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Abstract

The current cosmological concordance model states that the fluctuations in
the Cosmic Microwave Background (CMB) should be Gaussian and isotropic.
However, many studies claim to have found small deviations from this theory.
One such deviation is the apparent existence of hemispherical power asym-
metry: One hemisphere of the CMB appears to contain stronger fluctuations
than the other. As of yet, it is not clear whether this is a statistical fluke, a
systematic effect, or a genuine violation of the cosmological principle.

Current studies are either limited to studying structures on large scales
due to the poor computational scaling of O(Npix

3) (Hoftuft et al., 2009, Erik-
sen et al., 2007, Gordon, 2007), make use of approximate methods (Hanson
& Lewis, 2009, Bennett et al., 2010), or focus on non-parametric statistics
(Hansen et al., 2009).

A computationally efficient method for fully exact, Bayesian analysis of
the hemispherical CMB power asymmetry has been developed in this thesis,
based on the CMB Gibbs sampling algorithm (Wandelt et al., 2004, Jewell
et al., 2004). With a computational scaling of O(Npix

3/2), the method is able
to explore current and future CMB observations at full resolution. Probing
for the presence of asymmetry at ` ≥ 1000 is fully realistic for the upcoming
Planck data. In this thesis, a dipole modulation field model gets particular
attention. However, the computational foundation is also laid for exploring
more general models than what has previously been possible. Models with
arbitrary azimuthally symmetric modulation fields or scale-dependent mod-
ulation strength can be fitted to data at the same computational cost.

The complete algorithm has been implemented from scratch in Python
and thoroughly tested on simulations. A direct comparison is made with the
results of Hoftuft et al. on low resolution data. Some preliminary results
of analysis of full resolution WMAP 7-year data are also presented. The
preliminary findings are consistent with the earlier studies, indicating the
presence of asymmetry on scales up to ` = 600. In particular, the preferred
direction is consistent with earlier results.

The code is believed to be ready for a more thorough study of WMAP
data, although a few final checks are outlined that should be carried out first.
As a direct consequence of reviewing the CMB Gibbs sampling algorithm in
detail, a couple of minor flaws were found in the existing CMB Gibbs sampler
Commander.
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Chapter 1

Overview

1.1 The Cosmic Microwave Background

Cosmology is the study of our universe on vast scales. In a sense, the universe
is the largest physics laboratory one can ever hope for. Modern cosmology
relies on both particle physics, quantum mechanics and General Relativity.
By modelling the evolution of the universe, from the Big Bang and until
today, our current knowledge of physics is put to the test.

In one sense, modern cosmology is an astounding success. With just six
parameters, the established concordance model, dubbed the ΛCDM model, is
able to fit millions of data points. In another sense, we still understand little.
The ΛCDM model (“Dark energy (Λ) and Cold Dark Matter”) requires that
approximately a quarter of the energy content of the universe is something
we know very little about (Cold Dark Matter). Most of the remaining three
quarters we have even less of an idea about (dark energy). Less than 5% of
the energy in the universe is the ordinary atoms and photons that we can
observe (Dodelson, 2003).

What sources of data do these claims rely on? The most important one is
the Cosmic Microwave Background (CMB). When looking out in the universe,
we look further and further out, and further and further back in time, until we
observe photons coming from approximately 300 000 years after the Big Bang,
or 13.7 billion years ago. At that point, one can not see any further, because
the universe at that time was a very hot dense fog. This fireball today takes
the form of a shell around us, 50 billion light years away. It is remarkably
uniform. Regardless of the direction in which we point our instruments, we
observe a perfect black body spectrum at 2.725 Kelvin. Still, it does contain
tiny fluctuations, well under a millikelvin in temperature. These fluctuations
have been measured to high accuracy by the Wilkinson Microwave Anisotropy
Probe (WMAP) (Jarosik et al., 2010). Much higher resolution data is soon to
come from the ongoing Planck experiment (The Planck Collaboration, 2006).

For some time, cosmology was a field with more speculations than data.
However, over the last couple of decades there has been an explosion in the
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(a) (b)

(c) (d)

Figure 1.1: Anisotropies in the Cosmic Microwave Background, as observed in the
V frequency band by WMAP (Jarosik et al., 2010). (a) The CMB is remarkably
uniform, and the radiation of our own galaxy in the same frequency band is much
stronger. (b) For analysis, our galaxy and point sources are masked out. Red is
warmer and blue is colder than 2.725 K by about 0.5 mK. (c) Constrained real-
ization. Using the methods of chapter 3, one can draw samples from the Bayesian
posterior distribution of the underlying CMB signal, given data, instrument prop-
erties and an assumed cosmological model. (d) The signal is often represented as
a sum of spherical harmonic basis functions Y`m(n̂). Plotted here are the real parts
of Y2,1(n̂), Y4,4(n̂), Y10,6(n̂), and Y30,4(n̂). Higher ` corresponds to more waves.

Figure 1.2: The effect of dipole-modulation. On the left is an isotropic signal f(n̂),
while on the right is (1 + αp̂ · n̂)f(n̂). The effect is to induce stronger fluctuations
in one hemisphere and smooth the fluctuations in the opposite hemisphere. In this
case, α = 0.3, and p̂ is to the right on the map.
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amounts of available data, such as CMB observations, galaxy surveys, and
gravitational lensing observations. It is no longer lack of data that is the
bottleneck, but rather the computational challenges.

1.2 Spherical harmonics and the power spec-

trum

A very central technique in cosmology is the spherical harmonic expansion. It
is the analogue to a Fourier transform on the sphere. A field f on the sphere
can be expanded into spherical harmonic coefficients a`m,

f(n̂) =
∞∑

`=0

∑̀
m=−`

a`mY`m(n̂).

What makes this transform so useful is that it separates the signal into dif-
ferent scales. An average of the entire map is represented by a00, the dipole
component by (a1−1, a10, a11), the ` = 2-coefficients specify a quadrupole (two
waves around the equator), and so on. As ` gets higher, smaller and smaller
scales are characterized.

We now let f above be the perfect CMB signal, and consider the prop-
erties of its spherical harmonic coefficients. In an isotropic universe, there
should in a statistical sense be nothing special about any particular direc-
tion. Therefore, only the scale should matter, and for a given ` the a`m’s
should have the same statistical properties for all m. Furthermore, standard
cosmological theory predicts that the a`m’s are Gaussian, and that all the
a`m’s are statistically independent1. Therefore the temperature part of the
signal is, in a statistical sense, perfectly described by the power spectrum

C` ≡ Var(a`m).

This is where observation and theory gets linked. While our particular uni-
verse is assumed to be “random”, cosmological theory makes very definite
predictions about the exact shape of the power spectrum, i.e., how much
variance there should be on each scale (see figure 1.3).

Note that for each `, the CMB signal has 2`+1 data points. Since we only
have one universe to observe (and one position to observe it from), this is all
we are ever going to get, and it sets an inherent limit to how well it is possible
to estimate C` from data. This is known as cosmic variance. In generalizing
to anisotropic models (as this thesis does), one path that is clearly infeasible
is to model each a`m independently, as we only have one observation.

1Apart from the fact that a`−m = (−1)ma∗`m. However, all coefficients but a`0 are
complex with independent real and imaginary part, so there are 2` + 1 independent data
points per `.
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Figure 1.3: The current best fit power spectrum as reported by WMAP. The
dots and error bars show the estimated power spectrum from the 7 year WMAP
CMB measurements. The solid line is the power spectrum predicted by the best
fit ΛCDM model. The gray band represents cosmic variance. The power spectrum
is roughly proportional to `−2, so it is conventional to scale the power spectrum by
`(` + 1)/2π when plotting. Image courtesy of Larson et al. (2010).

The power spectrum is used to fit the parameters of our universe to great
accuracy. Theoretical cosmological models each predict a power spectrum,
and stands or falls with how well that power spectrum match observation.
For instance, Ωm, the proportion of energy in the universe made up of mat-
ter (including dark matter), shifts the first peak up or down, while Ωb, the
proportion of energy that is ordinary matter, scales the second peak relative
to the first and third peak (Dodelson, 2003).

1.3 Hemispherical power asymmetry

Is the universe isotropic? That is, does it have the same statistical properties
in all directions? This is one of the fundamental assumptions of cosmology,
and so far there has been no decisive reason to believe otherwise. With
increasing amounts of data do however come an ability to ask more detailed
questions. Is there, perhaps, a tiny amount of anisotropy present that can
still not be attributed to chance or observational errors?

The question of cosmological anisotropy is currently an active field of re-
search. One of the most intriguing questions is the one that concerns this
thesis, namely that the CMB fluctuations appear to be stronger in one hemi-
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sphere than the other. In the following, we briefly review the literature to
date concerning this question.

The effect was first reported by Eriksen et al. (2004a), Hansen et al.
(2004) and Eriksen et al. (2005), who used several complementary analyses
on WMAP 1-year data as well as COBE data. First, the power spectrum
was computed locally for many small patches. Second, the sphere was split
in half (using many different directions) and a power spectrum estimated
for each hemisphere. In both cases, more power (stronger fluctuations) was
found in one particular direction on the sky. The results were confirmed to
be significant at the 95%-level or higher by Monte Carlo simulations.

These introductory studies were followed by model-based parametric stud-
ies that postulated the following phenomenological model. Suppose that a
Gaussian and isotropic CMB signal is modulated (multiplied point-wise) by
a dipole field (see figure 1.2). The dipole modulation serves to suppress fluc-
tuations on one hemisphere, and amplify them on the other, with a smooth
transition in-between. One can then estimate the parameters of this field; an
amplitude α and a preferred direction p̂. This model was first fit to data by
Gordon (2007) and Eriksen et al. (2007), both using the Metropolis algorithm
to sample from the Bayesian posterior distribution. The latter found a best
fit α = 0.114 at the 99% significance level in the WMAP 3-year data, when
including multipoles up to `mod = 40. The analysis was repeated at higher
resolution by Hoftuft et al. (2009), who found the best fit in the WMAP 5-
year data (V band) to be α = 0.08±0.021 for `mod = 64, and α = 0.07±0.019
for `mod = 80. Uncertainties indicate one standard deviation in the Bayesian
posterior, and correspond to 3.8σ and 3.7σ detections, respectively. Due to
the computational scaling of O(Npix

3) = O(`mod
6), it has been impossible

to extend these exact analyses to higher resolutions. Hoftuft et al. (2009)
note that their computations required about 50 000 CPU hours, and that
increasing `mod further would require quadrupling the number of pixels, at a
computational cost of about 3 million CPU hours.

Hanson & Lewis (2009) developed an approximate, quadratic maximum
likelihood (QML) estimator in order to fit a set of anisotropic models to
WMAP 5-year data, including the dipole-modulation model. By applying
their estimator to both WMAP data and a set of isotropic simulations, they
find the same effect, although at lower significance (see figure 1.5). They
note that the significance seem to fluctuate depending on how much data is
taken into account, and that the previously studied values of `mod yielded
higher significance than some other choices. They also found that the effect
diminish at higher scales. The WMAP team (Bennett et al., 2010) repeated
this analysis on 7-year WMAP data with similar results. They claim that all
findings of cosmological anisotropy to date are solely an effect of a posteriori
bias: If one tries too many weird estimators, some of them are bound to result
in spurious significant results.

In contrast to these model-based studies, Hansen et al. (2009) use the
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Figure 1.4: Figures from Hoftuft et al. (2009), the most recent exact model-based
analysis. Left: Posterior distribution p(α|d), including data up to `mod = 64.
Right: Estimates of the direction of strongest fluctuations, p̂. Other studies on
hemispherical power asymmetry all claim directions consistent with these.
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Figure 1.5: Recent results on hemispherical power asymmetry. All figures are
taken from the papers cited. Left: The results of Hanson & Lewis (2009) of fitting
the dipole-modulation field model to the WMAP 5-year data. Their |A| corre-
sponds to our α, and the different values of `max indicate that scales above this
value were not included (that is, were assumed to be isotropic). In the panel be-
low, significance based on simulating many isotropic maps is given. Upper right:
The p-values for dipole modulation as given by Bennett et al. (2010), computed by
applying the methods of Hanson & Lewis (2009) on WMAP 7-year data. Lower
right: The power spectrum estimated separately on a 90◦ discs in opposing hemi-
spheres. The direction is chosen to maximize power asymmetry (Hansen et al.,
2009).
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following non-parametric approach. For each of 3072 directions, the (binned)
power spectrum is computed for the hemisphere centered in that direction.
The result is a particular kind of “power maps” that clearly show more power
in one side of the sky than the other, in a direction consistent with the earlier
findings. In particular, the maps clearly show power asymmetry as high as
` = 502− 601, independent of lower `’s. As earlier mentioned, a claim made
by an isotropic universe model is that the data should be statistically inde-
pendent between different `’s. Therefore, the (spurious) preferred direction
found at different `’s should have been completely random. To establish the
significance of the results, the first order (dipole component) of the produced
power maps was used as a statistic, and compared with simulations. The sig-
nificance is found to vary with range of `’s, the mask used, and the parameters
of the estimator. In some cases the result is too significant to be reliably esti-
mated with the number of simulations used (p-value less than 0.01), although
a number of cases have p-values as high as 0.05–0.10, or higher.

The parametric analyses have to date either been restricted to only include
data to some particular `mod due to computational cost, or used approximate
methods. The non-parametric analysis does give a strong indication that
hemispherical power asymmetry is present on higher `’s, but the sensitivity
of the statistic chosen appears to be unclear. Further study is therefore
needed. The aim of this thesis is to develop an algorithm based on the CMB
Gibbs sampler that can be used to fit the dipole-modulation model to data.
The resulting algorithm is significantly faster than the previous exact and
model-based analysis used by Hoftuft et al. (2009), and makes it possible to
both check the claims of Hanson & Lewis (2009) and Bennett et al. (2010) in
detail, and to generalize to a wider class of parametric hemispherical power
asymmetry models. The algorithm will also scale well to the full resolution
of the Planck experiment. While a fit to WMAP data is important, it is
Planck that will provide the ultimate measurements of the CMB. Whatever
the findings, the jury is still out until the model is also tested against the
Planck data.

1.4 The Gibbs sampling framework

The CMB does not reach us in pristine condition. Many sources of noise
contaminate it, and these must be dealt with in order to do CMB analysis.
The Gibbs sampling algorithm, introduced to the CMB research community
by Jewell et al. (2004) and Wandelt et al. (2004), provides an elegant and
efficient way of dealing with all sources of signal contamination. Most ap-
plications so far have focused on reliable estimation of the power spectrum,
ΛCDM parameters, and foreground components in the case of an anisotropic
universe (e.g., Eriksen et al., 2004b, 2008). However, Groeneboom & Erik-
sen (2009) use the Gibbs sampler to estimate the parameters of a particular
anisotropic effect, using an approach that is very similar in nature to the one
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we will develop.

A simplified version of the model used for data analysis is

d = s + n,

where d is the data observed by the instrument, s is the CMB signal that we
are interested in, and n is the instrumental noise. The full model is presented
in chapter 3. For various good reasons, we will consider all of these to be
multi-dimensional Gaussian vectors.

The data sets are huge: In the case of WMAP there are about 3.1 million
pixels of data, while the ongoing Planck mission will provide about 50 million
pixels. Performing computations that scale linearly with available data is
not a problem for such data sets. However, many computations needed for
statistics are cubic in the size of the data. The full covariance matrix of d
alone would be 10 petabytes if ever computed. Factoring such a matrix, even
once, is clearly out of the question. For this reason, brute-force approaches
are not suitable. It does however turn out that some basis changes can be
made to make the problem tractable. First off, we will assume that the noise,
n, is uncorrelated between pixels, so that its covariance matrix N is diagonal.
And, assuming an isotropic universe, each spherical harmonic coefficient of
the CMB signal s is statistically independent of other coefficients with a
given variance C`, producing a diagonal covariance matrix S. For anisotropic
universe models, correlations are introduced, although in our case S will still
have a sparse structure.

It must be noted that the covariance matrix Var(d) = S + N is still
dense in either basis. This is where the Gibbs sampling algorithm comes in.
Assume that the cosmological model is parametrised through a parameter
vector θ, and that we want to draw samples from the Bayesian posterior
distribution p(θ|d). The Gibbs sampling approach is then to sample from the
joint posterior distribution p(θ, s|d), by alternating between sampling from
the conditional posteriors. First, θ(0) is initialized to some arbitrary starting
point, and then one samples

s(1) ∼ p(s|θ(0),d)

θ(1) ∼ p(θ|s(1),d) = p(θ|s(1))

s(2) ∼ p(s|θ(1),d)

θ(2) ∼ p(θ|s(1),d) = p(θ|s(2))

...

Some of the first samples must be discarded because of the bias introduced
by the starting point (“burn-in”), but eventually the samples do come from
the right distribution. While the samples will be correlated, this does not
stop us from using them to make inferences about θ.
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First, note that if one already knows the CMB signal, the observation
adds nothing of value, so that p(θ|s,d) = p(θ|s). Therefore the Gibbs sam-
pling approach decouples the issue of dealing with how observations are made
from the cosmological modelling. Second, assuming that the CMB signal is
Gaussian, there exists an efficient algorithm for sampling from p(s|θ,d). In
chapter 3, we will describe how this is in fact a Gaussian distribution with
mean ŝ = (S−1 + N−1)−1N−1d and covariance matrix (S−1 + N−1)−1. By
using an iterative linear system solver, and performing basis changes between
pixel space and spherical harmonic space, it is computationally feasible to
draw samples from this distribution. On WMAP data, drawing a sample
from p(s|θ,d) about 15 minutes, in parallel on eight 2.66 GHz CPUs.

To fit a model, we also need to sample the parameters θ, given the signal
s. In chapter 4 we will derive a nice expression for the covariance S(θ) in the
dipole-modulation model, and show that it is very sparse, so that it is suitable
for computations. The distribution of the parameters given the signal is

p(θ|s) ∝ |S(θ)|−1/2e−
1
2
s†S(θ)−1s p(θ),

where p(θ) is our Bayesian prior. This is not a Gaussian, because it is S
that varies with the parameters. A method for drawing independent samples
being out of reach, we turn to Monte Carlo Markov Chain (MCMC) methods.
Developing this sampler and combining it with the Gibbs sampler is the
purpose of chapter 5.

1.5 Implementation and analysis

Exciting algorithms do not translate into cosmological insight without first
being turned into debugged code. The goal of this thesis has not merely been
to develop methods, but also to implement them. The result is PyCMB, a
modular Python package for CMB analysis. The code is implemented from
scratch, independently of any earlier cosmological code. We give an overview
of the package in chapter 6, and turn to testing it on simulations and apply
it to data in chapter 7.
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Chapter 2

Cosmology

The focus of this thesis is very much on algorithms and computations, and
our treatment of hemispherical power asymmetry is purely phenomenological.
We do not intend to dive into the question of how power asymmetry could be
explained physically. Still, we include a chapter about the currently accepted
cosmological concordance model in order to provide some context, focusing on
assumptions particularly relevant to statistical CMB analysis. In this chapter
we rely on Dodelson (2003) unless otherwise noted.

2.1 Fitting a power spectrum

The cornerstone of cosmological data analysis is the power spectrum. Fig-
ure 1.3 displays the temperature power spectrum. Additional information is
present in the polarization of the CMB photons, which can be characterized by
polarization power spectra and polarization-temperature correlation spectra.
Assuming that we live in an isotropic universe, and that the CMB is Gaus-
sian, these power spectra together contain all the cosmological information in
the CMB, since they describe the variance of each CMB spherical harmonic
coefficient a`m, and the correlations between such coefficients in temperature
data and polarization data. We will not make use of polarization data in this
thesis and focus on the temperature power spectrum alone.

In the case of an anisotropic universe, correlations are induced between the
CMB signal coefficients a`m, so that the power spectrum is no longer sufficient
to describe the statistical properties of the CMB signal. A Gaussian signal can
always be described by the full covariance matrix S, and different anisotropic
models result in different predictions for the structure of S. If the signal
is non-Gaussian, one obviously need more parameters than the covariance
structure to describe the signal. Both anisotropy and non-Gaussianity are
topics of current investigation, although it seems safe to say that after WMAP,
the isotropic, Gaussian model is the null hypothesis of the CMB research
community.

Given a cosmological model and an associated set of parameters, one is
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able to predict a power spectrum and check it against data. The current con-
cordance model ΛCDM is based on six parameters, the more available ones
being the density of atoms and electrons (Ωb), density of all matter including
dark matter (Ωm), and dark energy content (ΩΛ) (Larson et al., 2010, Dodel-
son, 2003). A cosmological model is typically fit to data by drawing samples
from the posterior distribution, using the following process for each sample:

• Use Monte Carlo Markov Chain (MCMC) sampling to propose jumps
in cosmological parameter space. A popular code for this is CosmoMC1

(Lewis & Bridle, 2002).

• For each proposed position in parameter space, compute the correspond-
ing power spectrum by carrying out the computations we will sketch
below. A popular code for this is CAMB2 (Lewis et al., 2000).

• Finally, compute the likelihood of the computed power spectrum with
respect to observed CMB data. The likelihood code depends on the
data included. We mention a brute force approach in section 3.2.1. An
approach based on samples produced by Gibbs sampling can be found
in Rudjord et al. (2009).

2.2 Isotropy, inflation and Gaussianity

The observable universe appears to be very close to isotropic and homo-
geneous, supporting the the cosmological principle that our position in the
universe is not “special” in any way. There appears to be no preference for
a particular direction, the average density of matter appears to be the same
everywhere, and perturbations to matter appear to have the same statistical
properties everywhere. In particular, the perturbations in the CMB look the
same regardless of position on the sphere.

How did this come into being? The idea of Big Bang is not that of an
explosion localized in space, but rather that all of space itself was once shrunk
together, and has since then expanded. Since the photons in the CMB travel
at the speed of light, there is (one would think) no way that regions we observe
in one part in the CMB can ever have been in causal contact with regions
that we observe in the diametrically opposite direction. And if they have
never been in causal contact, there has not been a chance for them to reach
equilibrium. There is no reason they should look the same.

Inflation is the currently accepted solution to this problem (and some
other problems). The idea is that during a very small fraction of a second,
the universe went through a period of accelerated expansion, expanding its
size by at least a factor of 1028. The consequence is that regions that are not
in causal contact today was in causal contact before inflation happened. By

1http://cosmologist.info/cosmomc
2http://cosmologist.info/camb
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stretching out a tiny volume to enormous proportions, everything inside that
volume now look homogeneous.

The radiation and matter density is thought to have been very uniform.
However, in order to eventually form the structures that we see today, it must
have had small perturbations in it. Another problem that inflation solves is
how those initial perturbations are set up. The somewhat poetic explanation
is that at the tiny scales prior to inflation, quantum mechanics comes into
play. The radiation and matter density fluctuated quantum mechanically
around its ground state. These fluctuations were then blown up by inflation
and became the seeds of today’s galaxy clusters. A consequence of this theory
is that the perturbations should be very close to Gaussian, and that infla-
tion ultimately predicts how much fluctuation there should be on different
scales. In this context, Gaussianity is not simply a result of the law of large
numbers, as in most other settings. Instead, it is thought to arise from fun-
damental properties of physics. After inflation, causal physics starts to act,
structures form and the radiation and matter densities are processed, but for
large scales all of these are accurately described as linear transformations, so
that Gaussianity is preserved. The projection of density fluctuation from 3D
space to the sphere of the CMB is also a linear operation, and so the CMB
is Gaussian, or at least very close to it. Naturally, much work has gone into
checking both isotropy and Gaussianity in the CMB.

2.3 Evolution: The Einstein-Boltzmann dif-

ferential equations

After inflation, matter (primarily dark matter) and photons are spread across
the universe, with tiny perturbations in the density. Gravity then comes into
play, so that perturbations grow larger. Because of the limited speed of light,
gravity acts first on small scales, and then on larger and larger scales.

In the very early universe, it is too hot for electrons and protons to com-
bine into hydrogen. All the free electrons interact with photons, creating
a “fog” in which light cannot move far. At some point, electrons, protons
and neutrons (baryons) are so clumped together that the photon pressure
(collisions between photons and free electrons) eventually cause the baryons
to push away from each other again. Photon pressure and gravity acting in
opposite directions cause oscillations. These oscillations can down the line be
observed in the CMB power spectrum. The first peak is the scale on which
baryons has had time to compress once, the second peak the scale on which
they had time to compress once and then decompress, the third peak had
time to compress–decompress–compress, and so on.

Finally, temperature got so low (around 3000 Kelvin) that electrons could
bind to proton to form hydrogen. Suddenly, the universe became transparent,
and the image froze (“recombination”). Many photons reach us today that
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last scattered at this point, and those make up the CMB. While the CMB
as a whole is very uniform, the small perturbations in the CMB correspond
directly to small perturbations in matter and light back then.

If one postulate a specific cosmological model and a set of cosmological
parameter values, one can now carry out the calculations to find out the
statistical properties of the constituents of the universe at the time of recom-
bination, and how the photons would travel through space-time to reach us
today. The result is a prediction of the CMB power spectrum (see figure 1.3).

We will of course skip the details, but we hope to give the gist of what
kind of calculations is needed to do this. Essentially, one sets up differential
equations for the quantities that needs to be tracked. To keep things tractable,
one first set up a zero order universe where one averages over all locations
and only works with a time component, and then work with a first order
perturbation of the zero order solution. Any higher order terms are neglected.
This procedure is believed to provide reliable answers for scales down to
approximately 32 million light years. The components that must be tracked
are:

• Φ(~x, t),Ψ(~x, t) – Curvature and Newtonian potentials. Describes how
space-time curves at position ~x at time t, according to General Relativ-
ity (this is but one choice of parameters).

• T (~x, t, p̂) = T0(t)(1+Θ(~x, t, p̂)) – Denotes how many photons are present
at a given time and position, having the direction given by p̂.

• nb(~x, t) = n
(0)
b (1 + δb(~x, t)), vb(~x, t) – Number density of baryons at a

given time and position, and their average velocity, respectively.

• n(~x, t) = n(0)(1 + δ(~x, t)), ~v(~x, t) – Number density of dark matter at a
given time and position, and its average velocity, respectively.

• Neutrinos are included in a similar way.

The Boltzmann equations then describe the collisions between particles, while
the Einstein equations describe the behaviour of space-time in the presence of
particles. The force of gravity is embedded into the latter and is not treated
explicitly. Combining them gives a set of Einstein-Boltzmann equations. For
instance, for dark matter we have

∂δ

∂t
+

1

a

3∑
j=1

∂vj

∂xj

+ 3
∂Φ

∂t
= 0, (2.1)

3∑
j=1

(
∂vj

∂t
+
da/dt

a
vj +

1

a

∂Ψ

∂xj

)
= 0, (2.2)

where a(t) is the scale factor (size of the universe relative to today). All of
the components described above set up similar partial differential equations,
all coupled together.
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The next step is to do a Fourier transform from positions ~x to Fourier
waves ~k. Now, the assumption that the universe is isotropic and homogeneous
on large scales comes into play. The properties of the universe should be the
same regardless of direction (and phase) of a wave ~k. So, rather than studying
all of 3D space, we only study Fourier waves in a single direction, characterized
by a real scalar wave-number k. Because of the Fourier transform, taking the
partial derivatives with respect to xj is turned into multiplication by ik. We
then end up with a much nicer set of ordinary differential equations (ODEs),
because we can solve for each k separately. This is a consequence of only
expanding the perturbations to first order. Together with a change of variable
in the time dimension, the equations above become

δ̇ + ikv + 3Ψ̇ = 0, (2.3)

v̇ +
ȧ

a
v + ikΨ = 0. (2.4)

Inflation theory sets up the initial conditions for the system. The initial con-
ditions of all variables turn out to eventually be linear in the initial condition
for Φ, Φinit. In turn, Φinit is stochastic with zero mean. A particular theory of
inflation will determine its variance as a function of k, the primordial power
spectrum P (k), where it is assumed that there are no correlations between
different k. Because of the linearity, we can at this stage simply let Φ be
initialized as 1, and then insert P (k) later.

Now, we solve the set of differential equations numerically. Of particular
interest are the photon perturbations Θ. In principle, the quantity Θ(~p) =
Θ(~x = here, t = now, p̂) is the strength of the CMB fluctuations in direction
p̂ on our sky. We seek to understand its statistical properties. Once it is
Fourier-transformed from ~x to k, it turns out that the only part of p̂ that
influence Θ is the angle given by cos θ = p̂·k̂, where k̂ is the arbitrary direction
of the Fourier waves we choose to track. Furthermore, Θ can be Legendre-
transformed in terms of cos θ, resulting in what is essentially an harmonic
transform on the circle. The resulting quantities are Θ`(k, t), where each
integer ` indicate scale, just like spherical harmonics (` = 0 is the monopole,
` = 1 is the dipole, and so on). Now, Θ`, evaluated today at our current
position, does in fact correspond to a`,0 in the spherical harmonic expansion
of the CMB signal. Since all a`m have the same statistical properties for each
`, the variance of Θ` will give us the power spectrum,

Cov(a`m, a`′m′) = δ``′δmm′C` = δ``′δmm′Var(Θ`).

Now, by Θ`(k) we indicate Θ`(k, t) evaluated today3. Keep in mind that
Θ`(k) is proportional to Φinit, so it has zero mean and a variance proportional

3In practice, a so-called line-of-sight integration approach is employed (Seljak & Zal-
darriaga, 1996), which allows for computing Θ`(k) today for a large range of `’s, while still
only tracking ` up to around 6 when solving the Einstein-Boltzmann ODE.
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to the primordial power spectrum P (k). To retrieve C`, we take the variance
and Fourier transform back to a particular position, putting back P (k) in the
process,

C` ∝
∫

d3k

(2π)3
P (k)Θ2

`(k).

In addition to Dodelson (2003), we have relied on Callin (2006), who provide
an excellent introduction to the computational aspects of the power spectrum.



Chapter 3

From CMB observation to
CMB signal

3.1 About CMB observations

One can not fit a cosmological model to observational data without taking
into account how the data was gathered. Let us start with putting down the
typical model for the data analysis:

d = PBs + n +
∑

i

fi (3.1)

Here d is the raw observed data, P is the “pixel window”, B is the “beam”,
s is the underlying CMB signal, n is instrumental noise, and the fi are fore-
ground components contaminating the CMB. The signal s is the quantity of
interest here; a cosmological model will predict the statistical properties of s,
and checking a model against data means checking how well those statistical
properties match the observed data d.

The vectors above represents fields on a sphere (in R), and can be repre-
sented in many ways. The most important ones are as a set of pixels on the
sky, and as a set of spherical harmonic coefficients. Either way, the deriva-
tions below stay the same, as a Gaussian vector is still Gaussian after a linear
transformation. For now, we will not be specific about representation, but
get back to the details in section 3.3.

Map making and pixel window The output from an observation, whether
using a satellite telescope or a ground-based telescope, is a “time stream”: A
stream of pointing directions and associated temperatures. Actually, in the
case of WMAP, the observing instrument is a differential radiometer with two
pointings at any time, and where only the difference between the two has any
meaning. At any rate, some map-making algorithm is run to turn the time
streams into pixelized maps, which in the case of WMAP are downloadable
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from NASA’s LAMBDA1 service. We will not care about the details of these
algorithms. Pixelization on the sphere is not a trivial problem, and there is no
canonical way of doing it. The HEALPix2 pixelization scheme and software
package (Górski et al., 2005) has by now become the de facto standard in the
CMB research community, and is the format that the WMAP data is made
available in.

While we treat map-making as a black box, we do need to care about
the effect pixelization has on the data. In the analysis, the value of a pixel
is treated as a sample from a field, taken in a single infinitely small point
in the center of the pixel. During map-making, all samples within the pixel
surface contribute to this quantity, so that the pixel represents the average of
an area. Therefore, the pixelization causes a certain smoothing effect which
must be accounted for, and this is what P represents above. In general this
operation is difficult to compute, but using an approximation it is simply
P`m,`′m′ = p`δ``′δmm′ in spherical harmonic space. HEALPix ships with data
files containing such approximate P for the different resolutions.

Beam Closely related to the pixel window is the instrumental beam. The
telescopes never read the temperature in a single point, but observe photons
coming from a small region around the pointing direction. The region is
essentially a density, where more photons come from the center than the
edges.

Each point on the sky is scanned several times, and unless one assumes
that the beam is azimuthally symmetric, one must treat each scan of a point
separately depending on the orientation of the beam. To make things compu-
tationally feasible, analysis of WMAP data typically assumes that the beam
is symmetric. In that case, the observed image of the CMB I(p̂) is simply a
full sky convolution of the the physical CMB with the beam density b,

I(p̂) =

∫
s(n̂)b(n̂ · p̂)dΩn̂.

In spherical harmonic space, this turns out to be simply the linear transform B
above, with B`m,`′m′ = b`δ``′δmm′ . Here b` is a normalised Legendre transform
of the radial profile of the beam density (Page et al., 2003). As the effects of
the beam and the pixel window are so similar, we will typically treat them
together, defining A ≡ PB.

Instrumental noise No observation is perfect, there is always some random
noise. If all systematics are known, such random noise should however have
zero mean, and one can also hope to know its properties. As one observe the
same spot for a longer period, the random noise should cancel out and the
average of the observation should tend to the real signal. Thus this is the

1http://lambda.gsfc.nasa.gov/
2http://healpix.jpl.nasa.gov/
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kind of noise that decays with observation time. The WMAP 7-year data has
less noise than the 1-year data.

We will model the noise as an additional additive Gaussian component
per pixel, with zero mean and no correlation between pixels, denoted by n
above. We will of course never assume that we know anything about its
value. However, its statistical properties, given by the covariance matrix,
Var(n) = N, are very important to our analysis. For WMAP, each radiometer
has an estimated noise level σ, which is combined with the number of times
a pixel has been scanned to find the noise in each pixel i,

σi =
σ
√
ni

, (3.2)

where ni is the number of times WMAP scanned pixel i. The σi are known
as the RMS map. In Gibbs sampling computer codes, we will prefer to work
with N−1, which, because we assume no correlation, is simply 1/σ2

i on the
diagonal.

Galaxy cut and point sources Our own Milky Way is a powerful source
of radiation in the same frequencies as the CMB, and must simply be masked
out. Similarly, several small spots on the sky have been identified as “point
sources” of radiation, hiding the CMB, and have to be masked out manually
to avoid signal contamination (see figure 1.1). We will adopt the masks of
the 7-year WMAP analysis (Jarosik et al., 2010, Wright et al., 2009).

In terms of modelling, we simply embed the mask in the statistical proper-
ties of n, so that the additive noise in masked pixels is given so large variance
that the pixel values are ignored in any analysis. Specifically, we set the di-
agonal components of N−1 that corresponds to masked pixels to zero. This
makes N−1 singular, but N−1 modified in this way is clearly the limit as the
pixel noise within the mask goes to infinity, and in the computer codes it only
enters through the matrix N−1 + S−1, which is non-singular.

Foregrounds Even after masking out parts of the sky, the CMB is not the
only source of radiation in the frequencies we look at. Three sources are
especially important: “Free-free” refers to radiation emitted by collisions of
free electrons, “thermal dust” is radiation from atoms within gas clouds, and
finally “synchrotron” refers to emissions from certain supernova remnants.
The level of these will naturally vary between different pixels on the sky. In
order to estimate the foregrounds, an important fact is that all the compo-
nents have different signatures in the radiation spectra. This can be used to
estimate foregrounds from WMAP data itself (see figure 3.1). Another ap-
proach is to use independent observations. For instance, independent maps
of Hα-emission from hydrogen give hints as to where there are free electrons
(Gold et al., 2010).

We will not go into details here, but simply trust that the WMAP team
has done a good job with the foregrounds and use the foreground cleaned
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Figure 3.1: The frequency bands of WMAP, and the level of different sources
of radiation. Note that the CMB radiation in itself is much stronger than the
foregrounds at 2.725 K, but what we are interested in is the fluctuations in the
CMB. Image courtesy of LAMBDA/Bennett et al. (2003).

WMAP maps available on LAMBDA (Gold et al., 2010). A consequence is
that uncertainties in estimating the foregrounds are not propagated to the
final parameter estimates. In our case of an hemispherical power asymmetry
model, Hoftuft et al. (2009) found that the estimates parameters are essen-
tially insensitive to foregrounds. We will assume the same in this thesis.
However, it would have been possible to do joint foreground and parameter
estimation, which would have propagated the uncertainties in the foreground
estimates perfectly to uncertainties in the parameter estimates (see Eriksen
et al., 2008).

Among the foregrounds are also the monopole and dipole components.
First, the monopole (overall average) at 2.725 K is uninteresting for our anal-
ysis, and the WMAP observations are in fact insensitive to it. Second, our
own point of observation has a distinct movement with respect to the CMB
sphere, which because of the Doppler effect creates a strong dipole component
that completely drowns out any cosmological information. While the best fit
mono- and dipole of the maps are also subtracted from the foreground cleaned
maps by the WMAP team, these estimates and their uncertainties are cou-
pled to the rest of the analysis. This coupling has earlier been noted to affect
the analysis of the dipole-modulation model by Eriksen et al. (2007). To be
on the safe side we should therefore include them in our statistical model
and make sure we are insensitive to them, rather than just inserting a single
best fit estimate. The mono- and dipole then enters the model as foreground
components fi above. We defer the details to section 3.4.
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3.2 Fitting models to data through Gibbs

sampling

3.2.1 The brute-force approach

Given some CMB data d and its associated properties, how does one fit a
cosmological model to the observations? Let us write down the model for the
data again:

d = As + n

Here A contains both pixel window and beam, we assume that foregrounds
have been identified and subtracted from d in a pre-processing step, and we
simply ignore the monopole and dipole for the time being out of notational
convenience.

Assume now that the signal s is Gaussian. As it is a perturbation, it
should have zero mean, so it is fully characterized by its covariance S, and
specifying a cosmological model boils down to specifying some parametrisa-
tion of S. For an isotropic model we have S`m,`′m′ = C`δ``′δmm′ , and can let
C` be the parameters. Fitting the model then means estimating an observed
power spectrum. Alternatively, one can make further assumptions and use
the various cosmological parameters themselves (Ωm, Ωb, and so on). By the
process described in chapter 2, such parameters can be turned into a power
spectrum C`, and thus S.

At any rate, let θ be some model parameters of choice. From a Bayesian
perspective, the recipe is as usual

p(θ|d) ∝ p(d|θ)p(θ),

where p(θ) is our (possibly flat) prior on the parameters. Here d is a sum of
two uncorrelated Gaussians, and is thus Gaussian with parameters

E(d|θ) = AE(s) + E(n) = 0

Var(d|θ) = AVar(s|θ)AT + Var(n) = AS(θ)AT + N ≡ C(θ).

Simple enough in theory, but in practice this approach has a major draw-
back. While N is sparse in pixel space, and S is sparse in spherical harmonic
space (at least for the models we will be looking at), their sum is dense in
either space. To evaluate the likelihood p(d|θ), one would need to Cholesky
factor C(θ) for each new step in θ. This scales as O(Npix

3) = O(`max
6).

This currently stops such computation at Nside = 32 or `max ≈ 80 for most
purposes3.

3Cholesky factorization is by no means the only way of computing the exponent of the
Gaussian, χ2 ≡ dT C(θ)−1d. For instance, one can use the Conjugate Gradients method
described in section 3.5.1 to solve the system. However, in order to properly evaluate the
posterior, we need to find p(d|θ) as a function of θ (likelihood). This means that we also
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3.2.2 Gibbs sampling

We now narrow down and assume that we can make do with the rather
common approach of drawing samples from p(θ|d). That is, we rule out
maximum-likelihood type methods for finding confidence regions. The trick
is then to draw from the joint posterior of the parameters with the CMB
signal, p(θ, s|d). The computations will turn out to be considerably cheaper,
and the samples of θ will still be from the marginal posterior, p(θ|d).

Does this really make our job easier? Yes, through the beauty of Gibbs
sampling. The algorithm simply states that given a starting point θ(0), we
can iteratively sample from the conditional distributions.

s(1) ∼ p(s|θ(0),d)

θ(1) ∼ p(θ|s(1),d)

s(2) ∼ p(s|θ(1),d)

θ(2) ∼ p(θ|s(2),d)

...

Under some conditions, and regardless of the value of θ(0), the distribution of
these samples will converge to the joint posterior distribution, p(θ, s|d). The
Gibbs sampling algorithm was introduced to the CMB community by Jewell
et al. (2004) and Wandelt et al. (2004), who develop a method for efficiently
drawing samples from p(s|θ,d). In the following we review this algorithm.
The crucial point will be that as we draw a sample from a distribution, rather
than evaluate a likelihood, the determinant in the expression for the Gaussian
density is not needed. Therefore, it scales as O(`max

3), which is quite an
improvement over the O(`max

6) scaling of the brute-force likelihood evaluation
approach.

Sampling from p(θ|s,d) is for many models trivial, computationally speak-
ing. We note that p(θ|s,d) = p(θ|s), i.e., if we already know the CMB signal,
the CMB observation adds nothing to our knowledge of the cosmological pa-
rameters. We certainly do not expect cosmological parameters to directly
affect the WMAP sensors4.

A neat property of the CMB Gibbs sampler is that one decouples the
lower-level issues of of data analysis, such as instrumental properties, from
model parameter estimation, which can then be done more efficiently. The
remainder of this chapter is dedicated to the former, while we discuss Gibbs
sampling in the context of our particular model in chapter 5.

need to efficiently find the determinant, |C(θ)|. In the case of hypothesis testing, a common
approach is to simply treat χ2 as an estimator with unknown distribution, and then use
simulations from a null model to establish the significance of a change in χ2.

4This is simply how we define what we mean by “the CMB signal”. The photons emitted
at recombination are certainly affected by cosmological parameters on their way to us, but
all such effects are considered part of the cosmological model, and embedded in the power
spectrum.
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3.2.3 Sampling from the CMB signal posterior

To use Gibbs sampling, we need an efficient algorithm for drawing samples
from p(s|θ,d). Using Bayes’ rule,

p(s|θ,d) ∝ p(d|s, θ)p(s|θ)
= p(d|s)p(s|θ).

Note that the “prior” p(s|θ) is conditional on the cosmological model, and
we will insert a known expression leaving no room for a “prior opinion”.
Also, the real CMB signal is sufficient for predicting the observed CMB, so
p(d|s, θ) = p(d|s).

Assuming like before that the signal is Gaussian with zero mean and
covariance S(θ), we can use Bayes’ rule to find the posterior distribution of
the signal given the observed data. First, note that conditional on s, we have

E(d|s) = As + E(n) = As

Var(d|s) = Var(n) = N,

so that

p(s|d, θ) ∝ p(d|s, θ)p(s|θ)
∝ e−

1
2
(d−As)TN−1(d−As)e−

1
2
sTS−1s. (3.3)

We only need the probability density up to a constant factor, so we can ignore
terms in the exponent that do not contain s:

(d−As)TN−1(d−As) + sTS−1s

=sTATN−1As− 2sTATN−1d + sTS−1s + const.

=sT (S−1 + ATN−1A)s− 2sTATN−1d + const. (3.4)

By only considering the quadratic part for now, it is clear that we can rewrite
equation (3.3) as

p(s|d, θ) ∝ e−
1
2
(s−ŝ)T (S−1+ATN−1A)(s−ŝ), (3.5)

for some expectation ŝ of the posterior. In other words, p(s|d, θ) is Gaus-
sian with covariance5 (S−1 + ATN−1A)−1. Equating the parts linear in s in
equations (3.4) and (3.5), we see that ŝ must satisfy

−2sT (S−1 + ATN−1A)ŝ = −2sTATN−1d.

5The matrix is invertible: N (and N−1) may in our setup approach singular matrices,
but S (and S−1) will for all relevant cases be non-singular. All of these matrices are positive
(semi)definite, and so (S−1 + N−1) is strictly positive definite and invertible.
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Since this must be satisfied for any choice of s, we can simply remove −2sT

on both sides, and inverting the left-hand side matrix we have

ŝ = (S−1 + ATN−1A)−1ATN−1d.

This is known as the “Wiener-filtered map”, and represents the single most
likely map.

A simple brute-force approach to sampling is now to form and Cholesky
decompose the inverse covariance (S−1 + ATN−1A) = LLT , draw a vector of
standard normal variates x, and let our sample s = L−Tx+L−TL−1ATN−1d.
But again, while N is sparse in pixel space and S is sparse in spherical har-
monic space, the sum of their inverses is dense in either space, making the
approach too expensive for the resolutions we want to look at. However, it
is smarter than the default textbook approach of Cholesky decomposing the
covariance (S−1 + ATN−1A)−1.

To get away without forming the full dense matrix, we need another ap-
proach. We start with finding the mean ŝ. Note that the inverse covariance,
S−1 + ATN−1A, is much easier to work with than the covariance itself. It-
erative methods seem like a good start, as they make it possible to solve a
linear system Ax = b simply by repeatedly multiplying with the left hand
side matrix A. In this case, the matrix (S−1 + ATN−1A) is positive definite,
so we can use the Conjugate Gradients (CG) method (which is the subject
of section 3.5.1). Since the mean ŝ = (S−1 +ATN−1A)−1ATN−1d, it is clear
that we can use CG to efficiently find ŝ by solving the equation

(S−1 + ATN−1A)ŝ = ATN−1d,

using many multiplications rather than a full decomposition. The multipli-
cation can be done by solving for S and N separately, so that through some
basis changes one can take advantage of the sparse structure of the matrices.

The mean is not enough, what we really want is a sample from the pos-
terior. That is, the mean plus some random fluctuation, so that the samples
have the right covariance. Let us try to make use of the work done in the CG
search not only to get the right mean, but also to get the right covariance.
The only way this could work is by adding a random Gaussian fluctuation
map ω to the right hand side:

(S−1 + ATN−1A)s = ATN−1d + ω.

The solution s is then given by

s = ŝ + (S−1 + ATN−1A)−1ω,

so it is clear that if we let ω have zero mean, s has the right mean. Note that
the covariance of s is

(S−1 + ATN−1A)−1 Var(ω) (S−1 + ATN−1A)−1.
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In a sense, twice as much as we want. This problem is not surprising, given
that we never found a Cholesky factor or a matrix square root. However, if
we can make ω have covariance S−1 + ATN−1A, the problem is solved. And
this is much easier, as we can simply add together two independent Gaussian
draws with zero mean and covariances S−1 and ATN−1A, respectively. Since
S and N are sparse in spherical harmonic and pixel space, respectively, these
matrices are much easier to factor in order to simulate such draws.

In summary, the algorithm is:

• Draw two vectors of standard normal variates, ω0 and ω1.

• In order to draw random vectors, find a factor6 F such that FFT = S.
In the isotropic case, one simply takes the square root of each diagonal
element, F = S1/2. Since we assume uncorrelated pixel noise, it is easy
to factor it as well N = N1/2N1/2.

• Using Conjugate Gradients, solve the following equation for s:

(S−1 + ATN−1A)s = ATN−1d + F−Tω0 + ATN−1/2ω1. (3.6)

By the construction of the algorithm, s will then be a draw from the posterior
p(s|θ,d). Finally, it is easy to see that an alternative formulation is

(1 + FTATN−1AF)(F−1s) = FTATN−1d + ω0 + FTATN−1/2ω1 (3.7)

where one solve for F−1s first, and then simply multiply with F to retrieve s.
This is the formulation commonly used in the literature. There are further
notes on this choice in section 3.5.1.

3.3 Basis changes: Pixels and spherical har-

monics

Until now, we have conveniently left the representation of s, N−1, and so
on, unspecified. Now the time has come to care. In this section, and this
section only, we will be very explicit and denote vectors of spherical harmonic
coefficients x̃, while the corresponding pixel vectors are denoted x̂.

3.3.1 Linear algebra notation for spherical harmonic
transforms

The transform from x̃ to x̂ is

x̂i =
`max∑
`=0

∑̀
m=−`

x̃`mY`m(n̂i) (3.8)

6We will denote symmetric factors by the notation S1/2, but F in this case need not be
symmetric.
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where n̂i is the position of (the center of) pixel i. In this context, the pixel
represents a sample of a field in an infinitely small point, and the only ap-
proximation done is by having a finite rather than infinite `max. In fact, if the
signal is band-limited (x̃`m = 0 for all ` > `max), this transformation is exact.

We will write Y for an Npix-by-N`m matrix containing the spherical har-
monic coefficients Yi,`m = Y`m(n̂i). It is then clear that equation (3.8) can be
written

x̂ = Yx̃.

In HEALPix, the routine alm2map is available for this computation. It refor-
mulates the operation in term of discrete Fourier transforms for efficiency.

The opposite transform, going form x̂ to x̃, is slightly messier, as there
is no analogue to the discrete Fourier transform on the sphere. Instead of a
sum, we have to approximate an integral over the sphere,

x̃`m =

∫
x(n̂)Y ∗

`m(n̂)dΩ, (3.9)

where x(n̂) is the field that is sampled in x̂, and dΩ represents an area element
on the sphere. This is computed by a quadrature,

x̃`m =

Npix∑
i=1

wix̂iY
∗
`m(p̂i)∆Ωi. (3.10)

Here ∆Ωi represents pixel area, which in the case of HEALPix is the same for
all pixels, i.e., ∆Ωi = 4π/Npix, while the wi are quadrature weights. HEALPix
uses one weight per iso-latitude ring in its map2alm routine, in order to be
able to use discrete Fourier transforms on each such ring. Equation (3.10)
can be written

x̃ = Y†Wx̂

with the same Y as before, and W a diagonal matrix containing pixel weight
and pixel area, Wij = wi∆Ωiδij.

Because the spherical harmonics are orthogonal, so that∫
Y`m(n̂)Y ∗

`′m′(n̂)dΩ = δ``′δmm′ ,

it is clear that when Npix is high enough, Y†WY ≈ 1. Therefore a set of
harmonic coefficients can be adequately represented in pixel space, and a
round-trip will be OK. In practice, “high enough” depends on `max. Experi-
ence show that as long as `max ≤ 2Nside one is perfectly safe, and that `max

as high as 3Nside − 1 can work well, although less accurate. These some-
what vague statements are in contrast to Discrete Fourier Transforms, where
orthogonality is always exact.

We will not rely on the opposite behaviour, that arbitrary pixel maps
can round-trip through spherical harmonic space. The important thing is
that x̃ = Y†Wx̂ makes x̃ contain all information up to some band-limitation
scale `max. That is, we treat Y†W as a projection.
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3.3.2 Reinterpreting the Gibbs sampling equations

How do the basis changes translate into CMB analysis and Gibbs sampling?
Writing down the model again, on a more explicit form, what we have in our
observation pixel map is

d̂ = YÃs̃ + n̂.

Note that the beam and pixel window Ã will become zero at some ` (which
depends on the size of the beam), and Nside can be selected with respect to
this to make sure all the information in the smoothed signal Ãs̃ is taken into
account. We continue by including Y in the signal posterior equation (3.3),

p(s̃|d̂, θ) ∝ p(d̂|s̃, θ)p(s̃|θ)

∝ e−
1
2
(d̂−YÃs̃)T N̂−1(d̂−YÃs̃)e−

1
2
s̃†S̃−1s̃,

where it should be noted that the first exponential is in pixel space with
an Npix-by-Npix covariance matrix, while the second exponential contains an
N`m-by-N`m covariance matrix. Gathering terms in s̃, the exponent becomes

s̃†(S̃−1 + Ã†Y†N̂−1YÃ)s̃− 2s̃†Ã†Y†N̂−1d̂ + const.,

so that the total Gaussian density is expressed in spherical harmonics. By
repeating the derivations of the CMB Gibbs sampler again, but this time
include Y, we find that a sample from p(s̃|d̂, θ) is given by solving

( ˜S−1 + Ã†Y†N̂−1YÃ)s = Ã†Y†N̂−1d̂ + F̃−†ω̃0 + Ã†Y†N̂−1/2ω̂1. (3.11)

Note that Y† does not indicate a transform from pixel space to spherical
harmonic space (an integral, which we have denoted Y†W), but is rather the
conjugate transpose of the transform from spherical harmonic space to pixel
space (a sum). A way to understand this is that we solve for a spherical
harmonic signal, which, when smoothed by the beam and projected to pixel
space, is constrained by the pixel data. Outside of this section, we will mostly
drop the Y’s, and also refer to Y†N̂−1Y as being N−1 represented in spherical
harmonic space, as is conventional in the literature.

When using CG to solve equation (3.11), it is vital that multiplications
with the left hand side matrix is done without forming the full matrix, but
instead by letting the matrices act upon vectors. As noted, we may use
alm2map from HEALPix to apply Y, but what about Y†? Fortunately, the
map2alm routine accepts the set of quadrature weights as a parameter, and by
passing in ∆Ω−1 = Npix/4π as the quadrature weights we achieve the desired
effect (see table 3.1).

We note that the Commander CMB Gibbs sampler currently use the
map2alm routine with quadrature weights in this setting. To estimate the con-
sequences of this, consider that, given uncorrelated pixel noise, in Y†WN̂−1Y
we may take W as being part of the inverse noise covariance. That, is,
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Table 3.1: Comparison of map2alm and the transpose of alm2map, with and with-
out pixel weights. First, we compute the true Y† by repeatedly calling alm2map
with unit vectors to retrieve each column of Y. Then, we call map2alm in a similar
way to retrieve an explicit matrix B, column by column, using two approaches: i)
Use the default ring weights, but scale the input by Npix/4π; ii) Set the ring weights
uniformly to Npix/4π (thus disabling the default quadrature weights). Quoted be-
low is ‖Y†−B‖ in each case (using the Frobenius norm). HEALPix clearly behave
as we would expect.

Nside `max With weights Without weights
8 16 2.2 · 100 4.4 · 10−14

16 32 5.5 · 100 2.9 · 10−13

32 64 1.1 · 101 4.0 · 10−12

Commander draws samples with mean (suppressing A and Y for notational
clarity)

ŝ = (S−1 + N′−1)−1N′−1d,

and covariance

(S−1 + N′−1)−1(S−1 + N′′−1)(S−1 + N′−1)−1,

where N′ and N′′ denote noise covariance with altered RMS maps,

σ′i =
σi√
wi

, σ′′i =
σi

wi

.

That is, the effect will at least be close to the effect of the HEALPix quadra-
ture weights finding their way into the RMS maps. On the north and south
poles the HEALPix quadrature weights wi are close in absolute value to 1.2,
but they fall off very rapidly to approximately 1.0 as one approaches equator.
Therefore, the effect may very well be unimportant. A perhaps more impor-
tant issue is that when generalizing to correlated noise, or marginalizing over
foreground templates, including quadrature weights can lead to “N−1” being
non-symmetric in spherical harmonic space.

3.3.3 Real spherical harmonics

The Conjugate Gradients (CG) algorithm is only defined for linear systems
in R. The above definition of spherical harmonics is therefore impractical
when we want to solve equation (3.11) by CG. However, since all our fields
f(n̂) on the sphere are real, the spherical harmonic expansions contain some
redundancy, as we have

a`m = (−1)ma∗`−m.

We can therefore change to a basis where all the coefficients are real coef-
ficients. Such a basis, real spherical harmonics, is introduced in detail in
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appendix A.2. We will denote the unitary transform from complex coeffi-
cients to real coefficients U, so that if xC is a vector of complex spheri-
cal harmonic coefficients, then the corresponding real vector xR is given by
xR = UxC . The reverse transform is xC = U†xR, and a matrix KC trans-
forms as KR = UKCU†. Because U is unitary, we can go back and forth
between real and complex spherical harmonics without worrying. We will
usually suppress any implicit Us that are necessary for the concrete imple-
mentation. The exception comes when we construct preconditioners for the
CG algorithm.

3.4 The monopole and the dipole

As mentioned, the monopole and dipole component of the data has no sig-
nificance to us, but are present in the data and must be accounted for. Our
final model therefore reads

d = As + n +
4∑

i=1

βiti = As + n + Tβ,

where we have parametrized the foreground component of equation (3.1) by
scalar parameters β = [β1 . . . β4] and a set of hard-coded template vectors T =
[t1 . . . t4]. We let t1 be all ones (a monopole), while t2, t3 and t4 should be
three dipole basis vectors that together span out the space of possible dipoles.
For simple implementation, we model βi as being independent Gaussians.
Furthermore, since any dipole in s will have been completely drowned out by
the Doppler effect, s has zero variance for these components; C0 = C1 = 0.

There are now two approaches that both makes our analysis insensitive
to the presence of a monopole or dipole in the data. The first is to assign
a prior p(βi) and estimate the posterior p(βi|d) jointly in our analysis. This
approach especially shines in a more general setting where one also estimate
other forms of CMB foregrounds in a joint analysis (Eriksen et al., 2008, Jewell
et al., 2004, Wandelt et al., 2004). However, since we use foreground-cleaned
maps, and for ease of implementation, we instead opt for marginalizing up
front, as described by Wandelt et al. (2004). The idea is then to treat Tβ as
a noise term in the model, and state that

βi ∼ N(0, σ2
t ),

where σt is taken very large, so that the components in the data corresponding
to the templates do not impact the posterior. Now, p(d|s) still has mean As,
but the variance is

Var(d|s) = Var(n) + Var(Tβ) = N + σ2
t TTT .

Therefore, the additional term σ2
t TTT enters everywhere we have N in the

previous sections. In terms of representation, Tβ should be understood to be
in pixel space.
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The system we must solve by CG now becomes (suppressing A)

(S−1 + (N + σ2
t TTT )−1)s = (N + σ2

t TTT )−1d + F−Tω0 + ξ, (3.12)

where ξ is a Gaussian vector with zero mean and covariance (N+σ2
t TTT )−1.

Computing (N + σ2
t TTT )−1x for an arbitrary vector x is done efficiently by

the Sherman-Morrison-Woodbury formula (Harville, 1997):

(N + σ2
t TTT )−1 = N−1 −N−1T

(
1

σ2
t

1 + TTN−1T

)−1

TTN−1. (3.13)

The inner matrix on the right hand side is a 4-by-4 matrix and is trivial
to solve for, so for a diagonal N−1 the additional computational overhead is
negligible. It is now customary to let σt → ∞. However, in the context of
Gibbs sampling, we must also draw samples ξ with covariance (N+σ2

t TTT )−1.
This is similar to a situation we already encountered, and the same trick
works. We draw two standard Gaussian vectors ω1 ∈ RNpix and ω2 ∈ R4, and
let

ξ = (N + σ2
t TTT )−1(N−1/2ω1 + σtTω2).

It is easily verified that ξ has the right covariance. It seems safer for numerical
stability to apply the inverse matrix, using equation (3.13), on each vector in
turn, before adding them together. Unfortunately, letting σt → ∞ does not
seem to work in this context. We must set it large enough for the monopole
and dipole to not affect the analysis, but low enough that we do not get
numerical problems. The level of residual monopole and dipole in the data is
coupled to the general CMB fluctuation level, and is not larger than ∼ 10–
100µK. Letting σt = 10 mK worked well for WMAP data.

3.5 Solving the linear system

3.5.1 The Conjugate Gradients algorithm

As we have seen, in order to draw from the posterior p(s|θ,d) we need to
efficiently solve the system

(S1 + ATN−1A)x = b, (3.14)

or, alternatively,

(1 + FTATN−1AF)x′ = b′. (3.15)

It is clear that the matrix is dense in both spherical harmonic and pixel space.
Therefore, we use an iterative algorithm where we only need to repeatedly
multiply vectors with the matrix in question. As we have seen, multiplying
with N−1 can be done in O(`max

3) (which is the cost of alm2map and map2alm)
by doing the operation in pixel space. Applying the beam and pixel window
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A and operations with the factor of the model covariance matrix F are in our
case both going to be linear in the number of coefficients, O(`max

2).
In this case, our matrices are symmetric and positive definite. Focusing

on the matrix of equation (3.15), we have

xT (1 + FTATN−1AF)x = xTx + yTN−1y ≥ xTx > 0

for all x 6= 0, where we let y ≡ AFx. Here we only care that yTN−1y ≥ 0
for all y, which should be clear from our definition of N−1. Even if N−1

may be close to singular, the identity matrix makes sure the total matrix is
non-singular and positive definite. In fact, all eigenvalues are ≥ 1.

The iterative method of choice in the case of symmetric, positive defi-
nite matrices over R is the method of Conjugate Gradients (CG). It is very
intuitively explained in Shewchuk (1994), and here we will only give a very
brief summary. CG is based on solving Ax = b iteratively by minimizing the
quadratic form

f(x) =
1

2
xTAx− bTx.

It can be shown that when A is symmetric and positive definite, the solution
to the linear system also minimizes f . Given a starting point x0 (in our
case x0 = 0), then for each step i, the CG algorithm finds a new xi that
minimizes f along a search direction which is A-orthogonal to all previous
search directions. A-orthogonal means being orthogonal under the norm

‖x‖A = xTAx.

It turns out that each such step can be found very easily, and one only needs
one multiplication of a vector with A and a small number of O(N) vector
arithmetic operations, where N is the number of elements in x and b.

In many cases CG converges very fast, so that relatively few such steps
are needed to attain a good approximate solution. In our setting we will
be satisfied, and terminate the algorithm, when the residual ri ≡ b − Axi

satisfies rT
i ri < εrT

0 r0 with ε = 10−6. For debugging purposes, we can let ε be
higher.

The speed of the convergence depends on how well clustered the eigenval-
ues of the matrix is. In order to speed up convergence it is essential to use
a preconditioner. Instead of solving Ax = b directly, one finds a symmetric,
positive definite matrix M−1 = E−TE−1 which approximates A−1, and then
instead solve

E−1AE−Tx = b.

Amazingly, it turns out that the factor E−1 of the preconditioner matrix M−1

need never be found to use the CG algorithm. All that is needed is its theoret-
ical existence (by positive-definiteness), and the ability to multiply M−1 with
a vector in each iteration of the algorithm. When one uses a preconditioner,
Shewchuk (1994) advice us to use rT

i M−1ri < εrT
0 M−1r0 as the stopping crite-

rion, which in the CG algorithm has no extra cost. Since rTM−1r = ‖E−T r‖,
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then unless one has a completely worthless preconditioner, the residual will
be transformed into a space where each component is on approximately the
same scale before checking whether one should terminate.

In the literature,
(S−1 + ATN−1A)x = b, (3.16)

is transformed into the system

(1 + FTATN−1AF)x = b (3.17)

on grounds of numerical stability (Groeneboom & Eriksen (2009) for anisotropic
models) or simpler construction of a preconditioner (Wandelt et al. (2004) for
isotropic models). This seems natural as the power spectrum is roughly pro-
portional to `−2, so that the vectors in equation (3.16) span a large range of
values.

However, we see that equationx (3.24) corresponds to an additional pre-
conditioning of the system of equation (3.16), using S as the preconditioner
matrix M−1. For an isotropic universe model, the two are almost equivalent
when using CG, because S−1 is included in any reasonable preconditioner for
equation (3.16), and in the CG algorithm, any vector multiplied with the left
hand side matrix is always preconditioned first7. However, equation (3.24)
may mean slightly less worries about numerical problems when creating the
preconditioner itself.

In generalizing to anisotropic models with sparse covariance matrices, the
choice between finding some factor F and applying an inverse S−1 is no longer
arbitrary, as the two may have very different behaviours computationally. Nu-
merical stability will however only be an issue in the preconditioner, and is
trivially worked around, so that computational efficiency, speed of conver-
gence (including quality of preconditioner), and ease of implementation are
our only guides in making the choice between equations (3.16) and (3.24).

3.5.2 The preconditioner

We will here review a simple preconditioner by Eriksen et al. (2004b) for
the isotropic case. We then build on this in chapter 4 in order to create a
preconditioner for our particular anisotropic model. We note that a more
sophisticatated preconditioner is detailed in Smith et al. (2007), but we did
not have time to try it.

In an isotropic model, S`m,`′m′ = C`δ``′δmm′ , and a trivial factor of S is

the symmetric factor S1/2, S
1/2
`m,`′m′ =

√
C`δ``′δmm′ . Let

A ≡ 1 + S1/2ATN−1AS1/2.

The upper-left corner of this matrix is shown in figure 3.2 for a particular
data set and mask. The lines along (from upper left to lower right) show

7One must however use the preconditioned stopping condition, rT
i M−1ri < εrT

0 M−1r0.
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strong correlation between different `s. The lines across comes from strong
correlation between alm and al−m. Eriksen et al. (2004b) include similar
plots in m-major ordering which show equally difficult patterns, but has the
disadvantage that the high values at low `s become scattered throughout the
entire matrix.

Note that S1/2ATN−1AS1/2 is essentially the ratio of signal power (C`) to
noise power. As the noise power becomes larger than signal power on higher
`s, the components of the matrix approach zero, so that A is dominated by
the identity matrix and approach a diagonal matrix. There is always more
correlation present at higher signal-to-noise, that is, at lower `’s. This effect
only becomes obvious at much higher `’s than shown in the plots.

The simple strategy of Eriksen et al. (2004b) is to approximate A by a
dense block for multipoles up to some `precond, and a diagonal for the rest:

M =

[
A2:`precond

0
0 diag(A`precond+1:`max)

]
.

Below we detail a procedure for computing any element of N−1 in spherical
harmonic space explicitly. Since S1/2 and A are diagonal, it is then trivial to
compute corresponding elements of A. Then, we can use M−1 as a precondi-
tioner by doing a Cholesky decomposition of the dense block, which scales as
O(`6precond), and by trivial inversion of the diagonal block. We choose `precond

solely as a trade-off between CG convergence speed and the time of doing the
Cholesky decomposition, or amount of available memory. Typically `precond

should be set between 50 and 70.
This preconditioner does not even manage to get the diagonal part right,

since

diag(A−1) 6= diag(A)−1.

However, it suffices for real world needs, using around 15-20 minutes on 8
cores for real world data. Consistent with the notes above, convergence gets
worse as more data is gathered and the noise level decreases.

3.5.3 Computing N−1 explicitly in spherical harmonic
space

How do we compute N−1 in spherical harmonic space? At least two methods
are available for the dense block N−1

2:`precond
, while for computing the diagonal

for higher `’s we need an explicit expression.

Unit vector hammering Simply construct unit vectors and multiply them
with N−1, using the method of going to pixel space and back again. Each
unit vector will pick out a single column of N−1. Assuming one only needs
the sections of N−1 corresponding to ` ≤ `precond, one does this `precond times,
and only include a`ms up to `precond in the transforms.
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Figure 3.2: (a) The upper left of A (2 ≤ ` ≤ 40), using the noise properties
of the WMAP V1 radiometer and including a mask/galactic cut. Plotted using
`-major ordering and in real spherical harmonics (i.e. U is embedded). Perfect
black elements have an absolute value ≥ 10. (b) Same as (a), but plotted with a
different range so that perfect black elements have an absolute value ≥ 200. (c)
The inverse of the matrix plotted in (a)-(b). This is A−1 if we pretend that the
instrumental beam kills off all signal for ` ≥ 41. While a bit artificial, it should
capture the main features, in particular in the upper-left quadrant. Perfect black
elements have absolute value ≥ 0.1 (which is close to the range of the plot; the
maximum elements are close to 0.3). A proper A−1 using the WMAP beam was
not plotted for computational reasons.
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The advantage of this approach is that it trivially allows for more compli-
cated noise covariances, such as correlated noise or including the monopole
and dipole marginalization term σ2

t TTT . However, as the method scales as
O(`5precond), it becomes the limiting factor for how high `precond can be chosen.

Explicit expression In the case of independent pixel noise, there is a fast
explicit expression (e.g., Eriksen et al., 2004b) which we derive here. We
start with a derivation in complex spherical harmonics, and then note how it
is transformed to real spherical harmonics.

We start with writing out a single component of the matrix Ñ−1 =
Y†N̂−1Y. Assuming N̂−1 is diagonal with diagonal elements η(p̂i) = σ−2

i ,
then simply writing out the matrix multiplication explicitly gives

(Ñ−1)`m,`′m′ =

Npix∑
i=1

Y ∗
`m(p̂i)η(p̂i)Y`′m′(p̂i) (3.18)

≈
∫
Npix

4π
η(p̂)Y ∗

`m(p̂)Y`′m′(p̂)dΩ, (3.19)

where the first line is a quadrature of the latter integral. Note that equa-
tion (3.18) in this context is the exact version since it specifies exactly the
arithmetic that will happen in the CG search when multiplying with N−1.
However, approximation is not a problem in a preconditioner, and the ap-
proximation clearly gets better as Npix grows.

Note that we have pretended that η(p̂) is some continuous field on the unit
sphere from which our η(p̂i) = σ−2

i are samples. This is a rather meaningless
quantity, since σi is the noise of a particular pixel and not a sample from a
field on the sphere. However, for the purposes of our computation, we can
still transform the inverse noise variance map into spherical harmonics as if
it was samples from such a field, and then let

η(p̂) =
∑
`′′m′′

η`′′m′′Y`′′m′′(p̂). (3.20)

Thus we get

(Ñ−1)`m,`′m′ ≈Npix

4π

∑
`′′m′′

η`′′m′′

∫
Y ∗

`m(p̂)Y`′m′(p̂)Y`′′m′′(p̂)dΩ (3.21)

=
Npix

4π
(−1)m

∑
`′′m′′

η`′′m′′

√
(2`+ 1)(2`′ + 1)(2`′′ + 1)

4π
× (3.22)

×
(
` `′ `′′

0 0 0

)(
` `′ `′′

−m m′ m′′

)
(3.23)

where the factors on the last line are so-called Wigner 3j-symbols, for which
computer code is available (see appendix A.3). We have also used the fact that
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Y`m(p̂)∗ = (−1)mY`,−m(p̂). The last Wigner 3j-symbol is 0 unlessm′′ = m′−m,
so the sum only needs to happen over `′′. It is also 0 unless `′′ ≤ ` + `′, so
one only has to expand the η-map up to 2`max.

Above, complex spherical harmonics were implied. To use the result in
the CG preconditioner we must make sure to convert vectors back and forth
when applying the preconditioner. Since we have

M−1
R = (UMCU†)−1 = UM−1

C U†,

this is straightforward. Alternatively, one can precompute N−1
R = UN−1

C U†.
The dense block is easily found using the approach outlined in appendix A.2.
Computing the diagonal part of N−1

R is slightly non-trivial, but an explicit
expression is given in Result 4 in appendix A.2. To compute (N−1

R )`m,`m and
(N−1

R )`−m,`−m, one needs both (N−1
C )`m,`m and (N−1

C )`m,`−m. That is, both
the diagonal and anti-diagonal is needed8 for each `-block in N−1

C .

3.5.4 Including monopole and dipole marginalization
in the preconditioner

In the end, the system we want to solve is

(1 + FTAT (N + σ2
fTTT )−1AF)x = b,

so we should include σ2
fTTT in the preconditioner. The simplest approach

(and the one we actually implemented) is to use the unit vector hammering
approach outlined in the previous section, and ignore the σ2

fTTT term in
the diagonal part of the preconditioner. This approach cost less than 10%
additional iterations, compared to not including the marginalization term.

Not having implemented it, it is unclear whether a better preconditioner
will help, but we outline an approach for completeness, which at any rate
should be computionally faster than the unit vector hammering approach for
constructing the dense block. Recalling the Sherman-Morrison-Woodbury
formula, we have

(N + σ2
t TTT )−1 = N−1 −N−1T

(
1

σ2
t

1 + TTN−1T

)−1

TTN−1

= N−1 −N−1TVDVTTTN−1,

where we diagonalize the symmetric 4-by-4 matrix
(

1
σ2
t
1 + TTN−1T

)−1

=

VDVT by an eigenvalue decomposition. Having found D and V in pixel

8The Commander software currently gets this wrong, and applies the diagonal of N−1
C to

vectors of real spherical harmonics in the CG preconditioner. However, the preconditioner
turned out to be equally efficient and the CG search terminates in the same number of
iterations. Perhaps this is because the difference just happens to be small, or perhaps this
is because the diag(A−1) 6= diag(A)−1 issue means that one is already approximate, and
being a little more approximate doesn’t matter.
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space, we multiply with Y to transition to spherical harmonic space,

Y†(N + σ2
t TTT )−1Y = Y†N−1Y −Y†N−1TVDVTTTN−1Y.

Any component of Y†N−1Y can be found explicitly using the method out-
lined in the previous section, while explicit elements of the latter matrix are
efficiently computed since D is a 4-by-4 diagonal matrix:

(N−1TVDVTTTN−1)`m,`′m′ =
4∑

i=1

Dii(Y
†N−1TV)`m,i(Y

†N−1TV)∗`′m′,i.
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Chapter 4

Modelling hemispherical power
asymmetry

4.1 Modulation

Our main topic is investigating the statistical strength of the apparent hemi-
spherical power asymmetry. To do this we use a very simple model: Imagine
that the isotropic model is correct, except that the fluctuations are stronger
in a preferred direction, weaker in the opposite direction, with a smooth
transition in-between. This is modelled by having an isotropic signal being
modulated (multiplied point-wise) with a modulation field γ,

s(n̂) = γ(n̂)siso(n̂). (4.1)

Here siso is the isotropic signal, assumed to be Gaussian with a covariance
matrix in harmonic space given by Siso,`m,`′m′ = C`δ``′δmm′ . In particular we
will focus on dipole modulation,

s(n̂) = (1 + α(p̂ · n̂))siso(n̂), (4.2)

where p̂ is the preferred direction of the dipole modulation field and α ∈ [0, 1]
is the strength of the field. The standard isotropic model corresponds to
α = 0, while α = 1 means that there are no fluctuations in the point opposite
to p̂ on the sphere.

We will not propose any physical motivation for setting up this model, but
it can be well justified phenomenologically. If there exists hemispherical power
asymmetry, it is not unreasonable to model it as some modulation on top of an
isotropic signal, since the isotropic model fits so well. Any such modulations
can be expanded into spherical harmonics, and, as we will see below, equation
(4.2) simply takes the first two multipoles of this expansion. This is very
similar to standard linear regression. In most settings the underlying function
is not perfectly linear, but one still attempts to pick up any linear trend.
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It will be useful to control the range of multipoles where we assume that
modulation is happening. This turns out equation (4.1) into

s(n̂) =
∑

`

γ(`)(n̂)s
(`)
iso(n̂), (4.3)

where s
(`)
iso denotes the isotropic signal with everything but the `-modes filtered

out. For the special case of dipole modulation we introduce α`,

s(n̂) =
∑

`

(1 + α`(p̂ · n̂))s
(`)
iso(n̂). (4.4)

4.2 The covariance matrix of the modulated

signal

Since the modulation equation (4.3) is clearly a linear operation, the modu-
lated signal is still Gaussian with vanishing mean, and can be fully described
by a covariance matrix S. To fit the model to data, we need a way to compute
this covariance matrix given model parameters.

If one simply wishes to evaluate expressions such as S1/2x or S−1x, it could
have been possible to simply use equation (4.3) directly in real space. How-
ever, to evaluate the posterior distribution of the α` and p̂ parameters we also
need the determinant of S. Therefore, we will in this section develop explicit
expressions for S. In harmonic space, the resulting matrix is quite sparse,
so it turns out that this approach is also computationally faster than going
back and forth between pixel and harmonic space, potentially much faster for
complicated choices of α`. This approach also also provides some nice insights
into what is really going on when the dipole modulation is applied.

The strategy will be to first find an expression for the modulation itself
in harmonic space. Equation (4.3) is linear and can be written

s = Msiso (4.5)

for some modulation matrix M. Once M is found, it is easy to find S; since
the signal has zero mean, we have

S = Var(s) = MVar(siso)M
† = MSisoM

†. (4.6)

The following two sections contain results for M that are valid for arbitrary
γ, while in the rest of the thesis we use M to denote a dipole modulation.

4.2.1 The modulation operation in spherical harmonic
space

We want to find M, where

s = Msiso.
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We start with expanding the modulation field for each scale `′′ in spherical

harmonics, γ(`′′)(n̂) =
∑

LM γ
(`′′)
LM YLM(n̂). Then we consider the relationship

in spherical harmonic space:

s`m =

∫ ∑
`′′

(1 + α`′′(p̂ · n̂))s
(`′′)
iso (n̂)Y ∗

`m(n̂)dΩ

=

∫ ∑
`′′

(∑
LM

γ
(`′′)
LM YLM(n̂)

)(∑
`′m′

s
(`′′)
iso,`′m′Y`′m′(n̂)

)
Y ∗

`m(n̂)dΩ

=
∑
`′′

∑
`′m′

∑
LM

γ
(`′′)
LM s

(`′′)
iso,`′m′

∫
Y ∗

`m(n̂)Y`′m′(n̂)YLM(n̂)dΩ

=
∑
`′m′

(∑
LM

(−1)mγ
(`′)
LM

∫
Y`−m(n̂)Y`′m′(n̂)YLM(n̂)dΩ

)
siso,`′m′ ,

since s
(`′′)
iso,`′m′ = 0 when `′ 6= `′′. Demanding that s`m =

∑
`′m′ M`m,`′m′siso,`′m′ ,

it is then clear that

M`m,`′m′ = (−1)m
∑
LM

γ
(`′)
LM

∫
Y`−m(n̂)Y`′m′(n̂)YLM(n̂)dΩ.

The integral is a Gaunt integral, described in appendix A.4, so we write

M`m,`′m′ =(−1)m
∑
LM

γ
(`′)
LMY

`,`′,L
−m,m′,M . (4.7)

The Gaunt integral vanish unless |`− `′| ≤ L, and unless `+ `′ +L is even, so
bandwidth limited modulation fields where γLM = 0 for L > Lmax have the
potential to form matrices M that are rather sparse. We return to this for
the dipole case below.

4.2.2 Azimuthally symmetric modulation fields

The matrix M contains couplings in both ` and m. Treated as a dense ma-
trix, memory consumption and matrix-vector multiplication scale asO(`max

4).
Treated as a sparse matrix, couplings in both ` and m can create patterns
that make decompositions less efficient.

In the case of modulation fields that are azimuthally symmetric around
some preferred direction p̂, the couplings in m can to some degree be worked
around. We first fix p̂ along the z-axis, and denote the corresponding modu-
lation operation Mẑ. In this case, the spherical harmonic expansion γLM is
non-zero only when M = 0, so we have

Mẑ,`m,`′m′ =(−1)m

Lmax∑
L=0

γ
(`′)
L,0Y

`,`′,L
−m,m′,0.
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Modulation
=

+

+

` = 5,m = 3 ` = 5,m = 3

` = 4,m = 3

` = 6,m = 3

Figure 4.1: Example of the modulation of a single mode. On the left is shown
a single spherical harmonic mode, a5,3 = 1 + i. It is then modulated by the field
f(n̂) = (1 + 0.9(n̂ · ẑ)). The result is effectively a combination of the original
mode plus two new modes which build up the modulation. Note how the extra
modes strengthen each other on the northern hemisphere and cancel each other on
the southern. If the modulation dipole had been oriented in some other direction,
additional modes for m ± 1 would have been required as well to build up the
modulation.

Because Y `,`′,L
−m,m′,0 vanish whenever m + m′ 6= 0, we see that Mẑ,`m,`′m′ van-

ish whenever m 6= m′. That is, in m-major ordering, Mẑ is block-diagonal
with no couplings between different m’s. Since Y `,`′,L

−m,m′,0 also vanish whenever

|` − `′| > L, and γ
(`′)
L,0 = 0 for L > Lmax, we have that Mẑ is also band-

diagonal with bandwidth Lmax. So, memory consumption and matrix-vector
multiplication scale as min(O(`max

3), O(Lmax`max
2)).

It is possible to rotate a spherical map solely by operating on its spherical
harmonic coefficients, using the Wigner D-matrix (see appendix A.5). We
denote the rotation such that a map gets its z-axis rotated to p̂ as R. This
rotation is not unique, since after rotating a map in this fashion one can
freely rotate around the p̂ axis, but this extra freedom does not matter for
our purposes. R is a unitary matrix, that is, R−1 = R†.

Clearly, rotating a map so that the modulation direction p̂ is oriented
along the ẑ axis, applying the modulation in that coordinate system, and
rotating the final map back, has the same effect as applying the modulation
directly. Therefore, M = RMẑR

†, and we can make use of Mẑ also in the
general case. Since applying R scales as O(`max

3), this can lead to savings in
many situations.
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4.2.3 Dipole modulation fields

We now specialize to dipole modulation fields. From here on and out,

γ(`′)(n̂) = 1 + α`′ p̂ · n̂,

and M denotes the corresponding linear modulation operation. According to

Result 1 in appendix A.1, γ
(`′)
LM = 0 for L > 1, fixing Lmax = 1. Since the

Gaunt integral Y `,`′,L
−m,m′,M vanish unless |`− `′| ≤ L ≤ 1, and unless `+ `′ + L

is even, we find that equation (4.7) can be written

M`m,`′m′ =(−1)m
∑
LM

γ
(`′)
LMY

`,`′,L
−m,m′,M

=(−1)m γ
(`′)
|`−`′|,m−m′Y

`,`′,|`−`′|
−m,m′,m−m′ . (4.8)

On the diagonal, things simplify further: Since Y `,`,0
−m,m,0 = (−1)m

√
1/4π by

equation (A.23), and we know that γ
(`)
00 =

√
4π, we have

M`m,`m = (−1)m+m

√
4π√
4π

= 1. (4.9)

In summary,

M`m,`′m′ =


1 if ` = `′,m = m′

(−1)mγ
(`′)
1,m−m′Y

`,`′,1
−m,m′,m−m′ if |m−m′| ≤ |`− `′| = 1

0 otherwise.

(4.10)

Thus M turns out to be quite sparse and only a few modes are needed to
build up a single dipole modulated mode (see figure 4.1). Finally, we take a
look at the symmetry properties. On the off-diagonal elements we have

M∗
`′m′,`m = (−1)m′

γ
(`)∗
1,m′−mY

`,`′,1
−m′,m,m′−m

= (−1)m′
(−1)m′−mγ

(`)
1,m−m′Y

`′,`,1
−m′,m,m′−m

= (−1)mγ
(`)
1,m−m′Y

`,`′,1
−m,m′,m−m′ , (4.11)

by first using that a`m = (−1)ma∗`−m, and then a symmetry property of

the Gaunt integral. Since the `-dependency of γ
(`)
1,m comes from a term α`,

α`′γ
(`)
1,m = α`γ

(`′)
1,m, and we get

α`′M
∗
`′m′,`m = α`M`m,`′m′ . (4.12)

So depending on the choice of α`, M can have Hermitian sub-blocks or be
entirely Hermitian. We will discuss the choice of α` further in section 4.2.5.

Finally, as the dipole field is obviously azimuthally symmetric, we consider
Mẑ with a dipole modulation field. Using Result 1 in appendix A.1 again,
we see that when fixing the preferred direction p̂ = ẑ we have

γ
(`′)
00 =

√
4π, γ

(`′)
10 =

√
4π/3α`′ , γ

(`′)
11 = γ

(`′)
1−1 = 0.
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So,

Mẑ,`m,`′m = (−1)mγ
(`′)
1,0 Y

`,`′,1
−m,m,0

=γ
(`′)
1,0

√
3(`∗ +m+ 1)(`∗ −m+ 1)

4π(2`∗ + 1)(2`∗ + 3)

=α`′

√
(`∗ +m+ 1)(`∗ −m+ 1)

(2`∗ + 1)(2`∗ + 3)

where `∗ = min(`, `′). The explicit expression for Y `,`′,1
−m,m,0 is computed in

appendix A.4, although nothing would be lost by computing Y `,`+1,1
−m,m,0 with

the help of computer codes for the Wigner 3j symbol instead.
In summary, when p̂ = ẑ and with `∗ = min(`, `′), we have

Mẑ,`m,`′m′ =


1 when ` = `′,m = m′ (by eq. (4.9))

α`′

√
(`∗+m+1)(`∗−m+1)

(2`∗+1)(2`∗+3)
when |`− `′| = 1,m = m′

0 otherwise.

(4.13)

It is now easy to see that there is no general trend in `, so that the magnitude
of the signature should be roughly constant as ` increases.

Note that Mẑ is now tri-diagonal in m-major ordering. We can therefore
use highly efficient LAPACK routines for tri-diagonal matrices. It is also
very fast to construct, since the diagonal is all ones, and the off-diagonals can
simply be scaled by α` from instance to instance.

4.2.4 In real spherical harmonics

So far we have worked exclusively with complex spherical harmonics, but
sometimes we want to use real spherical harmonics instead (see appendix
A.2). An advantage with letting p̂ = ẑ is that the matrix is the same whether
written in real or complex spherical harmonics. From equation (4.13) it is
clear that Mẑ,`m,`′m′ = δmm′Mẑ,`m,`′m′ and that Mẑ,`m,`′m = Mẑ,`−m,`′−m. So
Mẑ satisfies the conditions put on J in Result 2 in appendix A.2, and we have

UMẑU
† = Mẑ. (4.14)

Thus Mẑ has the same representation for both complex and real spherical
harmonics. We also have USisoU

† = Siso by this result. Therefore, Sẑ is also
the same in real and complex spherical harmonics, since

USẑU
† = UMẑU

†USisoU
†UM†

ẑU
† = MẑSisoM

†
ẑ = Sẑ.

While useful now and then for speed and simplicity, it doesn’t apply in the
situation where it is really needed: Constructing preconditioners for the Con-
jugate Gradients algorithm. One then needs an explicit expression for each
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element of the final matrix, so one cannot factor out the rotation. However,
U only contains O(`max

2) non-zero elements, so it works well enough to con-
struct a given matrix in complex spherical harmonics and then carry out the
matrix multiplication.

4.2.5 Consequences of choice of α`

In practice, we only consider the signal in harmonic space over a finite subset
of `s (usually `min ≤ ` ≤ `max, where `min = 2 and `max is set by band-
limitation). M is then not in general a square matrix. For instance, if a`m

are coefficients with covariance matrix MSisoM
†, then the modulated a2,m will

get some power from the isotropic a1,m component, and so if we let `min = 2
then Siso must also contain information about C1. The same effect applies
around `max (but here the beam kills off the signal so that it doesn’t matter
either way).

There are several choices here, and because we are working with a purely
phenomenological model the choice is somewhat arbitrary. Our choice is to
do what is simplest in terms of implementation: We simply decide to let
α`min−1 = α`max+1 = 0. One could however make other choices here. The
reason this choice is so convenient is that we recover a square M.

4.2.6 Other properties of M

Assuming a square M, we will now show sufficient conditions for M to be
invertible, and, when it is Hermitian (constant α`) that it is positive definite.
This is convenient because it is then straightforward to solve linear systems
in S through the decomposition (MS

1/2
iso )(MS

1/2
iso )† (other methods of solving

the system is discussed in section 4.3).
Since R is unitary, we have that M is non-singular (positive definite) if

and only if Mẑ is non-singular (positive definite). The strategy is to find
conditions under which M†

ẑ is diagonally dominant, that is, that we have
|M`m,`m| >

∑
`′m′,` 6=`′,m 6=m′ |M`′m′,`m| (note that we will work with column-

wise diagonal dominance). It is well known (e.g. Harville, 1997, pp. 279)
that such matrices are non-singular. Also, if the diagonal elements are all
positive and the matrix is Hermitian, then the matrix is positive definite.
Note that these are sufficient, but not necessary, conditions.

The diagonal of Mẑ is all ones. With `∗ = min(`, `′), the off-diagonal
elements are

α`

√
(`∗ +m+ 1)(`∗ −m+ 1)

(2`∗ + 1)(2`∗ + 3)

when |`− `′| = 1 and m = m′, and 0 otherwise. The numerator is maximized
at m = 0:

(`∗ +m+ 1)(`∗−m− 1) = (`∗)2 + 2`∗−m2 + 1 ≤ (`∗)2 + 2`∗ + 1 = (`∗ + 1)2.
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The denominator can be written as

(2` ∗+1)(2`∗ + 3) = 4(`∗ + 1)2 − 1,

so √
(`∗ +m+ 1)(`∗ −m+ 1)

(2`∗ + 1)(2`∗ + 3)
≤ α`′

2

√
(`∗ + 1)2

(`∗ + 1)2 − 1
4

.

This is clearly maximized at `∗ = 0, so for the non-zero off-diagonal Mẑ,`m,`′m′

we have Mẑ,`m,`′m′ ≤ α`′
√

1/3 ≈ 0.58α`. Columns with only one off-diagonal
element (`′ ∈ {`min, `max}) always satisfy diagonal dominance. For inner `′s, a
column consists of one super-diagonal element with ` = `′−1 (so `∗ = `′−1),
the unity diagonal element, and one sub-diagonal element with ` = `′ + 1 (so
`∗ = `′). Therefore we have diagonal dominance in such columns if

α`′

2

(√
`′2

`′2 − 1
4

+

√
(`′ − 1)2

(`′ − 1)2 − 1
4

)
< 1

Since the square root decrease monotonically with `′,

α`′

2

(√
`′2

`′2 − 1
4

+

√
(`′ + 1)2

(`′ + 1)2 − 1
4

)
< α`′

√
(`′ + 1)2

(`′ + 1)2 − 1
4

< α`′

√
4

3
.

So a sufficient condition for Mẑ to be diagonally dominant is that α`′ ≤√
3/4 ≈ 0.87. Under the same condition, M is invertible and, when Hermi-

tian, positive definite. For our purposes, α` will never come anywhere close
to this value, and so we are satisfied.

4.3 Computations with S

What is the best way of doing computations involving S? In order to solve
linear systems S−1x = b or find the determinant |S| we need to somehow
factor S. Since S is by construction Hermitian and positive definite, we can
find some factor F such that S = FF†. There are many possibilities, and our
choice is determined solely by computation speed.

4.3.1 Factors of S

One way of producing a factor is through Cholesky factorization, using code
such as CHOLMOD (see appendix A.6):

PSP† = LL†.

Here P is a permutation matrix and L is lower-triangular. Cholesky factors
are not sparse in general, and the amount of fill-in (new non-zero elements
created) is heavily affected by the permutation of rows and columns chosen.
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Sparse Cholesky libraries will try to find a good one. For a general preferred
direction p̂, CHOLMOD found permutations that yielded factors with about
12-13 times as many non-zero elements as S itself for `mod ∼ 100. This ratio
does however increase with `mod.

This is however not the only choice. We have already seen that S can be
written in a variety of ways:

S = RSẑR
† = MSisoM

† = RMẑSisoM
†
ẑR

†,

where the latter follows from RSisoR
† = Siso and R†R = 1. These ways of

writing S each give rise to a natural factor F,

P†L, RLẑ, MS
1/2
iso , and RMẑS

1/2
iso . (4.15)

We treat them in order:

P†LP – See above. As mentioned, the computational complexity of this
decomposition is difficult to assess up front (except that it lies somewhere
between O(`max

2) and O(`max
6)...) and benchmarks will be our only guide.

RLẑR
† – Applying a rotation R or its inverse scales as O(`max

3). Sẑ is penta-
diagonal (in m-major ordering) because it is the product of two tri-diagonal
matrices (MẑSisoM

†
ẑ), so its Cholesky factor Lẑ has two sub-diagonals and all

operations scale as O(`max
2). Computationally, L−1

ẑ x seems to be very close

to (MẑS
1/2
iso )−1x: The former requires one solve with the Cholesky factor of

a penta-diagonal matrix, while the latter requires a solve for each of the two
LU factors of a tri-diagonal matrix. The latter option will certainly be faster
to construct and for multiplication. We therefore eliminate RLẑ from the
discussion in favor of RMẑS

1/2
iso . However, this factor may be an attractive

alternative in a more general case where M is non-square (that is, α1 6= 0).

MS
1/2
iso – Solving with this factor is only viable if M is square, which we

assume for this thesis (see section 4.2.5). Computationally, M must be treated
as a generic sparse matrix – it is sparser than S, but still contain couplings
both in ` and m. A sparse LU factorization, such as the ones provided by
UMFPACK, is needed to find the determinant or solve linear systems (unless
`mod = `max, in that case Cholesky could be used).

RMẑS
1/2
iso – Mẑ is tri-diagonal, and so the tri-diagonal LU-factorization rou-

tines in LAPACK can be used for solving and finding the determinant. Any
computation with this factor is essentially bound by the speed of applying R,
while the other operations are “free”.

Figure 4.3 contains the necessary benchmarks.
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4.3.2 Best choice of factor for p(θ|s,d)

Looking ahead to the next chapter, we need to repeatedly evaluate the like-
lihood

p(s|α, p̂, θiso) ∝ |FF†|−1/2e−s†(FF†)−1s/2 = |F|−1e−‖F
−1s‖/2, (4.16)

where ‖·‖ is the usual Euclidean norm. Many changes will happen to the
parameters between each change of s, and each time the parameters change
we need to do a decomposition in order to find F−1s and |F|.

Consulting figure 4.3, the best option is clearly RMẑS
1/2
iso . Since R is

unitary, |RMẑS
1/2
iso | = |MẑS

1/2
iso |, so we have

p(s|α, p̂, θiso) ∝ |Mẑ|−1|Siso|−1/2e−‖S
−1/2
iso M−1

ẑ R†s‖/2. (4.17)

It is clear that by using this factorization, the operations are conveniently
ordered by computational complexity:

• When changing p̂, R†s must be recomputed, which scales as O(`max
3).

• When changing α, one needs to factor Mẑ and solve M−1
ẑ x; both scale

as O(`max
2).

• When θiso changes, one simply needs to multiply a vector with the
diagonal S

−1/2
iso matrix (O(`max

2) with a very low prefactor).

It is possible to exploit this by making steps in α more often than p̂. When
fixing α and p̂ one essentially has the signal likelihood in the isotropic case,
inserted the demodulated signal. Therefore, any sampling scheme used to
sample θiso within an isotropic model can also be used in the dipole-modulated
model without any additional computational overhead.

4.3.3 Drawing samples from p(s|θ,d)

In chapter 3, we saw that one can sample from p(s|θ,d), given an arbitrary
S = FFT , by solving either

(S−1 + N−1)x = b,

or

(1 + FTN−1F)x′ = b′

by Conjugate Gradients. Here and in the rest of this section we suppress the
beam A as well as the foreground marginalization term σ2

t TTT , as they can
easily be put back in.

We must multiply vectors repeatedly with the left-hand side hundreds of
times for the same set of parameters. In this case, the second version of the
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Sẑ Mẑ

S M

Cholesky factor of PSP† Cholesky factor of PMP†

Figure 4.2: Sparsity of matrices; ` = 2..11, C` = 1, α` = 0.3. Plotted are
the absolute values of the matrices in complex spherical harmonic space (in real
spherical harmonics there are couplings “across” between (`,m) and (`,−m) as
well). Numerical values go from gray to black; white represents symbolic zero. In
m-major ordering, Sẑ and Mẑ (and their Cholesky factors) are penta-diagonal and
tri-diagonal, respectively. Using a Cholesky factor of M is slightly unrealistic (for
general α` a LU factorization is needed). The permutation matrix P represents
the default permutation chosen by CHOLMOD in each case.
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Figure 4.3: Benchmarks of matrix operations (single core, Intel r© Xeon E5530,
2.40GHz, 8 KB cache). The O(`mod

2) construction times of original matrices are
not included, neither is sparse matrix analysis time (since a matrix pattern can be
pre-analysed). The cost of applying a rotation is included in all plots for compar-
ison. (a) Mẑ is decomposed using LAPACK tri-diagonal LU (dgttrf), the other
matrices with CHOLMOD supernodal Cholesky (this is being kind to M, for which
LU is needed in the general case). (b) The RMẑS

1/2
iso factor is the most expensive

one; the other factors are paid back at this stage for the costly decomposition time.
(c) The cost of RMẑx is essentially that of the rotation, and so Mẑ is not included.



4.4 Modelling the isotropic power spectrum 51

system together with the factor MS
1/2
iso clearly wins out as the fastest alter-

native. It has the fastest multiplication time and requires no decomposition
up front. Our system of choice is thus

Ax = (1 + S
1/2
iso MTN−1MS

1/2
iso )x = b.

We here treat M as a matrix in real spherical harmonics, recalling that MR =
UMCU†.

Since the matrix has changed, we need a new preconditioner. We use the
principle of section 3.5.2 of one dense block for 2, . . . , `precond, and a diagonal
block for `precond + 1, . . . , `max. The dense block is constructed directly by
computing N−1 as earlier noted, and use routines for multiplying a sparse
matrix with a dense matrix. For the diagonal block we use the approximation

diag(A) ≈ 1 + S
1/2
iso diag(M)diag(N−1)diag(M)S

1/2
iso = 1 + Sisodiag(N−1).

Since we recover the isotropic case as α gets smaller, and α < 0.15 for our
purposes, this works reasonably well. Depending on α, the number of iter-
ations required increase by up to 60%, with a more typical number being
10%–20%,

This is clearly an area where things could be improved, and we outline
a possible approach. We opt for constructing the preconditioner in complex
spherical harmonics, and convert vectors when applying it, to simplify the
sparsity pattern. We then need

(MN−1M†)`m,`m =
∑
LM

∑
L′M ′

(M)`m,LM(M)∗`m,L′M ′(N−1)LM,L′M ′ ,

so only the elements of N−1 such that (M)`m,LM and (M)∗`m,L′M ′ are both non-
zero are needed. In the case of the dipole modulation field this restricts the
number of elements we need to compute to a few bands, scaling as O(`max

2).
In particular, we must have |L − L′| ≤ 2 and |M −M ′| ≤ 2. One can then
implement the above sum directly, or compute the given subset of N−1 as a
sparse matrix, use generic sparse matrix multiplication routines, and extract
the diagonal. We note, however, that this approach does not work with more
general modulation fields.

4.4 Modelling the isotropic power spectrum

Our model assumes that we know the real, underlying isotropic power spec-
trum. Knowing this power spectrum for sure is not easy, since if we break
isotropy, then the assumptions underlying today’s best fit power spectra are
violated. However, in practice this might not matter much. The dipole mod-
ulation model was justified in the first place as a small correction to the
isotropic model, and we can similarly justify using the best fit ΛCDM power
spectrum as our starting point.
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4.4.1 Effects of dipole modulation on the
isotropic power spectrum

Assuming that the dipole-modulated model is correct, estimating a power
spectrum under an isotropic model will lead to a bias due to model misspec-
ification. What does this bias look like?

We will ignore both data analysis artifacts (such as noise and mask) and
how the bias couple to the ΛCDM model, and work with the estimator given
a perfect CMB signal a`m,

σ` =
1

2`+ 1

∑̀
m=−`

a`ma
∗
`m.

Now, we take the expectation, i.e. average over all possible universes:

E(σ`) = σ` =
1

2`+ 1

∑̀
m=−`

E(a`ma
∗
`m) =

1

2`+ 1

∑̀
m=−`

S`m,`m

In an isotropic universe we naturally recover C`, but in the case of model
misspecification we end up averaging S`m,`m over m, without being justified
in doing so. In figure 4.4 we see both the expected bias, and σ` computed for
a specific realization. We see that the expected bias in σ` is negligible for low
α, and that it corresponds exactly to a scaling factor (not plotted). However,
the effect on individual realized σ`’s is quite noticeable even with α = 0.1.

4.4.2 Choosing a parametrisation

With the results above in mind, it seems reasonable to start with a best fit
ΛCDM model, as long as the scale is left as a free parameter. We will adopt
the approach taken earlier by e.g. Hoftuft et al. (2009), and let

C` =

{
q
(

`
`0

)n

Cfid
` for 2 ≤ ` ≤ `mod + 1

Cfid
` otherwise.

Here, Cfid
` is the best-fit ΛCDM power spectrum from the WMAP 7-year

data (Larson et al., 2010), q an amplitude, and n a tilt. The tilt pivot `0 is
chosen freely to minimize the correlation between q and n in the posterior
distribution. The mean (2+ `mod +1)/2 appears to be a good choice. We will
adopt flat priors on q and n1

It would also be possible to leave the C` as free variables, in order to
produce an observed demodulated power spectrum. We comment further on
this in chapter 8. As we can see in figure 4.4, such demodulated quantities
would be different from current estimates of the observed power spectrum,
assuming our estimate of α is significantly different from zero.

1It should be noted that n is not the scalar perturbation spectral index ns that is used
to parametrize the primordial power spectrum P (k), although it will have a similar effect.
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Figure 4.4: The effect of dipole modulation on the isotropic power spectrum
estimator σ`. (a) The expected value change with α, although for the levels we are
interested in, with α less than 0.1, the effect is very slight. The effect is (naturally)
invariant with preferred direction. (b) A sample was taken and σ` estimated with
no modulation (circles) and a dipole modulation with α = 0.1 using two different
preferred directions (triangles).
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Chapter 5

Fitting the hemispherical power
asymmetry model

The goal of the this chapter is to provide a method for fitting the model
of chapter 4 to data, building on the Gibbs framework presented in chapter
3. We then need a method to sample from the posterior distribution of the
model parameters θ. If one knows the real CMB signal, the data is of little
use, so the posterior distribution is

p(θ|s,d) = p(θ|s).

In our case, θ will consist of the dipole modulation field parameters α and
p̂, as well as the parameters of the underlying isotropic model, which in our
case are an amplitude q and a tilt n. By the usual argument,

p(θ|s) ∝ p(s|θ)p(θ) = |S|−1/2e−s†S−1s/2p(θ),

for some prior p(θ). Regardless of choice of prior, this distribution is very
much non-Gaussian, as it is S that varies with the parameters. We now need
a method to sample from this distribution. As all we have is an unnormal-
ized density, and we do not know (and can not easily find) the normalizing
prefactor, we must turn to Markov Chain Monte Carlo (MCMC) methods.
These give samples that are correlated.

Interpreting the original Gibbs algorithm literally, we need a fresh, uncor-
related sample from p(θ|s) at each step. One strategy would be to, at each
step, run an MCMC chain for a few hundred iterations until we were sure
we have a single converged and independent sample. However, this is clearly
wasteful, and MCMC sampling offers other possibilities.

5.1 MCMC theory

We include a brief caricature of Markov chain theory to benefit the further
discussion. We rely on Robert & Casella (2004) and Chib & Greenberg (1995)
throughout this section.
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5.1.1 Markov chains and MCMC

Consider a chain of random variables x(0), x(1), . . . , x(t), . . . ; where all variables
are in a common space Rn. Such a chain is a time homogeneous Markov chain
if the probability distribution of each step in the chain only depends on the
previous step (the Markov property), and does not depend on the step index
t (time homogeneous). That is, for all t, we have

p(x(t+1)|x(0), . . . , x(t)) = p(x(t+1)|x(t)) = K(x(t), x(t+1)).

We here introduce the transition kernel K: For each (x, y) ∈ Rn×Rn, K(x, y)
gives the probability of the Markov chain jumping to y, given that the current
position is x. K(x, ·) is a probability density1, so that

∫
RnK(x, y)dy = 1 for

all x.

Together with the distribution of the starting x(0), K fully characterises
the Markov chain. As an example, to know the distribution of x(3), we simply
take into account all possible x(1) and x(2) the chain could go through in its
way from x(0) to x(3),

p(x(3)|x(0)) =

∫
dx(1)

∫
dx(2) p(x(1), x(2), x(3)|x(0))

=

∫
dx(1)

∫
dx(2) p(x(3)|x(2), x(1), x(0))p(x(2)|x(1), x(0))p(x(1)|x(0))

=

∫
dx(1)

∫
dx(2) K(x(0), x(1))K(x(1), x(2))K(x(2), x(3)).

Certain classes of Markov chains may be shown to have a stationary distri-
bution, denoted π, with the property that if we know that the distribution of
x(t) is π, then we also have that the marginal distribution of x(t+1) is π. In
other words, for any A ⊂ Rn, π and K satisfies∫

A

π(y)dy =

∫
A

∫
Rn
π(x)K(x, y)dxdy.

Note that π is the marginal density. If we condition on x(t), the distribution of
x(t+1) is not π, but K(x(t), ·). The stationary distribution is unique for a given
Markov chain if it exists. Assuming that a chain has a stationary distribution,
then, under some conditions, the chain will converge to it independent of x(0).
That is, as t → ∞, x(t) is approximately a sample from π, no matter what
x(0) was. Fulfilling the following two conditions is sufficient for convergence:

1This is rather informal, but we hope to avoid measure theory in this exposition. It
should be understood that K(x, ·) is not a proper function and may have “strange” features;
in much the same way that the Dirac δ-function is often used without the measure theoretic
framework. For instance, one may have

∫ x+ε

x−ε
K(x, y)dy ≥ 1/2 no matter how small ε gets,

in the case of a chain that only moves from its current position with probability 1/2.
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• (Harris) recurrence – For every set A ∈ Rn such that
∫

A
π(x)dx > 0,

the chain will (when run for infinitely long) visit A an infinite number
of times. Informally, recurrence means that there are no parts of the
distribution that the chain stays away from, which would obviously be
a problem for convergence.

• Aperiodicity – The number of the steps required to get from A ⊂ Rn to
B ⊂ Rn should not be required to be a multiple of some integer for any
A, B.

The motivation for Markov chain theory was originally in modelling and
studying existing random processes, studying questions such as whether a
given process converged to a stationary distribution or not. In MCMC simu-
lation, Markov theory is turned around. Rather than trying to find the sta-
tionary distribution, we construct a Markov chain K which has the stationary
distribution π that we want to sample from. Then, we simulate a concrete
realization of the chain by drawing samples; first x(1) given x(0), then x(2)

given x(1), and so on. After a period of burn-in, the bias of the starting point
x(0) disappears and all the samples come from the target distribution. The
Metropolis-Hastings algorithm gives a recipe for constructing chains where it
is trivial to sample x(t+1) ∼ K(x(t), ·) in each step, while the chain itself will
converge to a stationary density π that can be highly non-trivial.

While the samples will be strongly correlated, we can still use them to
make inferences. Correlation just means that the number of samples we need
for a given level of precision is larger than if they were independent.

5.1.2 Block-at-a-time sampling

As noted by Hastings (1970), it is possible to combine multiple MCMC chains
to sample from a joint distribution. This is the cornerstone of Gibbs samplers,
and it is also valid for more general samplers.

Let the vector x ∈ Rn be distributed according to a target density f , and
let it consist of p blocks, x = [x1 x2 . . . xp]

T , with each block having some
conditional density, xi ∼ fi(·|x1, . . . , xi−1, xi+1, . . . xp). Furthermore, assume
that we have a corresponding set of Markov chain kernels, K1, K2, . . . , Kp,
where each kernel Ki leaves each block but xi stationary, and makes a step in
xi in such a way that the conditional density fi is the stationary distribution.
Then, it turns out that composition of kernels,

K = K1 ◦K2 ◦ · · · ◦Kp,

has f as its stationary distribution. Here ◦ denotes that we first make a step
with K1, changing x1, then a step with K2, changing x2, and so on. It must
still be checked that the chain converges, but only the full kernel K needs to
fulfill the recurrence and aperiodicity conditions, not the individual Ki’s.
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This principle has profound consequences, because it makes it possible
to break the problem of sampling from a joint density into many smaller
problems of sampling from conditionals. In fact, the principle is even more
general. There would be nothing wrong with repeating the same kernel multi-
ple times in a row, or have kernels correspond to partially overlapping blocks,
or select one of the kernels at random for each step using a fixed random
rule. In the case of repeating the same kernel multiple times, then for the
theory to go through (time-homogeneous) we can only observe the chain af-
ter each full round of kernels K1 ◦K2 ◦ · · · ◦Kp is applied. However, we can
choose to also observe the (strongly related) Markov chains K2 ◦ · · · ◦Kp ◦K1,
K3 ◦ · · · ◦ Kp ◦ K1 ◦ K2, and so on, and thus using all the samples is not a
problem.

Finding a conditional density given a joint density is straightforward from
basic probability theory. Assume that p(x, y) is a joint probability density.
Then, for all y such that p(y) > 0, we have

p(x|y) =
p(x, y)

p(y)
∝ p(x, y),

so p(x|y) is proportional to the joint density with y kept fixed. The Metropolis-
Hastings algorithm never jump to a y such that p(y) = 0.

5.1.3 The Metropolis-Hastings algorithm

We turn to how to construct an MCMC chain, and start with a very general
case, the Metropolis-Hastings sampler (Hastings, 1970). Chib & Greenberg
(1995) give an excellent introduction to this algorithm. We will also rely on
Robert & Casella (2004).

Consider that we want to sample from some probability distribution f(x),
but all we know is the expression for computing the density up to a con-
stant factor. The Metropolis-Hastings algorithm then gives us a recipe to
construct a Markov chain which converges to our target density as its sta-
tionary distribution. The idea is to supply a proposal density q, which the
Metropolis-Hastings “corrects” so that the samples come the target density
f instead. The method of correction is by simply staying put, and use the
current sample once more, if the proposed sample was not usable.

First, one chooses some starting point x(0). Then, given that one has a
sample x(t), one draws x(t+1) with the following method:

i) Draw a proposal x∗ from some proposal density q(·|x(t)).

ii) Compute

ρ = min

{
f(x∗)

f(x(t))

q(x(t)|x∗)
q(x∗|x(t))

, 1

}
. (5.1)

Then accept the proposal, that is, assign x(t+1) the value of x∗, with
probability ρ. Otherwise, let x(t+1) take the value x(t).
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We see that all that is needed is the ability to sample from q(·|x(t)), and the
ability to evaluate f(x∗)/q(x∗|x(t)) up to a constant factor. The fact that
constant prefactors for f are not needed is incredibly useful in most practical
settings.

There is relatively large freedom in how q is selected. Some proposals
leads to algorithms that converge quickly, some to algorithms that converge
in theory but in practice would require billions of years of CPU time, and
some to algorithms that don’t converge even theoretically. The conditions
for theoretical convergence were mentioned above. The Metropolis-Hastings
algorithm ensures that the chain has a stationary distribution, but one must
still check in every case that the proposal density q allows getting back to
every part of the support of f (recurrence) and that it doesn’t enforce some
cyclic pattern of exploration (aperiodicity). The conditions for practical con-
vergence are related. One must simply move quickly enough around in the
entire support, and not get stuck in one part of the density for long periods
at the time.

Assuming that the chain manages to converge, a measure of how well we
are doing in the exploration (“good mixing”) is the chain auto-correlation.
Low auto-correlation translates into more effective independent samples, and
quicker convergence in parameter estimates. The auto-correlation function
tells us how correlated x(t) and x(t+k) are for a given lag k. This in turn
tells us how far apart we would have to pick samples in order to have them
approximately independent (however, when making parameter estimates, it
is always better to include all the samples). We will simply estimate the
auto-correlation from the chain itself,

ACF(k) =
1

(n− k)σ̂2

n−k∑
t=1

(x(t) − µ̂)(x(t+k) − µ̂),

where µ̂ and σ̂2 are estimates of the mean and variance of x(t) using the entire
chain. Our guides for choosing the proposal density q are then: a) The chain
must explore the entire distribution, b) ACF(k) should fall off as quickly as
possible. Of course, computational efficiency enters as well. We accept more
correlation if it means that we can produce many times more samples in the
same time to make up for it.

5.1.4 Random walk steps

In the Metropolis-Hastings algorithm, it is possible to take our proposal
density q(·|x(t)) as some density around our current point. For instance,
if x ∈ R, then we might let q(·|x(t)) be a Gaussian density with mean x(t)

and some standard deviation σ. If the proposal density is symmetric, so that
q(x∗|x(t)) = q(x(t)|x∗), then the Hastings factor q(x(t)|x∗)/q(x∗|x(t)) disap-
pears in equation (5.1), and we recover the original Metropolis algorithm.
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This is typically a good default choice when there are no other obvious
choices, and will manage to explore most distributions with connected sup-
port. Traditional MCMC lore states that the proposal density should typi-
cally be tuned so that the acceptance rate is between 0.2-0.5, although as high
as 0.8 may work too. A good starting point is to estimate the standard devi-
ation of the target density, and then scale it up or down until the acceptance
is right. It is also a good idea to make the proposal density have roughly the
same correlation as the target density. That is, the proposal density should
be “slanted” in roughly the same direction.

The random walk Metropolis algorithm is vulnerable to local maxima that
are weakly connected to the rest of the distribution. Any Metropolis-Hastings
method only “sees where it has been”, which in the case of random walk means
not very far. Since the normalizing factor is never used, it is impossible
to know in the context of a single chain whether one is exploring a local
isolated region, or the entire support of the posterior. The practical solution
to this problem is to run multiple chains with different starting points, and
be satisfied if they all find the same distribution.

Continuous automatic tuning can lead to convergence to the wrong dis-
tribution (Robert & Casella, 2004, pp. 299), unless one uses specific results
for this. We will be doing all tuning up front, independent of any data set,
although tuning during burn-in would also be possible.

5.1.5 Gibbs steps

We have already touched upon the Gibbs sampling algorithm. The idea is
to first sample x1 conditional on x2, then x2 conditional on x1, and so on.
The conditional distributions are ofter easier to sample from than the joint
distribution.

The Gibbs algorithm can be described as an instance of the block-at-
the-time sampling where each conditional MCMC kernel simply consists of
sampling directly from the conditional distribution. Such MCMC kernels do
in fact correspond directly to the Metropolis-Hastings algorithm by using the
actual (conditional) target density as the proposal density q, so that ρ in
equation (5.1) always becomes 1 and the proposal is always accepted.

If a Gibbs step is available for sampling from a conditional density, say,
f(x1|x2, x3), then a single Gibbs step is always superior to a single random
walk Metropolis step. Still, random walk Metropolis can sometimes be useful
even when Gibbs steps are available. If there is a computational difference,
many cheap Metropolis steps could approximate a costly Gibbs step. Also,
if we can sample directly from f(x1|x2, x3) and f(x2|x1, x3), but not from
f(x1, x2|x3), then a Metropolis step on the latter can outperform Gibbs steps
if x1 and x2 are correlated.

Gibbs sampling can also be vulnerable to the presence of local maxima,
depending on how the maxima are lined up with respect to the axes that the
variables are sampled along.
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5.2 Fitting our model through MCMC

5.2.1 Combining Gibbs steps and Metropolis-Hastings
steps

The Gibbs sampling framework of chapter 3 now gives us the main recipe. For
each iteration, first make a random realization of a CMB signal, constrained
by observation and a model, and then sample possible model parameters given
this signal. By the remarks above on block sampling, we are allowed to make
an MCMC step in the model parameters conditional not only on the CMB
signal, but also on the model parameters of the previous iteration. We can
also choose to repeatedly sample model parameters T times given the same
signal. Assuming we have a Metropolis-Hastings proposal density q for the
model parameters, we end up with the following algorithm:

s(k)– Gibbs step, sample from p(s|θ(k−1,T ),d)

θ(k,1)– Propose from q(·|s(k), θ(k−1,T )), then accept or reject

θ(k,2)– Propose from q(·|s(k), θ(k,1)), then accept or reject

. . .repeat T − 2 more times . . .

s(k+1)– Gibbs step, sample from p(s|θ(k,T ),d)

. . .and so on . . .

The main reason we want to sample the model parameters many times in each
loop is the comparatively huge cost of performing the CG search in order to
sample s. Having sampled s, it makes sense to get as much information
out of it as we can. Another reason is that our scheme for sampling θ is
unlikely to be perfect (that is, a Gibbs step, independent of previous values
of θ). By repeating the sampling step we can mostly remedy this. Setting
T involves a trade-off between reducing chain correlation and computational
cost. If sampling θ is cheap, setting T high does not hurt. For the sampler
we describe below, T = 40 worked well. Note that even a choice of T = 1 is
theoretically valid, it would just lead to longer correlation lengths.

This approach is also taken in Groeneboom & Eriksen (2009). It is also
similar to the use of a Blackwell-Rao estimator for the CMB power spectrum
discussed in Rudjord et al. (2009) and Wandelt et al. (2004), although in that
case the samples p(C`|s) are perfect, and getting additional samples can be
delayed to a post-processing step without affecting the correlation lengths.

5.2.2 Separating data analysis and model estimation

We have earlier noted that p(θ|s,d) = p(θ|s), so that data analysis and model
estimation decouple in the Gibbs sampler. It is time to make a proper visit
to this statement.
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The algorithm above can be viewed as a block-at-the-time Metropolis-
Hastings sampler for the density

p(θ, s|d) ∝ p(d|θ, s)p(s|θ)p(θ) = p(d|s)p(s|θ)p(θ),

where each step is either in s or in θ, and we recall that p(d|θ, s) = p(d|s).
To have our algorithm scale as O(`max

3), we are never allowed to evaluate
p(d|s), which would scale as O(Npix

3) = O(`max
6). This is not a problem,

because when sampling the signal we do not need to evaluate the likelihood,
and when sampling the parameters we can view p(d|s) as a constant prefac-
tor. However, this means that the total parameter probability (or the log-
likelihood, often denoted logL) is unavailable. One often plotted quantity in
MCMC settings is the posterior log-probability, which should increase dur-
ing burn-in and then have small fluctuations around the maximum plateau.
Without computing p(d|s), the normalization of our posterior is changed with
every new signal, making such plots meaningless to us. Of course, when Nside

is small, we can overcome this by brute force.
An important detail for implementation is that after a Gibbs step in s(k),

we must reevaluate p(θ = θ(k−1,T )|s = s(k)) before any new steps are taken,
so that ρ is correctly computed in the Metropolis-Hastings algorithm. While
likelihood evaluation is not necessary in pure Gibbs samplers, one must in
hybrid Gibbs-Metropolis samplers evaluate the likelihood also after the Gibbs
steps.

5.2.3 Sampling model parameters

It is time to attack the model posterior conditional on the signal,

p(α, p̂, q, n|s) ∝ p(s|α, p̂, q, n)p(α, p̂, q, n) = |S|−1/2e−s†S−1s/2p(α, p̂, q, n).

We adopt independent and flat priors on all parameters, p(α, p̂, q, n) ∝ 1. It
should be understood that p̂ is bounded on the sphere, and that we must
have q > 0 and α ≥ 0.

The dipole parameters α and p̂ take effect up to `mod + 1. After that
point, M is an identity matrix. Furthermore, we let q and n only affect
the power spectrum up to `mod + 1 (or `max, whichever is lower). Then,
S = MSisoM

† is block-diagonal with one block for 2, . . . , `mod + 1 and one
block for `mod + 2, . . . , `max, where the latter block does not depend on any
parameters. We therefore only need to consider coefficients for 2, . . . , `mod+1,
and consider the likelihood for the higher multipoles as part of the normalizing
constant (except if we want to compute the full posterior probability, as noted
in the previous section). Building on the benchmarks of section 4.3.2, we write
this as

p(α, p̂, q, n|s) ∝ q−
N
2 |Mẑ(α)|−1|Siso(n)|−

1
2 e−

1
2q
‖Siso(n)−

1
2 Mẑ(α)−1R(p̂)†s‖. (5.2)
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(1)

(2) (3)

Figure 5.1: Illustration of a problem with conditional sampling. If p(q, α|p̂, n, s)
turns out to be a distribution with strong correlation, a conditional step in α alone
from (1) to (2) would almost surely be rejected, preventing the probable move of
(q, α) to (3). This forces all random walk steps to be small, requiring many steps
to explore the distribution. When stepping both variables simultaneously, much
larger jumps are allowed (dashed line).

Note that we have factored out the power spectrum amplitude q, so that Siso

only depends on the tilt n. We have also defined N as the number of spherical
harmonic coefficients included in the system, N = (`mod + 2)2− 22 (assuming
`mod < `max).

We choose to explore the posterior by moving one of the four parameters at
the time, conditional on the three others. One reason is that, as noted earlier,
the necessary computations fully decouple. There is no computational gain
from changing parameters simultaneously. Changing p̂ scales as O(`max

3),
changing α or n scales as O(`max

2), and a change of q is done in constant
time. By sampling the parameters one by one, we avoid a situation where
proposing an unlikely value of n leads to simultaneously rejecting a likely value
of p̂ that was costly to compute. We also become free to repeat the technique
of doing the cheaper steps more often than the costlier steps, although this
turned out to not be necessary.

Another reason for making steps one parameter at the time is the possibil-
ity to create highly adaptive proposal rules, without sacrificing the simplicity
of the random walk Metropolis algorithm. For instance, one can imagine that
p(p̂|α, . . . ) becomes more dispersed when conditioning on lower α’s, and that
one wants to adapt the proposal rule correspondingly. In the end, this was
not necessary either, although it may become necessary in the future if the
sampler is to be used on isotropic simulations.

The disadvantage of not making joint moves would become clear in the
presence of strong correlations in the posterior. In that case, stepping one
component at the time would lead to unnecessarily bad proposals (see figure
5.1). Fortunately, as long as `0 is well chosen, the parameters seem free of
strong correlations in the posterior.
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As our proposal density for α and n, we simply adopt symmetric Gaussian
random walk steps, where the standard deviations σα and σn are tuned as
described in the following section. For q we currently do the same, but we
observe that

p(q|α, p̂, n) ∝ q−
N
2 e−

1
2q

sT Ŝ−1s,

where Ŝ indicate the signal covariance evaluated with q = 1. We recognize
p(q|α, p̂, n, s) as an Inverse-gamma distribution with shape parameter N/2−1
and scale parameter sT Ŝ−1s/2 (Gelman et al., 2004). Thus, it would have
been possible to use a Gibbs step and draw q using standard routines2.

To sample p̂, we use random walk Metropolis with a uniform proposal
density on a cap on the sphere3, centered in the current position and with
angular radius σp̂. In order to tune σp̂, we need some way to measure the
dispersion of p(p̂|α, q, n, s). Standard deviation does not work well with co-
latitude and longitude coordinates, as the results would depend on the po-
sition on the sphere, and because of the wraparound. Instead, given a set
of samples {p̂(t)}T

t=1, we use the following approach. First, we find the mean
direction p̄, by averaging {p̂(t)}T

t=1 as vectors, and normalizing the result to
the unit sphere. Then, we measure dispersion in radial distances with respect
to this mean,

sd(p̂) ≡

√√√√ 1

T

T∑
t=1

(ψ(t))2,

where ψ(t) is the angular distance of a sample to p̄. Continuing along these
lines, it is also useful to view p̂ in two coordinates in a way that is indepen-
dent of the current position on the sphere. For this purpose we establish a
coordinate system where p̄ is aligned with the z-axis, and (ψ(t), φ(t)) are the
co-latitude and longitude coordinates of each sample with respect to p̄ (and
an arbitrary orientation). Finally, p̃(t) are the samples projected to the 2D
Euclidean plane,

p̃
(t)
0 = ψ(t) cosφ(t), p̃

(t)
1 = ψ(t) sinφ(t).

The p̃(t)’s are then used for chain diagnostic plots, such as figure 5.2.

5.3 Tuning and performance

A common approach in MCMC is to tune the proposal density for a given
data set d by using test runs prior to the real run. Motivated by the fact

2If a routine to sample from Inverse-gamma is not available, one can sample 1/q from
a Gamma distribution instead.

3The exact computation is to a) draw a variate U uniformly from [0, 1], b) let the
proposal co-latitude θ∗ = cos−1(1 − (1 − cos σp̂)U), c) draw the proposal longitude φ∗

uniformly from [0, 2π], d) rotate the resulting point by the coordinates of p̂(t) using Euler
matrices.
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that what we really should target is convergence to p(θ|s = s(k)) within each
Gibbs cycle, not convergence to the final marginal posterior marginal p(θ|d),
we opt for performing all tuning a priori on simulated signals4.

The proposal densities for α, p̂ and n needs tuning with respect to their
respective conditional posterior. After some guesswork and test runs we
conclude that the posterior dispersions are strongly dependent on `mod, as
expected, but that any other dependencies, such as p(p̂|α, q, n, s) becoming
wider at lower α, are small enough to be neglected. To find a rule for pre-
dicting the dispersion, we first simulate an ensemble of signals s(k) with fixed
parameters α0 = 0.075, p̂0 = (0, 0), q0 = 1, and n0 = 0. Then, over a
range of `mod values, we estimate the posterior dispersion for each signal,
e.g., sd(α|p̂ = p̂0, q = q0, n = n0, s = s(k)). The dispersion varies quite a bit
depending on the signal used. Finally, we fit a power law to these dispersion
samples,

Es(sd(α|p̂ = p̂0, q = q0, n = n0, s)) = aα`mod
bα .

The proposal dispersion σα was then tuned relative to these estimates,

σα = λαaα`mod
bα ,

where λα was manually tuned for an acceptance rate in the range 0.2–0.7. This
process is then repeated for σn and σp̂. In practice, we have to bootstrap the
process by doing some guesswork for a small set of `mod (running long chains
to make up for bad tuning), then make our estimates, and then repeat for a
wider range of `mod. After tuning for `mod up to 100, the resulting rule results
in successful proposal distributions for `mod as high as 500, so the power law
is a successful fit. It also runs well on signals simulated with α0 = 0. This
is attributed to the fact that almost all signals has some spurious preferred
direction p̂, so that even if α is estimated very low, p(p̂|s) still does not get too
wide. Still, if probing an observation without a dipole modulation signature
at high resolution, recalibration could be needed.

An example chain conditional on a single signal is given in figure 5.2.
Figure 5.3 shows the results of running a the full chain including the Gibbs
steps in s. There are necessarily longer correlation lengths when including
the Gibbs step. The effect is to average over multiple signal posteriors to
incorporate the uncertainty due to mask and instrumental noise, and each
model parameter sample taken conditional on the same signal are therefore
strongly correlated with respect to the total posterior. However, what we
really care about is correlation per CPU time, not correlation per sample.
Therefore, the chains must be said to behave excellently, with almost inde-
pendent samples between one signal and the next. The chain also converge
very quickly, essentially within a couple of CG searches regardless of starting
position. Chains at higher `mod take longer to to converge.

4This is not to say that tuning for data would be unfruitful, because each signal sample
s in a real run is still constrained by data. Still, the approach of tuning against simulated
signals worked very well; a convenient side-effect of the Gibbs sampler.
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Figure 5.2: MCMC sampling of p(α, p̂, q, n|s) for a fixed, simulated signal, `mod =
300. The iteration counter increments with every MCMC step, so each parameter
change every fourth step (in particular, the ACF lag should be divided by four).
The input parameters used for sampling s are given by gray bands. The left panels
above contain a small portion of the full chain, marked by a vertical gray band in
the full chain.
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Figure 5.3: Full sampling including Gibbs steps from p(α, p̂, q, n|d). The same
signal is used as in figure 5.2, with added noise and beam smoothing to create
an observation with WMAP 7-year characteristics (V-band). We use the KQ85y7
mask (Jarosik et al., 2010). A new signal s(t) is sampled every 161st iteration. Note
the different scales from figure 5.2. The posteriors are much wider as a result of
averaging over many possible signals. What counts for computational efficiency is
correlation lengths per sampled s(t), and dividing the ACF lag by 161 we see that
the there is little correlation between one signal and the next. The chain mixes
about as well as we can hope for.
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Chapter 6

The PyCMB package

Implementing the algorithms described, debugging them, and verifying the
final code against simulations represents the main effort behind this thesis.
The implementation was done from scratch in Python. As is customary for
scientific Python code, the focus has not been on a monolithic program for
a single model, but rather on sowing the seeds for a collection of reusable
features which can be put together (and supplemented) in flexible ways for
each new analysis. This explains the name: PyCMB, a package for CMB
data analysis in Python. It currently contains about 5000 code lines. About
700 of these are specific to the dipole modulation model1. The constrained
realization sampler used for the Gibbs step in s also consists of about 700
code lines. We will not cover every detail of PyCMB here, but just give a
quick tour.

We do not rely on any existing cosmological code. In particular, we do not
rely on the exact likelihood dipole-modulation model code of Hoftuft et al.
(2009), or on the Commander CMB Gibbs sampler (Eriksen et al., 2004b).
Commander has many features that PyCMB does not have, in particular
joint estimation of foregrounds, estimation of observed CMB power spectra,
and inclusion of polarization data.

6.1 Command line front-end and chain files

The MCMC part of PyCMB revolves around chain files. Each chain file con-
tains not only the chain, but everything that is needed for full reproducibility:

• The observation data and instrument properties.

• If based on a simulation, the simulated signal and the true values the
simulation was based on.

1Although this does not include about about 1500 lines of exploratory Python scripts
made to better understand the behaviour of the model, make plots for this thesis, and so
on. These are obviously specific to the model in question.
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• Any parameters used for MCMC sampling, such as `max and `mod, a ba-
sic description of the MCMC strategy (“signal,alpha,phat,q,n,alpha,
phat,q,n,...”), and so on. An important principle is that while de-
faults are provided for many parameters, they are all persisted to file, so
that tuning of the defaults do not cause inconsistencies down the road.

The idea is that it is better to store too much than too little, because one
never knows what will be useful for debugging. Storing the full observations
directly in each chain file was convenient for WMAP-sized data sets. For
Planck-sized data sets, one might want to store data pointers instead.

Another principle is that it should be possible to execute any command
directly against the raw observational data, without having to keep track of
any manually preprocessed input. Therefore, a few preprocessing options are
included in the command line interface. Initializing a new chain is done using
the following command:

dipmc init \
--datapath $WMAP_PATH \
--data wmap_da_forered_iqumap_r9_7yr_V{1,2}_v4.fits \
--beam wmap_V{1,2}_ampl_bl_7yr_v4.txt \
--powerspectrum wmap_lcdm_sz_lens_wmap5_cl_v3.dat \
--mask wmap_7yr_smoothable_mask.fits \
--combine-channels average \
--downgrade 16 \
--lmod 40 --lmax 44 --name V \
--fix q=1 -n 1000 -c 10

This includes the data from the V1 and V2 WMAP radiometers, downgraded2

to Nside = 16. We also request that q is not sampled, but held fixed at 1, and
that we want 10 chains of 1000 Gibbs signal samples each. Alternatively, one
could base the chains on a simulation with known true parameters, using the
original WMAP resolution and noise properties:

dipmc init --simulate \
--datapath $WMAP_PATH \
--nobs wmap_da_forered_iqumap_r9_7yr_V{1,2}_v4.fits \
--sigma 3.319mK 2.955mK \
--mask wmap_temperature_analysis_mask_r9_7yr_v4.fits \
<...> \
--truth alpha=0.1 --truth phat=’(1.5,1.5)’ \
--truth q=1 --truth n=0

2This involves automatically finding a suitable ` where we want to have a signal-to-noise
ratio of 1, find a corresponding beam and noise level, deconvolve the original data, convolve
with the new beam, and add uniform RMS noise. This process of downgrading the data
is needed in order to correctly solve the linear system of chapter 3, see e.g. Hoftuft et al.
(2009).
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Figure 6.1: Screenshots of an HTML page generated by the dipmc report com-
mand. It serves to get a quick overview of a chain and the input it was based
on.

Both commands create a new directory with a name derived from the argu-
ments (if not explicitly given), containing 10 chain files c0000.h5 through
c0009.h5. Each chain is stored in the HDF5 format3.

Both commands initialize the chain starting point at random, and then
immediately terminate. To start sampling, or to resume an aborted sampling
process, we type:

dipmc run --lprecond=50 <path>

This will scan through <path> for any unfinished chain files. Lock files are
used to make sure no samplers try to work on the same chain. Therefore,
worker processes can be launched quickly without having to specify in detail
which process works on what chain. The workflow neatly separates param-
eters of the simulation itself, specified using init, from options that only
impacts runtime and system resource usage, specified in run.

Finally, the following command scans a directory and updates summary
reports for all chains, as seen in figure 6.1:

dipmc report <path>

This is the current limit of the command line interface. Inspection, post-
processing and plotting is currently done either by Python scripts or in an
interactive Python console. Using the data from non-Python applications
should just be a matter of exporting the data using, e.g., the np.savetxt

command. One can also open the HDF5 files directly, as HDF5 interfaces are

3HDF5 is a relatively standard format for self-documenting scientific data. It is similar
to FITS (which is more widespread in the cosmological community), but has a lot more
features, and was simply more convenient in this case.
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available for almost any environment (MATLAB, IDL, Fortran, C, etc.). An
example Python session inspecting a chain file:

In [1]: import cmb

In [2]: c = cmb.openfile(’c0003.h5’); len(c)
Out[2]: 128800

In [3]: c.plot(burnin=30000) # pops up window with chain plots

In [4]: m = c.plot_marginal_phat(Nside=16); m
Out[4]: Pixel sphere map (ring-ordered, Nside=16, Npix=3072)

In [5]: m.map2gif(’direction-posterior.gif’)

In [6]: log_alpha = np.log(c.get_chain(’alpha’))); plt.hist(log_alpha)

6.2 Overall design

A few key principles were followed out of habit:

• Code should never reach out for what it needs, but instead expect to
have it passed in. This is the most straightforward way of ensuring that
code does not tangle, and remains easily testable without relying on a
particular program flow.

• Test each piece in isolation, by writing a small script that exercise func-
tionality in each piece. As an example, the dipole-modulated covariance
matrix S was computed both from samples and from theory. Unfortu-
nately, the automated test suite (the pillar of many modern software
projects) is lacking. This was because plots mostly had to be inspected
manually, and we did not spend time to investigate automatic methods
for creating tests that, e.g., compare with Monte Carlo results.

Python is a flexible language that has support for many programming paradigms,
whether procedural, object-oriented, or functional. Following community cus-
toms and experience, we decided to let the package consist of four layers. From
the bottom and up:

Sub-packages Fully reusable, isolated functionality that can eventually
make their way into separate projects:

• lightmc – Functionality for storing arbitrary MCMC chains to file and
various plotting functions (PyMC was tried and found unsuitable).

• healpix4py – A Python interface to the Fortran implementation of
HEALPix.
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Basic algorithms layer These are mostly procedural, and as isolated as
possible. Examples include computing the diagonal of N−1 in spherical har-
monic space, rotating a set of vectors using Euler matrices, repacking a sparse
matrix from complex to real spherical harmonics, Conjugate Gradients, and
so on. A few of these had to be implemented in Cython for speed (see Selje-
botn, 2009). An example of using this layer:

M = compute_M(lmin, lmax, px, py, pz, alpha_l)
Ninv_diagonal = Ninv_to_real_harmonic_diagonal(lmin, lmax,

1 / (rms_array * rms_array))

The idea is that it is easy to get an object-oriented interface wrong, so that it
gets in the way instead of speeding up development. This can happen either
by being too generic or too specific. By keeping the object-oriented layer as
thin as possible on top of procedural building blocks, this risk is diminished.
It is fully possible to build something directly on the basic procedural algo-
rithms, and only add the functionality in the object-oriented layer when one
is sure about the design.

Object-oriented layer Assists in creating code that is generic enough to
avoid “code entanglement”, i.e., code that does not contain special cases for
unrelated issues. An example of using this layer:

from cmb import *
# First, sample a signal constrained by V1 and V2 data
with working_directory(’$WMAP_PATH’):

V1 = CmbObservation(
data=’wmap_da_forered_iqumap_r9_7yr_V1_v4.fits’,
sigma0=3.319e-3, # or ’3.3 mK’
beam=’wmap_V1_ampl_bl_7yr_v4.txt’,
mask=’wmap_temperature_analysis_mask_r9_7yr_v4.fits’)

V2 = <...>
V = average_observations([V1, V2])
model = IsotropicCmbModel(’power_spectrum.dat’)

sampler = ConstrainedSignalSampler([V], model, eps=1e-5, lprecond=40)
signal = sampler.sample_signal()
# Then, simulate an observation of this signal
# using V2 properties (adds beam smoothing and RMS noise)
simulated_observation = V2.simulate_observation(signal)
# Finally, downgrade it
simulated_observation = downgrade_observation(simulated_observation,

Nside=16, FWHM=’9 deg’)

The corresponding code using the procedural layer would have been much
longer and much more specific. We can easily switch out IsotropicCmbModel
with DipoleModulationCmbModel, or another exotic model, without changing
anything else.
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Command-line layer The layer described in the previous section is very
thin, and essentially consists of documenting command line options and sim-
ple calls to the PyCMB API. Anything that can be done through the com-
mand line should also be easily doable from Python scripts using the package
directly, but the time spent on a few command line commands was well repaid
when running jobs on various data on a cluster.

6.3 Independence of code base

As mentioned, we do not rely upon Commander, and the Gibbs sampler in the
PyCMB package can be seen as an independent implementation. The code
of Commander was seriously consulted only on one occasion, and in that case
led to a bug being discovered in Commander, not the other way around4.
We did however compare constrained signal realizations with those produced
from Commander. In that case, a third, explicitly computed theoretical result
was first found to be in agreement with Commander, and then the theoretical
result was used for debugging PyCMB.

The main point of contact between Commander and PyCMB is therefore
that H. K. Eriksen is both the supervisor of this thesis project, and the main
author of Commander, so that any flawed assumption on his side regarding
the algorithms could potentially make its way into both projects. All such
assumptions should be documented in the preceding chapters.

This is not meant to imply that PyCMB is free of bugs, rather the reverse.
However, it does mean that one can realistically hope for any bugs in one code
base to be independent of any bugs in the other.

4The bug in question was in the CG preconditioner, and does not impact scientific
conclusions in any way.
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Analysis

Having developed a working code for exact Bayesian analysis of a dipole-
modulation effect, we now put it to use. We start with analysing 500 simula-
tions at low resolution, in order to get an indication that the code is working as
it should. Then, we attempt to reproduce the results of Hoftuft et al. (2009).
While the results are similar, they are not in complete agreement. This can
possibly be explained by different handling of foregrounds, but should be in-
vestigated more closely to make sure it is not a result of bugs in our code.
Finally, we present a few results from full-resolution WMAP data. These are
present primarily to demonstrate that the code works at high resolutions, and
we stop short of a full analysis.

Warning: The last known bug in the code was fixed less than a week prior
to the thesis submission deadline. The analysis of WMAP data is present
solely to give an illustration of using the method, and the results quoted
should not be taken as final. In particular, the chains have not run for as
long as they should have.

7.1 Validation by simulation

How can we be sure that our code is correct, or at least be somewhat confident
that any bugs do not affect the scientific conclusions? The answer is simula-
tions. We construct many artificial data sets dj with known real parameter
values. Then, we run our code and recover estimates for the parameters we
put in, and finally, compare the claims made the posterior distributions with
the true values.

7.1.1 Generating simulated data sets

The process of making simulations builds directly on our model specification
in chapters 3 and 4, with one exception: We do the modulation directly in
pixel space, which causes the modulation effect to extend to `max, ignoring
any `mod. This provides an extra check that the parameter estimation works
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when including only a subset of the data in the CMB signal likelihood (as we
would expect).

In detail, we:

• Simulate an isotropic signal with the best fit WMAP 7-year power spec-
trum (Larson et al., 2010).

• Apply the dipole modulation in pixel space (at Nside = 512) for known
α0 and p̂0. The modulation is applied in pixel space, in order to be
independent of the sparse matrices derived in chapter 4.

• Add a monopole and dipole component, with amplitude around 80µK,
to make sure we are insensitive to their presence. The same monopole
and dipole is used for all simulations.

• Smooth the signal with a 9◦ FWHM Gaussian beam.

• Convert to Nside = 16, and add 0.56µK of RMS noise per pixel, which
cause unity signal-to-noise power ratio at ` = 40.

• Use a galactic mask similar to the one used in WMAP analyses (but
smoothed and downgraded to Nside = 16).

Finally, we feed the simulated data set to our code together with the RMS
map, beam, mask, and the power spectrum, fixing `mod = 35 and `max = 401.
In each case, we take care to start the chain in a random point, and discard
burn-in afterwards.

7.1.2 Standardized estimators

We use the mode as our estimator of the true value for all parameters. In
the case of α, q, and n, we standardize the difference between our estimate
and the true value by using the standard deviation of the posterior, e.g., for
chain j we have

zα,j =
mode(α

(t)
j )− α0√

〈(α(t)
j − 〈α(t)

j 〉)2〉,

with corresponding definitions for zq and zn. The preferred direction posterior
p(p̂|d) is less trivial, being a 2D distribution on the sphere. In the limit of
a small dispersion, the sphere can be treated as a 2D plane. The radial

1It may have been a mistake to not let the observation be noise dominated at `max,
however, there is not enough time to redo the simulations. An earlier set of simulations
(prior to fixing a critical bug) had `max = 47, using the same noise level, and it displayed
the exact same behaviour. We are therefore rather confident that this didn’t affect the
results.
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profile of an azimuthally symmetric 2D Gaussian with variance σ2 is Rayleigh
distributed,

p(ψ|σ) =
ψ

σ
e−

ψ2

2σ2 . (7.1)

Motivated by this, we define ψ(t) as the radial distance of each sample p̂(t) to
the mode of p(p̂|d), and use

zp̂,j =
ψ

(t)
j√

1
2
〈(ψ(t)

j )2〉
,

as our statistic, where the denominator comes from the Maximum Likelihood
Estimator of the Rayleigh distribution parameter σ. From equation (7.1)
we see that we can then compare directly with a Rayleigh distribution with
σ = 1, at least in the limit of a small posterior. However, as our posterior
will be rather wide, given the low `mod, we should not be surprised about
systematic deviations from this coming from being on the sphere, and not in
the 2D plane.

7.1.3 Results of simulations

We base our results on 500 simulations, with a true α0 = 0.1. Table 7.1
display our check of the Bayesian credibility interval claims made, which are
in excellent agreement.

The question of an unbiased point estimate is a bit trickier. The results
of our standardized estimates can be found in figure 7.1. We note that zα

appears to be a mixture of two Gaussians. One has large mass and is biased
slightly high, while the other has small mass and is biased very low. By
manually inspecting the corresponding posterior distributions, we find that
this is reflected in two possible shapes of the posteriors. The majority of the
posteriors are Gaussian-like, located randomly around the true value. The
posteriors in the other group, corresponding to the heavy left tail in figure
7.1, have mode at or near zero and look like Gaussian distributions truncated
to only include the right half. That is, they are very skewed, and our statistic
zα may not be the best one. The posterior credibility intervals still has the
right coverage, so we accept this as an unavoidable, non-Gaussian feature of
the estimator.

The single troublesome feature is the outlier that predicts α high by 4σ.
The chain in question does however visit the true value of α on a few occasions,
indicating that the left tail of the posterior could be much heavier than that
of a Gaussian. As of this writing, the chain is being run for longer in order
to check how anomalous the simulation is.
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Table 7.1: Check of posterior Bayesian credibility intervals (CI). For each of
n = 500 simulations, the narrowest possible 68% and 95% credibility intervals are
computed from the posterior distribution. Then we simply count how many con-
tain the true value. The uncertainties indicate standard deviation of the binomial
distribution,

√
np(1− p)/n.

Variable 68% CI hit rate 95% CI hit rate
α 67% ± 2% 93% ± 1%
q 67% ± 2% 96% ± 1%
n 66% ± 2% 96% ± 1%
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zα

0 1 2 3 4 5

zp̂

4 2 0 2 4

zq
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Figure 7.1: Plots of our standardized estimates when running a chain on each of
500 simulated data sets, with the true α0 = 0.1. Outliers (absolute value greater
than 3) are marked with dotted vertical lines. No simulation produced an outlier in
more than one variable, and plotting outliers against each other show no pattern.
Over-plotted distributions are a standard Gaussian for α, q and n, and a standard
Rayleigh for p̂.
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7.2 Analysis of downgraded data

Before running the code on full resolution WMAP data, we attempt to repro-
duce the results of Hoftuft et al. (2009). For easy comparison we use the same
input, which is based on WMAP 5-year data, but downgraded to Nside = 32.
The map was smoothed with a 4.5◦ FWHM Gaussian beam, 1µK of RMS
noise was added, and the KQ85 mask was directly downgraded by exclud-
ing pixels where more than half of the corresponding Nside = 512-pixels were
missing. We focus on the map based on the V band maps.

The results can be seen in figure 7.2 and table 7.2. While we certainly
reproduce the main features of Hoftuft et al., there is some discrepancy, and
the detection is not as strong. Since the results of Hoftuft et al. show a
stronger detection for `mod = 64 than `mod = 80, we have also included an
analysis where we assume that only multipoles ` = 65, . . . , 80 are modulated2.
The resulting posterior is very much consistent with the others, showing weak
evidence of modulation, but a consistent preferred direction, so that the effect
is to pull the `mod = 80-posterior somewhat downwards.

The method of Hoftuft et al. is based on brute-force likelihood evaluation
in pixel space of

C = S + N + F,

where F is similar to our σ2
t TTT . However, in addition to marginalizing over

the monopole and the dipole, they marginalize over foreground templates,
based on what has been subtracted in the foreground cleaned maps by the
WMAP team. This difference in the treatment of the data could explain
the discrepancy. This is supported by the fact that our results are much
more in agreement with Hoftuft et al.’s estimates from the foreground-cleaned
Internal Linear Combination (ILC) map, as well as the estimates when using
the expanded KQ85e mask.

Evaluation in pixel space is based on converting the covariance matrix S
to a pixel space basis. The dipole modulation was performed in pixel space,
that is, S = MYSisoY

†M†, where M is a diagonal pixel space matrix corre-
sponding to the dipole modulation, Siso is a diagonal spherical harmonic space
matrix, and Y is the spherical harmonic transform. A natural question now,
without a representation of M in spherical harmonic space, is how to intro-
duce the beam. We have learned that Hoftuft et al. let S = MYASisoAY†M†.
That is, their full model reads

d = MYAs + n + f ,

where the modulation is applied after beam smoothing. Since the beam in
question is the 4.5◦ FWHM Gaussian beam used in the map downgrading
process, it is unclear what the rationale would be for this model, other than

2This was achieved simply by setting α` accordingly, see chapter 4.
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Table 7.2: Estimates of α at Nside = 32.

Present analysis Hoftuft et al. (2009)
Band Mask `mod α α
V KQ85 64 0.066± 0.022 (2.9σ) 0.080± 0.021 (3.8σ)
V KQ85 80 0.057± 0.020 (2.9σ) 0.070± 0.019 (3.7σ)
ILC KQ85 64 0.072± 0.022 (3.3σ)
V KQ85e 64 0.067± 0.025 (2.7σ)

that it is much faster to compute when the modulation is represented in pixel
space.

Since we have formulated M in spherical harmonic space, it is easy to
try out the effect of this model. To emulate the behaviour of their code,
we simply use Cfid

` b2`p
2
` as our “power spectrum”, and p−1

` as our “beam”,
where b` is the 4.5◦ FWHM Gaussian beam and p` the pixel window transfer
function for Nside = 32. We also fix the power spectrum parameters, q = 1
and n = 0. The result is shown as the dashed blue line in figure 7.2, which is
in good agreement with the solid blue line. We therefore conclude that the
difference in beam handling is unlikely to affect the results.

In summary, it seems likely that a difference in handling foregrounds is
the reason for the discrepancy. To become sure of this, we should either
run the code of Hoftuft et al. again without marginalization over foreground
templates, or include the foreground templates in our code. The difference
should be explained before publishing any final results, to make sure it is not
caused by any bugs in the code.

7.3 Analysis of full resolution data

Time does not allow for a thorough analysis, but in table 7.3 we give some
preliminary results from analysis of full resolution WMAP 7-year data. For
each of the frequency bands V and W, we take a simple non-weighted average
of the foreground cleaned maps. There are two maps from the V band and
four maps from the W band, each map corresponding to a distinct radiometer.
The reason for the naive averaging procedure is that it makes it trivial to also
average the beams. We apply the KQ85y7 mask (Jarosik et al., 2010), shown
in figure 1.1. In each case, the result include two chains started from different
positions. Each chain was manually inspected and a reasonable amount of
burn-in discarded by eye, but we give no guarantee that they have indeed
converged.

The results so far appear to be consistent with both Hansen et al. (2009)
and Hanson & Lewis (2009), in that the amplitude diminish, but that the
significance3 show no clear trend when including more data. In particular,

3We use this term loosely, meaning “the narrowness of the posterior distribution”. The
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Figure 7.2: Results of repeating the analysis of Hoftuft et al. (2009) in the V-
band, using the same input files. In addition, we include a new analysis where only
multipoles ` = 65–80 are assumed to be modulated. The corresponding posterior
modes found by Hoftuft et al. are indicated by vertical lines on the top axis. See
figure 1.4 for the full posterior found by Hoftuft et al. for `mod = 64. The power
spectrum parameters q and n are not plotted, but are within 1.1σ of the null model.
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Table 7.3: Results of WMAP 7-year, Nside = 512 analysis. The ranges indicate
the multipoles ` that are assumed to be modulated. Multipoles up to `max are
included when drawing constrained samples s, with a CG tolerance of ε = 10−5.
A new signal is sampled every 161st MCMC iteration, and the quantity denoted
α-ACF is the auto-correlation in α, 161 MCMC steps apart.

p(α|d) p(p̂|d)
Data V band, 2–64

α 0.065± 0.023 (2.8σ)
q 0.988± 0.025 (0.5σ)
n 0.058± 0.049 (1.2σ)

`max 300
# of s 40 (α-ACF=0.01) 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Data V band, 2–120
α 0.018± 0.012 (1.5σ)
q 0.994± 0.014 (0.4σ)
n 0.033± 0.026 (1.3σ)

`max 500
# of s 30 (α-ACF=0.02) 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Data V band, 2–400
α 0.001± 0.004 (0.1σ)
q 1.003± 0.004 (0.7σ)
n 0.019± 0.008 (2.2σ)

`max 850
# of s 54 (α-ACF=0.18) 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Data V band, 2–600
α 0.007± 0.004 (1.8σ)
q 1.014± 0.004 (3.6σ)
n 0.022± 0.006 (3.5σ)

`max 850
# of s 39 (α-ACF=0.36) 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Data W band, 2–600
α 0.010± 0.004 (2.3σ)
q 1.021± 0.004 (4.6σ)
n 0.021± 0.007 (2.8σ)

`max 850
# of s 61 (α-ACF=0.44) 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Data V band, 200–400
α 0.000± 0.003 (0.1σ)
q 1.010± 0.005 (1.9σ)
n 0.019± 0.009 (2.2σ)

`max 850
# of s 63 (α-ACF=0.06) 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Data V band, 401–600
α 0.002± 0.007 (0.3σ)
q 1.028± 0.006 (4.8σ)
n 0.024± 0.007 (3.6σ)

`max 850
# of s 59 (α-ACF=0.64) 0.00 0.02 0.04 0.06 0.08 0.10 0.12
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Figure 7.3: Posterior marginals for V band, `-range 2–600 (corresponding to
fourth row of table 7.3).

the significance does not approach zero.
We note that at smaller scales, q and n deviate from the null model.

This is something that should be looked into in closer detail. Based on the
discussion in section 4.4.1, it is clear that there is some theoretical coupling
between α and the the power spectrum, but on these scales, α is very low.
Also, the posteriors show no correlation in the parameters, which one could
expect if this was the reason (see figure 7.3). A more likely explanation at
these scales is that unresolved point sources affect the power spectrum.

For comparison, one should try not only to run each chain longer, but also
to run them with higher numerical accuracy. The tolerance of the CG search,
ε, is for the results presented set as high as 10−5, which may be a possible
source of inaccuracy. Also, any finite `max represents an approximation that
can cause problems when inverting A = (1 + FTN−1F). This is mostly a
concern for the analyses where we let `max = 300 and 500. At `max = 850,
the WMAP data is noise dominated, A becomes closer to a diagonal matrix,
and truncation at `max is less likely to be a problem. In any case, a couple of
chains with `max = 1000 and ε = 10−7 for comparison should shed some light
on this issue.

The reason there are no results beyond `mod = 600 is that those chains did
not converge in the time available, due to a badly tuned proposal distribution

σ values quoted should never be translated into p-values under Gaussian assumptions, as
it is evident that the left tail is heavy in all cases.
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for p̂. Some more effort must therefore be spent to improve the tuning as `
is pushed upwards. The last row in table 7.3 suffer from the same problem,
because the proposal rules do not at the moment take the lower limit into
account.

7.4 Running time

It has been noted many times that our method has a computational scaling of
O(`max

3) = O(Npix
3/2), since for practical applications, O(`max

2) = O(Npix).
Still, decent theoretical scaling is of no use unless the prefactor is reasonable.

The computational behaviour of our method is very well understood. No
sparse decompositions are required, which could have been a possible source
of unpredictable behaviour. The only routines that scale as O(`max

3) are
found in HEALPix; alm2map, map2alm and rotate_alm.

For each round of parameter sampling, rotate_alm is called 40 times.
From profiling the code at a moderate `mod = 100, we see that rotate_alm

already claims about 80% of the running time in this step. The exact cost
of a rotate_alm call can be seen in figure 4.3. It is comparable to that of
the spherical harmonic transforms, and since a CG search requires over a
thousand of those, the parameter sampling phase can be neglected.

Profiling a CG search at `max = 850, Nside = 512, we see that alm2map

occupies 40% of the time and map2alm 30% of the time. The remaining
30% is spent in applying the preconditioner matrix, scaling as O(`4precond), or
applying N−1, scaling as O(Npix). The most important part is how many
CG iterations are required. With `precond = 60 and CG tolerance parameter
ε = 10−5, the above parameters, and the data from the V frequency band, the
number of iterations varied between 600 and 700. One iteration is measured
at 1.8 seconds wall time when running in parallel on 8 cores4.

The final multiplier is the number of Gibbs samples we desire. This is
something that can only be reliably answered after doing more data analy-
sis. An educated guess is that 5 chains, each run for 100 iterations with 30
iterations discarded as burn-in, will provide a good representation of a given
posterior distribution. Using 8 cores for each chain, this means we have to
wait a wall time of 35 hours, or 1400 CPU hours in total.

The performance for low resolutions is also of interest, especially for Monte
Carlo simulations. The Nside = 16 experiment earlier in this chapter required
6 seconds per sample on a single core, or about 1000 CPU hours for 1000
simulations, each run for 600 Gibbs samples. For Nside = 32, `max = 64, each
sample took about 270 CPU seconds.

4Intel Xeon E5430, 2.66GHz, 6 KB cache. Intel Fortran was used for compiling
HEALPix. The built-in Fast Fourier Transform was used. We rely on using HEALPix
in OpenMP mode for parallelization.



Chapter 8

Conclusions & prospects

8.1 Improved methods and new code

Based on the CMB Gibbs sampling framework of Jewell et al. (2004) and
Wandelt et al. (2004), a method has been developed for efficient estimation
of hemispherical power asymmetry in the CMB, using a class of parametric
phenomenological models where an isotropic, Gaussian CMB signal is as-
sumed to be modulated. While we have focused in particular on a dipolar
modulation field, the computational foundation is also laid for many gener-
alizations that we detail below.

The existing exact method for the dipole modulation model (Hoftuft et al.,
2009, Eriksen et al., 2007, Gordon, 2007) scales as O(Npix

3), while the method
presented here scales as O(`max

3) = O(Npix
3/2). The constant overhead is low

enough for most practical purposes, with an estimated 1500–2000 CPU hours
for an analysis of WMAP data at full resolution. The method should scale
well to the resolution provided by the Planck experiment, as all the routines
that scale as O(`max

3) are well understood. In particular, sparse linear algebra
is kept at the O(`max

2) level and will not cause any surprises when scaling up.

Further optimizations are likely to improve on the running time. In par-
ticular, there is potential in the CG preconditioner. There also seems to be
some potential in spending more effort on tuning the MCMC kernel for higher
resolutions and a posteriori tuning for the signals sampled when constrained
by WMAP data. Repeating the analysis of Hoftuft et al. (2009) at Nside = 32
required less 75 CPU hours for a single data set, and an analysis at resolution
Nside = 16 only require a couple of CPU hours. Monte Carlo simulations are
therefore possible at these resolutions.

The method discussed has been implemented from scratch in Python, to-
gether with many tools for automating simulation, downgrading observations,
plotting, etc.. The resulting code is believed to be in working order, although
in chapter 7 we have noted a few things that remains to be checked before
any results are published.

Writing code from scratch is a great learning device. The drawback is
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that we are left with a Gibbs sampler that is not able to do joint CMB
model and foreground estimation, which is something Commander is capable
of (Eriksen et al., 2008). While foregrounds may be shown to be unimportant
by other methods, it would clearly be more flexible to have the option of joint
foreground estimation. There are three ways to make this happen. First, one
can re-implement the foreground sampling in PyCMB. Or, one can instead
implement the dipole modulation model in Commander, which requires using
a library for sparse linear algebra from Fortran. Finally, the quickest approach
may be to call the constrained signal and foreground sampler of Commander
from Python. Note that merely marginalizing over foreground templates,
in order to guard against over-subtraction of foregrounds in the foreground
cleaned maps, is something that is in place in PyCMB, although it was not
utilized (beyond monopole and dipole templates) in our analysis of WMAP
data.

8.2 Is the universe isotropic?

The focus in this thesis has very much been on the computational aspects and
development of new methods, with less focus on the cosmological question and
the analysis of real data. While we present some new results on WMAP 7-
year data in chapter 7, it remains to apply the method to data in a more
systematic fashion, including:

• Estimation over more multipole ranges, allowing direct comparisons
with both Hanson & Lewis (2009) and Hansen et al. (2009).

• Include more frequency bands.

• Check sensitivity to foreground contamination, such as analysing with
different masks, and repeat the analysis on raw, non-foreground cleaned
data (as done by Hanson & Lewis, 2009).

And, in particular, each chain needs to run quite a bit longer, and be checked
for convergence, using, e.g., the Kolmogorov-Smirnov test between chains
(Robert & Casella, 2004).

Still, an informed guess is that the asymmetry becomes less pronounced
at higher `′s, in agreement with Hanson & Lewis (2009), but that there is
asymmetry present at all scales with a consistent preferred direction, in agree-
ment with Hansen et al. (2009). Like both of those analyses, we see that the
significance of the result vary depending on what data is included. The 400–
600 range contains 201,201 data points, while the 2–65 range contains 4,221
data points. Considering that the significance, at best, stays constant, it is
clear that the dipole modulation model with constant modulation amplitude
is not a very good fit.

Bennett et al. (2010) claim that the reason for this is that the effect is a
statistical fluke, driven by a posteriori bias. However, under the assumption of
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isotropy (and the absence of related systematic effects), the preferred direction
should be entirely uncorrelated between one set of scales and another. It
seems that Bennett et al. suggests that if one just search enough ranges, one
can find any preferred anisotropy direction. If the effect is a fluke, then it
should be possible to, e.g., find a multipole range that prefers the direction
(0◦, 0◦), just by looking for long enough.

Both our trial runs in chapter 7 and the study of Hansen et al. (2009)
strongly suggest that this is not the case (although there are certainly more
sets left to probe). It seems much more likely that something is indeed going
on, but that the dipole modulation model in its current form is suboptimal in
capturing it. We already noted that the phenomenological postulation of the
dipole modulation model can be compared with linear regression, in that it
is designed for picking up rough trends for what is likely to be a much more
complicated phenomenon. The natural approach at this stage is to generalize
the model, and we discuss a few such generalizations below. Whatever this
effect turns out to be in the end, it is likely to be much more interesting than
a statistical fluke, whether the end of the story is new physics or “only” a
better model for foregrounds.

Finally, some words on model selection, a topic Bennett et al. (2010) give
particular attention, in noting that current exact methods are too slow to
allow for Monte Carlo simulations:

Comparing these methods, we find that the Hanson & Lewis (2009)
optimal quadratic estimator has significant advantages [...] statis-
tical significance can be assessed straightforwardly by comparing
the estimator with an ensemble of Monte Carlo simulations. In
particular, maximum likelihood analyses [...] are not a sufficient
substitute for true Monte Carlo simulations, which directly give
the probability for a simulation to be as anomalous as the data.

However, this neglects another important aspect. In any model selection set-
ting, there will be infinitely many possible estimators, but not all will have
the same power in rejecting a null hypothesis. It is not surprising in itself that
an approximate method, subject to approximation errors, finds lower signifi-
cance and has less rejection power. What must be considered is the precision
of the estimator and its power to invalidate the null hypothesis. Hanson &
Lewis (2009) are much more cautious with respect to their estimator;

[...] in the limit of weak anisotropy this QML estimator [...] is op-
timal in the minimum-variance sense. In practice, “weak” means
non-detection, and so this form of quadratic estimator is excellent
for testing statistical isotropy, but needs to be treated with care if
a significant detection is made.

In this setting, what matters is the numerics, not whether or not the cos-
mological research community consider the result significant. With p-values
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lower than 0.01 in some cases, it seems that the QML approach must be fur-
ther validated before one can trust it to have optimal power in rejecting the
isotropic null hypothesis.

Since the Bayesian posterior with a flat prior is identical to the likelihood
function, the method developed in this thesis can be used to repeat the Monte
Carlo simulations that Bennett et al. crave at large scales (approximately
`mod ≤ 80). This is the region where the anisotropy appears to be strongest,
and where the QML estimator is therefore most likely to perform poorly. This
would also provide valuable insight into the accuracy of the QML estimator.
Monte Carlo p-values with an exact estimator for smaller scales seems to still
be out of reach. The Bayesian posterior distribution p(α|d), while giving
a good subjective indication, does not quantitatively answer the question
of model selection. Instead, the Bayesian approach would be to postulate
two possible models, M0 and M1, and compute their respective posterior
probabilities (or their odds ratio). We note that there exists algorithms, such
as Reversible Jump MCMC (Robert & Casella, 2004), that could possibly
allow for such exact Bayesian model selection also at small angular scales.

8.3 Generalizations

A phenomenological model is introduced not as a physical hypothesis, but
simply as another way of looking at the data. It seems that the dipole-
modulation model may pick up something beyond a statistical fluke, but that
it is far from a perfect fit, and highly dependent on the data included. Rather
than scrutinizing the current dipole-modulation model even further, it seems
more interesting to consider generalizations. Two such generalizations seem
to stand out in particular. First, one could consider a wider class of arbitrary
azimuthally symmetric modulation fields. Second, one could consider a scale
dependent modulation amplitude. Both of these fit within the framework
of chapter 4, and should have the same computational scaling. A realistic
estimate is that these more general models can be fit in 3–4 times the CPU
time that the dipole modulation model requires.

8.3.1 Azimuthally symmetric modulation fields

Is the consistent direction of (real or spurious) hemispherical power asymme-
try due to localized features? Is it a patch on the northern hemisphere that
has less power than the average, or a patch on the southern hemisphere that
has more power than the average? Or is it indeed a symmetric hemispherical
effect?

Hansen et al. (2009) already probed into this question by computing power
in 45◦, 90◦ and 180◦ discs. We here outline a parametric modulation approach
to do the same. In the dipole modulation model we take γ as γ(p̂ · n̂) = 1 +
αp̂ · n̂, while to probe for the amount of locality we could instead parametrize
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Figure 8.1: Sigmoid power asymmetry. The function γ(t) on the left, and the
corresponding modulation field γ(p̂·n̂) on the right. These three examples are based
on the three-parameter Gompertz function, γ(p̂ · n̂) ∝ a exp(−b exp(−cp̂ · n̂)) − 1.
Top: As c becomes small, we approach the dipole modulation field.

γ(p̂ · n̂) as some sigmoid function. Figure 8.1 shows some examples using
the Gompertz function, which introduce two more parameters to indicate
locality and steepness of gradient. Another example that could work well
is the cumulative Gaussian distribution. In any case, it seems likely that it
would be necessary to put strong priors on the shape parameters. This would
merely serve to further specify the constraints on the modulation field, and
the amplitude would still be left with an uninformative prior.

Even if the posterior end up having many modes, and the model priors
end up including many iteratively applied a posteriori choices, the process of
fitting such a model to data should give much insight into why we see the
effects that we do with the dipole modulation model. In particular, we could
get an indication about whether the the posterior is driven by local or global
features.

Computationally, recall from chapter 4 that when writing M = RMẑR
†,

then Mẑ is block-diagonal in `, so likelihood evaluation would still scale as
O(`max

3). However, as Mẑ would contain up to O(`max
3) elements, each CG

iteration is likely to take 3–4 times as long, due to two multiplications with
Mẑ and two rotations R in each iteration.

8.3.2 Scale-dependent modulation amplitude

It would be interesting to explore the apparent scale-dependency of α, which
seems to diminish with higher `mod. A “modulation spectrum” α` should
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provide many hints about this. Motivated by what we see in the data, we
may, e.g, model α` as a power law in two parameters. Another approach is to
follow Hansen et al. (2009) in inspecting various multipole ranges in isolation.
It would not be necessary to do a separate analysis for each bin. Instead one
would simply model α` as a piece-wise constant function and estimate α` for
each bin jointly.

Another approach, provided a sampling algorithm can be found, is to
simply model each α` as free parameters and instead require a certain degree
of smoothness, e.g.,

Cov(α`, α`+1) = τ,

where τ is either fixed, or itself a random variable with a possibly informative
prior distribution, corresponding to a form of splining by hierarchical Bayesian
modelling.

If the approach of modelling free α` is successful, that is, the α`’s are well
enough constrained by data with a fairly loose prior, then we should have
excellent hints as to how to proceed in further exploring power asymmetry. If
the universe is truly isotropic, there should be little or no system, with many
α`’s being close to zero because the preferred direction would be a bad fit.
That is, one could imagine seeing a few very significant outlier scales that
essentially fix the preferred direction p̂, and that other scales either agree
with this direction, or have their α`’s forced to zero.

Finally, a remark on sampling free α`’s. It is likely to be trickier to
sample from p(α`|p̂, θiso, s) than the other models, given the large number
of correlated parameters. Evaluating p(α`|p̂, θiso, s) scales as O(Lmax`max

2)
where Lmax is the band-limit of the modulation field, so taking many, many
steps per sampled signal is feasible to make up for a mediocre sampler. Even
making a step one ` at the time, with a few hundred passes per sampled
signal, would still be no more expensive than our typical CG search. Tuning
the covariance of a multivariate normal proposal density over all α`’s should
also be tried for comparison. For a middle road between the two, one could
sample independent α` in blocks. Finally, in the special case of a dipolar
modulation field we mention, as a rather far-out and untested idea, that one
could attempt to use the formulas for tri-diagonal matrices given by Usmani
(1994) to find expressions for M−1

ẑ and |Mẑ|, say, up to first order in α` for
a single ` given the others. Failing that, the formulas of Usmani could still
provide some insights into the structure of the correlation between the α`’s
in the posterior. We stress that these are merely loose ideas that may well
turn out to be unfruitful.

8.3.3 Physically motivated models

Any model that is physically motivated should look at least slightly different
from the phenomenological models we have proposed, since the anisotropic
couplings would tend to be introduced in real space/Fourier space, “in ~k”,
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and not on the sphere, “in (`,m)”. Still, as long as the signal is Gaussian,
one can find covariance matrices for the models also on the sphere. One
example is Groeneboom & Eriksen (2009), who fit the “Ackerman-Carroll-
Wise” model using an algorithm very similar to ours, but with a physically
motivated model. As long as the model predicts a sparse covariance matrix,
Gibbs sampling should be a promising approach.

Groeneboom & Eriksen (2009) have noted that their approach is only
viable up to `mod ∼ 800, using large amounts of CPU time. It is reasonable
to expect similar computational constraints on other physically motivated
models, which may not factor as nicely as the modulation field model. Some
ideas are:

• One can attempt to factor the covariance matrix analytically as S =
MS′M†, where S′ is sparser than S, and where either M is is sparse
or M, M† and M−1 can be efficiently applied to a vector. As an ex-
ample, perhaps it is possible to give S′ as a primordial covariance in ~k,
P (~k,~k′), and let M contain the Einstein-Boltzmann transfer functions
and the integral required to project from the Fourier representation to
the spherical harmonics.

• Much research has gone into routines for finding good permutations
of sparse matrices prior to factorization, which should be used instead
of a naive direct Cholesky factorization. There are also libraries for
computing sparse factors in parallel (see appendix A.6) which could
help push `mod somewhat.

• One should attempt to increase sparsity somewhat by introducing a
rotation matrix R. If at all possible, only have couplings in `, not in
m, so that band-diagonal LAPACK routines can be used.
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Appendix A

Toolbox

A.1 Complex spherical harmonics

For spherical harmonics we rely on the conventions and properties found in
Press et al. (2007). A complex field on the sphere f can be expanded in
spherical harmonics,

f(n̂) =
∞∑

`=0

∑̀
m=−`

a`mY`m(n̂), (A.1)

with n̂ a unit vector in Euclidian 3D space. We will also refer to points on
the sphere by colatitude θ and longitude φ. The spherical harmonics, Y`m,
are given by

Y`m(θ, φ) =

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm

` (cos θ)eimφ (A.2)

when |m| ≤ `, and 0 otherwise. Here Pm
` are the associated Legendre poly-

nomials,

Pm
` (x) = (−1)m(1− x2)m/2 d

m

dxm
P`(x),

where P` are the ordinary Legendre polynomials. A useful symmetry is that
Y`m = (−1)mY ∗

`−m.
The spherical harmonics are orthogonal on the sphere surface,∫

Y`m(n̂)Y ∗
`′m′(n̂)dΩ = δ``′δmm′ , (A.3)

where we use dΩ to indicate integration over the sphere surface. By multi-
plying equation (A.1) with Y ∗

`′m′(n̂) on both sides and integrating, we find the
inverse transform. Since∫

f(n̂)Y ∗
`′m′(n̂)dΩ =

∫ ∑
`m

a`mY`m(n̂)Y ∗
`m(n̂)dΩ = a`mδ``′δmm′ ,
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we have

a`m =

∫
f(n̂)Y ∗

`′m′(n̂)dΩ. (A.4)

It is useful to note that fields that are azimuthally symmetric with respect
to the z-axis are only expanded in terms of m = 0-modes. Further notes on
computing with spherical harmonics are given in 3.3.

Result 1. Let p̂ = (x′, y′, z′). Then, the dipole modulation field γ(n̂) =
1 + α(p̂ · n̂) is represented in spherical harmonics as

γ00 =
√

4π, γ1−1 =

√
2π

3
α(x′ + iy′),

γ10 =

√
4π

3
αz′, γ11 = −

√
2π

3
α(x′ − iy′),

while for L > 1 we have γLM = 0.

Proof. The first few spherical harmonics Y`m(n̂) with n̂ = (x, y, z) are (Ed-
monds, 1957):

Y00 =
√

1/4π Y1−1 =
1

2

√
3/2π(x− iy)

Y10 =
√

3/4πz Y11 = −1

2

√
3/2π(x+ iy).

Solving for the coordinates, we have

1 =
√

4πY00 x =
√

2π/3(Y1−1 − Y11)

z =
√

4π/3Y10 y = i
√

2π/3(Y1−1 + Y11).

So,

γLM =

∫
(1 + α(xx′ + yy′ + zz′)Y ∗

LMdΩ

=

∫ √
4πY00Y

∗
LMdΩ +

α

√
2π

3

∫ (
x′(Y1−1 − Y11) + iy′(Y1−1 + Y11) +

√
2z′Y10

)
Y ∗

LMdΩ

=

∫ √
4πY00Y

∗
LMdΩ +

α

√
2π

3

∫ (
(x′ + iy′)Y1−1 − (x′ − iy′)Y11 +

√
2z′Y10

)
Y ∗

LMdΩ.

Since the spherical harmonics are orthogonal,
∫
Y`mY

∗
`′m′dΩ = δ``′δmm

′, each
choice of L,M picks out one of the terms, and the result follows.
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A.2 Spherical harmonics of real fields

The spherical harmonic transform results in complex a`m, even when the
field to be expanded in spherical harmonics is real. However, it is possible
to use a different convention, real spherical harmonics, where each a`m is a
real number. This is in particular important because it allows convenient use
of the Conjugate Gradients algorithm, which (at least in the form commonly
given) assumes that the linear system is in R.

First, observe that if f(p̂) ∈ R, that is, f(p̂) = f(p̂)∗, then

f(p̂) =
∑
`m

a`mY`m(p̂) =
∑
`m

a∗`mY
∗
`m(p̂) (A.5)

=
∑
`m

a∗`m(−1)mY`−m(p̂) =
∑
`m

(−1)ma∗`−mY`m(p̂), (A.6)

where we use the identity Y ∗
`m(p̂) = (−1)mY`−m(p̂). Since this must hold for

any field f (in particular, it must hold e.g. for a uniform field, any perfect
monopole, any perfect dipole, and so on), we must have

a`m = (−1)ma∗`−m. (A.7)

Therefore, it is enough to store the `+1 complex coefficients for each ` where
m ≥ 0. Also note that a00 is real.

Alternatively, one can reorder the data for each ` into a set of 2` + 1
real coefficients. Let aC , aC

`m denote complex coefficients and aR, aR
`m the

corresponding real coefficients. We then let

aC
`m =

{
aR

`m for m = 0

(aR
`m + iaR

`−m)/
√

2 for m > 0,
(A.8)

and for m < 0 we must have aC
`m = (−1)m(aC

`−m)∗. This choice is made
because it leads to the transformation being an unitary linear operation: The
relationship can be expressed as a linear operator, U, which we define by
aR = UaC and aC = U†aR. From this fact follows the inverse transform,

aR
`,0 = aC

`,0

aR
`m =

√
2Re(aC

`m) for m > 0

aR
`m =

√
2Im(aC

`−m) for m < 0. (A.9)

The matrix U is block-diagonal with one block for each `, and for e.g. ` = 2
the corresponding block in U is

1√
2


i 0 0 0 −i
0 −i 0 −i 0

0 0
√

2 0 0
0 −1 0 1 0
1 0 0 0 1

 . (A.10)
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The pattern repeats for higher `s. Since the pattern is the same for every `,
we write U`m,`′m′ = δ``′umm′ , with

umm′ = (1/
√

2)



√
2 m = m′ = 0

1 m > 0,m′ = m
(−1)m′

m > 0,m′ = −m
−i m < 0,m′ = −m
(−1)m′

i m < 0,m′ = m
0 otherwise.

(A.11)

Transforming a vector of complex spherical harmonic coefficients to its
real counterpart and vice versa is trivial by using equations (A.8) and (A.9).
The same can be done to dense matrices: First apply, e.g., equation (A.9)
to all the columns, and then to all the resulting rows. For sparse matrices,
one simply form U explicitly as a sparse matrix, then use generic routines
for sparse matrix multiplication to compute UKU†, and then discard the
imaginary part (which is zero up to numerical errors).

Result 2. Let J be a matrix such that J`m,`′m′ = δmm′J`m,`′m′ = J`−m,`′−m.
Then J is the same in complex and spherical harmonics, that is, UJU† = J.
Furthermore, U is a unitary matrix.

Proof. When m 6= 0, we see (by computing each case) that

ummu
∗
mm = um−mu

∗
m−m =

1

2
ummu

∗
m−m + ummu

∗
−mm = 0

ummu
∗
−mm + um−mu

∗
−m−m = 0

So,

(UJU†)`m,`′m′ =
∑
LM

∑
L′M ′

δ`LumMδLL′JLM,L′M ′δ`′L′u∗m′M ′

=
∑
M

J`M,`′MumMu
∗
m′M .

When m = 0, u0Mu
∗
m′M = δ0M , so the sum is J`m,`′m. When m = m′ 6= 0, we

have ∑
M

J`M,`′MumMu
∗
mM = J`m,`′mummu

∗
mm + J`−m,`′−mum−mu

∗
m−m

= J`m,`′m(ummu
∗
mm + um−mu

∗
m−m) = J`m,`′m,

when m = −m′, we have∑
M

J`M,`′MumMu
∗
−mM = J`m,`′mummu

∗
−mm + J`−m,`′−mum−mu

∗
−m−m

= J`m,`′m(ummu
∗
−mm + um−mu

∗
−m−m) = 0,
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and finally, in other cases, umMu
∗
m′M = 0 for all M . So,

UJU† = J. (A.12)

Since the identity matrix satisfies our requirements on J, U1U† = 1 which
shows that U is unitary.

Note that the restriction on J above is satisfied by the isotropic sig-
nal covariance Siso, transfer matrices of symmetric beams, and the dipole-
modulation matrix with preferred direction along the z-axis, Mẑ.

Result 3. Assume that K is a matrix in complex spherical harmonics which
maps real fields to real fields; that is, if x is the expansion of a field in R, Kx
is also the expansion of a field in R. Then (−1)m′

K`m,`′m′ = (−1)mK∗
`−m,`′−m′.

In particular, K`m,`m = K∗
`−m,`−m.

Proof. Let y = Kx. We know that x`m = (−1)mx`−m, so

y`m =
∑
`′m′

K`m,`′m′x`′m′ =
∑
`′m′

K`m,`′m′(−1)m′
x∗`′−m′ .

We also know that y`m = (−1)my`−m, so

y`m =
∑
`′m′

K`m,`′m′x`′m′ = (−1)m
∑
`′m′

K∗
`−m,`−m′x∗`−m′ .

Since this must be valid for any x satisfying our assumption, the result follows.

Result 4. If K is an Hermitian, complex spherical harmonic matrix that
maps real fields to real fields (such as a covariance matrix for real fields), then
the diagonal elements of the corresponding real spherical harmonic matrix is
given by

(UKU†)`m,`m =


K`m,`m when m = 0
K`m,`m + (−1)mRe(K`−m,`m) when m > 0
K`m,`m − (−1)mRe(K`−m,`m) when m < 0.

Proof. We have

(UKU†)`m,`m =
∑
`′m′

∑
`′′m′′

δ``′umm′K`′m′,`′′m′′δ``′′u
∗
m′′m

=
∑
m′

∑
m′′

K`m′,`m′′umm′u∗mm′′ .

When m = 0, this is simply K`m,`m. When m 6= 0, we have ummu
∗
mm =

um−mu
∗
m−m = 1/2 and ummu

∗
m−m = (−1)[m<0]+m/2, and so

(UKU†)`m,`m =K`m,`mummu
∗
mm +K`−m,`−mum−mu

∗
m−m+

K`m,`−mummu
∗
m−m +K`−m,`mum−mu

∗
mm

=K`m,`m(ummu
∗
mm + um−mu

∗
m−m)

K`−m,`mum−mu
∗
mm + (K`−m,`mum−mu

∗
mm)∗

=K`m,`m + (−1)[m<0]+mRe(K`−m,`m)
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by using Result 3 and the fact that z + z∗ = Re(z)/2.

A.3 Wigner 3j symbols

The Wigner 3j symbols are used by us primarily to compute Gaunt integrals
(see below). We start by list some basic properties, which can be found in
Edmonds (1957) and/or Rasch & Yu (2003). The Wigner 3j symbol is denoted(

j1 j2 j3
m1 m2 m3

)
For our purposes all coefficients are assumed to be integers. Explicit expres-
sions are not suitable for numerical computation, instead recurrence relations
are used. Still, an explicit expression is(

j1 j2 j3
m1 m2 m3

)
=∆(j1, j2, j3)δm1+m2+m3,0(−1)j1−j2−m3

√
(j1 +m1)!(j1 −m1)!

×
√

(j2 +m2)!(j2 −m2)!(j3 +m3)!(j3 −m3)!

×
kmax∑

k=kmin

(−1)k

k!(j1 + j2 − j3 − k)!(j1 −m1 − k)!(j2 +m2 − k)!

× 1

(j3 − j2 +m1 + k)!(j3 − j1 −m2 + k)!
. (A.13)

Here, ∆(j1, j2, j3) = 0 if the triangle inequality is not satisfied (|ja − jb| ≤
jc ≤ ja + jb for all a, b, c). Otherwise it is

∆(j1, j2, j3) =

√
(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!

(j1 + j2 + j3 + 1)!
.

The sum over k runs over indices such that none of the arguments to the
factorials are negative, which corresponds to

kmin = max(−j3 + j2 −m1,−j3 + j1 +m2, 0)

kmax = min(j1 + j2 − j3, j1 −m1, j2 +m2)

The 3j symbols vanish under a number of circumstances, including:

• Whenever the triangle inequality mentioned above is not satisfied

• Whenever |mi| > ji

• Whenever m1 +m2 +m3 6= 0

Changing the signs of all the ms gives a phase:(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
−m1 −m2 −m3

)
. (A.14)
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This also means that when all ms are zero, the 3j symbol vanish whenever
j1 + j2 + j3 is odd, since(

j j′ j′′

0 0 0

)
= (−1)j+j′+j′′

(
j j′ j′′

0 0 0

)
. (A.15)

Any odd permutation of columns gives the same factor:(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j3 j2
m1 m3 m2

)
= . . . (A.16)

For computation, we use the Fortran routines drc3jj and drc3jm from
the SLATEC library (http://netlib.org). It is based on a recurrence scheme
(Schulten & Gordon, 1976). In addition, it was often convenient to get exact
answers rather than floating point (for experimentation for small arguments),
in which case the wigner_3j function in Sage (http://www.sagemath.org) was
useful (Rasch & Yu, 2003).

A.4 The Gaunt integral

A very important integral in this thesis is the Gaunt integral;

Y ``′`′′

mm′m′′ ≡
∫
Y`mY`′m′Y`′′m′′dΩ. (A.17)

It turns out that this can be written in terms of Wigner 3j symbols (Edmonds,
1957);

Y ``′`′′

mm′m′′ =

√
(2`+ 1)(2`′ + 1)(2`′′ + 1)

4π

(
` `′ `′′

0 0 0

)(
` `′ `′′

m m′ m′′

)
.

(A.18)

This makes it easy to compute the integral fast and exact without any nu-
merical quadrature. Also, it allows us to conveniently study all the symmetry
and vanishing properties of the integral.

The properties we use can easily be derived from the properties of the 3j
symbol: It vanishes when ` + `′ + `′′ is odd, and it is invariant under any
permutation of columns and when changing signs of the m-coefficients:

Y ``′`′′

mm′m′′ = Y ``′`′′

−m−m′−m′′ . (A.19)

Two important Gaunt integrals for our purposes are Y `,`,0
−m,m,0 and Y `,`+1,1

−m,m,0;
here we find explicit expressions for them. The first one is easy:

Y `,`,0
−m,m,0 =

∫
Y`−mY`mY00dΩ (A.20)

=(−1)m

∫
Y ∗

`mY`m
1√
4π
dΩ (A.21)

=(−1)m 1√
4π
, (A.22)
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by the orthogonality property of the spherical harmonics. This can also be
seen from a property of the Wigner 3j symbol mentioned in Edmonds (1957):(

j j 0
m −m 0

)
=

(−1)j−m

√
2j + 1

. (A.23)

We then turn to Y `,`+1,1
−m,m,0, which can be found by computing(

` `+ 1 1
−m m 0

)
.

We use equation (A.13). First,

kmin =max(−1 + `+ 1− (−m),−1 + `+m) = `+m

kmax =min(`+ `+ 1− 1, `− (−m), `+ 1 +m) = `+m

so equation (A.13) only sums over one term with k = `+m, resulting in(
` `+ 1 1
−m m 0

)
=∆(`, `+ 1, 0)(−1)`+m+1

×
√

(`−m)!(`+m)!(`+ 1 +m)!(`+ 1−m)!

× 1

(`+m)!(`+ `+ 1− 1− (`+m))!

× 1

(`+m− (`+m))!(`+ 1 +m− (`+m))!

× 1

(1− `− 1−m+ (`+m))!(1− `−m+ (`+m))!

=∆(`, `+ 1, 0)(−1)`+m+1

×
√

(`−m)!(`+m)!(`+ 1 +m)!(`+ 1−m)!

(`+m)!(`−m)!

=∆(`, `+ 1, 0)(−1)`+m+1

√
(`+ 1 +m)!(`+ 1−m)!

(`+m)!(`−m)!

=∆(`, `+ 1, 0)(−1)`+m+1
√

(`+m+ 1)(`−m+ 1),

(
` `+ 1 1
−m m 0

)
=(−1)`+m+1

√
(2`)!(0)!(2)!

(2`+ 3)!

√
(`+m+ 1)(`−m+ 1)

=(−1)`+m+1

√
2(`+m+ 1)(`−m+ 1)

(2`+ 3)(2`+ 2)(2`+ 1)

=(−1)`+m+1

√
(`+m+ 1)(`−m+ 1)

(`+ 1)(2`+ 3)(2`+ 1)
.
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So,

Y `,`+1,1
−m,m,0 =

√
3(2`+ 1)(2`+ 3)

4π

(
` `+ 1 1
0 0 0

)(
` `+ 1 1
−m m 0

)
=(−1)`+m+1(−1)`+1

√
3(2`+ 1)(2`+ 3)

4π

×

√
(`+ 1)(`+ 1)

(`+ 1)(2`+ 3)(2`+ 1)

√
(`+m+ 1)(`−m+ 1)

(`+ 1)(2`+ 3)(2`+ 1)
(A.24)

=(−1)m

√
3(`+m+ 1)(`−m+ 1)

4π(2`+ 1)(2`+ 3)

Using the symmetry properties (permutation of columns and changing the

signs of the ms), this is useful for all Y `,`′,1
−m,m,0 where |` − `′| = 1; one simply

inserts min(`, `′) in the above expression.

A.5 The Wigner D-matrix

A rotation of a field f on the sphere can be described using three coordinates:
First, rotate an angle ψ around the z-axis, then an angle θ around the y-axis,
and finally an angle φ around the z-axis. In real space, a rotation of a vector
can be carried out by using an Euler matrix E(ψ, φ, θ), and the rotated field
is simply g(n̂) = f(E−1n̂). However, when we are dealing with a pixelized
map, doing the rotation in real space would be inconvenient and error-prone.
Fortunately, there is a method to transform the spherical harmonic coefficients
of f(n̂) directly into the spherical harmonic coefficients of f(E−1n̂).

Suppose we want to find a′`m such that∑
`m

a′`mY`m(n̂) =
∑
`m

a`mY`m(E(ψ, θ, φ)−1n̂).

Then we can simply use the Wigner D-matrix (e.g. Edmonds (1957) and
Risbo (1996)):

a′ = D(ψ, φ, θ)a.

The matrix D is unitary. It is also block-diagonal in `, that is, each scale is
rotated seperately. An `-block can be computed recursively from the ` − 1-
block, so the time required for computing and multiplying D with a vector
scales as O(`max

3) while the memory requirements scales as O(`max
2) (if one

does the computation of D and the matrix-vector multiplication jointly).
HEALPix contains a routine rotate_alm which does exactly what we need,
based upon an algorithm by Risbo (1996).
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A.6 Sparse linear algebra

We rely on the ability to multiply dense vectors with sparse matrices, which
is done with the help of the scipy.sparse Python module. Matrices are
constructed in the COOrdinate format, which is simply three arrays for row
index, column index, and element value, respectively, and then converted to
the more efficient Compressed Sparse Column (CSC) or Compressed Sparse
Row (CSR) formats.

Finding Cholesky or LU factors is a trickier business. In the end, this
turned out to not be necesarry because of the introduction of a rotation R.
Still, the ability to find sparse factors is completely crucial in the experimen-
tation phase, and is likely to become important for other sparse-S models.

The choice of software is made easier by the fact that we need the deter-
minant to evaluate the likelihood. Sparse linear algebra packages appear to
mainly be written with equation solving in mind, and often do not allow for
finding the determinant (e.g., the Intel Math Kernel Library1 and the open
source SuperLU2). Since sophisticated distributed storage schemes are used
for the factors, introducing such functionality appears to not be completely
trivial.

An honorable exception is the GPL-licensed SparseSuite3 by Tim Davis et
al., consisting of, e.g, UMFPACK for LU decompositions and CHOLMOD for
Cholesky decompositions. We have relied heavily on SparseSuite in our work.
Nathaniel Smith recently wrote a nice Python interface to CHOLMOD4.

A disadvantage of CHOLMOD is that it is not parallelized, although if
one really needs to, a more generic LU decomposition can be used instead.
This would tend to double the total computational cost, but could improve
wall time. Both UMFPACK and SuperLU are parellelized (in-process). For
scaling up to bigger problems, one has, e.g., the open source MUMPS5, a
package for sparse linear algebra on a cluster using MPI. Unfortunately, on a
quick reading we did not find any routines to extract the determinant. We can
not see that introducing such routines should be fundamentally impossible,
although perhaps a daunting implementation challenge.

1http://software.intel.com/en-us/intel-mkl/
2http://crd.lbl.gov/ xiaoye/SuperLU/
3http://www.cise.ufl.edu/research/sparse/SuiteSparse
4http://code.google.com/p/scikits-sparse
5http://graal.ens-lyon.fr/MUMPS
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