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Abstract

Mean value mappings is a type of generalized barycentric mappings that are used in for
instance computer graphics and geometric modelling. In this thesis we investigate when
mean value mappings between convex polygons in the plane are injective. We derive
a new proof for why all barycentric mappings, and thereby mean value mappings, are
injective between triangles. In addition, we present a new example of why mean value
mappings between convex pentagons are not necessarily injective. Our main result is that
we make some progress towards a possible proof that shows that mean value mappings
between convex quadrilaterals are injective. This proof relies on some assumptions that
will need to be proven before this proof is completely analytical. We test the statement
numerically, and all tests indicate that mean value mappings are injective between convex
quadrilaterals. We are, however, able to prove analytically that mean value mappings
between convex quadrilaterals are injective in the intersection between the diagonals in a
quadrilateral.
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Chapter 1

Introduction

Barycentric coordinates have for a long time been used to represent points inside a
triangle (see [1], [2]). However, in recent years there has been growing interest in the
construction and applications of various generalizations of barycentric coordinates, for
instance how to use generalized barycentric coordinates to deform shapes when modelling
and processing geometry. Most of these methods focus on two kinds of generalized
barycentric coordinates; Wachspress coordinates and mean value coordinates. Wachs-
press coordinates are relatively simple functions, in the sense that the coordinates only
consist of rational functions. These coordinates are, however, limited to convex polygons.
That is, for nonconvex polygons will the denominator in the rational expressions of
the Wachspress coordinates become zero at certain points in the polygon. Mean value
coordinates, on the other hand, are possible to generalize to nonconvex polygons, and
in later years there have been discovered a lot of interesting properties of mean value
coordinates that can be used in for instance computer graphics and geometric modelling.

In [3], Warren suggested that barycentric coordinates could be used to deform curves.
The coordinates can be used to define a barycentric mapping from one convex polygon
to another, and such a mapping will then map, or deform, a curve embedded in the first
polygon into a new one, with the vertices of the polygon acting as control points, with an
effect similar to those of Bézier and spline curves and surfaces [4]. It was then later shown
in [5] by Hormann and Floater, that the curve deformation method could be extended
to arbitrary polygons for a generalization of mean value coordinates. In addition, they
showed that these coordinates could be applied to for instance image warping, to improve
the idea of Phong shading and transfinite interpolation.

In curve deformation we want to guarantee that when we deform a curve we do not
introduce any new self-intersections. In this case, this is equivalent to show that the
barycentric mappings we use are injective. In 2008, Floater and Kosinka proved the
injectivity of Wachspress mappings between convex polygons in the plane [6]. They also
proved that mean value mappings between convex polygons with five or more vertices
are not necessarily injective in the plane, but it still remains to find out if mean value
mappings between convex quadrilaterals are injective.
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Chapter 1. Introduction

The goal in this thesis is to show precisely that mean value mappings between convex
quadrilaterals are injective. Floater and Kosinka tested this statement numerically
in [6], and in this article they conjectured that mean value mapping between convex
quadrilaterals are injective, but it still remains to find a proof of this. During the writing
of this thesis there has been an attempt to prove that mean value mappings between
convex quadrilaterals are injective (see [7]), but the argument does not appear to be
complete.

Outline of Thesis
Chapter 2 gives an introduction to mean value coordinates and mean value mappings.

In addition, we will derive necessary and sufficient conditions for injectivity between
barycentric mappings.

Chapter 3 presents a proof of injectivity of barycentric mappings between triangles,
presents a combination of numerical and analytical proof of the injectivity of mean
value mappings between convex quadrilaterals and a counterexample for mean value
mappings between convex pentagons.

Chapter 4 gives a discussion and presents potential improvements of the results
presented in chapter 3. In this chapter we will also highlight further work.

Appendix A presents the code and test runs we use in the analysis of the injectivity
of mean value mappings between convex quadrilaterals.

Appendix B presents the analysis and test runs of the cases we left out in chapter 3.
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Chapter 2

Mathematical background

This chapter is structured as follows: Section 2.1 gives a brief introduction to barycentric
and generalized barycentric coordinates. Here we will give a presentation of mean value
coordinates, and also present some useful properties that we will need later. In section 2.2
we define what a barycentric mapping is, and derive necessary and sufficient conditions
for a barycentric mapping to be injective.

In this thesis we will use bold letters for real vectors and coordinates x ∈ R2, and
italic letters for scalar values a ∈ R. In addition, we will let ∥ · ∥ denote the Euclidean
norm in R2.

2.1 Generalized barycentric coordinates

Figure 2.1: Barycentric coordinates in a triangle

Barycentric coordinates are based on how to represent any point x in a triangle
T ⊂ R2 with vertices v1, v2, v3. Any x ∈ T partitions T into three sub-triangles A1, A2
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Chapter 2. Mathematical background

and A3 (see figure 2.1). The three barycentric coordinates of x in T are the ratios of the
areas of the sub-triangles Ai and the area A of T . So,

x = ϕ1v1 + ϕ2v2 + ϕ3v3,

where
ϕi = Ai

A
, for i = 1, 2, 3.

If we want to generalize this representation so we can represent any point x in any
polygon P with more than three vertices, in a similar way, we need to use generalized
barycentric coordinates. Let P ⊂ R2 be a polygon with vertices v1, . . . , vn, where n ≥ 3,
ordered anticlockwise. We view P as an open set of R2 and denote the boundary by ∂P
and the closure by P̄ . Then the set of functions ϕi : P → R, i = 1, . . . , n will be called a
set of generalized barycentric coordinates if, for all x ∈ P̄ and i = 1, . . . , n,

ϕi(x) ≥ 0 (2.1)

n∑
i=1

ϕi(x) = 1 (2.2)

n∑
i=1

ϕi(x)vi = x. (2.3)

In this thesis we will investigate mean value coordinates, so we will now give a presentation
of these coordinates.

Figure 2.2: Illustration of mean value coordinates
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2.1. Generalized barycentric coordinates

2.1.1 Mean value coordinates

In [8] it was derived a set of generalized barycentric coordinates from an application of
the mean value theorem for harmonic functions, namely the mean value coordinates. The
original motivation for these coordinates was for parameterizing triangular meshes ([9],
[10], [11]). It was later observed in [5] that these coordinates also were well-defined, though
not necessarily positive, for arbitrary polygons, as opposed to for instance Wachspress
coordinates. We will now define a formula for the mean value coordinates (see e.g. [12]).
Let P be a strictly convex polygon with vertices v1, . . . , vn, ordered anticlockwise, where
n ≥ 3. By strictly, we mean that no three vertices are collinear. Then the mean value
coordinates for x ∈ P are defined by

ϕi = ϕi(x) = wi(x)∑n
j=1 wj(x) , (2.4)

where

wi(x) = tan(αi−1/2) + tan(αi/2)
∥vi − x∥

. (2.5)

Here, αi = αi(x) is the angle at x in the triangle with vertices x, vi and vi+1, as shown
in figure 2.2. We note that 0 < αi < π for x ∈ P , since P is convex.

The mean value coordinates ϕi extend continuously to the boundary ∂P (see e.g.
[6]). So, if x ∈ ∂P we replace equation (2.5) with

wi(x) = (ri−1ri+1 − di−1 · di+1)1/2 ∏
j ̸=i−1,i

(rjrj+1 + dj · dj+1)1/2, (2.6)

where di = vi − x and ri = ∥vi − x∥.

Later on, we will see that we need an expression for the gradient ∇wi of the weights
of the mean value coordinates ϕi to check if mean value mappings between convex
quadrilaterals are injective. We will therefore state an expression for ∇wi, but before
doing this we will need to define some notations. Let ei = vi−x

∥vi−x∥ , ri = ∥vi − x∥ and
ti = tan(αi/2). Further, define

ci = ei

ri
− ei+1

ri+1
,

and for a vector a = (a1, a2) ∈ R2, let a⊥ := (−a2, a1). We now let Ri := ∇wi
wi

. Then it
was shown by Floater [4] that

Ri =
(

ti−1
ti−1 + ti

) c⊥
i−1

sin αi−1
+
(

ti

ti−1 + ti

) c⊥
i

sin αi
+ ei

ri
, (2.7)

so
∇wi = Riwi.

For proof see [4].
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Chapter 2. Mathematical background

2.1.2 Useful property of generalized barycentric coordinates

Let P ⊂ R2 be a strictly convex polygon with vertices v1, . . . , vn, where n ≥ 3.
Furthermore, let ϕ1, . . . , ϕn be a set of generalized barycentric coordinates and let xbound

be a point on the boundary of P , ∂P . Then there exists an l ∈ {1, 2, . . . , n} such that

xbound = (1 − µ)vl + µvl+1, (2.8)

for some µ ∈ [0, 1], with indexes treated cyclically [6]. Since ϕ1, . . . , ϕn are barycentric
coordinates they have to satisfy (2.1) - (2.3) which implies that

ϕl(xbound) = 1 − µ, ϕl+1(xbound) = µ, and ϕi(xbound) = 0 for i ̸= l, l + 1. (2.9)

We will need this property later in section 3.2 when we are checking if mean value
mappings between convex quadrilaterals are injective.

2.2 Barycentric mappings between convex polygons

Let P, Q ⊂ R2 be strictly convex polygons with vertices p1, p2, . . . , pn and q1, q2, . . . , qn,
respectively, ordered anticlockwise, with n ≥ 3. We view both polygons as open sets of
R2 and denote their boundaries by ∂P and ∂Q and their closures by P̄ and Q̄. We now
define a barycentric mapping as a smooth mapping f : P̄ → Q̄ by

f(x) =
n∑

i=1
ϕi(x)qi, (2.10)

where ϕ1, . . . , ϕn are a set of barycentric coordinates satisfying (2.1)-(2.3).

We observe that since ϕ1, . . . , ϕn satisfy (2.1)-(2.3), f(x) is a convex combination of
the points qi, so f(P̄ ) ⊂ Q̄. Furthermore, by (2.9), if x is the boundary point (2.8) then

f(x) = (1 − µ)ql + µql+1, (2.11)

for some µ ∈ [0, 1].

Thus, f maps ∂P to ∂Q in a piecewise linear fashion, mapping vertices and edges
of ∂P to corresponding vertices and edges of ∂Q.

2.2.1 Conditions for injectivty

We will now derive conditions for injectivty of generalized barycentric mappings; both
sufficient conditions and necessary conditions. Using basic results of real analysis, see for
instance [13], it can be shown that a sufficient condition for the injectivity of f in (2.10)
is that its Jacobian J(f) is strictly positive in P̄ . Therefore, we will now try to find an
expression for J(f) in terms of signed areas of triangles formed by vertices of Q.
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2.2. Barycentric mappings between convex polygons

Lemma 2.2.1 (rendered from [6]). Let f(x) = (g(x), h(x)), and ∂rf(x) := ∂f
∂xr , r = 1, 2.

Then, for any set of differentiable functions ϕ1, . . . , ϕn satisfying (2.2)

J(f)(x) = 2
∑

1≤i<j<k≤n

D(ϕi, ϕj , ϕk)(x)A(qi, qj , qk), (2.12)

where

J(f) =
∣∣∣∣∣∂1g ∂1h
∂2g ∂2h

∣∣∣∣∣ ,
and

D(a, b, c) =

∣∣∣∣∣∣∣
a b c

∂1a ∂1b ∂1c
∂2a ∂2b ∂2c

∣∣∣∣∣∣∣ . (2.13)

Proof. Differentiating (2.2) and (2.10) gives the matrix identity1 g h
0 ∂1g ∂1h
0 ∂2g ∂2h

 =

 ϕ1 · · · ϕn

∂1ϕ1 · · · ∂1ϕn

∂2ϕ1 · · · ∂2ϕn


1 q1

1 q2
1

...
...

...
1 q1

n q2
n

 .

Applying the Cauchy-Binet theorem (see [14], formula (1.23)) to this equation and using
the fact that the determinant of the matrix on the left equals J(f), the result follows. ■

Since Q is strictly convex we have that A(qi, qj , qk) > 0, whenever 1 ≤ i < j < k ≤ n,
since the triangle with vertices qi, qj and qk is positively oriented. Thus, Lemma 2.2.1
leads to a sufficient condition for injectivity, which we will now state in the theorem
below.

Theorem 2.2.2 (rendered from [6]). If ϕ1, . . . , ϕn are differentiable barycentric coordinates
such that for all x ∈ P̄ , D(ϕi, ϕj , ϕk)(x) ≥ 0 for all i, j, k satisfying 1 ≤ i < j < k ≤ n
and D(ϕi, ϕj , ϕk)(x) > 0 for some i, j, k satisfying 1 ≤ i < j < k ≤ n, then f is injective.

In [6] they also derived a set of necessary conditions for injectivity, so we also state
this result in a theorem below.

Theorem 2.2.3 (rendered from [6]). If ϕ1, . . . , ϕn are differentiable barycentric coordinates
and f is injective, then for r, s, t satisfying 1 ≤ r < s < t ≤ n,∑

r≤i<s≤j<t≤k<n+r

D(ϕi, ϕj , ϕk) ≥ 0 in P. (2.14)

Proof. (rendering from [6]) If f is injective then J(f) ≥ 0 in P . Let Q be the polygon
with vertices

q1 = · · · = qr−1 = (0, 0), qr = · · · = qs−1 = (1, 0),
qs = · · · = qt−1 = (0, 1), qt = · · · = qn = (0, 0).

Then A(qi, qj , qk) = 1
2 if 1 ≤ i < r ≤ j < s ≤ k < t or r ≤ i < s ≤ j < t ≤ k ≤ n and

zero otherwise. Substituting these values into (2.12) gives
J(f)(x) = 2

∑
1≤i<j<k≤n

D(ϕi, ϕj , ϕk)(x)A(qi, qj , qk)

= 2(
∑

1≤i<r≤j<s≤k<t

D(ϕi, ϕj , ϕk)(x)A(qi, qj , qk)+

∑
r≤i<s≤j<t≤k≤n

D(ϕi, ϕj , ϕk)(x)A(qi, qj , qk)).

7



Chapter 2. Mathematical background

Since A(qi, qj , qk) = 1
2 when 1 ≤ i < r ≤ j < s ≤ k < t or r ≤ i < s ≤ j < t ≤ k ≤ n we

have that

J(f)(x) =
∑

1≤i<r≤j<s≤k<t

D(ϕi, ϕj , ϕk)(x) +
∑

r≤i<s≤j<t≤k≤n

D(ϕi, ϕj , ϕk)(x) ≥ 0. (2.15)

If we now replace i, j, k by k, i, j in the first sum of (2.15) and use the fact that

D(ϕk, ϕi, ϕj) = D(ϕi, ϕj , ϕk),

the first sum can be written as∑
1≤i<r≤j<s≤k<t

D(ϕi, ϕj , ϕk)(x) =
∑

r≤i<s≤j<t
n+1≤k<n+r

D(ϕi, ϕj , ϕk−n)(x).

Replacing ϕk−n by ϕk, and combining this second expression with the second sum in
(2.15) gives (2.14). ■

We have now derived sets of sufficient conditions and necessary conditions for
injectivity of barycentric mappings, based on the signs of the determinants D(ϕi, ϕj , ϕk).
It is worth to notice that we have not found a set of conditions that are both sufficient
and necessary for some general n. However, Floater and Kosinka showed in [6] that
the sufficient conditions of Theorem 2.2.2 were good enough to show that Wachspress
mappings are injective, while the necessary conditions of Theorem 2.2.3 were sufficient to
find a counterexample for mean value mappings with n ≥ 5. We will use the sufficient
conditions of Theorem 2.2.2 when we investigate if mean value mappings are injective
between convex quadrilaterals in section 3.2.

8



Chapter 3

Injectivity of mean value mappings

We recall that our goal in this thesis was to investigate when mean value mappings are
injective, and we will present the results that we found in this chapter. This chapter is
structured as follows: Section 3.1 proves injectivity of all barycentric mappings between
triangles and thereby also mean value mappings between triangles. This proof has already
been done in [6], but we will present an alternative proof in this section. In section 3.2 we
will investigate the injectivity of mean value mappings between convex quadrilaterals. We
are able to prove analytically that mean value mappings between convex quadrilaterals
are injective in the intersection between the diagonals, but for the rest of the quadrilateral
we will rely on some numerical analysis. This is the main result in this thesis, and this
analysis will support the numerical result found by Floater and Kosinka in [6]. Last, in
section 3.3 we will present an example that proves that mean value mappings between
strictly convex pentagons are not necessarily injective.

3.1 Injectivity of barycentric mappings between triangles

Let T be a triangle with vertices v1, v2 and v3, ordered anticlockwise, and assume that
v1, v2 and v3 are non-collinear. We know from chapter 2.1 that barycentric coordinates
in R2 have to satisfy equation (2.2) and (2.3) (note: in R2 (2.3) is two equations). Then,
by Cramer’s rule [15], we have that the barycentric coordinates ϕ1, ϕ2 and ϕ3 for T are
uniquely determined by

ϕ1(x) = A(x, v2, v3)
A(v1, v2, v3) , ϕ2(x) = A(v1, x, v3)

A(v1, v2, v3) , ϕ3(x) = A(v1, v2, x)
A(v1, v2, v3) , (3.1)

where A(t1, t2, t3) denotes the signed area of the triangle with vertices t1, t2 and t3.
That is,

A(t1, t2, t3) = 1
2

∣∣∣∣∣∣∣
1 1 1
t1
1 t1

2 t1
3

t2
1 t2

2 t2
3

∣∣∣∣∣∣∣ , (3.2)

where ti = (t1
i , t2

i ), for i = 1, 2, 3.

9



Chapter 3. Injectivity of mean value mappings

We will now show that a barycentric mapping between triangles is injective.

Theorem 3.1.1. If ϕ1, ϕ2, ϕ3 are the barycentric coordinates (3.1) then the barycentric
mapping f between two strictly convex triangles are injective.

Proof. In chapter 2.2.1 we derived Theorem 2.2.2, which tells us that it is sufficient to
show that

D(ϕ1, ϕ2, ϕ3)(x) > 0,

for all x ∈ T̄ . Since 1
A(v1,v2,v3) > 0 is a common factor in ϕ1, ϕ2 and ϕ3, it is sufficient to

show that
D(A1, A2, A3)(x) > 0,

where A1 = A(x, v2, v3), A2 = A(v1, x, v3) and A3 = A(v1, v2, x). To this end, we
observe that

D(A1, A2, A3)(x) = A1∇A2 × ∇A3 + A2∇A3 × ∇A1 + A3∇A1 × ∇A2, (3.3)

where ∇w := (∂1w, ∂2w) and u × v := u1v2 − u2v1. By differentiating (3.2) with respect
to x1 and x2 we get that

∇A1 = 1
2

(
v2

2 − v2
3

v1
3 − v1

2

)
= 1

2rot(v3 − v2), (3.4)

∇A2 = 1
2

(
v2

3 − v2
1

v1
1 − v1

3

)
= 1

2rot(v1 − v3), (3.5)

∇A3 = 1
2

(
v2

1 − v2
2

v1
2 − v1

1

)
= 1

2rot(v2 − v1), (3.6)

where rot(v1, v2) := (−v2, v1). Substituting (3.4)-(3.6) into (3.3) gives

D(A1, A2, A3)(x) = 1
2

(
A1

1
2rot(v1 − v3) × rot(v2 − v1)

+ A2
1
2rot(v2 − v1) × rot(v3 − v2)

+ A3
1
2rot(v3 − v2) × rot(v1 − v3)

)
.

By using the fact that rot(a) × rot(b) = a × b, and (a − b) × (c − d) = (d − c) × (a − b),
we can rewrite the expression above as

D(A1, A2, A3)(x) = 1
2

(
A1

1
2(v1 − v2) × (v1 − v3) + A2

1
2(v2 − v3) × (v2 − v1)

+ A3
1
2(v3 − v1) × (v3 − v2)

)
. (3.7)

We note that

(v1 − v2) × (v1 − v3) = (v2 − v3) × (v2 − v1) = (v3 − v1) × (v3 − v2) = 2A, (3.8)

where A is the signed area of the triangle spanned by the vertices v1, v2 and v3. Since
v1, v2 and v3 are non-collinear and ordered anticlockwise, we observe that A > 0.

10



3.2. Injectivity of mean value mappings between convex quadrilaterals

Substituting (3.8) into (3.7) gives

D(A1, A2, A3)(x) = 1
2(A1A + A2A + A3A) (3.9)

= 1
2A(A1 + A2 + A3) (3.10)

= 1
2A2 > 0. (3.11)

■

Since the barycentric coordinates ϕ1, ϕ2 and ϕ3 are uniquely determined by (3.1),
Theorem 3.1.1 implies that mean value mappings between triangles are also injective.

3.2 Injectivity of mean value mappings between convex quadrilaterals

We will now try to prove that mean value mappings between convex quadrilaterals in
the plane are injective. This proof is inspired by the proof of injectivity of Wachspress
mappings between convex polygons in [6], in the way that we will use the same theorem
as Floater and Kosinka used in their article, when we try to prove our statement.

Let Q ⊂ R2 be a strictly convex quadrilateral with vertices v1, v2, v3 and v4, ordered
anticlockwise. In chapter 2.2.1 we derived Theorem 2.2.2, which tells us that it is sufficient
to show that for all x ∈ Q̄

D(ϕi, ϕj , ϕk)(x) ≥ 0, for all 1 ≤ i < j < k ≤ 4,

and
D(ϕi, ϕj , ϕk)(x) > 0, for some 1 ≤ i < j < k ≤ 4.

We will do this proof in two steps; first we will prove for x ∈ Q, and then we will prove
for x ∈ ∂Q.

3.2.1 Step 1

We recall from chapter 2.1.1 that ϕi(x) = wi(x)∑4
j=1 wj(x)

, where wi(x) = tan(αi−1/2)+tan(αi/2)
∥vi−x∥ .

Since Q is a convex quadrilateral, we now that αi ∈ (0, π), for i = 1, . . . , 4 and x ∈ Q.
This implies that tan(αi/2) > 0 for all x ∈ Q and i = 1, . . . , 4, which again implies that

1∑4
j=1 wj(x)

> 0. Since 1∑4
j=1 wj(x)

is a common factor in ϕ1, ϕ2, ϕ3 and ϕ4, it is enough to

prove that for all x ∈ Q

D(wi, wj , wk)(x) ≥ 0, for all 1 ≤ i < j < k ≤ 4,

and
D(wi, wj , wk)(x) > 0, for some 1 ≤ i < j < k ≤ 4.

We observe that we can write D(wi, wj , wk)(x) as

D(wi, wj , wk)(x) = wi∇wj × ∇wk + wj∇wk × ∇wi + wk∇wi × ∇wj . (3.12)

11



Chapter 3. Injectivity of mean value mappings

In chapter 2.1.1 we showed that we could write ∇wi = wiRi (see (2.7)). If we substitute
this into (3.12) we get that

D(wi, wj , wk)(x) = wi(wjRj) × (wkRk) + wj(wkRk) × (wiRi) + wk(wiRi) × (wjRj)
= wiwjwk(Rj × Rk + Rk × Ri + Ri × Rj). (3.13)

So, we will need to prove that D(wi, wj , wk)(x) ≥ 0 for all combinations of i, j, k
that satisfies 1 ≤ i < j < k ≤ 4, that is, (i, j, k) = (1, 2, 3), (1, 2, 4), (1, 3, 4) and
(2, 3, 4). Note that for x ∈ Q, we have that w1, w2, w3, w4 > 0, so for all x ∈ Q and all
combinations of i, j, k that satisfy 1 ≤ i < j < k ≤ 4, it is always enough to prove that
Rj × Rk + Rk × Ri + Ri × Rj ≥ 0, and strictly greater than zero for some combination
of i, j, k. Let us start by proving that D(wi, wj , wk)(x) ≥ 0 for i = 1, j = 2 and k = 3:
We now want to check if

R2 × R3 + R3 × R1 + R1 × R2 ≥ 0,

for all x ∈ Q. Before we continue, we will introduce some notation:

An,m = (vn − x)
∥(vn − x)∥2 × (vm − x)

∥(vm − x)∥2 , for n, m ∈ {1, 2, 3, 4}

Pn,m = (vn − x)
∥(vn − x)∥2 · (vm − x)

∥(vm − x)∥2 , for n, m ∈ {1, 2, 3, 4}

tn = tan(αn/2), for n = 1, 2, 3, 4

Ri,j,k(x) = Ri × Rj + Rk × Ri + Rj × Rk, for 1 ≤ i < j < k ≤ 4.

We will start by writing down an expression for the sum R1,2,3(x):

R1,2,3(x) = t1t4
(t1 + t2)(t1 + t4) · 1

sin α1 sin α4

(
A2,4 + A1,2 + A4,1

)
+ t2t4

(t1 + t2)(t1 + t4) · 1
sin α2 sin α4

(
A2,1 + A1,3 + A4,2 + A3,4

)
+ t4

t1 + t4
· 1

sin α4

(
P1,2 − P2,4

)
+ t1t2

(t1 + t2)(t1 + t4) · 1
sin α1 sin α2

(
A1,2 + A3,1 + A2,3

)
+ t1

t1 + t4
· 1

sin α1

(
P2,2 − P1,2

)
+ t1

t1 + t2
· 1

sin α1

(
P1,1 − P1,2

)
+ t2

t1 + t2
· 1

sin α2

(
P1,2 − P1,3

)
+ A1,2

+ t2t4
(t2 + t3)(t1 + t4) · 1

sin α2 sin α4

(
A4,3 + A3,1 + A2,4 + A1,2

)
+ t1t2

(t2 + t3)(t1 + t4) · 1
sin α1 sin α2

(
A1,3 + A3,2 + A2,1

)
+ t2

t2 + t3
· 1

sin α2

(
P1,3 − P1,2

)
+ t3t4

(t2 + t3)(t1 + t4) · 1
sin α3 sin α4

(
A4,1 + A3,4 + A1,3

)
+ t1t3

(t2 + t3)(t1 + t4) · 1
sin α1 sin α3

(
A1,4 + A4,2 + A3,1 + A2,3

)
+ t3

t2 + t3
· 1

sin α3

(
P4,1 − P1,3

)
+ t4

t1 + t4
· 1

sin α4

(
P3,4 − P1,3

)
12



3.2. Injectivity of mean value mappings between convex quadrilaterals

+ t1
t1 + t4

· 1
sin α1

(
P1,3 − P2,3

)
+ A3,1 + t1t2

(t1 + t2)(t2 + t3) · 1
sin α1 sin α2

(
A2,3

+ A1,2 + A3,1
)

+ t1t3
(t1 + t2)(t2 + t3) · 1

sin α1 sin α3

(
A3,2 + A2,4 + A1,3 + A4,1

)
+ t1

t1 + t2
· 1

sin α1

(
P2,3 − P1,3

)
+ t2t3

(t1 + t2)(t2 + t3) · 1
sin α2 sin α3

(
A3,4 + A2,3 + A4,2

)
+ t2

t1 + t2
· 1

sin α2

(
P3,3 − P2,3

)
+ t2

t2 + t3
· 1

sin α2

(
P2,2 − P2,3

)
+ t3

t2 + t3
· 1

sin α3

(
P2,3 − P2,4

)
+ A2,3.

We observe that several of the terms in R1,2,3 are ambiguous, i.e. that the terms can
be both positive and negative depending on x. To illustrate this, lets look an example
where this is the case.

Figure 3.1: Example illustrating that the sign of A2,4 depends on the location of x

Example 3.2.1. Let Q ⊂ R2 be the unit square, i.e. v1 = (0, 0), v2 = (1, 0), v3 = (1, 1)
and v4 = (0, 1). Furthermore, let x∗ = (0.25, 0.25) and x∗∗ = (0.75, 0.75), and let α∗

2, α∗
3

and α∗∗
2 , α∗∗

3 be the angles that belongs to x∗ and x∗∗ respectively (see figure 3.1). Then
we notice that both x∗ and x∗∗ are located at the diagonal between v1 and v3. We then
observe that

A2,4(x∗) = (v2 − x∗) × (v4 − x∗) = 0.5,

and

A2,4(x∗∗) = (v2 − x∗∗) × (v4 − x∗∗) = −0.5.

So, this is an example where the sign of A2,4 depends on the location of x.

We want to avoid the problem illustrated in example 3.1, i.e. we want to make the
analysis of R1,2,3 unambiguous. To do this, we will choose to split the quadrilateral Q
into four quadrants Q1, Q2, Q3, Q4, and then analyse each quadrant separately. The
quadrants will be decided by the diagonals in Q. We will split the diagonals into four

13



Chapter 3. Injectivity of mean value mappings

lines; d1, d2, d3, d4, where di is the line between vi and the intersection between the
diagonals in Q for i = 1, 2, 3, 4 (see figure 3.2). We will then begin the proof by showing
that R1,2,3(x) ≥ 0, for x ∈ d1 ∪ d2 ∪ d3 ∪ d4. After doing this, we will analyse each
quadrant separately. Since we by this time have checked the diagonal lines d1, d2, d3 and
d4, we will view the quadrants as open sets. We will later see that when we view the
quadrants as open sets we get some special properties that will help us to prove that
R1,2,3(x) ≥ 0.

Figure 3.2: Example of d1, d2, d3 and d4 in quadrilateral. Here x̄ is the intersection between the
diagonals.

When we are checking if R1,2,3(x) ≥ 0, we will in most cases preform a numerical
analysis to check this statement. The code we use in the numerical analysis is written in
Appendix A, section A.1. In this section we will also discuss the accuracy of the numerical
test we are using. Note that the numerical analysis we are doing in this thesis is different
from the one that was preformed in [6]. The reason why we need some numerical analysis
in this thesis is that the analytical analysis is quite extensive. This being said, with the
right tools, it might be possible to use the outline of this proof and the expressions we
have found to make an analytical proof. We will discuss this further in chapter 4.

To prove that R1,2,3 ≥ 0 we will need a lemma:

Lemma 3.2.2. If Pn,m = (vn−x)
∥(vn−x)∥2 · (vm−x)

∥(vm−x)∥2 and An,m = (vn−x)
∥(vn−x)∥2 × (vm−x)

∥(vm−x)∥2 , then
Pi,i+1 = cos(αi)

sin(αi) Ai,i+1, for i = 1, 2, 3, 4, αi ∈ (0, π), and Pi,i+2 = cos(αi+αi+1)
|sin(αi+αi+1)| |Ai,i+2|, for

(αi + αi+1) ∈ (0, π) ∨ (π, 2π). Note that when i = 4, then i + 1 = 1.

Proof. We will prove this by using the definition of dot products and cross products (see
e.g. [16]).

Pi,i+1 = vi − x
∥vi − x∥2 · vi+1 − x

∥(vi+1 − x)∥2

= ∥vi − x∥∥vi+1 − x∥ · cos(αi)
∥vi − x∥2∥vi+1 − x∥2

= cos(αi)
sin(αi)

∥vi − x∥∥vi+1 − x∥ · sin(αi)
∥vi − x∥2∥vi+1 − x∥2

14



3.2. Injectivity of mean value mappings between convex quadrilaterals

= cos(αi)
sin(αi)

Ai,i+1

The proof for Pi,i+2 is similar. ■

We now have everything we need to prove that R1,2,3 is non-negative. We will split
the analysis in step 1 into nine cases;

Case 1: x is the intersection between the diagonals,
Case 2: x ∈ d1,
Case 3: x ∈ d3,
Case 4: x ∈ d2,
Case 5: x ∈ d4,
Case 6: x ∈ Q1,
Case 7: x ∈ Q2,
Case 8: x ∈ Q3,
Case 9: x ∈ Q4.

Note that a lot of these cases have many similarities, so the analysis in the differ-
ent cases will be very similar to each other. Due to this similarity, some of the text we
write will be quite similar from case to case.

Case 1: x is the intersection between the diagonals
When x is the intersection between the diagonals, we have some special properties that
we can use to prove that R1,2,3(x) ≥ 0 in this case. These are

• α1 = α3 and α2 = α4. This follows from the fact that α1 and α3, and α2 and α4
are vertical angles (see e.g. [17]).

• α1 = π − α2 and α3 = π − α4. This follows from the fact that α1 and α2,
and α3 and α4 are supplementary angles (see e.g. [17]). This means that
sin(α1) = sin(α2) = sin(α3) = sin(α4). Since all the sine values are equal we
will denote sin(αi) as s, for i = 1, 2, 3, 4, in this case.

• A2,4, A4,2, A1,3, A3,1 = 0, since sin(α1 + α2) = sin(π) = 0 and sin(α3 + α4) =
sin(π) = 0.

We observe that we have four expressions in R1,2,3 of the form An,m that are negative;
A1,4, A2,1, A3,2 and A4,3. All four of these expressions have positive counterparts, namely
A4,1, A1,2, A2,3 and A3,4, but since all of these expressions are multiplied with different
factors in R1,2,3 we will need to show that the sum of the factors in front of A4,1, A1,2,
A2,3 and A3,4 are greater than or equal to the sum of the factors in front of A1,4, A2,1,
A3,2 and A4,3 respectively. If this is the case, we have proven that the sum of all terms
containing An,m, for n, m ∈ {1, 2, 3, 4}, is greater than or equal to zero, and we are then
one step closer to show that R1,2,3(x) ≥ 0.

Before we begin the analysis we will define two functions that will be used frequently
through the rest of this thesis when we preform an analysis.

Definition 3.2.1. Let x1, x2, . . . , xn, for n ≥ 1, be such that xi, for 1 ≤ i ≤ n, is a factor.
Then, let f+ be a function such that f+(x1, x2, . . . , xn) returns the sum of all terms
containing the factors x1, x2, . . . , xn, for n ≥ 1.
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Definition 3.2.2. Let x, y be two factors. Then, let f− be a function such that f−(x, y)
returns the sum of the factors multiplied with x minus the sum of the factors multiplied
with y.

We will now check if f−(An,m, Am,n) ≥ 0, for all n, m that satisfy An,m > 0.

f−(A4,1, A1,4) :

f−(A4,1, A1,4) = 2 · t1t2
(t1 + t2)2 · 1

s2 + t2
1

(t1 + t2)2 · 1
s2 − t2

1
(t1 + t2)2 · 1

s2

= 2 · t1t2
(t1 + t2)2 · 1

s2

> 0.

f−(A1,2, A2,1) :

f−(A1,2, A2,1) = 3 · t1t2
(t1 + t2)2 · 1

s2 + t2
2

(t1 + t2)2
1
s2 + 1

− t2
2

(t1 + t2)2 · 1
s2 − t1t2

(t1 + t2)2 · 1
s2

= 2 · t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

f−(A2,3, A3,2) :

f−(A2,3, A3,2) = 3 · t1t2
(t1 + t2)2 · 1

s2 + 1 − t1t2
(t1 + t2)2 · 1

s2

= 2 · t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

f−(A3,4, A4,3) :

f−(A3,4, A4,3) = 2 · t1t2
(t1 + t2)2 · 1

s2 + t2
2

(t1 + t2)2 · 1
s2 − t2

2
(t1 + t2)2 · 1

s2

= 2 · t1t2
(t1 + t2)2 · 1

s2

> 0.

We have now proven that the sums of all terms containing An,m, for n, m ∈ {1, 2, 3, 4},
are greater than or equal to zero. Note that f−(A2,4, A4,2) and f−(A1,3, A3,1) are the
only two expressions that are equal to zero. This follows from the fact that A2,4, A4,2,
A1,3, A3,1 = 0. It then remains to prove that the sum of all terms containing Pn,m in
R1,2,3, for n, m ∈ {1, 2, 3, 4}, is greater than or equal to zero.

16



3.2. Injectivity of mean value mappings between convex quadrilaterals

First, we observe that
t1

t1 + t2
· 1

s

(
P1,1 − P1,2 − P1,2 + P2,2

)
= t1

t1 + t2
· 1

s

(
P1,1 − 2 · P1,2 + P2,2

)
= t1

t1 + t2
· 1

s

(( ∥v1 − x∥
∥v1 − x∥2

)2

− 2 ·
( ∥v1 − x∥∥v2 − x∥

(∥v1 − x∥∥v2 − x∥)2

)
· cos(α1) +

( ∥v2 − x∥
∥v2 − x∥2

)2)
≥ t1

t1 + t2
· 1

s

( ∥v1 − x∥
∥v1 − x∥2 − ∥v2 − x∥

∥v2 − x∥2

)2

> 0.

Similarly, we have that
t2

t1 + t2
· 1

s

(
P3,3 − P2,3 − P2,3 + P2,2

)
= t2

t1 + t2
· 1

s

(
P3,3 − 2 · P2,3 + P2,2

)
= t2

t1 + t2
· 1

s

(( ∥v3 − x∥
∥v3 − x∥2

)2

− 2 ·
( ∥v2 − x∥∥v3 − x∥

(∥v2 − x∥∥v3 − x∥)2

)
· cos(α2) +

( ∥v2 − x∥
∥v2 − x∥2

)2)
≥ t2

t1 + t2
· 1

s

( ∥v3 − x∥
∥v3 − x∥2 − ∥v2 − x∥

∥v2 − x∥2

)2

> 0.

If we now collect the rest of the terms containing Pn,m, for n, m = 1, 2, 3, 4, we get the
two sums

t2
t1 + t2

· 1
s

(
P1,2 − P2,4 + P3,4 − P1,3

)
,

and
t1

t1 + t2
· 1

s

(
P4,1 − P1,3 + P2,3 − P2,4

)
.

First, we observe that −P2,4, −P1,3 > 0. This follows from the fact that cos(α2 + α3) =
cos(π) = −1 and cos(α1 + α2) = cos(π) = −1. Second, we observe that if α1 = α3 ≤ π

2 ,
then P1,2, P3,4 ≥ 0, which means that the first sum would be greater than zero. Similarly,
if α2 = α4 ≤ π

2 , then P4,1, P2,3 ≥ 0, which means that the second sum would be greater
than zero. If, on the other hand, α1 = α3 > π

2 , we can not guarantee that the first
sum is greater than or equal to zero. To prove that P1,2, P3,4 in this case do lead to
R1,2,3(x) ≥ 0, we will use Lemma 3.2.2. From this lemma we see that we can write
P1,2, P3,4 as cos(α1)

sin(α1) A1,2, cos(α3)
sin(α3) A3,4, respectively. We will now preform a similar analysis

as we did earlier, when we checked if f−(An,m, Am,n) ≥ 0 for n, m satisfying An,m > 0.
Since we already made an analysis for both A1,2 and A3,4 we will use the results from these.

f−(A1,2, A2,1) (new expression marked in blue):

f−(A1,2, A2,1) = 2 · t1t2
(t1 + t2)2 · 1

s2 + 1+ t2
t1 + t2

· cos(α1)
s2

>
−t2

2 + t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.
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Since we are looking at the case where α1 > π
2 , we know that α2 < π

2 (since α1 + α2 = π).
This means that t2 < t1, which again implies that t2

2 < t1t2.

f−(A3,4, A4,3) :

f−(A3,4, A4,3) = 2 · t1t2
(t1 + t2)2 · 1

s2 + t2
t1 + t2

· cos(α3)
s2

>
−t2

2 + t1t2
(t1 + t2)2 · 1

s2

> 0.

Similarly, if now α2 = α4 > π
2 , we can not guarantee that the second sum is greater than

or equal to zero.

We will now need to make a similar argument as we did for P1,2 and P3,4. We know from
Lemma 3.2.2 that we can write P4,1, P2,3 as cos(α4)

sin(α4) A4,1, cos(α2)
sin(α2) A2,3. We will now use this

in the analysis for both A4,1 and A2,3.

f−(A4,1, A1,4):

f−(A4,1, A1,4) = 2 · t1t2
(t1 + t2)2 · 1

s2 + t1
t1 + t2

· cos(α4)
s2

>
−t2

1 + t1t2
(t1 + t2)2 · 1

s2

> 0.

Since we are looking at the case where α2 > π
2 , we know that α1 < π

2 (since α1 + α2 = π).
This means that t1 < t2, which again implies that t2

1 < t1t2. This in turn implies that
−t2

1+t1t2
(t1+t2)2 · 1

s2 > 0.

We will now make a similar argument for A2,3.

f−(A2,3, A3,2) :

f−(A2,3, A3,2) = 2 · t1t2
(t1 + t2)2 · 1

s2 + 1+ t1
t1 + t2

· cos(α2)
s2

>
−t2

1 + t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

We have now proven analytically that all terms in R1,2,3(x) are strictly greater than
zero, when x is the intersection between the diagonals.
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Case 2: x ∈ d1
When x ∈ d1, we have some special properties that we can use to prove that R1,2,3(x) ≥ 0
in this case. These are

• α2 = π − α1 and α3 = π − α4. This follows from the fact that α1 and α2, and
α3 and α4 are supplementary angles. This means that sin(α1) = sin(α2) and
sin(α3) = sin(α4).

• A1,3 = A3,1 = 0, since sin(α1 + α2) = sin(π) = 0.

• α1 ≥ α3 and α4 ≥ α2. This follows from the fact that α1 = α3 and α4 = α2 in the
intersection between the diagonals. In addition, both α1 and α4 will increase when
x moves closer to v1 along d1.

We now observe that we have five expressions in R1,2,3 on the form An,m that are neg-
ative, namely A1,4, A1,2, A2,3, A4,2 and A4,3. All five of these expressions have positive
counterparts; A4,1, A2,1, A3,2, A2,4 and A3,4, respectively. In addition to these we have
some expressions on the form Pn,m. To make it easier to compare we will convert most
of these to be on the form An,m by using Lemma 3.2.2. We observe that Pn,m will vary
between being positive and negative, depending on the value of αn,m := αn + · · · + αm−1.
Since all the expressions are multiplied with different factors in R1,2,3, we will need to
show that the sum of the factors in front of the positive parts are greater than or equal
to the sum of the factors in front of the corresponding negative parts. Note that when
we convert Pn,m into An,m, we get a cosine factor that makes sure that we will get the
correct sign in front of the term. In this case we will preform a numerical analysis on
each expression to check if the expression is greater than or equal to zero. You can find a
description of the numerical method in section A.1, and then the actual test results will
be presented in section A.2. For simplicity, we will derive the different expressions below,
and then state the result that we find in A.2.1.

f−(A4,1, A1,4) :
First, we convert all P4,1 into A1,4, by using Lemma 3.2.2. We then get that

P4,1 = cos(α4)
sin(α4) A4,1.

Using this we get that

f−(A4,1, A1,4) = t1t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)

+ t3t4
(t2 + t3)(t1 + t4) · 1

sin(α3) sin(α4)

+ t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α3)

− t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α3)

+ t3
t2 + t3

· 1
sin(α3) · cos(α4)

sin(α4) .
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By using the properties we derived in the beginning of case 2, we can simplify the
expression above as follows

f−(A4,1, A1,4) = t1t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)

+ t3t4
(t2 + t3)(t1 + t4) · 1

sin2(α4)

+ t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α4)

− t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α4)

+ t3
t2 + t3

· cos(α4)
sin(α4)2 > 0.

f−(A1,2, A2,1) :
First, we convert all of the P1,2 terms into A1,2, by using Lemma 3.2.2. We then get that

P1,2 = cos(α1)
sin(α1) A1,2.

Using this we get that

f−(A1,2, A2,1) = t1t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)

+ t1t2
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α2)

+ 1 + t2t4
(t1 + t4)(t2 + t3) · 1

sin(α2) sin(α4)

+ t1t2
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α2)

− t2t4
(t1 + t2)(t1 + t4) · 1

sin(α2) sin(α4)

− t1t2
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)

+ t4
t1 + t4

· 1
sin(α4) · cos(α1)

sin(α1)

+ t2
t1 + t2

· 1
sin(α2) · cos(α1)

sin(α1)

− t2
t2 + t3

· 1
sin(α2) · cos(α1)

sin(α1)

− t1
t1 + t4

· 1
sin(α1) · cos(α1)

sin(α1)

− t1
t1 + t2

· 1
sin(α1) · cos(α1)

sin(α1) .

By using the properties we derived in the beginning of case 2, we can simplify the
expression above as follows
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f−(A1,2, A2,1) = t4(t1 − t2)
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)

+ t1t2
(t1 + t2)(t1 + t4) · 1

sin2(α1)

+ 1 + t2t4
(t1 + t4)(t2 + t3) · 1

sin(α1) sin(α4)

+ t1t2
(t1 + t2)(t2 + t3) · 1

sin2(α1)

− t1t2
(t2 + t3)(t1 + t4) · 1

sin2(α1)

+ cos(α1)
sin(α1)

(
t4

t1 + t4
· 1

sin(α4) + t2
t1 + t2

· 1
sin(α1)

)
− cos(α1)

sin2(α1)

(
t2

t2 + t3
+ t1

t1 + t4
+ t1

t1 + t2

)
> 0.

f−(A2,3, A3,2) :
First, we convert all P2,3 into A2,3, by using Lemma 3.2.2. We then get that

P2,3 = cos(α2)
sin(α2) A2,3 = −cos(α1)

sin(α1) A2,3.

Using this we get that

f−(A2,3, A3,2) = t1t2
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α2)

+ t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α3)

+ t1t2
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α2)

+ t2t3
(t1 + t2)(t2 + t3) · 1

sin(α2) sin(α3)

+ 1 + t1
t1 + t4

· 1
sin(α1) · cos(α1)

sin(α1)

− t1t2
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)

− t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α3)

+ t2
t1 + t2

· 1
sin(α2) · cos(α1)

sin(α1)

+ t2
t2 + t3

· 1
sin(α2) · cos(α1)

sin(α1)

− t3
t2 + t3

· 1
sin(α3) · cos(α1)

sin(α1)

− t1
t1 + t2

· 1
sin(α1) · cos(α1)

sin(α1) .
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By using the properties we derived in the beginning of case 2, we can simplify the
expression above as follows

f−(A2,3, A3,2) = t1t2
(t1 + t2)(t1 + t4) · 1

sin2(α1)

+ t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α4)

+ t1t2
(t1 + t2)(t2 + t3) · 1

sin2(α1)

+ t2t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α4) + 1

− t1t2
(t2 + t3)(t1 + t4) · 1

sin2(α1)

− t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α4)

+ cos(α1)
sin2(α1)

(
t1

t1 + t4
+ t2

t1 + t2
+ t2

t2 + t3

)
− cos(α1)

sin(α1)

(
t3

t2 + t3
· 1

sin(α4) + t1
t1 + t2

· 1
sin(α1)

)
> 0.

f−(A2,4, A4,2) :
First, we convert all P2,4 into A2,4, by using Lemma 3.2.2. We then get that

P2,4 = cos(α2 + α3)
sin(α2 + α3) A2,4 = cos(2π − α1 − α4)

sin(2π − α1 − α4) A2,4.

Using this we get that

f−(A2,4, A4,2) = t2t4
(t2 + t3)(t1 + t4) · 1

sin(α2) sin(α4)

+ t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α3)

+ t1t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)

− t2t4
(t1 + t4)(t1 + t2) · 1

sin(α2) sin(α4)

− t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α3)

− t2t3
(t1 + t2)(t2 + t3) · 1

sin(α2) sin(α3)

− t4
t1 + t4

· 1
sin(α4) · cos(2π − α1 − α4)

sin(2π − α1 − α4)

− t3
t2 + t3

· 1
sin(α3) · cos(2π − α1 − α4)

sin(2π − α1 − α4) .

By using the properties we derived in the beginning of case 2, we can simplify the
expression above as follows
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f−(A2,4, A4,2) = t2t4
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α4)

+ t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α4)

+ t1t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)

− t2t4
(t1 + t4)(t1 + t2) · 1

sin(α1) sin(α4)

− t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α4)

− t2t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α4)

− cos(2π − α1 − α4)
sin(2π − α1 − α4)sin(α4)

(
t4

t1 + t4
+ t3

t2 + t3

)
> 0.

f−(A3,4, A4,3) :
First, we convert all P3,4 into A3,4, by using Lemma 3.2.2. We then get that

P3,4 = cos(α3)
sin(α3) A3,4 = −cos(α4)

sin(α4) A3,4.

Using this we get that

f−(A3,4, A4,3) = t2t4
(t1 + t2)(t1 + t4) · 1

sin(α2) sin(α4)

+ t3t4
(t2 + t3)(t1 + t4) · 1

sin(α3) sin(α4)

+ t2t3
(t1 + t2)(t2 + t3) · 1

sin(α2) sin(α3)

− t2t4
(t2 + t3)(t1 + t4) · 1

sin(α2) sin(α4)

− t4
t1 + t4

· 1
sin(α4) · cos(α4)

sin(α4) .

By using the properties we derived in the beginning of case 2, we can simplify the
expression above as follows

f−(A3,4, A4,3) = t2t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)

+ t3t4
(t2 + t3)(t1 + t4) · 1

sin2(α4)

+ t2t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α4)

− t2t4
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α4)

− t4
t1 + t4

· cos(α4)
sin2(α4) > 0.
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We have now looked at all terms containing An,m and most of the terms containing
Pn,m in R1,2,3, but some terms containing Pn,m still remain. We will now show that the
sum of the remaining terms in R1,2,3 are positive. We will start by looking at the terms
containing P1,3. First, we notice that P1,3 < 0 since cos(α1 + α2) = cos(π) = −1. If we
now gather all terms containing P1,3 we get that

f+(P1,3) =
(

t2
t2 + t3

· 1
sin α2

+ t1
t1 + t4

· 1
sin α1

−
(

t2
t1 + t2

· 1
sin α2

+ t3
t2 + t3

· 1
sin α3

+ t4
t1 + t4

· 1
sin α4

+ t1
t1 + t2

· 1
sin α1

))
P1,3.

We can simplify this to

f+(P1,3) =
(

t2
t2 + t3

· 1
sin α1

+ t1
t1 + t4

· 1
sin α1

−
( 1

sin α1
+ t3

t2 + t3
· 1

sin α4

+ t4
t1 + t4

· 1
sin α4

))
P1,3.

Second, we observe that we can use the terms containing P1,1 and P3,3 in the analysis of
P1,3, since both of these are greater than zero, and

P1,1 + P3,3 ≥ −P1,3.

The inequality above holds since

P1,1 + P1,3 + P3,3 ≥ P1,1 + 2P1,3 + P3,3

=
( ∥v1 − x∥

∥(v1 − x)∥2 − ∥v3 − x∥
∥(v3 − x)∥2

)2

≥ 0.

From R1,2,3 we see that P1,1 is multiplied with t1
t1+t2

· 1
sin(α1) , and P3,3 is multiplied with

t2
t1+t2

· 1
sin(α2) = t2

t1+t2
· 1

sin(α1) . We then observe that

t1
t1 + t2

· 1
sin(α1)P1,1 + t2

t1 + t2
· 1

sin(α1)P3,3 ≥ t1
t1 + t2

· 1
sin(α1)

(
P1,1 + P3,3

)
,

when α1 ∈ (0, π
2 ). Similarly,

t1
t1 + t2

· 1
sin(α1)P1,1 + t2

t1 + t2
· 1

sin(α1)P3,3 ≥ t2
t1 + t2

· 1
sin(α1)

(
P1,1 + P3,3

)
,

when α1 ∈ (π
2 , π). This means that when α1 ∈ (0, π

2 ),

f+(P1,3) + t1
t1 + t2

· 1
sin(α1)P1,1 + t2

t1 + t2
· 1

sin(α1)P3,3

≥ f+(P1,3) + t1
t1 + t2

· 1
sin(α1)

(
P1,1 + P3,3

)
≥
(

t2
t2 + t3

· 1
sin α1

+ t1
t1 + t4

· 1
sin α1

−
( 1

sin α1
+ t3

t2 + t3
· 1

sin α4

+ t4
t1 + t4

· 1
sin α4

)
− t1

t1 + t2
· 1

sin(α1)

)
P1,3. (3.14)
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Similarly, when α1 ∈ (π
2 , π),

f+(P1,3) + t1
t1 + t2

· 1
sin(α1)P1,1 + t2

t1 + t2
· 1

sin(α1)P3,3

≥ f+(P1,3) + t2
t1 + t2

· 1
sin(α1)

(
P1,1 + P3,3

)
≥
(

t2
t2 + t3

· 1
sin α1

+ t1
t1 + t4

· 1
sin α1

−
( 1

sin α1
+ t3

t2 + t3
· 1

sin α4

+ t4
t1 + t4

· 1
sin α4

)
− t2

t1 + t2
· 1

sin(α1)

)
P1,3. (3.15)

We need to show that both of the expressions (3.14) and (3.15), are greater than or
equal to zero. Since P1,3 < 0 we will need to show that the expressions in front of P1,3
in (3.14) and (3.15) are less than or equal to zero. If this is the case, we know that
the two expressions multiplied with P1,3 is greater than or equal to zero. When we
preform the numerical test, we choose to change the signs of the two expressions in
front of P1,3, that is, we check if the expression in front of −P1,3 in (3.14) and (3.15)
is greater than zero. We then observe by numerical testing that both of these expres-
sions are strictly greater than zero. You can find the tests in Appendix A, subsection A.2.1.

We are then left with two terms, namely t1
t1+t4

· 1
sin(α1)P2,2 and t2

t2+t3
· 1

sin(α2)P2,2. These
are both positive since

P2,2 = (v2 − x)2

∥(v2 − x)∥4 · cos(0) > 0,

and the factors in front of both expressions are also always greater than zero.

We have now, by numerical testing, showed that all the negative terms in R1,2,3(x)
are strictly dominated by their positive counterparts when x ∈ d1. This means that
R1,2,3(x) > 0 when x ∈ d1.

Case 3: x ∈ d3
When x ∈ d3, we have some special properties that we can use to prove that R1,2,3(x) ≥ 0
in this case. These are

• α2 = π − α1 and α3 = π − α4. This follows from the fact that α1 and α2, and
α3 and α4 are supplementary angles. This means that sin(α1) = sin(α2) and
sin(α3) = sin(α4).

• A1,3 = A3,1 = 0, since sin(α1 + α2) = sin(π) = 0.

• α3 ≥ α1 and α2 ≥ α4. This follows from the fact that α3 = α1 and α2 = α4 in the
intersection between the diagonals. In addition, both α2 and α3 will increase when
x moves closer to v3 along d3.

We observe that case 3 is quite similar to case 2. The only differences is bullet point 3,
and the fact that A2,4 is negative and A4,2 is positive. This means that we can modify the
analysis from case 2, to get an analysis for case 3. The only difference in the numerical
analysis is that we will only test for values of α1 and α4 that satisfy 0 < α1 + α4 < π. For
the expression containing A2,4 and A4,2, we will also change the sign of each term in the
expression. When we make these changes and analyse these numerically (see Appendix
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A, subsection A.2.1), we observe that all expressions are strictly positive. This means
that R1,2,3(x) > 0 when x ∈ d3.

Note, since we have only made some minor changes, we chose to not write out the
analysis in detail as we did for x ∈ d1. Since we have explained the differences between
these two cases above, we leave it up to the reader to do the detailed analysis in this case.

Case 4: x ∈ d2
When x ∈ d2, we have some special properties that we can use to prove that R1,2,3 ≥ 0
in this case. These are

• α3 = π − α2 and α4 = π − α1. This follows from the fact that α1 and α4, and
α2 and α3 are supplementary angles. This means that sin(α1) = sin(α4) and
sin(α2) = sin(α3).

• A2,4 = A4,2 = 0, since sin(α2 + α3) = sin(π) = 0.

• α1 ≥ α3 and α2 ≥ α4. This follows from the fact that α1 = α3 and α2 = α4 in the
intersection between the diagonals. In addition, both α1 and α2 will increase when
x moves closer to v2 along d2.

We observe that we have five expressions in R1,2,3 on the form An,m that are negative,
namely A1,3, A1,4, A2,1, A3,2 and A4,3. All five of these expressions have positive coun-
terparts; A3,1, A4,1, A1,2, A3,2 and A3,4. In addition to these we have some expressions
on the form Pn,m. To make it easier to compare we will convert most of these to be
on the form An,m by using Lemma 3.2.2. We recall from the previous cases that Pn,m

will vary between being positive and negative, depending on the value of αn,m. Since
all the expressions are multiplied with different factors, we will need to show that the
factors in front of the positive parts are greater than or equal to the factors in front of
the corresponding negative parts. In this case we will preform a numerical analysis on
each expression to check if the expression is greater than or equal to zero. You can find
the tests and test results in section A.2.2. For simplicity, we will derive the different
expressions below, and then directly state the result that we find in A.2.2.

f−(A3,1, A1,3) :
First, we convert all P1,3 into A3,1. We then get that

P1,3 = −cos(α1 + α2)
sin(α1 + α2) A3,1.

The reason why we multiply the expression above with −1, is that α1 + α2 ∈ (π, 2π)
when x ∈ d2, which implies that sin(α1 + α2) < 0. Since we want to convert P1,3 into
A3,1, we will need to counteract the negative sine value by multiplying with −1.
Using this we get that

f−(A3,1, A1,3) = t1t2
(t1 + t4)(t1 + t2) · 1

sin(α1) sin(α2)

+ t2t4
(t2 + t3)(t1 + t4) · 1

sin(α2) sin(α4)

+ t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α3)

+ t1t2
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α2) + 1

26



3.2. Injectivity of mean value mappings between convex quadrilaterals

− t2t4
(t1 + t2)(t1 + t4) · 1

sin(α2) sin(α4)

− t3t4
(t2 + t3)(t1 + t4) · 1

sin(α3) sin(α4)

− t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α3)

+ t2
t1 + t2

· 1
sin(α2) · cos(α1 + α2)

sin(α1 + α2)

+ t3
t2 + t3

· 1
sin(α3) · cos(α1 + α2)

sin(α1 + α2)

+ t4
t1 + t4

· 1
sin(α4) · cos(α1 + α2)

sin(α1 + α2)

+ t1
t1 + t2

· 1
sin(α1) · cos(α1 + α2)

sin(α1 + α2)

− t2
t2 + t3

· 1
sin(α2) · cos(α1 + α2)

sin(α1 + α2)

− t1
t1 + t4

· 1
sin(α1) · cos(α1 + α2)

sin(α1 + α2) .

By using the properties we derived in the beginning of case 4, we can simplify the
expression above as follows

f−(A3,1, A1,3) = t2(t1 − t4)
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α2)

+ t2(t4 − t1)
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)

+ t3(t1 − t4)
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)

+ t1(t2 − t3)
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α2) + 1

+ cos(α1 + α2)
sin(α1 + α2)

(
t2

t1 + t2
· 1

sin(α2) + t1
t1 + t2

· 1
sin(α1)

)
− cos(α1 + α2)

sin(α1 + α2)

(
t2 − t3
t2 + t3

· 1
sin(α2) + t1 − t4

t1 + t4
· 1

sin(α1)

)
> 0.

f−(A4,1, A1,4) :
First, we convert all P4,1 into A4,1, by using Lemma 3.2.2. We then get that

P4,1 = cos(α4)
sin(α4) A4,1 = −cos(α1)

sin(α1) A4,1.

Using this we get that

f−(A4,1, A1,4) = t3t4
(t2 + t3)(t1 + t4) · 1

sin(α3) sin(α4)

+ t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α3)

+ t1t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)
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− t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α3)

− t3
t2 + t3

· cos(α1)
sin(α1) sin(α3) .

By using the properties we derived in the beginning of case 4, we can simplify the
expression above as follows

f−(A4,1, A1,4) = t3(t4 − t1)
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)

+ t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α2)

+ t1t4
(t1 + t2)(t1 + t4) · 1

sin2(α1)

− t3
t2 + t3

· cos(α1)
sin(α1) sin(α2) > 0.

f−(A1,2, A2,1) :
First, we convert all P1,2 into A1,2, by using Lemma 3.2.2. We then get that

P1,2 = cos(α1)
sin(α1) A1,2.

Using this we get that

f−(A1,2, A2,1) = t1t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)

+ t1t2
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α2)

+ t2t4
(t2 + t3)(t1 + t4) · 1

sin(α2) sin(α4) + 1

− t1t2
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)

− t2t4
(t1 + t2)(t1 + t4) · 1

sin(α2) sin(α4)

+ t4
t1 + t4

· 1
sin(α4) · cos(α1)

sin(α1)

+ t2
t1 + t2

· 1
sin(α2) · cos(α1)

sin(α1)

− t1
t1 + t4

· 1
sin(α1) · cos(α1)

sin(α1)

− t1
t1 + t2

· 1
sin(α1) · cos(α1)

sin(α1)

− t2
t2 + t3

· 1
sin(α2) · cos(α1)

sin(α1) .

By using the properties we derived in the beginning of case 4, we can simplify the
expression above as follows
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f−(A1,2, A2,1) = t1t4
(t1 + t2)(t1 + t4) · 1

sin2(α1)

+ t2(t1 − t4)
(t1 + t4)(t1 + t2) · 1

sin(α1) sin(α2)

+ t2(t4 − t1)
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2) + 1

+ cos(α1)
sin(α1)

(
t4 − t1
t1 + t4

· 1
sin(α1) + t2

t1 + t2
· 1

sin(α2)

)
− cos(α1)

sin(α1)

(
t1

t1 + t2
· 1

sin(α1) + t2
t2 + t3

· 1
sin(α2)

)
> 0.

f−(A2,3, A3,2) :
First, we convert all P2,3 into A2,3, by using Lemma 3.2.2. We then get that

P2,3 = cos(α2)
sin(α2) A2,3.

Using this we get that

f−(A2,3, A3,2) = t1t2
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α2)

+ t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α3)

+ t1t2
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α2) + 1

− t1t2
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)

− t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α3)

+ t1
t1 + t2

· 1
sin(α1) · cos(α2)

sin(α2)

+ t3
t2 + t3

· 1
sin(α3) · cos(α2)

sin(α2)

− t1
t1 + t4

· 1
sin(α1) · cos(α2)

sin(α2)

− t2
t1 + t2

· 1
sin(α2) · cos(α2)

sin(α2)

− t2
t2 + t3

· 1
sin(α2) · cos(α2)

sin(α2) .

By using the properties we derived in the beginning of case 4, we can simplify the
expression above as follows

f−(A2,3, A3,2) = t1t2
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α2)

+ t1(t3 − t2)
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)
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+ t1(t2 − t3)
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α2) + 1

− t1t2
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)

+ cos(α2)
sin(α2)

(
t3 − t2
t2 + t3

· 1
sin(α2) + t1

t1 + t2
· 1

sin(α1)

)
− cos(α2)

sin(α2)

(
t1

t1 + t4
· 1

sin(α1) + t2
t1 + t2

· 1
sin(α2)

)
> 0.

f−(A3,4, A4,3) :
First, we convert all P3,4 into A4,3, by using Lemma 3.2.2. We then get that

P3,4 = cos(α3)
sin(α3) A3,4 = −cos(α2)

sin(α2) A3,4.

Using this we get that

f−(A3,4, A4,3) = t2t4
(t1 + t2)(t1 + t4) · 1

sin(α2) sin(α4)

+ t3t4
(t2 + t3)(t1 + t4) · 1

sin(α3) sin(α4)

+ t2t3
(t1 + t2)(t2 + t3) · 1

sin(α2) sin(α3)

− t2t4
(t2 + t3)(t1 + t4) · 1

sin(α2) sin(α4)

− t4
t1 + t4

· 1
sin(α1) · cos(α2)

sin(α2) .

By using the properties we derived in the beginning of case 4, we can simplify the
expression above as follows

f−(A3,4, A4,3) = t2t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α2)

+ t4(t3 − t2)
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)

+ t2t3
(t1 + t2)(t2 + t3) · 1

sin2(α2)

− cos(α2)
sin(α1) sin(α2) · t4

t1 + t4
> 0.

We have now looked at all terms containing An,m and most of the terms containing
Pn,m in R1,2,3, but there still remain some terms containing Pn,m. We will now show
that the sum of the remaining terms in R1,2,3 is positive. We will start by looking at the
terms containing P2,4. First, we notice that P2,4 < 0 since α2 + α3 = π and cos(π) = −1.
If we now gather all terms containing P2,4 we get that

f+(P2,4) =
(

− t4
t1 + t4

· 1
sin α4

− t3
t2 + t3

· 1
sin α3

)
P2,4.
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3.2. Injectivity of mean value mappings between convex quadrilaterals

This expression has to be greater than zero, since − t4
t1+t4

· 1
sin α4

− t3
t2+t3

· 1
sin α3

< 0 and
P2,4 < 0. So, we have now proven that the sum of all terms containing P2,4 is strictly
greater than 0.

We are then left with the terms containing P1,1, P2,2 and P3,3. First, we observe that
all of these expressions are greater than zero, since cos(αn,n) = cos(0) = 1. Second, we
know that all these expressions are multiplied with factors that are greater than zero in
d2. Since both the factors and P1,1, P2,2 and P3,3 are strictly greater than zero, we know
that all the terms containing P1,1, P2,2 and P3,3 are greater than zero.

By numerical testing, we have showed that all the negative terms in R1,2,3(x)
are strictly dominated by their positive counterparts when x ∈ d2. This means that
R1,2,3(x) > 0 when x ∈ d2.

Case 5: x ∈ d4
When x ∈ d4, we have some special properties that we can use to prove that R1,2,3(x) ≥ 0
in this case. These are

• α3 = π − α2 and α4 = π − α1. This follows from the fact that α1 and α4, and
α2 and α3 are supplementary angles. This means that sin(α1) = sin(α4) and
sin(α2) = sin(α3).

• A2,4 = A4,2 = 0, since sin(α2 + α3) = sin(π) = 0.

• α3 ≥ α1 and α4 ≥ α2. This follows from the fact that α1 = α3 and α2 = α4 in the
intersection between the diagonals. In addition, both α3 and α4 will increase when
x moves closer to v4 along d4.

We observe that case 5 is quite similar to case 4. The only differences are bullet point
3, and the fact that A3,1 is negative and A1,3 is positive. This means that we can just
modify the analysis from case 4. The only difference in the numerical analysis is that
we will only test for values of α1 and α2 that satisfy 0 < α1 + α2 < π. For the analysis
containing A1,3 and A3,1 we will also change the sign of each term in the expression.
When we make these changes and analyse these numerically (see Appendix A, subsection
A.2.2), we observe that all expressions are strictly positive. This means that R1,2,3 > 0
when x ∈ d4.

Note, since we have only made some minor changes, we chose not to write out the
analysis in detail as we did for x ∈ d2. Since we have explained the differences between
these two cases above, we leave it up to the reader to do the detailed analysis in this case.
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Case 6: x ∈ Q1
When x ∈ Q1, we have some special properties that we can use to check if R1,2,3(x) ≥ 0
in this case. Instead of listing them as bullet points, as was done in the previous cases,
we will list them as properties and write out the relevant proofs.

Figure 3.3: Example of how we can prove that α1 + α2 > π when x ∈ Q1

Property 1: α1 + α2 > π, when x ∈ Q1.

Proof. Assume x ∈ Q1. Then, let l be the line that is parallel with the line that con-
nects v1 and v2, and that goes through x. Furthermore, let xd1 be the point where
l intersects d1, and xd2 be the point where l intersects d2 (see figure 3.3). First, we
observe that along l, α2 has its minimum in xd1 . This follows from the fact that xd1

is the point on l that is furthest away from the line between v2 and v3, which implies
that this is the point on l that gives the most acute α2. By the same explanation,
we note that α2 has its maximum in xd2 . Second, we observe that α1 has a local
minimum in both xd1 and xd2 . This follows from the fact that the distance between l
and the line that connects v1 and v2 is the same for every point on l. Therefore, α1
has its maximum when the length of line between x and v1 is equal to the length of
the line between x and v2. Since the biggest difference in length of the lines between
x and v1 and x and v2 is in xd1 and xd2 , xd1 and xd2 are the local minimums of α1 along l.

Since α2 has its minimum in xd1 , and α1 has a local minimum in both xd1 and xd2 ,
we know that α1 + α2 has a minimum in xd1 . We remember from case 2 that when
xd1 ∈ d1, then α1 + α2 = π. That means that the minimum of α1 + α2 is π. Since d1 is
on the boundary of Q1, and we are just interested in the inner points, this implies that
α1 + α2 > π, when x ∈ Q1. ■

Property 2: α1 > α3, when x ∈ Q1.

Proof. We know from case 1, that if x̄ is the intersection between the diagonals, then
α1 = α3. If we now assume that x ∈ Q1, we know that x will be closer to the line that
connects v1 and v2, and further from the line that connects v3 and v4, than x̄. This
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3.2. Injectivity of mean value mappings between convex quadrilaterals

means that α1 will be more obtuse for x, than for x̄, and α3 will be more acute for x,
than for x̄. Therefore, α1 > α3, when x ∈ Q1. ■

Property 3: α2 + α3 < π, when x ∈ Q1.

Proof. In the proof for property 1 and property 2, we saw that when x ∈ ∂Q1, then
α2 has it maximum on d2, and α3 has its maximum in the intersection between the
diagonals. This means that the maximum of α2 + α3 has to be on d2. We know from
case 4, that when x ∈ d2, then α2 + α3 = π. Therefore, α2 + α3 < π, when x ∈ Q1.

■

Property 4: α3 + α4 < π, when x ∈ Q1.

Proof. This follows directly from property 1 and the fact that the sum of all the angles
is equal to 2π.

■

Property 5: α4 + α1 > π, when x ∈ Q1.

Proof. This follows directly from property 3 and the fact that the sum of all the angles
is equal to 2π.

■

Property 6: α4 = 2π − α1 − α2 − α3.

Proof. This follows from the fact that α1 + α2 + α3 + α4 = 2π.
■

We have now proven that all the properties above are valid, so we can now proceed
to show that when x ∈ Q1, then R1,2,3(x) ≥ 0. We will do this by first collecting all
terms in R1,2,3 that contain An,m, Am,n and Pn,m, for a given n, m = 1, 2, 3, 4, where
An,m > 0. After doing this, we will convert all Pn,m into An,m, and then analyse if
f−(An,m, Am,n) ≥ 0. We will do this analysis by writing a code that tests for a reasonable
large amount of αi’s, that satisfy the properties above. You can find the code in Appendix
A, section A.1.2. If all of these tests passes, we will check if the remaining terms of
R1,2,3, the terms containing Pn,n, are greater than or equal to zero. If all this holds, we
have showed that R1,2,3(x) ≥ 0 when x ∈ Q1. For simplicity, we will derive the different
expressions below, and then directly state the results that we find in A.2.3.

f−(A1,2, A2,1) :
First, we convert all P1,2 into A1,2, by using Lemma 3.2.2. We then get that

P1,2 = cos(α1)
sin(α1) A1,2.
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Using this we get that

f−(A1,2, A2,1) = t1t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)

+ t1t2
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α2)

+ t2t4
(t2 + t3)(t1 + t4) · 1

sin(α2) sin(α4) + 1

− t1t2
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)

− t2t4
(t1 + t2)(t1 + t4) · 1

sin(α2) sin(α4)

+ t4
t1 + t4

· 1
sin(α4) · cos(α1)

sin(α1)

+ t2
t1 + t2

· 1
sin(α2) · cos(α1)

sin(α1)

− t1
t1 + t4

· 1
sin(α1) · cos(α1)

sin(α1)

− t1
t1 + t2

· 1
sin(α1) · cos(α1)

sin(α1)

− t2
t2 + t3

· 1
sin(α2) · cos(α1)

sin(α1) > 0.

f−(A3,1, A1,3) :
First, we convert all P1,3 into A3,1. We then get that

P1,3 = cos(α1 + α2)
| sin(α1 + α2)| |A3,1|.

Using this we get that

f−(A3,1, A1,3) = t1t2
(t1 + t4)(t1 + t2) · 1

sin(α1) sin(α2)

+ t2t4
(t2 + t3)(t1 + t4) · 1

sin(α2) sin(α4)

+ t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α3)

+ t1t2
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α2) + 1

− t2t4
(t1 + t2)(t1 + t4) · 1

sin(α2) sin(α4)

− t3t4
(t2 + t3)(t1 + t4) · 1

sin(α3) sin(α4)

− t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α3)

+ t2
t2 + t3

· 1
sin(α2) · cos(α1 + α2)

| sin(α1 + α2)|

+ t1
t1 + t4

· 1
sin(α1) · cos(α1 + α2)

| sin(α1 + α2)|
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− t2
t1 + t2

· 1
sin(α2) · cos(α1 + α2)

| sin(α1 + α2)|

− t3
t2 + t3

· 1
sin(α3) · cos(α1 + α2)

| sin(α1 + α2)|

− t4
t1 + t4

· 1
sin(α4) · cos(α1 + α2)

| sin(α1 + α2)|

− t1
t1 + t2

· 1
sin(α1) · cos(α1 + α2)

| sin(α1 + α2)| > 0.

f−(A2,3, A3,2) :
First, we convert all P2,3 into A2,3, by using Lemma 3.2.2. We then get that

P2,3 = cos(α2)
sin(α2) A2,3.

Using this we get that

f−(A2,3, A3,2) = t1t2
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α2)

+ t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α3)

+ t1t2
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α2) + 1

− t1t2
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α2)

− t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α3)

+ t1
t1 + t2

· 1
sin(α1) · cos(α2)

sin(α2)

+ t3
t2 + t3

· 1
sin(α3) · cos(α2)

sin(α2)

− t1
t1 + t4

· 1
sin(α1) · cos(α2)

sin(α2)

− t2
t1 + t2

· 1
sin(α2) · cos(α2)

sin(α2)

− t2
t2 + t3

· 1
sin(α2) · cos(α2)

sin(α2) > 0.

f−(A2,4, A4,2) :
First, we convert all P2,4 into A2,4, by using Lemma 3.2.2. We then get that

P2,4 = cos(α2 + α3)
| sin(α2 + α3)| |A2,4|.
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Using this we get that

f−(A2,4, A4,2) = t2t4
(t2 + t3)(t1 + t4) · 1

sin(α2) sin(α4)

+ t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α3)

+ t1t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)

− t2t4
(t1 + t4)(t1 + t2) · 1

sin(α2) sin(α4)

− t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α3)

− t2t3
(t1 + t2)(t2 + t3) · 1

sin(α2) sin(α3)

− t4
t1 + t4

· 1
sin(α4) · cos(α2 + α3)

| sin(α2 + α3)|

− t3
t2 + t3

· 1
sin(α3) · cos(α2 + α3)

| sin(α2 + α3)| > 0.

f−(A4,1, A1,4) :
First, we convert all P4,1 into A4,1, by using Lemma 3.2.2. We then get that

P4,1 = cos(α4)
sin(α4) A4,1.

Using this we get that

f−(A4,1, A1,4) = t3t4
(t2 + t3)(t1 + t4) · 1

sin(α3) sin(α4)

+ t1t3
(t1 + t2)(t2 + t3) · 1

sin(α1) sin(α3)

+ t1t4
(t1 + t2)(t1 + t4) · 1

sin(α1) sin(α4)

− t1t3
(t2 + t3)(t1 + t4) · 1

sin(α1) sin(α3)

− t3
t2 + t3

· cos(α1)
sin(α1) sin(α3) > 0.

f−(A3,4, A4,3) :
First, we convert all P3,4 into A4,3, by using Lemma 3.2.2. We then get that

P3,4 = cos(α3)
sin(α3) A3,4.

Using this we get that

f−(A3,4, A4,3) = t2t4
(t1 + t2)(t1 + t4) · 1

sin(α2) sin(α4)

+ t3t4
(t2 + t3)(t1 + t4) · 1

sin(α3) sin(α4)
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+ t2t3
(t1 + t2)(t2 + t3) · 1

sin(α2) sin(α3)

− t2t4
(t2 + t3)(t1 + t4) · 1

sin(α2) sin(α4)

− t4
t1 + t4

· 1
sin(α1) · cos(α2)

sin(α2) .

We have now looked at all terms containing An,m and all of the terms containing
Pn,m in R1,2,3, where n ̸= m. We are then left with the terms containing P1,1, P2,2
and P3,3. First, we observe that all of these expressions are greater than zero, since
cos(αn,n) = cos(0) = 1. Second, we know that all these are multiplied with factors that
are greater than zero in Q1. Since both the factors and P1,1, P2,2 and P3,3 are strictly
greater than zero, we know that all the terms containing P1,1, P2,2 and P3,3 are strictly
greater than zero.

By numerical analysis, we have now showed that all the negative terms in R1,2,3(x)
are strictly dominated by their positive counterparts when x ∈ Q1. This means that
R1,2,3(x) > 0 when x ∈ Q1.

Case 7: x ∈ Q2
When x ∈ Q2, we have some special properties that we can use to prove that R1,2,3(x) ≥ 0
in this case.

• α1 + α2 > π.

• α2 + α3 > π.

• α3 + α4 < π.

• α4 + α1 < π.

• α2 > α4.

• α1 = 2π − α2 − α3 − α4.

The proofs of these bullet points are similar to the proofs of the properties in case 6.

The analysis of the terms in R1,2,3 will be quite similar as in case 6. The main
difference is that we have to change the values of all αi, for i = 1, . . . , 4, that we are
testing for. We also observe that bullet point 2 causes A1,3 and A3,1 to change signs from
case 6. We are handling this in the code in section A.2.3. Since the analysis is so similar
to case 6, we will refer the reader to the tests in A.2.3. We will then see, by numerical
testing, that the sum of all terms in R1,2,3(x) > 0 when x ∈ Q2.
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Case 8: x ∈ Q3
When x ∈ Q3, we have some special properties that we can use to prove that R1,2,3(x) ≥ 0
in this case.

• α1 + α2 < π.

• α2 + α3 > π.

• α3 + α4 > π.

• α4 + α1 < π.

• α3 > α1.

• α4 = 2π − α1 − α2 − α3.

The proofs of these bullet points are similar to the proofs of the properties in case 6.

The analysis of the terms in R1,2,3 will be quite similar as in case 6. The main
difference is that we have to change the values of all αi, for i = 1, . . . , 4, that we are
testing for. We also observe that bullet point 1 and 2 causes A1,3, A3,1, A2,4 and A4,2
to change signs from case 6. We are handling this in the code in section A.2.3. Since
the analysis is so similar to case 6, we will refer the reader to the tests in A.2.3. We
will then see, by numerical testing, that the sum of all terms in R1,2,3(x) > 0 when x ∈ Q3.

Case 9: x ∈ Q4
When x ∈ Q4, we have some special properties that we can use to prove that R1,2,3 ≥ 0
in this case.

• α1 + α2 < π.

• α2 + α3 < π.

• α3 + α4 > π.

• α4 + α1 > π.

• α4 > α2.

• α3 = 2π − α1 − α2 − α4.

The proofs of these bullet points are similar to the proofs of the properties in case 6.

The analysis of the terms in R1,2,3 will be quite similar as in case 6. The main
difference is that we have to change the values of all αi, for i = 1, . . . , 4, that we are
testing for. We also observe that bullet point 1 causes A2,4 and A4,2 to change signs from
case 6. We are handling this in the code in section A.2.3. Since the analysis is so similar
to case 6, we will refer the reader to the tests in A.2.3. We will then see, by numerical
testing, that the sum of all terms in R1,2,3(x) > 0 when x ∈ Q4.
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We have now gone through all nine cases, and in each case we have proven, with a
combination of analytical and numerical analysis, that R1,2,3(x) > 0. This means that
R1,2,3(x) > 0 for all x ∈ Q, which again implies that

D(w1, w2, w3)(x) > 0

for all x ∈ Q.

We recall that our goal was to show that D(wi, wj , wk)(x) ≥ 0, for 1 ≤ i < j < k ≤ 4,
and D(wi, wj , wk)(x) > 0 for one combination of i, j, k. So, it then remains to show that

D(w1, w2, w4)(x), D(w1, w3, w4)(x), D(w2, w3, w4)(x) ≥ 0,

for all x ∈ Q. In Appendix B we make an analysis of the three remaining expressions
R1,2,4, R1,3,4 and R2,3,4, and we then discover that all these expressions are strictly greater
than zero. This means that D(w1, w2, w4)(x), D(w1, w3, w4)(x), D(w2, w3, w4)(x) > 0
for all x ∈ Q. We note that in all the cases when we are checking the intersection
between the diagonals, we are able to prove analytically that D(wi, wj , wk)(x) > 0 for
1 ≤ i < j < k ≤ 4. This result will therefore become a theorem.

Theorem 3.2.3. Let Q ⊂ R2 be a convex quadrilateral with vertices v1, v2, v3 and v4,
ordered anticlockwise, and assume that v1, v2, v3 and v4 are non-collinear. Furthermore,
let f be a mean value mapping, and let x̄ ∈ Q be the intersection between the diagonals
in Q. Then f is injective in x̄.

Proof. See case 1 in section 3.2, appendix B.1, B.2 and B.3. ■

Note, the reason why we are doing the analysis of R1,2,4, R1,3,4 and R2,3,4 in Appendix
B is that the analysis of these three expressions will be quite similar to the analysis of
R1,2,3. We therefore think that it would be redundant to have a detailed analysis of
these expressions in this thesis, so we will leave the detailed analysis in these cases to the
reader to avoid too much repetition.

3.2.2 Step 2

It remains to show that D(ϕi, ϕj , ϕk) ≥ 0 for all 1 ≤ i < j < k ≤ 4 and D(ϕi, ϕj , ϕk) > 0
for some 1 ≤ i < j < k ≤ 4, when x ∈ ∂Q. If we assume that the numerical analysis in step
1 is correct, that is that D(ϕi, ϕj , ϕk)(x) > 0 for all x ∈ Q and for all 1 ≤ i < j < k ≤ 4,
then we know that D(ϕi, ϕj , ϕk) ≥ 0, when x ∈ ∂Q, for all 1 ≤ i < j < k ≤ 4. This
follows from the fact that D and ϕn are continuous on the whole of Q̄. Since we already
know that D(ϕi, ϕj , ϕk) ≥ 0 for all 1 ≤ i < j < k ≤ 4, we know from Theorem 2.2.2 that it
is sufficient to find one combination of i, j, k such that D(ϕi, ϕj , ϕk)(x) > 0 for all x ∈ ∂Q.

First, we recall from section 2.1.2 that every x ∈ ∂Q can be written as

x = µvl + (1 − µ)vl+1, (3.16)

for some µ ∈ [0, 1] and l ∈ {1, 2, 3, 4}. We now want to prove that when x is as in
(3.16) for a given l, then D(ϕl−1, ϕl, ϕl+1) > 0. To simplify this, we will again look at
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D(wl−1, wl, wl+1), but this time we need to use the form of wi that holds for all of Q̄ (see
equation (2.6)). We observe that

D(wl−1, wl, wl+1) = wl−1∇wl × ∇wl+1 + wl∇wl+1 × ∇wl−1 + wl+1∇wl−1 × ∇wl.
(3.17)

We recall from section 2.1.2 that when x = µvl + (1 − µ)vl+1, then wl−1 = 0. This means
that we can rewrite (3.17) as

D(wl−1, wl, wl+1) = wl∇wl+1 × ∇wl−1 + wl+1∇wl−1 × ∇wl

= wlwl+1

(∇wl+1
wl+1

− ∇wl

wl

)
× ∇wl−1. (3.18)

We observe that (3.18) holds when wl, wl+1 ̸= 0. Note, that in this case we only need
to show that D(wl−1, wl, wl+1) ̸= 0, since this implies that D(wl−1, wl, wl+1) > 0. This
follows from the fact that D and wi are continuous and D(wl−1, wl, wl+1) > 0 when
x ∈ Q. We will now find expressions for ∇wl−1, ∇wl and ∇wl+1, but before doing this
we will introduce some notation:

• di = vi − x

• ri = ∥vi − x∥

• ei = di
ri

• ci,j = riej

• si = (ri+1ri−1 − di+1 · di−1)1/2

• ki = (riri+1 + di · di+1)1/2

• gi,j =
(

x(dx
i + dx

j )
y(dy

i + dy
j )

)
, where (x, y) = x and (dx

i , dy
i ) = di

Then we have that

∇wi = ∇siki+1ki+2 + si(∇ki+1ki+2 + ki+1∇ki+2),

where

∇si = 1
2si

(
gi−1,i+1 − ci+1,i−1 − ci−1,i+1

)
,

and

∇ki = 1
2ki

(
−gi,i+1 − ci,i+1 − ci+1,i

)
,

for i = l − 1, l, l + 1.

We know that D(wl−1, wl, wl+1) ̸= 0 if
(

∇wl+1
wl+1

− ∇wl
wl

)
× ∇wl−1 ≠ 0. This is the

case if there does not exist an a ∈ R\{0} such that

∇wl+1
wl+1

− ∇wl

wl
= a∇wl−1,
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for all µ ∈ (0, 1). We will now check if this is the case.

∇wl+1
wl+1

− ∇wl

wl
− a∇wl−1 = ∇sl+1

sl+1
+ ∇kl−1

kl−1
− ∇sl

sl
− ∇kl+1

kl+1

− a · (klkl+1∇sl−1 + sl−1(kl+1∇kl + kl∇kl+1))

= −∇sl

sl
+ ∇kl−1

kl−1
− a′∇sl−1

− sl−1((kl+1a∇kl + a′′∇kl+1)), (3.19)

where a′ = klkl+1a − sl−1
s2

l+1
and a′′ = kla + ( 1

sl−1kl+1
). It turns out that (3.19) is different

from zero for all a ∈ R\{0} and µ ∈ (0, 1). You can see this if you write out (3.19) and
use the fact that di ≠ b ·dj , for all b ∈ R and µ ∈ (0, 1), when (i, j) ̸= (l, l +1). Note, that
this follows from the fact that we have assumed that v1, v2, v3 and v4 are non-collinear.

3.2.3 Conclusion

We have in two steps checked if D(ϕi, ϕj , ϕk)(x) ≥ 0 for all 1 ≤ i < j < k ≤ 4 and
D(ϕi, ϕj , ϕk)(x) > 0 for some 1 ≤ i < j < k ≤ 4, for all x ∈ Q̄. In step 1 we checked
for all x ∈ Q, and we were able to prove analytically that D(ϕi, ϕj , ϕk)(x̄) > 0 for all
1 ≤ i < j < k ≤ 4 when x̄ is the intersection between the diagonals in Q. In all the other
cases in step 1 we relied on some numerical analyses, but these analyses indicated that
D(ϕi, ϕj , ϕk)(x) > 0, for all 1 ≤ i < j < k ≤ 4, when x ∈ Q. In step 2 we proved that
D(ϕl−1, ϕl, ϕl+1)(x) > 0, for some l ∈ {1, 2, 3, 4}, when x ∈ ∂Q, given that the numerical
analysis in step 1 was correct. With these assumptions we can therefore conclude that
mean value mappings between convex quadrilaterals are injective.

3.3 Injectivity of mean value mappings between convex pentagons

In [6], Floater and Kosinka showed by example that mean value mappings between convex
pentagons were not injective. We will now present an example of our own that shows that
mean value mappings between convex pentagons are not injective. So, let P be a strictly
convex polygon with five vertices, v1, v2, . . . , v5, ordered anticlockwise. Furthermore,
let ϕ1, ϕ2, . . . , ϕ5 be the mean value coordinates as described in (2.4). We recall from
section 2.2.1, Theorem 2.2.3 that a necessary condition for injectivity was that∑

r≤i<s≤j<t≤k<n+r

D(ϕi, ϕj , ϕk) ≥ 0 in P,

for r, s, t satisfying 1 ≤ r < s < t ≤ n. Note that in this case, n = 5. If we can
find an example where this condition is not fulfilled, then we have proven that mean
value mappings between convex pentagons are not necessarily injective. To find one
example of this we wrote a code that first generated a random, convex pentagon.
Then we generated some points x in that given pentagon, and then we checked if∑

r≤i<s≤j<t≤k<5+r D(ϕi, ϕj , ϕk) ≥ 0, for r, s, t satisfying 1 ≤ r < s < t ≤ 5. The reader
may find the code that we used to find a counterexample in this git repository1. By
using this code, we were able to find an example where the condition in Theorem 2.2.3
was not fulfilled. We will now present this example.

1https://github.uio.no/agnethhk/Tests-mean-value-mappings.git

41

https://github.uio.no/agnethhk/Tests-mean-value-mappings.git
https://github.uio.no/agnethhk/Tests-mean-value-mappings.git
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Figure 3.4: Pentagon with vertices v1 = (0.9, 1), v2 = (0.3, 0.7), v3 = (0, 0.4), v4 = (0.1, 0) and
v5 = (1, 0.13), where x = (0.25, 0.6)

Example 3.3.1. Let P ⊂ R2 be a pentagon with vertices v1 = (0.9, 1), v2 = (0.3, 0.7),
v3 = (0, 0.4), v4 = (0.1, 0) and v5 = (1, 0.13) (see figure 3.4). Moreover, let
x = (0.25, 0.6) ∈ P . By evaluating D(ϕi, ϕj , ϕk)(x) for the mean value coordinates
of P we obtain that

D(ϕ1, ϕ2, ϕ5)(x) = −19.61590501,

D(ϕ1, ϕ3, ϕ5)(x) = 7.01491292,

D(ϕ1, ϕ4, ϕ5)(x) = 0.68785952.

We then observe that

D(ϕ1, ϕ2, ϕ5)(x) + D(ϕ1, ϕ3, ϕ5)(x) + D(ϕ1, ϕ4, ϕ5)(x) = −11.913132561694452.

As this value is negative, it violates the necessary condition of Theorem 2.2.3 for n = 5,
r = 1, s = 2 and t = 5. This again implies that mean value mappings between strictly
convex pentagons are not necessarily injective.
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Concluding remarks

In this thesis we have investigated when mean value mappings between convex polygons
are injective. We recall that it was already shown by Floater and Kosinka [6] that all
barycentric mappings between triangles are injective, and they also found examples
where mean value mappings between convex pentagons were not injective, but it still
remained to find proof of whether mean value mappings between convex quadrilaterals
are injective. In this thesis we have been able to present an alternative proof of why
barycentric mappings between triangles in the plane are injective, and we have also found
a new example for why mean value mappings between convex pentagons in the plane are
not necessarily injective.

However, we recall that our main goal was to show that mean value mappings between
convex quadrilaterals in the plane are injective. In the case where x is the intersection
between the diagonals, we have been able to prove injectivity analytically, but in all other
cases we have relied on some numerical analysis. This analysis is still a step forward from
what was done in [6], and as we discuss in A.1.1, the numerical analysis is likely good
enough to conclude that mean value mappings between convex quadrilaterals in the plane
are injective. It is also worth noticing that we have been able to make an outline of a
proof that only depends on the angles αi and not the sizes of An,m and Pn,m. Therefore,
it might be possible to use this outline to make an analytical proof later on. During this
thesis we discovered some properties and we got some ideas on how it might be possible
to make an analytical proof. We will state these potential improvements and ideas:

1. Check if the analysis becomes more obvious if we rewrite some of the expressions.
In this thesis we have been operating with αi and αi

2 , for i = 1, 2, 3, 4, but it
might be easier to analyse if we use the formulas for double angles on sin(αi) and
cos(αi), so we only need to operate with αi

2 . In addition, it would be interesting
to see if we could find some more trigonometric properties that we could use in
the analysis. For instance, in this analysis, we could have used the fact that
t1t2 = sin(α1/2)

cos(α1/2) · cos(α1/2)
sin(α1/2) = 1, when x ∈ d1. The analysis might become easier if we

implement these changes. In addition, there might be possible to find even more
properties that could be used to simplify the analysis, so it would be interesting to
investigate this further.

2. Check if the positive terms in f− dominates the negative terms by using the
properties we derived in case 2-9 in step 1. Especially for the diagonals, it might
be possible to show analytically that all the positive terms in f− dominates all
the negative terms. If we for instance take f−(A1,2, A2,1) in R1,2,3 for x ∈ d1, we
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can observe that t2t4
(t1+t4)(t2+t3) · 1

sin(α1) sin(α4) dominates − t2t4
(t1+t2)(t1+t4) · 1

sin(α1) sin(α4) ,
since α1 > α3 when x ∈ d1. Since we are trying to analyse a combination of dot
products and cross products, some analyses become a bit tricky, but by using some
trigonometric properties, as for instance formulas for double angles, it might be
possible to get an analytical result with this method.

3. Check if it is possible to find out where f− has its minimum for different An,m,
where n, m ∈ {1, 2, 3, 4}. If we can find out where f−(An,m, Am,n) has its minimum,
when An,m > 0, we can check if f− is positive in this case, and we would then be
able to prove that mean value mappings are injective between convex quadrilaterals.
It might be a bit tricky to find the minimum of f− analytically, especially for
x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}, but it might be easier to find the minimum of f− on the
diagonals, since f− only depends on two variables in this case, so this could be a
good starting point.

It is also of great interest to analyse closer how f− behaves. By doing this it might be
possible to prove that the numerical method used in this thesis is good enough to conclude
that mean value mappings between convex quadrilaterals in the plane are injective.

Future research

In the future it might be of interest to check if it is possible to make a completely
analytical proof that mean value mappings between convex quadrilaterals are injective.
In addition, it would be interesting to investigate if mean value mappings between
non-convex quadrilaterals are injective. The main advantage with mean value coordinates
versus for instance Wachspress coordinates, is that mean value coordinates are also
well-defined for star-shaped polygons, so it could therefore be of interest to do some
analysis to check if mean value mappings between star-shaped quadrilaterals could be
injective.
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Appendix A

Presentation of numerical method and
test results for R1,2,3

In this appendix we will present the code and the tests from the numerical analysis we
presented in section 3.2. This appendix is structured as follows: Section A.1 presents the
numerical method we have used in our tests and section A.2 presents the results of the
numerical test runs.

A.1 Numerical test method

Before we present the numerical method that we have used to analyse the different
expressions in section 3.2, we will recall some notation from that section:

• R1,2,3 = R2 × R3 + R3 × R1 + R1 × R2, where Ri is as in (2.7).

• di is the line from vi to the intersection between the diagonals, for i = 1, 2, 3, 4.

• An,m = (vn−x)
∥(vn−x)∥2 × (vm−x)

∥(vm−x)∥2 , for n, m ∈ {1, 2, 3, 4}.

• Pn,m = (vn−x)
∥(vn−x)∥2 · (vm−x)

∥(vm−x)∥2 , for n, m ∈ {1, 2, 3, 4}.

• f−(x, y) is a function that return the factors in front of expression x minus the
factors in front of expression y.

A.1.1 Idea behind the numerical method

Our goal is to make a numerical method that can check if f− is positive. Before we de-
scribe our method, we observe that f−(An,m, Am,n), for n, m ∈ {1, 2, 3, 4}, is a continuous
function. This follows from the fact that f−(An,m, Am,n) is a sum of terms containing a
combination of trigonometric functions. Since it is a well known fact that trigonometric
functions are continuous, and that the product and quotient of continuous functions are
continuous, it follows that f−(An,m, Am,n) is continuous for all n, m ∈ {1, 2, 3, 4}.

We will begin our numerical analysis by writing a function that finds the numerical
derivative to f−. We will then use this function to calculate the numerical derivative to
f− for given values of αi, for i = 1, . . . , 4. We will then for a given i change αi with some
small interval, and then save the derivatives in a list. When we have calculated three
consecutive, numerical derivatives g1, g2 and g3 in the points p1, p2, and p3, we will
check if g1, g2 ≤ 0 and g3 ≥ 0. If this is the case, we know that in the interval [p2, p3],
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Figure A.1: Visualization of how we use the numerical derivative to check if f− is positive

f− will have at least one minima, since we know that f− is a continuous function. If
we make an assumption that f− has exactly one minima in the interval [p2, p3], and
assume that the derivative of f− is increasing in the interval [p1, local minima], then we
can make a numerical test that guarantees that f− is greater than or equal to zero. We
note that if this assumption holds, then g1 ≤ g2 when g1, g2 ≤ 0 and g3 ≥ 0. Then we
know that the minima have to be in the interval [p2, p3]. In addition, we know from
assumption that the derivative in every point in this interval must be greater than g1.
Therefore, if f−(An,m, Am,n)(p2) ≥ g1 · |p3 − p2|, for some n, m ∈ {1, 2, 3, 4} that satisfy
An,m > 0, this implies that the minima of f− in the interval [p2, p3] is greater than or
equal to zero. You can see an illustartion of this in figure A.1. In the code we will actually
test if f− is strictly greater than zero, since we need this to be fulfilled for at least one
combination of i, j, k, where 1 ≤ i < j < k ≤ 4. We will also make some modifications to
this idea when we implement the code, in case our assumption does not hold. We will
explain these modifications in A.1.2.

The question now is if we can guarantee that all intervals on the form [pi, pi+2], where
gi, gi+1 ≤ 0 and gi+2 ≥ 0, have exactly one minima, and that the derivative in the interval
[pi, local minima] is increasing. We know that all the expressions that we are going to
analyse are a combination of trigonometric functions, so intuitively it seems reasonable
to assume that all intervals on the form [pi, pi+2], where gi, gi+1 ≤ 0 and gi+2 ≥ 0,
have exactly one minima, and that the derivative in the interval [pi, local minima] is
increasing, if we choose small enough intervals. Nevertheless, it is easier said than done
to prove this analytically. We will therefore in this thesis assume that this claim holds.
In figure A.2 you can see a plot of f−(A1,2, A2,1) in R1,2,3, and we observe that this plot
seems to support our claim.
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Figure A.2: Plot of f−(A1,2, A2,1) in R1,2,3

A.1.2 Code

All code is written in Python version 3.8.5. You can find the code below, and the test
runs will be documented in the section A.2.

For all code we begin with importing some functionality from NumPy, version 1.23.3:
1 import numpy as np
2 from numpy import cos , tan , sin , pi

Code for x ∈ {d1 ∪ d3}:
We start by defining two functions that calculate the numerical derivative of f− with
respect to α1 and α4 respectively.

1 def derivative_a1 (f, a4 , a1_list ):
2 return (f( a1_list [1], a4)-f( a1_list [0], a4))/( a1_list [1]- a1_list [0])
3

4 def derivative_a4 (f, a1 , a4_list ):
5 return (f(a1 , a4_list [1]) -f(a1 , a4_list [0]))/( a4_list [1]- a4_list [0])

Both functions use the first-order backward difference approximation (see e.g. [18]) to
approximate the derivative of f− with respect to α1 and α4.

Second, we define a function that will append the the derivative we calculate to a
list, while ensuring that the list only contains three consecutive derivatives.

1 def append_derivates (derivates , g):
2 if len( derivates ) < 3:
3 derivates . append (g)
4 return derivates
5 else:
6 del derivates [0]
7 derivates . append (g)
8 return derivates

Next, we will need a function that checks if the derivatives in the list satisfy the claim
from A.1.1, and then returns the derivative we are going use. Note that when g2 ≤ 0 and
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g3 ≥ 0, we will return min(g1, g2). According to the idea we explained earlier we should
return g1, but if we have not chosen a small enough interval, we might get some cases
where g1, g3 > 0 and g2 < 0. If this is the case, we still know that there exists at least
one minima between the points with derivative g2 and g3, so in this case we would like
our function to return g2. In addition, we would like our function to return g2 if it turns
out that the derivative is not increasing in the interval [p1, local minima], as we have
assumed, so to make our code a bit more robust, we will check if g2 < g1.

If all the derivatives in the list are negative, we assume that f− does not have a
minima in this interval, and we will then return g3. If both g2, g3 ≥ 0 we have that f− is
increasing, so in this case we are only interested in checking the function value of f−, so
our function will in this case return zero.

1 def find_derivative ( derivates ):
2 if len( derivates ) == 1:
3 g1 = derivates [0]; g2 = 0; g3 = 0;
4 elif len( derivates ) == 2:
5 g1 = derivates [0]; g2 = derivates [1]; g3 = 0;
6 if g1 <=0 and g2 >= 0:
7 return g1
8 elif g2 <=0:
9 return g2

10 else:
11 return 0
12 else:
13 g1 = derivates [0]; g2 = derivates [1]; g3 = derivates [2];
14

15 if g2 <=0 and g3 >=0:
16 if g1 < g2:
17 return g1
18

19 else:
20 return g2
21

22 elif g1 <0 and g2 <0 and g3 <0:
23 return g3
24

25 else:
26 return 0

To save computation time, we will write two functions that partition problematic
intervals into smaller intervals. We will call these functions warninga1 and warninga4.
These functions will be called if f− + min(0, g1, g2, g3) · step size ≤ 0. We will then
partition the given interval into smaller intervals, and check if the claim is still invalidated.

1 def warninga1 (f, a1_start , a1_end , a4 , step = 100):
2 a1_list = np. linspace (a1_start , a1_end , step)
3 stepsize = (a1_end - a1_start )/(step -1)
4 derivatives = []
5

6 foundException = False
7 errorMessage = []
8 for i in range (1, len( a1_list ) -1):
9 derivate = derivative_a1 (f, a4 , [ a1_list [i-1], a1_list [i+1]])

10 derivatives = append_derivates ( derivatives , derivate )
11 minDerivative = find_derivative ( derivatives )
12 if f( a1_list [i-1], a4)+ minDerivative * stepsize <= 0:
13 if step <= 800:
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14 foundException , errorMessage = warninga1 (f, a1_start ,
a1_end , a4 , 2* step)

15 return foundException , errorMessage
16 else:
17 errorMessage . append (f’{ minDerivative * stepsize } {f( a1_list

[i], a4)}, { a1_list [i]}, {a4}’)
18 foundException = True
19 return foundException , errorMessage
20

21 def warninga4 (f, a4_start , a4_end , a1 , step = 100):
22 a4_list = np. linspace (a4_start , a4_end , step)
23 stepsize = (a4_end - a4_start )/(step -1)
24 derivatives = []
25

26 foundException = False
27 errorMessage = []
28 for i in range (1, len( a4_list ) -1):
29 derivate = derivative_a4 (f, a1 , [ a4_list [i-1], a4_list [i+1]])
30 derivatives = append_derivates ( derivatives , derivate )
31 minDerivative = find_derivative ( derivatives )
32 if f(a1 , a4_list [i -1])+ minDerivative * stepsize <= 0:
33 if step <= 800:
34 foundException , errorMessage = warninga4 (f, a4_start ,

a4_end , a1 , 2* step)
35 return foundException , errorMessage
36 else:
37 errorMessage . append (f’{ minDerivative * stepsize } {f(a1 ,

a4_list [i])}, {a1}, { a4_list [i]}’)
38 foundException = True
39 return foundException , errorMessage

Last, we need two functions that check if f− ≥ find_derivative·step size, where
step size is the length between each αi, for i = 1, 4 respectively. This function will
raise a warning if we might have some problems when we approach the limits of α1 or
α4. If these warnings are printed in the terminal we will check the limits analytically in
the test section.

1 def a1_check (f, step , a4_list , diagonal ):
2 for a4 in a4_list [1: -1]:
3 if diagonal == ’d1’:
4 a1_list = np. linspace (pi -a4 , pi , step)
5 elif diagonal == ’d3’:
6 a1_list = np. linspace (0, pi -a4 , step)
7

8 first_i = True
9 last_i = True

10

11 derivatives = []
12 stepsize = ( a1_list [-1]- a1_list [0]) /(step -1)
13 for i in range (2, len( a1_list [2: -1])):
14 if a1_list [i] != 0 and a1_list [i] != pi:
15 derivate = derivative_a1 (f, a4 , [ a1_list [i-1], a1_list [i

+1]])
16 derivatives = append_derivates ( derivatives , derivate )
17 minDerivative = find_derivative ( derivatives )
18 if f( a1_list [i-1], a4)+ minDerivative * stepsize <= 0:
19 foundException , errorMessage = warninga4 (f, a1_list [i

-1], a1_list [i+1], a4)
20 if foundException :
21 if i == 2:
22 if first_i :
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23 print("For x in", diagonal , ": Check
limits when a1 -> 0")

24 first_i = False
25 elif i == len( a1_list [2:]) -1:
26 if last_i :
27 print("For x in", diagonal , ": Check

limits when a1 -> pi")
28 last_i = False
29 elif a4 == a4_list [1]:
30 print("For x in", diagonal , ": Check limits

when a4 -> 0")
31 break
32 elif a4 == a4_list [ -2]:
33 print("For x in", diagonal , ": Check limits

when a4 -> pi")
34 break
35 else:
36 print( errorMessage )

1 def a4_check (f, step , a1_list , diagonal ):
2 for a1 in a1_list [1: -1]:
3 if diagonal == ’d1’:
4 a4_list = np. linspace (pi - a1 , pi , step)
5 elif diagonal == ’d3’:
6 a4_list = np. linspace (0, pi -a1 , step)
7

8 first_i = True
9 last_i = True

10

11 derivatives = []
12 stepsize = ( a4_list [-1]- a4_list [0]) /(step -1)
13 for i in range (2, len( a4_list [2: -1])):
14 if a4_list [i] != 0 and a4_list [i] != pi:
15 derivate = derivative_a4 (f, a1 , [ a4_list [i-1], a4_list [i

+1]])
16 derivatives = append_derivates ( derivatives , derivate )
17 minDerivative = find_derivative ( derivatives )
18 if f(a1 , a4_list [i -1])+ minDerivative * stepsize <= 0:
19 foundException , errorMessage = warninga1 (f, a4_list [i

-1], a4_list [i+1], a1)
20 if foundException :
21 if i == 2:
22 if first_i :
23 print("For x in", diagonal , ": Check

limits when a1 -> 0")
24 first_i = False
25 elif i == len( a1_list [2:]) -1:
26 if last_i :
27 print("For x in", diagonal , ": Check

limits when a1 -> pi")
28 last_i = False
29 elif a4 == a4_list [1]:
30 print("For x in", diagonal , ": Check limits

when a4 -> 0")
31 break
32 elif a4 == a4_list [ -2]:
33 print("For x in", diagonal , ": Check limits

when a4 -> pi")
34 break
35 else:
36 print( errorMessage )
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Now it remains to make a function that tests for different values of α1 and α4.
1 def testd1d3 (f, twoAngles = False):
2 step = 1000
3 alpha1_list = np. linspace (0, pi , step)
4

5 a4_check (f, step , alpha1_list , ’d1’)
6

7 alpha4_list = np. linspace (0, pi , step)
8 a1_check (f, step , alpha4_list , ’d1’)
9

10 alpha1_list = np. linspace (0, pi , step)
11 if twoAngles :
12 a4_check ( lambda a1 , a4: -f(a1 , a4), step , alpha1_list , ’d3’)
13 else:
14 a4_check (f, step , alpha1_list , ’d3’)
15

16 alpha4_list = np. linspace (0, pi , step)
17 if twoAngles :
18 a1_check ( lambda a1 , a4: -f(a1 , a4), step , alpha4_list , ’d3’)
19 else:
20 a1_check (f, step , alpha4_list , ’d3’)
21

22 return ’Done ’

Code for x ∈ {d2 ∪ d4}:
We will reuse some of the code from when x ∈ {d1 ∪ d3}, namely the functions
derivative_a1, append_derivative and find_derivative. So, the first code we need
for x ∈ {d2 ∪ d4} is a way of finding the numerical derivative with respect to α2.

1 def derivative_a2 (f, a1 , a2_list ):
2 return (f( a2_list [1], a1)-f( a2_list [0], a1))/( a2_list [1]- a2_list [0])

As for the case where x ∈ {d1 ∪ d3}, we need two warning functions.
1 def warninga1 (f, a1_start , a1_end , a2 , step = 100):
2 a1_list = np. linspace (a1_start , a1_end , step)
3 stepsize = (a1_end - a1_start )/(step -1)
4 derivatives = []
5

6 foundException = False
7 errorMessage = []
8 for i in range (1, len( a1_list ) -1):
9 derivate = derivative_a1 (f, a2 , [ a1_list [i-1], a1_list [i+1]])

10 derivatives = append_derivates ( derivatives , derivate )
11 minDerivative = find_derivative ( derivatives )
12 if f( a1_list [i-1], a2)+ minDerivative * stepsize <= 0:
13 if step <= 800:
14 foundException , errorMessage = warninga1 (f, a1_start ,

a1_end , a2 , 2* step)
15 return foundException , errorMessage
16 else:
17 errorMessage . append (f’{ minDerivative * stepsize } {f( a1_list

[i], a2)}, { a1_list [i]}, {a2}’)
18 foundException = True
19 return foundException , errorMessage
20

21 def warninga2 (f, a2_start , a2_end , a1 , step =100):
22 a2_list = np. linspace (a2_start , a2_end , step)
23 stepsize = (a2_end - a2_start )/(step -1)
24 derivatives = []
25
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26 foundException = False
27 errorMessage = []
28 for i in range (1, len( a2_list ) -1):
29 derivate = derivative_a2 (f, a1 , [ a2_list [i-1], a2_list [i+1]])
30 derivatives = append_derivates ( derivatives , derivate )
31 minDerivative = find_derivative ( derivatives )
32 if f(a1 , a2_list [i -1])+ minDerivative * stepsize <= 0:
33 if step <= 800:
34 foundException , errorMessage = warninga2 (f, a2_start ,

a2_end , a1 , 2* step)
35 return foundException , errorMessage
36 else:
37 errorMessage . append (f’{ minDerivative * stepsize } {f(a1 ,

a2_list [i])}, {a1}, { a2_list [i]}’)
38 foundException = True
39 return foundException , errorMessage

Next, we will need a way of checking if f− ≥ find_derivative · step size.
1 def a1_check (f, step , a2_list , diagonal ):
2 first_i = True
3 last_i = True
4

5 for a2 in a2_list [1: -1]:
6 if diagonal == ’d2’:
7 a1_list = np. linspace (pi -a2 , pi , step)
8 elif diagonal == ’d4’:
9 a1_list = np. linspace (0, pi -a2 , step)

10

11 derivatives = []
12 stepsize = ( a1_list [-1]- a1_list [0]) /(step -1)
13 for i in range (2, len( a1_list [2: -1])):
14 if a1_list [i] != 0 and a1_list [i] != pi:
15 derivate = derivative_a1 (f, a2 , [ a1_list [i-1], a1_list [i

+1]])
16 derivatives = append_derivates ( derivatives , derivate )
17 minDerivative = find_derivative ( derivatives )
18 if f( a1_list [i-1], a2)+ minDerivative * stepsize <= 0:
19 foundException , errorMessage = warninga1 (f, a1_list [i

-1], a1_list [i+1], a2)
20 if foundException :
21 if i == 2:
22 if first_i :
23 print("For x in", diagonal , ": Check

limits when a1 -> 0")
24 first_i = False
25 elif i == len( a1_list [2:]) -1:
26 if last_i :
27 print("For x in", diagonal , ": Check

limits when a1 -> pi")
28 last_i = False
29 elif a2 == a2_list [1]:
30 print("For x in", diagonal , ": Check limits

when a2 -> 0")
31 break
32 elif a2 == a2_list [ -2]:
33 print("For x in", diagonal , ": Check limits

when a2 -> pi")
34 break
35 else:
36 print( errorMessage )
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1 def a2_check (f, step , a1_list , diagonal ):
2 first_i = True
3 last_i = True
4 for a1 in a1_list [1: -1]:
5 if diagonal == ’d2’:
6 a2_list = np. linspace (pi - a1 , pi , step)
7 elif diagonal == ’d4’:
8 a2_list = np. linspace (0, pi -a1 , step)
9

10 derivatives = []
11 stepsize = ( a2_list [-1]- a2_list [0]) /(step -1)
12 for i in range (2, len( a2_list [2: -1])):
13 if a2_list [i -1] != 0 and a2_list [i] != pi:
14 derivate = derivative_a2 (f, a1 , [ a2_list [i-1], a2_list [i

+1]])
15 derivatives = append_derivates ( derivatives , derivate )
16 minDerivative = find_derivative ( derivatives )
17 if f(a1 , a2_list [i -1])+ minDerivative * stepsize <= 0:
18 foundException , errorMessage = warninga2 (f, a2_list [i

-1], a2_list [i+1], a1)
19 if foundException :
20 if i == 2:
21 if first_i :
22 print("For x in", diagonal , ": Check

limits when a2 -> 0")
23 first_i = False
24 elif i == len( a2_list [2:]) -1:
25 if last_i :
26 print("For x in", diagonal , ": Check

limits when a2 -> pi")
27 last_i = False
28 elif a1 == a1_list [1]:
29 print("For x in", diagonal , ": Check limits

when a1 -> 0")
30 break
31 elif a1 == a1_list [ -2]:
32 print("For x in", diagonal , ": Check limits

when a1 -> pi")
33 break
34 else:
35 print( errorMessage )

Last, we will make a function that calls the functions a1_check and a2_check for
different values of α2 and α1, respectively.

1 def testd2d4 (f, twoAngles = False):
2 step = 1000
3 alpha1_list = np. linspace (0, pi , step)
4

5 a2_check (f, step , alpha1_list , ’d2’)
6

7 alpha2_list = np. linspace (0, pi , step)
8 a1_check (f, step , alpha2_list , ’d2’)
9

10 alpha1_list = np. linspace (0, pi , step)
11 if twoAngles :
12 a2_check ( lambda a1 , a2: -f(a1 , a2), step , alpha1_list , ’d4’)
13 else:
14 a2_check (f, step , alpha1_list , ’d4’)
15
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16 alpha2_list = np. linspace (0, pi , step)
17 if twoAngles :
18 a1_check ( lambda a1 , a2: -f(a1 , a2), step , alpha2_list , ’d4’)
19 else:
20 a1_check (f, step , alpha2_list , ’d4’)
21

22 return ’Done ’

Code for x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}:
The code for x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4} will build on the same principles as the code
for x ∈ {d1 ∪ d3} and x ∈ {d2 ∪ d4}, but the code will be quite a lot longer than for
the previous cases. Since these principles already have been described in detail for
x ∈ {d1 ∪ d3} and x ∈ {d2 ∪ d4}, we will skip commenting this case further. The reader
may find the code that is used in this case in this git repository1.

A.2 Testing

All tests were done on an Intel Core i5 with 1.1 GHz and 4 Cores on a macOS Server
with 8GB RAM.

A.2.1 Runs for x ∈ d1 and x ∈ d3

Numerical analysis of f−(A4,1, A1,4):
Code:

1 def testA41 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t1*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a4)**2)
7 term3 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))
8 term4 = t3/(t2+t3)*cos(a4)/( sin(a4)**2)
9 term5 = (t1*t3)/(( t1+t4)*(t2+t3))*1/( sin(a1)*sin(a4))

10

11 return term1 + term2+ term3 + term4 - term5
12

13 print( testd1d3 ( testA41 ))

Output: Done

Numerical analysis of f−(A1,2, A2,1):
Code:

1 def testA12 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = t4*(t1 -t2)/(( t1+t2)*(t1+t4)) *1/( sin(a1)*sin(a4))
6 term2 = (t1*t2)/(( t1+t2)*(t1+t4)) *1/( sin(a1)**2)
7 term3 = 1
8 term4 = (t2*t4)/(( t1+t4)*(t2+t3)) *1/( sin(a1)*sin(a4))
9 term5 = (t1*t2)/(( t1+t2)*(t2+t3)) *1/( sin(a1)**2)

10 term6 = t4/(t1+t4)*cos(a1)/( sin(a1)*sin(a4))
11 term7 = t2/(t1+t2)*cos(a1)/( sin(a1)**2)

1https://github.uio.no/agnethhk/Tests-mean-value-mappings.git
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12 term8 = (t1*t2)/(( t2+t3)*(t1+t4)) *1/( sin(a1)**2)
13 term9 = t2/(t2+t3)*cos(a1)/( sin(a1)**2)
14 term10 = t1/(t1+t4)*cos(a1)/( sin(a1)**2)
15 term11 = t1/(t1+t2)*cos(a1)/( sin(a1)**2)
16 return term1 + term2 + term3 + term4 - term5 + term6 + term7 - term8

- term9 - term10 - term11
17

18 print( testd1d3 ( testA12 ))

Output: Done

Numerical analysis of f−(A2,3, A3,2):
Code:

1 def testA23 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t1*t2)/(( t1+t2)*(t1+t4))*1/( sin(a1)**2)
6 term2 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a4))
7 term3 = (t1*t2)/(( t1+t2)*(t2+t3))*1/( sin(a1)**2)
8 term4 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))
9 term5 = 1

10 term6 = cos(a1)/( sin(a1)**2) *(t1/(t1+t4)+t2/(t1+t2)+t2/(t2+t3))
11 term7 = (t1*t2)/(( t2+t3)*(t1+t4))*1/( sin(a1)**2)
12 term8 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))
13 term9 = cos(a1)/sin(a1)*(t3/(t2+t3)*1/ sin(a4)+t1/(t1+t2)*1/ sin(a1))
14

15 return term1 + term2 + term3 + term4 + term5 + term6 - term7 -term8 -
term9

16

17 print( testd1d3 ( testA23 ))

Output: Done

Numerical analysis of f−(A2,4, A4,2):
Code:

1 def testA24 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))
7 term3 = (t1*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))
8 term4 = (t2*t4)/(( t1+t4)*(t1+t2))*1/( sin(a1)*sin(a4))
9 term5 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a4))

10 term6 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))
11 term7 = cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a4))*t4/(t1+t4)
12 term8 = cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a4))*t3/(t2+t3)
13

14 return term1 + term2 + term3 - term4 - term5 - term6 - term7 - term8
15

16 print( testd1d3 (testA24 , True))

Output: Done
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Numerical analysis of f−(A3,4, A4,3):
Code:

1 def testA34 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a4)**2)
7 term3 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))
8 term4 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a4))
9 term5 = cos(a4)/( sin(a4)**2)*t4/(t1+t4)

10

11 return term1 + term2 + term3 - term4 - term5
12

13 print( testd1d3 ( testA34 ))

Output: Done

Numerical analysis of f+(P1,3):
Code:

1 def testP13 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = t2/(t2+t3)*1/ sin(a1)
6 term2 = t1/(t1+t4)*1/ sin(a1)
7 term3 = 1/ sin(a1)
8 term4 = t3/(t2+t3)*1/ sin(a4)
9 term5 = t4/(t1+t4)*1/ sin(a4)

10

11 if a1 < pi /2:
12 term6 = 1/ sin(a1)*t1/(t1+t2)
13 else:
14 term6 = 1/ sin(a1)*t2/(t1+t2)
15

16 return -(term1 + term2 - term3 - term4 - term5) + term6
17

18 print( testd1d3 ( testP13 ))

Output: Done

A.2.2 Runs for x ∈ d2 and x ∈ d4

Numerical analysis of f−(A3,1, A1,3) and f−(A1,3, A3,1):
Code:

1 def testA31 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = t2*(t1 -t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a2))
6 term2 = t2*(t4 -t1)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
7 term3 = t3*(t1 -t4)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
8 term4 = t1*(t2 -t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))
9 term5 = 1

10 term6 = cos(a1+a2)/sin(a1+a2)*t2/(t1+t2)*1/ sin(a2)
11 term7 = cos(a1+a2)/sin(a1+a2)*t1/(t1+t2)*1/ sin(a1)
12 term8 = cos(a1+a2)/sin(a1+a2)*(t2 -t3)/(t2+t3)*1/ sin(a2)
13 term9 = cos(a1+a2)/sin(a1+a2)*(t1 -t4)/(t1+t4)*1/ sin(a1)
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14

15 return term1 + term2 + term3 + term4 + term5 + term6 + term7 - term8
- term9

16

17 print( testd2d4 (testA31 , True))

Output: Done

Numerical analysis of f−(A4,1, A1,4):
Code:

1 def testA41 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = t3*(t4 -t1)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
6 term2 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))
7 term3 = (t1*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)**2)
8 term4 = cos(a1)/( sin(a1)*sin(a2))*t3/(t2+t3)
9

10 return term1 + term2 + term3 - term4
11

12 print( testd2d4 ( testA41 ))

Output: Done

Numerical analysis of terms containing A1,2 and A2,1:
Code:

1 def testA12 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t1*t4)/(( t1+t2)*(t1+t4)) *1/( sin(a1)**2)
6 term2 = t2*(t1 -t4)/(( t1+t2)*(t1+t4)) *1/( sin(a1)*sin(a2))
7 term3 = 1
8 term4 = t2*(t4 -t1)/(( t2+t3)*(t1+t4)) *1/( sin(a1)*sin(a2))
9 term5 = cos(a1)/( sin(a1)*sin(a2))*(t4 -t1)/(t1+t4)

10 term6 = cos(a1)/( sin(a1)*sin(a2))*t2/(t1+t2)
11 term7 = cos(a1)/( sin(a1)**2)*t1/(t1+t2)
12 term8 = cos(a1)/( sin(a1)*sin(a2))*t2/(t2+t3)
13

14 return term1 + term2 + term3 + term4 + term5 + term6 - term7 - term8
15

16 print( testd2d4 ( testA12 ))

Output: Done

Numerical analysis of terms containing A2,3 and A3,2:
Code:

1 def testA23 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t1*t2)/(( t1+t2)*(t1+t4)) *1/( sin(a1)*sin(a2))
6 term2 = t1*(t3 -t2)/(( t2+t3)*(t1+t4)) *1/( sin(a1)*sin(a2))
7 term3 = t1*(t2 -t3)/(( t1+t2)*(t2+t3)) *1/( sin(a1)*sin(a2))
8 term4 = (t2*t3)/(( t1+t2)*(t2+t3)) *1/( sin(a2)**2)
9 term5 = 1

10 term6 = cos(a2)/( sin(a2)*sin(a1))*t1/(t1+t2)
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11 term7 = cos(a2)/( sin(a2)**2) *(t3 -t2)/(t2+t3)
12 term8 = cos(a2)/( sin(a2)*sin(a1))*t1/(t1+t4)
13 term9 = cos(a2)/( sin(a2)**2)*t2/(t1+t2)
14

15 return term1 + term2 + term3 + term4 + term5 + term6 + term7 - term8
- term9

16

17 print( testd2d4 ( testA23 ))

Output: Done

Numerical analysis of f−(A3,4, A4,3):
Code:

1 def testA34 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t4)/(( t1+t2)*(t1+t4)) *1/( sin(a1)*sin(a2))
6 term2 = t4*(t3 -t2)/(( t2+t3)*(t1+t4)) *1/( sin(a1)*sin(a2))
7 term3 = (t2*t3)/(( t1+t2)*(t2+t3)) *1/( sin(a2)**2)
8 term4 = cos(a2)/( sin(a1)*sin(a2))*t4/(t1+t4)
9

10 return term1 + term2 + term3 - term4
11

12 print( testd2d4 ( testA34 ))

Output: Done

A.2.3 Runs for x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}

Numerical analysis of terms containing A1,2, A2,1 and P1,2:

1 def testA12 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t1*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t1*t2)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a2))
7 term3 = 1
8 term4 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a2)*sin(a4))
9 term5 = (t1*t2)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))

10 term6 = (t2*t4)/(( t1+t2)*(t1+t4))*1/( sin(a2)*sin(a4))
11 term7 = (t1*t2)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
12 term8 = cos(a1)/( sin(a1)*sin(a4))*t4/(t1+t4)
13 term9 = cos(a1)/( sin(a1)*sin(a2))*t2/(t1+t2)
14 term10 = cos(a1)/( sin(a1)**2)*t1/(t1+t4)
15 term11 = cos(a1)/( sin(a1)**2)*t1/(t1+t2)
16 term12 = cos(a1)/( sin(a1)*sin(a2))*t2/(t2+t3)
17

18 return term1 + term2 + term3 + term4 + term5 - term6 - term7 \
19 +term8 + term9 - term10 - term11 - term12
20

21 print( testQ1 ( testA12 ))
22 print( testQ2 ( testA12 ))
23 print( testQ3 ( testA12 ))
24 print( testQ4 ( testA12 ))

Output:
Done
Done
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Done
Done

Numerical analysis of terms containing A1,3, A3,1 and P1,3:
1 def testA13 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 #A_ (3 ,1) - terms
6 term1 = (t1*t2)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a2))
7 term2 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a2)*sin(a4))
8 term3 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a3))
9 term4 = 1

10 term5 = (t1*t2)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))
11 sumA31 = term1 + term2 + term3 + term4 + term5
12

13 #A_ (1 ,3) - terms
14 term6 = (t2*t4)/(( t1+t2)*(t1+t4))*1/( sin(a2)*sin(a4))
15 term7 = (t1*t2)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
16 term8 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a3)*sin(a4))
17 term9 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a3))
18 sumA13 = term6 + term7 + term8 + term9
19

20 # Converted P_ (1 ,3) -terms
21 term9 = cos(a1+a2)/( sin(a1+a2)*sin(a2))*t2/(t2+t3)
22 term10 = cos(a1+a2)/( sin(a1+a2)*sin(a1))*t1/(t1+t4)
23 term11 = -cos(a1+a2)/( sin(a1+a2)*sin(a2))*t2/(t1+t2)
24 term12 = -cos(a1+a2)/( sin(a1+a2)*sin(a3))*t3/(t2+t3)
25 term13 = -cos(a1+a2)/( sin(a1+a2)*sin(a4))*t4/(t1+t4)
26 term14 = -cos(a1+a2)/( sin(a1+a2)*sin(a1))*t1/(t1+t2)
27 sumP13 = term9 + term10 + term11 + term12 + term13 + term14
28

29 if a1+a2 < pi:
30 return sumA13 - sumA31 + sumP13
31

32 elif a1+a2 > pi:
33 return sumA31 - sumA13 - sumP13
34

35 print( testQ1 ( testA13 ))
36 print( testQ2 ( testA13 ))
37 print( testQ3 ( testA13 ))
38 print( testQ4 ( testA13 ))

Output:
Done
Done
Done
Done

Numerical analysis of terms containing A2,3, A3,2 and P2,3:
1 def testA23 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t1*t2)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a2))
6 term2 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a3))
7 term3 = (t1*t2)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))
8 term4 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a2)*sin(a3))
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9 term5 = 1
10 term6 = (t1*t2)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
11 term7 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a3))
12 term8 = cos(a2)/( sin(a2)*sin(a1))*t1/(t1+t2)
13 term9 = cos(a2)/( sin(a2)*sin(a3))*t3/(t2+t3)
14 term10 = cos(a2)/( sin(a2)*sin(a1))*t1/(t1+t4)
15 term11 = cos(a2)/( sin(a2)*sin(a2))*t2/(t1+t2)
16 term12 = cos(a2)/( sin(a2)*sin(a2))*t2/(t2+t3)
17

18 return term1 + term2 + term3 + term4 + term5 - term6 - term7 \
19 +term8 + term9 - term10 - term11 - term12
20

21 print( testQ1 ( testA23 ))
22 print( testQ2 ( testA23 ))
23 print( testQ3 ( testA23 ))
24 print( testQ4 ( testA23 ))

Output:
Done
Done
Done
Done

Numerical analysis of terms containing A2,4, A4,2 and P2,4:

1 def testA24 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 #A_ (2 ,4) -terms:
6 term1 = (t1*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))
7 term2 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a2)*sin(a4))
8 term3 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a3))
9

10 #A_ (4 ,2) -terms:
11 term4 = (t2*t4)/(( t1+t2)*(t1+t4))*1/( sin(a2)*sin(a4))
12 term5 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a3))
13 term6 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a2)*sin(a3))
14

15 # Converted P_ (2 ,4) -terms
16 term7 = -cos(a2+a3)/( sin(a2+a3)*sin(a4))*t4/(t1+t4)
17 term8 = -cos(a2+a3)/( sin(a2+a3)*sin(a3))*t3/(t2+t3)
18

19 if a2+a3 < pi:
20 return term1 + term2 + term3 - term4 - term5 - term6 + term7 +

term8
21 elif a2+a3 > pi:
22 return -(term1 + term2 + term3 - term4 - term5 - term6 + term7 +

term8)
23

24 print( testQ1 ( testA24 ))
25 print( testQ2 ( testA24 ))
26 print( testQ3 ( testA24 ))
27 print( testQ4 ( testA24 ))

Output:
Done
Done
Done
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Done

Numerical analysis of terms containing A3,4, A4,3 and P3,4:

1 def testA34 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t4)/(( t1+t4)*(t1+t2))*1/( sin(a2)*sin(a4))
6 term2 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a3)*sin(a4))
7 term3 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a2)*sin(a3))
8 term4 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a2)*sin(a4))
9 term5 = cos(a3)/( sin(a3)*sin(a4))*t4/(t1+t4)

10

11 return term1 + term2 + term3 - term4 + term5
12

13 print( testQ1 ( testA34 ))
14 print( testQ2 ( testA34 ))
15 print( testQ3 ( testA34 ))
16 print( testQ4 ( testA34 ))

Output:
Done
Done
Done
Done

Numerical analysis of terms containing A4,1, A1,4 and P1,4:

1 def testA41 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t1*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a3)*sin(a4))
7 term3 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a3))
8 term4 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a3))
9 term5 = cos(a4)/( sin(a4)*sin(a3))*t3/(t2+t3)

10 return term1 + term2 + term3 - term4 + term5
11

12 print( testQ1 ( testA41 ))
13 print( testQ2 ( testA41 ))
14 print( testQ3 ( testA41 ))
15 print( testQ4 ( testA41 ))

Output:
Done
Done
Done
Done
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Appendix B

Test results for R1,2,4, R1,3,4 and R2,3,4

In this appendix we will preform an analysis on the remaining expressions from step 1 in
section 3.2 that we will need to complete the proof of injectivity of mean value mappings
between convex quadrilaterals in the plane. We will use some notation in this appendix
that we introduced in section 3.2. This appendix is structured as follows: In section B.1
we will check if R1,2,4 > 0 for x ∈ Q, in section B.2 we will check if R1,3,4 > 0 for x ∈ Q
and in section B.3 we will check if R2,3,4 > 0 for x ∈ Q.

B.1 Analysis of R1,2,4

We will start by writing down the expression for R1,2,4(x):

R1,2,4(x) = t1t3
(t1 + t2)(t3 + t4) · 1

sin α1 sin α3

(
A3,2 + A2,4 + A1,3 + A4,1

)
+ t1t4

(t1 + t2)(t3 + t4) · 1
sin α1 sin α4

(
A4,2 + A2,1 + A1,4

)
+ t1

t1 + t2
· 1

sin α1

(
P2,4 − P1,4

)
+ t2t3

(t1 + t2)(t3 + t4) · 1
sin α2 sin α3

(
A3,4 + A2,3 + A4,2

)
+ t2t4

(t1 + t2)(t3 + t4) · 1
sin α2 sin α4

(
A4,3 + A3,1 + A2,4 + A1,2

)
+ t2

t1 + t2
· 1

sin α2

(
P3,4 − P2,4

)
+ t3

t3 + t4
· 1

sin α3

(
P2,3 − P2,4

)
+ A2,4

+ t4
t3 + t4

· 1
sin α4

(
P2,4 − P1,2

)
+ t3t4

(t1 + t4)(t3 + t4) · 1
sin α3 sin α4

(
A4,1 + A3,4 + A1,3

)
+ t1t3

(t1 + t4)(t3 + t4) · 1
sin α1 sin α3

(
A1,4 + A4,2 + A3,1 + A2,3

)
+ t3

t3 + t4
· 1

sin α3

(
P1,4 − P1,3

)
+ t1t4

(t1 + t4)(t3 + t4) · 1
sin α1 sin α4

(
A1,2 + A4,1 + A2,4

)
+ t4

t3 + t4
· 1

sin α4

(
P1,1 − P1,4

)
+ t4

t1 + t4
· 1

sin α4

(
P4,4 − P1,4

)
+ A4,1

+ t1
t1 + t4

· 1
sin α1

(
P1,4 − P2,4

)
+ t1t4

(t1 + t2)(t1 + t4) · 1
sin α1 sin α4

(
A2,4 + A1,2 + A4,1

)
+ t2t4

(t1 + t2)(t1 + t4) · 1
sin α2 sin α4

(
A2,1 + A1,3 + A4,2 + A3,4

)
+ t4

t1 + t4
· 1

sin α4

(
P1,2 − P2,4

)
+ t1t2

(t1 + t2)(t1 + t4) · 1
sin α1 sin α2

(
A1,2 + A3,1 + A2,3

)
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+ t1
t1 + t4

· 1
sin α1

(
P2,2 − P1,2

)
+ t1

t1 + t2
· 1

sin α2

(
P1,1 − P1,2

)
+ t2

t1 + t2
· 1

sin α2

(
P1,2 − P1,3

)
+ A1,2.

Since the analysis of R1,2,4(x) is so similar to the analysis we did for R1,2,3(x) in section
3.2, we will only present the results in this chapter. In the cases where we need to make
an numerical analysis we will use the same code as we presented in section A.1.2. Note
that we will use the properties we derived in section 3.2 when we preform the different
analyses here. We will now present the results from the different cases that were listed in
step 1, section 3.2.

B.1.1 Analysis for when x is the intersection between the diagonals

f−(A1,2, A2,1):

f−(A1,2, A2,1) = t2
2

(t1 + t2)2 · 1
s2 + 3t1t2

(t1 + t2)2 · 1
s2 + 1

− t1t2
(t1 + t2)2 · 1

s2 − t2
2

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

f−(A2,3, A3,2):

f−(A2,3, A3,2) = t2
1

(t1 + t2)2 · 1
s2 + 2t1t2

(t1 + t2)2 · 1
s2

− t2
1

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2

> 0.

f−(A3,4, A4,3):

f−(A3,4, A4,3) = t2
2

(t1 + t2)2 · 1
s2 + 2t1t2

(t1 + t2)2 · 1
s2

− t2
2

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2

> 0.
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f−(A4,1, A1,4):

f−(A4,1, A1,4) = t2
1

(t1 + t2)2 · 1
s2 + 3t1t2

(t1 + t2)2 · 1
s2 + 1

− t1t2
(t1 + t2)2 · 1

s2 − t2
1

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

Analysis of terms containing P1,1, P1,4 and P4,4:
We will now check if f+(P1,1, P1,4, P4,4) ≥ 0, but we will leave out two terms, namely
( t1

t1+t2
· 1

s )P1,4 and ( t1
t1+t2

· 1
s )P1,1. As we will see later, these terms will be used in other

analyses, so we will leave them out here so we do not use them twice. It is also worth
noticing that we have two terms containing P1,4 that are cancelling each other out,
namely ( t1

t1+t2
· 1

s )P1,4 and −( t1
t1+t2

· 1
s )P1,4.

f+(P1,1, P1,4, P4,4) − t1
t1 + t2

· 1
s

(
P1,1 + P1,4

)
= t2

t1 + t2
· 1

s

(
P1,1 − 2P1,4 + P4,4

)
= t2

t1 + t2
· 1

s

(
P1,1 − 2P1,4 + P4,4

)
> 0.

This follows from the definition of Pn,m, and the fact that cos(α4) ≤ 1.

Analysis of terms containing P1,1, P1,2 and P2,2:
We will now check if f+(P1,1, P1,2, P2,2) ≥ 0, but we will leave out two term, namely
( t2

t1+t2
· 1

s )P1,2 and ( t2
t1+t2

)P1,1. As we will see, we leave out ( t2
t1+t2

· 1
s )P1,2 so we can use

it in an analysis later on, while we leave out ( t2
t1+t2

)P1,1 because we have used this term
in an earlier analysis. It is also worth noticing that we have two terms containing P1,2
that are cancelling each other out, namely ( t2

t1+t2
· 1

s )P1,2 and −( t2
t1+t2

· 1
s )P1,2.

f+(P1,1, P1,2, P2,2) − t2
t1 + t2

· 1
s

(
P1,1 + P1,2

)
= t1

t1 + t2
· 1

s

(
P1,1 − 2P1,2 + P2,2

)
> 0.

This follows from the definition of Pn,m, and the fact that cos(α1) ≤ 1.

Analysis of the remaining terms containing Pn,m:
We observe that the remaining terms containing Pn,m gives us the two sums

t1
t1 + t2

· 1
s

(
P2,3 + P1,4 − P2,4 − P1,3

)
, (B.1)

and
t2

t1 + t2
· 1

s

(
P3,4 + P1,2 − P2,4 − P1,3

)
. (B.2)

First, we observe that −P1,3, −P2,4 > 0, since cos(π) = −1. Second, we observe that
(B.1) is greater than zero when α2 = α4 ≤ π

2 , while (B.2) is greater than zero when
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α1 = α3 ≤ π
2 . Let us now look at the case where α2 = α4 > π

2 . In this case, we can
not guarantee that (B.1) is greater than or equal to zero. We will therefore use Lemma
3.2.2 to convert P2,3, P1,4 into A2,3, A4,1, and then we will put these expressions into the
analyses of the terms containing A2,3 and A1,4 respectively.

f−(A2,3, A3,2) (new expression marked in blue):

f−(A2,3, A3,2) = 2t1t2
(t1 + t2)2 · 1

s2 + t1
t1 + t2

· cos(α2)
s2

>
−t2

1 + t1t2
(t1 + t2)2 · 1

s2

> 0.

Since we are looking at the case where α2 > π
2 , we know that α1 < π

2 (since α1 + α2 = π).
This means that t1 < t2, which again implies that t2

1 < t1t2, which then implies that
−t2

1+t1t2
(t1+t2)2 · 1

s2 > 0.

We will now make a similar argument for f−(A4,1, A1,4).

f−(A4,1, A1,4):

f−(A4,1, A1,4) = 2t1t2
(t1 + t2)2 · 1

s2 + 1+ t1
t1 + t2

· cos(α4)
s2

>
−t2

1 + t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

Since we are looking at the case where α2 > π
2 , we know that α1 < π

2 (since α1 + α2 = π).
This means that t1 < t2, which again implies that t2

1 < t1t2, which then implies that
−t2

1+t1t2
(t1+t2)2 · 1

s2 + 1 > 0.

Similarly, when α1 = α3 > π
2 , we get the following analysis:

f−(A1,2, A2,1):

f−(A1,2, A2,1) = 2t1t2
(t1 + t2)2 · 1

s2 + 1+ t2
t1 + t2

· cos(α1)
s2

>
−t2

2 + t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

Since we are looking at the case where α1 > π
2 , we know that α2 < π

2 (since α1 + α2 = π).
This means that t2 < t1, which again implies that t2

2 < t1t2, which then implies that
−t2

2+t1t2
(t1+t2)2 · 1

s2 + 1 > 0.
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f−(A3,4, A4,3):

f−(A3,4, A4,3) = 2t1t2
(t1 + t2)2 · 1

s2 + t2
t1 + t2

· cos(α3)
s2

>
−t2

2 + t1t2
(t1 + t2)2 · 1

s2

> 0.

We have now proven analytically that all negative terms in R1,2,4(x) are strictly dominated
by the positive terms in R1,2,4(x), when x is the intersection between the diagonals.

B.1.2 Analysis for x ∈ {d1 ∪ d3}

Analysis of terms containing A1,2, A2,1 and P1,2:
1 def testA12 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a1)*sin(a4))
6 term2 = (t1*t4)/(( t1+t4)*(t3+t4)) *1/( sin(a1)*sin(a4))
7 term3 = (t1*t4)/(( t1+t2)*(t1+t4)) *1/( sin(a1)*sin(a4))
8 term4 = (t1*t2)/(( t1+t2)*(t1+t4)) *1/( sin(a1)**2)
9 term5 = 1

10 term6 = (t1*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a1)*sin(a4))
11 term7 = (t2*t4)/(( t1+t2)*(t1+t4)) *1/( sin(a1)*sin(a4))
12

13 term8 = t4/(t1+t4)*cos(a1)/( sin(a1)*sin(a4))
14 term9 = t2/(t1+t2)*cos(a1)/( sin(a1)**2)
15 term10 = t4/(t3+t4)*cos(a1)/( sin(a1)*sin(a4))
16 term11 = t1/(t1+t4)*cos(a1)/( sin(a1)**2)
17 term12 = t1/(t1+t2)*cos(a1)/( sin(a1)**2)
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7 \
20 + term8 + term9 - term10 - term11 - term12
21

22 print( testd1d3 ( testA12 ))

Output: Done

This test indicates that the sum of all terms containing A1,2, A2,1 and P1,2 in R1,2,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A2,3, A3,2 and P2,3:
1 def testA23 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
7 term3 = (t1*t2)/(( t1+t2)*(t1+t4))*1/( sin(a1)**2)
8 term4 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
9

10 term5 = t3/(t3+t4)*cos(a1)/( sin(a1)*sin(a4))
11

12 return term1 + term2 + term3 - term4 - term5
13

14 print( testd1d3 ( testA23 ))
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Output: Done

This test indicates that the sum of all terms containing A2,3, A3,2 and P2,3 in R1,2,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A2,4, A4,2 and P2,4:

1 def testA24 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
6 term2 = 1
7 term3 = (t1*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
8 term4 = (t1*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))
9 term5 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))

10 term6 = (t1*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
11 term7 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
12 term8 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
13 term9 = (t2*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))
14

15 term10 = cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a1))*t1/(t1+t2)
16 term11 = cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a4))*t4/(t3+t4)
17 term12 = cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a1))*t2/(t1+t2)
18 term13 = cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a4))*t3/(t3+t4)
19 term14 = cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a1))*t1/(t1+t4)
20 term15 = cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a4))*t4/(t1+t4)
21

22 return term1 + term2 + term3 + term4 + term5 - term6 - term7 - term8
- term9\

23 + term10 + term11 - term12 - term13 - term14 - term15
24

25 print( testd1d3 (testA24 , True))

Output: Done

This test indicates that the sum of all terms containing A2,4, A4,2 and P2,4 in R1,2,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A3,4, A4,3 and P3,4:

1 def testA34 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
7 term3 = (t2*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))
8 term4 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
9

10 term5 = t2/(t1+t2)*cos(a4)/( sin(a4)*sin(a1))
11

12 return term1 + term2 + term3 - term4 - term5
13

14 print( testd1d3 ( testA34 ))

Output: Done
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This test indicates that the sum of all terms containing A3,4, A4,3 and P3,4 in R1,2,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A4,1, A1,4 and P1,4:

1 def testA41 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a4)**2)
7 term3 = (t1*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
8 term4 = 1
9 term5 = (t1*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))

10 term6 = (t1*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
11 term7 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
12

13 term8 = t1/(t1+t4)*cos(a4)/( sin(a4)*sin(a1))
14 term9 = t3/(t3+t4)*cos(a4)/( sin(a4)**2)
15 term10 = t1/(t1+t2)*cos(a4)/( sin(a4)*sin(a1))
16 term11 = t4/(t3+t4)*cos(a4)/( sin(a4)**2)
17 term12 = t4/(t1+t4)*cos(a4)/( sin(a4)**2)
18

19

20 return term1 + term2+ term3 + term4 + term5 - term6 - term7 \
21 + term8 + term9 - term10 - term11 - term12
22

23 print( testd1d3 ( testA41 ))

Output: Done

This test indicates that the sum of all terms containing A4,1, A1,4 and P1,4 in R1,2,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing P1,3:
We observe that we have two terms containing P1,3;

− t3
t3 + t4

· 1
sin(α3)P1,3, (B.3)

and

− t2
t1 + t2

· 1
sin(α2)P1,3. (B.4)

We know that cos(α1 + α3) = cos(π) = −1, when x ∈ {d1 ∪ d3}, which implies that
P1,3 < 0. Since both t3

t3+t4
· 1

sin(α3) and t2
t1+t2

· 1
sin(α2) are positive, this implies that both

(B.3) and (B.4) are positive.

Analysis of terms containing P1,1, P2,2 and P4,4:
We know that cos(αn,n) = cos(0) = 1, which implies that Pn,n > 0, for n = 1, 2, 4. Since
the factors in front of Pn,n, for n = 1, 2, 4, are greater than zero (this follows from the
definition of mean value coordinates for convex polygons), we know that all the terms
containing P1,1, P2,2 and P4,4 are greater than zero.

69
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We have now, with the help of some numerical analysis, proven that all the negative
terms in R1,2,4(x) are strictly dominated by their positive counterparts when x ∈ {d1∪d3}.
This means that R1,2,4(x) > 0 when x ∈ {d1 ∪ d3}.

B.1.3 Analysis for x ∈ {d2 ∪ d4}

Analysis of terms containing A1,2, A2,1 and P1,2:

1 def testA12 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a1)*sin(a2))
6 term2 = (t1*t4)/(( t1+t4)*(t3+t4)) *1/( sin(a1)**2)
7 term3 = (t1*t4)/(( t1+t2)*(t1+t4)) *1/( sin(a1)**2)
8 term4 = (t1*t2)/(( t1+t2)*(t1+t4)) *1/( sin(a1)*sin(a2))
9 term5 = 1

10 term6 = (t1*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a1)**2)
11 term7 = (t2*t4)/(( t1+t2)*(t1+t4)) *1/( sin(a1)*sin(a2))
12

13 term8 = t4/(t1+t4)*cos(a1)/( sin(a1)**2)
14 term9 = t2/(t1+t2)*cos(a1)/( sin(a1)*sin(a2))
15 term10 = t4/(t3+t4)*cos(a1)/( sin(a1)**2)
16 term11 = t1/(t1+t4)*cos(a1)/( sin(a1)**2)
17 term12 = t1/(t1+t2)*cos(a1)/( sin(a1)**2)
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7 \
20 + term8 + term9 - term10 - term11 - term12
21

22 print( testd2d4 ( testA12 ))

Output: Done

This test indicates that the sum of all terms containing A1,2, A2,1 and P1,2 in R1,2,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing A3,1, A1,3 and P1,3:

1 def testA31 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a2))
6 term2 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))
7 term3 = (t1*t2)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a2))
8 term4 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a2))
9 term5 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))

10 term6 = (t2*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a2))
11

12 term7 = t3/(t3+t4)*1/ sin(a2)*cos(a1+a2)/sin(a1+a2)
13 term8 = t2/(t1+t2)*1/ sin(a2)*cos(a1+a2)/sin(a1+a2)
14

15 return term1 + term2 + term3 - term4 - term5 - term6 \
16 + term7 + term8
17

18 print( testd1d3 (testA31 , True))

Output: Done
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B.1. Analysis of R1,2,4

This test indicates that the sum of all terms containing A3,1, A1,3 and P1,3 in R1,2,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing A4,1, A1,4 and P1,4:

1 def testA41 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a2))
6 term2 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))
7 term3 = (t1*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)**2)
8 term4 = 1
9 term5 = (t1*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)**2)

10 term6 = (t1*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)**2)
11 term7 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))
12

13 term8 = t1/(t1+t2)*cos(a1)/( sin(a1)*sin(a1))
14 term9 = t4/(t3+t4)*cos(a1)/( sin(a1)**2)
15 term10 = t4/(t1+t4)*cos(a1)/( sin(a1)**2)
16 term11 = t1/(t1+t4)*cos(a1)/( sin(a1)**2)
17 term12 = t3/(t3+t4)*cos(a1)/( sin(a1)*sin(a2))
18 return term1 + term2 + term3 + term4 + term5 - term6 - term7 \
19 + term8 + term9 + term10 - term11 - term12
20

21 print( testd2d4 ( testA41 ))

Output: Done

This test indicates that the sum of all terms containing A4,1, A1,4 and P1,4 in R1,2,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing A2,3, A3,2 and P2,3:

1 def testA23 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a2)**2)
6 term2 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))
7 term3 = (t1*t2)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a2))
8 term4 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a2))
9

10 term5 = t3/(t3+t4)*cos(a2)/( sin(a2)**2)
11

12 return term1 + term2 + term3 - term4 + term5
13

14 print( testd2d4 ( testA23 ))

Output: Done

This test indicates that the sum of all terms containing A2,3, A3,2 and P2,3 in R1,2,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.
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Appendix B. Test results for R1,2,4, R1,3,4 and R2,3,4

Analysis of terms containing A3,4, A4,3 and P3,4:

1 def testA34 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a2)**2)
6 term2 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))
7 term3 = (t2*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a2))
8 term4 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a2))
9

10 term5 = t2/(t1+t2)*cos(a2)/( sin(a2)**2)
11

12 return term1 + term2 + term3 - term4 - term5
13

14 print( testd2d4 ( testA34 ))

Output: Done

This test indicates that the sum of all terms containing A3,4, A4,3 and P3,4 in R1,2,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing P2,4:
We observe that we have six terms containing P2,4. Since P2,4 < 0 (follows from the fact
that cos(π) = −1), we need to check if the sum of the factors in front of −P2,4 are greater
than the sum of the factors in front of P2,4. We will do this analysis in the code below.

1 def testP24 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = t2/(t1+t2)*1/ sin(a2)
6 term2 = t3/(t3+t4)*1/ sin(a2)
7 term3 = t1/(t1+t4)*1/ sin(a1)
8 term4 = t4/(t1+t4)*1/ sin(a1)
9

10 term5 = t1/(t1+t2)*1/ sin(a1)
11 term6 = t4/(t3+t4)*1/ sin(a1)
12

13 return term1 + term2 + term3 + term4 - term5 - term6
14

15 print( testd2d4 ( testP24 ))

Output: Done

This test indicates that the sum of all terms containing P2,4 in R1,2,4(x) is strictly
greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing P1,1, P2,2 and P4,4:
We know that cos(αn,n) = cos(0) = 1, which implies that Pn,n > 0, for n = 1, 2, 4. Since
the factors in front of Pn,n, for n = 1, 2, 4, are greater than zero (this follows from the
definition of mean value coordinates for convex polygons), we know that all the terms
containing P1,1, P2,2 and P4,4 are greater than zero.
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B.1. Analysis of R1,2,4

We have now, with the help of some numerical analysis, proven that all the negative
terms in R1,2,4(x) are strictly dominated by their positive counterparts when x ∈ {d2∪d4}.
This means that R1,2,4(x) > 0 when x ∈ {d2 ∪ d4}.

B.1.4 Analysis for x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}

Analysis of terms containing A1,2, A2,1 and P1,2:

1 def testA12 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a2)*sin(a4))
6 term2 = (t1*t4)/(( t1+t4)*(t3+t4)) *1/( sin(a1)*sin(a4))
7 term3 = (t1*t4)/(( t1+t2)*(t1+t4)) *1/( sin(a1)*sin(a4))
8 term4 = (t1*t2)/(( t1+t2)*(t1+t4)) *1/( sin(a1)*sin(a2))
9 term5 = 1

10 term6 = (t1*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a1)*sin(a4))
11 term7 = (t2*t4)/(( t1+t2)*(t1+t4)) *1/( sin(a2)*sin(a4))
12

13 term8 = t4/(t1+t4)*cos(a1)/( sin(a1)*sin(a4))
14 term9 = t2/(t1+t2)*cos(a1)/( sin(a1)*sin(a2))
15 term10 = t4/(t3+t4)*cos(a1)/( sin(a1)*sin(a4))
16 term11 = t1/(t1+t4)*cos(a1)/( sin(a1)**2)
17 term12 = t1/(t1+t2)*cos(a1)/( sin(a1)**2)
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7 \
20 + term8 + term9 - term10 - term11 - term12
21

22 print( testQ1 ( testA12 ))
23 print( testQ2 ( testA12 ))
24 print( testQ3 ( testA12 ))
25 print( testQ4 ( testA12 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A1,2, A2,1 and P1,2 in R1,2,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A1,3, A3,1 and P1,3:

1 def testA13 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 #A_ (1 ,3) - terms
6 term1 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a3))
7 term2 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
8 term3 = (t2*t4)/(( t1+t2)*(t1+t4))*1/( sin(a2)*sin(a4))
9 sumA13 = term1 + term2 + term3

10

11 #A_ (3 ,1) - terms
12 term4 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a4))
13 term5 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a3))
14 term6 = (t1*t2)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a2))
15 sumA31 = term4 + term5 + term6
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Appendix B. Test results for R1,2,4, R1,3,4 and R2,3,4

16

17 # Converted P_ (1 ,3) -terms
18 term7 = -t3/(t3+t4)*1/ sin(a3)*cos(a1+a2)/sin(a1+a2)
19 term8 = -t2/(t1+t2)*1/ sin(a2)*cos(a1+a2)/sin(a1+a2)
20 sumP13 = term7 + term8
21

22 if a1+a2 < pi:
23 return sumA13 - sumA31 + sumP13
24

25 elif a1+a2 > pi:
26 return sumA31 - sumA13 - sumP13
27

28 print( testQ1 ( testA13 ))
29 print( testQ2 ( testA13 ))
30 print( testQ3 ( testA13 ))
31 print( testQ4 ( testA13 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A1,3, A3,1 and P1,3 in R1,2,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A2,3, A3,2 and P2,3:

1 def testA23 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a3))
6 term2 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a3))
7 term3 = (t1*t2)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a2))
8 term4 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a3))
9

10 term5 = t3/(t3+t4)*cos(a2)/( sin(a2)*sin(a3))
11

12 return term1 + term2 + term3 - term4 + term5
13

14 print( testQ1 ( testA23 ))
15 print( testQ2 ( testA23 ))
16 print( testQ3 ( testA23 ))
17 print( testQ4 ( testA23 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A2,3, A3,2 and P2,3 in R1,2,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A2,4, A4,2 and P2,4:

1 def testA24 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
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B.1. Analysis of R1,2,4

4

5 #A_ (2 ,4) -terms:
6 term1 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a3))
7 term2 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a4))
8 term3 = 1
9 term4 = (t1*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))

10 term5 = (t1*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))
11 sumA24 = term1 + term2 + term3 + term4 + term5
12

13 #A_ (4 ,2) -terms:
14 term6 = (t1*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
15 term7 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a3))
16 term8 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a3))
17 term9 = (t2*t4)/(( t1+t2)*(t1+t4))*1/( sin(a2)*sin(a4))
18 sumA42 = term6 + term7 + term8 + term9
19

20 # Converted P_ (2 ,4) -terms
21 term10 = t1/(t1+t2)*cos(a2+a3)/( sin(a2+a3)*sin(a1))
22 term11 = t4/(t3+t4)*cos(a2+a3)/( sin(a2+a3)*sin(a4))
23 term12 = t2/(t1+t2)*cos(a2+a3)/( sin(a2+a3)*sin(a2))
24 term13 = t3/(t3+t4)*cos(a2+a3)/( sin(a2+a3)*sin(a3))
25 term14 = t1/(t1+t4)*cos(a2+a3)/( sin(a2+a3)*sin(a1))
26 term15 = t4/(t1+t4)*cos(a2+a3)/( sin(a2+a3)*sin(a4))
27 sumP24 = term10 + term11 - term12 - term13 - term14 - term15
28

29 if a2+a3 < pi:
30 return sumA24 - sumA42 + sumP24
31 elif a2+a3 > pi:
32 return sumA42 - sumA24 -sumP24
33

34 print( testQ1 ( testA24 ))
35 print( testQ2 ( testA24 ))
36 print( testQ3 ( testA24 ))
37 print( testQ4 ( testA24 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A2,4, A4,2 and P2,4 in R1,2,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A3,4, A4,3 and P3,4:
1 def testA34 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a3))
6 term2 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a3)*sin(a4))
7 term3 = (t2*t4)/(( t1+t2)*(t1+t4))*1/( sin(a2)*sin(a4))
8 term4 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a4))
9

10 term5 = t2/(t1+t2)*cos(a3)/( sin(a3)*sin(a2))
11

12 return term1 + term2 + term3 - term4 + term5
13

14 print( testQ1 ( testA34 ))
15 print( testQ2 ( testA34 ))
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16 print( testQ3 ( testA34 ))
17 print( testQ4 ( testA34 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A3,4, A4,3 and P3,4 in R1,2,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A4,1, A1,4 and P1,4:

1 def testA41 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a3))
6 term2 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a3)*sin(a4))
7 term3 = (t1*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
8 term4 = 1
9 term5 = (t1*t4)/(( t1+t2)*(t1+t4))*1/( sin(a1)*sin(a4))

10 term6 = (t1*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
11 term7 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a3))
12

13 term8 = t3/(t3+t4)*cos(a4)/( sin(a4)*sin(a3))
14 term9 = t1/(t1+t4)*cos(a4)/( sin(a4)*sin(a1))
15 term10 = t1/(t1+t2)*cos(a4)/( sin(a4)*sin(a1))
16 term11 = t4/(t3+t4)*cos(a4)/( sin(a4)**2)
17 term12 = t4/(t1+t4)*cos(a4)/( sin(a4)**2)
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7 \
20 + term8 + term9 - term10 - term11 - term12
21

22 print( testQ1 ( testA41 ))
23 print( testQ2 ( testA41 ))
24 print( testQ3 ( testA41 ))
25 print( testQ4 ( testA41 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A4,1, A1,4 and P1,4 in R1,2,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing P1,1, P2,2 and P4,4:
We know that cos(αn,n) = cos(0) = 1, which implies that Pn,n > 0, for n = 1, 2, 4. Since
the factors in front of Pn,n, for n = 1, 2, 4, are greater than zero (this follows from the
definition of mean value coordinates for convex polygons), we know that all the terms
containing P1,1, P2,2 and P4,4 are greater than zero.
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B.2. Analysis of R1,3,4

We have now, with the help of some numerical analysis, proven that all the
negative terms in R1,2,4(x) are strictly dominated by their positive counterparts when
x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}. This means that R1,2,4(x) > 0 when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

B.1.5 Conclusion

We have now showed that for every x ∈ Q,

R1,2,4(x) > 0.

Since w1, w2, w4 > 0 for all x ∈ Q, this implies that

D(w1, w2, w4)(x) > 0,

for all x ∈ Q.

B.2 Analysis of R1,3,4

We will start by writing down the expression for R1,3,4(x):

R1,3,4(x) = t2t3
(t2 + t3)(t3 + t4) · 1

sin α2 sin α3

(
A3,4 + A2,3 + A4,2

)
+ t2t4

(t2 + t3)(t3 + t4) · 1
sin α2 sin α4

(
A4,3 + A3,1 + A2,4 + A1,2

)
+ t2

t2 + t3
· 1

sin α2

(
P3,4 − P2,4

)
+ t3t4

(t2 + t3)(t3 + t4) · 1
sin α3 sin α4

(
A4,1 + A3,4 + A1,3

)
+ t3

t2 + t3
· 1

sin α3

(
P4,4 − P3,4

)
+ t3

t3 + t4
· 1

sin α3

(
P3,3 − P3,4

)
+ A3,4

+ t4
t3 + t4

· 1
sin α4

(
P3,4 − P1,3

)
+ t3t4

(t1 + t4)(t3 + t4) · 1
sin α3 sin α4

(
A4,1 + A3,4 + A1,3

)
+ t1t3

(t1 + t4)(t3 + t4) · 1
sin α1 sin α3

(
A1,4 + A4,2 + A3,1 + A2,3

)
+ t3

t3 + t4
· 1

sin α3

(
P1,4 − P1,3

)
+ t1t4

(t1 + t4)(t3 + t4) · 1
sin α1 sin α4

(
A1,2 + A4,1 + A2,4

)
+ t4

t3 + t4
· 1

sin α4

(
P1,1 − P1,4

)
+ t4

t1 + t4
· 1

sin α4

(
P4,4 − P1,4

)
+ A4,1

+ t2t4
(t2 + t3)(t1 + t4) · 1

sin α2 sin α4

(
A3,4 + A1,3 + A4,2 + A2,1

)
+ t1t2

(t2 + t3)(t1 + t4) · 1
sin α1 sin α2

(
A3,1 + A2,3 + A1,2

)
+ t2

t2 + t3
· 1

sin α2

(
P1,2 − P1,3

)
+ t3t4

(t2 + t3)(t1 + t4) · 1
sin α3 sin α4

(
A1,4 + A4,3 + A3,1

)
+ t1

t1 + t4
· 1

sin α1

(
P1,4 − P2,4

)
+ t1t3

(t2 + t3)(t1 + t4) · 1
sin α1 sin α3

(
A4,1 + A2,4 + A1,3 + A3,2

)
+ A1,3

+ t3
t2 + t3

· 1
sin α3

(
P1,3 − P1,4

)
+ t4

t1 + t4
· 1

sin α4

(
P1,3 − P3,4

)
+ t1

t1 + t4
· 1

sin α1

(
P2,3 − P1,3

)
.

Since the analysis of R1,3,4(x) is so similar to the analysis we did for R1,2,3(x) in section
3.2, we will only present the results in this section. When we are preforming a numerical
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analysis we will use the code we presented in section A.1.2. Note that we will use the
properties we derived in section 3.2 when we preform the different analyses here.

B.2.1 Analysis for when x is the intersection between the diagonals

f−(A1,2, A2,1):

f−(A1,2, A2,1) = t2
2

(t1 + t2)2 · 1
s2 + 2t1t2

(t1 + t2)2 · 1
s2

− t2
2

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2

> 0.

f−(A2,3, A3,2):

f−(A2,3, A3,2) = t2
1

(t1 + t2)2 · 1
s2 + 2t1t2

(t1 + t2)2 · 1
s2

− t2
1

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2

> 0.

f−(A3,4, A4,3):

f−(A3,4, A4,3) = t2
2

(t1 + t2)2 · 1
s2 + 3t1t2

(t1 + t2)2 · 1
s2 + 1

− t2
2

(t1 + t2)2 · 1
s2 − t1t2

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

f−(A4,1, A1,4):

f−(A4,1, A1,4) = t2
1

(t1 + t2)2 · 1
s2 + 3t1t2

(t1 + t2)2 · 1
s2 + 1

− t1t2
(t1 + t2)2 · 1

s2 − t2
1

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.
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Analysis of terms containing P3,3, P3,4 and P4,4:
We will now check if f+(P3,3, P3,4, P4,4) ≥ 0, but we will leave out two terms, namely
( t2

t1+t2
· 1

s )P3,4 and ( t2
t1+t2

· 1
s )P4,4. As we will see later, these terms will be used in other

analyses, so we will leave them out here so we do not use them twice. It is also worth
noticing that we have two terms containing P3,4 that are cancelling each other out,
namely ( t2

t1+t2
· 1

s )P3,4 and −( t2
t1+t2

· 1
s )P3,4.

f+(P3,3, P3,4, P4,4) − t2
t1 + t2

· 1
s

(
P3,4 + P4,4

)
= t1

t1 + t2
· 1

s

(
P3,3 − 2P3,4 + P4,4

)
> 0.

This follows from the definition of Pn,m, and the fact that cos(α3) ≤ 1.

Analysis of terms containing P1,1, P1,4 and P4,4:
We will now check if f+(P1,1, P1,4, P4,4) ≥ 0, but we will leave out two terms, namely
( t1

t1+t2
· 1

s )P1,4 and ( t1
t1+t2

· 1
s )P4,4. As we will see, we leave out ( t1

t1+t2
· 1

s )P1,4 so we can use
it in another analysis later on, while we leave out ( t1

t1+t2
· 1

s )P4,4 because we have used this
term in an earlier analysis. It is also worth noticing that we have two terms containing
P1,4 that are cancelling each other out, namely ( t1

t1+t2
· 1

s )P1,4 and −( t1
t1+t2

· 1
s )P1,4.

f+(P1,1, P1,4, P4,4) − t1
t1 + t2

· 1
s

P1,4 = t2
t1 + t2

· 1
s

(
P1,1 − 2P1,4 + P4,4

)
> 0.

This follows from the definition of Pn,m, and the fact that cos(α4) ≤ 1.

Analysis of the remaining terms containing Pn,m:
We observe that the remaining terms containing Pn,m gives us the two sums

t1
t1 + t2

· 1
s

(
P2,3 + P1,4 − P2,4 − P1,3

)
, (B.5)

and
t2

t1 + t2
· 1

s

(
P1,2 + P3,4 − P2,4 − P1,3

)
. (B.6)

First, we observe that −P1,3, −P2,4 > 0, since cos(π) = −1. Second, we observe that
(B.5) is greater than zero when α2 = α4 ≤ π

2 , while (B.6) is greater than zero when
α1 = α3 ≤ π

2 . Let us now look at the case where α2 = α4 > π
2 . In this case, we can

not guarantee that (B.5) is greater than or equal to zero. We will therefore use Lemma
3.2.2 to convert P2,3, P1,4 into A2,3, A4,1, and then we will put these expressions into the
analyses of the terms containing A2,3 and A4,1 respectively.

f−(A2,3, A3,2) (new expression marked in blue):

f−(A2,3, A3,2) = 2t1t2
(t1 + t2)2 · 1

s2 + t1
t1 + t2

· cos α2
s2

>
−t2

1 + t1t2
(t1 + t2)2 · 1

s2

> 0.
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Since we are looking at the case where α2 > π
2 , we know that α1 < π

2 (since α1 + α2 = π).
This means that t1 < t2, which again implies that t2

1 < t1t2, which then implies that
−t2

1+t1t2
(t1+t2)2 · 1

s2 > 0.

We will now make a similar argument for f−(A4,1, A1,4).

f−(A4,1, A1,4):

f−(A4,1, A1,4) = 2t1t2
(t1 + t2)2 · 1

s2 + 1+ t1
t1 + t2

· cos α4
s2

>
−t2

1 + t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

Since we are looking at the case where α2 > π
2 , we know that α1 < π

2 (since α1 + α2 = π).
This means that t1 < t2, which again implies that t2

1 < t1t2, which then implies that
−t2

1+t1t2
(t1+t2)2 · 1

s2 + 1 > 0.

Similarly, when α1 = α3 > π
2 , we get the following analysis:

f−(A1,2, A2,1):

f−(A1,2, A2,1) = 2t1t2
(t1 + t2)2 · 1

s2 + t2
t1 + t2

· cos α1
s2

>
−t2

2 + t1t2
(t1 + t2)2 · 1

s2

> 0.

Since we are looking at the case where α1 > π
2 , we know that α2 < π

2 (since α1 + α2 = π).
This means that t2 < t1, which again implies that t2

2 < t1t2, which then implies that
−t2

2+t1t2
(t1+t2)2 · 1

s2 > 0.

f−(A3,4, A4,3):

f−(A3,4, A4,3) = 2t1t2
(t1 + t2)2 · 1

s2 + 1+ t2
t1 + t2

· cos α3
s2

>
−t2

2 + t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

We have now proven analytically that R1,3,4(x) > 0, when x is the intersection between
the diagonals in Q.
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B.2.2 Analysis for x ∈ {d1 ∪ d3}

Analysis of terms containing A1,2, A2,1 and P1,2:

1 def testA12 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t4)/(( t2+t3)*(t3+t4)) *1/( sin(a1)*sin(a4))
6 term2 = (t1*t4)/(( t1+t4)*(t3+t4)) *1/( sin(a1)*sin(a4))
7 term3 = (t1*t2)/(( t2+t3)*(t1+t4)) *1/( sin(a1)**2)
8 term4 = (t2*t4)/(( t2+t3)*(t1+t4)) *1/( sin(a1)*sin(a4))
9

10 term5 = t2/(t2+t3)*cos(a1)/( sin(a1)**2)
11

12 return term1 + term2 + term3 - term4 + term5
13

14 print( testd1d3 ( testA12 ))

Output: Done

This test indicates that the sum of all terms containing A1,2, A2,1 and P1,2 in R1,3,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A2,3, A3,2 and P2,3:

1 def testA23 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
7 term3 = (t1*t2)/(( t2+t3)*(t1+t4))*1/( sin(a1)**2)
8 term4 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a4))
9

10 term5 = t1/(t1+t4)*cos(a1)/( sin(a1)**2)
11

12 return term1 + term2 + term3 - term4 - term5
13

14 print( testd1d3 ( testA23 ))

Output: Done

This test indicates that the sum of all terms containing A2,3, A3,2 and P2,3 in R1,3,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A2,4, A4,2 and P2,4:

1 def testA24 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t1*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
7 term3 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a4))
8 term4 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a4))
9 term5 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))

10 term6 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a4))
11

12 term7 = cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a1))*t2/(t2+t3)
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13 term8 = cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a1))*t1/(t1+t4)
14

15 return term1 + term2 + term3 - term4 - term5 - term6 \
16 - term7 - term8
17

18 print( testd1d3 (testA24 , True))

Output: Done

This test indicates that the sum of all terms containing A2,4, A4,2 and P2,4 in R1,3,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A3,4, A4,3 and P3,4:
1 def testA34 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a4)**2)
7 term3 = 1
8 term4 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a4)**2)
9 term5 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a4))

10 term6 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a4))
11 term7 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a4)**2)
12

13 term8 = t3/(t2+t3)*cos(a4)/( sin(a4)**2)
14 term9 = t3/(t3+t4)*cos(a4)/( sin(a4)**2)
15 term10 = t4/(t1+t4)*cos(a4)/( sin(a4)**2)
16 term11 = t2/(t2+t3)*cos(a4)/( sin(a4)*sin(a1))
17 term12 = t4/(t3+t4)*cos(a4)/( sin(a4)**2)
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7\
20 + term8 + term9 + term10 - term11 - term12
21

22 print( testd1d3 ( testA34 ))

Output: Done

This test indicates that the sum of all terms containing A3,4, A4,3 and P3,4 in R1,3,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A4,1, A1,4 and P1,4:
1 def testA41 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a4)**2)
6 term2 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a4)**2)
7 term3 = (t1*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
8 term4 = 1
9 term5 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a4))

10 term6 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
11 term7 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a4)**2)
12

13 term8 = t3/(t3+t4)*cos(a4)/( sin(a4)**2)
14 term9 = t1/(t1+t4)*cos(a4)/( sin(a4)*sin(a1))
15 term10 = t4/(t3+t4)*cos(a4)/( sin(a4)**2)
16 term11 = t4/(t1+t4)*cos(a4)/( sin(a4)**2)
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17 term12 = t3/(t2+t3)*cos(a4)/( sin(a4)**2)
18

19

20 return term1 + term2+ term3 + term4 + term5 - term6 - term7 \
21 + term8 + term9 - term10 - term11 - term12
22

23 print( testd1d3 ( testA41 ))

Output: Done

This test indicates that the sum of all terms containing A4,1, A1,4 and P1,4 in R1,3,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing P1,3:
We observe that we have six terms containing P1,3. Since P1,3 < 0 (follows from the fact
that cos(π) = −1), we need to check if the sum of the factors in front of −P1,3 are greater
than the sum of the factors in front of P1,3. We will do this analysis in the code below.

1 def testP13 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = t4/(t3+t4)*1/ sin(a4)
6 term2 = t3/(t3+t4)*1/ sin(a4)
7 term3 = t2/(t2+t3)*1/ sin(a1)
8 term4 = t1/(t1+t4)*1/ sin(a1)
9

10 term5 = t3/(t2+t3)*1/ sin(a4)
11 term6 = t4/(t1+t4)*1/ sin(a4)
12

13 return term1 + term2 + term3 + term4 - term5 - term6
14

15 print( testd1d3 ( testP13 ))

Output: Done

This test indicates that the sum of all terms containing P1,3 in R1,3,4(x) is strictly
greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing P1,1, P3,3 and P4,4:
We know that cos(αn,n) = cos(0) = 1, which implies that Pn,n > 0, for n = 1, 3, 4. Since
the factors in front of Pn,n, for n = 1, 3, 4, are greater than zero (this follows from the
definition of mean value coordinates for convex polygons), we know that all the terms
containing P1,1, P3,3 and P4,4 are greater than zero.

We have now numerically proven that all the negative terms in R1,3,4(x) are strictly
dominated by their positive counterparts when x ∈ {d1 ∪ d3}. This means that
R1,3,4(x) > 0 when x ∈ {d1 ∪ d3}.
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B.2.3 Analysis for x ∈ {d2 ∪ d4}

Analysis of terms containing A1,2, A2,1 and P1,2:

1 def testA12 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t4)/(( t2+t3)*(t3+t4)) *1/( sin(a1)*sin(a2))
6 term2 = (t1*t4)/(( t1+t4)*(t3+t4)) *1/( sin(a1)**2)
7 term3 = (t1*t2)/(( t2+t3)*(t1+t4)) *1/( sin(a1)*sin(a2))
8 term4 = (t2*t4)/(( t2+t3)*(t1+t4)) *1/( sin(a1)*sin(a2))
9

10 term5 = t2/(t2+t3)*cos(a1)/( sin(a1)*sin(a2))
11

12 return term1 + term2 + term3 - term4 + term5
13

14 print( testd2d4 ( testA12 ))

Output: Done

This test indicates that the sum of all terms containing A1,2, A2,1 and P1,2 in R1,3,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing A3,1, A1,3 and P1,3:

1 def testA31 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a2))
6 term2 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))
7 term3 = (t1*t2)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
8 term4 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
9 term5 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a2))

10 term6 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))
11 term7 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
12 term8 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
13 term9 = 1
14

15 term10 = t4/(t3+t4)*1/ sin(a1)*cos(a1+a2)/sin(a1+a2)
16 term11 = t3/(t3+t4)*1/ sin(a2)*cos(a1+a2)/sin(a1+a2)
17 term12 = t2/(t2+t3)*1/ sin(a2)*cos(a1+a2)/sin(a1+a2)
18 term13 = t1/(t1+t4)*1/ sin(a1)*cos(a1+a2)/sin(a1+a2)
19 term14 = t3/(t2+t3)*1/ sin(a2)*cos(a1+a2)/sin(a1+a2)
20 term15 = t4/(t1+t4)*1/ sin(a1)*cos(a1+a2)/sin(a1+a2)
21

22 return term1 + term2 + term3 + term4 - term5 - term6 \
23 - term7 - term8 - term9 + term10 + term11 + term12 \
24 + term13 - term14 - term15
25

26

27 print( testd2d4 (testA12 , True))

Output: Done

This test indicates that the sum of all terms containing A3,1, A1,3 and P1,3 in R1,3,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing A4,1, A1,4 and P1,4:
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1 def testA41 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a2))
6 term2 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))
7 term3 = (t1*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)**2)
8 term4 = 1
9 term5 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))

10 term6 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))
11 term7 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
12

13 term8 = t4/(t3+t4)*cos(a1)/( sin(a1)**2)
14 term9 = t4/(t1+t4)*cos(a1)/( sin(a1)**2)
15 term10 = t3/(t2+t3)*cos(a1)/( sin(a1)*sin(a2))
16 term11 = t3/(t3+t4)*cos(a1)/( sin(a1)*sin(a2))
17 term12 = t1/(t1+t4)*cos(a1)/( sin(a1)**2)
18

19 return term1 + term2+ term3 + term4 + term5 - term6 - term7 \
20 + term8 + term9 + term10 - term11 - term12
21

22 print( testd2d4 ( testA41 ))

Output: Done

This test indicates that the sum of all terms containing A4,1, A1,4 and P1,4 in R1,3,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing A2,3, A3,2 and P2,3:
1 def testA23 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a2)**2)
6 term2 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))
7 term3 = (t1*t2)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
8 term4 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
9

10 term5 = t1/(t1+t4)*cos(a2)/( sin(a1)*sin(a2))
11

12 return term1 + term2 + term3 - term4 + term5
13

14 print( testd2d4 ( testA23 ))

Output: Done

This test indicates that the sum of all terms containing A2,3, A3,2 and P2,3 in R1,3,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing A3,4, A4,3 and P3,4:
1 def testA34 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a2)**2)
6 term2 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a2))
7 term3 = 1
8 term4 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a2))
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9 term5 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
10 term6 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a2))
11 term7 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
12

13 term8 = t3/(t2+t3)*cos(a2)/( sin(a2)**2)
14 term9 = t3/(t3+t4)*cos(a2)/( sin(a2)**2)
15 term10 = t4/(t1+t4)*cos(a2)/( sin(a2)*sin(a1))
16 term11 = t2/(t2+t3)*cos(a2)/( sin(a2)**2)
17 term12 = t4/(t3+t4)*cos(a2)/( sin(a2)*sin(a1))
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7\
20 + term8 + term9 + term10 - term11 - term12
21

22 print( testd2d4 ( testA34 ))

Output: Done

This test indicates that the sum of all terms containing A3,4, A4,3 and P3,4 in R1,3,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing P2,4:
We observe that we have two terms containing P2,4;

− t2
t2 + t3

· 1
sin(α2)P2,4, (B.7)

and

− t1
t1 + t4

· 1
sin(α1)P2,4. (B.8)

We know that cos(α2 + α3) = cos(π) = −1, when x ∈ {d2 ∪ d4}, which implies that
P2,4 < 0. Since both t2

t2+t3
· 1

sin(α2) and t1
t1+t4

· 1
sin(α1) are positive, this implies that both

(B.7) and (B.8) are positive.

Analysis of terms containing P1,1, P3,3 and P4,4:
We know that cos(αn,n) = cos(0) = 1, which implies that Pn,n > 0, for n = 1, 3, 4. Since
the factors in front of Pn,n, for n = 1, 3, 4, are greater than zero (this follows from the
definition of mean value coordinates for convex polygons), we know that all the terms
containing P1,1, P3,3 and P4,4 are greater than zero.

We have now, with the help of some numerical analysis, proven that all the negative
terms in R1,3,4(x) are strictly dominated by their positive counterparts when x ∈ {d2∪d4}.
This means that R1,3,4(x) > 0 when x ∈ {d2 ∪ d4}.

B.2.4 Analysis for x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}

Analysis of terms containing A1,2, A2,1 and P1,2:

1 def testA12 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t4)/(( t2+t3)*(t3+t4)) *1/( sin(a2)*sin(a4))
6 term2 = (t1*t4)/(( t1+t4)*(t3+t4)) *1/( sin(a1)*sin(a4))
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7 term3 = (t1*t2)/(( t2+t3)*(t1+t4)) *1/( sin(a1)*sin(a2))
8 term4 = (t2*t4)/(( t2+t3)*(t1+t4)) *1/( sin(a2)*sin(a4))
9

10 term5 = t2/(t2+t3)*cos(a1)/( sin(a1)*sin(a2))
11

12 return term1 + term2 + term3 - term4 + term5
13

14 print( testQ1 ( testA12 ))
15 print( testQ2 ( testA12 ))
16 print( testQ3 ( testA12 ))
17 print( testQ4 ( testA12 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A1,2, A2,1 and P1,2 in R1,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A1,3, A3,1 and P1,3:
1 def testA13 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 #A_ (3 ,1) - terms
6 term1 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a4))
7 term2 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a3))
8 term3 = (t1*t2)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
9 term4 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a3)*sin(a4))

10 sumA31 = term1 + term2 + term3 + term4
11

12 #A_ (1 ,3) - terms
13 term5 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a3)*sin(a4))
14 term6 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a3)*sin(a4))
15 term7 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a2)*sin(a4))
16 term8 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a3))
17 term9 = 1
18 sumA13 = term5 + term6 + term7 + term8 + term9
19

20 # Converted P_ (1 ,3) -terms
21 term10 = t3/(t2+t3)*1/ sin(a3)*cos(a1+a2)/sin(a1+a2)
22 term11 = t4/(t1+t4)*1/ sin(a4)*cos(a1+a2)/sin(a1+a2)
23 term12 = -t4/(t3+t4)*1/ sin(a4)*cos(a1+a2)/sin(a1+a2)
24 term13 = -t3/(t3+t4)*1/ sin(a3)*cos(a1+a2)/sin(a1+a2)
25 term14 = -t2/(t2+t3)*1/ sin(a2)*cos(a1+a2)/sin(a1+a2)
26 term15 = -t1/(t1+t4)*1/ sin(a1)*cos(a1+a2)/sin(a1+a2)
27 sumP13 = term10 + term11 + term12 + term13 + term14 + term15
28

29 if a1+a2 < pi:
30 return sumA13 - sumA31 + sumP13
31

32 elif a1+a2 > pi:
33 return sumA31 - sumA13 - sumP13
34

35 print( testQ1 ( testA13 ))
36 print( testQ2 ( testA13 ))
37 print( testQ3 ( testA13 ))
38 print( testQ4 ( testA13 ))
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Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A1,3, A3,1 and P1,3 in R1,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A2,3, A3,2 and P2,3:

1 def testA23 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a3))
6 term2 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a3))
7 term3 = (t1*t2)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a2))
8 term4 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a3))
9

10 term5 = t1/(t1+t4)*cos(a2)/( sin(a2)*sin(a1))
11

12 return term1 + term2 + term3 - term4 - term5
13

14 print( testQ1 ( testA23 ))
15 print( testQ2 ( testA23 ))
16 print( testQ3 ( testA23 ))
17 print( testQ4 ( testA23 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A2,3, A3,2 and P2,3 in R1,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A2,4, A4,2 and P2,4:

1 def testA24 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 #A_ (2 ,4) -terms:
6 term1 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a4))
7 term2 = (t1*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
8 term3 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a3))
9 sumA24 = term1 + term2 + term3

10

11 #A_ (4 ,2) -terms:
12 term4 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a3))
13 term5 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a3))
14 term6 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a2)*sin(a4))
15 sumA42 = term4 + term5 + term6
16

17 # Converted P_ (2 ,4) -terms
18 term7 = -t2/(t2+t3)*cos(a2+a3)/( sin(a2+a3)*sin(a2))
19 term8 = -t1/(t1+t4)*cos(a2+a3)/( sin(a2+a3)*sin(a1))
20 sumP24 = term7 + term8
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21

22 if a2+a3 < pi:
23 return sumA24 - sumA42 + sumP24
24

25 elif a2+a3 > pi:
26 return sumA42 - sumA24 - sumP24
27

28 print( testQ1 ( testA24 ))
29 print( testQ2 ( testA24 ))
30 print( testQ3 ( testA24 ))
31 print( testQ4 ( testA24 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A2,4, A4,2 and P2,4 in R1,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A3,4, A4,3 and P3,4:

1 def testA34 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a3))
6 term2 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a3)*sin(a4))
7 term3 = 1
8 term4 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a3)*sin(a4))
9 term5 = (t2*t4)/(( t2+t3)*(t1+t4))*1/( sin(a2)*sin(a4))

10 term6 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a4))
11 term7 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a3)*sin(a4))
12

13 term8 = t2/(t2+t3)*cos(a3)/( sin(a3)*sin(a2))
14 term9 = t4/(t3+t4)*cos(a3)/( sin(a3)*sin(a4))
15 term10 = t3/(t2+t3)*cos(a3)/( sin(a3)**2)
16 term11 = t3/(t3+t4)*cos(a3)/( sin(a3)**2)
17 term12 = t4/(t1+t4)*cos(a3)/( sin(a3)*sin(a4))
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7\
20 + term8 + term9 - term10 - term11 - term12
21

22 print( testQ1 ( testA34 ))
23 print( testQ2 ( testA34 ))
24 print( testQ3 ( testA34 ))
25 print( testQ4 ( testA34 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A3,4, A4,3 and P3,4 in R1,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.
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Analysis of terms containing A4,1, A1,4 and P1,4:

1 def testA41 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a3)*sin(a4))
6 term2 = (t3*t4)/(( t1+t4)*(t3+t4))*1/( sin(a3)*sin(a4))
7 term3 = (t1*t4)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a4))
8 term4 = 1
9 term5 = (t1*t3)/(( t2+t3)*(t1+t4))*1/( sin(a1)*sin(a3))

10 term6 = (t1*t3)/(( t1+t4)*(t3+t4))*1/( sin(a1)*sin(a3))
11 term7 = (t3*t4)/(( t2+t3)*(t1+t4))*1/( sin(a3)*sin(a4))
12

13 term8 = t3/(t3+t4)*cos(a4)/( sin(a4)*sin(a3))
14 term9 = t1/(t1+t4)*cos(a4)/( sin(a4)*sin(a1))
15 term10 = t4/(t3+t4)*cos(a4)/( sin(a4)**2)
16 term11 = t4/(t1+t4)*cos(a4)/( sin(a4)**2)
17 term12 = t3/(t2+t3)*cos(a4)/( sin(a4)*sin(a3))
18

19

20 return term1 + term2+ term3 + term4 + term5 - term6 - term7 \
21 + term8 + term9 - term10 - term11 - term12
22

23 print( testQ1 ( testA41 ))
24 print( testQ2 ( testA41 ))
25 print( testQ3 ( testA41 ))
26 print( testQ4 ( testA41 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A4,1, A1,4 and P1,4 in R1,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing P1,1, P3,3 and P4,4:
We know that cos(αn,n) = cos(0) = 1, which implies that Pn,n > 0, for n = 1, 3, 4. Since
the factors in front of Pn,n, for n = 1, 3, 4, are greater than zero (this follows from the
definition of mean value coordinates for convex polygons), we know that all the terms
containing P1,1, P3,3 and P4,4 are greater than zero.

We have now, with the help of some numerical analysis, proven that all the
negative terms in R1,3,4(x) are strictly dominated by their positive counterparts when
x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}. This means that R1,3,4(x) > 0 when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.
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B.2.5 Conclusion

We have now showed that for every x ∈ Q,

R1,3,4(x) > 0.

Since w1, w3, w4 > 0 for all x ∈ Q, this implies that

D(w1, w3, w4)(x) > 0,

for all x ∈ Q.

B.3 Analysis of R2,3,4

We will start by writing down the expression for R2,3,4(x):

R2,3,4(x) = t2t3
(t2 + t3)(t3 + t4) · 1

sin α2 sin α3

(
A3,4 + A2,3 + A4,2

)
+ t2t4

(t2 + t3)(t3 + t4) · 1
sin α2 sin α4

(
A4,3 + A3,1 + A2,4 + A1,2

)
+ t2

t2 + t3
· 1

sin α2

(
P3,4 − P2,4

)
+ t3t4

(t2 + t3)(t3 + t4) · 1
sin α3 sin α4

(
A4,1 + A3,4 + A1,3

)
+ t3

t2 + t3
· 1

sin α3

(
P4,4 − P3,4

)
+ t3

t3 + t4
· 1

sin α3

(
P3,3 − P3,4

)
+ A3,4 + t1t3

(t1 + t2)(t3 + t4) · 1
sin α1 sin α3

(
A2,3 + A4,2 + A3,1 + A1,4

)
+ t1t4

(t1 + t2)(t3 + t4) · 1
sin α1 sin α4

(
A2,4 + A1,2 + A4,1

)
+ t1

t1 + t2
· 1

sin α1

(
P1,4 − P2,4

)
+ t2t3

(t1 + t2)(t3 + t4) · 1
sin α2 sin α3

(
A4,3 + A3,2 + A2,4

)
+ t4

t3 + t4
· 1

sin α4

(
P3,4 − P1,3

)
+ t2t4

(t1 + t2)(t3 + t4) · 1
sin α2 sin α4

(
A3,4 + A1,3 + A4,2 + A2,1

)
+ t2

t1 + t2
· 1

sin α2

(
P2,4 − P3,4

)
+ t3

t3 + t4
· 1

sin α3

(
P2,4 − P2,3

)
+ A4,2

+ t1t2
(t1 + t2)(t2 + t3) · 1

sin α1 sin α2

(
A2,3 + A1,2 + A3,1

)
+ t4

t3 + t4
· 1

sin α4

(
P1,2 − P2,4

)
+ t1t3

(t1 + t2)(t2 + t3) · 1
sin α1 sin α3

(
A3,2 + A2,4 + A1,3 + A4,1

)
+ t1

t1 + t2
· 1

sin α1

(
P2,3 − P1,3

)
+ t2t3

(t1 + t2)(t2 + t3) · 1
sin α2 sin α3

(
A3,4 + A2,3 + A4,2

)
+ t2

t1 + t2
· 1

sin α2

(
P3,3 − P2,3

)
+ t2

t2 + t3
· 1

sin α2

(
P2,2 − P2,3

)
+ t3

t2 + t3
· 1

sin α3

(
P2,3 − P2,4

)
+ A2,3.

Since the analysis of R2,3,4(x) is so similar to the analysis we did for R1,2,3(x) in section
3.2, we will only present the results in this section. When we are preforming a numerical
analysis we will use the code we presented in section A.1.2. Note that we will use the
properties we derived in section 3.2 when we preform the different analyses here.
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B.3.1 Analysis for when x is the intersection between the diagonals

f−(A1,2, A2,1):

f−(A1,2, A2,1) = t2
2

(t1 + t2)2 · 1
s2 + 2t1t2

(t1 + t2)2 · 1
s2

− t2
2

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2

> 0.

f−(A2,3, A3,2):

f−(A2,3, A3,2) = t2
1

(t1 + t2)2 · 1
s2 + 3t1t2

(t1 + t2)2 · 1
s2 + 1

− t2
1

(t1 + t2)2 · 1
s2 − t1t2

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

f−(A3,4, A4,3):

f−(A3,4, A4,3) = t2
2

(t1 + t2)2 · 1
s2 + 3t1t2

(t1 + t2)2 · 1
s2 + 1

− t2
2

(t1 + t2)2 · 1
s2 − t1t2

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

f−(A4,1, A1,4):

f−(A4,1, A1,4) = t2
1

(t1 + t2)2 · 1
s2 + 2t1t2

(t1 + t2)2 · 1
s2

− t2
1

(t1 + t2)2 · 1
s2

= 2t1t2
(t1 + t2)2 · 1

s2

> 0.

Analysis of terms containing P3,3, P3,4 and P4,4:
We will now check if f+(P3,3, P3,4, P4,4) ≥ 0, but we will leave out two terms, namely
( t2

t1+t2
· 1

s )P3,3 and ( t2
t1+t2

· 1
s )P3,4. As we will see later, these terms will be used in other

analyses, so we will leave them out here so we do not use them twice. It is also worth
noticing that we have two terms containing P3,4 that are cancelling each other out,
namely ( t2

t1+t2
· 1

s )P3,4 and −( t2
t1+t2

· 1
s )P3,4.
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f+(P3,3, P3,4, P4,4) − t2
t1 + t2

· 1
s

(
P3,3 + P3,4

)
= t1

t1 + t2
· 1

s

(
P3,3 − 2P3,4 + P4,4

)
> 0.

This follows from the definition of Pn,m, and the fact that cos(α3) ≤ 1.

Analysis of terms containing P2,2, P2,3 and P3,3:
We will now check if f+(P2,2, P2,3, P3,3) ≥ 0, but we will leave out two terms, namely
( t1

t1+t2
· 1

s )P2,3 and ( t1
t1+t2

· 1
s )P3,3. As we will see, we leave out ( t1

t1+t2
· 1

s )P2,3 so we can use
it in another analysis later on, while we leave out ( t1

t1+t2
· 1

s )P3,3 because we have used this
term in an earlier analysis. It is also worth noticing that we have two terms containing
P2,3 that are cancelling each other out, namely ( t1

t1+t2
· 1

s )P2,3 and −( t1
t1+t2

· 1
s )P3,4.

f+(P2,2, P2,3, P3,3) − t1
t1 + t2

· 1
s

(
P2,3 + P3,3

)
= t2

t1 + t2
· 1

s

(
P2,2 − 2P2,3 + P3,3

)
> 0.

This follows from the definition of Pn,m, and the fact that cos(α2) ≤ 1.

Analysis of the remaining terms containing Pn,m:
We observe that the remaining terms containing Pn,m gives us the two sums

t1
t1 + t2

· 1
s

(
P2,3 + P1,4 − P2,4 − P1,3

)
, (B.9)

and

t2
t1 + t2

· 1
s

(
P1,2 + P3,4 − P2,4 − P1,3

)
. (B.10)

First, we observe that −P1,3, −P2,4 < 0, since cos(π) = −1. Second, we observe that
(B.9) is greater than zero when α2 = α4 ≤ π

2 , while (B.10) is greater than zero when
α1 = α3 ≤ π

2 . Let us now look at the case where α2 = α4 > π
2 . In this case, we can

not guarantee that (B.9) is greater than or equal to zero. We will therefore use Lemma
3.2.2 to convert P2,3, P1,4 into A2,3, A4,1, and then we will put these expressions into the
analyses of the terms containing A2,3 and A4,1 respectively.

f−(A2,3, A3,2) (new expression marked in blue):

f−(A2,3, A3,2) = 2t1t2
(t1 + t2)2 · 1

s2 + 1+ t1
t1 + t2

· cos α2
s2

>
−t2

1 + t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

Since we are looking at the case where α2 > π
2 , we know that α1 < π

2 (since α1 + α2 = π).
This means that t1 < t2, which again implies that t2

1 < t1t2, which then implies that
−t2

1+t1t2
(t1+t2)2 · 1

s2 + 1 > 0.
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We will now make a similar argument for f−(A4,1, A1,4).

f−(A4,1, A1,4):

f−(A4,1, A1,4) = 2t1t2
(t1 + t2)2 · 1

s2 + t1
t1 + t2

· cos α4
s2

>
−t2

1 + t1t2
(t1 + t2)2 · 1

s2

> 0.

Since we are looking at the case where α2 > π
2 , we know that α1 < π

2 (since α1 + α2 = π).
This means that t1 < t2, which again implies that t2

1 < t1t2, which then implies that
−t2

1+t1t2
(t1+t2)2 · 1

s2 > 0.

Similarly, when α1 = α3 > π
2 , we get the following analysis:

f−(A1,2, A2,1) :

f−(A1,2, A2,1) = 2t1t2
(t1 + t2)2 · 1

s2 + t2
t1 + t2

· cos α1
s2

>
−t2

2 + t1t2
(t1 + t2)2 · 1

s2

> 0.

Since we are looking at the case where α1 > π
2 , we know that α2 < π

2 (since α1 + α2 = π).
This means that t2 < t1, which again implies that t2

2 < t1t2, which then implies that
−t2

2+t1t2
(t1+t2)2 · 1

s2 > 0.

f−(A3,4, A4,3):

f−(A3,4, A4,3) = 2t1t2
(t1 + t2)2 · 1

s2 + 1+ t2
t1 + t2

· cos α3
s2

>
−t2

2 + t1t2
(t1 + t2)2 · 1

s2 + 1

> 0.

We have now proven analytically that that R2,3,4(x) > 0, when x is the intersection
between the diagonals.

B.3.2 Analysis for x ∈ {d1 ∪ d3}

Analysis of terms containing A1,2, A2,1 and P1,2:

1 def testA12 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t4)/(( t2+t3)*(t3+t4)) *1/( sin(a1)*sin(a4))
6 term2 = (t1*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a1)*sin(a4))
7 term3 = (t1*t2)/(( t1+t2)*(t2+t3)) *1/( sin(a1)**2)
8 term4 = (t2*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a1)*sin(a4))
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9

10 term5 = t4/(t3+t4)*cos(a1)/( sin(a1)*sin(a4))
11

12 return term1 + term2 + term3 - term4 + term5
13

14 print( testd1d3 ( testA12 ))

Output: Done

This test indicates that the sum of all terms containing A1,2, A2,1 and P1,2 in R2,3,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A2,3, A3,2 and P2,3:
1 def testA23 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
7 term3 = (t1*t2)/(( t1+t2)*(t2+t3))*1/( sin(a1)**2)
8 term4 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))
9 term5 = 1

10 term6 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
11 term7 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))
12

13 term8 = t2/(t1+t2)*cos(a1)/( sin(a1)**2)
14 term9 = t2/(t2+t3)*cos(a1)/( sin(a1)**2)
15 term10 = t3/(t3+t4)*cos(a1)/( sin(a1)*sin(a4))
16 term11 = t1/(t1+t2)*cos(a1)/( sin(a1)**2)
17 term12 = t3/(t2+t3)*cos(a1)/( sin(a1)*sin(a4))
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7\
20 +term8 + term9 + term10 - term11 - term12
21

22 print( testd1d3 ( testA23 ))

Output: Done

This test indicates that the sum of all terms containing A2,3, A3,2 and P2,3 in R2,3,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A2,4, A4,2 and P2,4:
1 def testA24 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t1*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
7 term3 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
8 term4 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))
9 term5 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a4))

10 term6 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
11 term7 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
12 term8 = 1
13 term9 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))
14

15 term10 = t2/(t1+t2)*cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a1))
16 term11 = t3/(t3+t4)*cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a4))
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17 term12 = t2/(t2+t3)*cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a1))
18 term13 = t1/(t1+t2)*cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a1))
19 term14 = t4/(t3+t4)*cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a4))
20 term15 = t3/(t2+t3)*cos (2*pi -a1 -a4)/( sin (2*pi -a1 -a4)*sin(a4))
21

22 return term1 + term2 + term3 + term4 - term5 - term6 \
23 - term7 - term8 - term9 + term10 + term11 - term12 \
24 - term13 - term14 - term15
25

26 print( testd1d3 (testA24 , True))

Output: Done

This test indicates that the sum of all terms containing A2,4, A4,2 and P2,4 in R2,3,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A3,4, A4,3 and P3,4:
1 def testA34 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a4))
6 term2 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a4)**2)
7 term3 = 1
8 term4 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
9 term5 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))

10 term6 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a4))
11 term7 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
12

13 term8 = t3/(t2+t3)*cos(a4)/( sin(a4)**2)
14 term9 = t3/(t3+t4)*cos(a4)/( sin(a4)**2)
15 term10 = t2/(t1+t2)*cos(a4)/( sin(a4)*sin(a1))
16 term11 = t2/(t2+t3)*cos(a4)/( sin(a4)*sin(a1))
17 term12 = t4/(t3+t4)*cos(a4)/( sin(a4)**2)
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7\
20 + term8 + term9 + term10 - term11 - term12
21

22 print( testd1d3 ( testA34 ))

Output: Done

This test indicates that the sum of all terms containing A3,4, A4,3 and P3,4 in R2,3,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing A4,1, A1,4 and P1,4:
1 def testA41 (a1 , a4):
2 t1 = tan(a1 /2); t2 = tan(pi/2-a1 /2)
3 t3 = tan(pi/2-a4 /2); t4 = tan(a4 /2)
4

5 term1 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a4)**2)
6 term2 = (t1*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
7 term3 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a4))
8 term4 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
9

10 term5 = t1/(t1+t2)*cos(a4)/( sin(a4)*sin(a1))
11

12 return term1 + term2+ term3 - term4 + term5
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13

14 print( testd1d3 ( testA41 ))

Output: Done

This test indicates that the sum of all terms containing A4,1, A1,4 and P1,4 in R2,3,4(x)
is strictly greater than zero when x ∈ {d1 ∪ d3}.

Analysis of terms containing P1,3:
We observe that we have two terms containing P1,3;

− t4
t3 + t4

· 1
sin(α4)P1,3, (B.11)

and

− t1
t1 + t2

· 1
sin(α1)P1,3. (B.12)

We know that cos(α1 + cos(α3)) = cos(π) = −1, when x ∈ {d1 ∪ d3}, which implies that
P1,3 < 0. Since both t4

t3+t4
· 1

sin(α4) and t1
t1+t2

· 1
sin(α1) are positive, this implies that both

(B.11) and (B.12) are positive.

Analysis of terms containing P2,2, P3,3 and P4,4:
We know that cos(αn,n) = cos(0) = 1, which implies that Pn,n > 0, for n = 2, 3, 4. Since
the factors in front of Pn,n, for n = 2, 3, 4, are greater than zero (this follows from the
definition of mean value coordinates for convex polygons), we know that all the terms
containing P1,1, P3,3 and P4,4 are greater than zero.

We have now, with the help of some numerical analysis, proven that all the negative
terms in R2,3,4(x) are strictly dominated by their positive counterparts when x ∈ {d1∪d3}.
This means that R2,3,4(x) > 0 when x ∈ {d1 ∪ d3}.

B.3.3 Analysis for x ∈ {d2 ∪ d4}

Analysis of terms containing A1,2, A2,1 and P1,2:

1 def testA12 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t4)/(( t2+t3)*(t3+t4)) *1/( sin(a1)*sin(a2))
6 term2 = (t1*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a1)**2)
7 term3 = (t1*t2)/(( t1+t2)*(t2+t3)) *1/( sin(a1)*sin(a2))
8 term4 = (t2*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a1)*sin(a2))
9

10 term5 = t4/(t3+t4)*cos(a1)/( sin(a1)**2)
11

12 return term1 + term2 + term3 - term4 + term5
13

14 print( testd2d4 ( testA12 ))

Output: Done

This test indicates that the sum of all terms containing A1,2, A2,1 and P1,2 in R2,3,4(x)
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is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing A3,1, A1,3 and P1,3:

1 def testA31 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a2))
6 term2 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a2))
7 term3 = (t1*t2)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))
8 term4 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a2))
9 term5 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a2))

10 term6 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))
11

12 term7 = t4/(t3+t4)*cos(a1+a2)/( sin(a1+a2)*sin(a1))
13 term8 = t1/(t1+t2)*cos(a1+a2)/( sin(a1+a2)*sin(a1))
14

15 return term1 + term2 + term3 - term4 - term5 - term6 \
16 + term7 + term8
17

18 print( testd2d4 ( testA13 ), True)

Output: Done

This test indicates that the sum of all terms containing A3,1, A1,3 and P1,3 in R2,3,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing A2,3, A3,2 and P2,3:

1 def testA23 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a2)**2)
6 term2 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a2))
7 term3 = (t1*t2)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))
8 term4 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a2)**2)
9 term5 = 1

10 term6 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a2)**2)
11 term7 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))
12

13 term8 = t1/(t1+t2)*cos(a2)/( sin(a2)*sin(a1))
14 term9 = t3/(t2+t3)*cos(a2)/( sin(a2)**2)
15 term10 = t3/(t3+t4)*cos(a2)/( sin(a2)**2)
16 term11 = t2/(t1+t2)*cos(a2)/( sin(a2)**2)
17 term12 = t2/(t2+t3)*cos(a2)/( sin(a2)**2)
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7\
20 +term8 + term9 - term10 - term11 - term12
21

22 print( testd2d4 ( testA23 ))

Output: Done

This test indicates that the sum of all terms containing A2,3, A3,2 and P2,3 in R2,3,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.
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Analysis of terms containing A3,4, A4,3 and P3,4:

1 def testA34 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a2)**2)
6 term2 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a2))
7 term3 = 1
8 term4 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a2))
9 term5 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a2)**2)

10 term6 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a2))
11 term7 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a2)**2)
12

13 term8 = t3/(t2+t3)*cos(a2)/( sin(a2)**2)
14 term9 = t3/(t3+t4)*cos(a2)/( sin(a2)**2)
15 term10 = t2/(t1+t2)*cos(a2)/( sin(a2)**2)
16 term11 = t2/(t2+t3)*cos(a2)/( sin(a2)**2)
17 term12 = t4/(t3+t4)*cos(a2)/( sin(a2)*sin(a1))
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7\
20 + term8 + term9 + term10 - term11 - term12
21

22 print( testd2d4 ( testA34 ))

Output: Done

This test indicates that the sum of all terms containing A3,4, A4,3 and P3,4 in R2,3,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing A4,1, A1,4 and P1,4:

1 def testA41 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a1)*sin(a2))
6 term2 = (t1*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)**2)
7 term3 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))
8 term4 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a2))
9

10 term5 = t1/(t1+t2)*cos(a1)/( sin(a1)**2)
11

12 return term1 + term2+ term3 - term4 - term5
13

14 print( testd2d4 ( testA41 ))

Output: Done

This test indicates that the sum of all terms containing A4,1, A1,4 and P1,4 in R2,3,4(x)
is strictly greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing P2,4:
We observe that we have six terms containing P2,4. Since P2,4 < 0 (follows from the fact
that cos(π) = −1), we need to check if the sum of the factors in front of −P2,4 are greater
than the sum of the factors in front of P2,4. We will do this analysis in the code below.
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1 def testP24 (a1 , a2):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(pi/2-a2 /2); t4 = tan(pi/2-a1 /2)
4

5 term1 = t2/(t2+t3)*1/ sin(a2)
6 term2 = t1/(t1+t2)*1/ sin(a1)
7 term3 = t4/(t3+t4)*1/ sin(a1)
8 term4 = t3/(t2+t3)*1/ sin(a2)
9

10 term5 = t2/(t1+t2)*1/ sin(a2)
11 term6 = t3/(t3+t4)*1/ sin(a2)
12

13 return term1 + term2 + term3 + term4 - term5 - term6
14

15 print( testd2d4 ( testP24 ))

Output: Done

This test indicates that the sum of all terms containing P2,4 in R2,3,4(x) is strictly
greater than zero when x ∈ {d2 ∪ d4}.

Analysis of terms containing P2,2, P3,3 and P4,4:
We know that cos(αn,n) = cos(0) = 1, which implies that Pn,n > 0, for n = 2, 3, 4. Since
the factors in front of Pn,n, for n = 2, 3, 4, are greater than zero (this follows from the
definition of mean value coordinates for convex polygons), we know that all the terms
containing P2,2, P3,3 and P4,4 are greater than zero.

We have now, with the help of some numerical analysis proven that all the negative
terms in R2,3,4(x) are strictly dominated by their positive counterparts when x ∈ {d2∪d4}.
This means that R2,3,4(x) > 0 when x ∈ {d2 ∪ d4}.

B.3.4 Analysis for x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}

Analysis of terms containing A1,2, A2,1 and P1,2:

1 def testA12 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t4)/(( t2+t3)*(t3+t4)) *1/( sin(a2)*sin(a4))
6 term2 = (t1*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a1)*sin(a4))
7 term3 = (t1*t2)/(( t1+t2)*(t2+t3)) *1/( sin(a1)*sin(a2))
8 term4 = (t2*t4)/(( t1+t2)*(t3+t4)) *1/( sin(a2)*sin(a4))
9

10 term5 = t4/(t3+t4)*cos(a1)/( sin(a1)*sin(a4))
11

12 return term1 + term2 + term3 - term4 + term5
13

14 print( testQ1 ( testA12 ))
15 print( testQ2 ( testA12 ))
16 print( testQ3 ( testA12 ))
17 print( testQ4 ( testA12 ))
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Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A1,2, A2,1 and P1,2 in R2,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A1,3, A3,1 and P1,3:

1 def testA13 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 #A_ (3 ,1) - terms
6 term1 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a4))
7 term2 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a3))
8 term3 = (t1*t2)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))
9 sumA31 = term1 + term2 + term3

10

11 #A_ (1 ,3) - terms
12 term4 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a3)*sin(a4))
13 term5 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a4))
14 term6 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a3))
15 sumA13 = term4 + term5 + term6
16

17 # Converted P_ (1 ,3) -terms
18 term7 = -t4/(t3+t4)*cos(a1+a2)/( sin(a1+a2)*sin(a4))
19 term8 = -t1/(t1+t2)*cos(a1+a2)/( sin(a1+a2)*sin(a1))
20 sumP13 = term7 + term8
21

22 if a1+a2 < pi:
23 return sumA13 - sumA31 + sumP13
24

25 elif a1+a2 > pi:
26 return sumA31 - sumA13 - sumP13
27

28 print( testQ1 ( testA13 ))
29 print( testQ2 ( testA13 ))
30 print( testQ3 ( testA13 ))
31 print( testQ4 ( testA13 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A1,3, A3,1 and P1,3 in R2,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.
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Analysis of terms containing A2,3, A3,2 and P2,3:

1 def testA23 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a3))
6 term2 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a3))
7 term3 = (t1*t2)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a2))
8 term4 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a2)*sin(a3))
9 term5 = 1

10 term6 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a3))
11 term7 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a3))
12

13 term8 = t1/(t1+t2)*cos(a2)/( sin(a2)*sin(a1))
14 term9 = t3/(t2+t3)*cos(a2)/( sin(a2)*sin(a3))
15 term10 = t3/(t3+t4)*cos(a2)/( sin(a2)*sin(a3))
16 term11 = t2/(t1+t2)*cos(a2)/( sin(a2)**2)
17 term12 = t2/(t2+t3)*cos(a2)/( sin(a2)**2)
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7\
20 +term8 + term9 - term10 - term11 - term12
21

22 print( testQ1 ( testA23 ))
23 print( testQ2 ( testA23 ))
24 print( testQ3 ( testA23 ))
25 print( testQ4 ( testA23 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A2,3, A3,2 and P2,3 in R2,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A2,4, A4,2 and P2,4:

1 def testA24 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 #A_ (2 ,4) -terms:
6 term1 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a4))
7 term2 = (t1*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
8 term3 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a3))
9 term4 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a3))

10 sumA24 = term1 + term2 + term3 + term4
11

12 #A_ (4 ,2) -terms:
13 term5 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a3))
14 term6 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a3))
15 term7 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a4))
16 term8 = 1
17 term9 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a2)*sin(a3))
18 sumA42 = term5 + term6 + term7 + term8 + term9
19

20 # Converted P_ (2 ,4) -terms
21 term10 = t2/(t1+t2)*cos(a2+a3)/( sin(a2+a3)*sin(a2))
22 term11 = t3/(t3+t4)*cos(a2+a3)/( sin(a2+a3)*sin(a3))
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23 term12 = -t2/(t2+t3)*cos(a2+a3)/( sin(a2+a3)*sin(a2))
24 term13 = -t1/(t1+t2)*cos(a2+a3)/( sin(a2+a3)*sin(a1))
25 term14 = -t4/(t3+t4)*cos(a2+a3)/( sin(a2+a3)*sin(a4))
26 term15 = -t3/(t2+t3)*cos(a2+a3)/( sin(a2+a3)*sin(a3))
27 sumP24 = term10 + term11 + term12 + term13 + term14 + term15
28

29 if a2+a3 < pi:
30 return sumA24 - sumA42 + sumP24
31 elif a2+a3 > pi:
32 return sumA42 - sumA24 - sumP24
33

34 print( testQ1 ( testA24 ))
35 print( testQ2 ( testA24 ))
36 print( testQ3 ( testA24 ))
37 print( testQ4 ( testA24 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A2,4, A4,2 and P2,4 in R2,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing A3,4, A4,3 and P3,4:
1 def testA34 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t2*t3)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a3))
6 term2 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a3)*sin(a4))
7 term3 = 1
8 term4 = (t2*t4)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a4))
9 term5 = (t2*t3)/(( t1+t2)*(t2+t3))*1/( sin(a2)*sin(a3))

10 term6 = (t2*t4)/(( t2+t3)*(t3+t4))*1/( sin(a2)*sin(a4))
11 term7 = (t2*t3)/(( t1+t2)*(t3+t4))*1/( sin(a2)*sin(a3))
12

13 term8 = t2/(t2+t3)*cos(a3)/( sin(a3)*sin(a2))
14 term9 = t4/(t3+t4)*cos(a3)/( sin(a3)*sin(a4))
15 term10 = t3/(t2+t3)*cos(a3)/( sin(a3)**2)
16 term11 = t3/(t3+t4)*cos(a3)/( sin(a3)**2)
17 term12 = t2/(t1+t2)*cos(a3)/( sin(a3)*sin(a2))
18

19 return term1 + term2 + term3 + term4 + term5 - term6 - term7\
20 + term8 + term9 - term10 - term11 - term12
21

22 print( testQ1 ( testA34 ))
23 print( testQ2 ( testA34 ))
24 print( testQ3 ( testA34 ))
25 print( testQ4 ( testA34 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A3,4, A4,3 and P3,4 in R2,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.
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Analysis of terms containing A4,1, A1,4 and P1,4:

1 def testA41 (a1 , a2 , a3 , a4):
2 t1 = tan(a1 /2); t2 = tan(a2 /2)
3 t3 = tan(a3 /2); t4 = tan(a4 /2)
4

5 term1 = (t3*t4)/(( t2+t3)*(t3+t4))*1/( sin(a3)*sin(a4))
6 term2 = (t1*t4)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a4))
7 term3 = (t1*t3)/(( t1+t2)*(t2+t3))*1/( sin(a1)*sin(a3))
8 term4 = (t1*t3)/(( t1+t2)*(t3+t4))*1/( sin(a1)*sin(a3))
9

10 term5 = t1/(t1+t2)*cos(a4)/( sin(a4)*sin(a1))
11

12 return term1 + term2 + term3 - term4 + term5
13

14 print( testQ1 ( testA41 ))
15 print( testQ2 ( testA41 ))
16 print( testQ3 ( testA41 ))
17 print( testQ4 ( testA41 ))

Output: Done
Done
Done
Done

This test indicates that the sum of all terms containing A4,1, A1,4 and P1,4 in R2,3,4(x)
is strictly greater than zero when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

Analysis of terms containing P2,2, P3,3 and P4,4:
We know that cos(αn,n) = cos(0) = 1, which implies that Pn,n > 0, for n = 2, 3, 4. Since
the factors in front of Pn,n, for n = 2, 3, 4, are greater than zero (this follows from the
definition of mean value coordinates for convex polygons), we know that all the terms
containing P2,2, P3,3 and P4,4 are greater than zero.

We have now, with the help of some numerical analysis, proven that all the
negative terms in R2,3,4(x) are strictly dominated by their positive counterparts when
x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}. This means that R2,3,4(x) > 0 when x ∈ {Q1 ∪ Q2 ∪ Q3 ∪ Q4}.

B.3.5 Conclusion

We have now showed that for every x ∈ Q,

R2,3,4(x) > 0.

Since w2, w3, w4 > 0 for all x ∈ Q, this implies that

D(w2, w3, w4)(x) > 0,

for all x ∈ Q.
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