
Comparison of Finite Element Methods

for the Navier-Stokes Equations

by

Arne Jørgen Arnesen

MASTER THESIS

for the degree of

Master in Computational Science and Engineering

Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

June 25, 2010

3

Acknowledgment

This thesis was written in the periode August 2009 to June 2010. As a part of the
requirement for the degree of Master in Computational Science and Engineering
at the Faculty of Mathematics and Natural Sciences,University of Oslo.

First of all, I wish to thank my supervisors Kent-André Mardal and Kristian
Valen-Sendstad for their advice and support. They have always been available
for questions and discussions. Thanks to people at Simula Research Laboratory.
Finally, I wish to thank all my family and friends, especially my parents Gina
and Willy for constant support through the years.

Arne Jørgen Arnesen
Oslo, Juni 2010

Contents

1 Introduction 7

2 The Mathematical Model 9

2.1 Conservation of mass . 9

2.2 Conservation of momentum . 10

3 Test problems and Exact solutions 13

3.1 Classical CFD Problems . 13

3.1.1 Plane Poiseuille Flow . 13

3.1.2 Driven Cavity . 14

3.1.3 Plane Couette Flow . 15

3.2 Manufactured solutions . 16

3.2.1 2D Exampel . 16

3.2.2 3D Exampel . 17

4 Numerical methods 19

4.1 Finite Element Method . 19

4.1.1 Weak Formulation . 20

4.1.2 FEM Formulation . 23

4.2 Projection Algorithms . 25

4.2.1 Semi Implicit Projection Method 25

4.2.2 Results and Error Estimate Projection Method 27

4.3 Mixed methods and The Stokes Problem 28

4.3.1 Mixed Formulation of Navier-Stokes Equations 29

4.3.2 Results and Error Estimate Mixed Method 30

4.4 Iterativ Methods . 30

4.4.1 The Richardson Iteration 31

4.5 Preconditioning . 32

4.5.1 Abstract Motivation . 33

4.6 Algebraic Multigrid Method . 34

5

6 CONTENTS

5 Software tools 35

5.1 The Vascular Modeling Toolkit (VMTK) 35
5.2 FEniCS Project . 38
5.3 MESHBUILDER . 39
5.4 GMSH . 39

6 Simulations and results 41

6.1 Poisson Problems . 41
6.1.1 Implementation Packages 42
6.1.2 Simulations . 43
6.1.3 Results . 44

6.2 Manufactured solutions . 45
6.2.1 The time dependent Stokes Problem 46
6.2.2 The Navier Stokes Problem 48
6.2.3 Block Preconditioner . 50

6.3 Aneurysm Simulation . 52
6.3.1 Simulation . 53
6.3.2 Result . 54

7 Conclusion and Further Research 55

A Implementation 59

A.1 Poisson Problem . 59
A.2 Projection Algorithm . 64
A.3 Mixed Finite Elements Algorithm 69

Chapter 1

Introduction

The development of numerical methods to simulate fluid flows with applications,
has been a research area of great progress over the past half-century. In Scientific
Computing, numerical approaches for solving differential equations is one of the
cornerstones. The goal is to find a numerical solution that approximates the
solution of the differential equation in a best possible manner. A combination
of accuracy and efficiency is key components in any well-developed algorithm for
solving numerical problems.

We shall in this thesis study approximations of Navier-Stokes equations, which
describe incompressible Newtonian viscous fluid flow. These equations are based
on general conservation laws for a continuum, described in detail in Chapter 2.
The main objective of this thesis is to apply numerical solution strategies and
perform simulations of the Navier-Stokes equations. Today there are many open
questions concerning this topic, and there exist many research groups designing
new and improved numerical approaches for these equations. Due to the limited
time frame, we have made a choice to concentrate on an operator-splitting ap-
proach, and a mixed finite element discretizing of the Navier-Stokes equations
(Chapter 4). There are major differences in the setup of these two methods, and
we want to evaluate the properties of each of them. The focus will be to measure
the processor time (CPU time) and determine the accuracy using error estimates,
and then compare the results.

The Finite Element Method (FEM) will be employed for solving our Compu-
tational Fluid Dynamic (CFD) problems. An important strength of the Finite
Element Method is its flexibility to handle geometrically complicated domains.
We will take advantage of this property when we look closer into the main ap-
plication in this thesis. This is to perform aneurysm simulations of flow in blood
vessels (Chapter 6.3). However, before we go into this very interesting topic, it
is necessary to verify the implementations. In Chapter 3 we test our solution
algorithms up against well-known theory in fluid mechanics. The simulations
of the classical computational fluid dynamic problems are given in Chapter 3.1.
Another important verification is the convergence of the solution when we refine

7

8 CHAPTER 1. INTRODUCTION

the domain. The method of manufactured solutions is applied for this purpose,
and is explained further in Chapter 3.2.

It requires sophisticated software applications to deal with such a complex
domain as a blood vessel. We need programs that reconstructs image-based
medical data, and also generate a surface mesh that can be computed. A brief
description of the software tools used in the thesis is given in Chapter 5. To
implement the Navier-Stokes equations with a Finite Element Method approach,
we have taken advantage of an automated solution software. The programming
language applied is Python, and the Finite Element simulations are done with
the FEniCS Project and its interface Dolfin.

Chapter 2

The Mathematical Model

The aim of this chapter is to formally derive equations governing the motion of an
incompressible Newtonian fluid. In the literature, the resulting equations are of-
ten referred to as the incompressible Navier-Stokes equations. The equations are
derived from the principles of conservation of mass and momentum, and we will
apply the Reynolds transport theorem in the formulation of these conservation
principles.

The general case of the Reynolds transport theorem from [11] see e.g. states
that,

d

dt

∫

V (t)

f dV =

∫

V (t)

∂f

∂t
dV +

∫

∂V (t)

(v · n)f ds. (2.1)

Where V (t) is neither a fixed volume or a material volume, with boundary surface
∂V (t) moving. Here n is the outward unit normal, v represent the velocity field
at the moving boundary, and f(x, t) is a vector field.

For a fixed volume (2.1) becomes,

d

dt

∫

V

f dV =

∫

V

∂f

∂t
dV, (2.2)

since v = 0 at the fixed boundary, and V is not a function of time in this case.

2.1 Conservation of mass

Consider a fixed domain occupied by a fluid inside a closed surface ∂Ω enclosing
Ω. The velocity of the fluid can be described by a vector field u(x, t) and the
density ρ(x, t). The total mass of the fluid inside Ω is

∫

Ω
ρ dΩ. The rate of

change of mass inside Ω is given by,

d

dt

∫

Ω

ρ dΩ =

∫

Ω

∂ρ

∂t
dΩ, (2.3)

9

10 CHAPTER 2. THE MATHEMATICAL MODEL

since the volume is fixed (2.2) is valid.
The amount of fluid flowing out of Ω through ∂Ω is given by,

∫

∂Ω

ρu · n ds. (2.4)

Here n is the outward unit normal vector of the surface.

The principle of conservation of mass states that:

The time rate of change of mass in a fixed Ω equals
the amount of fluid flowing through ∂Ω.

Mathematically expressed in a integral form for a fixed domain;

∫

Ω

∂ρ

∂t
dΩ = −

∫

∂Ω

ρu · n ds. (2.5)

The divergence theorem may be applied to the surface integral in (2.5), chang-
ing it into a volume integral,

∫

Ω

∂ρ

∂t
+ ∇ · (ρu) dΩ = 0. (2.6)

Since this is valid for an arbitrary domain Ω it follows that,

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.7)

which is called the continuity equation and expresses the differential form of the
principle of conservation of mass.

For the special case of an incompressible fluid flow (density constant), the conti-
nuity equation reduces to:

div(u) = ∇ · u = 0 (2.8)

2.2 Conservation of momentum

Conservation of momentum also commonly known as Newton′s second law F =
ma. According to this law, the time rate of change of momentum is equal to the
sum of forces F acting on the fluid. Writing momentum as

∫

Ω
ρu dΩ we get,

D

Dt

∫

Ω

ρu dΩ = F. (2.9)

2.2. CONSERVATION OF MOMENTUM 11

The particle derivative operator is defined as,

D(·)

Dt
:=

∂(·)

∂t
+ (u · ∇)(·) (2.10)

where u is the velocity of the fluid.

We divide the sum of forces F , into two new terms:

• volume forces (ex: gravity)

• surface forces(ex: stress)

Then (2.9) becomes;

D

Dt

∫

Ω

ρu dΩ =

∫

∂Ω

σ · n ds +

∫

Ω

ρf dΩ (2.11)

where σ is the stress tensor, f present gravity and n is the outward unit normal
vector.

The divergence theorem may be applied to the surface integral (2.11), chang-
ing it into a volume integral, and in addition apply the particle derivative (2.10)
for a fixed volume,

∫

Ω

∂

∂t
(ρu) + (u · ∇)(ρu) dΩ =

∫

Ω

(

∇ · σ + ρf
)

dΩ (2.12)

where (2.12) represents a system of 3 equations with 12 unknown. For further
derivation we need some information about the stress tensor σ.

For a Newtonian viscous fluid we split the stress tensor σ into normal stresses
and shear stresses τ , and we have a linear coupling between stress and strain
called the constitutive law for a Newtonian fluid. The stress tensor can then be
seen as;

σ = −pI + τ = (−p + λ∇ · u)I + 2µǫ,

where

ǫ =
1

2
[∇u + (∇u)T]. (2.13)

Here ǫ is the strain tensor, p is the pressure and µ, λ are parameters describing
viscosity.

For the special case of an incompressible fluid, the strain tensor (2.13) is
simplified, since the viscosity parameters µ, λ will be constant. Also applying the
continuity property (2.8), we get;

∇ · σ = ∇ · (−p + λ∇ · u)I + ∇ · 2µǫ = −∇p + µ∆u. (2.14)

12 CHAPTER 2. THE MATHEMATICAL MODEL

Now, setting the simplified expression for ∇ · σ into (2.12),

∫

Ω

ρ(
∂u

∂t
+ (u · ∇)u) dΩ =

∫

Ω

−∇p + µ∇2u + ρf dΩ (2.15)

where density ρ constant. Since this is valid for an arbitrary domain Ω it follows
that,

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p + ν∇2u + f (2.16)

∇ · u = 0 (2.17)

here ν = µ

ρ
is the kinematic viscosity.

We have derived the Navier-Stokes equations above for an incompressible
Newtonian viscous fluid, from the conservation laws of mass and momentum.

Chapter 3

Test problems and Exact solutions

The Navier-Stokes equations can be solved exactly for very simple cases. Un-
der certain assumptions, existence and uniqueness of weak solutions exists. The
problem is that there is no general mathematical theory for these equations. This
is called the Navier- Stokes existence and smoothness problem, and are one of the
Millennium Prize Problems [7]. This means that to find general solutions and
existence of these, is far beyond the scope of the present thesis :)

The purpose of this chapter is to perform simulations of some selected test
problems, and verify the numerical methods that are implemented. Our first
experiments concerns verification of correct flow structure of some classical com-
putational fluid dynamic problems, known from the theory of fluid mechanics.

Next we will apply the method of manufactured solutions. This method is
based on constructing an artificial known solution. Then inserted into the equa-
tion of interest to reproduce the known solution. Declaration of the manufactured
solutions are given in Chapter 3.2, while the simulation results are moved to Chap-
ter 6.2. The simulations below are based on the numerical methods described in
Chapter 4.

3.1 Classical CFD Problems

3.1.1 Plane Poiseuille Flow

Plane Poiseuille flow describes the laminar flow of a viscous fluid between parallel
plates, with a pressure drop along the length of the plates. The fluid flows from
high to low pressure with no-slip condition (fluid have zero velocity relative to
the boundary) on the plates, exerting a shear stress on the plates in the direction
of the flow.

Observe from the simulation in Figure 3.1 that the velocity profile is parabolic,
and the fluid achieves the highest speed in the center between the two plates. This

13

14 CHAPTER 3. TEST PROBLEMS AND EXACT SOLUTIONS

Figure 3.1: Plane Poiseuille flow driven by an externally imposed pressure gradient (dp

dx
< 0)

on a 2D domain Ω = [0, 1]× [0, 1], between two stationary plats.

confirms the theory of Chapter 9.4 in [11].

3.1.2 Driven Cavity

Imagine a square infinitely long container filled with a viscous fluid, and the fluid
is initially at rest. We have simulated the flow of an incompressible viscous fluid
in a 2D square domain for the time t ∈ [0, T]. Here we have T = 10.0 in this case.
The lid (top plate) of the container is instantaneously set from zero to a certain
velocity, and this will launch the fluid movement. Imposes no-slip conditions
on all boundary walls with the exception of the top boundary that moves in x-
direction at speed 1.0.

Figure 3.2: Lid driven cavity flow by a top plate moving in x- direction, at final steady state
and ν = 1.0 on a 2D domain Ω = [0, 1]× [0, 1].

Figure 3.2 and Figure 3.3 show the velocity field for two different viscosities(ν =
1.0, 0.1) at a given time. Observe the difference in the flow structure of the two
figures. From literature in Chapter 5.1 in [6], the simulations are verified.

3.1. CLASSICAL CFD PROBLEMS 15

Figure 3.3: Lid driven cavity flow by a top plate moving in x- direction, at final steady state
and ν = 0.1 on a 2D domain Ω = [0, 1]× [0, 1].

3.1.3 Plane Couette Flow

Plane Couette flow is a laminar flow of a viscous fluid. It is a steady flow between
two parallel plates where the bottom plate is stationary while the top plate moves
with a constant velocity in x- direction. In the simulated case below the pressure
gradient is zero and the only force on the fluid is due to the moving top plate
i.e the flow driven by the motion of the upper plate. This can of course be
generalized by applying a pressure gradient in the direction parallel to the plates.

Figure 3.4: Plane Couette flow driven by an externally imposed moving top plate, without
externally pressure gradient (dp

dx
= 0), between two stationary plats on a 2D domain Ω =

[0, 1]× [0, 1].

Observe from the simulation Figure 3.4 that the viscosity at the top and
bottom plates makes the fluid stick to the boundary which is why a shear develops
within the interior of the fluid. The top plate moves and the bottom plate have

16 CHAPTER 3. TEST PROBLEMS AND EXACT SOLUTIONS

no-slip condition. From theory (Chapter 9.4 in [11]) the exact solution of Couette
problems reduce to a linear velocity profile u(y) = y U , where U represent velocity
in x- direction. In our case U = 1.0.

Results:

The simulations of the three test problems confirm the correct flow structure
compared with the theory in fluid mechanics [6], [11] and [17]. We are pleased
with this result, and continues with verification of convergence in the next section.

3.2 Manufactured solutions

The method of manufactured solution is a technique by which numerical methods
can be verified to ensure that the implementation have been coded correctly. The
method is based on selecting an artificial solution which is adapted such that it
satisfies the governing equation. In our case it is required that the solution is
chosen divergence free. Then we insert the artificial solution into the equation,
and from this we can determine a source term f (to calculate f , see Chapter 3.2.1).
By inserting the source term into the equation, we can solve it.The purpose is
to recreate the artificial solution, and achieve convergence as we refines the grid
resolution.

3.2.1 2D Exampel

The purpose is to solve the two following problems with the method of manufac-
tured solutions, and hopefully achieve convergence.

The time dependent Stokes Problem,

ut − ν∆u −∇p = f (3.1)

∇ · u = 0

and the Navier- Stokes Problem,

ut + (u · ∇u) − ν∆u −∇p = f (3.2)

∇ · u = 0.

The artificial solution is defined as follows,

u =

[

u1

u2

]

=

[

sin(y)
sin(x)

]

(3.3)

and

∇p = −pgrad

3.2. MANUFACTURED SOLUTIONS 17

Observe from (3.3) that the velocity solution is divergence free. The pressure
gradient ∇p = 1.0.

We can now calculate the source terms;

f = ut − ν∆u−∇p =

[

ν sin(y) + pgrad

ν sin(x)

]

(3.4)

f = ut + (u · ∇u) − ν∆u−∇p =

[

sin(x) cos(y) + ν sin(y) + pgrad

sin(y) cos(x) + ν sin(x)

]

(3.5)

Results of the simulations are printed in Chapter 6.2.

3.2.2 3D Exampel

The artificial solution in the 3D case is defined as follows,

u =

u1

u2

u3

 =

sin(y)
sin(x)

0

 (3.6)

and

∇p = −pgrad

Observe from (3.6) that the velocity solution is divergence free. The pressure
gradient ∇p = 1.0.

We can then calculate the source terms;

f = ut − ν∆u−∇p =

ν sin(y) + pgrad

ν sin(x)
0

 (3.7)

f = ut + (u · ∇u) − ν∆u−∇p =

sin(x) cos(y) + ν sin(y) + pgrad

sin(y) cos(x) + ν sin(x)
0

 (3.8)

Results of the simulations are printed in Chapter 6.2.

Chapter 4

Numerical methods

The established model for viscous Newtonian incompressible fluid flow is given
by the Navier-Stokes equations derived earlier. The aim of this chapter is to
apply numerical solution strategies for solving this set of equations. Performing
computational modeling on a physical problem where high precision is essential,
requires large computer resources. This is due to large linear systems that may
contain millions of unknown.

Development of numerical methods for incompressible viscous fluid flow is
a field of great progress these days. This can be seen as an underlying topic of
computational fluid dynamics (CFD), which is very important in modern industry
and science. The search for a numerical method that is efficient, stable and at
the same time can handle complex geometries are important properties in this
context. The Finite Element Method (FEM) will be discussed in the next section,
and this method is very flexible and can be adopted to complicated domains. It
also has a very smooth setup.

Further, two common ways of discretizing the Navier-Stokes equations will
be introduced and derived. To speed up the solution algorithms we will discuss
the incorporation of iterative solution methods and preconditioning, and finally
present an order-optimal method for large systems of linear equations.

4.1 Finite Element Method

In this section we will apply the finite element method on the Navier-Stokes
equations,

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p + ν∇2

u + f in Ω (4.1)

∇ · u = 0 in Ω, (4.2)

combined with proper boundary conditions.

19

20 CHAPTER 4. NUMERICAL METHODS

4.1.1 Weak Formulation

The weak formulation is based on transforming (4.1) and (4.2) into a variational
problem, also called the weak formulation.This transformation is mainly done
because in many cases we can not find a sufficiently smooth enough classical
solution, satisfying the differential equation we want to solve in the proper space.
A clever way to find solutions for such problems that arise frequently in applied
mathematics, is to seek the weak solution of the problem. We seek an integral
solution with lower regularity in a less restricted space. With this formulation
we require the use of function spaces, specifically Sobolev function spaces. For a
more detailed description of Sobolev spaces and their properties see [5].

Definitions and Notation needed further in the document

.

• Let X be a real linear space. A mapping || || : X →
[

0,∞
)

is called a norm
if,
i) ||u + v|| ≤ ||u|| + ||v|| ∀ u, v ∈ X.
ii) ||αu|| = |α| ||u|| ∀ u ∈ X, α ∈ R.
iii) ||u|| = 0 if and only if u = 0.

• Let V be a real linear space. A mapping (,) : V × V → R is called an
inner product if,
i) symmetric i.e (u, v) = (v, u) ∀ u, v ∈ V.
ii) bilinear
iii) (u, u) ≥ 0 ∀ u ∈ V.
iv) (u, u) = 0 if and only if u = 0.

• The associated norm and inner product is ||u|| = (u, u)
1

2 , and
the Cauchy- Schwarz inequality states |(u, v)| ≤ ||u|| ||v||.

• A Hilbert space H is a Banach space (complete, normed linear space) pro-
vided with an inner product which generates the norm.

• Hm is a Sobolev space of functions on Ω with m derivatives in L2 and we
use the simpler notation ||·||m instead of ||·||Hm .

• The dual space (see [5]) of Hm
0 with respect to the L2 inner product will be

denoted by H−m.

• The spaces involving time are defined by,

||u||L2(0,T ;X) = (

∫ T

0

||u(t)||2X dt)
1

2 ,

4.1. FINITE ELEMENT METHOD 21

where ||·||X is the spatial norm in the space X.

Inner products

(u, v) =

∫

Ω

u · v dx (4.3)

(u,v) =

∫

Ω

u · v dx (4.4)

Lebesque and Sobolev function spaces

L2(Ω) :=
{

u : Ω → R

∣

∣

∣

∫

Ω

u2 < ∞
}

(4.5)

L
2(Ω) :=

{

u : Ω → R
d
∣

∣

∣
ui ∈ L2 ∀ i

}

(4.6)

H1(Ω) :=
{

u : Ω → R

∣

∣

∣

∫

Ω

(u2 + ∇u2) < ∞
}

(4.7)

H
1(Ω) :=

{

u : Ω → R
d
∣

∣

∣
ui ∈ H1 ∀ i

}

(4.8)

L2
0 :=

{

u ∈ L2
∣

∣

∣

∫

Ω

u = 0
}

(4.9)

H1
0 :=

{

u ∈ H1
∣

∣

∣
u = 0 on ∂Ω

}

(4.10)

Function Spaces

In general when we look at a continuous problem, we devote the domain (val-
ues for which the function is defined) by Ω. In the weak formulation we now
assume V to be a function space where we seek our solution of the variational
problem. Later as we will see in the FEM formulation, V is replaced by the
finite dimensional subspace Vh. Where the parameter h represents the scale of
the discretization. This discrete function space Vh, is usually in FEM formulation
constructed by low degree piecewise continuous polynomials.

To derive a weak formulation of the Navier-Stokes equations we require a set
of test functions v and a set of test functions q, chosen respectively in proper
function spaces. By multiplying (4.1) by a test function v and (4.2) by a test

22 CHAPTER 4. NUMERICAL METHODS

function q, and integrate over the domain Ω we get,

∫

Ω

(∂u

∂t
+ u · ∇u

)

· v dΩ =

∫

Ω

(

−
1

ρ
∇p + ν∇2

u

)

· v dΩ +

∫

Ω

f · v dΩ
∫

Ω

q
(

∇ · u
)

dΩ = 0.

Performing integration by part of the first term on the right hand side of the
momentum equation,

−

∫

Ω

1

ρ
∇p · v dΩ =

1

ρ

(

∫

Ω

p∇ · v dΩ −

∫

∂Ω

pv · n ds
)

∫

Ω

ν∇2
u · v dΩ = ν

(

−

∫

Ω

∇u : ∇v dΩ +

∫

∂Ω

∂u

∂n
v ds

)

Where n is the outward unit normal to ∂Ω. We end up with the following,

(
∂u

∂t
,v) + (u · ∇u,v) + ν(∇u,∇v) −

1

ρ
(p,∇ · v) = (f ,v) + ν(

∂u

∂n
,v)∂Ω −

1

ρ
(pn,v)∂Ω

(q,∇ · u) = 0. (4.11)

Observe now, the integration by part has lowered the degree on the differential
operators for both unknown u and p. Thus we can seek a solution in a larger
space, with less regularity than in the original problem (4.1) and (4.2).

With a proper choice of test functions with appropriate boundary conditions
defined on the boundary, we can simplify the expression (4.11) even more.By
introducing an abstract formulation, we can rewrite the problem as follows with
homogeneous boundary conditions.

Find u ∈ L2(0, T ; [H1
0(Ω)]d), with u

′ ∈ L2(0, T ; [H−1(Ω)]d) and p ∈ L2(0, T ; L2
0(Ω))

such that,

a(u,v) + b(p,v) = f(v), ∀ v ∈ [H1
0 (Ω)]d, a.e. t ∈ [0, T] (4.12)

b(q,u) = 0, ∀ q ∈ L2
0(Ω), a.e. t ∈ [0, T] (4.13)

where

a(u,v) = (
∂u

∂t
,v) + (u · ∇u,v) + ν(∇u,∇v)

b(p,v) = (p,∇ · v)

f(v) = (f,v).

4.1. FINITE ELEMENT METHOD 23

Observe that the boundary-value problem (4.12), (4.13) is defined such that the
boundary terms in (4.11) vanish on ∂Ω. This is because we have chosen the ap-
propriate function spaces H1

0 and L2
0.

To summarize, (4.12) and (4.13) has a possible solution called the weak solu-
tion that does not need to be a classical solution. However, if there exist a classical
solution of the problem above, then (4.1) and (4.2) is equivalent to (4.12) and
(4.13) when we require homogeneous boundary conditions. The procedure of de-
riving the weak formulation in this section, is intuitive and easy to extend to the
finite element formulation in the next section.

4.1.2 FEM Formulation

The purpose in this section is to find an approximated solution in finite dimen-
sional subspaces of the weak formulation from the previous section. The dis-
cretized version will be an intuitive transition from the established weak formu-
lation.

In finite element literature the unknown function to be approximated is re-
ferred to as a trial function, and the function we multiply the equation with is
called a test function. In general, the continuous domain Ω is partitioned into
a number of cells such that Ωh =

⋃Ne

e=1 Ωe, where Ωh is an approximation of Ω.
This is also called a grid. The parameter h represents the scale of the discretiza-
tion, and determines the grid refinement. Grid vertices are denoted xi. The cells
are typically shaped as simple polygons such as intervals(1D), triangles(2D) or
tetrahedra(3D). However, other shapes are also possible.

A key point in the finite element method is to specify suitable function spaces
for the test and trial functions. The function spaces are constructed of lower order
polynomials. More precisely, they are based on piecewise continuous low order
polynomials over a single cell Ωe. The composition of a single cell with a suitable
chosen function space with some specific properties is called a finite element [2].
The most widely used finite elements are the Lagrange elements [9], and Figure
4.1 and Figure 4.2 show respectively first order and second order Lagrange finite
elements.

Suppose that we have Vh ⊂ H1
0 and Qh ⊂ L2

0 with respective finite dimensions
NV and NQ, and assume further that these subspaces consists of linearly inde-
pendent functions which forms a basis. We can then seek approximations of u

and p respectively in the subspaces Vh and Qh. Expressed as a linear combination
of basis functions vi spanning the space [Vh]

d and qi spanning the space Qh such

24 CHAPTER 4. NUMERICAL METHODS

Figure 4.1: First order Lagrange finite elements in 1D,2D and 3D.

Figure 4.2: Second order Lagrange finite elements in 1D,2D and 3D.

that,

u ≈ uh(t) =

NV
∑

i=1

ui(t)vi(x) (4.14)

p ≈ ph(t) =

NQ
∑

i=1

pi(t)qi(x). (4.15)

The finite element formulation is defined as follows:

Find uh ∈ L2(0, T ; [Vh(Ω)]d), with u
′
h ∈ L2(0, T ; [Vh(Ω)]d) and ph ∈ L2(0, T ; Qh(Ω))

such that

a(uh,vh) + b(ph,vh) = f(vh), ∀ vh ∈ [Vh(Ω)]d, a.e. t ∈ [0, T] (4.16)

b(qh,uh) = 0, ∀ qh ∈ Qh, a.e. t ∈ [0, T] (4.17)

By performing a spatial discretization we can write the element formulation
as a block system,

[

ut

0

]

−

[

N(u) Q

QT 0

] [

u

p

]

=

[

f

0

]

(4.18)

4.2. PROJECTION ALGORITHMS 25

where

N(u) = ν∇2 − u · ∇

Q = ∇

n(u,v) = ν(∇u,∇v) + (u · ∇u,v)

q(p,v) = (p,∇ · v).

The Differential Algebraic Equations (DAEs) (4.18), can be complicated to
solve since the system may be singular! There are several ways to cure this
problem e.g. selection of specific spatial discretization or stabilization techniques
to ensure that the system is solvable. Topics as mixed finite elements and the
Brezzi conditions will be discussed later in the chapter. However, first we want
to motivate a family of methods that avoid this singular problem.

4.2 Projection Algorithms

The projection algorithms is a type of operator splitting algorithms. It is a
family of numerical methods for solving the Navier-Stokes equations numerically.
One main difficulty with solving the incompressible Navier-Stokes equations is
the handling of the pressure term and the incompressibility constraint. The
projection approaches deals with these problems by splitting the full complicated
problem of Navier-Stokes equations (4.1) and (4.2) into smaller simpler equations,
and solve these in an efficient manner. This technique splits the differential
operators such that we ends up with solving a vector convection-diffusion equation
and Poisson like equations, instead of the Navier-Stokes equations. The methods
makes a discretizing in time before space, and then discretizing the time- discrete
equations in space.

Typically, the algorithms consists of two steps. In the first step we neglect
the incompressibility restriction and computes a tentative velocity. Second step
is to make a projection out of a corrected velocity built on the pressure onto a
divergence free vector velocity field, to get the updated velocity and pressure.

4.2.1 Semi Implicit Projection Method

We will now go through a widely used technique for simulating incompressible
viscous fluid flow. This is an operator-splitting approach in combination with
finite element method. Observe that we discretize in time prior space.

By choosing an backward semi implicit convection Euler scheme in time we
get a fairly robust and stable method compared to an explicit version, where
there is a restriction on the time step length,

26 CHAPTER 4. NUMERICAL METHODS

v∗ = −∆t vl · ∇v∗ −
∆t

ρ
β∇pl + ∆tν∆v∗ + vl + ∆tgl+1. (4.19)

Here we are solving for a tentative velocity v∗. This v∗ generally does not obey
the continuity part of the Navier-Stokes equations, so we must apply a correction
velocity later such as our final velocity satisfies the continuity equation. Also note
the linearization in the convection term, and observe from the linearization that
(4.19) turns out to be a convection-diffusion equation. The parameter β ∈ [0, 1]
is used to adjust the amount of the ”old” pressure information see [13].

Next, setup the equation for vl+1 that we demand to fulfill the continuity
equation,

vl+1 = −∆t vl · ∇vl+1 −
∆t

ρ
∇pl+1 + ∆tν∆vl+1 + vl + ∆tgl+1. (4.20)

Now, we look more closely at two features that are significant to this type of
methods.

1. Define a correction velocity such that,
vc = vl+1 − v∗.

2. The condition on the final velocity vl+1 such that,
∇ · vl+1 = 0.

Subtracting (4.19) from (4.20) yields an expression for vc,

vc = ∆t(−vl · ∇vc + ν∆vc) −
∆t

ρ
∇(pl+1 − βpl)

= S(vc) −
∆t

ρ
∇(pl+1 − βpl) (4.21)

∇ · vc = −∇ · v∗.

Note that in the last equation, we have used the properties of the two features
above. It is a common simplification to neglect the S(vc) term from (4.21). By
eliminating vc from the first equality in (4.21), we turn it into a Poisson equation,

∆φ = ∆(pl+1 − βpl) =
ρ

∆t
∇ · v∗. (4.22)

4.2. PROJECTION ALGORITHMS 27

After computed the Poisson problem (4.22), we perform an update on the
pressure and the velocity,

pl+1 = βpl + φ (4.23)

vl+1 = v∗ −
∆t

ρ
∇φ. (4.24)

4.2.2 Results and Error Estimate Projection Method

We have reduced the incompressible Navier-Stokes equations to simpler standard
PDE problems. These problems can be solved efficiently numerically, and is easy
to implement from a programmers point of view. Another advantage of this
class of methods is that we can apply standard finite elements. The velocity and
pressure can be represented using identical basis functions. This feature simplifies
the program code dramatically compared to implementation of the finite element
method with mixed finite elements, see Chapter 4.3. For mixed finite elements
discretizing it is favorable to apply some sophisticated numerical software tool
like Diffpack or FEniCS.

The drawback for the algorithm derived above, is that we demand more
boundary conditions on the pressure than what is required in the original Navier-
Stokes equations. This can create some problems. Observe that the reason for
the unnatural boundary conditions is a cause of dropping the S(vc) term in
(4.21). From this omission, we derived a Poisson equation (4.22) for the pressure
difference φ. A suitable boundary conditions to φ must be known at the whole
boundary to solve a Poisson problem. On the other hand, the pressure only needs
to be specified as a function of time when solving the Navier-Stokes equations.
In other words, these kinds of simplifications introduce non compatible boundary
conditions with the original system (4.1) and (4.2), and can produce large errors
in the pressure near the boundaries.

The problem with unnatural boundary conditions that arise when dropping
the S(vc) term can be justified. If we keep the S(vc) term in (4.21), we end up
with solving a much more complicated problem. This will be a stationary Stokes
problem also called a saddle point problem.

For the implementation of the algorithm outlined above, see Appendix A.2.
The Finite Element simulations are done with The FEniCS Project and its in-
terface Dolfin. Observe from the program code that we have applied standard
finite elements (identical order for elements) for discretizing velocity and pressure.

Let us now look at the result of the error estimate to the method described
above. Assume that u and p are the analytical solutions of the problem, and
let u∆t = u1,···, un be some sequence of functions. From [8] the Semi Implicit

28 CHAPTER 4. NUMERICAL METHODS

Projection Method satisfies the following error estimate;

||u∆t − v∆t||L∞(L2(Ω)d) + ||u∆t − v∗

∆t||L∞(L2(Ω)d) ≤ C(u,p, T) ∆t (4.25)

||p∆t − p∆t||L∞(L2(Ω)) + ||u∆t − v∗

∆t||L∞(H1(Ω)d) ≤ C(u,p, T) ∆t
1

2 (4.26)

where v∗ is the tentative velocity and v satisfies the continuity equation, from
the algorithm above.

||·||L2(Ω) =
(

∆t
∑n

k=0

∣

∣

∣

∣ ·k
∣

∣

∣

∣

2

Ω

)
1

2 and ||·||L∞(Ω) = max
(
∣

∣

∣

∣ ·k
∣

∣

∣

∣

Ω

)

Note that the estimates are time-dependent. Methods like the one shown above
are time- marching techniques. In basic this means that the approximate solutions
converges for each time-step towards a better calculated solution.

4.3 Mixed methods and The Stokes Problem

Consider a simplification of the Navier-Stokes equations, namely the Stokes prob-
lem. Much of the mathematical theory and understanding of numerical solutions
of the Navier-Stokes equations have been developed for this problem,

− ∆u −∇p = f in Ω (4.27)

∇ · u = 0 in Ω. (4.28)

The Stokes Equations (4.27) and (4.28), is a saddle-point problem requiring
special care in order to satisfy a stable discretization in space. The idea is to
employ Mixed Finite Elements. The term mixed elements refers to the selection
of different finite elements for the various unknown. By selecting a particular
spatial discretization for the Stokes problem and put it into the block system
(4.18), we can ensure that the linear system is invertible.

The question is obviously. What conditions are required to determine the
unknown u and p uniquely? From [10] we have the following properties on the
matrices N and Q in (4.18),

• N is positive definite

• Ker(Q) = {0} ⇔ sup
vh∈Vh

∫

Ω
ph∇ · vh > 0

gives a solvable system. But we also need a stability criteria. Stability in the
sense that the Schur complement QT N−1Q, does not get singular as h → 0. Here
h represents the scale of the discretization. To obtain stable algebraic equations

4.3. MIXED METHODS AND THE STOKES PROBLEM 29

for the Stokes problem, the finite element spaces Vh and Qh should be chosen such
that they satisfy the Brezzi conditions,

inf
ph∈Qh

sup
vh∈Vh

∫

Ω
ph∇ · vh

||vh||1 ||ph||0
≥ β > 0 (4.29)

and,

a(vh, vh) ≥ D ||vh||
2
1 ∀vh ∈ Vh. (4.30)

Here β and D are independent of the grid parameters, and a(vh, vh) = (∇vh,∇vh).
Vh ⊂ H1

0 , Qh ⊂ L2
0 and vh, ph are discrete solutions. ||·||1 = ||·||H1 and

||·||0 = ||·||L2 .

Provided that the Brezzi conditions are fulfilled, the following error estimate
is satisfied [10]:

||vh − v||1 + ||ph − p||0 ≤ C(hk ||v||k+1 + hl+1 ||p||l+1). (4.31)

Here the constant C is independent of the spatial mesh parameter and the veloc-
ity field. The exact solutions are v, p and vh,ph are the the approximate solutions.
The order of piecewise continuous polynomials are given by k and l respectively
for velocity and pressure. Convergence in L2 norm is one degree higher in v than
p, it follows from (4.31) that k = l + 1 is optimal.

4.3.1 Mixed Formulation of Navier-Stokes Equations

The properties outlined in the previous section for the Stokes problem are ad-
vantageous now in the study of the more complicated Navier-Stokes equations.
However, we must show caution. The discretization of the convection term in the
Navier-Stokes equations can lead to unstable equations. By taking advantage of
stabilization techniques like upwinding or artificial diffusion we can get past this
problem.

Suppose now that for any t, the Brezzi conditions (4.29) and (4.30) is satis-
fied. Then the system of differential algebraic equations (4.16), (4.17) will have
a solvable and stable solution.

30 CHAPTER 4. NUMERICAL METHODS

For the mixed finite element algorithm we have selected the scheme given
in Chapter 6.2.2 and Equation (6.11) to perform simulations of incompressible
viscous fluid flow. A closer look at the implementation of the mixed element
algorithm, see Appendix A.3.

4.3.2 Results and Error Estimate Mixed Method

We will apply mixed finite elements to the simulations of the incompressible
Navier-Stokes equations. This approach allows us to implement with correct
boundary conditions that are compatible to the original system (4.1) and (4.2),
unlike what we could with the projection algorithm (Chapter 4.2.1). The use of
the mixed formulation with a combination of elements for velocity and pressure
that satisfies the Babuska-Brezzi condition, ensures a stable and solvable system
of algebraic equations.

When solving problems like (4.16) and (4.17) called saddle-point problems or
maximum/minimum problems, we require efficient solvers. Since this are com-
plex coupled systems. The use of preconditioning (see Chapter 4.5) and the
numerical software tool FEniCS (see Chapter 5), simplifies the implementation
considerably. Without this tools would the implementation of the mixed algo-
rithm become dramatically more difficult.

Let us now look at the result of the error estimate for the Navier-Stokes
quations by the mixed method. Assume that v and p are the analytical solutions
of the problem. The approximate solutions are given by vh and ph.

||vh − v||1 + ||ph − p||0 ≤ Cv(h
k ||v||k+1 + hl+1 ||p||l+1). (4.32)

Note that the constant Cv is now dependent of the velocity field. This is different
from the error estimate we saw in (4.31), otherwise everything is the same. Here
h describes the grid parameter.

4.4 Iterativ Methods

Consider now a linear system arising from a finite element discretization of a par-
tial differential equation. Where the system contains a large number of unknown,
and the matrix Ah has a structure that reflects the PDE operator. In this con-
text direct methods will be too time-consuming, and in some cases impossible.
Instead of solving the linear system directly, we now consider iterative solution
methods. This is based on computing a sequence of approximations {un}∞n=1, such
that limn→∞ un = u. Where u is the solution of Au = b.

4.4. ITERATIV METHODS 31

4.4.1 The Richardson Iteration

Our goal is to solve the linear system,

Au = b. (4.33)

The simplest way to solve (4.33) iteratively, is to reformulate it as a fixed point
iteration,

u = u − Au + b = (I − A)u + b.

This define the Richardson iteration,

un = un−1 − (Aun−1 − b). (4.34)

We now define the error,

en = un − u (4.35)

and the residual

rn = b − Aun. (4.36)

A relation between the current error and the current residual is given by,

Aen = rn.

Note that the definition of the residual is independent of the actual solution u.
An important question is whether the Richardson iteration converges to the

solution? The iteration is convergent if the error decreases at each step. By
inserting (4.34) into (4.35) and use that b = Au,

en = un−1 − (Aun−1 − Au) − u = (I − A)(un−1 − u) = (I − A)en−1. (4.37)

This means that we require,

||en|| ≤ ||I − A||
∣

∣

∣

∣en−1
∣

∣

∣

∣ . (4.38)

The Richardson iteration is convergent if the convergence rate ||I − A|| < 1.
The next property we need to consider is a stopping criterion for the method.

In many cases we want to stop the iteration when we are arbitrary close to the
solution, to avoid infinite iteration. The error equation (4.35) will generally not
help us in an applied problem, since we of course not know the actual solution
u. However, the residual defined in (4.36), is independent of u. Most iterative
methods terminate as soon as the residual is sufficiently small. One frequently
used stopping criterion that we also apply in this thesis is,

||rt||

||r0||
< ǫ. (4.39)

32 CHAPTER 4. NUMERICAL METHODS

Here ǫ is a prescribed number. The iteration will stop when we reach the predicted
accuracy measured by a discrete norm of the residual, or exceeded the maximum
number of iterations.

The effectiveness of the solution strategy is dependent on the development of
iterative solvers. It turns out that Richardson iteration has poor performance for
the discretization of PDEs. The spectrum of these operators (matrices) are in
most cases unbounded, where the spectrum can be seen as the operators set of
eigenvalues. The cure for this problem will be introduced in the next section.

4.5 Preconditioning

The convergence rate of iterative methods for discretized PDEs, are dependent
on the spectrum of the operator Ah. If the spectrum of Ah is unbounded, it
follows that the problem is ill-conditioned, and the condition number of Ah tend
to infinity as the grid spacing h tend to zero. This weakens the convergence rate
of the iterative methods when the grid is refined. In our case with discretization
of partial differential equations the condition number is defined as,

κ(Ah) = ‖Ah‖ · ‖A
−1
h ‖ =

∣

∣

∣

∣

λmax(Ah)

λmin(Ah)

∣

∣

∣

∣

. (4.40)

The ratio between the largest and smallest eigenvalue of the operator/matrix.
Here λ represents an eigenvalue of the operator.

In order to improve the convergence rate of iterative methods, a linear system
is preconditioned by multiplying both sides of (4.33) by a nonsingular matrix B,
that approximates A−1 such that,

BAu = Bb. (4.41)

By a properly chosen B, the spectrum and the condition number of the operator
κ(BA) is bounded.

The preconditioned Richardson iteration has the following form,

un = un−1 − B(Aun−1 − b). (4.42)

If the norm ||I − BA|| is small, it speeds up the convergence, and the iterative
method is improved.

The four main elementary iterative methods Jacobi method, Gauss-Seidel
method, successive overrelaxation method (SOR), and symmetric successive over-
relaxation method (SSOR) can fit into the framework of preconditioned Richard-
son iteration.

One example is the Jacobi iteration. Let B = D−1, where D = diag(A) from
(4.42), and we can evaluate the convergence of the method ||I − D−1A|| < 1.
For a more detailed derivation of Jacobi and the other classical methods see [14].
However, they are building blocks in the more advanced multigrid algorithm (see
Chapter 4.6).

4.5. PRECONDITIONING 33

4.5.1 Abstract Motivation

Let us look a little more abstract of the process of designing a preconditioner.
The theoretical basis of this section and the previous section, is from [16],[15] and
[4].

Consider the following abstract formulation, where V is a Hilbert space.

Find u ∈ V such that,

Au = f. (4.43)

Here the right hand side f ∈ V ∗, and V ∗ is the dual space of V . The unknown
u ∈ V .

Assume that A : V → V ∗ is a bounded invertible linear differential operator
such that,

A ∈ L(V, V ∗) and A−1 ∈ L(V ∗, V).

Observe that the operator A maps functions in V out of its own space. This
creates difficulties such as, unbounded spectrum, and in the discrete case the
iterative methods will not converge properly.

The key tool to this unbounded problems is to introduce a preconditioner B.
The preconditioner is an operator B : V ∗ → V such that,

B ∈ L(V ∗, V) and B−1 ∈ L(V, V ∗).

Then,

BA : V
A

−→ V ∗ B
−→ V

is a mapping V to itself. Therefor the preconditioned system,

BAx = Bf, with BA ∈ L(V, V) (4.44)

can be solved by a iterativ method. The system will have a convergence rate
bounded by the condition number where the condition number is defined,

κ(BA) = ‖BA‖L(V,V)‖BA−1‖L(V,V) ≤ D. (4.45)

Preconditioned Stokes Problem

From earlier we know that the Stokes problem (4.27) and (4.28), must satisfy the
Brezzi conditions (4.29) and (4.30), for a stable discretization. We can write the
coefficient operator for the Stokes problem as,

Ah =

[

−∆ −grad

div 0

]

(4.46)

34 CHAPTER 4. NUMERICAL METHODS

where Ah : (H1
0 (Ω)d × L2

0(Ω)) −→ (H−1(Ω)d × L2
0(Ω)).

The following preconditioner Bh, is known to be a good choice [16],

Bh =

[

(−∆)−1 0
0 I

]

(4.47)

where Bh : (H−1(Ω)d × L2
0(Ω)) −→ (H1

0 (Ω)d × L2
0(Ω)).

4.6 Algebraic Multigrid Method

In a search for an order optimal method for large systems of linear equations, we
will briefly present a multigrid method. This since we have applied such a method
in parts of the implementation, see Appendix A.1 and Chapter 6.
Multigrid methods are among the fastest numerical algorithms for the solution
of large sparce systems of linear equations [3]. In this type of algorithms a given
problem is solved by integrating different levels of resolution into the solution
process. During this process the solution contributions at the different levels are
combined appropriately together to form the final solution. Relaxed variants of
the elementary iterative methods are used at the different levels.

From theory [15], the downside to all classical iterative solvers when applied
to large sparce linear systems are that they cannot efficiently reduce the low
frequency (smooth) errors. However they often succeed in eliminating the high
frequency errors. The multigrid algorithms take advantage of this property.

After a few relaxations all high frequency modes of the error is eliminated and
the smooth modes dominate the remaining error. Such that

Aen = rn

where en and rn are given in (4.35) and (4.36) respectively. Then

u = un + en.

Chapter 5

Software tools

This chapter provides a presentation of some software programs applied in the
implementations. Because of the time it took to develop an understanding in
order to take advantage of these various software applications, it felt appropriate
to devote a separate chapter for this topic. We will throughout the chapter
illustrate the applied work by some screenshots. For a more complete and detailed
description, we refer to the individual software-applications website.

5.1 The Vascular Modeling Toolkit (VMTK)

Modeling of flow in blood vessels is today a major research field, and a lot of effort
is put into computer simulations of such kinds of problems. In order to create
favorable simulations, there is nothing better than working with real patient data.
In our case this is data from the scanning of the human head, and we want to
recreate a 3D volumetric image of this data-set. It is in this context we want to
apply the VMTK software tool.

The Vascular Modeling Toolkit is a collection of libraries and tools for 3D
reconstruction, geometric analysis, mesh generation and surface data analysis

for image-based modeling of blood vessels [1].

The construction of 3D images are in itself a separate field. It is very com-
plicated to reproduce a precise geometry of such a complex surface. However, in
this thesis, we assume that we have found a good enough re-creation of the scan,
and does the work from this point of view. Since the main focus is to perform
simulations on a given blood vessel, we ignore the fact concerning whether a blood
vessel is rendered 100 percent correct. We convert the image into a 3D volume
grid by a built-in mesh generator, and then apply the finite element method.

Below we have described the application of VMTK, and the process with some
figures. Find a complete reference to publications at David Steinman’s and Luca
Antiga’s homepages, see also http://www.vmtk.org/.

35

36 CHAPTER 5. SOFTWARE TOOLS

• In the first step VMTK reads the image, and displays it on the screen, see
Figure 5.1. From this we can find the so called volume of interest (VOI),
and enlarge this VOI for further analysis. Observe from the Figure that
the scan is taken from the top of the head and down, and we can observe
the ”eyes” in the upper part of the Figure. It is possible to select which
level curve of the skull we want to study further. This is done by scrolling
the mouse on the computer. At this level in the process all the work is
done on a .vti image file (VTK format file).

Figure 5.1: A scan of a human head, given from a medical data-set. Observe the blood vessels
in the middle of a selected level set.

• The next step is very interesting. Here we select the segments of the scan
that we will analysis further. By selecting a vascular segment between two
points, we get out the info we want. Observe from Figure 5.2, the two red
dots where we have selected a segment and ignored the side branches.
Repeating this operation for different segments, and then merging
everything into a single surface.

5.1. THE VASCULAR MODELING TOOLKIT (VMTK) 37

Figure 5.2: In the process of building up a 3D surface. Here we have merged together some
selected segments.

• At a point when we are pleased with our 3D surface, we wish to perform
some additional operations. This involves clipping and smoothing of the
generated 3D surface model. Figure 5.3 shows an example of how such a
model may look.

Figure 5.3: A 3D surface model.

• The final step will now be to generate a mesh out of the 3D surface model
in Figure 5.3. The 3D surface will then be converted into a Dolfin

38 CHAPTER 5. SOFTWARE TOOLS

accepted .xml format. See Figure 5.4 for the generated mesh version of
the final surface.

Figure 5.4: The generated mesh version of the final 3D surface model.

5.2 FEniCS Project

FEniCS is a software tool for solving partial differential equations, and is a col-
laboration project between a number of universities including Simula Research
Laboratory. The programming language applied in this thesis is Python, and
Dolfin is the Python interface of FEniCS. Where Dolfin is a problem solving
environment for differential equations.

Automation of the finite element method and finite element simulations are
strengths of the FEniCS software tool. It is designed such that the transformation
from an abstract mathematical version of a PDE problem, to a discrete weak form
of the problem shall be uncomplicated to implement.

FEniCS has plenty of built-in features which specifies the implementation on
a readily understood manner. The creation of suitable function spaces and finite
elements are two examples. Further, FEniCS have features that trivial creates
mesh (2D and 3D), defining the corresponding boundary conditions (Dirichlet,
Neumann etc) and assembling of bilinear form a, and linear form L of a finite
element formulation. All this to achieve a short and precise computer code. We
would refer to [12] for a good introduction to FEniCS. In the Appendix you can
find computer code where we have applied this tool.

5.3. MESHBUILDER 39

5.3 MESHBUILDER

Meshbuilder is a software tool applied to set boundary conditions on generated
surface mesh. The program has a geometric interface, where we can loading
.xml files into it. Dolfin, the interface of FEniCS has support for such .xml files,
and VMTK generates surface mesh. We will use Meshbuilder to set the various
boundary conditions we want for our problems. In Figure 5.5 we can see the use
of Meshbuilder.

Figure 5.5: Defines the boundary conditions on the generated mesh from VMTK. Note the
green color field on the surface, indicating that there should be a certain boundary condition
on the outflow.

5.4 GMSH

Gmsh is a 3D finite element grid generator which we have used to create simple
test models for the development of the implementation. The software is easy
to learn and is design to provide a fast and user-friendly meshing tool with an
advanced visualization capabilities. Gmsh has four main applications geometry,
mesh, solver and post-processing. In the thesis we have made use of the two
first parts, the geometric representation of the model and then generated a mesh
model. The specification of input to create a simple model is done either interac-
tively using the graphical user interface or using Gmsh’s own scripting language.

Chapter 6

Simulations and results

This chapter concerns the simulations and results of the implementations. In the
first part the objective is to find a fast and well adapted solution algorithm for two
Poisson examples. The inclusion of preconditioners and alternative solvers, is a
necessity to accelerate the computation time on selected algorithms. In the next
section we have solved Poisson problems with different types of preconditioners
and solvers.

Next, we move forward to solve the time dependent Stokes problem and the
Navier-Stokes problem, carried out by manufactured solutions explained in Chap-
ter 3.2. We perform simulations by applying this method in 2D and 3D. The aim
is to verify the implementations. The focus will be to identify the convergence
and the CPU time of the solutions when we change the grid parameter h.

The main purpose is not only to solve the problems, but also to evaluate and
compare the performance of the numerical methods described in Chapter 4. In
particular, investigate the CPU (central processing unit) time and accuracy, and
discuss the advantages and disadvantages. The last part of this chapter deals
with simulation of flow through an aneurysm.

6.1 Poisson Problems

The aim of this section is solving the Poisson 2D equations (6.1) and (6.3), with
different solution algorithms, and varying number of unknown. Then we compare
the CPU-time required to solve the two problems. The equations below are inter-
esting to study since they are important building blocks in a number of solution
algorithms for the Navier Stokes equations.

Problem 1 :

− ∆u = f , in Ω = (0, 1) x (0, 1) (6.1)

u0 = 0 , on ∂Ω (6.2)

41

42 CHAPTER 6. SIMULATIONS AND RESULTS

Problem 2 :

u − ǫ ∆u = f , in Ω = (0, 1) x (0, 1) and ǫ > 0. (6.3)

The corresponding variational problems are:

Find u ∈ H1
0 such that,

∫

Ω

∇u · ∇v dx =

∫

Ω

f v dx, ∀ v ∈ H1
0 . (6.4)

Find u ∈ H1
0 such that,

∫

Ω

u · v dx +

∫

Ω

ǫ∇u · ∇v dx =

∫

Ω

f v dx, ∀ v ∈ H1
0 . (6.5)

Here we have chosen f = sin(x) , and we are experimenting with different values
of ǫ in (6.5)

Since the assignment deals with both direct and iterative algorithms, we re-
quire a stopping criterion for the iterative methods. We defines a tolerance of
10−5 on the relative residual, as a stopping criterion.

6.1.1 Implementation Packages

The algorithms are implemented in Python, and for the iterative solvers we have
applied the linear algebra library Epetra and the preconditioner library AztecOO.
These libraries can easily be imported independently into a Python script from
PyTrilinos (see http://trilinos.sandia.gov/packages/pytrilinos/index.html). We
have additionally imported the ML package for designing a multilevel precondi-
tioner.

In the program code part below we have in advance assembled a bilinear form
a(·, ·), and a linear form L(·), from a Poisson variational problem. From this
variational problem we have created a matrix A and a vector b. In the code, it is
shown how we use the matrix A to create a multilevel preconditioner, and then
solves the system with a conjugate gradient solver.

from PyTr i l i no s import Epetra , AztecOO , ML
from do l f i n import ∗

apply the l i n e a r a l g ebra l i b r a r y Epetra
parameters [" l inear_algebra_backend "] = "Epetra"

6.1. POISSON PROBLEMS 43

A_epetra = down_cast(A) . mat ()
b_epetra = down_cast(b) . vec ()
x_epetra = down_cast(U. vec to r ()) . vec ()

Sets up the parameters f o r a mu l t i l e v e l p r e c ond i t i o n e r
MLList = {"max l e v e l s " : 30 ,

" output" : 1 ,
" smoother : type" : "ML symmetric Gauss−Se i d e l " ,
" agg r ega t i on : type " : "Uncoupled " ,
"ML va l i d a t e parameter l i s t " : Fa l se

}

Create the p r e c ond i t i o n e r
ml_prec = ML. Mul t iLeve lPr econd i t i one r (A_epetra , Fa l se)
ml_prec . SetParameterL ist (MLList)
ml_prec . ComputePreconditioner ()

Create s o l v e r and s o l v e the system
So lve r = AztecOO . AztecOO(A_epetra , x_epetra , b_epetra)
So lve r . SetAztecOption (AztecOO . AZ_solver , AztecOO .AZ_cg)
So lve r . SetPrecOperator (ml_prec)
So lve r . I t e r a t e (1550 , 1e−5)

For the complete implementation, see Appendix A.1.

6.1.2 Simulations

The calculations are done with respect to Lagrange P1 finite elements. The num-
bers in the tables indicate the CPU-time, and number of iterations to solve the
problem respectively. The combination of the choice of solvers and precondition-
ers is given in the top row in each table.

Table for Problem 1 :

The computer calculations are performed with a MacBook Intel Core 2 Duo, with a 2.4 GHz
processor.

unknown cg/amg
/

it amg
/

it cg/none
/

it cg/ilu
/

it cg/jacobi
/

it LU-fact(UMFP.)

602 0.0106
/

5 0.0254
/

5 0.0177
/

129 0.02632
/

29 0.02507
/

129 0.03567

1202 0.0380
/

5 0.0327
/

4 0.1284
/

262 0.09113
/

55 0.14114
/

262 0.17109
2402 0.2078

/

6 0.1983
/

6 1.3981
/

532 0.8140
/

107 1.67193
/

532 0.9047

4802 0.8276
/

6 0.7473
/

5 13.7544
/

1080 6.6827
/

196 14.5691
/

1080 5.31924

9602 2.9581
/

5 3.1004
/

5 1550+ it 51.2733
/

395 1550+ it 46.1354

44 CHAPTER 6. SIMULATIONS AND RESULTS

Tables for Problem 2 :

ǫ = 1.0
unknown cg/amg

/

it amg
/

it cg/none
/

it cg/ilu
/

it cg/jacobi
/

it LU-fac(UMFP.)

602 0.03824
/

10 0.03815
/

10 0.03177
/

233 0.04161
/

49 0.03389
/

194 0.06716

1202 0.07125
/

11 0.07041
/

10 0.22227
/

427 0.14010
/

89 0.20961
/

373 0.16738

2402 0.39955
/

14 0.39999
/

13 2.18913
/

836 1.18226
/

170 1.95466
/

704 0.90075
4802 1.86998

/

15 1.80611
/

13 1550+ it 10.0509
/

323 18.4078
/

1335 5.29668

9602 9.67421
/

19 9.57739
/

17 1550+ it 78.6696
/

629 1550+ it 48.2385

ǫ = 0.001
unknown cg/amg

/

it amg
/

it cg/none
/

it cg/ilu
/

it cg/jacobi
/

it LU-fac(UMFP.)

602 0.00626
/

3 0.0078
/

3 0.00648
/

32 0.01063
/

6 0.0050
/

24 0.0425
1202 0.02987

/

4 0.0333
/

4 0.0313
/

60 0.04121
/

11 0.0317
/

49 0.1781

2402 0.16572
/

5 0.17678
/

5 0.3095
/

117 0.2761
/

21 0.3037
/

99 0.9092

4802 0.7008
/

5 0.7345
/

5 3.027
/

229 2.0069
/

41 2.8648
/

204 5.555

9602 3.5171
/

6 3.5584
/

6 24.177
/

454 14.8800
/

81 24.565
/

419 43.458

ǫ = 0.0001
unknown cg/amg

/

it amg
/

it cg/none
/

it cg/ilu
/

it cg/jacobi
/

it LU-fac(UMFP.)

602 0.0036
/

1 0.0037
/

1 0.0025
/

13 0.0073
/

2 0.00264
/

7 0.0680

1202 0.0189
/

2 0.02085
/

2 0.0124
/

21 0.0332
/

4 0.01238
/

13 0.1725

2402 0.1073
/

3 0.12837
/

3 0.1038
/

38 0.2087
/

7 0.08835
/

25 0.8814

4802 0.4688
/

3 0.4926
/

3 0.9773
/

72 1.2771
/

13 0.75638
/

51 5.3402
9602 2.5392

/

4 2.5559
/

4 7.5495
/

139 8.0635
/

24 6.462
/

104 47.0009

The solution of Problem 1 is to the left, and the solution of Problem 2 is to the
right.

(a) Solution problem 1. (b) Solution problem 2.

6.1.3 Results

The idea was to find out if any preconditioners accelerated the convergence of
our two Poisson problems (6.1) and (6.3). From the simulations and the results
in the tables, we see clearly that the algebraic multigrid (amg) preconditioner
provides by far the fastest convergence. The combination of a algebraic multigrid
preconditioner, and a conjugate gradient solver achieved a reduction of the overall
CPU-time. The CPU-time was much lower compared with the other elementary

6.2. MANUFACTURED SOLUTIONS 45

iterative methods and the direct solver. We observe this tendency very clearly,
when we increase the number of unknown.

Note that the CPU-time is approximately linear as we increase the number
of unknown for the advanced cg/amg algorithm. We have an order optimal
method O(n). This is a positive observation in order to solve larger and more
complex algebraic systems later. The other simpler solvers do not share this
linear property. Figure 6.1 demonstrates the linear evolution of cg/amg method
versus cg/ilu method, based on the results from the table for Problem 1. We can
also observe this nonlinear behavior in the other elementary methods (Jacobi,
direct method, etc).

0 2 4 6 8 10

x 10
5

0

10

20

30

40

50

60

unknown

C
P

U
−

tim
e

cg/amg
cg/ilu

Figure 6.1: Comparison of CPU-time for
cg/amg and cg/ilu for increased number of un-
known. Note the linearity in cg/amg method.

0 2 4 6 8 10

x 10
5

0

50

100

150

200

250

300

350

400

unknown

ite
ra

tio
ns

cg/amg
cg/ilu

Figure 6.2: Comparison the number of itera-
tions in cg/amg and cg/ilu. Note constant num-
ber of iterations in cg/amg method.

The number of iterations remains constant in cg/amg method. This is not the
case with the other methods. Figure 6.2 shows the difference between cg/amg
method and cg/ilu method.

For a detailed overview of the implementation for the problems in this section,
see Appendix A.1.

6.2 Manufactured solutions

The artificial solutions in 2D and 3D were chosen respectively in Chapter 3.2 as,

u =

[

u1

u2

]

=

[

sin(y)
sin(x)

]

(6.6)

u =

u1

u2

u3

 =

sin(y)
sin(x)

0

 (6.7)

46 CHAPTER 6. SIMULATIONS AND RESULTS

and,

∇p = −pgrad. (6.8)

Solving the following system,

ut + k(u · ∇u) − ν∆u −∇p = f (6.9)

∇ · u = 0.

The parameter k = 0 or 1, in front of the nonlinear term acts like a switch,
depending on whether we solve the time dependent Stokes Problem or the Navier
Stokes Problem. The source term f is calculated in Chapter 3.2, and viscosity is
described by ν.

6.2.1 The time dependent Stokes Problem

The solution scheme for the projection algorithm is described in detail in Chapter
4.2.1. For the mixed element method we choose the following scheme,

u − ǫ∆u −∇p = f

∇ · u = 0 (6.10)

u = 0

here ǫ includes time and viscosity.

Results from simulations of the projection method and mixed element method,
are given in the tables below. P1 − P1 and P2 − P1 describes the combination
of choice of Lagrange finite elements. P2 − P1 (Taylor Hood elements) describes
second order Lagrange elements (CG2) in the velocity field, and first-order La-
grange elements in pressure (CG1). The boundary conditions are given as Dirich-
let boundary condition, and the initial condition u0 = 0. In the case of stationary
solutions, it takes time to achieve the correct solution. Numerical experiments
indicate that the stationary solution is obtained at T = 1.0, when the time dis-
cretization ∆t < 0.2. The viscosity parameter is set to ν = 1.0. Implementation
of the numerical methods can be found in Appendix A.2, A.3.

Projection Method 2D problem

P1 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 4 8 16 32 64

0.2 4.61×10−3
/

0.70 4.13×10−3
/

0.72 4.02×10−3
/

0.98 3.99×10−3
/

1.59 3.99×10−3
/

4.07

0.1 1.41×10−3
/

1.35 1.10×10−3
/

1.44 1.02×10−3
/

1.78 9.97×10−4
/

2.86 9.93×10−4
/

8.67

6.2. MANUFACTURED SOLUTIONS 47

P2 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 4 8 16 32 64

0.2 4.72×10−3
/

0.84 4.18×10−3
/

0.98 4.03×10−3
/

1.61 3.99×10−3
/

4.60 3.98×10−3
/

20.60

0.1 1.32×10−3
/

1.45 1.08×10−3
/

2.00 1.01×10−3
/

3.00 9.95×10−4
/

9.82 9.92×10−4
/

45.15

Observations: We achieve convergence when the grid is refined. P1−P1 elements
and P2 − P1 elements give almost identical error estimates, but the CPU-time is
faster for P1 − P1 elements.

Projection Method 3D problem

P1 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 2 4 8

0.2 5.37×10−3
/

0.79 5.60×10−3
/

1.25 5.16×10−3
/

6.28
0.1 2.35×10−3

/

1.44 1.60×10−3
/

2.72 1.47×10−3
/

13.63

P2 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 2 4 8

0.2 6.65×10−3
/

1.79 5.59×10−3
/

10.78 5.10×10−3
/

169.8
0.1 1.91×10−3

/

3.67 1.67×10−3
/

23.38 1.46×10−3
/

360.8

Observations: Convergence when the grid is refined. We get the same tendency
as in the 2D case. Note that the CPU time is excessively longer for P2 − P1

elements.

Mixed element method 2D problem

P2 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 8 16 32 64

0.2 6.80×10−8
/

0.52 5.98×10−9
/

1.46 4.72×10−9
/

6.40 4.75×10−9
/

41.50

0.1 6.85×10−8
/

1.42 4.42×10−9
/

3.12 2.80×10−10
/

14.0 1.76×10−11
/

91.0

0.01 6.85×10−8
/

9.40 4.42×10−9
/

28.02 2.80×10−10
/

127.60 1.76×10−11
/

858.0

48 CHAPTER 6. SIMULATIONS AND RESULTS

Mixed element method 3D problem

P2 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 2 4 8

0.2 1.19×10−5
/

2.27 1.29×10−6
/

14.77 9.54×10−8
/

283.15
0.1 1.19×10−5

/

4.06 1.29×10−6
/

32.32 9.58×10−8
/

623.89

0.01 1.19×10−5
/

37.04 1.29×10−6
/

298.20 9.58×10−8
/

5 801

Observation: We achieve convergence when the grid is refined for both problems.

Results:

The purpose was to verify the implementation of the time dependent Stokes
problem. The tables summarized indicates that we have obtained this goal for
both methods. They converge with respect to the L2 errornorm.

If we go into more detail and compares the two methods, we observe that the
projection algorithm solves the problems faster for identical parameter values.
However, the accuracy is a lot better in the mixed element algorithm compared
with the projection algorithm. In fact, the accuracy is so much better in the
mixed algorithm that we can solve the problem on a coarse grid, and still achieve
a better error estimate at a faster CPU time. We demonstrate this on the basis
of the tables in the 2D example. For the parameters, N = 8 and ∆t = 0.1
the mixed method has an error estimate of about ∼ 10−8, computed at a CPU-
time= 1.42. Compared to the projection method with, N = 64 and ∆t = 0.1
need a CPU- time= 8.67 to reach an error estimate of approximately ∼ 10−3.
The same tendency exists also in the 3D case.

For the projection algorithm has P1 − P1 and P2 − P1 elements almost the
same error estimate. However, in general the CPU-time for P1 − P1 elements is
faster, and this is demonstrated even more clearly for the 3D problem.

6.2.2 The Navier Stokes Problem

For the mixed element method we select the following scheme for the Navier-
Stokes problem,

u + dt (u0 · ∇u) − ǫ∆u −∇p = f

∇ · u = 0 (6.11)

u = 0

here ǫ includes time and viscosity, and u0 is the solution of the previous time
step. All parameters are as in the previous section, but we have gained an extra
convection term.

Simulations of the projection method and mixed element method are given
below.

6.2. MANUFACTURED SOLUTIONS 49

Projection Method 2D problem

P1 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 4 8 16 32 64

0.2 4.74×10−3
/

0.65 4.16×10−3
/

0.70 4.01×10−3
/

0.93 3.98×10−3
/

1.65 3.97×10−3
/

4.17

0.1 1.23×10−3
/

1.27 9.40×10−4
/

1.38 8.64×10−4
/

1.87 8.47×10−4
/

2.94 8.44×10−4
/

9.00

P2 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 4 8 16 32 64

0.2 4.73×10−3
/

0.74 4.17×10−3
/

0.98 4.02×10−3
/

1.53 3.98×10−3
/

4.87 3.97×10−3
/

21.70
0.1 1.18×10−3

/

1.42 9.35×10−4
/

1.97 8.63×10−4
/

3.10 8.47×10−4
/

10.60 8.44×10−4
/

47.60

Observation: Convergence is achieved. CPU-time is faster for P1 − P1 elements.

Projection Method 3D problem

P1 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 2 4 8

0.2 5.43×10−3
/

0.82 5.71×10−3
/

1.43 5.26×10−3
/

7.67
0.1 2.41×10−3

/

1.60 1.49×10−3
/

2.84 1.33×10−3
/

16.68

P2 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 2 4 8

0.2 6.80×10−3
/

2.22 5.69×10−3
/

14.59 5.20×10−3
/

195.3
0.1 1.69×10−3

/

4.70 1.53×10−3
/

31.70 1.31×10−3
/

428.9

Observation: Convergence when the grid is refined. We get the same tendency as
in the 2D case. Note that the CPU time is excessively larger in P2 −P1 elements.

Mixed element method 2D problem

P2 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 8 16 32 64

0.2 5.43×10−7
/

0.59 3.56×10−8
/

1.65 4.81×10−9
/

7.20 3.86×10−9
/

44.60

0.1 5.42×10−7
/

1.17 3.45×10−8
/

3.50 2.17×10−9
/

15.70 1.36×10−10
/

98.17
0.01 5.42×10−7

/

9.40 3.45×10−8
/

31.0 2.17×10−9
/

142.0 1.36×10−10
/

893.0

Observation: We achieve convergence when the grid is refined.

50 CHAPTER 6. SIMULATIONS AND RESULTS

Mixed element method 3D problem

P2 − P1 Taylor Hood

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 2 4 8

0.2 8.03×10−5
/

2.48 7.39×10−6
/

19.52 5.20×10−7
/

320.88

0.1 8.03×10−5
/

5.33 7.39×10−6
/

43.10 5.19×10−7
/

704.0

0.01 8.03×10−5
/

47.23 7.38×10−6
/

390.13 5.19×10−7
/

6 400

Observation: Convergence when the grid is refined.

Results:

The implementation of the Navier-Stokes problem is verified for both methods.
We achieved convergence with respect to the L2 errornorm. We got the same
tendency as from the time dependent Stokes results i.e the projection algorithm
solves the problems faster, but with less accuracy.

To summarize the two problems based on the results, we observe that the
Navier-Stokes problem has a slightly longer CPU- time. However, this is expected
since we have added a convection term. The error is of the same order in the
projection method for both the time dependent Stokes Problem and the Navier-
Stokes problem. But for the mixed method, we can suggest a slightly better
error estimate for the time dependent Stokes simulation versus the Navier-Stokes
simulation.

If we add up, the results of the simulations conclude that the implementation
is correct for the projection method and the mixed element method. Simulation
results favor the mixed method, if we require the best possible accuracy of our
solutions. However, if we want a fast computed approximate solution, the pro-
jection algorithm is preferable. In the next section we will try to improve the
CPU time of the mixed method by employing a block preconditioner.

6.2.3 Block Preconditioner

The idea of introducing a block preconditioner is to improve the CPU-time. We
have seen from the results in Chapter 6.1.3 that the algebraic multigrid precon-
ditioner achieved a reduction of the overall CPU-time, for the Poisson problems.
The aim of this sections will be to accomplish something similar for the system
(6.9).

The preconditioning will be carried out on the mixed element method, as this
method gave the best results in the previous section. From [16] an efficient block
preconditioner for the system (6.9) with k=0 is on the form:

B =

[

(I − ǫ∆)−1 0
0 (−∆)−1 + ǫI

]

(6.12)

6.2. MANUFACTURED SOLUTIONS 51

The program code for the creation of a block preconditioner of this type, see
Appendix A.3.

Mixed element method 2D problem preconditioned

P2 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 4 8 16 32 64

0.2 1.01×10−6
/

1.22 6.80×10−8
/

3.09 5.98×10−9
/

10.5 4.72×10−9
/

42.3 4.75×10−9
/

197.5

0.1 1.01×10−6
/

2.65 6.85×10−8
/

6.22 4.42×10−9
/

21.8 2.80×10−10
/

88.17 out of memory

0.01 1.01×10−6
/

21.6 6.85×10−8
/

52.4 4.42×10−9
/

180.0 out of memory out of memory

Mixed element method 3D problem preconditioned

P2 − P1

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 2 4 8

0.2 1.19×10−5
/

4.37 1.29×10−6
/

55.9 9.54×10−8
/

466.6

0.1 1.19×10−5
/

9.58 1.29×10−6
/

125.9 9.58×10−8
/

1 002.0
0.1 1.19×10−5

/

81.2 1.29×10−6
/

881.5 no result

Results:

The goal was to increase efficiency and reduce the CPU-time of the mixed al-
gorithm, by applying a preconditioner. Theory and results from Chapter 6.1.3
with the plot in Figure 6.1 suggests this idea. However, if we compare the results
from the tables of the mixed algorithm in Chapter 6.2.1 with the results of this
section, we can witness that the CPU time has increased. The calculations does
not support the theory.

A possible explanation may be, a lack of computer strength. Accordingly,
the computer that was used ”ran out of memory” before we could evaluate linear
systems of a size where the order optimal algorithm would have been superior.
Another explanation may be inadequate implementation. Since the libraries we
used for solving the Poisson problems do not support block preconditioning, we
could not apply them here.

52 CHAPTER 6. SIMULATIONS AND RESULTS

6.3 Aneurysm Simulation

We will in this section perform simulations of flow through a blood vessel con-
taining an aneurysm. Due to the limited time frame for this thesis, this is not
completely realistic simulations of a blood flow. However, it demonstrates a veri-
fied discretization of the Navier-Stokes equations by the Finite Element Method.

Geometry

Figure 6.3 shows the mesh of a blood vessel containing an aneurysm. The mesh is
based on a medical data-set. We have applied VMTK (Chapter 5.1) to reconstruct
the surface and generated a mesh, from the medical data-set.

Figure 6.3: A generated surface mesh of a blood vessel containing an aneurysm

Boundary Conditions

In numerical simulations of blood flow problems, it is a challenge to define ap-
propriate boundary conditions. To have a well-posed Navier-Stokes problem we
must choose the boundary conditions in a satisfactory manner. It can be dis-
cussed that in this context with our simplified problem with respect to the choice
of boundary conditions, has violated this.

We define ∂Ω to be the surface of Figure 6.3. Where ∂Ω = Γ0

⋃

Γ1

⋃

Γ2

⋃

Γw.
In our simulations we choose a known (Dirichlet condition) velocity profile on the
inflow boundary Γ0, see Figure 6.4;

v1 =

0
0

1 + sin(t)

 . (6.13)

6.3. ANEURYSM SIMULATION 53

Figure 6.4: boundaries

For the outflow boundaries Γ1 and Γ2, we have homogeneous pressure condition
p = 0. On the rigid vascular wall Γw, we assume that the velocity profile is trivial
i.e no slip conditions,

v2 =

0
0
0

 . (6.14)

We have applied the software tool Meshbuilder (Chapter 5.3), to set the dif-
ferent boundary conditions. Note that the numerical solution will be greatly
dependent on the choice of boundary conditions included above.

6.3.1 Simulation

From results in Chapter 6.2.2, we choose to carry out the projection simulations
with P1 − P1 elements. Since this gave almost identical error estimates, but the
CPU-time was faster with P1 − P1 elements.

The simulation of the velocity field is shown in the figures below. The figures
describing the velocity field presented at three different times.

(a) Initial velocity field t =
0.0.

(b) Velocity field at t = 0.4. (c) Velocity field at t = 1.0.

The visualization application paraview(http://www.paraview.org/) has been
used for the analysis of the simulations.

54 CHAPTER 6. SIMULATIONS AND RESULTS

6.3.2 Result

Observe that the velocity field evolves as time passes. The red color in the figures
indicates that the velocity rate increases proportional with time. This is a good
match since the z component of v1 will continue to rise with time, as long as
t ≤ π

2
.

The simulations are performed with the projection algorithm derived in Chap-
ter 4.2. With ∆t = 0.1 and stop time T = 1.0, gave a CPU-time= 1 178 seconds.
With ∆t = 0.1 and stop time T = 3.0, gave a CPU-time= 3 216 seconds.

Unfortunately we were not able to perform simulations with the mixed finite
element algorithm. Since the computer ”ran out of memory”. We can assume
that the mixed algorithm would have had a favorable numerical solution, justified
by the results produced earlier in this paper.

Chapter 7

Conclusion and Further Research

We have presented two numerical strategies for solving the Navier-Stokes equa-
tions, describing the motion of an incompressible Newtonian viscous fluid. A
projection approach and a mixed finite element approach. Based on these strate-
gies, we have implemented two different finite element solvers. Comparison and
verification of these finite element algorithms, have been an important objective
in the thesis.

The projection algorithm (Chapter 4.2) splits the complicated Navier-Stokes
equations into simpler standard partial differential equations. As we can see from
the results of Chapter 4.2.2, this leads to a fast and efficient solution algorithm,
where we may represent the velocity and pressure by same order of basis func-
tions. The problem with our projection strategy is the incorporation of unnatural
boundary conditions on the pressure, that can result in large errors close to the
boundary. A discussion of this issue is given in Chapter 4.2.2.

The other approach, the mixed finite element discretizing avoids the problem
with unnatural boundary conditions. However, it requires that we solve a more
complex system of ordinary differential equations with respect to time. This
system of equations, stated in (4.16) and (4.17), ensures stability and has a
solution if the Brezzi conditions (Chapter 4.3) are fulfilled.

We have verified our implementations with a number of test methods. As
we can see from Chapter 3, the correct flow structure has been obtained in our
simulations. From the results in Chapter 6.2.2, both algorithms achieved con-
vergence with respect to the L2 errornorm. The tables from Chapter 6, show
that the projection algorithm solves the problems more efficiently, and thus use a
shorter processor time (CPU-time) than the mixed finite element algorithm does
for identical parameter values. However, the accuracy turns out to be a lot better
for the mixed finite element algorithm compared with the projection algorithm.
We can even solve a problem on a coarse grid with the mixed algorithm, that will
require less processor time (CPU-time) and still achieve a better accuracy, than
on a fine grid with the projection algorithm. Let us demonstrate with results
from the tables;

55

56 CHAPTER 7. CONCLUSION AND FURTHER RESEARCH

Projection Method 2D problem

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 16 32 64

0.2 4.01×10−3
/

0.93 3.98×10−3
/

1.65 3.97×10−3
/

4.17
0.1 8.64×10−4

/

1.87 8.47×10−4
/

2.94 8.44×10−4
/

9.00

Mixed element method 2D problem

The numbers in the table indicate the error and CPU time respectively.
∆t \ N 16 32 64

0.2 3.56×10−8
/

1.65 4.81×10−9
/

7.20 3.86×10−9
/

44.60

0.1 3.45×10−8
/

3.50 2.17×10−9
/

15.7 1.36×10−10
/

98.2

Based on the tables, we conclude that the mixed algorithm is beneficial when we
require the best possible accuracy. On the other hand, if we search for a fast
computed approximated solution, the projection algorithm is preferable.

The implementations in this thesis is done with the programming language
Python, and the finite element simulations are performed with the FEniCS project
library DOLFIN. The FEniCS framework is a solving environment for partial dif-
ferential equations. Without the help of this software framework, would parts of
the implementations have been considerably more complex to execute. Since the
FEniCS project is still under development, it has been complicated to apply such
a sophisticated system with limited access of documentation. The process to
understand and be able to apply the other software tools discussed in Chapter
5, have also been quite time-consuming. However, the pleasure of working with
real medical data and be able to reconstruct surfaces of blood vessels and then
perform calculations on these, have been a privilege.

In a search for a more efficient solution algorithm, we introduced iterative
methods and preconditioning in Chapter 4.4. Then we performed simulations on
some Poisson problems, based on this theory. As we can see from the results of
Chapter 6.1.3, we found a combination of an algebraic multigrid preconditioner
and a conjugate gradient solver, that reduced the CPU-time significantly. We
got an order optimal method O(n), see Figure 6.1. The purpose was to carry out
something similar for the more advanced system (6.9), by introducing a block
preconditioner (Chapter 6.2.3). Due to the limited time frame we were not able
to solve this problem. However, this is an interesting question in our further
research. A possible explanation may be the lack of computer strength, since the

57

computer ran out of memory. A discussion of the problem is given in Chapter
6.2.3.

There had also been convenient with a more extensive perspective on the
aneurysm simulations in Chapter 6.3. By performing several simulations with a
wider setup, and more realistic input data. Again because of the limited time,
we could not go deeper into this subject. We have after all a very valuable basis
for further research on a topic that is in great development these days.

Appendix A

Implementation

A.1 Poisson Problem

"""
This program so l v e Poisson 2D problem with d i f f e r e n t s o l u t i o n
a lgor i thms .
From commandline :

N=
method= i t e r a t i v or d i r e c t
b la b la

"""
from PyTr i l i no s import Epetra , AztecOO , Tr iUt i l s , ML
from do l f i n import ∗
import time
import sys

input data from command l i n e
de f get_command_line_arguments () :

d i c t = {}
i f l en (sys . argv) == 1 : return d i c t
f o r a in sys . argv [1 :] :

key , va lue = a . s p l i t (’= ’)
d i c t [key] = va lue

return d i c t

c l_args = get_command_line_arguments ()

i f c l_args . has_key("method") :
i f c l_args . get ("method") == " i t e r a t i v " :

parameters [" l inear_algebra_backend "] = "Epetra"

N = 10
i f c l_args . has_key("N") :

N = in t (c l_args ["N"])

59

60 APPENDIX A. IMPLEMENTATION

Create mesh and de f i n e func t i on space
mesh = UnitSquare (N,N)
V = FunctionSpace (mesh , "CG" , 1)

Def ine boundary c ond i t i o n s
#u0 = Expres s ion (’ 1 + x [0] ∗ x [0] + 2∗x [1] ∗ x [1] ’)
u0 = Function (V)

de f i n e the D i r i c h l e t boundary
c l a s s Boundary(SubDomain) :

de f i n s i d e (s e l f , x , on_boundary) :
r e turn on_boundary

u0_boundary = Boundary ()
bc = Dir ichletBC (V, u0 , u0_boundary)

Def ine v a r i a t i o n a l problem
v = TestFunction (V)
u = Tr ia lFunct ion (V)
f = Expres s ion (’ s i n (x [1]) ’)
U = Function (V)

Def ine matrix A and vec to r b
A = 0
b = 0

a l t = 1
i f c l_args . has_key(" a l t ") :

a l t = in t (c l_args [" a l t "])
i f a l t == 1 :

a = dot (grad (u) , grad (v)) ∗dx
L = f ∗v∗dx
Assemble symmetric matrix and vec to r
A, b = assemble_system (a , L , bc)

e l i f a l t == 2 :
a = u∗v∗dx + 0.0001∗dot (grad (u) , grad (v)) ∗dx
L = f ∗v∗dx
Assemble symmetric matrix and vec to r
A, b = assemble_system (a , L)

e l s e :
p r in t "ERROR : Se l e c t a l t=1 OR a l t=2"

A_epetra = down_cast(A) . mat ()
b_epetra = down_cast(b) . vec ()
x_epetra = down_cast(U. vec to r ()) . vec ()

Sets up the parameters f o r ML us ing a python d i c t i o na r y
MLList = {"max l e v e l s " : 30 ,

" output" : 1 ,
" smoother : type" : "ML symmetric Gauss−Se i d e l " ,
" agg r ega t i on : type " : "Uncoupled " ,

A.1. POISSON PROBLEM 61

"ML va l i d a t e parameter l i s t " : Fa l se
}

i f c l_args . has_key("method") :
i f c l_args . get ("method") == " i t e r a t i v " :

i f c l_args . has_key(" s o l v e r ") and cl_args . has_key(" precond ") :
i f c l_args . get (" s o l v e r ") == "cg" and cl_args . get ("

precond ") == "amg" :
Create the p r e c ond i t i o n e r
ml_prec = ML. Mul t iLeve lPr econd i t i one r (A_epetra ,

Fa l se)
ml_prec . SetParameterLi st (MLList)
ml_prec . ComputePreconditioner ()
#Create s o l v e r and s o l v e the system
t0 = time . time ()
So lve r = AztecOO . AztecOO(A_epetra , x_epetra ,

b_epetra)
So lve r . SetAztecOption (AztecOO . AZ_solver , AztecOO .

AZ_cg)
So lve r . SetPrecOperator (ml_prec)
So lve r . I t e r a t e (1550 , 1e−5)
t1 = time . time ()
pr in t "TIME USED FOR SIMULATION " , t1−t0
#plo t (U)
#plo t (mesh)
#Hold p lo t
#i n t e r a c t i v e ()

i f c l_args . get (" s o l v e r ") == "none" and cl_args . get ("
precond ") == "amg" :
Create the p r e c ond i t i o n e r
ml_prec = ML. Mul t iLeve lPr econd i t i one r (A_epetra ,

Fa l se)
ml_prec . SetParameterLi st (MLList)
ml_prec . ComputePreconditioner ()
#Create s o l v e r and s o l v e the system
t0 = time . time ()
So lve r = AztecOO . AztecOO(A_epetra , x_epetra ,

b_epetra)
So lve r . SetPrecOperator (ml_prec)
So lve r . I t e r a t e (1550 , 1e−5)
t1 = time . time ()
pr in t "TIME USED FOR SIMULATION " , t1−t0
#plo t (U)
#plo t (mesh)
#Hold p lo t
#i n t e r a c t i v e ()

i f c l_args . get (" s o l v e r ") == "cg" and cl_args . get ("
precond ") == " ja c ob i " :
t0 = time . time ()
So lve r = AztecOO . AztecOO(A_epetra , x_epetra ,

b_epetra)

62 APPENDIX A. IMPLEMENTATION

So lve r . SetAztecOption (AztecOO . AZ_solver , AztecOO .
AZ_cg)

So lve r . SetAztecOption (AztecOO . AZ_precond , AztecOO .
AZ_Jacobi)

So lve r . I t e r a t e (1550 , 1e−5)
t1 = time . time ()
pr in t "TIME USED FOR SIMULATION " , t1−t0
#plo t (U)
#plo t (mesh)
#Hold p lo t
#i n t e r a c t i v e ()

i f c l_args . get (" s o l v e r ") == "cg" and cl_args . get ("
precond ") == " i l u " :
t0 = time . time ()
So lve r = AztecOO . AztecOO(A_epetra , x_epetra ,

b_epetra)
So lve r . SetAztecOption (AztecOO . AZ_solver , AztecOO .

AZ_cg)
So lve r . SetAztecOption (AztecOO . AZ_precond , AztecOO .

AZ_dom_decomp)
So lve r . SetAztecOption (AztecOO . AZ_subdomain_solve ,

AztecOO . AZ_ilu)
So lve r . I t e r a t e (1550 , 1e−5)
t1 = time . time ()
pr in t "TIME USED FOR SIMULATION " , t1−t0
#plo t (U)
#plo t (mesh)
#Hold p lo t
#i n t e r a c t i v e ()

i f c l_args . get (" s o l v e r ") == "cg" and cl_args . get ("
precond ") == "none " :
t0 = time . time ()
So lve r = AztecOO . AztecOO(A_epetra , x_epetra ,

b_epetra)
So lve r . SetAztecOption (AztecOO . AZ_solver , AztecOO .

AZ_cg)
So lve r . SetAztecOption (AztecOO . AZ_precond , AztecOO .

AZ_none)
So lve r . I t e r a t e (1550 , 1e−5)
t1 = time . time ()
pr in t "TIME USED FOR SIMULATION " , t1−t0
#plo t (U)
#plo t (mesh)
#Hold p lo t
#i n t e r a c t i v e ()

i f c l_args . get (" s o l v e r ") == "gmres" and cl_args . get ("
precond ") == "none " :
t0 = time . time ()
So lve r = AztecOO . AztecOO(A_epetra , x_epetra ,

b_epetra)

A.1. POISSON PROBLEM 63

So lve r . SetAztecOption (AztecOO . AZ_solver , AztecOO .
AZ_gmres)

#So lve r . SetAztecOption (AztecOO . AZ_precond , AztecOO .
AZ_dom_decomp)

#So lve r . SetAztecOption (AztecOO . AZ_subdomain_solve ,
AztecOO . AZ_ilu)

So lve r . I t e r a t e (1550 , 1e−5)
t1 = time . time ()
pr in t "TIME USED FOR SIMULATION " , t1−t0
#plo t (U)
#plo t (mesh)
#Hold p lo t
#i n t e r a c t i v e ()

e l s e :
p r in t "ERROR : Se l e c t s o l v e r ex : cg , none AND precond ex

: amg , ja cob i , i l u "

i f c l_args . get ("method") == " d i r e c t " :
t0 = time . time ()
s o l v e (A, U. vec to r () , b , " lu ")
t1 = time . time ()
pr in t "TIME USED FOR SIMULATION " , t1−t0
#Plot s o l u t i o n and mesh
#plo t (U)
#plo t (mesh)
#Hold p lo t
#i n t e r a c t i v e ()

e l s e :
p r in t "ERROR : Se l e c t method , i t e r a t i v OR d i r e c t "

64 APPENDIX A. IMPLEMENTATION

A.2 Projection Algorithm

from do l f i n import ∗
from PyTr i l i no s import Epetra , AztecOO , Tr iUt i l s , ML
import sys
import pylab
import time

s e t parameters from command−l i n e
bry te r = 0 .0
p_grad = 1 .0

bcv = []
bcp = []
bc = [bcv , bcp]

from arguments import get_command_line_arguments
c l_args = get_command_line_arguments ()

N = 2
i f c l_args . has_key("N") :

N = in t (c l_args ["N"])

c r e a t e mesh and de f i n e func t i on space
mesh = UnitSquare (N,N)

i f c l_args . has_key(" problem") :
i f c l_args . get (" problem") == " testproblem3d " or c l_args . get ("

problem") == " testproblem3dtime " :
mesh = UnitCube (N,N,N)

i f c l_args . get (" problem") == "anu " :
Read mesh and subdomains from f i l e
mesh = Mesh (" . . / anudata/dog_assignment . xml . gz ")
subdomains = MeshFunction (" u int " , mesh , " . . / anudata/

dog_assignment_bc . xml ")
boundary_func1 = Expres s ion (("0 . 0" , "0 . 0" , "1 . 0+ s i n (t) "))
boundary_func2 = Expres s ion ((" 0 . 0 " , " 0 . 0 " , " 0 . 0 "))
boundary_func3 = Expres s ion (" 0 . 0 ")
#boundary_func . t = t

V = VectorFunctionSpace (mesh , "CG" , 1)
Q = FunctionSpace (mesh , "CG" , 1)

de f i n e boundary c ond i t i o n s and i n i t i a l cond i t i on
i f c l_args . has_key(" problem") :

i f c l_args . get (" problem") == " testproblem2d " :
boundary_func = Expres s ion ((" s i n (x [1]) " ," s i n (x [0]) "))
#boundary_func . t = t

i f c l_args . get (" problem") == " testproblem3d " :

A.2. PROJECTION ALGORITHM 65

pr in t "kommer inn i 3D t idsuavheng ig "
boundary_func = Expres s ion ((" s i n (x [1]) " ," s i n (x [0]) " , "0 . 0"))
#boundary_func . t = t

i f c l_args . get (" problem") == " testproblem3dtime " :
p r in t "kommer inn i 3D t id savheng ig "
boundary_func = Expres s ion ((" s i n (x [1]) ∗ s i n (t) " ," s i n (x [0]) ∗

s i n (t) " ,"0"))
boundary_func . t = 0

c l a s s Boundary(SubDomain) :
de f i n s i d e (s e l f , x , on_boundary) :

i f on_boundary :
r e turn True

i f c l_args . get (" problem") == "anu " :
bc_v1 = Dir ichletBC (V, boundary_func2 , subdomains , 3)
bc_v2 = Dir ichletBC (V, boundary_func1 , subdomains , 1)
bc_p = Dir ichletBC (Q, boundary_func3 , subdomains , 2)
bcv . append (bc_v1)
bcv . append (bc_v2)
bcp . append (bc_p)

e l s e :
boundary = Boundary ()
bc_v = Dir ichletBC (V, boundary_func , boundary)
bcv . append (bc_v)

u0 = Function (V)
p0 = Function (Q)

#de f i n e time cond i t i o n s
delta_t = 0 .1
nuu = 1 .0
i f c l_args . has_key(" delta_t ") :

de lta_t = f l o a t (c l_args [" delta_t "])

i f c l_args . has_key("nuu") :
nuu = f l o a t (c l_args [" nuu "])

dt = Constant (delta_t)
NUU = Constant (nuu)
ep s i l o n = dt∗NUU
eps i l o n i nv = (1 . 0 / ep s i l o n)

de f i n e c o r r e c t func t i on f
f = None
i f c l_args . has_key(" problem") :

i f c l_args . get (" problem") == " testproblem2d " :
i f c l_args . get (" conv ") == "on " :

b ry te r = 1 .0

66 APPENDIX A. IMPLEMENTATION

f = Expres s ion ((" s i n (x [0]) ∗ cos (x [1]) + nuu∗ s i n (x [1]) −
p_grad" ," s i n (x [1]) ∗ cos (x [0]) + nuu∗ s i n (x [0]) "))

e l s e :
f = Expres s ion ((" nuu∗ s i n (x [1]) − p_grad" ,"nuu∗ s i n (x [0])

"))

i f c l_args . get (" problem") == " testproblem3d " :
i f c l_args . get (" conv ") == "on " :

b ry te r = 1 .0
f = Expres s ion ((" s i n (x [0]) ∗ cos (x [1]) + nuu∗ s i n (x [1]) −

p_grad" ," s i n (x [1]) ∗ cos (x [0]) + nuu∗ s i n (x [0]) " ,
"0 . 0"))

e l s e :
f = Expres s ion ((" nuu∗ s i n (x [1]) − p_grad" ,"nuu∗ s i n (x [0])

" , "0 . 0"))
#boundary_func . t = t

i f c l_args . get (" problem") == " testproblem3dtime " :
i f c l_args . get (" conv ") == "on " :

b ry te r = 1 .0
f = Expres s ion ((" s i n (x [1]) ∗ cos (t)+s i n (t) ∗ s i n (t) ∗ s i n (x

[0]) ∗ cos (x [1])+nuu∗ s i n (x [1]) ∗ s i n (t)− p_grad" ," s i n (x
[0]) ∗ cos (t)+s i n (t) ∗ s i n (t) ∗ s i n (x [1]) ∗ cos (x [0])+nuu∗ s i n
(x [0]) ∗ s i n (t) " , "0 . 0"))

f . t = 0
e l s e :

f = Expres s ion ((" s i n (x [1]) ∗ cos (t)+nuu∗ s i n (x [1]) ∗ s i n (t)−
p_grad" ," s i n (x [0]) ∗ cos (t)+nuu∗ s i n (x [0]) ∗ s i n (t) " ,
"0 . 0"))

f . t = 0

i f c l_args . get (" problem") == "anu " :
f = Function (V)

e l s e :
f . nuu = nuu
f . p_grad = p_grad

de f i n e v a r i a t i o n a l problem
Us = Function (V)
U = Function (V)
u = Tr ia lFunct ion (V)
v = TestFunction (V)

Ps = Function (Q)
P = Function (Q)
p = Tr ia lFunct ion (Q)
q = TestFunction (Q)

a0= dot (u , v) ∗dx + ep s i l o n ∗ i nne r (grad (u) , grad (v)) ∗dx + bryte r ∗(
e p s i l o n /NUU) ∗dot (dot (u0 , grad (u)) , v) ∗dx

L0= dot ((u0 + f ∗(e p s i l o n /NUU)) , v) ∗dx + dot (grad (p0) , v) ∗dx

A.2. PROJECTION ALGORITHM 67

a1= −dot (grad (p) , grad (q)) ∗dx
L1= −div (Us) ∗q∗dx

a2= dot (u , v) ∗dx
L2= dot (Us , v) ∗dx + dot (grad (Ps) , v) ∗dx

a3= dot (p , q) ∗dx
L3= dot (Ps , q) ∗dx + p0∗q∗dx

T = 3 .0
t = 0
time_array = []
f e i l = []

t0 = time . time ()

Output f i l e
o u t_ f i l e = F i l e (" ha s t i ghe t s_ f . pvd ")
whi l e t < T:

pr in t " time =", t
i f c l_args . get (" problem") == "anu " :

boundary_func1 . t=t
moro=0.0

e l s e :
boundary_func . t = t

f . t = t

A0 , b0 = assemble_system (a0 , L0 , bcv)
s o l v e (A0 , Us . vec to r () , b0)

A1 , b1 = assemble_system (a1 , L1 , bcp)
s o l v e (A1 , Ps . v e c to r () , b1)

A2 , b2 = assemble_system (a2 , L2)
s o l v e (A2 , U. vec to r () , b2)

A3 , b3 = assemble_system (a3 , L3)
s o l v e (A3 , P. vec to r () , b3)

i f c l_args . get (" problem") == "anu " :
ou t_ f i l e << U

e l s e :
v e r i f y
u_exact = i n t e r p o l a t e (boundary_func , V)
E = u_exact − U
norm = sq r t (assemble (dot (E,E) ∗dx , mesh = mesh))
f e i l . append (norm)

u0 . a s s i g n (U)

68 APPENDIX A. IMPLEMENTATION

p0 . a s s i g n (P)
t += delta_t

t1 = time . time ()
pr in t "TIME USED FOR SIMULATION " , t1−t0

A.3. MIXED FINITE ELEMENTS ALGORITHM 69

A.3 Mixed Finite Elements Algorithm

"""
we s o l v e here the f o l l ow ing equat ion :

u_t + bryte r ∗ u ∗ grad (u) − k∗div grad (u) + grad (p) = f in
omega

div (u) = 0 in omega
u = 0 in delta_omega

We study time dependent Stokes /Navier Stokes (i f b ry te r=1)
input data from commandline :

N= 1 ,2 ,3 . . .
problem= testproblem2d , testproblem3d , testproblem3dtime or

meshproblem
precond=amg or none
delta_t=
nuu=
conv= on or o f f

"""

from do l f i n import ∗
from PyTr i l i no s import Epetra , AztecOO , Tr iUt i l s , ML
import SaddlePrec2 , Krylov , MinRes
import sys
import pylab
import time

s e t parameters from command−l i n e
bry te r = 0 .0
p_grad = 1 .0

bcv = []
bcp = []
bc = [bcv , bcp]

from arguments import get_command_line_arguments
c l_args = get_command_line_arguments ()

N = 2
i f c l_args . has_key("N") :

N = in t (c l_args ["N"])

c r e a t e mesh and de f i n e func t i on space
mesh = UnitSquare (N,N)

i f c l_args . has_key(" problem") :
i f c l_args . get (" problem") == " testproblem3d " or c l_args . get ("

problem") == " testproblem3dtime " :
mesh = UnitCube (N,N,N)

i f c l_args . get (" problem") == "anu " :

70 APPENDIX A. IMPLEMENTATION

mesh = Mesh (" . . / anudata/dog_assignment . xml . gz ")
subdomains = MeshFunction (" u int " , mesh , " . . / anudata/

dog_assignment_bc . xml ")
boundary_func1 = Expres s ion (("0 . 0" , "0 . 0" , "1 . 0+ s i n (t) "))
boundary_func2 = Expres s ion ((" 0 . 0 " , " 0 . 0 " , " 0 . 0 "))
boundary_func3 = Expres s ion (" 0 . 0 ")
#boundary_func . t = t

V = VectorFunctionSpace (mesh , "CG" , 2)
Q = FunctionSpace (mesh , "CG" , 1)
mixed = V + Q

de f i n e boundary c ond i t i o n s and i n i t i a l cond i t i on
i f c l_args . has_key(" problem") :

i f c l_args . get (" problem") == " testproblem2d " :
boundary_func = Expres s ion ((" s i n (x [1]) " ," s i n (x [0]) "))

i f c l_args . get (" problem") == " testproblem3d " :
boundary_func = Expres s ion ((" s i n (x [1]) " ," s i n (x [0]) " , "0 . 0"))

i f c l_args . get (" problem") == " testproblem3dtime " :
boundary_func = Expres s ion ((" s i n (x [1]) ∗ s i n (t) " ," s i n (x [0]) ∗

s i n (t) " ,"0"))
boundary_func . t = 0

c l a s s Boundary(SubDomain) :
de f i n s i d e (s e l f , x , on_boundary) :

i f on_boundary :
r e turn True

i f c l_args . get (" problem") == "anu " :
bc_v1 = Dir ichletBC (V, boundary_func2 , subdomains , 3)
bc_v2 = Dir ichletBC (V, boundary_func1 , subdomains , 1)
bc_p = Dir ichletBC (Q, boundary_func3 , subdomains , 2)
bcv . append (bc_v1)
bcv . append (bc_v2)
bcp . append (bc_p)

e l s e :
boundary = Boundary ()
bc_v = Dir ichletBC (V, boundary_func , boundary)
bcv . append (bc_v)

u0 = Function (V)
p0 = Function (Q)

#de f i n e time cond i t i o n s
delta_t = 0 .1
nuu = 1 .0
i f c l_args . has_key(" delta_t ") :

de lta_t = f l o a t (c l_args [" delta_t "])

A.3. MIXED FINITE ELEMENTS ALGORITHM 71

i f c l_args . has_key("nuu") :
nuu = f l o a t (c l_args [" nuu "])

dt = Constant (delta_t)
NUU = Constant (nuu)
ep s i l o n = dt∗NUU
eps i l o n i nv = (1 . 0 / ep s i l o n)

de f i n e c o r r e c t func t i on f
f = None
i f c l_args . has_key(" problem") :

i f c l_args . get (" problem") == " testproblem2d " :
i f c l_args . get (" conv ") == "on " :

b ry te r = 1 .0
f = Expres s ion ((" s i n (x [0]) ∗ cos (x [1]) + nuu∗ s i n (x [1]) −

p_grad" ," s i n (x [1]) ∗ cos (x [0]) + nuu∗ s i n (x [0]) "))
e l s e :

f = Expres s ion ((" nuu∗ s i n (x [1]) − p_grad" ,"nuu∗ s i n (x [0])
"))

i f c l_args . get (" problem") == " testproblem3d " :
i f c l_args . get (" conv ") == "on " :

b ry te r = 1 .0
f = Expres s ion ((" s i n (x [0]) ∗ cos (x [1]) + nuu∗ s i n (x [1]) −

p_grad" ," s i n (x [1]) ∗ cos (x [0]) + nuu∗ s i n (x [0]) " ,
"0 . 0"))

e l s e :
f = Expres s ion ((" nuu∗ s i n (x [1]) − p_grad" ,"nuu∗ s i n (x [0])

" , "0 . 0"))
i f c l_args . get (" problem") == " testproblem3dtime " :

i f c l_args . get (" conv ") == "on " :
b ry te r = 1 .0
f = Expres s ion ((" s i n (x [1]) ∗ cos (t)+s i n (t) ∗ s i n (t) ∗ s i n (x

[0]) ∗ cos (x [1])+nuu∗ s i n (x [1]) ∗ s i n (t)− p_grad" ," s i n (x
[0]) ∗ cos (t)+s i n (t) ∗ s i n (t) ∗ s i n (x [1]) ∗ cos (x [0])+nuu∗ s i n
(x [0]) ∗ s i n (t) " , "0 . 0"))

f . t = 0
e l s e :

f = Expres s ion ((" s i n (x [1]) ∗ cos (t)+nuu∗ s i n (x [1]) ∗ s i n (t)−
p_grad" ," s i n (x [0]) ∗ cos (t)+nuu∗ s i n (x [0]) ∗ s i n (t) " ,
"0 . 0"))

f . t = 0

i f c l_args . get (" problem") == "anu " :
f = Function (V)

e l s e :
f . nuu = nuu
f . p_grad = p_grad

de f i n e v a r i a t i o n a l problem
u , p_scale = Tr ia lFunc t i ons (mixed)

72 APPENDIX A. IMPLEMENTATION

v , q = TestFunctions (mixed)

a = dot (u , v) ∗dx + ep s i l o n ∗ i nne r (grad (u) , grad (v)) ∗dx + p_scale ∗div (v
) ∗dx + div (u) ∗q∗dx + bryte r ∗(e p s i l o n /NUU) ∗dot (dot (u0 , grad (u)) , v) ∗
dx

L = dot ((ep s i l o n /NUU) ∗ f + u0 , v) ∗dx

i f c l_args . has_key(" precond ") :
i f c l_args . get (" precond ") == "amg" :

parameters [" l inear_algebra_backend "] = "Epetra"
g = Constant (0)
c r e a t e p r e c ond i t i o n e r AMG
uu = Tr ia lFunct ion (V)
vv = TestFunction (V)
pp_scale = Tr ia lFunct ion (Q)
qq = TestFunction (Q)

kk = dot (uu , vv) ∗dx + ep s i l o n ∗ i nne r (grad (uu) , grad (vv)) ∗dx
l l = ep s i l o n i nv ∗pp_scale∗qq∗dx

mm = dot (grad (pp_scale) , grad (qq)) ∗dx
L00 = dot ((ep s i l o n /NUU) ∗ f + u0 , vv) ∗dx
L11 = qq∗g∗dx

KK, b00 = assemble_system (kk , L00 , bcv)
LL , b11 = assemble_system (l l , L11)
MM, b11 = assemble_system (mm, L11)

B = SaddlePrec2 . SaddlePrec2 (KK, LL , MM)

U = Function (V)
P = Function (Q)
U_size = U. vec to r () . s i z e ()

T = 0 .3
t = 0
time_array = []
f e i l = []

t0 = time . time ()
Output f i l e
o u t_ f i l e = F i l e (" ha s t i ghe t s_ f . pvd ")
whi l e t < T:

pr in t " time =", t
i f c l_args . get (" problem") == "anu " :

boundary_func1 . t=t
e l s e :

boundary_func . t = t

f . t = t

A, b = assemble_system (a , L , bcv)

A.3. MIXED FINITE ELEMENTS ALGORITHM 73

i f c l_args . has_key(" precond ") :
i f c l_args . get (" precond ") == "amg" :

x = Vector (b . s i z e ())
x . zero ()
x , e , i t e r = Krylov .CGN_BABA(B, A, x , b , 10e−12 , True ,

1000)
pr in t "Sqrt o f cond i t i on number o f BABA " , s q r t (e [l en (e

) −1]/e [0])
U. vec to r () [:] = x . ar ray () [0 : U_size]

e l s e :

U = Function (V)
P = Function (Q)

s o l v e (A, U. vec to r () , b)
s o l v e (A, P . vec to r () , b)
#f i l e = F i l e ("A_%d .m"% f l o a t (delta_t))
#f i l e << A

i f c l_args . get (" problem") == "anu " :
ou t_ f i l e << U

e l s e :
v e r i f y
u_exact = i n t e r p o l a t e (boundary_func , V)
E = u_exact − U
norm = sq r t (assemble (dot (E,E) ∗dx , mesh = mesh))
f e i l . append (norm)

u0 . a s s i g n (U)
p0 . a s s i g n (P)
t += delta_t

t1 = time . time ()
pr in t "TIME USED FOR SIMULATION " , t1−t0

Bibliography

[1] http://www.vmtk.org/.

[2] Susanne C. Brenner and L.Ridgway Scott, The mathematical theory of finite
element methods, Springer, 2008.

[3] Are Magnus Bruaset and Aslak Tveito, Numerical solution of partial differ-
ential equations on parallel computers, Springer, 2006.

[4] Howard Elman, David Silvester, and Andy Wathen, Finite elements and fast
iterative solvers: with applications in incompressible fluid dynamics, Oxford
University Press, 2005.

[5] Lawrence C. Evans, Partial differential equations, American Mathematical
Society, 1998.

[6] Michael Griebel, Thomas Dornseifer, and Tilman Neunhoeffer, Numerical
simulation in fluid dynamics: A practical introduction, Society for Industrial
and Applied Mathematics, 1998.

[7] Clay Mathematics Institute, Millennium prize problems.

[8] P. Minev J.L. Guermond and Jie Shen, An overview of projection methods
for incompressible flows.

[9] Anders Logg Kent-Andre Mardal and Garth Wells, Automated scientific
computing.

[10] Ragnar Winther Kent-Andre Mardal and Hans Petter Langtangen, Numer-
ical methods for incompressible viscous flow.

[11] Pijush K. Kundu and Ira M. Cohen, Fluid mechanics, McGraw- Hill Book
Co., 2008.

[12] H. P. Langtangen, A fenics tutorial.

[13] Hans Petter Langtangen, Computational partial differential equations,
Springer, 2002.

75

76 BIBLIOGRAPHY

[14] Tom Lyche, Lecture notes for inf-mat 4350, (2008).

[15] Kent-Andre Mardal, Solving linear systems.

[16] Kent-Andre Mardal and Ragnar Winther, Preconditioning discretizations of
system of partial differential equations.

[17] Frank M. White, Viscous fluid flow, McGraw- Hill Book Co., 1991.

	Introduction
	The Mathematical Model
	Conservation of mass
	Conservation of momentum

	Test problems and Exact solutions
	Classical CFD Problems
	Plane Poiseuille Flow
	Driven Cavity
	Plane Couette Flow

	Manufactured solutions
	2D Exampel
	3D Exampel

	Numerical methods
	Finite Element Method
	Weak Formulation
	FEM Formulation

	Projection Algorithms
	Semi Implicit Projection Method
	Results and Error Estimate Projection Method

	Mixed methods and The Stokes Problem
	Mixed Formulation of Navier-Stokes Equations
	Results and Error Estimate Mixed Method

	Iterativ Methods
	The Richardson Iteration

	Preconditioning
	Abstract Motivation

	Algebraic Multigrid Method

	Software tools
	The Vascular Modeling Toolkit (VMTK)
	FEniCS Project
	MESHBUILDER
	GMSH

	Simulations and results
	Poisson Problems
	Implementation Packages
	Simulations
	Results

	Manufactured solutions
	The time dependent Stokes Problem
	The Navier Stokes Problem
	Block Preconditioner

	Aneurysm Simulation
	Simulation
	Result

	Conclusion and Further Research
	Implementation
	Poisson Problem
	Projection Algorithm
	Mixed Finite Elements Algorithm

