
Master’s thesis

Snippet Generation with
Reasoning and
Embedding Techniques

Alva Marie Hørlyk

Data Science: Database Integration and Semantic Web
60 ECTS study points

Department of Informatics
Faculty of Mathematics and Natural Sciences

Autumn 2023

Alva Marie Hørlyk

Snippet Generation with
Reasoning and Embedding

Techniques

Supervisor:
Jieying Chen

Abstract

An increasing amount of Linked Open Data is now available on the Web,
resulting in the expansion of knowledge graphs as more triples are added to
them. To prevent information overload and improve task efficiency, multiple
methods exist to summarize a knowledge graph. Entity summarization is one
of these methods and involves producing a small subset, a snippet, of the
entity description(s), for a given entity or group of entities. The snippet can
then be used in tasks, instead of a lengthy entity description. However, entity
summarization is limited to instance level entities and cannot produce snippets
for properties or classes. These are other components of a knowledge graph
that could be of interest, particularly in combination with instance level entities.
Therefore, in this thesis, we propose approaches for generating snippets for not
only instance level entities, but also properties and classes. We present two
approaches: one based on reasoning with RDFS entailment rules and another
based on knowledge graph embedding using RDF2Vec. Additionally, we created
a benchmark to evaluate the performance of these two approaches. The results,
especially for the reasoning-based approach, were promising.

i

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor
Jieying Chen for her great guidance and support throughout this thesis. She
has taught me a lot about academic writing, and difficult problems were always
more understandable after discussing them with her. Thank you for always
being patient with me, and always ready to provide ideas and insight.

I would also like to thank my family and friends for all their support during
the writing of this thesis. You were always there to listen, and help me get
my thoughts in order when things felt overwhelming. Thank you for always
believing in me.

Alva Marie Hørlyk

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures iv

List of Tables iv

1 Introduction 1

2 Preliminaries 5
2.1 Data Model . 5
2.2 Knowledge Graph . 6
2.3 Knowledge Graph Summarization 6

3 Related Work 8
3.1 Snippet Generation . 8
3.2 Entity Summarization . 9
3.3 Knowledge Graph Embedding 10

4 Approaches 11
4.1 Problem Definition . 11
4.2 Reasoning Based Snippet Generation (RBSG) 12

4.2.1 RDFS Entailment Rules 12
4.2.2 Materialization with RDFS Rules 12
4.2.3 RBSG Score . 13
4.2.4 Knowledge Graph Size Reduction 15

4.3 Embedding Based Snippet Generation (EBSG) 17
4.3.1 The RDF2Vec Tool . 17
4.3.2 Snippet Generation with RDF2Vec 17
4.3.3 EBSG Score . 18

5 Benchmark 23
5.1 ESBM . 23
5.2 ESBM∗, An Extension of ESBM 24

iii

5.2.1 Extended Signature . 24
5.2.2 Triple Selection . 25

5.3 ESBM∗ Statistics . 27
5.4 Discussion . 30

6 Evaluation 31
6.1 Evaluation of Graph Size and Running Time 31

6.1.1 Size of Materialized Graph 32
6.1.2 Running Time of Algorithms 33

6.2 Evaluation with ESBM∗ . 35

7 Conclusions and Future Work 38

Appendices 40

A RDFS Entailment Rules 41

B Properties with Similarity Score 0 42

C Evaluation of an Earlier Version of RBSG 43

Bibliography 46

List of Figures

1.1 A graph representation of the triples in Example 1.0.1. Blue
represents an entity, red represents a class, and an arrow represents
a property. 2

4.1 Diagram showing the EBSG approach 18

5.1 Number of different properties used in the benchmark snippets, for
signatures extended with an entity, property, and class, and for all
signatures. 27

iv

List of Tables

List of Tables

5.1 The most popular properties in the snippets created with different
signature extensions. Number of snippets with the property in it is
given in the parenthesis. 28

5.2 m≥1/n and m≥2/n for the three different sets of snippets, and for
the set of all benchmark snippets. 29

5.3 Average CT (S, e) and CT (S, r) for different sets of snippets, and
for the set of all benchmark snippets. 29

6.1 Number of new triples generated by materializing G with different
signature types and different sizes of Σ. 32

6.2 Running time (s) for different parts of the RBSG approach for
different signature types and sizes of Σ. 33

6.3 Running time (s) for different parts of the EBSG approach for
different sizes of Σ. 33

6.4 Mean F 1 score for snippets generated with RBSG (top) and EBSG
(bottom), for different signature extension types. 36

6.5 Mean F1 score for snippets generated with EBSG using a
materialized graph, for different signature extension types. 36

A.1 The RDFS Entailment rules. Grey color indicates that the rule is
used in the materialization algorithm. 41

C.1 Running time (s) for the materialization algorithm and the shrinking
algorithm for random signature (top) and seed signature (bottom). 44

C.2 Size increase (+) and size reduction (-) between the input and the
output graph for the materialization algorithm and the shrinking
algorithm, for random signature (top) and seed signature (bottom). 44

v

CHAPTER 1

Introduction

The open data movement has caused an immense amount of data to be available
on the Web. Some of this data are linked, and referred to as Linked Open Data
(LOD). LOD is based on the RDF standards of the semantic web, 1 and to
publish data in this format has become increasingly popular. Many companies
like Google and Microsoft have their own knowledge graphs, and the DBpedia
knowledge graph contains information from Wikipedia, but presented in the
RDF format. As new data is published on the Web, these and other knowledge
graphs and RDF datasets, both of which can be seen as a set of RDF triples,
grow in size, causing increasingly large descriptions for the entities present. A
human user interested in the entity will then be overloaded with information,
and spend an unnecessary amount of time processing it. In certain tasks like
linking an entity mentioned in a document to an entity in a knowledge base,
or use the entity description to gain some simple background knowledge about
an entity, a user could benefit from receiving a short summary of the entity
description instead. Such a summary, known as an entity summary, would help
the user feel less overwhelmed and quicker be able to solve tasks.

Many approaches already exist to produce entity summaries. RE-
LIN [CTQ11], one of the first entity summarizers, is based on a random
surfer model, and produces a general summary for one entity. Another entity
summarizer for one entity is FACES [GTS15], which groups triples in the entity
description together, and then triples are selected from each group to form
a summary. C3D+P [CXQ15a] creates summaries for two entities by solving
a combinatorial optimization problem, with the focus on relatedness and dif-
ferences between the two entities. REMES [Gun+17] and COMB [CXQ15b]
produces summaries for a collection of entities, also by solving a combinatorial
optimization problem.

In addition to entities, a triple can also contain properties, classes and strings.
All the entity summarizers mentioned above take an entity or a collection of
entities as input, but a user might need information about a class or a property
as well. We want to create a summarizer that not only can take entities,
but also properties and classes as input. Different from the aforementioned
entity summarizers, this summarizer would have to choose triples from the full
knowledge graph, not only the entity descriptions.

Another line of work related to summarizing data on the web is snippet
generation. In [Che+17] they present an approach for generating a small subset,

1For more information see https://www.w3.org/egov/wiki/Linked_Open_Data

1

https://www.w3.org/egov/wiki/Linked_Open_Data

a snippet, of an RDF dataset to illustrate its content. In [WCK19] they also
presents an approach for generating a snippet for an RDF dataset, but in
addition to illustrate the content, the snippet should also cover some keywords
given by a user, to better accommodate user needs.

Example 1.0.1 (A knowledeg graph with four triples.).

t1: ⟨person1, type, Student⟩

t2: ⟨person1, university, UiO⟩

t3: ⟨person2, type, Student⟩

t4: ⟨person2, knows, person3⟩

t5: ⟨Student, subClassOf, Person⟩

Namespaces are omitted for better readability.

Figure 1.1: A graph representation of the triples in Example 1.0.1. Blue
represents an entity, red represents a class, and an arrow represents a property.

We want to combine the idea behind entity summarizers and snippet
generators, and create a snippet for a knowledge graph based on a set of
keywords, where the keywords can be entities, properties and classes. The
snippet should include the triples most related to the keywords. For example,
given a knowledge graph with the triples in Example 1.0.1, and the keywords
person1 and Student, t1 is the most related triple to the keywords, since it
shows the relationship between the two keywords, and should therefore be
included in the snippet.

We propose two approaches to snippet generation with given keywords.
Both approaches produce a score for each triple in the knowledge graph, and
the triples are ranked accordingly, and then the top ranked triples make up the
snippet.

Approach 1 is a reasoning based snippet generator, named RBSG, where
the score of a triple depends on materialization of the knowledge graph. We
materialize the knowledge graph with the RDFS entailement rules, and score
the original triples based on how many new relevant triples they can help entail.
A new triple needs to contain a keyword for it to be considered relevant, and
therefore the snippet will be dependent on the keywords. For example can

2

t1 and t5 in Example 1.0.1 entail ⟨person1, type, Person⟩, and if person1 or
Person were a keyword, that should positively affect t1´s and t5´s score.

Approach 2 is an embedding based snippet generator, named EBSG,
where we obtain a vector representation of each entity, property and class
in the knowledge graph, and use these vectors to score the triples. We use
RDF2Vec [Ris+19] as the embedding method. To score the triples in the
knowledge graph, we use the cosine similarity between the vector representation
of an element in the triple and the vector representation of a keyword. For
example, given the the triples in Example 1.0.1, Student and university should
have a larger cosine similarity score than Student and knows, since Student
is more closely related to university. Due to the multiple combinations of
triple elements and keywords when calculating cosine similarity scores, we
explore different scoring functions, but the total score of a triple depends on an
individual score for each of its elements.

To evaluate our two approaches we consider:

1. Run time of our algorithms

2. How much overlap the generated snippets have with snippets in a
benchmark

Since existing benchmarks only works for entities as input, they cannot be
used to evaluate our approaches. Therefore we have created a new benchmark
that also consider properties and classes as input. The new benchmark is based
on the benchmark ESBM [Liu+20], and for simplicity we only combined the
entities summarized in ESBM with one more element. We made three different
types of ground-truth snippets, where they where based on:

1. Two entities

2. A combination of one entity and one property

3. A combination of one entity and one class

Nonetheless, our approaches can also handle a larger set of keywords than two,
and both properties and classes can be in the same keyword set.

Outline

The rest of the thesis is organised as follows:

Chapter 2 provides some necessary preliminary knowledge.

Chapter 3 discusses related work.

Chapter 4 defines the problem and describes RBSG and EBSG.

Chapter 5 describes how the benchmark for evaluation was made.

Chapter 6 presents and discusses the experimental results.

Chapter 7 concludes the thesis with future work.

Appendix A provides a table with the RDFS entailment rules.

3

Appendix B provides a list of properties with similarity score 0 in EBSG.

Appendix C evaluates an earlier version RBSG

4

CHAPTER 2

Preliminaries

2.1 Data Model

In this thesis we work with semantic data, which is structured data represented
such that it can easily be processed by machines. An example of sematic
data is the Resource Description Framework (RDF), which is a framework for
representing information on the Web, where the information is expressed using
a triple pattern. We employ a data model corresponding to RDF.

Let L be a set of literals, that is values such as strings, numbers or dates,
and let I be the set of non-literal RDF resources. We consider three types
of resources in our work: entities, properties and classes. Literals are also
resources, but they are not given much attention in this thesis, so henceforth
resource will be a common word for entities, properties and classes.

Definition 2.1.1 (Entity). A non-literal resource at the instance level [WCK19].
The set of entities is denoted by E . In Example 1.0.1 person1, person2,
person3 and UiO are considered entities.

Definition 2.1.2 (Property). A binary relation. The set of properties is denoted
by P. In Example 1.0.1 type, university, subClassOf and knows are
considered properties.

Definition 2.1.3 (Class). Entity types. The set of classes is denoted by C. In
Example 1.0.1 Student and Person are classes.

I = E ∪ P ∪ C, and I and L are the components of a triple.

Definition 2.1.4 (Triple). A triple t is a 3-tuple on the form ⟨subject, predicate,
object⟩, or ⟨s, p, o⟩ for short, where s ∈ I, p ∈ P, and o ∈ I ∪ L. A triple can
also be referred to as a statement, or fact. Define Ω(t) as the set of elements
that constitute a triple, that is Ω(t) = {s, p, o}.

Triples can also contain blank nodes, which do not identify specific resources.
Blank nodes can be in the subject or object position of a triple to show a
relationship with an unspecified thing. However, [Liu+21] notes that they are
difficult to handle and usually ignored in entity summarization. Hence, they
will also be ignored in our work.

A triple can carry either data knowledge or ontology knowledge. Ontology
knowledge is terminological knowledge, for example information about the
domain and range of properties, subclass relationships, and subproperty

5

2.2. Knowledge Graph

relationships. Data knowledge is assertional knowledge, which is information
about entities, and relationships between them.

2.2 Knowledge Graph

The data we are working with in this thesis is in the form of a knowledge
graph. It can be thought of as just a set of triples, but below we give a formal
definition.

Definition 2.2.1 (Knowledge Graph). Let T be a set of triples on the form
{⟨s, p, o⟩ | s ∈ I, p ∈ P, o ∈ I ∪ L}. A knowledge graph is characterized by the
3-tuple ⟨I,L, T ⟩. We denote a knowledge graph as KG. When we talk about a
subset of the knowledge graph, we mean a subset of the triple-set T .

A KG can be visualized as a graph where the subjects and objects are the
nodes, and the predicates are the edges. Note, however, that this graph is not
a real graph, just a set of triples. From Definition 2.1.4, the subject, predicate
and object of a triple can all be in P, hence the set of nodes and the set edges
of an RDF graph are not necessarily disjoint.

2.3 Knowledge Graph Summarization

Since KGs can be very large, the problem of creating a small subset, a snippet,
for it is a popular line of research.

Definition 2.3.1 (Snippet). Given a KG G = ⟨I,L, T ⟩, and a positive integer k,
a snippet S of G is a subset of T , such that S ⊆ T and |S| ≤ k.

A snippet can be generated for a KG without any specifications, or it can
depend on a signature specifying elements of interest.

Definition 2.3.2 (Signature). A set Σ = {q1, q2, ..., qn}, where for example:

• qi ∈ E , i = 1, ..., n, or

• qi ∈ I, i = 1, ..., n, or

• qi is a keyword, i = 1, ..., n. A set of keywords is a dataset search query
where the stop words are removed [Che+19].

Note that in the introduction the signature where referred to as a set of
keywords, but will henceforth be referred to as a signature.

If we want to find a snippet for a KG, and a signature was given together
with the KG, we want the snippet to summarize the elements of the signature,
using triples from the KG.

A special case of a snippet is an entity summary. Then the signature is a set
of entities, and the triples in the snippet are part of the entities descriptions.

Definition 2.3.3 (Description of entity). Let T be a set of triples. The description
of an entity e ∈ E is a subset of triples t ∈ T where e appears in the subject or
object position of t. Denote the description of e as Desc(e), such that:

Desc(e) = {⟨e, p, o⟩ ∈ T} ∪ {⟨s, p, e⟩ ∈ T}

6

2.3. Knowledge Graph Summarization

If all triples in Desc(e) on the form ⟨s, p, e⟩ are rewritten to ⟨e, p−, s⟩, where
p− is the inverse of p, then all triples in Desc(e) have e as subject. Therefore,
only the predicate and object is of interest when choosing triples for the summary
[Liu+21]. This predicate-object pair is called a feature.

Definition 2.3.4 (Entity Summary). Given a KG G = ⟨I,L, T ⟩, a positive
integer k, and a signature Σ = {e1, e2, ..., en} where ei ∈ E , i = 1, ..., n, an entity
summary is a snippet S with the added constraint S ⊆ Desc(e1) ∪Desc(e2) ∪
... ∪Desc(en).

Entity summarization is the task of finding an optimal entity summary,
where optimal depends on what the summary is meant to be used for. An entity
summarizer is a method for solving the problem of entity summarization.

7

CHAPTER 3

Related Work

This chapter briefly presents related approaches to solving two problems: the
problem of snippet generation and the problem of entity summarization. As
defined earlier, a snippet is a size restricted subset of the knowledge graph,
and the problem of entity summarization is a problem of snippet generation.
However, in this chapter we distinguish them since entity summarization only
works with entities as input, while the problem of snippet generation can be
solved for different kinds of input, or no input at all (except for the KG itself).
Therefore, we use entity summary, or only summary, when we talk about a
snippet generated with an entity summarizer. In addition, we offer a brief
introduction to knowledge graph embedding.

3.1 Snippet Generation

Snippet generation provides a solution for how to effectively reuse existing
datasets on the Web, and several methods have been proposed to cover different
needs. For example can snippets be generated to more efficiently answer queries
against [Dol+07; Rie+14], or to provide an overview of the content of the
dataset, either on a higher level [BBP14] or the data level [Che+17].

In [Che+17] they propose a snippet to illustrate the contents of a dataset,
so users are able to quickly inspect it. The quality of the snippet depends on
three aspects: coverage, familiarity, and cohesion, and the optimal snippet is
found by solving a combinatorial optimization problem. The optimal snippet
should cover all the most important classes and properties, while also containing
cohesive information familiar to the user.

In [WCK19] they take reusing existing datasets on the Web one step further
and generate snippets which cover both query keywords and the content of the
dataset, and hence also consider users needs. The approach was given the name
KSD (Keyword, Schema, Data), and the generated snippet was expected to
have a good coverage of the query keywords and the content of the dataset
at both the schema and the data level. As for the multi-entity summarizers,
KSD is presented as a combinatorial optimization problem, but solved using
the weighted maximum coverage (WMC) problem.

8

3.2. Entity Summarization

3.2 Entity Summarization

Given an entity e ∈ E , Desc(e) can be very large, and possibly growing when
new information, that is, new triples, are added to the KG. The goal of entity
summarization is, as mentioned in Chapter 2, to find a subset of Desc(e) that
best describes the entity e.

Entity summarizers can be developed for general purposes, or they can be
designed to improve the performance of a specific task. A task can for instance be
entity resolution (C3D, C3D+P [CXQ15a]), entity linking (COMB [CXQ15b]),
document understanding (REMES [Gun+17]) or entity search (MMR-QSFS
[ZZC12]). The summarizers developed for general purposes can also be used
for specific tasks (e.g. RELIN [CTQ11]), but they are generally outperformed,
because they were not designed for the task. Both general purpose summaries
and task specific summaries can be created for one entity, or for a collection of
entities.

RELIN [CTQ11] is an entity summarizer which produces general purpose
summaries for one entity. RELIN is a random surfer model, where the surfer
can chose between a relational move and an informational jump. Given a triple
t, the surfer can chose between moving to a new triple with related information
to t, or a triple that carries new information. RELIN is implemented using
probability matrices.

Unlike RELIN, REMES [Gun+17], C3D+P [CXQ15a] and COMB [CXQ15b]
are multi-entity summarizers (C3D+P is a two-entity summarizer), with
REMES creating general purpose summaries, and C3D+P and COMB creating
task specific summaries. They have a small difference in their problem
definitions, but all three entity summarizers are presented as a combinatorial
optimization problem, solved using the Quadratic Knapsack Problem/Quadratic
Multidimensional Knapsack Problem (QKP/QKMP).

REMES [Gun+17] (RElatedness-based Multi-Entity Summarization) was
originally developed to help users understand documents better, but the
summaries are general purpose summaries. The point was to give users a
summary of entities mentioned in the document as background knowledge, and
see if the summaries were useful. To create useful summaries for each entity the
goal is to maximize the intra-entity importance in order to include the most
important triples, while simultaneously minimize intra-entity relatedness of
features to improve diversity and coverage. To show relatedness between the
different entities, inter-entity relatedness should also be maximized.

C3D and C3D+P [CXQ15a] produce summaries meant for entity resolution,
which is the task of finding entity descriptions that refer to the same real-world
entity. C3D is an approach meant to help human users judge whether two entity
descriptions refer to the same real-world entity. The users are given a summary
of the two entity descriptions, instead of the whole entity descriptions, to help
them judge more efficiently. C3D+P extends C3D by grouping and ordering the
selected features, to further improve efficiency. When triples are selected for the
two summaries, four kinds are preferred: common, conflicting, characteristic,
and diverse. Triples with common and conflicting features are useful to have in
a summary to help indicate a match or a non-match, respectively. However, the
triples chosen should also carry sufficient information about the real world, and
minimize intra-entity relatedness of features to improve diversity, as in REMES.

COMB [CXQ15b] was created for entity linking, which is the task of linking

9

3.3. Knowledge Graph Embedding

an entity mentioned in a document to an entity in a knowledge base, like for
instance DBpedia. COMB is an approach developed to help human users link
entities together accurately and efficiently. The users select matches based on
the context of the document, and a summary of the candidate entities in the
knowledge base. To best help the users, the triples chosen for the summary
should have high characterizing and differentiating power, to determine the
identity of a candidate entity and show the difference between candidate entities.
The triples in the summaries should also best reflect the relevance of each
candidate entity to the entity mention and its context.

3.3 Knowledge Graph Embedding

An embedding for a group of objects (e.g. words, relations, or entities) is an
injective function that maps each object to a real-valued vector, so that the
intrinsic relations between the objects are maintained [Bos+22; Suc+19]. In
our case we are working with a KG, and want to embed the resources in the set
E ∪ P ∪ C. We want the resources that are semantically similar to be mapped
to vectors that are close to each other in the vector space.

There exists multiple Knowledge Graph Embedding (KGE) methods, and
in [Bos+22] they present and discusses many of them. The embedding models
they present are divided into three different types of models. First there are
geometric models, which interpret relations as geometric operations in the vector
space. TransE [Bor+13], TransH [Wan+14] and RotatE [Sun+19] are examples
of geometric models. Second there are semantic matching models, where the
vector of the subject and the vector of the object is directly compared in order
to assess how likely the triple is to be true. Examples are RESCAL [NTK11],
DistMult [Yan+15], ComplEx [Tro+16] and SimplE [KP18]. Lastly there
are deep models, which use deeper neural architectures to create embeddings.
Some examples are NTN [Soc+13], Graph Convolutional Networks (GCNs),
which uses a type of neural networks introduced in [KW17], and Relational
GCNs [Sch+18].

10

CHAPTER 4

Approaches

4.1 Problem Definition

Given a KG G = ⟨I,L, T ⟩, a signature Σ = {q1, q2, ..., qn} where qi ∈ E ∪P ∪ C
for i = 1, ..., n, and a positive integer k, we want to find the optimal snippet S
for G, of length k and with respect to Σ.

The optimal snippet will the solution to:

find arg max
S⊆T

∑
t∈S

score(t), subject to |S| = k, (4.1)

where score(t) is a function returning a relatedness score between triple t and
the signature Σ. Also note that since |S| = k, only KGs where |T | ≥ k can be
summarized.

Algorithm 1 presents the general approach to how we solve (4.1). The
function A is doing something to the KG, that is, either materialization or
embedding with RDF2Vec, and the results of applying A are used to score the
triples. The triples are then ranked and the k highest ranked triples are used
to create a snippet S.

Algorithm 1 General snippet generation algorithm
Input: A knowledge graph G = ⟨I,L, T ⟩, a signature Σ and an integer k
Output: A snippet S

1: S ← ∅
2: A(G)
3: scores← ∅
4: for t ∈ T do
5: compute score(t)
6: add score(t) to scores
7: end for
8: sort scores high to low
9: for i← 1 to k do

10: if scores[i] = scores(t) then
11: add t to S
12: end if
13: end for
14: return S

11

4.2. Reasoning Based Snippet Generation (RBSG)

In the rest of this chapter we present two approaches to snippet generation,
one based on reasoning, and one based on embedding. We describe the function
A for each approach, and discuss score functions.

4.2 Reasoning Based Snippet Generation (RBSG)

In our first snippet generation approach we let A in Algorithm 1 be a function
that does reasoning on a KG. Based on the logical conclusions from the reasoning,
we defined a scoring function for the triples in the KG, and created a snippet
containing the highest scored triples, as described in Algorithm 1. The reasoning
method we used was materialization.

Definition 4.2.1 (Materialization). Materialization applies rules recursively to a
graph, adding entailments back to the graph until nothing new can be added
[Hog+21]. In this thesis the rules will be the RDFS entailment rules, which are
provided in Appendix A.

Given a KG G and a signature Σ, the triples in G can be scored and ranked
based on materialization of G. We want to use the scoring to create an optimal
snippet S of G. There are many different ways to score the triples in G, but
here it will involve the amount of entailments the triples can generate about
the elements in Σ. A mathematical definition of score will be given below.

4.2.1 RDFS Entailment Rules

An RDFS entailment rule (hereafter referred to as RDFS rule or just rule)
consists of one or two premises, and a conclusion, the entailment, where both
the premises and the entailment are triples. The RDFS rules are applied to
a set of triples in order to add more triples to the set, and therefore create a
richer KG. The entailments contain new information based on domain or range
knowledge, or a property/class hierarchy.

However, we are using the RDFS rules for materialization of a KG, and
not all the rules are relevant for materialization. We want to use the rules to
generate not only new triples, but new triples that carry useful information.
Therefore we only consider the rules with two premises for the materialization,
that is we only consider rule 2, 3, 5, 7, 9, and 11. The other rules generates too
general knowledge, for example that every property is a subproperty of itself
(rdfs6), and will hence be disregarded. Using this incomplete set of RDFS rules,
instead of full RDFS, is fairly common in practice [GM10; Sub+16].

4.2.2 Materialization with RDFS Rules

Let G = ⟨I,L, T ⟩ be a knowledge graph and G′ = ⟨I,L, T ′⟩ be the materialized
version of G . By letting the triples in T work as the premises of the RDFS rules,
we can entail new triples, and add these triples to T . We do this recursively,
until no new triples can be produced, and G is materialized.

Example 4.2.2. The second RDFS rule used on G: If ⟨p, domain, c⟩ ∈ T and
⟨x, p, y⟩ ∈ T , then add ⟨x, type, c⟩. In this case ⟨x, type, c⟩ is the conclusion,
but since rules are applied recursively, it can later be used as a premise for
generation of more new triples.

12

4.2. Reasoning Based Snippet Generation (RBSG)

If a signature Σ is given together with G, G can be materialized with respect
to Σ. Instead of adding all the entailments to G, only the entailments containing
an element of Σ is added.

Example 4.2.3. Continuing Example 4.2.2, if a signature Σ was given, ⟨x, type, c⟩
would only be added if x ∈ Σ or c ∈ Σ.

Given a knowledge graph G = ⟨I,L, T ⟩, and an RDFS rule, let P1 ⊆ T be
the set of triples of G that can be used as premise 1 for the RDFS rule. Then,
given P1, let P2 ⊆ T be the set of triples of G that can be used as premise 2 for
the RDFS rule. Also, let tconcl be a conclusion of the RDFS rule. Algorithm 2
describes the process of materializing a knowledge graph with respect to a
signature, using the incomplete set of RDFS rules.

Algorithm 2 Materialization algorithm for KGs using RDFS rules
Input: A knowledge graph G = ⟨I,L, T ⟩ and a signature Σ
Output: A knowledge graph G′

1: T ′ ← T
2: l← 0 ▷ Previous number of triples in T ′, initially 0
3: while l < length(T ′) do ▷ length(T ′) is the number of triples in T ′

4: l← length(T ′)
5: for each RDFS rule do
6: for each u ∈ P1 do ▷ Feasible triples for premise 1
7: for each v ∈ P2 do ▷ Feasible triples for premise 2, given P1
8: tconcl ← the conclusion given premises u and v.
9: if tconcl contains some q ∈ Σ then

10: add tconcl to T ′

11: end if
12: end for
13: end for
14: end for
15: end while
16: G′ ← ⟨I,L, T ′⟩
17: return G′

4.2.3 RBSG Score

To score a triple t in G we sum over the new information about each q ∈ Σ that
t can generate, and divide by |Σ|. The new information t can generate about
q ∈ Σ, is given as the proportion of entailments containing q, generated with t
as a premise, out of all entailments with q that has been generated.

In addition to how many entailments with a q ∈ Σ t can generate, we also
consider whether or not t itself contains a q ∈ Σ. If t contains q ∈ Σ, that is
considered equally important as if t could be used to generate a triple with q.
To take this into consideration we say that if t contains q ∈ Σ, t can generate
itself, and hence add t to the set of triples with q that t can generate. Denote
this set as Tt,q.

Let Tt,q be a set containing triples w where:

13

4.2. Reasoning Based Snippet Generation (RBSG)

• w contains element q, and q ∈ Σ.

• either 1 or 2 is true:

1. w was the conclusion of an RDFS rule where triple t was one of the
premises

2. w = t

The score of a triple t in G can then be calculated as:

score(t) =

∑
q∈Σ

|Tt,q|
|
⋃

t′∈G
Tt′,q|

|Σ|

The numerator of the score function is a calculation of how much t contributes
to the overall knowledge, that is both original and entailed, about each q ∈ Σ.
For example if t is one of only two triples that can entail new triples with q,
that has a large positive influence on t´s score. However, if t can only entail
one of 10 new triples with q, that will have a limited influence on t´s score.
Additionally, we divide by |Σ| to have score(t) ∈ [0, 1].

Given a positive integer k, an optimal snippet S will be one that contains
the k triples with the largest score value. Example 4.2.4 shows how to calculate
the score for a small KG.

Example 4.2.4 (RBSG score). Let Σ = {UiO, University} and G = ⟨I,L, T ⟩
with T containing the triples:

t1: ⟨UiO, type, University⟩

t2: ⟨University, subClassOf, EducationalInstitution⟩

t3: ⟨UiO, city, Oslo⟩

t4: ⟨UiB, county, Vestland⟩

To score the triples, first materialize G. The only entailed triple will be
⟨UiO, type, EducationalInstitution⟩, using rdfs9 (see Appendix A) with t1
and t2 as the premises. Then calculate the sets Tt,q for each t ∈ T and q ∈ Σ:

Tt1,UiO = {⟨UiO, type, University⟩, ⟨UiO, type, EducationalInstitution⟩}

Tt1,University = {⟨UiO, type, University⟩}

Tt2, UiO = {⟨UiO, type, EducationalInstitution⟩}

Tt2, University = {⟨University, subClassOf, EducationalInstitution⟩}

Tt3, UiO = {⟨UiO, city, Oslo⟩}

Tt3, University = {}

Tt4, UiO = {}

Tt4, University = {}

Lastly, calculate the scores:

14

4.2. Reasoning Based Snippet Generation (RBSG)

score(t1) = (2
3 + 1

2)/2 = 0.583

score(t2) = (1
3 + 1

2)/2 = 0.417

score(t3) = (1
3 + 0

2)/2 = 0.167

score(t4) = (0
3 + 0

2)/2 = 0

Note that the triples in the KG are mainly scored based on how many
entailments (containing a signature element) they can generate. Since
entailments are generated using the RDFS rules, and all interesting rules
contain a triple with property domain, range, subPropertyOf or subClassOf,
KGs without these properties should not be summarized using RBSG. Running
the materialization algorithm for such a KG would be unnecessary, because no
new triples would be added, and the scoring would only be based on how many
signature elements a triple contains.

4.2.4 Knowledge Graph Size Reduction

Assume we have a very large knowledge graph G = ⟨I,L, T ⟩ that we want to
summarize using the RBSG approach. Since we only care about triples related
to the signature Σ when materializing G, we can shrink G to only contain
relevant triples, before we materialize it. Then we have a smaller KG to work
with, and hence materialization should be less time consuming.

Start with an empty set Ts. Remember that Ω(t) is the set of elements that
constitutes t. First we add all triples containing an element in Σ to Ts, that
is if q ∈ Σ and q ∈ Ω(t) for t ∈ T , then t ∈ Ts. Secondly we add all t ∈ T
containing an element in a triple in Ts. To make this task easier, we store all
x ∈ Ω(t) for all t ∈ Ts in a new signature Σ′. Then if x ∈ Σ′ and x ∈ Ω(t)
for t ∈ T , we add t to Ts. This second step is repeated as long as new triples
are added to Ts. When no new triples are added to Ts, we have a new smaller
graph Gs = ⟨I,L, Ts⟩ to work with.

However, some elements occur in very many of the triples, or only provide
very general information. These elements should not be added to Σ′, in order
to keep Ts as small as possible. For example the property type is a universal
property that can be used with any subject of a triple. Therefore, if type ∈ Σ′,
then most likely Ts = T , which we want to avoid. The following example
illustrates the difference between type ∈ Σ′ and type /∈ Σ′.

Example 4.2.5. Let Σ = {UiO} and G = ⟨I,L, T ⟩ with T containing the triples:

t1: ⟨UiO, type, University⟩

t2: ⟨UiB, type, University⟩

t3: ⟨Apple, type, Fruit⟩

Since Σ = {UiO}, t1 ∈ Ts. If Σ′ = {UiO, University}, t2 ∈ Ts,
which makes sense since both UiO and UiB are Universities. However, if
Σ′ = {UiO, type, University}, t2 ∈ Ts and t3 ∈ Ts. t3 is not related to Σ, and
would not be chosen to be in a snippet, and hence does not need to be part of
the materialization.

15

4.2. Reasoning Based Snippet Generation (RBSG)

Let GP (general predicates) be a set of predicates from the RDF/RDFS
vocabulary that are too general, and will cause unnecessary triples to be added
to Ts. Similarly, let GO (general objects) be a set of objects from the Web
Ontology Language (OWL) vocabulary that are also too general. If x ∈ Ω(t)
for a t ∈ Ts, and x ∈ GP or x ∈ GO, then x /∈ Σ′. GP and GO are defined as:

GP = {rdf : type, rdf : Property, rdfs : subPropertyOf, rdfs : Class,
rdfs : subClassOf, rdfs : Resource, rdfs : domain, rdfs : range,
rdfs : label}

GO = {owl : Class, owl : DatatypeProperty, owl : Thing}

Algorithm 3 describes how the size of a KG is reduced with respect to a
signature.

Algorithm 3 Shrinking algorithm for KGs
Input: A knowledge graph G = ⟨I,L, T ⟩ and a non-empty signature Σ
Output: A knowledge graph Gs

1: Ts ← {}
2: Σ′ ← Σ
3: l← 0 ▷ Previous number of elements in Σ′, initially 0
4: while l < |Σ′| do
5: l← |Σ′|
6: for q ∈ Σ′ do
7: for t ∈ T do
8: if t contains q then
9: add t to Ts

10: for x ∈ Ω(t) do
11: if x is not in GP or GO then
12: add x to Σ′

13: end if
14: end for
15: end if
16: end for
17: end for
18: end while
19: Gs ← ⟨I,L, Ts⟩
20: return Gs

16

4.3. Embedding Based Snippet Generation (EBSG)

4.3 Embedding Based Snippet Generation (EBSG)

In this section we present the second approach for snippet generation, which is
based on knowledge graph embedding (KGE). We let A in Algorithm 1 be an
embedding method for a KG G. Given a signature Σ, the triples in G are then
scored using the vector representation of the triples´ elements, and the vector
representation of Σ’s elements. We use RDF2Vec as the embedding method.

4.3.1 The RDF2Vec Tool

Resource Description Framework To Vector (RDF2Vec) is a tool made for
transforming RDF data to real-valued vectors. It was first introduced in [RP16],
but later significantly extended in [Ris+19]. The LOD movement has resulted
in a large amount of available data on the Web, but this data is in graph form,
usually RDF. Hence, it is not directly usable with data mining tools. RDF2Vec
was therefore developed to transform RDF data, so it also can be used with
embedding-based approaches.

RDF2Vec is an extension of Word2Vec [Mik+13], which is a popular word
embedding method. In RDF2Vec the RDF data is first converted into a set
of sequences of entities, using graph walks or Weisfeiler-Lehman Subtree RDF
Graph Kernels. As more advanced walking techniques have been tested with
good results, using graph walks has gained popularity, while the Weisfeiler-
Lehman algorithm is now less popular. When the RDF data is converted to
sequences, Word2Vec is used to learn embeddings from the sequences. Word2Vec
uses Continuous Bag of Words which predicts a word from context words, or
Skip-Gram which predicts the context words from a given word.

RDF2Vec was originally written in Java, but a python implementation was
developed in [Ste+23], since Python is a more popular programming language
than Java. The python implementation is called pyRDF2Vec and is based on
the extended RDF2Vec approach presented in [Ris+19]. We used pyRDF2Vec
in this thesis, and the package can be downloaded from GitHub. 1

4.3.2 Snippet Generation with RDF2Vec

Let G = ⟨I,L, T ⟩ be a knowledge graph, Σ = {q1, q2, ..., qn} a signature where
qi ∈ E ∪ P ∪ C for i = 1, ..., n, and k a positive integer. In this approach we
follow Algorithm 1 with A being RDF2Vec. Using RDF2Vec we obtain a vector
representation for all resources in G and all elements in Σ, and then we use
these vectors to produce a similarity score for each triple in T . The snippet S
will contain the k triples with the largest score.

Figure 4.1 shows the main parts of the EBSG approach. The input of
RDF2Vec is a list of resources containing the elements of the signature and the
elements of the triples of G. Some of the very general properties, like type, are
discarded from the resource list since they do not need a vector representation
(see Section 4.3.3). RDF2Vec also takes a KG as input. This KG can be a
SPARQL endpoint, a file , or be created from scratch.

In RDF2Vec, a transformer takes the list of resources and the KG, together
with a walking strategy, and outputs a vector representation of each resource.

1https://github.com/IBCNServices/pyRDF2Vec

17

https://github.com/IBCNServices/pyRDF2Vec

4.3. Embedding Based Snippet Generation (EBSG)

These vectors can then be used to score the triples of the KG, and given a k we
can find the top-k ranked triples, and output a snippet.

Figure 4.1: Diagram showing the EBSG approach

4.3.3 EBSG Score

The score of a triple t = ⟨s, p, o⟩ will depend on the score of each element s, p
and o, which are scored based on relatedness to the signature Σ. Remember
that Ω(t) is defined as the set of elements that constitute a triple, that is
Ω(t) = {s, p, o}. For each x ∈ Ω(t) we calculate how similar x is to each q ∈ Σ.
As a similarity measure we use cosine similarity, which is calculated between
two vectors. The cosine similarity of vectors u⃗ and v⃗ is given as:

cosine(u⃗, v⃗) = u⃗ · v⃗
||u⃗|| ||v⃗||

Also note that cosine similarity is symmetric, so:

cosine(u⃗, v⃗) = cosine(v⃗, u⃗)

18

4.3. Embedding Based Snippet Generation (EBSG)

For x ∈ E ∪ P ∪ C we calculate cosine(x⃗, q⃗), where x⃗ is the vector
representation of x ∈ Ω(t) and q⃗ is the vector representation of q ∈ Σ. On the
other hand, if x ∈ L, that is x is a literal, x⃗ is not produced because RDF2Vec
does not natively incorporate literals [Pau23]. Literals were also ignored in
the evaluation of RDF2Vec in [RP16] and [Ris+19], but pyRDF2Vec has an
option for including literals [Ste+23]. However, using the option for literals does
not directly produce an embedding for the literals. Therefore, for simplicity, if
x ∈ L we let the similarity between x and q ∈ Σ be 0. There are also several
properties that are not particularly related to any other resource, for example
type and subject. Let P ∗ denote this set of properties, such that if x ∈ P ∗,
then the similarity between x and q ∈ Σ is also 0. A list of elements in P ∗ is
given in Appendix B.

Let sim be the function that calculates similarity between two elements, so
that for each pair {x, q} where x ∈ Ω(t) and q ∈ Σ, we calculate sim(x, q).

sim(x, q) =
{

cosine(x⃗, q⃗) if x ∈ E ∪ P ∪ C
0 if x ∈ L or x ∈ P ∗

Each x ∈ Ω(t) will have |Σ| sim scores, and t will have 3× |Σ| sim scores,
hence there are multiple options for combining the sim scores to produce one
score for t. We will explore the three score functions below:

1. scoremax(t) =
∑

x∈Ω(t)
max
q∈Σ

(sim(x, q))

2. scoremean(t) =
∑

x∈Ω(t)

((∑
q∈Σ

(sim(x, q))
)

/|Σ|
)

3. scoresum(t) =
∑

x∈Ω(t)

∑
q∈Σ

sim(x, q)

We also consider three different types of signatures:

i |Σ| = 1, Σ = {e}, where e ∈ E

ii |Σ| > 1, Σ ⊆ E ∪ C

iii |Σ| > 1, Σ ⊆ E ∪ C ∪ P

In Example 4.3.1, we present a sample KG to facilitate the comparison of
score functions and signature types.

Example 4.3.1. Let G = ⟨I,L, T ⟩ be a KG where T = {t1, t2, ..., t11}, and

t1 = ⟨UiO, type, University⟩

t2 = ⟨UiO, city, Oslo⟩

t3 = ⟨UiO, type, EducationalInstitution⟩

t4 = ⟨UiB, type, University⟩

t5 = ⟨UiB, type, EducationalInstitution⟩

t6 = ⟨UiB, county, Vestland⟩

19

4.3. Embedding Based Snippet Generation (EBSG)

t7 = ⟨Haukeland, affiliation, UiB⟩

t8 = ⟨University, subClassOf, EducationalInstitution⟩

The triples t9, t10 and t11 states that city, county and affiliation have
type Property, and are included solely for the purpose of obtaining a vector
representation for these three properties using pyRDf2Vec.

Below we provide some of the similarity scores, which have been computed
using pyRDF2Vec embeddings.

• sim(UiO, University) = 0.044

• sim(University, University) = 1.0

• sim(Oslo, University) = 0.117

• sim(city, University) = −0.163

• sim(UiO, Oslo) = 0.072

• sim(city, Oslo) = 0.060

• sim(Oslo, Oslo) = 1.0

First consider the case Σ = {e}, where e ∈ E . Then the three score functions
will give the same results:

scoremax(t) = scoremean(t) = scoresum(t) =
∑

x∈Ω(t)

sim(x, e)

Example 4.3.2 shows the calculated scores for t1 and t2 with Σ = {Oslo}.

Example 4.3.2. Let Σ = {Oslo}. For t1 and t2 we then have the scores:

• scoremax(t1) = scoremean(t1) = scoresum(t1) = 0.072 + 0 + 0.117 = 0.189

• scoremax(t2) = scoremean(t2) = scoresum(t2) = 0.072+0.060+1.0 = 1.132

Next, consider |Σ| > 1 and Σ ⊆ E ∪ C. In this case the score functions may
not produce identical results. If scoremax is employed, the triples containing
elements similar to at least one element in Σ will receive the highest ranking.
On the other hand, utilizing scoremean or scoresum will rank triples related to
the most elements in Σ first. The following example demonstrates that t1 and
t2 are ranked differently depending on score function.

Example 4.3.3. Let Σ = {Oslo, University}. For t1 we have the scores:

• scoremax(t1) = 0.072 + 0 + 1.0 = 1.072

• scoremean(t1) = (0.072 + 0.044)/2 + (0 + 0)/2 + (0.117 + 1.0)/2 = 0.617

• scoresum(t1) = (0.072 + 0.044) + (0 + 0) + (0.117 + 1.0) = 1.233

and for t2 we have the scores:

• scoremax(t2) = 0.072 + 0.060 + 1.0 = 1.132

20

4.3. Embedding Based Snippet Generation (EBSG)

• scoremean(t2) = (0.072+0.044)/2+(0.060+(−0.163))/2+(1.0+0.117)/2 =
0.565

• scoresum(t2) = (0.072+0.044)+(0.060+(−0.163))+(1.0+0.117) = 1.130

Example 4.3.3 shows that when we used scoremax t2 got a higher score and
was therefore ranked before t1, while scoremean and scoresum ranked t1 better
than t2. When scoremax was used t2 had the benefit of only considering that
city is related to Oslo, but for the other score functions t2 was penalized for
city not being related to University.

For the same Σ, using scoremean or scoresum will result in the same ranking
of the triples, since the scoresum values will just be |Σ| times larger than the
scoremean values. However, Example 4.3.4 indicates that scoremean can be more
affected by the size of Σ.

Example 4.3.4. Consider an additional triple ⟨Apple, type, Fruit⟩ in G from
Example 4.3.1, and let Σ = {Oslo, University, Apple} with cosine(r, Apple) =
0 for all resources r in G. For t1 we have the scores:

• scoremean(t1) = (0.072+0.044+0)/3+(0+0+0)/3+(0.117+1.0+0)/3 =
0.411

• scoresum(t1) = (0.072 + 0.044 + 0) + (0 + 0 + 0) + (0.117 + 1.0 + 0) = 1.233

Comparing Example 4.3.4 to Example 4.3.3 shows that if Σ is extended
with an element not particularly related to any resource in G, scoresum could
be unaffected, but scoremean would be lower.

Lastly, consider |Σ| > 1 and Σ ⊆ E ∪ P ∪ C. Then an option is to
distinguish properties from entities and classes when scoring a triple t, and
only calculate similarity between two elements if they are both in P or both in
E ∪ C. Example 4.3.5 shows how to score t7 this way, and also how to score t7
by considering any pair of resource and signature element.

Example 4.3.5. Let Σ = {Oslo, University, city}. One option for scoring t7 is
to only calculate similarity between the two properties affiliation and city,
and between the two entities in t7 and the entity and class in Σ. The cosine
similarities for t7 and Σ are:

• cosine(Haukeland, Oslo) = 0.041

• cosine(Haukeland, University) = 0.006

• cosine(Haukeland, city) = 0.013

• cosine(affiliation, Oslo) = 0.085

• cosine(affiliation, University) = 0.137

• cosine(affiliation, city) = −0.134

• cosine(UiB, Oslo) = −0.108

• cosine(UiB, University) = 0.013

• cosine(UiB, city) = 0.051

21

4.3. Embedding Based Snippet Generation (EBSG)

Then the scores for t7 are:

• scoremax(t7) = 0.041 +−0.134 + 0.013 = −0.080

• scoremean(t7) = (0.041 + 0.006)/2 + (−0.134)/1 + (−0.108 + 0.013)/2 =
−0.158

• scoresum(t7) = (0.041 + 0.006) + (−0.134) + (−0.108 + 0.013) = −0.182

However, if similarity can be calculated between any type of resource the
scores for t7 are:

• scoremax(t7) = 0.041 + 0.137 + 0.051 = 0.229

• scoremean(t7) = (0.041 + 0.006 + 0.013)/3 + (0.085 + 0.137 + (−0.134))/3 +
(−0.108 + 0.013 + 0.051)/3 = 0.035

• scoresum(t7) = (0.041 + 0.006 + 0.013) + (0.085 + 0.137 + (−0.134)) +
(−0.108 + 0.013 + 0.051) = 0.104

Example 4.3.5 shows that if properties are only scored against other
properties important similarities can be lost. The property affiliation in t7
is for example more similar to the entity Oslo and the class University, than
to the property city. Only comparing affiliation to city therefore causes
t7 to have a low score. Resources in G will thus not be restricted to only be
scored against signature elements with the same type.

22

CHAPTER 5

Benchmark

An entity summarization benchmark consists of human-made ground-truth
summaries that machine-generated summaries can be compared to. Evaluation
with ground-truth summaries is a popular evaluation method for entity
summarizers because it is easy to perform and and the results are reproducible.
For example was RELIN [CTQ11] evaluated with its own benchmark, and in
[Liu+20] they created a method independent benchmark that can be used to
evaluate general-purpose entity summarizers.

Since benchmarks are a popular way to evaluate entity summarizers, we
also wanted to use a benchmark for evaluation. However, existing benchmarks
only cover signatures composed of entities, while the signatures in this thesis
can contain properties and classes as well. Therefore we had to make a new
benchmark that was compatible with our signature. In order to make this task
easier, we started with an existing benchmark, and extended it to fit with our
snippet generators.

As in Chapter 3, summary is used instead of snippet to distinguish entity
summarization from snippet generation.

5.1 ESBM

The base for our benchmark is the Entity Summarization BenchMark (ESBM)
created in [Liu+20], which is made for single entity signatures. This is a large
benchmark tested on entity summarizers like RELIN [CTQ11], FACES [GTS15]
and BAFREC [KNB18]. ESBM contains summaries for 175 entities, where 125
entities are sampled from DBpedia and 50 entities are sampled from LinkedMDB.
DBpedia and LinkedMDB are both real datasets that are popular to use in
entity summarization.

Furthermore, for DBPedia they only considered the triples in the following
dump files: instance types, instance types transitive, YAGO types, mappingbased
literals, mappingbased objects, labels, images, homepages, persondata, geo
coordinates mappingbased, and article categories. Additionally, the sampled
entities all belong to one of the classes Agent, Event, Location, Species, and
Work. For LinkedMDB the entities were sampled from Film and Person. To
avoid that summarization would be a trivial task, the description of a sampled
entity needed to contain at least 20 triples.

For each of the 175 entities, ESBM contains 12 human-made summaries,
and more precisely, 6 people created one summary with the top-5 triples, and
one summary with the top-10 triples. There were 30 participants in total, and

23

5.2. ESBM∗, An Extension of ESBM

they were asked to create general-purpose summaries. ESBM can be found on
GitHub.1

5.2 ESBM∗, An Extension of ESBM

To make a snippet for our benchmark, we started with en entity summarized in
ESBM. Then, from the entity´s description, we chose another entity, property,
or class, and combined these two elements to make a signature of size two.
Given this new two-element signature, we created a general purpose snippet
that covered information about both of the signature elements. They were
given the same weight, that is the information about each of the elements have
equal importance. We only made snippets for two-element signatures, since
having a large signature would make the creation of snippets a difficult and time
consuming task. Additionally, since ESBM is a very large benchmark, we only
considered the 125 entities from DBpedia. We used the same version of DBpedia
they used in [Liu+20], which was the English version of DBpedia 2015-10, 2

and we only considered the triples in the dump files mentioned in Section 5.1.
This new benchmark was named ESBM∗, and is available on GitHub.3

5.2.1 Extended Signature

Let EESBM be the set of entities from DBpedia used as signatures in ESBM.
Given an entity e ∈ EESBM and its ESBM summaries, let r be the element
we combined with e to make a new signature. r had to be present in the
summaries (except for some chosen class extensions), r ̸= e, and r ∈ E ∪ P ∪ C.
When choosing r we primarily looked for a resource that occurred multiple
times in the same summary, but since that was rare we chose r based on
which resources occurred multiple times in Desc(e) or in most of the 6 top-5
summaries. However, note that properties like type and subject were popular
in summaries, but since they are very general (everything has a type) they
were never chosen for a signature. In fact, for properties, only the ones in the
DBpedia ontology namespace were considered for a signature. They are more
specific for a group of entities, and therefore more interesting. Additionally,
when choosing r, we examined the set of triples containing r. Define this set as
the description of r, denoted Desc∗(r):

Definition 5.2.1 (Description of resource). Let T be a set of triples. The
description of a resource r ∈ E ∪ P ∪ C is a subset of triples t ∈ T where
r appears in subject, predicate or object position of t. Denote the description
of r as Desc∗(r), such that:

Desc∗(r) = {⟨r, p, o⟩ ∈ T} ∪ {⟨s, r, o⟩ ∈ T} ∪ {⟨s, p, r⟩ ∈ T}

Note that this is a modification of the description of an entity defined in
Definition 2.3.3, extended to work for properties and classes as well.

If Desc∗(r) was too large to easily navigate, or small enough for entity
summarization to be a trivial task, we chose a different resource. Our

1https://github.com/nju-websoft/ESBM
2http://downloads.dbpedia.org/wiki-archive/Downloads2015-10.html
3https://github.com/alvamh/RBSG-EBSG-Benchmark

24

https://github.com/nju-websoft/ESBM
http://downloads.dbpedia.org/wiki-archive/Downloads2015-10.html
https://github.com/alvamh/RBSG-EBSG-Benchmark

5.2. ESBM∗, An Extension of ESBM

two approaches do allow for any triple in a KG to be chosen for the
snippet, so a small Desc∗(r) is not actually a problem, however since we
are working with a very large KG, choosing triples from Desc∗(r) is a much
easier and less time consuming job. Different tests on our approaches also
show that the triples in the machine-generated snippets are from the set
Desc∗(q1)∪Desc∗(q2)∪ ...∪Desc∗(qn), if the signature was Σ = {q1, q2, ..., qn}.

For some of the ESBM entities with small descriptions, we were not able to
find a resource r to make an extended signature with, because Desc∗(r) was to
small, r was a general property or r was a very large class. Therefore we were
only able to make 99 extended signature, where 33 were extended with an entity,
33 with a property, and 33 with a class. For each of the 99 signatures, we made
one top-5 snippet and one top-10 snippet, as in ESBM. However, in ESBM the
top-5 summary was not required to be a subset of the top-10 summary, but
we created the top-5 snippet by choosing triples from the top-10 snippet. In
[Liu+20] they showed that the top-5 summary is usually a subset of the top-10
summary, so that will not constitute a large difference.

5.2.2 Triple Selection

To easily navigate and locate relevant triples in the DBpedia datasets we used
Apache Jena, 4, which is, as stated on the homepage, ‘A free and open source
Java framework for building Semantic Web and Linked Data applications’. We
first loaded the datasets into Apache Jena TDB, which is Jena´s RDF store.
Then we ran Jena´s SPARQL server, Apache Jena Fuseki, against the TDB
store, in order to have a local endpoint we could query. A set of triples to
consider for a snippet were then easily obtained.

Given the signature Σ = {e, r}, we first created a top-10 snippet by adding
triples to the ESBM summaries for e. Let S1, S2, ..., S6 be the ESBM summaries
for e and Sr be the extended snippet for Σ. The triples in Sr were chosen from
Desc(e) ∪ Desc∗(r). Let t be a triple in Desc(e) ∪ Desc∗(r). We primarily
wanted the triples in Sr to provide a relationship between e and r, so if e ∈ Ω(t)
and r ∈ Ω(t), t ∈ Sr.

For the rest of the triples in Sr, about 50% were chosen from Desc(e), and
then primarily from S1 ∪S2 ∪ ...∪S6. The triples most related to r were chosen.
The other 50% were chosen from Desc∗(r), and how they were chosen depends
on whether r was an entity, a property or a class.

If r was an entity, ESBM summaries for a resource of similar type were
used as inspiration. For example did summaries for a resource eex, where eex is
a person, tend to include triples with the properties: birthDate, deathDate,
type, and subject, hence if r was a person, we chose triples that contained
these properties. However, we also wanted the subject, predicate and object of
the triple to be as related to e as possible.

If r was a property p or a class c, t ∈ Desc∗(r) was on the form ⟨s, p, o⟩
or ⟨s, type, c⟩ respectively. The goal was to find the triple with s and o most
related to e. This was done by using Desc(e), and checking whether s or o had
some of the same features as e. The triples with s (and o) most related to e
were chosen for Sr.

4https://jena.apache.org/

25

https://jena.apache.org/

5.2. ESBM∗, An Extension of ESBM

Lastly, if r was unfamiliar, we used the abstract of its DBpedia page, or
Wikipedia page, to obtain the most important information about it, and chose
triples based on this.

When the top-10 snippets were done, we created the top-5 snippets by
choosing the 5 most important triples in the top-10 snippet.

Example 5.2.2 (Creating a snippet). Let G = ⟨I,L, T ⟩ with T containing the
triples:

t1: ⟨UiO, location, Oslo⟩

t2: ⟨UiO, type, University⟩

t3: ⟨UiO, location, Blindern⟩

t4: ⟨UiO, foundingDate, 1811-09-02⟩

t5: ⟨UiO, numberOfStudents, 28000⟩

t6: ⟨OsloMet, type, University⟩

t7: ⟨OlsoMet, location, Oslo⟩

t8: ⟨Oslo, type, City⟩

t9: ⟨Bergen, type, City⟩

t10: ⟨UiB, location, Bergen⟩

t11: ⟨UiB, type, University⟩

Also let Sorig = {t1, t2, t3, t4, t5} be an original benchmark snippet for the
entity UiO, that is for a signature with only one entity. Below we describe how
we chose the extended signature, and made a snippet for ESBM∗. Denote this
snippet Sext. The example includes how we made a snippet for a signature
extended with first an entity, then a property, and lastly a class. The example
is for top-5 snippets.

Entity

To make an extended signature Σ with two entities, we can for example choose
Σ = {UiO, Oslo}. Then the triple t1 should be in the snippet. t2 and t8
should also be in the snippet, because presenting the type of an entity was
popular in the ESBM summaries. t3 and t7 were also chosen for the snippet,
because Blindern is in Oslo, and OlsoMet is, as UiO, a university in Oslo. Then
Sext = {t1, t2, t3, t7, t8}.

Property

To make an extended signature Σ with one entity and one property, we can for
example choose Σ = {UiO, location}. Then t1 and t3 shuld be in the snippet.
t7 is also very related to the signature since OsloMet and UiO are very related
(they are both universities in Oslo), and should be in the snippet. For the last
two triples we chose one with UiO and one with location, for example t2 and
t10. Then Sext = {t1, t2, t3, t7, t10}.

26

5.3. ESBM∗ Statistics

Class

To make an extended signature Σ with one entity and one class, we consider
two options: Σ = {UiO, University} and Σ = {UiO, City}. First, if
Σ = {UiO, University}, then t2 should be in the snippet. We also chose t6 and
t5, since OsloMet is very related to the signature, and numberOfStudents is
very related to University. For the last two triples we chose one with UiO and
one with University, for example t1 and t11. Then Sext = {t1, t2, t5, t6, t11}.

Secondly, if Σ = {UiO, City}, then no triples with both entities exist. Then
we chose triples with one element in the signature, and other elements related
to the signature. Therefore t1 should be in the snippet and t8 should be
in the snippet. We also added t3 and t9. Lastly, we added a triple with
some important information about one of the entities, for example t2. Then
Sext = {t1, t2, t3, t8, t9}.

5.3 ESBM∗ Statistics

The full DBpedia knowledge graph that consists of the triples in the 11 dump
files mentioned in Section 5.2, and the DBpedia 2015-10 ontology, contains
163598792 triples. The dump files contain a total of 163568474 triples, and
the ontology contains 30318 triples. Since this is a very large KG, we chose
the triples in the extended signature from the descriptions of the signature
elements. The descriptions ranges between around 30 triples for the smallest
entity descriptions, up to almost 2000000 triples for the most general properties.

Let S{e,e} be the set of ESBM∗ snippets created with a signature with two
entities, S{e,p} be the set of benchmark snippets created with a signature with
one entity and one property, and S{e,c} be the set of benchmark snippets created
with one entity and one class. We have |S{e,e}| = |S{e,p}| = |S{e,c}| = 33.

Figure 5.1: Number of different properties used in the benchmark snippets, for
signatures extended with an entity, property, and class, and for all signatures.

Figure 5.1 shows how many different properties the ESBM∗ snippets
collectively contain, divided in top-5 and top-10 snippets. A total of 96 different
properties are used in the top-5 snippets, and for top-10 snippets the number is

27

5.3. ESBM∗ Statistics

131. Figure 5.1 also shows the difference between S{e,e}, S{e,p} and S{e,c}. The
snippets in S{e,e} contain more different properties than the snippets in S{e,p}
and S{e,c}. This is not surprising since a snippet in S{e,p} will contain multiple
triples with the same property (the property in the signature) and a snippet in
S{e,c} will contain multiple triples with the property type.

Table 5.1 gives a closer look at which properties are the most popular in the
snippets. It shows the properties present in the most snippets in the sets S{e,e},
S{e,p}, and S{e,c}, for top-5 and top-10 snippets. The number of snippets with
the property in it is also presented. Note that each set of snippets contains 33
triples. For all three sets the property type is the most popular. For top-10
snippets, type is in all snippets in S{e,e} and S{e,c}, and 85% of the snippets in
S{e,p}. This is expected since all the signatures contain an entity, all entities
are an instance of at least one class, and such information is popular to have in
the snippets.

Top-5 Top-10
Entity Property Class Entity Property Class
type (26) type (15) type (33) type (33) type (28) type (33)
country (8) subject (18) family (6) subject (11)

country (11) genus (6)
birthDate (10) isPartOfMilitaryConflict (6)
location (8)
deathDate (6)

Table 5.1: The most popular properties in the snippets created with different
signature extensions. Number of snippets with the property in it is given in the
parenthesis.

For the top-5 snippets, only country with its presence in 24% of the snippets
in S{e,e}, stands out as a somewhat popular property. An explanation is that
country can be used with multiple types of entities as subject, for example
people, cities, mountains and infrastructure.

For the top-10 snippets, subject is the second most popular property in the
snippets in S{e,e} and S{e,c}. subject is, like type, a universal property, and
most entities have a subject relationship to some category. However, subject
is not popular for snippets in S{e,p}. More triples contain the property in the
signature, or properties related to that property, and for the rest of the triples
type relationships is favored over subject relationships. For snippets in S{e,e}
one third of the snippets contain the properties country and birthDate. For
the rest of the properties in Table 5.1, they are only used in around 20% of the
snippets, showing that except for type (and subject), the snippets does not
share many properties.

Next we look at the relationship between a snippet and the signature. Let S
denote a snippet and Σ denote the signature used to create S. Σ is on the form
Σ = {e, r}, where e ∈ E is an entity summarized in ESBM, and r ∈ E ∪P ∪ C is
the resource used to extend the signature. Let m≥1 be the number of snippets
that contains one or more triples with both its signature´s elements.

m≥1 = |{S|t ∈ S and e, r ∈ Ω(t)}|

28

5.3. ESBM∗ Statistics

Also let m≥2 be the number of snippets that contain two or more triples
with both its signature´s elements.

m≥2 = |{S|t1, t2 ∈ S and e, r ∈ Ω(t1) and e, r ∈ Ω(t2) and t1 ̸= t2}|

Let n be the number of snippets in a set of snippets. Table 5.2 shows the
ratios m≥1/n and m≥2/n for the three sets of snippets S{e,e}, S{e,p}, and S{e,c},
and for the set of all ESBM∗ snippets.

Snippet size Top-5 Top-10
Snippet set S{e,e} S{e,p} S{e,c} All S{e,e} S{e,p} S{e,c} All
m≥1/n 33/33 33/33 27/33 93/99 33/33 33/33 27/33 93/99
m≥2/n 4/33 21/33 0/33 25/99 4/33 21/33 0/33 25/99

Table 5.2: m≥1/n and m≥2/n for the three different sets of snippets, and for
the set of all benchmark snippets.

Table 5.2 shows that m≥1/n and m≥2/n are the same for top-5 and top-10
snippets, for all snippet sets. This shows that among the triples in a top-10
snippet, the triples containing both signature elements are considered the most
important. For S{e,e} and S{e,p}, all snippets contained at least one triple with
both signature elements, since r ∈ Ω(t) for a t ∈ Desc(e). However, for S{e,c},
only 82% of the snippets did. That is because for some signatures belonging to
snippets in S{e,c}, no triple existed with both the signature´s elements.

For snippets in S{e,p}, 64% of the snippets contained two or more triples
with both signature elements. Since a property chosen for a signature was
chosen because it was a popular property in the triples in Desc(e), this is not
surprising. For some of the signatures belonging to snippets in S{e,p}, 6-8 triples
existed with both signature elements.

Snippet size Top-5 Top-10
Snippet set S{e,e} S{e,p} S{e,c} All S{e,e} S{e,p} S{e,c} All
CT (S, e) 3.21 4.12 3.15 3.49 5.45 6.73 5.45 5.88
CT (S, r) 2.97 3.21 2.64 2.94 5.73 5.85 5.30 5.63

Table 5.3: Average CT (S, e) and CT (S, r) for different sets of snippets, and
for the set of all benchmark snippets.

To analyze the distribution of triples between the two elements in a signature,
let CT (S, q) be the number of triples in a snippet S that contain q ∈ Σ, where
Σ is the signature belonging to S.

CT (S, q) = |{t|t ∈ S and q ∈ Ω(t)}|

Table 5.3 shows the average CT (S, e) and CT (S, r) for the snippets in S{e,e},
S{e,p}, and S{e,c}, and also for all snippets in ESBM∗. The signatures are on
the form {e, r}, where e is the original entity from ESBM and r is the signature
extension we chose. Note that since a triple can contain both e and r, the
average CT (S, e) and average CT (S, r) can sum to more than 5 or 10.

29

5.4. Discussion

For both top-5 and top-10 snippets, triples with the original entity e are
a little more popular in the snippets, except for in top-10 snippets in S{e,e}.
Choosing related triples for a snippet is easier for entities, since they have
shorter descriptions, which could be the reason for this. The largest difference
between e and the extension r is for snippets in S{e,p}. One reason is that more
information was needed to understand the entity than the property.

5.4 Discussion

Since ESBM∗ are made by only one person, it reflects an individual opinion
about which triples are important. In ESBM there are six top-5 summaries and
six top-10 summaries, and in [Liu+20] they calculated the overlap between the
six summaries to be 1.99 triples and 5.42 triples, respectively. We can therefore
assume that about 50% of the triples we chose for the snippets might have been
chosen differently by someone else.

Also, we created the approaches before ESBM∗, and knew which triples
they would favor in a snippet, which could have affected the benchmarks. For
example, let a signature be Σ = {SriLankanCivilWar, MiltitaryConflict},
and two triples in the KG be:

t1: ⟨SriLankanCivilWar, type, MilitaryConflict⟩

t1: ⟨BattleOfSampur, isPartOfMilitaryConflict, SriLankanCivilWar⟩

Independent of our approaches, only t2 would be chosen for a top-5 benchmark
snippet, because the predicate and object give the same information as t1
provides, and there are limited space in a top-5 snippet. However, knowing that
both approaches would have t1 in a snippet, both t1 and t2 were chosen to be
in the benchmark snippet.

30

CHAPTER 6

Evaluation

In this chapter we evaluate the two approaches presented in Chapter 4. First we
evaluate the materialization algorithm by analyzing the size of the materialized
graph. Secondly, we evaluate our two approaches by analyzing the running time
of the materialization algorithm and the embedding process with RDF2Vec,
as well as the belonging score functions. Lastly we evaluate the quality of the
snippets generated by our approaches using ESBM∗, which was described in
Chapter 5.

6.1 Evaluation of Graph Size and Running Time

For the first evaluation of RBSG and EBSG we performed an experiment
were we generated 100 snippets, given 100 different signatures, for each of the
signature sizes |Σ| = 1, |Σ| = 5 and |Σ| = 10. We timed the different parts
of the two approaches for each of the 100 × 3 = 300 executions, and we also
reported the size of the materialized graphs.

For RBSG, we ran the experiment with three different signature types for
comparison:

1. Random signature

2. Seed signature

3. No signature

A signature contained at least one element from the class E . This element
was chosen randomly. For the random signature, the rest of the elements were
also chosen randomly, but from the set E ∪ P ∪ C. For the seed signature, the
rest of the elements were chosen in relation to the previously mentioned element
from E . In the case of no signature, we ran the materialization algorithm with
some modifications to work without a signature, and also omitted the scoring
part.

Since signature type does not affect the running time of any part of EBSG,
this approach was only evaluated with a random signature in the running time
evaluation. However, two score types were evaluated for this approach, scoremax
and scoremean.

The KG we used for the experiments contained triples from the DBpedia
2015-10 datasets (English version) and the DBpedia 2015-10 ontology. Since the
DBpedia datasets and the ontology collectively contain 163598792 triples, we

31

6.1. Evaluation of Graph Size and Running Time

only used a subset of these triples in our KG. The subset contained 45925 triples,
taken from the dump files instance types and mappingbased objects, as well as the
ontology. The KG also contained 262 triples on the form ⟨p, type, Property⟩
where p is a property in the DBpedia subset. This was done to be able to use
pyRDF2Vec to find vector representations for the properties as well. The KG
contained a total of 46187 triples.

The experiments were ran on a computer with an 11th Gen Intel Core
i5-1135G7 2.40GHz processor and 8,00 GB of memory. The approaches were
implemented in Python 3, specifically we ran Python 3.9.12.

For the rest of this section, let G be the name of the KG, and therefore
|G| = 46187. Also let Σ denote a signature, and G′ denote the materialized
version of G given Σ. Lastly, let Σ ⊂ I for G = ⟨I,L, T ⟩.

6.1.1 Size of Materialized Graph

Signature type Random Seed
|Σ| 1 5 10 1 5 10
min 0 14 30 0 11 18
max 53 68 389 37 8198 8295
mean 7.1 29.37 57.01 7.82 1479.59 2242.25

Table 6.1: Number of new triples generated by materializing G with different
signature types and different sizes of Σ.

Table 6.1 presents the minimum, maximum, and mean number of new triples
generated by running the materialization algorithm on G with different Σ.
There is a clear connection between the number of new triples and the size of
Σ. When Σ increases, so does the minimum, and mean number of new triples.
This is expected since a larger |Σ| value means a larger chance that an entailed
triple will contain an element q ∈ Σ, and hence a larger chance that the entailed
triple will be in G′.

Furthermore, Table 6.1 shows that the mean number of new triples generated
are 50 times larger for a seed signature than a random signature when |Σ| = 5
and 40 times larger for a seed signature than a random signature when |Σ| = 10
(note that a seed signature with |Σ| = 1 is just a randomly chosen element, and
therefore the same as a random signature). Using a seed signature increases
the chance that a new generated triple can be used to create more new triples
in the next recursion step.

There is also a larger difference between minimum and maximum number
of new triples for random signature and seed signature. If the seed signature
does not contain the correct related elements, that is elements occurring in an
entailed triple, the number of new triples will be no better than for a random
signature. However, if the seed signature does contain the correct elements, the
number of new generated triples has potential to be 120 times more than for a
random signature for |Σ| = 5.

We also ran the materialization algorithm without a signature, that is
without any restriction to which rule conclusions will be in G′. Then the

32

6.1. Evaluation of Graph Size and Running Time

number of new generated triples in G′ were |G′ \ G| = 151123, which is 3.27
times as large as the original graph G.

6.1.2 Running Time of Algorithms

Materialization Score
Signature type Random Seed Random Seed
|Σ| 1 5 10 1 5 10 1 5 10 1 5 10
min 0.72 2.17 3.20 0.70 1.62 2.42 0.32 0.68 1.01 0.33 0.69 1.17
max 2.17 5.53 8.60 2.37 6.09 9.96 1.12 2.95 5.06 1.10 3.55 6.02
mean 1.55 3.19 4.82 1.48 2.97 4.50 0.51 1.43 2.25 0.48 1.39 2.45

Signature type No signature
min 4.45
max 9.76
mean 4.93

Table 6.2: Running time (s) for different parts of the RBSG approach for
different signature types and sizes of Σ.

RDF2Vec Score MAX Score MEAN
|Σ| 1 5 10 1 5 10 1 5 10
min 41.18 42.39 42.2 8.55 30.25 65.87 8.63 30.38 64.07
max 45.42 46.79 51.10 17.63 56.51 103.08 17.27 57.20 105.39
mean 43.48 43.76 43.95 12.80 43.68 80.71 12.78 43.81 80.82

Table 6.3: Running time (s) for different parts of the EBSG approach for
different sizes of Σ.

Table 6.2 presents the running time in seconds for the materialization algorithm
and the combined running time for scoring, ranking and snippet creation (called
Scoring in the table), also in seconds. The running times are calculated for a
random signature and a seed signature, and running time of the materialization
algorithm is also calculated in the case of no signature. For both random and
seed signature the mean time it takes to materialize a KG increases when the
size of Σ increases. This is not surprising, considering that each element in an
entailment has to be tested for a match in Σ, and larger |Σ| means more tests.
Table 6.1 also showed that a larger |Σ| resulted in more new triples. Unless
all new triples were generated in the same recursive loop, more new triples
would mean more recursive loops, which takes time. However, since the mean
time for running the materialization algorithm without a signature is only 0.11
and 0.43 seconds longer than running it with a random signature and seed
signature, respectively, testing for a match in Σ is probably what slows down
the materialization. If not, running materialization without a signature should
be much slower, considering 151123 new triples were generated. Comparing
the mean time of materialization without a signature to materialization with
a random signature of size 10, there is only a 2.23% decrease in time, but a
99.96% decrease in number of new triples.

33

6.1. Evaluation of Graph Size and Running Time

Comparing the mean running time for the materialization algorithm for
random and seed signature, also support the claim that the size of Σ affects
the running time more than the number of new generated triples. The running
time when using a seed signature actually decreased with 7% compared to a
random signature for both |Σ| = 5 and |Σ| = 10, but the number of new triples
increased with almost 5000% and 4000%, respectively. This also shows that
using a seed signature instead of a random signature, has only a small effect on
running time, but a large effect on |G′|.

Seed max time being larger than random max time could be because the
entailed triples are related to more elements in the signature, and there are a
larger chance that the new triples can be used in the next recursive loop of the
algorithm, causing it to run for longer.

Furthermore, Table 6.2 also presents the running time for the second part
of RBSG: the scoring and snippet generation. The mean times are similar for
random and seed signature, which makes sense since the same set of triples, that
is all triples in G, have to be scored regardless of signature type. Also regardless
of signature type, the the mean running time for scoring is around 1/3 of the
materialization time for |Σ| = 1, and around 1/2 of the materialization time
for |Σ| = 5 and |Σ| = 10. Scoring triples when |Σ| = 1 is faster because many
triples will be scored 0, since they could not generate new triples containing
the signature element.

Table 6.3 presents the running time in seconds for the embedding with
pyRDF2Vec and the combined running time for scoring, ranking and snippet
creation, also in seconds. The running time for pyRDF2Vec includes making a
list with elements to create an embedding for, setting up a transformer with a
walking strategy, and create vectors for each element in the list. For the scoring
part of EBSG, two score functions were evaluated, but they are used only one
at a time in EBSG, not together. The table shows that the two score functions
have very similar running times for each size of |Σ|, so choosing one over the
other will not affect the total time for EBSG.

Furthermore, the running time of pyRDF2Vec does not increase as much as
the running time of the materialization algorithm, when |Σ| increases. However,
looking at the mean time for pyRDf2Vec it suggests a small increase in running
time when |Σ| increases, but it is a less than 1% increase in time for each increase
in size. Considering that the embedding of triple-elements are independent of
the signature, this increase in time should not be significant.

Comparing the mean running time for the pyRDf2Vec part of EBSG and
the scoring part of EBSG, when |Σ| ≥ 5 the scoring will be the slowest part of
EBSG. For |Σ| = 5, the two parts of EBSG will have approximately the same
running time, and for |Σ| = 1 the scoring is fast compared to embedding. In
EBSG the triples are scored based on cosine similarity between triple-elements
and signature-elements. Increasing the size of Σ by one element, means that
another cosine similarity score has to be calculated for each triple-element,
which will slow down the scoring. For |Σ| = 10, the mean running time for
scoring is almost twice as large as for embedding.

Moreover, comparing the results in Table 6.2 and Table 6.3, the material-
ization algorithm is faster than pyRDF2Vec. Comparing mean running time
for |Σ| = 10, pyRDF2Vec is almost 10 times slower than materialization (with
random signature). One reason is that creating an embedding is a more complic-
ated task than locating triples that can be premises in RDFS rules. The scoring

34

6.2. Evaluation with ESBM∗

for RBSG is also faster than the scoring for EBSG. In EBSG, cosine scores have
to be calculated before the triples can be scored, while in RBSG the triples
can be scored immediately. During materialization, elements are added to a
dictionary used to calculate RBSG score. The time spent on adding elements
to this dictionary is subtracted from the materialization time. Including this
time would result in at least a two second increase in total running time for
RBSG, and at most a 15 second increase. Even with a 15 second increase, the
longest total time for RBSG (seed signature and |Σ| = 10), would be less than
the shortest total time for EBSG (Score MAX and |Σ| = 1)

Lastly, an earlier version of RBSG also included the shrinking algorithm.
The intention behind the shrinking algorithm was to decrease the time spent on
materialization, but an experiment showed that the shrinking algorithm was to
slow to be helpful. The materialization algorithm is also fairly fast on its own,
so the shrinking algorithm was disregarded. The results from the experiment
are presented and discussed in Appendix C.

6.2 Evaluation with ESBM∗

In this section we evaluate both approaches using an intrinsic method, that is we
directly measures the quality of our machine-generated snippets by comparing
them with human-made ground-truth snippets from our benchmark ESBM∗.

Let Sm be a machine-generated snippet and Sh a human-made snippet from
ESBM∗. Three popular information retrieval metrics for evaluation are:

Precision = |Sm ∩ Sh|
|Sm|

Recall = |Sm ∩ Sh|
|Sh|

F1 = 2 · Precision ·Recall

Precision + Recall

In our case |Sm| = |Sh|, hence Precision = Recall = F1. However, some
entity summarizers have the restriction that |Sm| ≤ k instead of |Sm| = k,
where k is the predefined entity summary size restriction. Then |Sm| ̸= |Sh| is
possible, which would cause Precision ̸= Recall, and hence F 1 score should be
used. Therefore we also use the F1 score as the evaluation metric.

We generated 99 snippets for each of our two approaches, using the signatures
from ESBM∗. Since the DBpedia datasets we used are very large, we created
smaller individual datasets for each signature, and generated snippets from
these smaller datasets. A dataset is composed of triples t, where at least one
x ∈ Ω(t) has maximal depth 2 from a q ∈ Σ. Then we calculated the F1 score
for each pair of machine-generated snippets and the ESBM∗ snippets. The
results are presented in Table 6.4.

35

6.2. Evaluation with ESBM∗

Extension type Entity Property Class All
k = 5 0.33 0.44 0.24 0.33
k = 10 0.20 0.26 0.20 0.22

Extension type Entity Property Class All
Score type max mean max mean max mean max mean
k = 5 0.15 0.08 0.33 0.13 0.07 0.05 0.18 0.09
k = 10 0.13 0.08 0.30 0.14 0.07 0.05 0.17 0.09

Table 6.4: Mean F1 score for snippets generated with RBSG (top) and EBSG
(bottom), for different signature extension types.

Extension type Entity Property Class All
Score type max mean max mean max mean max mean
k = 5 0.15 0.08 0.36 0.12 0.08 0.07 0.20 0.09
k = 10 0.12 0.08 0.27 0.12 0.08 0.06 0.16 0.09

Table 6.5: Mean F 1 score for snippets generated with EBSG using a materialized
graph, for different signature extension types.

Table 6.4 presents the mean F1 score for snippets generated with RBSG
and EBSG, for snippets in S{e,e} (the set of snippets created with a two-
entity signature), S{e,p} (the set of snippets created with a property-extended
signature), and S{e,c} (the set of snippets created with a class-extended
signature), as well as the overall mean score. For both approaches the snippets
in S{e,p} had the best scores, then the snippets in S{e,e}, and lastly the snippets
in S{e,c} had the worst scores. For most of the property-extended signatures,
at least two triples in the KG contained both signature elements. These triples
are typically included in ground-truth snippets because they are obviously very
related to the signature, and they are also given a high score in RBSG and
EBSG. Therefore, the more of these triples, the larger agreement between Sh

and Sm, and hence a higher F1 score. For many of the two-entity signatures,
two triples also existed with both signature elements, but for class-extended
signature at most one triple existed with both signature elements. Therefore the
triples in the snippets in S{e,c} are more difficult to chose, and the human-made
snippets are open for more individual differences.

Furthermore, RBSG performed better than EBSG for all signature extensions
and both k-values, except for S{e,p} with k = 10. In RBSG the KG is
materialized, which produces a richer graph with more knowledge. To investigate
how much RBSG benefitted from the richer graph compared to EBSG, we
computed new F1 scores for EBSG, but with materialized graphs as input to
RDF2Vec. Then, in RDF2Vec the embeddings were generated from a richer
graph, which could have improved the quality of the embeddings, and therefore
snippets, and hence resulted in a larger F 1 score. However, Table 6.5 shows that
this is not the case. The difference in mean F1 scores between Table 6.5 and
Table 6.4 are at most 0.03, and mainly 0 or 0.01, showing that a materialized

36

6.2. Evaluation with ESBM∗

graph does not improve the performance of EBSG. The only snippet set with a
small improvement in F 1 score is S{e,c}, which could be because four of the six
RDFS rules used in materialization, entail triples with class knowledge.

Another reason why RBSG performed better than EBSG could be that
in RBSG a triple t is scored in full, while in EBSG each x ∈ Ω(t) is scored
separately. Therefore, if one x ∈ Ω(t) is unrelated to some (or all) q ∈ Σ, t is
punished when scored in EBSG, but not in RBSG. Example 4.3.3 showed
that t2 = ⟨UiO, city, Oslo⟩ was punished for city not being related to
University ∈ Σ when scored in EBSG, even though UiO and Oslo were
related to Σ. On the other hand, in RBSG, if UiO and Oslo were the main
reason why t2 was good for reasoning, then city would not have affect the
score because t2 would have been scored in full.

In addition, the KG used for each signature contained triples t where one or
more x ∈ Ω(t) is in at most depth 2 from a q ∈ Σ. Having depth 3 or depth 4
instead might have been better, because more relationships between resources
would have been included, but then the benchmark evaluation would have been
very slow, because the KG would have been larger.

RBSG and EBSG cannot be compared to any of the entity summarizers
evaluated with ESBM, because the entity summarizers only work with entities
in the signature. Also, ESBM only contains summaries for single entities, so
the results in Table 6.4 are not directly comparable to the results in [Liu+20].
Nevertheless, for k = 5 RBSG performed better on ESBM∗ for two-entity
signatures and property-extended signature, than every entity summarizer
performed on ESBM. For RBSG with k = 10 and EBSG with both k value, the
results from the ESBM evaluation shows that both RBSG and EBSG have room
for improvement. RELIN [CTQ11] had the lowest F 1 score with F 1 = 0.455 for
k = 10 in the ESBM evaluation, which is significantly better than any F 1 score
for RBSG and EBSG for k = 10. However, the number of triples containing
a property or a class can greatly exceed the number of triples containing an
entity, making the summarization of a property or a class more difficult.

Lastly, RBSG favors ontology knowledge, like subclass and subproperty
relationships, in the snippets, since every RDFS rule includes a triple carrying
ontology knowledge. However, the human-made ESBM∗ snippets typically do
not contain ontology-triples, because ontology knowledge is more interesting for
a machine than a human. This also explains why the F 1 score is not better for
RBSG.

37

CHAPTER 7

Conclusions and Future Work

Many approaches for summarizing a KG given an entity or a collection of entities
have been developed over the last years, however summarizing a KG given a set
of entities, properties and classes had, to the best of our knowledge, not been
explored yet. In this thesis we proposed two approaches for KG summarization
given such a set: RBSG and EBSG. We scored each triple in the KG, and given
a size restriction k, we created a snippet for the KG from the k triples with the
highest score. For RBSG this score was based on reasoning, or more specifically,
materialization with RDFS rules. For EBSG the score was based on KGE, and
we chose RDF2Vec as the embedding method.

The experimental results regarding running time showed that RBSG is fairly
fast, but the running time increases when the size of the signature increases.
The materialization algorithm is the slowest part, but multiple techniques exist
to improve the performance of materialization. For example has parallelization
techniques been used in some approaches to make materialization with RDFS
rules more efficient [Sub+16; Tsa+21; Urb+10]. Including parallelization in
our materialization algorithm could be explored more in the future, in order to
decrease the running time of RBSG.

On the other hand, EBSG has room for improvement regarding running time.
The embeddings require a lot of time to be created, so reducing the number of
resources to embed would also reduce the running time. Similar to the general
properties in P ∗, some classes, for example Thing, could also automatically
be scored 0, instead of getting a cosine similarity score. This would also
decrease the scoring time, which gets very large as |Σ| increases. Testing other
implementation choices for the scoring functions could also decrease the time.
Moreover, for future work other embedding methods should also be explored.

Furthermore, the benchmark evaluation showed promising results for RBSG,
especially for k = 5. The results from the evaluation with ESBM, showed that
the more advanced entity summarizers performed better. Currently the scoring
in RBSG is very simple, so an interesting direction for future work would be to
create a more advanced scoring, where for example diversity between triples
are included.

The results from the benchmark evaluation of EBSG were not as promising
as for RBSG. However, it has been shown that the best walking strategy for
RDF2Vec varies for different tasks, and that tuning the strategy therefore is
important. With more testing of walking strategies, the performance could
be improved. Also, the current scoring in EBSG only includes relatedness to
signature. As with RBSG, including both diversity and relatedness between

38

triples in the scoring could improve the result.
In addition the benchmark itself could also be improved. It is small, with

only 99 snippets, and only includes one dataset. A good direction for future
work would be to make it as large as ESBM, with six people creating a snippet
given each signature, and also include more datasets, for example LinkedMDB.
Then the benchmark would be more robust, and the evaluation results less
affected by an individual opinion.

Lastly, the idea of reducing the size of the KG before materializing it was
quickly abandoned, because the shrinking algorithm was to slow, and not
significantly affected the size of the KG. However, some small changes could
have a positive effect on the running time. For example finding a good balance
of the sizes of GP and GO.

39

Appendices

40

APPENDIX A

RDFS Entailment Rules

Rule name Premise(s) Conclusion
rdfs1 x p l . where l a literal _ : bn rdf:type rdfs:Literal . where _ : bn a blank node

p rdfs:domain c .rdfs2
x p y . x rdf:type c .

p rdfs:range c .rdfs3
x p y . y rdf:type c .

rdfs4a x p y . x rdf:type rdfs:Resource .
rdfs4b x p y . y rdf:type rdfs:Resource .

p1 rdfs:subPropertyOf p2 .rdfs5
p2 rdfs:subPropertyOf p3 . p1 rdfs:subPropertyOf p3 .

rdfs6 p rdf:type rdf:Property . p rdfs:subProperty p .
p1 rdfs:subPropertyOf p2 .rdfs7
x p1 y . x p2 y .

rdfs8 c rdf:type rdfs:Class . c rdfs:subClassOf rdfs:Resource .
c1 rdfs:subClassOf c2 .rdfs9
x rdf:type c1 . x rdf:type c2 .

rdfs10 c rdf:type rdfs:Class . c rdfs:subClass c .
c1 rdfs:subClassOf c2 .rdfs11
c2 rdfs:subClassOf c3 . c1 rdfs:subClassOf c3 .

rdfs12 x rdf:type rdfs:ContainerMembershipProperty . x rdfs:subPropertyOf rdfs:member .
rdfs13 x rdf:type rdfs:Datatype . x rdfs:subClassOf rdfs:Literal .

Table A.1: The RDFS Entailment rules. Grey color indicates that the rule is
used in the materialization algorithm.

41

APPENDIX B

Properties with Similarity Score 0

• <http://purl.org/dc/terms/subject>
• <http://xmlns.com/foaf/0.1/homepage>

• <http://xmlns.com/foaf/0.1/depiction>

• <http://www.w3.org/2000/01/rdf-schema#label>
• <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

• <http://www.w3.org/2000/01/rdf-schema#seeAlso>

• <http://xmlns.com/foaf/0.1/name>

• <http://www.w3.org/2002/07/owl#differentFrom>

• <http://www.w3.org/2003/01/geo/wgs84_pos#lat>
• <http://www.w3.org/2003/01/geo/wgs84_pos#long>

• <http://www.georss.org/georss/point>
• <http://www.w3.org/2004/02/skos/core#subject>
• <http://xmlns.com/foaf/0.1/nick>

• <http://xmlns.com/foaf/0.1/givenName>

• <http://xmlns.com/foaf/0.1/page>

• <http://purl.org/dc/elements/1.1/description>

• <http://xmlns.com/foaf/0.1/surname>

• <http://purl.org/dc/elements/1.1/type>

• <http://xmlns.com/foaf/0.1/thumbnail>
• <http://xmlns.com/foaf/0.1/logo>

• <http://xmlns.com/foaf/0.1/familyName>

• <http://purl.org/dc/elements/1.1/rights>
• <http://dbpedia.org/ontology/category>

• <http://dbpedia.org/ontology/type>

• <http://dbpedia.org/ontology/otherName>

42

APPENDIX C

Evaluation of an Earlier Version of
RBSG

The first version of the RBSG approach consisted of the shrinking algorithm,
the materialization algorithm, and the scoring and ranking of triples. The
primary objective of the shrinking algorithm was to reduce the running time of
the materialization algorithm by creating a smaller graph for materialization.
However, the experiment with the shrinking algorithm below shows that the
RBSG approach works better without including the shrinking algorithm.

To evaluate the shrinking algorithm we performed a similar experiment as
in Section 6.1.1. For each of the three signature sizes |Σ| = 1, |Σ| = 5, and
|Σ| = 10, we created 25 signatures. Let G denote the original graph, G′ denote
the materialized graph, and Gs denote the output graph from running the
shrinking algorithm with G as input. For each of the signatures, we first ran
the materialization algorithm on G, then ran the shrinking algorithm on G,
and lastly we ran the materialization algorithm again, but on Gs. In each of
the 25× 3 = 75 executions, we timed the algorithms, and computed the size of
the output graphs. The experiment was performed first for random signatures,
then for seed signatures.

In early small trials with the shrinking algorithm, it tended to be very slow.
We therefore only ran the algorithms for 25 signatures, instead of 100, and used
a smaller graph than in Section 6.1.1. In this experiment we used graph with
size |G| = 14077. The results from the experiment are shown in Table C.1 and
Table C.2.

43

Algorithm Materialization Shrinking Materialization
Input graph G G Gs

|Σ| 1 5 10 1 5 10 1 5 10
min 0.17 0.31 0.42 69.57 71.30 71.36 0.16 0.28 0.39
max 0.42 0.72 0.98 94.52 82.26 81.22 0.35 0.46 0.91
mean 0.28 0.41 0.55 79.45 76.60 75.93 0.22 0.34 0.50

Algorithm Materialization Shrinking Materialization
Input graph G G Gs

|Σ| 1 5 10 1 5 10 1 5 10
min 0.20 0.29 0.36 71.05 68.40 70.43 0.17 0.27 0.36
max 0.42 0.55 1.16 81.15 95.17 87.68 0.38 0.68 1.00
mean 0.26 0.37 0.53 76.27 79.17 74.94 0.22 0.39 0.52

Table C.1: Running time (s) for the materialization algorithm and the shrinking
algorithm for random signature (top) and seed signature (bottom).

Algorithm Materialization Shrinking Materialization
Input graph G G Gs

|Σ| 1 5 10 1 5 10 1 5 10
min 0 +2 +3 -901 -901 -901 0 +2 +3
max +3 +6 +25 -901 -901 -901 +3 +6 +25
mean +0.60 +7.96 +15.56 -901 -901 -901 +0.60 +7.96 +15.56

Algorithm Materialization Shrinking Materialization
Input graph G G Gs

|Σ| 1 5 10 1 5 10 1 5 10
min 0 +1 +2 -901 -901 -901 0 +1 +2
max +3 +734 +739 -901 -855 -855 +3 +734 +739
mean +0.60 +80.56 +137.76 -901 -899.16 -895.48 +0.60 +80.56 +137.76

Table C.2: Size increase (+) and size reduction (-) between the input and the
output graph for the materialization algorithm and the shrinking algorithm, for
random signature (top) and seed signature (bottom).

Table C.1 presents the running time for the materialization algorithm with
the original graph G as input and the shrunken graph Gs as input. It also
presents the running time of the shrinking algorithm. The materialization
algorithm is faster with Gs as input, than G as input, but only with a few
centiseconds. |Σ| has a much larger effect on the materialization time than
using the shrinking algorithm first has.

Looking at the mean running time for the shrinking algorithm for both
random and seed signature, the values ranges between 74.94 and 79.45. Mean
running time for the materialization algorithm is less than one second for all
cases presented in the table. Therefore, even though materialization with a
shrunken graph is faster, the full RBSG approach will be considerably slower
if the shrinking algorithm is included. Also, the largest running time for

44

materializing G was 1.16 seconds, so the materialization algorithm is fairly fast
on its own.

Furthermore, Table C.2 presents how many new triples are generated
from materializing G and Gs, that is |G′| − |G| and |G′

s| − |Gs|, respectively.
Additionally it presents the number of triples that are removed using the
shrinking algorithm, that is |G| − |Gs|. First, note that |G′| − |G| = |G′

s| − |Gs|,
proving that using the shrinking algorithm first, does not exclude any important
triples from materialization. Second, for a random signature, 901 triples are
removed from G to make Gs, regardless of the signature size. This is only 6.4%
of the triples in G. At the same time, the running time for shrinking G and then
materializing it is between 10000% and 30000% longer than just materializing
G. Therefore using the shrinking algorithm produces only a small reduction of
triples in G, but a huge increase in the running time of RBSG, which is not
ideal.

The results does not show any signs that using a seed signature affects the
running time of the shrinking algorithm, compared to using a random signature.
The maximal size of Gs for |Σ| = 5 and |Σ| = 10 is larger when using a seed
signature than using a random signature (855 triples removed compared to 901
triples removed), but it is only a 46 triples difference. Therefore the shrinking
algorithm is not greatly affected by the signature type. In total the experiments
show that the shrinking algorithm is to slow to be helpful, compared to how
many triples where removed from the original KG. Therefore it only increased
the total time spent on the whole approach, and hence was not used any further.
The results also show that the materialization algorithm is fairly fast, and
can be used without shrinking the graph first. Table 6.2 showed that the
longest running time for the materialization algorithm with |G| = 46187 was
9.96 seconds (seed signature, |Σ| = 10), which is still significantly faster than
shrinking a graph that is only 1/3 of the size.

45

Bibliography

[BBP14] Benedetti, F., Bergamasch, S. and Po, L. ‘A Visual Summary
for Linked Open Data Sources’. In: Proceedings of the 2014
International Conference on Posters & Demonstrations Track -
Volume 1272. ISWC-PD’14. Riva del Garda, Italy: CEUR-WS.org,
2014, pp. 173–176.

[Bor+13] Bordes, A. et al. ‘Translating Embeddings for Modeling Multi-
Relational Data’. In: Proceedings of the 26th International Con-
ference on Neural Information Processing Systems - Volume 2.
NIPS’13. Lake Tahoe, Nevada: Curran Associates Inc., 2013,
pp. 2787–2795.

[Bos+22] Boschin, A. et al. ‘Combining Embeddings and Rules for Fact
Prediction’. In: Summer School on Artificial Intelligence in Bergen
(AIB). 2022.

[Che+17] Cheng, G. et al. ‘Generating Illustrative Snippets for Open Data
on the Web’. In: Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining. WSDM ’17. Cam-
bridge, United Kingdom: Association for Computing Machinery,
2017, pp. 151–159.

[Che+19] Chen, J. et al. ‘Towards More Usable Dataset Search: From Query
Characterization to Snippet Generation’. In: Proceedings of the
28th ACM International Conference on Information and Knowledge
Management. CIKM ’19. Beijing, China: Association for Computing
Machinery, 2019, pp. 2445–2448.

[CTQ11] Cheng, G., Tran, T. and Qu, Y. ‘RELIN: Relatedness and
Informativeness-Based Centrality for Entity Summarization’. In:
The Semantic Web – ISWC 2011. Ed. by Aroyo, L. et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 114–129.

[CXQ15a] Cheng, G., Xu, D. and Qu, Y. ‘C3d+ p: A summarization method
for interactive entity resolution’. In: Journal of Web Semantics
vol. 35 (2015), pp. 203–213.

[CXQ15b] Cheng, G., Xu, D. and Qu, Y. ‘Summarizing entity descriptions for
effective and efficient human-centered entity linking’. In: Proceedings
of the 24th International Conference on World Wide Web. 2015,
pp. 184–194.

46

Bibliography

[Dol+07] Dolby, J. et al. ‘Scalable Semantic Retrieval through Summarization
and Refinement’. In: Proceedings of the 22nd National Conference
on Artificial Intelligence - Volume 1. AAAI’07. Vancouver, British
Columbia, Canada: AAAI Press, 2007, pp. 299–304.

[GM10] Goodman, E. L. and Mizell, D. ‘Scalable in-memory RDFS closure
on billions of triples’. In: The 6th International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS2010). 2010,
p. 17.

[GTS15] Gunaratna, K., Thirunarayan, K. and Sheth, A. ‘FACES: Diversity-
Aware Entity Summarization Using Incremental Hierarchical
Conceptual Clustering’. In: Proceedings of the AAAI Conference
on Artificial Intelligence vol. 29, no. 1 (Feb. 2015).

[Gun+17] Gunaratna, K. et al. ‘Relatedness-based multi-entity summariz-
ation’. In: IJCAI: proceedings of the conference. Vol. 2017. NIH
Public Access. 2017, p. 1060.

[Hog+21] Hogan, A. et al. ‘Knowledge Graphs’. In: ACM Comput. Surv.
vol. 54, no. 4 (July 2021).

[KNB18] Kroll, H., Nagel, D. and Balke, W.-T. ‘BAFREC: Balancing
Frequency and Rarity for Entity Characterization in Open Linked
Data’. In: Proceedings of 1st International Workshop on Entity
Retrieval, co-located with CIKM 2018 (EYRE). 2018.

[KP18] Kazemi, S. M. and Poole, D. ‘SimplE Embedding for Link Prediction
in Knowledge Graphs’. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems. NIPS’18.
Montréal, Canada: Curran Associates Inc., 2018, pp. 4289–4300.

[KW17] Kipf, T. N. and Welling, M. ‘Semi-Supervised Classification with
Graph Convolutional Networks’. In: 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[Liu+20] Liu, Q. et al. ‘ESBM: An Entity Summarization BenchMark’.
In: The Semantic Web. Ed. by Harth, A. et al. Cham: Springer
International Publishing, 2020, pp. 548–564.

[Liu+21] Liu, Q. et al. ‘Entity Summarization: State of the Art and Future
Challenges’. In: Journal of Web Semantics vol. 69 (2021), p. 100647.

[Mik+13] Mikolov, T. et al. ‘Efficient Estimation of Word Representations in
Vector Space’. In: International Conference on Learning Represent-
ations. 2013.

[NTK11] Nickel, M., Tresp, V. and Kriegel, H.-P. ‘A Three-Way Model for
Collective Learning on Multi-Relational Data’. In: International
Conference on Machine Learning. 2011.

[Pau23] Paulheim, H. RDF2vec.org. Last accessed 25 October 2023. 2023.
[Rie+14] Rietveld, L. et al. ‘Structural Properties as Proxy for Semantic

Relevance in RDF Graph Sampling’. In: The Semantic Web – ISWC
2014: 13th International Semantic Web Conference, Riva Del Garda,
Italy, October 19-23, 2014. Proceedings, Part II. Riva del Garda,
Italy: Springer-Verlag, 2014, pp. 81–96.

47

Bibliography

[Ris+19] Ristoski, P. et al. ‘RDF2Vec: RDF graph embeddings and their
applications’. In: Semantic Web vol. 10 (2019), pp. 721–752.

[RP16] Ristoski, P. and Paulheim, H. ‘RDF2Vec: RDF Graph Embeddings
for Data Mining’. In: The Semantic Web – ISWC 2016. Ed. by
Groth, P. et al. Cham: Springer International Publishing, 2016,
pp. 498–514.

[Sch+18] Schlichtkrull, M. et al. ‘Modeling Relational Data with Graph
Convolutional Networks’. In: The Semantic Web. Cham: Springer
International Publishing, 2018, pp. 593–607.

[Soc+13] Socher, R. et al. ‘Reasoning with Neural Tensor Networks for Know-
ledge Base Completion’. In: Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume
1. NIPS’13. Lake Tahoe, Nevada: Curran Associates Inc., 2013,
pp. 926–934.

[Ste+23] Steenwinckel, B. et al. ‘pyRDF2Vec: A Python Implementation and
Extension of RDF2Vec’. In: European Semantic Web Conference.
Springer Nature Switzerland, 2023, pp. 471–483.

[Sub+16] Subercaze, J. et al. ‘Inferray: Fast in-Memory RDF Inference’. In:
Proceedings of the VLDB Endowment vol. 9, no. 6 (Jan. 2016),
pp. 468–479.

[Suc+19] Suchanek, F. M. et al. ‘Knowledge Representation and Rule Mining
in Entity-Centric Knowledge Bases’. In: Reasoning Web. 2019.

[Sun+19] Sun, Z. et al. ‘RotatE: Knowledge Graph Embedding by Relational
Rotation in Complex Space’. In: International Conference on
Learning Representations. 2019.

[Tro+16] Trouillon, T. et al. ‘Complex Embeddings for Simple Link Predic-
tion’. In: Proceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning - Volume 48. ICML’16.
New York, NY, USA: JMLR.org, 2016, pp. 2071–2080.

[Tsa+21] Tsamoura, E. et al. ‘Materializing Knowledge Bases via Trigger
Graphs’. In: Proceedings of the VLDB Endowment (2021), pp. 943–
956.

[Urb+10] Urbani, J. et al. ‘OWL Reasoning with WebPIE: Calculating the
Closure of 100 Billion Triples’. In: The Semantic Web: Research and
Applications. Ed. by Aroyo, L. et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 213–227.

[Wan+14] Wang, Z. et al. ‘Knowledge Graph Embedding by Translating
on Hyperplanes’. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence. AAAI’14. Québec City,
Québec, Canada: AAAI Press, 2014, pp. 1112–1119.

[WCK19] Wang, X., Cheng, G. and Kharlamov, E. ‘Towards Multi-Facet
Snippets for Dataset Search’. In: Joint Proceedings of PROFILES
2019 and SEMEX 2019, The 6th International Workshop on Dataset
PROFlLing and Search (PROFILES 2019), co-located with the 18th
International Semantic Web Conference (ISWC ’19). PROFILES-
SEMEX 2019. CEUR-WS. Auckland, New Zealand, 2019, pp. 1–
6.

48

Bibliography

[Yan+15] Yang, B. et al. ‘Embedding Entities and Relations for Learning and
Inference in Knowledge Bases’. In: 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings. Ed. by Bengio, Y. and
LeCun, Y. 2015.

[ZZC12] Zhang, L., Zhang, Y. and Chen, Y. ‘Summarizing Highly Structured
Documents for Effective Search Interaction’. In: Proceedings of
the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’12. Portland, Oregon,
USA: Association for Computing Machinery, 2012, pp. 145–154.

49

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Data Model
	Knowledge Graph
	Knowledge Graph Summarization

	Related Work
	Snippet Generation
	Entity Summarization
	Knowledge Graph Embedding

	Approaches
	Problem Definition
	Reasoning Based Snippet Generation (RBSG)
	RDFS Entailment Rules
	Materialization with RDFS Rules
	RBSG Score
	Knowledge Graph Size Reduction

	Embedding Based Snippet Generation (EBSG)
	The RDF2Vec Tool
	Snippet Generation with RDF2Vec
	EBSG Score

	Benchmark
	ESBM
	ESBM*, An Extension of ESBM
	Extended Signature
	Triple Selection

	ESBM* Statistics
	Discussion

	Evaluation
	Evaluation of Graph Size and Running Time
	Size of Materialized Graph
	Running Time of Algorithms

	Evaluation with ESBM*

	Conclusions and Future Work
	Appendices
	RDFS Entailment Rules
	Properties with Similarity Score 0
	Evaluation of an Earlier Version of RBSG
	Bibliography

