details on the optimisation methods used. When clock-reset
and clock-forward models are fitted using flexsurv in later chapters, we will
use a WPHR model for every transition. When each transition in an MS-TTE
model follows a WPHR model, then we will call it a WPHR MS-TTE model.

3.6 Synthesising from a Multi-State Time-to-Event Model

Once we have fitted an MS-TTE model to data, we can use the fitted model to
generate new synthetic processes. Given a covariate vector x and a fitted model
with the parameters θ = (θ1, . . . ,θLT ), we can draw new synthetic processes
with state trajectories s and corresponding transition times t, both on the short
format.
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3.6.1 Clock-Reset Synthesis

Algorithm 9 is a generalisation of Algorithm 1 in Incerti and Jansen (2021),
which is customised to a specific domain. The algorithm demonstrates how we
can synthesise from a clock-forward MS-TTE model with at least one absorbent
state. In addition to the model parameters and a covariate vector, it also
requires a starting state, which must be non-absorbent. In lines 1− 2 we set an
index and the starting time of the total time t to 0. The synthesis procedure
continues as long as the current state is transient, and from each transient state
we sample from a competing-risks model. We do so by sampling a transition
time from each valid transition in line 5, and the transition that takes place first
is selected in line 7. In Section 3.5.1 we discussed the use of semi-time-dependent
covariates. If any such covariates are included in the model, they are updated
in line 8. Then, the new time and states are added to the vectors t and s in
lines 9− 10. This is repeated until an absorbent state is reached.

Algorithm 9 Synthesise a Process from a Clock-Reset Multi-State Time-to-
Event Model
Input:

x← covariates of the synthetic process
s0 ← starting state of the synthetic process
θ = (θ1, . . . ,θLT )← parameters of an MS-TTE clock-reset model with LT
transitions

Output:
t← transition times of the synthetic process (short format)
s← state trajectory of the synthetic process (short format)

1: l← 0
2: tl ← 0
3: while sl is transient do
4: for each valid transition j from state sl do
5: Sample t′

j from fj

(
t;θj ,x

)
6: end for
7: j′ ← argminj t′

j

8: Update any semi-time-dependent covariates with t′
j′

9: tl+1 ← tl + t′
j′

10: sl+1 ← new state following transition j′

11: l← l + 1
12: end while

3.6.2 Clock-Forward Synthesis

For clock-forward models we use Algorithm 10, which is an updated version of
Algorithm 9. In this version, t is drawn from a left-truncated distribution in line
5 (Incerti and Jansen, 2021). The parameters θ of a clock-forward model are also
different, because of the difference in likelihood functions, as we saw in Equation
(3.16) and Equation (3.17). We will not use semi-time-dependent covariates in
clock-forward models, because the passing of time is already considered by not
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resetting the time upon entering a new state. However, we can have covariates
like the age at t0, which are time-invariant.

Algorithm 10 Synthesise a Process from a Clock-Forward Multi-State Time-
to-Event Model
Input:

x← covariates of the synthetic process
s0 ← starting state of the synthetic process
θ = (θ1, . . . ,θLT )← parameters of an MS-TTE clock-forward model with
LT legal transitions

Output:
t← transition times of the synthetic process (short format)
s← state trajectory of the synthetic process (short format)

1: l← 0
2: tl ← 0
3: while sl is transient do
4: for each valid transition j from state sl do
5: Sample t′

j from fj

(
t|t > tl;θj ,x

)
6: end for
7: j′ ← argminj t′

j

8: tl+1 ← t′
j′

9: sl+1 ← new state following transition j′

10: l← l + 1
11: end while

3.6.3 Complete Synthesis

In the documentation of the R package hesim (Incerti and Jansen, 2021; Incerti
and Jansen, 2022), their Algorithm 1 is used to simulate a set of new samples.
Their MS-TTE model is fitted to real data, but we still categorise their approach
as simulation and not synthesis, a distinction we discussed in Section 2.1.2.
Both their approach and our Algorithm 9 and Algorithm 10 are conditioned on
on covariates x and a starting state s0. Incerti and Jansen (2022) simulate the
variables (x, s0) from a distribution which has not been estimated from real data,
which is why we categorise it as a simulation. That being said, the distinction
between synthetic and simulated data is not entirely coherent, because we can
also view Algorithm 9 and Algorithm 10 as conditional synthesisers, like the
CGAN and CTGAN discussed in Section 2.2.1.

In Chapter 4 we will demonstrate how we can obtain fully synthetic MS-TTE
data. There we will use a real data set Dr to fit both an MS-TTE model, and
a synthesiser for the tabular data (x, s0) Combined, they become an MS-TTE
synthesiser. This is to the best of our knowledge the first formulation
of a synthesiser for MS-TTE data. We sketch out the fitting process
in Algorithm 11. The real data Dr has the same structure and long-format
representation as the data we used to fit the likelihoods in Equation (3.16) and
Equation (3.17). The returned synthetic data Ds is also on long format, but it
does not contain any censored points, meaning that all the synthetic trajectories
end in an absorbent state. In line 1, we fit an arbitrary tabular synthesiser Stab
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to the covariates X(r) and starting states S
(r)
0 of the real data Dr. Next, we

fit the MS-TTE synthesiser Sms in line 2. Here we have the choice between a
clock-reset S(cr)

ms or a clock-forward synthesiser S(cf)
ms . The synthesiser S(cr)

ms has
parameters θ that are fitted using the likelihood in Equation (3.16) and follows
Algorithm 9. The synthesiser S(cf)

ms has parameters θ that are fitted using the
likelihood in Equation (3.17) and follows Algorithm 10. In line 4 we sample a
synthetic point from Stab, and we condition on this point as we sample from
Sms in line 5. We repeat for the desired number of synthetic points. Finally,
we transform Ds into long format in line 7. This is done by expanding the
vectors ti and si of each synthetic point according to the multi-state model of
Dr. In addition, we form a censoring indicator vector di. Full details on the
implementation can be found in Appendix B.

We say that S(cr) =
(
Stab,S(cr)

ms

)
, and S(cf) =

(
Stab,S(cf)

ms

)
, and that S(cr)

and S(cf) are full MS-TTE synthesisers.

Algorithm 11 Complete Synthesis of Multi-State Time-to-Event Data
Input:
Dr ← real training data consisting of X(r), S(r), T (r), D(r) on long format
n← number of synthetic samples

Output:
Ds ← synthetic data consisting of X(syn), S(syn), T (syn), Dsyn on long
format

1: Fit a tabular synthesiser Stab to X(r) and S
(r)
0

2: Fit an MS-TTE synthesiser Sms with parameters θ to X(r), S(r), T (r) and
D(r)

3: for i ∈ {1, . . . , n} do
4: Sample x(syn)

i and s
(syn)
i,0 from Stab

5: Sample t(syn)
i , s

(syn)
i from Sms

6: end for
7: X(syn), S(syn), T (syn), Dsyn ← long format

(
Dr, X(syn), S(syn), T (syn)

)
Algorithm 11 can only synthesise uncensored data points, because even

when Ds is on long format and contains censored transitions, we still only have
synthetic points with full trajectories that end in an absorbent state. This is
useful in many cases, as complete and uncensored data contain more information
than data that includes censored processes. However, if we wish to generate
a synthetic data set Ds which is equal to Dr also in terms of proportion of
censored data, this is a limitation. As a possible extension to censored data, one
can also condition on a censoring time in Algorithm 9 and Algorithm 10, which
is also drawn from a distribution fitted to Dr. Norcliffe et al. (2023) do this in
their synthesiser SurvivalGAN for survival data with one event. Recall from
Section 2.2.3 that SurvivalGAN has a similar structure to the synthesisers S(cr)

and S(cf) proposed above, as it combines a tabular synthesiser with a survival
regression function. We note that we developed our synthesisers before Norcliffe
et al. (2023) published their synthesiser, and consequently our synthesisers are
independent of their work.

60



3.7. Differential Privacy for Survival Analysis

3.7 Differential Privacy for Survival Analysis

In Section 2.5.3 we discussed how differential privacy requires randomised
mechanisms with no exact mapping between input data and output. Maximum
likelihood estimation does not fall into this category, which means that
a synthesiser Sms used in Algorithm 11 with parameters θML cannot be
differentially private. In this section, we will apply the Bayesian mechanism
MB introduced in Section 2.5.3 to a Weibull Regression MS-TTE model, which
enables differentially private synthesis of MS-TTE data. To achieve this, we
also consider differential privacy for Weibull Regression models.

3.7.1 Prior Work on Differential Privacy for Survival Data

Because survival data often include health data and other sensitive domains,
there has been several approaches to differentially private survival models.
This includes non-parametric approaches such as the Kaplan-Meyer estimator
(Bonomi, Jiang and Ohno-Machado, 2020) and semi-parametric models (Nguyên
and Hui, 2018). The latter mechanism is similar in structure to the mechanism
MB introduced by Wang, Fienberg and Smola (2015), in the sense that
it draws a single sample of parameters from a posterior distribution with
bounded likelihood. Nguyên and Hui (2018) apply this idea to semi-parametric
proportional hazards models, such as Cox regression, and proportional odds
models. They are semi-parametric with non-parametric baseline functions that
are modelled with I-splines.

We continue our focus on the parametric approach, and specifically Weibull
regression. While we are not familiar with any prior work on differentially
private Weibull regression, Nguyên and Hui (2017) were first to propose a
mechanism that provides differentially private parameter estimations of the
shape (λ) and scale (σ) parameters of a Weibull distribution (which we defined
in Equation (3.3)).

3.7.2 Differential Privacy for Weibull Regression

Our proposal is to to apply the mechanism of Nguyên and Hui (2018) to a
WPHR model, which is also a proportional hazards model. We can discard the
use of I-splines since the WPHR model is fully parametric. In this section, we
present our novel differentially private WPHR model in this section, which to
our knowledge is the first development of differentially private Weibull
regression.

First, we will discuss the mechanism presented in Nguyên and Hui (2018) in
greater detail. Recall the exponential mechanism and utility functions which we
covered in Definition 2.5.4. Further recall from Section 2.5.3 that the mechanism
MB used a bound on the utility function so that supx∈D,θ∈Θ|l

(
x|θ
)
| = B.

Nguyên and Hui (2018) have a similar procedure, and they use a sanitiser
function to bound the likelihood:

C (x; η) = ε

2η


x −η ≤ x ≤ 0
0 x > 0
−η x < −η

. (3.18)
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The name sanitiser function comes from data sanitisation, which is the process
of preparing a data set for release with respect to privacy protection (Sramka
et al., 2010).

Using a notation consistent with the likelihood in Equation (3.12), we have
a data set D =

{
(x1, t1, d1) , . . . , (xn, tn, dn)

}
. For each i ∈ {1, . . . , n} there

is a covariate vector xi, time ti, and indicator di, so that if di = 1, then ti is
a transition, and otherwise ti is a right-censoring time. In Nguyên and Hui
(2018), the utility function is

u (θ,D) = log
(
p (θ)

)
+

n∑
i=1

C

(
l (θ;xi, ti, di)− di

η

2 ; η

)
, (3.19)

where p (θ) can be any prior, and the log-likelihood is as defined in Equation
(3.13). The sanitiser function bounds the contribution of a single observation to
the joint likelihood, and it has a hyper-parameter η > 0, which we will return
to shortly. Given that p (θ) does not depend on D, we have from Definition
2.5.2 and the bounds of C that ∆u = ε

2η

(
0− (−η)

)
= ε

2 .
We note that if the sanitiser function was replaced by the likelihood directly,

then Equation (3.19) is the log of the unnormalised posterior distribution
p (θ)

∏n
i=1 p

(
θ|xi, ti, di

)
. We are interested in the posterior distribution with a

modified likelihood, which is

p
(
θ|D

)
∝ p (θ) exp

 n∑
i=1

C

(
l (θ;xi, ti, di)− di

η

2 ; η

) (3.20)

(Nguyên and Hui, 2018).
Similar to to Algorithm 4, a single sample from the distribution p

(
θ|D

)
is

ε−differentially private. This follows from Definition 2.5.4. We will use Markov
chain Monte Carlo (MCMC) methods to sample from the normalised distribution
(Gelman, 2013).

Notes on the hyper-parameters ε and η

The two hyper-parameters η and ε control the privacy in different ways through
the sanitiser function in Equation (3.18). The sanitiser function sets positive
log-likelihood values to 0, so that the contribution of observations with high
likelihood values are cut. Take note of that this only applies to uncensored
observations. This is because censored observations only contribute to the
joint likelihood through the survival function, and S (t) ∈ [0, 1], meaning
that log

(
S (t)

)
≤ 0. The hazard function α (t) does not have an upper bound,

meaning that the log-likelihood can become positive for uncensored observations.
This is why an offset −diη/2 is used in Equation (3.19) (Nguyên and Hui, 2018)
and Equation (3.20), and the value of η determines how much uncensored
observations can contribute to the joint likelihood.

Nguyên and Hui (2018) recommends to define η = log (n). They do not
properly clarify why this is, but as we have previously discussed the level of
noise needed to uphold a certain privacy level decreases as n increases. This
makes it clear that η must increase when n increases, because then there is
less of a concern that a single observation will influence the joint likelihood
considerably. In Equation (3.18) we see that η also controls the lower bound. If
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the likelihood of an observation is low, it will be set to η. It is important that η
is not too low, because then few observations are permitted to contribute with
the full magnitude of their likelihoods values to the joint likelihood, and the
signal will be reduced. As η increase, the offset also increases. Thus, too high
values of η will lead to that the contributions to the likelihood of the uncensored
observations are greatly reduced.

The overall level of privacy is controlled by ε, following Definition 2.5.1,
and ε does not depend on η. The privacy is ensured by limiting how much
the likelihood can influence the posterior distribution. If ε = 0, then only the
prior distribution will be used, and as ε increases, the likelihood will dominate,
assuming that n is large enough. If ε is large, but η is too small, then there
is less noise from the prior, but the signal from the joint likelihood will only
depend upon a few observations. Oppositely, if ϵ is small and η is large, then
most of the observations will contribute to the joint likelihood, but the prior will
dominate the posterior distribution. We discuss the tuning of these parameters
for a specific data set in Chapter 5.

Differentially private Weibull proportional hazards regression

We now replace the likelihood l (θ;xi, ti, di) with the likelihood of a WPHR
model from Equation (3.10) with adjustments to tailor for censored data,
according to Equation (3.13). Then, a single sample from

p
(
λ, β0,β|D

)
∝

p (λ, β0,β) exp

 n∑
i=1

C
(

di

(
log (λ) + β0 + xiβ + (λ− 1) log (ti)

)
− exp (β0) exp

(
xiβ

′) tλ
i − di

η

2 ; η

))
is ε−differentially private estimates of the parameters λ, β0,β of a WPHR
model.

3.7.3 Differential Privacy for MS-TTE Models.

In the previous section we considered differential privacy for survival models
with only one transition per observation and an MS-TTE model can have
multiple transitions per observation. We argue that it is necessary to have
a lower bound per transition for an observation with many transitions, to
ensure that each observation is subject to the same bound. We present a
differentially private MS-TTE synthesiser mechanism which meets this
requirement. Here, we will only consider clock-reset models, because they are
easier to implement. However, this can also be extended to clock-forward models
by adjusting the likelihoods accordingly.

As before, say we have j ∈ {1, . . . , LT} legal transitions in total, and
we aim to fit a time-to-event model for each transition separately, similar to
Equation (3.16). Each transition has a privacy budget ε/LT , which will make
the combined MS-TTE model ε−differentially private. This follows from the
composition property of differential privacy, which we considered in Section
2.5.3. The data set D is on long format, and we split it into into LT disjoint
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subsets Dj , each only containing data on transition j. In Dj we have a total
of i ∈

{
1, . . . , nj

}
observations, each of which have made mi,j censored and

uncensored transitions j. Each subset is defined as

Dj =
{(
t1,j ,x1,d1,j

)
, . . . ,

(
tnj ,j ,xnj ,dnj ,j

)}
.

The adjusted utility function is defined with respect to each subset Dj :

u
(
θ,Dj

)
= log

p (θ) +
nj∑

i=1
C

 1
mi,j

mi,j∑
l=1

l
(
θ;xi, ti,j ,di,j

)
; η


 . (3.21)

Consequently, the bound is set with respect to the total contribution to
the joint likelihood of each observation, and not each transition separately.
This is done by entering an averaged likelihood of each observation into the
sanitiser function. We find that when each state in the multi-state model has
more than one possible legal transition, like in Figure 3.2, there is no added
benefit in including an offset. As we take the average of several transitions,
both uncensored and censored, high uncensored contributions to the likelihood
are balanced out by the uncensored contributions. This may be necessary to
adjust if the hazard function can return very high values for some t.

This is a novel approach which can be used for any parametric MS-TTE
model, and in Chapter 5 we will demonstrate it on a specific data set using a
WPHR MS-TTE model. There we continue the discussion on hyper-parameter
tuning.
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Performing MS-TTE Data Synthesis
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Figure 4.1: Illustration of an illness-death model with recovery.

4.1 Liver Cirrhosis Data

In this chapter we will apply the methods of Chapter 2 and 3 to real MS-TTE
data. Because of the sensitivity of NAV data, we will use an open-access data
set. The aim of this chapter is to perform a demonstration of the synthesis
and evaluation methods, with transparent results that enables reproducibility.
However, as we only use a single data set, this is not intended as a comparison
study of the different methods.

This real data set is collected from the health domain, and will henceforth
be referred to as liver cirrhosis data. The data is used as example data in
the R packages hesim (Incerti and Jansen, 2021) and mstate (Wreede, Fiocco
and Putter, 2011), and is credited to Kragh Andersen et al. (1993). It was
collected for a clinical trial on histologically verified liver cirrhosis patients,
which took place in Copenhagen from 1962 until 1974. Of a total number of
488 patients, 251 received a hormonal prednisone treatment and 237 received a
placebo treatment.

The multi-state model illustrated in Figure 4.1 is appropriate for this data
set. Each patient follows a trajectory between three health states: Healthy (1),
Sick (2) or Death (3), where state 1 and 2 are transient, and 3 is absorbent. From
both transient states, it is possible to transfer to either of the two remaining
states. Each permitted transition is indexed by j = {1, . . . , 4} according to
the list in Table 4.1. This multi-state model is known in the literature as an
illness-death model with recovery (Kragh Andersen et al., 1993).

Table 4.1: State transitions of the multi-state model in Figure 4.1.

1. Healthy (1) → Sick (2)

2. Sick (2) → Healthy (1)

3. Healthy (1) → Death (3)

4. Sick (2) → Death (3)

The time scale of the MS-TTE data in the liver cirrhosis data set is
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continuous, and at the time of entry into the study, t0, each patient is in
either of the two transient states healthy or sick. The data set contains 196
right-censored patients who were still alive at the end of the study, or who
withdrew from the study at an earlier stage. Each patient has a set of three
covariates that are time-invariant, x = (x1, x2, x3), where x1 ∈ {0, 1} is the
treatment group, x2 ∈ R+ is the starting age at t0 and x3 ∈ {0, 1} refers to the
sex of the patient and indicates if the patient is female.

4.1.1 Long Format and Data Structure

The liver cirrhosis data is presented on long format, where each row represents
a single transition, and an observation may consist of multiple rows (Wreede,
Fiocco and Putter, 2011). All rows of the first 5 patients in the data set are
displayed in Table A.1. As we can see, the columns treatment group, starting
age, female and starting state are time-invariant and the same for all rows with
the same patient id. Starting state is included as a separate column for easy
access due to the requirements of Algorithm 9 and Algorithm 10. Each row is
a transition from a state with index from and to a state with index to. The
transition itself has index trans, which is dependent on the columns from and to,
following Table 4.1. The process enters state to at time Tstart, and transitions
at time Tstop. The column status refers to if a transition is censored or not, and
years is the amount of time spent in the to state before a transition takes place,
meaning that it is dependent on Tstart and Tstop.

Since there are two possible transitions from each transient state, each
uncensored transition is paired by a censored transition. This is consistent with
the long format representation we discussed in Chapter 3. In the first row of
patient 2, there is a transition from state 2→ 1, which makes the competing
event of transitioning from 2→ 3 censored. The final two rows of a patient can
both be censored, which is the case for patient 3, meaning that the the patient
is right-censored.

In the notation from Chapter 3, we had that a single observation i consisted
of three vectors of the same length, ti, si and di, which contained the transition
or censoring times, the transition indices and censor indications respectively, and
in addition a vector of covariates xi. The vectors ti, si and di are equivalent to
the columns Tstop, trans and status, and the time-invariant variables of starting
age, female and treatment group are equivalent to the covariate vector x.

4.2 Naive Approaches to Synthesis of MS-TTE Data

4.2.1 Tabular Synthesis

The next step is to create synthetic MS-TTE data based on the real liver
cirrhosis data. Since the synthetic data is on table form, as we have seen in
Table A.1, we will first attempt a naive approach. We treat the data set as
tabular data and use a tabular synthesiser, which we discussed in Section 2.2.1.

We use CTGAN (L. Xu and Veeramachaneni, 2018) through the Python
library Synthcity (Qian, Cebere and M. v. d. Schaar, 2023), and generate
20 synthetic rows using 100 epochs and otherwise standard hyperparameter
settings. The result is displayed in Table A.2, and we have sorted the rows by
patient id and Tstart.
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Clearly, these results do not oblige to the required structure of MS-TTE
data. This is because tabular synthesisers treat each row as independent. In
Table A.2, there is only one row per patient, except for patient id 561. This
illustrates how this synthesis method fails. The rows of patient 561 begins with
an uncensored transition to the absorbent state 3, which should be the final
uncensored transition, but this is not the case. Moreover, the Tstart and Tstop

times and state transitions do not align across rows and there is no censored
competing transition per uncensored transition. The time-invariant covariates
also vary across rows of the same patient.

We expected that a tabular synthesiser could recognise the dependencies
between the columns trans, from and to, and between Tstart, Tstop and years,
because the dependencies also hold when we look at each row separately. The
majority of the transitions (16 out of 20) are correctly labelled, and the data
does not contain any illegal transitions. Nevertheless, the dependencies between
the time columns are not recognised, but this could be improved upon by
increasing the number of epochs. By using synthpop (Nowok, Raab and Dibben,
2016) instead of CTGAN we could assign rules to the dependent variables, as
discussed in Section 2.2.1. Alternatively, we could remove the columns years,
from and to from the synthesis, and add them as a post-processing step instead.

Because the limitations to the tabular synthesis approach are evident simply
by looking at the data in Table A.2, there is no point in evaluating the utility
and privacy of the synthetic data further. We move on to the next attempt.

4.2.2 Sequential Synthesis

The tabular synthesis approach clearly failed because the synthesiser did not
learn the dependencies across rows. We attempt to solve this by using a
sequential synthesiser, which is a more reasonable choice, since each data point
consists of several sequences (t, s,d). We use the CPAR model (K. Zhang, Patki
and Veeramachaneni, 2022) discussed in Section 2.2.2. The column patient
id is selected as a sequence key, which identifies the rows that belong to the
same sequence, and Tstop is chosen as a timestamp column, which is called a
sequence index1 in CPAR. The time-invariant variables are labelled as context
columns, which secures that they do not vary across rows. We use the standard
hyperparameter settings.

The first 5 sequences of the synthetic data set generated by this model are
displayed in Table A.3, and we observe that the time-invariant covariates are
consistent for all patients. Unfortunately, this is where the similarities ends.
The model fails to generate synthetic patients with the required correlations
across rows, and suffer from the same issues as the data in Table A.2 in terms of
structure of the censoring and consistency of the time variables and transitions.
In addition, the data displays illegal transitions, such as transitions from and to
the same state, and the trans and female columns appear to suffer from mode
collapse. As we have discussed, this can be a problem for GANs.

Some of these problems, such as having a competing censored transition per
uncensored transition and aligning the dependent columns, could be corrected

1Preferably, Tstart should have been labeled as a timestamp column as well, but CPAR
currently only allows for one sequence index.
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in post-processing steps. However, this would not resolve that the CPAR model
clearly has not learnt the structure of the multi-state model.

4.3 Synthesising MSTTE Data Using Weibull Regression

In the previous section, we demonstrated how two off-the-shelf tabular and
sequential synthesisers are inadequate for generating MS-TTE data. This
motivates the need of a synthesiser tailored to this data type, which is
conditioned on a specified multi-state model. In Section 3.6, we proposed
Algorithm 11 for this purpose. This synthesiser S consists of a tabular synthesiser
Stab and an MS-TTE synthesiser Sms, where the latter either assumes that
the data follow a clock-forward or a clock-reset model. We will explore both
synthesisers S(cr) and S(cf) with a Weibull regression MS-TTE model using
the liver cirrhosis data set.

In Chapter 2 we described how privacy and utility evaluation methods may
require two separate training and tests sets of real data. We use a 80/20 random
split to obtain a training set D(train)

r and test set D(test)
r . Unless otherwise

stated, the synthesisers are fitted to D(train)
r , which contains 391 patients.

4.3.1 Using synthpop for Tabular Synthesis

As a tabular synthesiser Stab, we choose synthpop (Nowok, Raab and Dibben,
2016), which we covered in Section 2.2.1. Among the covariates x and the
starting state s0, we choose the visiting sequence x2, x3, x1, s0. Furthermore,
we use the default option where the first variable in the sequence is sampled
with replacement from D(train)

r , and the remaining variables are selected from
classification trees fitted to the conditional distributions, as described in Section
2.2.1. We do not adjust the conditioning, meaning that all variables are
conditioned on the preceding variables in the visiting sequence.

Age is the only continuous variable, and none of the patients in D(train)
r has

the exact same age. Because we sample with replacement from unique values,
this means that each synthetic patient will have an age that is unique for a
single patient in D(train)

r , which seems unwise from a privacy point of view2.
However, it is plausible that such oversights can occur, because we have simply
used the default option in synthpop. Our objective is not to create a perfectly
private synthesiser, but rather to explore and demonstrate evaluation methods.
By keeping possible errors in the synthesiser that may manifest themselves as
privacy errors downstream, it becomes more compelling to evaluate the privacy
of the synthetic data.

4.3.2 Synthesising Processes from MS-TTE Models Using WPHR

Next, we need to generate the state trajectories s and transition times t with an
MS-TTE synthesiser Sms, which are on short format. As shown in Algorithm
11, this can be converted to long format in a post processing step, so that the
synthetic data is on the same format as in Table A.1.

2As a safer choice, we could sample synthetic values from a fitted parametric distribution,
such as the normal distribution.
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We will use Algorithm 9 for a clock-reset synthesis and Algorithm 10 for
a clock-forward process. As described in Algorithm 11, we condition on the
output from Stab.

Fitting the Weibull proportional hazards regression (WPHR) models

Both Algorithm 9 and Algorithm 10 require a set of parameters θj for each legal
transition j ∈ {1, . . . , 4}, and we fit a WPHR model for each transition. As we
recall from Section 3.2.3, a WPHR model has the parameters θ = (λ,β0,β).
From Equation (3.9) we have that the shape parameter σj of the Weibull
distributions of each transition j is defined as

σj = exp
(
βj,0 + βj,1x1 + βj,2x2 + βj,3x3

)
,

for a patient with covariates x = (x1, x2, x3).

Fitting a clock-reset synthesiser

If we wish to use a clock-reset synthesiser S(cr), we need to fit the parameters
in Algorithm 9 according to a clock-reset model. The starting age covariate x2
indicates the age at the beginning of the process, and is time-invariant. However,
as we discussed in Section 3.5.1, age can be used as a semi-time-dependent
covariate in a clock-reset model. Therefore, we use x′

2, which is age at the
last transition. Considering the format of the data displayed in Table A.1,
x′

2 is obtained from starting age + years. We use flexsurv (Jackson, 2016) to
find the maximum likelihood estimates of the parameters for each WPHR
clock-reset model and use x′ =

(
x1, x′

2, x3
)

as covariates. This completes line 2
of Algorithm 11.

Fitting a clock-forward synthesiser

The clock-forwars synthesiser S(cf) requires parameters fitted to a clock-
forward model, as discussed in Section 3.6. Then, we will not use semi-time-
dependent covariates. Instead we fit the WPHR models using the standard,
time-independent covariates x = (x1, x2, x3). Here, we will also use flexsurv
(Jackson, 2016) to find the maximum likelihood estimates of the parameters of
the clock-forward model.

4.3.3 Clock-Reset and Clock-Forward Synthetic Data Sets

By using Algorithm 11 on Dr as described above, we fit two synthesisers S(cr)

and S(cf), They are used to generate two synthetic data sets of size n = 391,
equal in size to D(train)

r . We refer to them as D(cr)
s and D(cf)

s . See Appendix B
for details on the implementations in R.

4.4 Utility Evaluation of Synthetic MS-TTE Data

In this section, we demonstrate the utility evaluation methods discussed in
Section 2.4 by comparing the real training data Dr to the two synthetic data
sets D(cr)

s and D(cf)
s .
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Figure 4.2: Histogram of the starting age variable in the data sets (a) D(train)
r ,

(b) D(cf)
s and (c) D(cr)

s .

4.4.1 General Utility Evaluation

We begin with a general utility evaluation, where we compare the distributions
of the data. Because the general utility metrics described in Section 2.4.1 are
tailored to tabular data, we will begin by only considering the time-invariant
variables (x, s0), that is treatment group, starting age, female and starting state,
generated by Stab. This synthesiser is used to generate these variables for both
synthetic data sets D(cr)

s and D(cf)
s , and any difference in performance between

the two is due to the randomisation of the synthesiser. We choose to include
the evaluation of both data sets to show how synthetic data sets from the
same synthesiser can differ, and so that we more clearly can analyse the full
performance of each set later on.

Compare marginal distributions

First, we will consider the marginal distributions of x2, starting age, which is
continuous. The histograms of the variable for each of the the data sets D(train)

r ,
D(cf)

s and D(cr)
s are displayed in Figure 4.2. We see that the data sets have

the same minimum and maximum values, and that the multi-modality of the
training data is captured by both synthetic data sets. Recall that the synthetic
data points are simply sampled with replacement from the training data, so
this is expected.

Next, we will examine the frequency tables of the categorical variables
treatment group, female and starting state, which are displayed in Table 4.2.
The frequencies appear to be similar, except that the synthetic data sets have a
more even distribution of the variables treatment group and female.

Table 4.2: The frequencies of the categorical variables treatment group, female
and starting state of the data sets D(train)

r , D(cf)
s and D(cr)

s .

Treatment group Female Starting state
0 1 0 1 1 2

D(train)
r 187 204 181 210 171 220
D(cf)

s 201 190 184 207 168 223
D(cr)

s 196 195 196 195 176 215
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Figure 4.3: Spearman correlation among the variables (x, s0) of the data sets
D(train)

r (a), D(cf)
s (b) and D(cr)

s (c).

As discussed in Section 2.4.1, looking at the data can be a good indicator, but
we should also perform pairwise comparisons of the samples through hypothesis
tests. Beginning with the continuous variable starting age, we use a two-sided KS
test, and a chi-square goodness-of-fit test is used for each of the the categorical
variables. The p-values of the tests are displayed in Table 4.3. We observe
that none of the test indicate a significant difference if we use a significance
level of α = 0.05, which indicates that Stab is able to capture the marginal
distributions.

Table 4.3: The p-values of hypothesis tests comparing the marginal distributions
between D(train)

r and D(cf)
s , and between D(train)

r and D(cr)
s , with respect to

the time-invariant variables x, s0.

Treatment group Starting age Female Starting state
D(cf)

s 0.16 0.27 0.76 0.76
D(cr)

s 0.36 0.80 0.13 0.61

Correlation

In Section 2.4.1, we discussed how the mean difference in pairwise correlations
can be used to evaluate if the correlation structures in the real data are
maintained in the synthetic data. Figure 4.3 displays three correlation plots of
D(train)

r , D(cf)
s and D(cr)

s respectively. The Spearman and Pearson correlations
are very similar. Therefore, we only display the Spearman correlation here. The
plots show that the correlation structure is similar between D(train)

r and the
two synthetic data sets. The mean difference in pairwise correlations between
D(train)

r and D(cf)
s was 0.0357, and the mean correlation between D(train)

r and
D(cr)

s was 0.0070, which is low. In comparison, the mean difference in pairwise
correlations between D(train)

r and D(test)
r is 0.0351 This indicates that Stab has

captured the correlation structures well.

4.4.2 Specific Utility Evaluation

As we continue to the specific utility evaluation, we will focus on the synthetic
data sets D(cf)

s and D(cr)
s as a whole and not only the time-invariant variables.
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Because this includes the state transition processes, we can use D(cr)
s and D(cf)

s

to evaluate the differences between the synthesisers S(cr) and S(cf).
As we covered in Section 2.4.2, the focus of the specific utility evaluation

is to evaluate the synthetic data with respect to specific tasks. This depends
upon the data type, and for our MS-TTE data we will use methods that are
specific to survival data.

Fitting survival regression models

Such tasks include using the synthetic data to fit survival regression models.
We will fit Weibull regression and Cox regression models, with both the clock-
forward and clock-reset approach, to the data sets D(train)

r , D(cf)
s and D(cr)

s ,
and see how the coefficients of the models fitted to the synthetic data compares
to the coefficients of the real model, which we define as the gold standard.
Because the synthetic data is generated from a Weibull regression model, we
explore if the synthetic data perform better at fitting a Weibull regression
model than a Cox regression model. Moreover, we investigate if D(cr)

s are better
at fitting clock-reset models than clock-forward models, and conversely for
D(cf)

s . As we discussed in Section 2.1.3, research shows that synthetic data
sets generated from synthesisers with deep learning structures tend to perform
better on models that are similar in structure to their synthesisers. We will
investigate if this holds for our synthesisers as well.

We begin with the Weibull regression models, and we will fit both clock-reset
and clock-forward models, in the same manner as we described in Chapter 3,
and we use all covariates x. This results in the parameters λj , βj,0, βj,1, βj,2, βj,3
for each transition j ∈ {1, . . . , 4}. The parameters of the clock-reset model are
listed in Table 4.4, and the clock-forward parameters are listed in Table 4.5.
The parameters estimated from D(train)

r in Table 4.4 are the same as those used
to synthesise D(cr)

s in Algorithm 9. Likewise, the parameters estimated from
D(train)

r in Table 4.5 were used to synthesise D(cf)
s in Algorithm 10.

From Table 4.4, we observe that the parameters of D(cr)
s were 11 out of 20

times closest to the gold standard parameters of D(train)
r compared to D(cf)

s .
However, in the cases where the parameters of D(cf)

s were closer, the parameters
were close to 0 or there were small differences between the performances of the
synthetic data sets. We should also consider the overlaps in confidence intervals,
and we will use the interval overlap utility (IOU) score from Definition 2.4.3.
The results are displayed in Table 4.6. Recall that a score of 1 is a perfect
overlap, while a negative score indicates no overlap. Interestingly, the highest
scores are overlaps between Dr and D(cf)

s . However, the overall performance
is better by D(cr)

s , as there are no negative scores. The median IOU scores of
D(cr)

s and D(cf)
s are 0.85 and 0.80 respectively.

A clock-forward model is more complex, and we see in Table 4.5 that the
D(cf)

s are closest to the gold standard parameters 18 out of 20 times, and the
only times. Looking at the IOU scores in Table 4.7, it becomes clear that the
D(cr)

s struggled to fit a clock-forward model, as many of the confidence intervals
do not overlap. The median IOU score is 0.84 for D(cf)

s , and 0.36 for D(cr)
s .

This shows that both synthetic data sets perform best at fitting models
of similar structure as their synthesiser. However, D(cf)

s had a more stable
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Table 4.4: MLEs of the parameters of a clock-reset Weibull regression model
fitted to the data sets D(train)

r , D(cf)
s and D(cr)

s , for each of the j ∈ {1, . . . , 4}
transitions.

j D λ β0 β1 β2 β3

1 D(train)
r 1.0417 0.0068 -0.1574 0.0658 0.1260
D(cf)

s 0.9786 0.0082 -0.3100 0.0628 0.0677
D(cr)

s 1.0604 0.0047 -0.1199 0.0692 0.3306
2 D(train)

r 1.0692 0.0014 0.0900 0.0713 0.2764
D(cf)

s 1.2020 0.0013 -0.0424 0.0706 0.4418
D(cr)

s 1.1365 0.0005 -0.2101 0.0874 0.3438
3 D(train)

r 1.0516 0.4261 0.3169 0.0027 0.1545
D(cf)

s 0.8821 0.4819 0.2141 -0.0014 0.3028
D(cr)

s 1.0480 0.5330 0.2968 -0.0007 0.4464
4 D(train)

r 0.6658 0.0061 0.1138 0.0662 0.1614
D(cf)

s 1.0899 0.0023 0.0824 0.0782 0.4023
D(cr)

s 0.6844 0.0093 0.1454 0.0606 0.2569

Table 4.5: MLEs of the parameters of a clock-forward Weibull regression model
fitted to the data sets D(train)

r , D(cf)
s and D(cr)

s , for each of the j ∈ {1, . . . , 4}
transitions.

j D λ β0 β1 β2 β3

1 D(train)
r 0.9951 0.0091 -0.1774 0.0631 0.0975
D(cf)

s 1.0476 0.0070 -0.2806 0.0677 0.0240
D(cr)

s 1.1257 0.0064 -0.0487 0.0726 0.0771
2 D(train)

r 1.6101 0.0001 0.1788 0.0966 0.3808
D(cf)

s 1.5725 0.0002 0.0001 0.0906 0.4607
D(cr)

s 1.2490 0.0059 -0.1139 0.0667 0.2780
3 D(train)

r 0.8321 0.7473 0.2788 -0.0025 0.1091
D(cf)

s 0.8010 0.6263 0.2416 -0.0002 0.1902
D(cr)

s 1.0316 0.3040 0.2914 0.0147 0.2798
4 D(train)

r 1.2741 0.0010 0.2172 0.0904 0.2885
D(cf)

s 1.4066 0.0009 0.2116 0.0898 0.3199
D(cr)

s 0.9639 0.3777 0.2692 0.0214 -0.0397

performance than D(cr)
s . This strengthens the claim that more complex

synthesisers have a higher utility than synthesisers with a simpler structure, as
D(cf)

s were more versatile than D(cr)
s .

Next, we turn to the Cox regression models, where we also fit both clock-
reset and clock-forward variants. The coefficients of the clock-reset model are
found in Table 4.8, and we observe that the D(cr)

s coefficients were closest to
the gold standard coefficients of D(train)

r 5 out of 12 times compared to D(cf)
s .

In Table 4.9, we list the coefficients of the clock-forward model. Here, the D(cf)
s

coefficients were closest to the gold standard 9 out of 12 times compared to

74



4.4. Utility Evaluation of Synthetic MS-TTE Data

Table 4.6: IOU scores of the parameters in Table 4.4. Measures the overlap
between the 95% confidence intervals of D(train)

r and D(cf)
s , and D(train)

r and
D(cr)

s , respectively.

j D λ β0 β1 β2 β3

1 D(cf)
s 0.68 0.91 0.69 0.87 0.89
D(cr)

s 0.85 0.70 0.86 0.86 0.57
2 D(cf)

s 0.65 0.81 0.85 0.88 0.81
D(cr)

s 0.84 0.54 0.63 0.58 0.88
3 D(cf)

s 0.02 0.95 0.79 0.82 0.69
D(cr)

s 0.90 0.89 0.90 0.86 0.37
4 D(cf)

s -1.17 0.47 0.91 0.57 0.60
D(cr)

s 0.88 0.82 0.89 0.80 0.85

Table 4.7: IOU scores of the parameters in Table 4.5. Measures the overlap
between the 95% confidence intervals of D(train)

r and D(cf)
s , and D(train)

r and
D(cr)

s , respectively.

j D λ β0 β1 β2 β3

1 D(cf)
s 0.78 0.79 0.79 0.80 0.86
D(cr)

s -0.20 0.81 0.66 0.89 0.86
2 D(cf)

s 0.86 0.90 0.79 0.86 0.85
D(cr)

s 0.12 -0.36 0.86 0.28 0.87
3 D(cf)

s 0.79 0.83 0.93 0.89 0.83
D(cr)

s -0.57 -0.07 0.62 -0.27 0.71
4 D(cf)

s 0.53 0.83 0.90 0.88 0.90
D(cr)

s -1.45 -42.49 0.43 -3.64 0.63

D(cr)
s . The IOU scores of both models are listed in Table 4.10. The median

IOU scores of the clock-reset model is 0.743 and 0.739 for D(cr)
s and D(cf)

s

respectively, meaning that D(cr)
s performed slightly better than D(cf)

s . This is a
worse performance than for the clock-reset Weibull regression task, which we
would expect because the synthesisers do not follow a Cox regression model. As
for the clock-forward model, the median IOU scores were 0.581 for D(cr)

s and
0.841 for D(cf)

s . This surprising result shows that D(cf)
s performed as well on

this task as for the clock-forward Weibull model, which indicates high utility. It
is also surprising that D(cr)

s performed better here compared to the performance
of D(cr)

s at the clock-forward Weibull regression model.
Furthermore, we may use the confidence intervals to evaluate how the

synthetic data can be used for model selection, which we discussed in Section
2.1.3. We illustrate by considering the 95% confidence intervals of β1, the
treatment group coefficients, and β3, the female coefficients, of transition j = 1
displayed in Table 4.4. The confidence intervals of these coefficients are shown
in Table 4.11. Say we wished to test the significance of β1 and β3 for the models
trained on D(train)

r , D(cf)
s and D(cr)

s , and test the hypotheses H0 : βk = 0 for
k ∈ {1, 3}. Then, with a confidence level of α = 0.05 we would accept H0 for
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Table 4.8: MLEs of the parameters of a clock-reset Cox regression model
fitted to the data sets D(train)

r , D(cf)
s and D(cr)

s , for each of the j ∈ {1, . . . , 4}
transitions.

j D β1 β2 β3

1 D(train)
r -0.1496 0.0554 0.0834
D(cf)

s -0.2857 0.0630 0.0924
D(cr)

s -0.1222 0.0700 0.3380
2 D(train)

r 0.0834 0.1127 0.4007
D(cf)

s -0.0510 0.0731 0.4261
D(cr)

s -0.2218 0.0887 0.3432
3 D(train)

r 0.3059 -0.0030 0.1528
D(cf)

s 0.1886 -0.0026 0.2881
D(cr)

s 0.2958 -0.0009 0.4275
4 D(train)

r 0.1902 0.0959 0.2466
D(cf)

s 0.1033 0.0803 0.4163
D(cr)

s 0.1423 0.0604 0.2348

Table 4.9: MLEs of the parameters of a clock-forward Cox regression model
fitted to the data sets D(train)

r , D(cf)
s and D(cr)

s , for each of the j ∈ {1, . . . , 4}
transitions.

j D β1 β2 β3

1 D(train)
r -0.2311 0.0581 0.0748
D(cf)

s -0.2663 0.0711 0.0445
D(cr)

s -0.1239 0.0731 0.3667
2 D(train)

r 0.1708 0.0998 0.3734
D(cf)

s -0.0131 0.0898 0.4628
D(cr)

s -0.2156 0.0868 0.3207
3 D(train)

r 0.3381 -0.0097 0.1044
D(cf)

s 0.2599 -0.0025 0.1561
D(cr)

s 0.2638 0.0011 0.4000
4 D(train)

r 0.2420 0.0987 0.2351
D(cf)

s 0.2830 0.0886 0.3378
D(cr)

s 0.2824 0.0628 0.4629

both k ∈ {1, 3} using the model trained on D(train)
r , while the model trained

on D(cf)
s would accept H0 for β3, but find that β1 is significant. Oppositely,

the model trained on D(cr)
s would find β1 significant and not β3. Then, none

of the synthetic data sets were able to select the same model as D(train)
r . In

a scenario such as Example 2.1.6, it is less critical that the synthetic models
found more significant variables than D(train)

r , because this can be resolved by
performing a final variable selection on real data.
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j D β1 β2 β3

1 D(cf)
s 0.72 0.67 0.91
D(cr)

s 0.86 0.35 0.46
2 D(cf)

s 0.85 0.08 0.85
D(cr)

s 0.62 0.48 0.87
3 D(cf)

s 0.75 0.91 0.72
D(cr)

s 0.90 0.87 0.41
4 D(cf)

s 0.86 0.51 0.72
D(cr)

s 0.89 -0.20 0.88
(a) Clock-reset.

j D β1 β2 β3

1 D(cf)
s 0.91 0.44 0.91
D(cr)

s 0.78 0.32 0.39
2 D(cf)

s 0.79 0.77 0.85
D(cr)

s 0.53 0.70 0.88
3 D(cf)

s 0.84 0.67 0.90
D(cr)

s 0.85 0.48 0.37
4 D(cf)

s 0.91 0.69 0.84
D(cr)

s 0.89 -0.17 0.64
(b) Clock-forward.

Table 4.10: IOU scores of the parameters in Table 4.8 are displayed in (a) and
Table 4.9 are displayed in (b). They measure the overlap between the 95%
confidence intervals of D(train)

r and D(cf)
s , and D(train)

r and D(cr)
s , respectively.

Table 4.11: 95% confidence intervals of β1 and β3 displayed in Table 4.4 for the
transition j = 1.

j D CI (β1) CI (β3)
1 D(train)

r (-0.421, 0.106) (-0.144, 0.400)
D(cf)

s (-0.525, -0.095) (-0.150, 0.285)
D(cr)

s (-0.310, 0.070) (0.137, 0.525)

Comparing Kaplan-Meier curves

Like Guillaudeux et al. (2023) and Norcliffe et al. (2023), we compare of Kaplan-
Meier curves to evaluate the utility of D(cr)

s and D(cf)
s . They are non-parametric

survival curves which can be used for censored data (Kleinbaum and Klein,
2005). We can compare the Kaplan-Meier curves by performing a log-rank
test, which is a form of a Chi-squared test (see Definition 2.4.1), where the
failure times are divided into categories. H0 is that the survival function of
the synthetic and real data are the same. Note that these curves display the
survival trends of the data sets as a whole, regardless of covariate values.

In Figure 4.4 we plot the Kaplan-Meier curves of D(cr)
s and D(train)

r for all
transitions. The most striking observation is that in (a) and (b), the survival
curves continue much longer for D(cr)

s than D(train)
r . This is because the study

that the liver cirrhosis data is collected from only lasted 12 years, which means
that many patients are censored. The synthetic survival curves also utilise
censored observations, because of the structure of the competing risks-model,
as discussed in Section 3.4. The difference is that the process of each synthetic
patient continues until the absorbent state is reached. The Weibull distribution
can be long-tailed, and we have not included an age or time limit in the model.
This results in some unrealistic survival times. However, this is not captured
by the log-rank tests of transitions 1 and 2, because there is no support for
real data after t = 12. With a significance level of α = 0.05, none of the tests
are rejected. The same conclusion holds for the differences in survival curves
between D(cf)

s and D(cr)
s , which are displayed in Figure 4.5. The validity of this
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Figure 4.4: Kaplan-Meier survival curves with 95% confidence intervals and
corresponding log-rank test p-values of D(cr)

s and D(train)
r for each transition

j ∈ {1, . . . , 4} in the figures (a)-(d).

conclusion is disputable, because it is recommended that the compared curves
should have a similar censoring pattern, which is not the case here (Therneau,
2023).

Suggestions for further specific utility evaluation

There are many other potential tasks that we could use to evaluate synthetic
MS-TTE data. By conducting more utility evaluation tasks, we will increase
the credibility of the final conclusion of the utility evaluation. However, it is not
feasible to test every possible task, and due to practicality, we need to constrain
the length of this section. That being said, we wish to suggests some options
for further utility evaluation for MS-TTE data.

Classification tasks which are discussed in Section 2.4.2 can also be performed
on MS-TTE data. We can for example classify the treatment group or sex of a
patient based on the other covariates and possibly also semi-time-dependent
covariates that describe the state transition process, such as time spent in state
1, number of transitions and the time of death if it has occurred. Then, the
TSTR and TRTR framework described in Algorithm 1 can be used.

Moreover, we can use Algorithm 1 to compare how well competing risks
models trained on synthetic data predict the hazards of unseen patients in a test
set D(test)

r at specified time points. We can compare the predicted and observed
risk, using the Concordance-index or Brier score (Z. Zhang et al., 2018).
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Figure 4.5: Kaplan-Meier survival curves with 95%confidence intervals and
corresponding log-rank test p-values of D(cf)

s and D(train)
r for each transition

j ∈ {1, . . . , 4} in the figures (a)-(d).

Unless we add covariates that describe the transition history, none of the
methods we have considered so far are able to challenge the validity of the
Markov assumption of the synthetic data, which is a consequence of the structure
of our synthesisers. In the next section, we will use the four distance evaluation
procedures defined in Section 2.6 to consider the compete state transition history
of the data.

4.5 Privacy and Utility Evaluation of MS-TTE Data Using
Distance Metrics

In Section 2.6, we described how distance metrics can be used to evaluate the
privacy and utility of synthesisers, and we will now apply this to MS-TTE
data. The DCR and NNDR metrics are based on the distances between single
data points, which is not easily defined for MS-TTE data. Where tabular data
consists of points with the same set of variables, MS-TTE data points contain
several vectors, and the vectors of different points have different lengths. In
this section we aim to find a technique to define distances between MS-TTE
data points. Then, we will use the distance evaluation procedures from Section
2.6 to evaluate the utility and privacy of the clock-reset synthesiser S(cr) and
the clock-forward synthesiser S(cf).
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4.5.1 Removing Censored Observations

In this section, we will simplify the problem by only considering uncensored real
data. When we remove all the censored observations from the Liver Cirrhosis
Data, we get a data set with 292 patients. As explained in Section 2.6, the
different procedures require different splits between train and test data. The
reduced data set is still on long format and we display the first patients in this
data set Dr in Table A.4. A real training data set D(train)

r is used to train the
synthesisers S(cr) and S(cf) as before.

4.5.2 Distance Between Uncensored MS-TTE Data Points

As we have established, an uncensored data point can be represented using the
vectors t, s,x, where the first two have the same length and they are both on
short format. We aim to find a more compact representation of a single data
point, as this will make it easier to define the distance between two points.

In a first attempt, we utilise that we only have two transient states and
one absorbent state in our state transition model, as seen in Figure 4.1. Thus,
we can represent the data of each patient using only two vectors. In the first
vector we will include the starting state as an additional variable in addition
to the covariates age, sex and treatment group, as we did when we generated
the tabular data. This gives us the vector (x1, x2, x3, s0). Next, the rest of the
state transition trajectory vector s can be found simply by knowing the length
of the transition times vector t. This is because we know the starting state,
that the final state is absorbent and the length of s. Then, we also know the
intermediate states, as the process alternates between the two transient states
until the final state is reached.

Example 4.5.1 [Representing each patient as two vectors]

We show how the data of the patient with patient id 2 in Table A.4 can
be represented using two vectors. The vector with the covariates starting
age, sex and treatment group and the additional variable starting state
becomes (x, s0) = (47.93, 1, 0, 2), and the vector with the transition times is
t = (0.00, 0.69, 1.19, 2.20, 4.75, 5.72, 6.76). The information on transitions
is encoded in starting state, and we do not need additional information.

Each point can be represented by two vectors, and we explore the option
of measuring the distance between each point by considering the two vectors
separately. This raises several questions, one of which is how to weigh the
importance of the separate distances, and secondly, how to determine distance
measures for both data types.

Comparing the distances between two observations
(
xi,1, xi,2, xi,3, si,0

)
and(

xj,1, xj,2, xj,3, sj,0
)

is straightforward, because they always have the same
length. We can then consider the distance between points in a four dimensional
space, and use a metric like L1 or the Euclidean distance.

It is a greater challenge to find the distances between two vectors ti and tj ,
because they do not necessarily have the same length, and comparing vectors
of different lengths is not straightforward (Bozkaya, Yazdani and Özsoyoğlu,
1997; Sun et al., 2011). Additionally, this representation does not generalise to
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models with more than two transient states, and we aspire to create a method
that can be used by other multi-state models, like for instance the model in
Figure 3.2. To avoid the drawbacks of this representation, we explore another
option.

By discretising the transition times, we can represent the information
contained in s and t as a single sequence. So far, we have assumed that
the liver cirrhosis data is continuous with years as the time unit, but we now
discretise the time using days as the step size. We can use sequences where
each element represents one day, starting from when the patient was admitted
into the study and until death, and each element contains the state the patient
was in at the given day. We still assume that the distribution of t is continuous,
as in Chapter 3, but we round to the closest day. A similar discretising can be
done for any continuous data by selecting an appropriate step size.

This representation still consists of sequences of differing lengths, and we
present a method which can make them equally sized, as this will simplify the
comparison process. Since the last element of every sequence is 3, which signals
a death, we can grow the shortest sequence with values of 3, which can be
interpreted as that the patient remains in state 3 as time passes.

Example 4.5.2 [Preparing for sequence comparison]

Say we have a sequence A = [1, 1, 1, 1, 1, 2, 2, 3]. A remained in the starting
state 1 for 5 days, then spent 2 days in State 2 before they reached the
absorbing state 3 on day 8. We want to compare A to another shorter
sequence B = [1, 1, 2, 1, 3], and we expand it to B′ = [1, 1, 2, 1, 3, 3, 3, 3].
We can then compare A and B′ using the normalised Hamming distance.

The normalised Hamming distance is a simple method for comparing two
sequences of the same length, and we will use it to find the distance between two
state sequences. It finds the average 0− 1 Loss of the sequences (M. M. Deza
and E. Deza, 2014). We display it in Algorithm 12.

Algorithm 12 Normalised Hamming distance
Input:

x,y ← sequences of length n ∈ N
Output:
∥x− y∥H ∈ [0, 1]

1:

∥x− y∥H = 1
n

n∑
i=1

1 (xi ̸= yi)

Example 4.5.3 [Find the normalised Hamming distance]

We want to find the normalised Hamming distance between A and B’ from
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Example 4.5.2.
A = [1, 1, 1, 1, 1, 2, 2, 3]

B′ = [1, 1, 2, 1, 3, 3, 3, 3]

Since the elements with indices 1, 2, 4, 8 are the same, and n = 8 we find
that the distance is ∥A−B′∥H = 0.5.

We proceed with the normalised Hamming distance. Nonetheless, we wish
to point out some possible limitations to this distance representation. The
choice of representation is a question of what we consider as close. For example,
we might think that a patient with a short survival time should be close to
patients with longer survival times if the state transition processes are similar
up until the first patient’s death. Picture a synthesiser that creates synthetic
processes that are copies of the first half of the processes of real data. Because
only the first half of the real process is the same, this similarity will not be
noticed by the normalised Hamming distance, which will return a distance of
0.5. These synthetic patients can be used to identify real training patients,
which is something that we want to avoid. An alternative that solves this issue
could be to also shrink the longest sequence to the size of the shortest, and then
find the normalised Hamming distance as before. This method will disregard
the differences in survival times, which arguably should be important for the
distance. However, it could be a useful as a supplementary measure.

Example 4.5.4 [Distant patients]

Sequence A = [1, 1, 2, 1, 1, 2, 2, 3] and B′ = [1, 1, 2, 3, 3, 3, 3, 3] from
Example 4.5.3 have a distance of 0.5, even though the beginning of sequence
A is close to sequence B = [1, 1, 2, 3]. The normalised Hamming distance
between B and an adjusted A of the same length, A′ = [1, 1, 2, 1] is
∥B −A′∥H = 0.25.

Another result of this representation is that patients with many trans-
itions can be close to patients with few transitions, which may not be inten-
ded.

Example 4.5.5 [Close patients]

Sequence A = [1, 1, 1, 1, 1, 2, 2, 3] only has 2 transitions, sequence C =
[1, 2, 1, 2, 1, 2, 2, 3] has 6 transitions. Still, the normalised Hamming
distance between A and C is only ∥A− C∥H = 0.25.

We return to the distance between vectors (x, s0). By using the discretised
sequence representation of the state trajectories, we do not need to include
s0, as it is represented in the first value of the sequence. Now, the difference
between two covariate vectors is defined as the distance between two points
in a three-dimensional space. Sex and treatment group are binary and age is
continuous. We standardise all the covariates as shown in Algorithm 13. For
each covariate, we subtract µ̂ and divide by σ̂ to ensure that each covariate
contribute equality to the distance. The estimates are based on the training set

82



4.5. Privacy and Utility Evaluation of MS-TTE Data Using Distance Metrics

D(train)
r . We then find the Euclidean distance between the normalised covariate

vectors. Note that if some of the covariates are considered as more sensitive
than others, then we can adjust Algorithm 13 so that proximity between the
sensitive covariates holds more weight.

Algorithm 13 Standardise a covariate vector
Input:

x← covariate vector
µ̂, σ̂ estimated means and standard deviations for each covariate

Output:
x′ ← standardised x

1: for xi ∈ x do
2: x′

i ← (xi − µ̂i) / (σ̂i)
3: end for

We now have a procedure for measuring the distance between pairs of both
state trajectories and the covariate vectors. Our task is now to combine them
into a joint distance metric, which we use to find the distance between any two
uncensored MS-TTE data points. The contributions of the covariates and state
trajectories are regulated using a weight w. Algorithm 14 describes the process
of finding the closest distance to another patient among a set of candidates.

Algorithm 14 Find the closest patient
Input:

x,A← covariates and sequence of a patient{
(y1,B1) , . . . , (yn,Bn)

}
← a set of n patients with covariates and

sequences
w ← weight

Output:
d ∈ [0, 1]

1: x′ ← Algorithm 13(x)
2: L← empty list
3: for y,B ∈

{
(y1,B1) , . . . , (yn,Bn)

}
do

4: y′ ← Algorithm 13(y)
5: covsd ← Euclidean

(
x′,y′)

6: A′,B′ ← grow (A,B) {Grow the shortest sequence}
7: seqd ← ∥A′ −B′∥H

8: L← append
(
w · covd + (1− w) seqd

)
9: end for

10: d← min (L)

4.5.3 DCR and NNDR experiment

We use Algorithm 14 to find DCR and NNDR metrics and evaluate both the
utility and privacy following the evaluation procedures described in Section
2.6. Both the synthetic clock forward data Dcf

s and synthetic time reset data
Dcr

s are evaluated. We use the α values 0.05, 0.5 for both DCR and NNDR,
as this measures both privacy and utility. In total, we have four distance
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Figure 4.6: Histogram comparing the intra-data set DCR distances of Dr with
different weights. In (a), w = 0 so that only the sequences contribute to the
distance. In (b), w = 1 so that only the covariates contribute to the distance.

metrics for each of the four procedures. As stated in Section 2.6, we use the
Wilcoxon rank-sum test to evaluate the difference in distances. The test assumes
independence between the two samples of distances or between the sample and
baseline (Devore, Berk and Carlton, 2021). For all procedures we use k = 20
splits.

Tuning the weight hyper-parameter

First, we need to determine the weight parameter w in Algorithm 14. The
Hamming distance is bounded between [0, 1], while the standardised covariate
distance is not bounded. We wish that both distances should contribute within
the same magnitude. There is no given way to find such a weight, and our
suggestion is to compare the intra-data set DCR distances (Definition 2.6.6) of
each point in Dr with the weights w = 0 and w = 1 . We plot them in Figure
4.6 and we see that both are skewed towards the right, but the magnitude of
the covariate distances is lower than the magnitude of the sequence distances.
In Figure 4.6 (a), we have that the mean value is 0.0966, while (b) has a
mean of 0.00779. We wish to increase the contribution of the covariates, and
as 0.0966/0.00779 ≈ 12 we can set the weight to 1 − 1/ (12 + 1) ≈ 0.92. To
illustrate why this is, say that we have two values x = 1 and y = 12, and we
wish that they should contribute equally to a weighted sum. With a weight
w = 1− 1/13 we get that

w · x + (1− w) · y =
(

1− 1
13

)
· 1 +

(
1−

(
1− 1

13

))
· 12 = 12

13 + 12
13 .

Proceeding with w = 0.92, we plot the intra-data set DCR and NNDR
distances for Dr in Figure 4.7 to illustrate the distribution of the distances. In
procedure 1 and 2, we will show how this weight differs from the default weight
w = 0.5.

Procedure 1

We begin with procedure 1, which evaluates both the privacy and utility as
described in Algorithm 6. The procedure uses 80/20 train-test set splits of
the full set of 292 uncensored patients, so that both of the synthetic data sets
and the test set contain 92 patients. This makes procedure 1 the fastest to fit,
because we do not consider as many distances.
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Figure 4.7: Histogram of the intra-data set distances of Dr with w = 0.92. In
(a), we display the DCR distances, and in (b) we display the NNDR distances.

First, we show the results of using Algorithm 14 with w = 0.5 as the
single-point distance metric. We display the output of Algorithm 6 for the two
different synthesisers S(cf) and S(cr) in Table 4.12. Each column represents a
specific distance metric. The first row is the distance ∥D(test)

r −D(train)
r ∥ with

respect to each metric, and this is a constant value because we have a single
training and test set. The second and third rows are the mean distances from
the K = 20 stochastic distances. The last rows are the p-values of a Wilcoxon
signed rank test which tests if the random sample of distances ∥Dk

s −D
(train)
r ∥,

where k ∈ {1, . . . , 20}, are similarly distributed as ∥D(test)
r −D(train)

r ∥.
The first column, which is the α = 0.05 percentile of the DCR distances,

indicate that the synthetic data points that are closest to the training data have
a similar distance pattern to unseen test data, which is an indicator of good
privacy. This is the case both for the D(cr)

s and the D(cf)
s data sets. Next, we

see from the second column that this is also the case for the α = 0.5 percentile
of the DCR distances, which indicates sufficient general utility. The synthetic
data sets are neither too close nor too far from the real data. The NNDR
metrics are mainly a measure of how well the outliers in D(train)

r are protected.
Low values indicate that the synthetic data is much closer to a single data point
in D(train)

r than the second closest point, which would cause a privacy concern.
This is not the case here. Overall, we see no difference in the performance of
the two synthesisers, and the tests indicate both satisfactory privacy and utility.

Table 4.12: DCR and NNDR distances and p-values following from procedure 1
using w = 0.5.

DCR NNDR
α 0.05 0.5 0.05 0.5

∥Dk
s −D

(train)
r ∥ 0.0542 0.1703 0.3402 0.8212

∥D(cf)
s −D(train)

r ∥ 0.0465 0.1629 0.3168 0.7959
∥D(cr)

s −D(train)
r ∥ 0.0533 0.2009 0.3737 0.8249

p-value D(cf)
s 0.3810 0.5714 0.5714 0.5714

p-value D(cr)
s 1.0000 0.0952 0.7619 1.0000

When we adjust the weight in Algorithm 14 to w = 0.92, so that both the
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distances between covariates and the distances between sequences contribute
within the same magnitude to the total distance, we get the result displayed
in Table 4.13. With a significance level of 0.05, there is still no significant
difference between the distances between the synthetic data sets and D(train)

r

and the distance between D(test)
r and D(train)

r , and the same conclusion holds.

Table 4.13: DCR and NNDR distances and p-values following from procedure 1
using w = 0.92.

DCR NNDR
α 0.05 0.5 0.05 0.5

∥Dk
s −D

(train)
r ∥ 0.0216 0.0632 0.4420 0.8081

∥D(cf)
s −D(train)

r ∥ 0.0183 0.0508 0.3671 0.7941
∥D(cr)

s −D(train)
r ∥ 0.0199 0.0585 0.3720 0.8346

p-value D(cf)
s 0.6667 0.0952 0.3810 0.9524

p-value D(cr)
s 0.8571 0.3810 0.6667 0.4762

Procedure 2

Algorithm 7 describes how the second procedure is carried out for a given
distance metric. It uses one-sided tests, which is because we use it to evaluate
the privacy of the synthetic data sets. We are interested to see if the synthetic
data is closer to its training data than unseen data. As described in 2.6, we
now need 50/50 train-test set splits of the 292 uncensored patients.

The returned values from Algorithm 7 for each distance metric are displayed
in Table 4.14, using weight w = 0.5. With a significance level of 0.05, all null
hypotheses, which states that the synthetic data is closer or equally close to the
test data compared to the training data, are accepted. This is the case for the
outliers, as we can see when α = 0.05, and the the overall data sets, judging by
the median value. The conclusion holds for both D(cf)

s and D(cr)
s and for all

DCR and NNDR measures.

Table 4.14: DCR and NNDR distances and p-values following from procedure 2
with weights w = 0.5.

DCR NNDR
α 0.05 0.5 0.05 0.5

∥D(cf)
s −D(train)

r ∥ 0.0534 0.2032 0.3415 0.8164
∥D(cf)

s −D(test)
r ∥ 0.0522 0.1977 0.3267 0.7931

∥D(cr)
s −D(train)

r ∥ 0.0635 0.2280 0.3550 0.8340
∥D(cr)

s −D(test)
r ∥ 0.0625 0.2333 0.3497 0.8291

p-value D(cf)
s 0.4733 0.9460 0.7355 0.9948

p-value D(cr)
s 0.6510 0.1105 0.6510 0.7355
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When we readjust the weight so that the closeness in covariates contributes
to the total distance, we get a different result. Because we now get a result
where the majority of the tests are significant, using a significance level of 0.05,
we choose to correct the p-values using the Benjamini-Hochberg (Ferreira and
Zwinderman, 2006) method to control for the false discovery rate of repeated
tests. The results with the adjusted p-values are displayed in Table 4.15. We
see that for all the distance metrics except α = 0.5 NNDR, both the D(cf)

s and
the D(cr)

s data sets are significantly closer to the training set than to unseen
test data. This indicates that the synthesisers S(cf) and S(cr) are overfit to the
training data. The synthetic patients have a higher proximity to real patients
in the training set than what we expect from random proximity. As a result,
the synthetic data sets can potentially be used to target D(train)

r in MIAs.
The DCR distances show that this is the case for both the patients with the
closest distance, but also the overall synthetic data set. The significance level
is reduced when we turn to the NNDR distances. Using α = 0.05, we still see
that the patients in D(cf)

s and D(cr)
s with the lowest NNDR scores are too close

to a single patient in D(train)
r compared to the second nearest patient. This

indicates that the outliers in D(train)
r are at risk. The distance metric α = 0.5

NNDR show that ∥D(cr)
s −D(train)

r ∥ is significantly closer than ∥D(cr)
s −D(test)

r ∥,
indicating that the patients in D(cr)

s in general are too close to a single point in
D(train)

r compared to the second closest. There is no significant result for D(cf)
s .

Table 4.15: DCR and NNDR distances and adjusted p-values following from
procedure 2 with weights w = 0.92.

DCR NNDR
α 0.05 0.5 0.05 0.5

∥D(cf)
s −D(train)

r ∥ 0.0194 0.0587 0.3620 0.8109
∥D(cf)

s −D(test)
r ∥ 0.0269 0.0661 0.4153 0.8214

∥D(cr)
s −D(train)

r ∥ 0.0229 0.0629 0.3858 0.8317
∥D(cr)

s −D(test)
r ∥ 0.0295 0.0719 0.4505 0.8353

p-value D(cf)
s 2.34E-08 <1E-08 0.0063 0.0319

p-value D(cr)
s 0.0001 <1E-08 0.0059 0.3198

The difference between Table 4.14 and Table 4.15 is explained by that
the proximity between covariates in the two synthetic and D(train)

r data sets
cause a privacy violating proximity, while the synthetic sequences are not too
close to the sequences in D(train)

r . This is not surprising as the Stab using
synthpop (Nowok, Raab and Dibben, 2016) is more complex than the S(cf)

ms and
S(cr)

ms synthesisers that generate the sequences. Because of their structures, the
transitions of each patient are generated without regarding the full transition
history.
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Procedure 3 and 4

Lastly, we perform procedure 3 and 4 by following Algorithm 8. Recall that
procedure 3 measures both the privacy and utility, and that procedure 4
measures the utility. As these procedures do not use a test set, we use the
full data set of 292 patients as D(train)

r , and the synthetic data sets are of the
same size. Because the size of the data sets are large we do not correct for the
difference in size of intra- and inter-data set distances as discussed in Section
2.6. The large size of the data sets results in that these procedures have a
higher computational cost.

We now only consider the balanced weight w = 0.92, and we display
the results of both procedures in Table 4.16. As none of the p-values show
significance with a significance level of 0.05, we have not corrected the p-values
for repeated testing.

Table 4.16: DCR and NNDR distances and adjusted p-values following from
procedure 3 and 4 with weights w = 0.92.

DCR NNDR
α 0.05 0.5 0.05 0.5

∥D(cf)
s −D(train)

r ∥ 0.0156 0.0475 0.3335 0.8122
∥D(cr)

s −D(train)
r ∥ 0.0174 0.0534 0.3753 0.8433

IDD
(
D(train)

r

)
0.0144 0.0516 0.3189 0.8143

IDD
(
D(cf)

s

)
0.0143 0.0485 0.3358 0.8027

IDD
(
D(cr)

s

)
0.0160 0.0541 0.3122 0.8228

p-value D(cf)
s test 3 0.4088 0.1371 0.5087 0.7411

p-value D(cr)
s test 3 0.2857 0.4762 0.1905 0.0952

p-value D(cf)
s test 4 1.0000 0.1905 0.7619 0.3810

p-value D(cr)
s test 4 0.7619 0.2857 0.9524 0.5714

We first consider the results of procedure 3. As discussed in Section 2.6,
this procedure is similar in structure and interpretation as procedure 1. It tests
if the synthetic data sets are closer or more distant to their D(train)

r than a
proximity between points that is expected in the real data. Here we use the
intra-data set distance of D(train)

r as the baseline. With a significance level of
0.05, none of the differences in the distances are significant. This indicates high
utility and privacy, and we draw the same conclusions as for procedure 1 using
w = 0.92. Note that the distances in Table 4.13 and 4.16 are not comparable,
because we have different sample sizes.

Procedure 4 performs a utility evaluation, and measures the heterogeneity
of Dcf

s and Dcr
s compared to D(train)

r , which we discussed in Section 2.4. Also
here, we do not find a significant difference between the intra-data set distances
of Dcf

s and Dcr
s compared to D(train)

r . This indicates that the synthetic data
sets are not prone to mode-collapse, and that they are as well spread out in
the domain space as the real data. We see that this is the case both for the
data sets as a whole, because we reach the same conclusions using α = 0.05 and
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α = 0.5. This holds for both Dcf
s and Dcr

s and for both the DCR and NNDR
metrics.

Discussion

We have now completed a total of 32 tests, which may be too excessive. As
discussed, the structure of procedure 1 and 3 are similar, and we can remove
one of them from our test framework. The 3rd procedure has the benefit of not
requiring a test set, which means that the sample sizes were larger. However,
this requires a higher computational cost. Procedure 2 is especially useful to
evaluate the privacy of the synthetic data sets. We see that the potentially
privacy violating proximity that we exposed in this test was not discovered by
procedure 1 and 3, despite that they also measure the privacy. Furthermore,
procedure 4 is also important, because we can evaluate the heterogeneity of the
synthetic data.

Overall, the synthetic data score high on the utility tests, and lower on the
privacy tests. We see no overall difference in performance between Scf than
Scr, which indicates that the added complexity of the time inhomogeneity in
Scf does not contribute to a higher utility for the liver cirrhosis data. Note that
this is different from the conclusion reached in Section 4.4.2, when we found
that D(cf)

s was more versatile than D(cr)
s for fitting Weibull and Cox regression

models.
Moreover, we have shown the importance of tuning the weight between the

covariate distance and the trajectory distance. A weakness to this evaluation
framework is that it only considers uncensored data. By finding a distance
metric which allows for a comparison of censored and uncensored data points,
this can extended to censored data as well.

4.6 Membership Inference Attack Experiment

Successful membership inference attacks (MIAs) have the potential of obstruct-
ing the goal of synthetic data, namely protecting real data. As we discussed
in Section 2.5.2, these types of attacks attempt to take advantage of overfitted
synthesisers. In this section, we will perform an MIA attack on a synthetic
clock-reset data set, which we in this section simply refer to as Ds, using the
methods discussed previously.

As discussed, an unsuccessful attack does not mean that the synthetic data
is immune to these types of attacks. With non-differentially private synthetic
data, we have no guarantee against the precision of another attack with a
different design or with increased computational capacity. Even though an
unsuccessful attack cannot lead to any conclusions, a successful attack explicitly
tells us that the privacy of the synthetic data is lacking.

This constructed attack is designed as a worst-case scenario. We, the
adversary in this case, are familiar with the structure of the synthesiser, but we
do not have access to its fitted parameters. As a second advantage, we have
access to a real data set that closely resembles the target data. This is done
by dividing the full data set Dr into three folds. Half is used as the training
set D(train)

r , 10 points form the data set Dcand
0 and are used as candidates for
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the attack, and the remaining points form a data set DMIA
r which we use to

perform the MIA.
The data set D(train)

r is the target data for the attack. We aim to train a
classifier that given a synthetic data set Ds can predict if a specific candidate
patient x is in the training data of the unknown synthesiser S, given that Ds is
generated from S. We use the data set DMIA

r to train such a classifier Cx by
following Algorithm 2. This is an ideal situation from an adversary’s point of
view, since DMIA

r comes from the same source as D(train)
r and we can assume

that they follow the same distribution.
In our attack, we have 20 candidate patients that we suspect are in D(train)

r .
The first 10 candidates are from the data set Dcand

0 , and they are disjoint from
both D(train)

r and DMIA
r . The remaining 10 candidates are randomly sampled

from D(train)
r , and they are stored in Dcand

1 . We wish to train a classifier Ccand

for each cand ∈ Dcand
0 and cand ∈ Dcand

1 by using Algorithm 2. If the attack
is successful, then the classifiers are able to identify the candidates in Dcand

1
as members of D(train)

r by predicting a score close to 1, while the candidates
in Dcand

0 are not classified as members of D(train)
r and should be given scores

close to 0. We use a confusion matrix to show how many of the classifications
that are correct.

The full attack is described in Algorithm 15. In line 2, we fit a classifier for
each patient that is a member of D(train)

r , and in line 5 we do the same for the
patients that are not members of D(train)

r . In line 7 we evaluate all of the 20
classifiers by using them to predict membership in the training data of Ds.

Algorithm 15 MIA on 20 suspected patients
Input:
DMIA

r ← data set similar to D(train)
r

K ← amount of shadow synthetic data set pairs
Ds ← a synthetic data set generated from D(train)

r

Dcand
1 ← suspected patients in D(train)

r

Dcand
0 ← suspected patients not in D(train)

r

Output:
cm← confusion matrix of the attack

1: for cand1i ∈ Dcand
1 do

2: C1i ← Algorithm 2
(
DMIA

r , K, cand1i

)
3: end for
4: for cand0i ∈ Dcand

0 do
5: C0i ← Algorithm 2

(
DMIA

r , K, cand0i

)
6: end for
7: cm← Evaluation(C1,C0,Ds)

We use K = 20 for all classifiers Ccand so that 20 pairs of bootstrapped data
sets and shadow synthesisers are used to fit the classifiers. As we in this case
know the exact structure of S, we fit the shadow synthesisers to the shadow
data sets in the same way as S is fitted to D(train)

r . Similar to Kuppa, Aouad
and Le-Khac (2021) we will use random forest models to train our classifiers.
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In Shokri et al. (2017) neural networks are used, but they use much larger data
sets.

As discussed in Section 2.5.2, we fit the classifiers Ccand by labelling the
shadow synthetic data sets that has the candidate cand in their shadow training
set. Ideally, we would like to find a way to represent each data set in a more
compact form. If the space of possible synthetic data sets were discrete, with
a total size of n, we could represent each data set through one-hot-encoding
with a vector of size n. Since there is no limit to how many transitions each
patient can make, it is not possible to bound the number of possible synthetic
MS-TTE data sets that are on the format displayed in Table A.1. Instead, we
choose to add an extra variable to each row in the data set, and do row-based
classification. The variable contains a label that indicates if the candidate cand
was in the training set or not. A weakness to this approach is that the data
set is not considered as a whole. If we input a synthetic data set Ds to a fitted
classifier Ccand, we then predict, row by row, if the row belongs to a data set
that is generated from a synthesiser with cand in its training set. The final
prediction is made based on an average.

To account for the randomisation of the synthesising process, we use six
different synthetic data sets. We also wish to investigate if some patients are
easier to classify than others, so we display the results for each patient. In Table
4.17 and Table 4.18 we can see the predictions of the probabilistic classifiers.
They predict the probability that each candidate is in D(train)

r . A successful
attack should recognise the patients in Table 4.17 as patients that are not used
in the training of the synthetic data sets, and classify them as 0, and similarly
Table 4.18 should classify the synthetic data sets as 1. While Table 4.18 does
have a higher mean than Table 4.17, both have a mean below and close to,
0.5. There are no obvious differences between the synthetic data sets, which
indicates that the randomisation process of the synthesiser does not affect the
success of the attacks. Some patients, such as pat6 and pat7 in Table 4.17 and
pat3 in Table 4.18 seem somewhat more recognisable as patients in or outside
D(train)

r respectively.

Table 4.17: The predictions of the classifiers of the 10 candidates in Dcand
0 that

are not members of D(train)
r . A successful attack returns predictions close to 0.

We use six different synthetic data sets that are all generated from D(train)
r .

D(1)
s D(2)

s D(3)
s D(4)

s D(5)
s D(6)

s mean
cand01 0.60 0.45 0.48 0.60 0.47 0.48 0.51
cand02 0.32 0.55 0.37 0.43 0.44 0.43 0.42
cand03 0.45 0.51 0.44 0.54 0.60 0.60 0.52
cand04 0.44 0.41 0.42 0.46 0.40 0.45 0.43
cand05 0.50 0.44 0.43 0.46 0.49 0.46 0.46
cand06 0.33 0.39 0.32 0.33 0.29 0.29 0.33
cand07 0.29 0.39 0.33 0.36 0.34 0.32 0.34
cand08 0.35 0.40 0.47 0.37 0.38 0.40 0.39
cand09 0.50 0.43 0.51 0.49 0.52 0.47 0.49
cand010 0.36 0.38 0.39 0.50 0.39 0.46 0.41
mean 0.41 0.43 0.42 0.45 0.43 0.44 0.43
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Table 4.18: The predictions of the classifiers of the 10 candidates in Dcand
1 that

are members of D(train)
r . A successful attack returns predictions close to 1. We

use six different synthetic data sets that are all generated from D(train)
r .

D(1)
s D(2)

s D(3)
s D(4)

s D(5)
s D(6)

s mean
cand11 0.34 0.45 0.40 0.36 0.39 0.52 0.41
cand12 0.35 0.43 0.41 0.48 0.44 0.44 0.42
cand13 0.59 0.64 0.58 0.59 0.56 0.57 0.59
cand14 0.41 0.45 0.36 0.43 0.48 0.52 0.44
cand15 0.54 0.58 0.46 0.52 0.43 0.49 0.50
cand16 0.35 0.36 0.32 0.36 0.42 0.40 0.37
cand17 0.60 0.47 0.47 0.61 0.53 0.49 0.53
cand18 0.48 0.47 0.35 0.40 0.44 0.50 0.44
cand19 0.38 0.44 0.43 0.40 0.45 0.42 0.42
cand110 0.46 0.56 0.49 0.50 0.52 0.57 0.52
mean 0.45 0.48 0.43 0.46 0.46 0.49 0.46

All in all, this is an unsuccessful attack, and from the confusion matrix in
Table 4.19, we get that the recall is R = 0.3. As discussed, this is not enough
to conclude that the synthetic data is secure. We have only performed attacks
with 10 patients in D(train)

r as candidates. Since some patients are easier to
classify, we should assume that there are remaining patients in D(train)

r with a
greater privacy risk. The attack could be improved by increasing the number
of candidates or by performing a hill-climbing search as described in Algorithm
3. Moreover, the design of the classifiers can surely be improved, which could
also result in a more powerful attack.

Table 4.19: Confusion Table.

Predicted
Actual Present Not present
Present 18 42
Not present 11 49
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Differentially Private MS-TTE Data
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5.1 Constructing a Differentially Private Synthesiser for
MS-TTE Data

This chapter aims to demonstrate how we can generate and evaluate differentially
private multi-state time-to-event (MS-TTE) data. To do so, we will use the
same liver cirrhosis data as in Chapter 4, which follows the multi-state model
illustrated in Figure 4.1. We first introduced differential privacy in Section 2.5.3,
and then we proposed differentially private approaches to MS-TTE modelling
in Section 3.7. Combined, this makes us equipped to discuss how a fully
differentially private synthesiser can be constructed.

Algorithm 11 showed how a compete synthesiser for MS-TTE data S consists
of two synthesisers, a tabular synthesiser, Stab and an MS-TTE synthesiser,
Sms. Both need to be differentially private in order to make S differentially
private. The composition property of differential privacy, which we discussed in
Section 2.5.3, is used to control the total privacy budget.

The training set D(train)
r and test set D(test)

r of the liver cirrhosis data
follow the same split as in Section 4.3, and include censored data, unless stated
otherwise.

5.1.1 Differential Privacy of a Tabular Synthesiser

Earlier we have used synthpop (Nowok, Raab and Dibben, 2016) to generate the
time-invariant variables

(
xi, si,0

)
per synthetic patient i ∈ {1, . . . , n}. Because

synthpop currently does not allow for a differentially private version of the
synthesiser we have used, we will instead use DP-GAN (Xie et al., 2018) to
synthesise the tabular data. Recall our discussion of GANs from Chapter 2.
We use the implementation of the SynthCity Python package (Qian, Cebere
and M. v. d. Schaar, 2023) to fit a DP-GAN to our training data. This method
requires hyper-parameter tuning. First, we need to select the maximum number
of training epochs of the generator. The default number of epochs in SynthCity
is 2000, but we find that the fitting process often converges before 500 epochs
for our data set, and that increasing the number of epochs does not improve the
results. We keep the other default options, such as structure of the discriminator
and generator.

The value of ε regulates the level of privacy, as seen in Definition 2.5.1. We
need to find an ε that is as low as possible, while still has sufficient utility. We
examine three different values of ε, and we will fit a DP-GAN with each ε five
times to control the variation caused by the randomisation process. They are
evaluated using the general evaluation framework for tabular data presented
in Section 2.4.1, which we demonstrated on non-differentially private synthetic
data in Section 4.4.1.

The first four columns of Table 5.1 are parallel to Table 4.3, and the table
contains the p-values of tests that check if there is a significant difference
between the marginal distributions of the differentially private synthetic data
sets and D(train)

r . As before, we use chi-square goodness-of-fit test for the
categorical variables and a KS test for the continuous variable starting age.
For each ε ∈ {0.5, 1, 5}, we have five synthetic data sets, generated from five
distinct differentially private synthesisers.
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Table 5.1: Adjusted p-values of tests comparing the marginal distributions, and
the mean difference in covariance of differentially private Ds and D(train)

r , using
three different values of ε.

ε p-values mean corr
tr grp age female st state diff

0.5 2.07E-04 <1E-08 3.70E-03 <1E-08 0.130
<1E-08 <1E-08 <1E-08 <1E-08 0.105
<1E-08 <1E-08 <1E-08 <1E-08 0.114

5.10E-03 <1E-08 <1E-08 1.51E-08 0.124
<1E-08 9.41E-07 <1E-08 <1E-08 0.092

1 <1E-08 <1E-08 <1E-08 <1E-08 0.196
<1E-08 <1E-08 <1E-08 <1E-08 0.122
<1E-08 <1E-08 1.87E-01 8.25E-05 0.082
<1E-08 <1E-08 1.76E-08 <1E-08 0.135

1.41E-06 <1E-08 <1E-08 1.31E-01 0.064
5 <1E-08 <1E-08 9.12E-03 1.56E-01 0.095

<1E-08 <1E-08 <1E-08 <1E-08 0.087
<1E-08 <1E-08 <1E-08 <1E-08 0.104
<1E-08 2.92E-07 <1E-08 <1E-08 0.079
<1E-08 2.41E-08 1.20E-02 1.08E-01 0.058

We see that almost all tests have very low p-values, indicating that there
is a significant difference between each Ds and D(train)

r . Because we have
performed many significant tests, we have adjusted the p-values using the
Benjamini-Hochberg method to control for the false discovery rate. While some
of the marginal distributions, such as starting state get some results where
there is no significant difference using a significance level of 0.05, mostly we
do not see any improvement when ε is increased, which is unexpected. The
difference in mean Spearman covariance slightly improves. The mean values
across the five data sets for increasing values of ε are 0.113 for ε = 0.5, 0.112
for ε = 1, and 0.085 for ε = 5. In comparison, the recall that the mean
difference in pairwise correlations between D(train)

r and D(test)
r is 0.0351. While

the difference decreases with increasing values of ε, the overall difference in
correlation indicates low utility, and the result is worse than what we saw in
Chapter 4.

Recall from Section 2.5.3 that each time we refit an ε−differentially private
synthesiser, we spend a privacy budget of ε. This means that we cannot refit
synthesisers as we have done here, and handpick the one with the best utility.
Instead, they should be randomly selected. We use the first synthetic data set
in each category for further analysis, and name them D(0.5)

s , D(1)
s and D(5)

s .
In Figure 5.1 we plot the starting age distributions of D(train)

r and the
three synthetic data sets D(0.5)

s , D(1)
s and D(5)

s . We see that neither of the
differentially private synthetic data sets manage to capture the two modes in
D(train)

r , and in D(0.5)
s and D(1)

s , the minimum observed age is much higher than
what we observe in D(train)

r . Note that DP-GAN is not developed for tabular
data, which could explain that the multi-modality is lost. See the discussion on
GANs tailored to tabular data in Section 2.2.1 for further details.
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Figure 5.1: Histogram of the starting age variable in the data sets (a) D(train)
r ,

(b) D(0.5)
s , (c) D(1)

s and (d) D(5)
s .

When we inspect the differences in frequencies in Table 5.2 we also see that
the utility is low, confirming the result of the hypothesis tests. In D(1)

s , all the
majority categories in D(train)

r have very few values. The only variable that is
close to the frequency in D(train)

r is Starting state in D(1)
s , which is supported

by the p-values in Table 5.1.

Table 5.2: The frequencies of the categorical variables treatment group, female
and starting state for the data sets D(train)

r , D(0.5)
s , D(1)

s and D(5)
s .

Treatment group Female Starting state
0 1 0 1 1 2

D(train)
r 187 204 181 210 171 220
D(0.5)

s 224 167 152 239 257 134
D(1)

s 377 14 369 22 367 24
D(5)

s 292 99 155 236 185 206

The correlation structure of D(train)
r in Figure 5.2 (a) is best captured by

D(5)
s in Figure 5.2 (d), while D(1)

s in Figure 5.2 (b) has the worst resemblance.
None of the data sets manage to capture the positive correlation between
starting age and female, like we see in Figure 4.3 that the non-differentially
private synthetic data sets did.

We choose to move forward with the data set D(5)
s , which we will use to

generate multi-state trajectories. Most of the marginal distributions in this
data set do not follow the distributions in D(train)

r , but overall this data set
performed best. For example, the minimum and maximum values of starting age
are correctly captured, and the difference between the marginal distributions
of starting state are insignificant. However, a value of ε = 5 is a considerable
privacy cost, and we discuss this in Section 5.3.

5.1.2 Differential Privacy of a MS-TTE Synthesiser

In Chapter 4, we generated new synthetic processes from Weibull proportional
hazards regression (WPHR) models, and we used a model per transition. The
parameters θj =

(
λj , βj,0, βj,1, βj,2, βj,3

)
of each model j ∈ {1, . . . , 4} were
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Figure 5.2: Spearman correlation among the variables (x, s0) for the data sets
D(train)

r (a), D(0.5)
s (b) D(0.5)

s (c) and D(0.5)
s (d).

maximum likelihood estimates from the training data D(train)
r . As we discussed

in Section 2.5.3, such models are not differentially private, because the MLEs
are not randomised. In Section 3.7, we discussed how a single sample from
the posterior distribution of the parameters of a survival regression model
can be differentially private when the likelihood is bounded. Further, we
presented a novel method for differentially private WPHR models, and showed
how this could be used for multi-state purposes if we treat each transition as
independent. We use this method to generate differentially private synthetic
processes, through estimating differentially private parameters from D(train)

r .
As previously discussed, our method is limited to clock-reset MS-TTE models.

Recall that our method required that we divide the training data into
subsets D(trainj)

r representing each transition, and then we fit a posterior
distribution for each transition j, using D(trainj)

r as training data. We use
RStan (Stan Development Team, 2023) to sample from posterior distributions

p

(
θj |D

(trainj)
r

)
through MCMC algorithms. All the standard options in RStan
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are followed. Thus, we have four chains and 2000 iterations, where the first
1000 are warm-up iterations.

Hyper-parameter tuning

We perform the hyper-parameter tuning by comparing the posterior distributions
of the parameters of each transition to the gold standard, which is the MLEs
of D(train)

r . We include a reduced version of Table 4.4 of these parameters in
Table 5.3. Note that β0 is transformed to the log scale for easier comparison.

Table 5.3: MLEs of the parameters of a clock-reset Weibull regression model
fitted to the data set D(train)

r for each of the j ∈ 1, . . . , 4 transitions.

j
1 2 3 4

λ 1.0417 1.0692 1.0516 0.6658
log (β0) -4.9870 -6.5711 -0.8530 -5.0931
β1 -0.1574 0.0900 0.3169 0.1138
β2 0.0658 0.0713 0.0027 0.0662
β3 0.1260 0.2764 0.1545 0.1614

First, we need to define the prior distributions of the parameters (λ, β0,β).
We wish to use noninformative priors that adds uncertainty without influencing
the location of the posterior distribution, and the choice must be made
independent of the data. Nguyên and Hui (2018) use normal priors, and
we do likewise. We use the following priors:

β0, β1, β2, β3, log (λ) ∼ N
(

0, 102
)

.

Without considering the data, it is reasonable to assume that the effect of
each parameter is centred around 0. The same holds for log (λ), because if
log (λ) = 0, then the hazard rate is constant.

The hyper-parameter η regulates how much each patient can contribute to
the likelihood of each transition. As we discussed in Section 3.7, if the bound
is too low, then only a few patients will be able to contribute with an uncut
likelihood. As a first attempt, we follow the recommendation of Nguyên and
Hui (2018) and set η = log (n), where n = 391 is the total number of patients
in the training set. Through experiments on the liver cirrhosis data set, we
find that this causes the RStan simulation to diverge, even for high values of
ε. Still, we want η to be dependent upon the number of patients and not the
total number of transitions, because we wish to control the contribution of
each patient. From Equation (3.21), we see that the sanitiser function is fed
an average likelihood across all the transition rows of a single patient. This
secures that patients with a low number of total transitions can contribute more
per transition than patients with many transitions. Consider Table A.1. The
patient with patient id = 2 has more rows than the patient with patient id = 1,
which means that we need each row of patient 1 to have a higher impact on the
joint likelihood of that transition.

Note that we limit each patient’s contribution to the likelihood separately
for each transition. Then patients that contribute to each transition will have a
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higher impact on the combined model than patients that only contribute to the
likelihoods of some transitions. Consider again patient 1 and patient 2 from
Table A.1. Patient 1 only contributes to two transition models, while patient 1
contributes to all.

Further experimenting with values of η leads to that η = 3 log (n) results in
convergence of all the transition models. We display the means and standard
deviations of the posterior distributions of each parameter and for each transition
j ∈ {1, . . . , 4} in Table 5.4. Each transition has ε = 5/4, resulting in a total
privacy budget of ε = 5. We see that many of the mean values are far from the
gold standard in Table 5.3. Because the standard deviations are high, all the
MLEs are within one standard deviation of the posterior distributions and they
are of the same magnitude.

Attempts to increase η or reintroducing an offset does not close the distance
between the gold standard and the means of the posterior distributions. From
Bayesian theory, the mode of the posterior distribution typically converges to
the MLE when n reaches infinity (Gelman, 2013). For our adjusted likelihood,
this is not the case. If η ∝ log (n), then the lower bound of the sanitiser function
in Equation (3.18) reaches infinity, but the upper bound is unchanged. Further
research is needed to explore how increasing sizes of n influences the posterior
mean.

Table 5.4: Means and standard deviations of the posterior distribution of the
parameters, using hyperparameters η = 3 log (n) and ε = 5.

j
1 2 3 4

mean (λ) 1.2118 1.3936 1.1087 0.9432
sd (λ) 0.4247 0.6678 0.3517 0.2838
mean (β0) -6.5800 -7.9414 -1.5436 -5.3894
sd (β0) 2.7902 4.0960 2.4085 3.0158
mean (β1) -0.2064 -0.1146 0.3986 -0.0923
sd (β1) 1.0111 1.5710 0.9973 1.1142
mean (β2) 0.0801 0.0774 0.0040 0.0655
sd (β2) 0.0422 0.0626 0.0411 0.0454
mean (β3) 0.1030 0.2994 0.1477 0.2287
sd (β3) 1.0214 1.5785 0.9812 1.1585

Following from Equation (3.18) and (3.21), increasing the size of ε should
lower the variance of the posterior distributions, as the weight is shifted from
the prior distribution to the likelihood. We attempt to double the ε in Table
5.5, so that each transition has a privacy budget of ε = 10/4. We see that
the variance decreases, but only slightly. Most of the parameters move slightly
towards the gold standard displayed in Table 5.3.

The most substantial drawback to the Bayesian sampling mechanism is
that we do not sample the posterior mean. For ε differential privacy, we are
only allowed to draw a single sample from each posterior distribution, and this
introduces even more uncertainty. We draw a single sample which we will now
use to generate differentially private synthetic data based on the differentially
private patients generated in the previous section. We choose to sample from
the posterior distributions fitted with ε = 5/4, because we wish to reduce the
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Table 5.5: Means and standard deviations of the posterior distribution of the
parameters, using hyperparameters η = 3log (n) and ε = 10.

j
1 2 3 4

mean (λ) 1.1518 1.3064 1.0528 0.9295
sd (λ) 0.3009 0.4603 0.2432 0.1885
mean (β0) -6.1825 -7.5600 -1.2869 -4.9449
sd (β0) 1.9437 2.8275 1.6709 2.0504
mean (β1) -0.1524 -0.0313 0.4018 -0.0218
sd (β1) 0.6508 0.9832 0.6654 0.7495
mean (β2) 0.0784 0.0806 0.0037 0.0629
sd (β2) 0.0294 0.0429 0.0283 0.0309
mean (β3) 0.0503 0.2386 0.1621 0.1584
sd (β3) 0.6947 1.0580 0.6683 0.7444

total privacy budget, and the improvements of doubling the ε value were small.
The sampled 5−differentially private parameters are displayed in Table 5.6.

Table 5.6: Sampled parameters of a 5−differentially private clock-reset Weibull
regression model for each of the j ∈ {1, . . . , 4} transitions.

j
1 2 3 4

λ 1.39 1.19 0.86 0.81
log (β0) -8.57 -5.47 1.32 -4.08
β1 0.43 -1.29 -0.22 -0.62
β2 0.12 0.08 -0.04 0.06
β3 -0.32 -1.59 1.16 -0.03

5.2 Evaluation of Differentially Private MS-TTE data

We can now use the 5−differentially private parameters from Table 5.6 and
the 5−differentially private synthetic patients from Section 5.1.1 to generate a
10−differentially private synthetic data set, which we refer to as Ds.

5.2.1 Kaplan-Meier Curves

We evaluate the utility by comparing the Kaplan-Meier curves of Ds and
D(train)

r , as we did in Section 4.4.2. The results are displayed in Figure 5.3.
Even when the tabular data has low utility and the parameters are distant
from the gold standard, only the first transition in Figure 5.3 show a significant
difference between the survival curves of Ds and D(train)

r , which suggests good
utility. However, we should keep in mind that the Kaplan-Meier curves do not
display differences between patients with different covariate values.
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Figure 5.3: Kaplan-Meier survival curves with 95% confidence intervals and
corresponding log-rank test p-values of the differentially private Ds and the
training data D(train)

r for each transition k ∈ {1, . . . , 4} in the figures (a)-(d).

5.2.2 DCR and NNDR metrics

Finally, we use the DCR and NNDR distance metrics, which we introduced
in Section 2.6, and demonstrated on non-differentially private data in Section
4.5.3. As before, we will now only consider uncensored data points. Our
implementation makes it inconvenient to generate multiple differentially private
synthetic data sets, compared to the approach in the previous chapter. Further
details on this can be found in Appendix B. Therefore, we will only consider a
single synthetic data set Ds, which is equal in size to its training set D(train)

r .
We compare the intra-data set distances of Ds and D(train)

r , and the distance
between Ds and D(train)

r in Table 5.7. When considering the α = 0.05 metrics
we see that the intra-data set distance of Ds is lower than for D(train)

r . This
shows that the differentially private synthetic data contains some patients that
are very similar, which indicates homogeneity. For α = 0.5, Ds and D(train)

r are
fairly equal, which shows that this is not an issue for Ds as a whole. Further, we
see that the distances between Ds and D(train)

r are greater than the intra-data
set distances for both data sets. This holds for all distance metrics, and it
indicates low utility and high privacy.

5.3 Discussion

Overall, we see that differential privacy causes a drop in utility compared to
non-differentially private synthetic data, which is consistent with the theory
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Table 5.7: DCR and NNDR distances with w = 0.92.

DCR NNDR
α 0.05 0.5 0.05 0.5
∥Ds −D(train)

r ∥ 0.0333 0.0714 0.4810 0.8284
IDD (Ds) 0.0166 0.0508 0.3313 0.8112
IDD

(
D(train)

r

)
0.0229 0.0544 0.4013 0.7792

on differential privacy that we covered in Section 2.5.3. The time-invariant
variables from the tabular synthesiser had especially low utility, but this could
be improved upon by using another differentially private synthesiser that is
more suitable for tabular data. The MS-TTE synthesiser could also be improved
upon by for example reducing the variance in the priors.

We have used a combined synthesiser with a privacy budget of ε = 10,
which is considerably high. Recall Definition 2.5.1 and Equation (2.1) which
defines ε−differential privacy. Say we have a mechanismM with 10−differential
privacy, an output S, and two data sets D and D′ that differ by one row. Then
the ratio between the probabilities that M outputs S is

P
[
M (D) ∈ S

]
P
[
M (D′) ∈ S

] ≤ exp (10) ≈ 20000,

which indicates that the differing row can have a very high impact on the
probability. At this point, the differentially private guarantee unfortunately
holds little value, and we should attempt to lower the value of ε. Because
there were only slight improvements of choosing larger ε values for the tabular
synthesiser, it is possible that a lower ε choice is more sensible.

Ultimately, the choice of ε depends on the privacy-utility tradeoff, as the
utility will decrease with smaller values of ε. Moreover, we need to consider the
intended use. If the synthetic data should be used to fit Kaplan-Meier survival
curves, then the performance of the differentially private synthetic data may
be sufficient. However, if we need covariates with high utility because we wish
to fit a Weibull or Cox regression model, then the non-differentially private
synthesiser covered in Chapter 4 may be a better option.
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CHAPTER 6

Concluding Remarks
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In this thesis, we have explored the novel topic of synthetic multi-state
time-to-event (MS-TTE) data. We have succeeded in proposing three different
types of synthesisers tailored to MS-TTE data. First, we presented synthesisers
based on both clock-forward and clock-reset multi-state models. Next, we
extended the latter to a differentially private synthesiser, which offers a formal
guarantee of the privacy of each individual data point.

Moreover, this thesis places synthetic MS-TTE data into the broader context
of general synthetic data. We have surveyed a selection of privacy and utility
evaluation methods which are tailored to tabular and survival data, and we
have demonstrated how these methods can be extended to an MS-TTE setting.
We argue that synthetic data evaluation should not only consider a specific
synthetic data set. Instead, the evaluation process should also examine the
privacy and utility properties of the synthesiser itself. To do so, we have
proposed an evaluation framework that uses repeated synthesis to account
for the variability in the synthesising process. This framework relies on prior
work on the metrics DCR and NNDR (Zhao et al., 2021), which measure the
distances between data sets based on single-point distances. In order to use
these metrics, we required a method for measuring the distance between single
MS-TTE data points. Therefore, we developed such a metric which can be
applied to uncensored MS-TTE data.

We demonstrate the proposed synthesis models and the evaluation methods
on a specific data set, the liver cirrhosis data, which is treated as our real data
set. Our results indicate that the overall utility of the synthetic liver cirrhosis
data is up to par. We observe that for some tasks, there is an added advantage
of using the more complex clock-forward model as opposed to a clock-reset
model. However, on most tasks, they perform equally well. Moreover, we have
illustrated how the structure of the synthesiser can influence variable selection
results. The privacy of the synthesisers was evaluated by measuring the distance
between the synthetic data and their training sets. We have shown how this
procedure revealed that the synthetic liver cirrhosis data is closer to its training
data than unseen data, which indicates that the synthetic data could be at risk.
Nonetheless, our staged membership inference attack (MIA) was unsuccessful.
As we have only tested the synthesis and evaluation methods using a single
data set, more research is needed before we can conclude that the synthesisers
provide synthetic data with sufficient utility and privacy for MS-TTE data in
general.

The differentially private MS-TTE synthesiser has covariates with low utility,
and the parameters of the MS-TTE model have added noise. Nevertheless, the
differentially private synthetic data is able to capture some of the transitions in
a satisfactory manner. However, our results align with the literature (Stadler,
Oprisanu and Troncoso, 2022) in that the differential privacy guarantee comes
with an added penalty to the utility. In addition, we find that the ε value
needs to be very high in order to achieve satisfactory results on most evaluation
metrics. Still, the differentially private synthetic data may have sufficient utility
for some specific use cases.
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6.1 Further Work

This project could have taken many directions, as synthetic MS-TTE data
has not been examined prior to this work. We discovered many tangents that
we were unable to follow within the scope of this thesis, and several ideas for
future research topics have emerged along the way. We conclude by outlining
recommendations for further work.

Differential privacy

We developed a differentially private Weibull regression model as a stepping
stone to a differentially private MS-TTE model. Further work is needed to
evaluate how this model can be used for single-transition survival data and
its asymptotic behaviour. In particular, it is advantageous to explore how η
should best be defined and if the offset should be a function of the proportion of
censored observations instead of η. Regarding the differentially private MS-TTE
synthesiser, more work is needed on the effect of η and ε on privacy and utility
and how the ε can be decreased without a significant loss in utility. In addition,
it is necessary to further examine how increasing values of n impact the level
of privacy and utility. Furthermore, we recommend experimenting with other
differentially tabular synthesisers for generating the time-invariant variables,
like PATE-GAN (Jordon, Yoon and M. v. d. Schaar, 2018).

More complex survival models

The choice of a Weibull regression model was made to ensure the overall
simplicity of the synthesiser. Other models that do not assume a monotone
hazard rate, such as the semi-parametric Cox regression and the non-parametric
Kaplan-Meier, may provide a better fit. Another alternative is deep-learning
approaches such as DeepHit (Lee et al., 2018), which is what SurvGAN (Norcliffe
et al., 2023) is built on. DeepHit can handle time-dependent covariates, and
instead of treating each transition separately and assuming independence, as
we have done, it can create a joint competing risks model.

Moving beyond the Markov assumption

Even if we replace the Weibull regression models with DeepHit, the synthesiser
will still rely on the Markov assumption, which can be oversimplified. We
can add semi-time-dependent covariates such as time since the initial starting
time and number of transitions. These covariates will remove the assumption,
but this will still lose information about the complete state trajectories and
transition times. We recommend that deep learning methods such as recurrent
GANs, which have been used to generate synthetic time-series data (Esteban,
Hyland and Rätsch, 2018), should be explored in the context of MS-TTE data.

Membership inference attacks

In Algorithm 3, we proposed a novel MIA attack, which uses hillclimbing in the
domain space to search for observations in the training set. We also discuss how
this attack can be used for attribute disclosure. This attack is computationally
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demanding because we need to fit a new classifier for each point in the search.
Therefore, we were not able to explore the potential impact of such an attack.

Testing on multiple data sets

Here, we have only used a single data set to test and evaluate the MS-TTE
synthesis methods. To ensure that these methods and results hold for MS-
TTE data sets in general, we recommend that a model comparison study with
multiple data sets should be performed next.
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APPENDIX B

Code

All source code for this thesis is available at:
https://github.com/ingriiser/Synthetic_MSTTE_Data

Chapter 2

The code used to generate the DCR and NNDR illustrations in Figure 2.1 and
2.5 are found in notebooks/visualise_dcr_nndr.rmd
In Example 2.6.2, we used the Iris data set to illustrate the pitfalls of removing
exact synthetic matches. This experiment, along with plots of the corresponding
figures, is provided in notebooks/visualise_removing_synth.rmd
Further, we provided an example on how distance measures can be used to
expose privacy evaluation in Example 2.6.5. The calculations of the DCR and
NNDR distances displayed in Table 2.1 and plots of the figures are found in
notebooks/demo_distance_expose_privacy_breach.rmd

Chapter 3

All plots of the multi-state figures in Chapter 3 and 4 are made in
notebooks/state_trans_graphs.rmd

The figure displaying the left-truncation of Weibull distributions in Figure
3.3 is plotted in notebooks/trunc_weibull.rmd

Chapter 4

The liver cirrhosis data is supplied in data/liver_cirrhosis.csv The wrap-
per functions that create different versions of this data set (like long and short
form) are in src/datasets_setup.r
The first naive approach to generating synthetic liver cirrhosis data using CT-
GAN is provided in src/naive_tabular.py The next approach uses CPAR,
and this is supplied in src/naive_seq.py
The code for generating synthetic MS-TTE clock-reset and clock-forward
data is found in src/generate_syn The evaluation procedures are demon-
strated over multiple notebooks. In notebooks/distance_evaluation.rmd
there is a demonstration of the distance evaluation procedures, which
uses evaluation functions in src/distance_evaluation.r Moreover,
notebooks/utility_evaluation.rmd contains the utility evaluation and
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uses functions found in src/utility_evaluation.r Lastly, the MIA experi-
ment is in notebooks/mi_attack.rmd using functions in src/mi_attack.r

Chapter 5

The generation process of the differentially private synthetic data is de-
scribed in notebooks/generate_dp_syn.rmd This notebook describes how
the tabular data is generated in Python using DPGAN, which is done in
src/gen_patients.py Then it demonstrates how the differentially private
sampling from the posterior distribution is performed. The STAN script is in
src/dp_posterior_patient.stan and the corresponding sampling in R is in
src/dp_posterior_sampling.r
The evaluation of the differentially private data is performed in
notebooks/utility_dp.rmd and notebooks/evaluation_dp.rmd
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