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Abstract

Scheduling problems are central in combinatorial optimization, and there exists a huge
literature describing both problems and algorithms. Master surgery scheduling (MSS),
where one must assign surgery teams in hospitals to different rooms at different times,
is a specialization of the assignment problem, which can be solved using mixed integer
programming (MIP).

If not all parameters to an optimization problem are known beforehand, we may
use robust optimization to find solutions which are both feasible and good, even if the
parameters are not as expected. In particular, we assume such parameters to vary
in a given set of possible ”realizations”. The more realistic assumptions, the better
solutions.

In this thesis we model MSS with the aim of minimizing the expected queue lengths
in hospitals. The model is made robust by considering the demand to be uncertain, but
belonging to a simple polytope. It can be modeled as a bilevel program. The master
program looks for feasible schedules minimizing queue lengths, while the slave program
looks for feasible demands maximizing queue lenghts.

In order to solve this bilevel program, we use an iterative cutting plane approach.
We find a solution with the best possible behaviour for the worst case parameters, by
splitting the problem in two. In particular, we implemented the so-called ”implemen-
tor/adversary” scheme (I-A), recently proposed by Bienstock in the context of portfolio
optimization (see [7, 8]). The implementor finds an optimum schedule with respect to
a restricted set of feasible parameter vectors. The adversary finds a new vector (not
included in the restricted set) which maximizes queues with respect to the current
schedule. The new vector is included in the restricted set and the method is iterated.
When the adversary is not able to find a new parameter realization which is worsen-
ing the value of the current schedule, we are finished. In our experiments on realistic
instances we need at most a few hundred of iteration before convergence is reached.

For comparison, we also make a non-robust model of MSS as a reference solution,
where we only consider a single demand vector.

Testing shows that I-A is indeed a very effective algorithm, solving large problem
instances in reasonable time. Moreover, the solutions were in general found to be
considerably better than the non-robust reference solution, even in cases where the
demand did not belong to the polytope we assumed. The algorithm also gives us good
intermediate solutions with provable bounds on optimality, which can be used even if
convergence is not reached.

We believe I-A both offers more flexibility and yields better results compared to the
other robust approaches, when applied to the right problems, MSS only being one of
these.
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Background

Managing large hospitals involves exploiting, assigning, coordinating and scheduling a
large number of heterogeneous resources [10, 2]. Not just the doctors and personnel, but
also rooms, equipment and many other resources. Optimal use of these resources can
save huge amounts of money and also improve the number and quality of treatment
of patients. Even small improvements in the planning algorithms can lead to huge
improvements, given the large number of hospitals and their sizes. This makes planning
in health care in general, and surgery scheduling in particular, an important subject to
study.

There are several reasons why finding an optimal surgery schedule is complicated.
We need to consider the people directly involved, the surgeons teams and the patients.
This is hard enough by itself, with shared resources, requirements and wishes regarding
work hours, overtime and holiday planning. But the surgery schedule also affects
other departments, like the ward used for recovery [1]. Defining optimality is not
easy either. It can be to minimize cost, maximize income, cure as many patients as
possible, minimize the number of cancellations, distribute the work load evenly among
the doctors, minimize patient queues, ensure efficient use of resources, rooms, wards
and personnel or a combination of all these. On top of all this, we must consider
uncertainty [17]. The patient demand may vary, duration of surgery and recovery is
uncertain, emergencies may disrupt the plan and resources may be unavailable due to
illness, repair or cleaning.

To cope with the complex task of surgery scheduling, the problem must be sim-
plified. We may use generous safety margins to ensure that certain constraints are
always satisfied, replace objectives with bounds, only requiring that the solution is
“good enough”, or even ignore parts of the problem, assuming that the missing parts
can be adjusted to fit the solution afterwards.

Reduction of the solution space makes the problem easier to solve, but is also
likely to remove optimal solutions, reducing the optimal value. And solutions which
are optimal with respect to some criterion, may be suboptimal when considering the

3



whole.
Nevertheless, this is the reality we are facing in hospitals today. Surgery schedules

are created manually using simple heuristics and used for years until it is so bad that
a new plan is required.

Recently, scientists have come up with algorithms and implementations solving some
of the subproblems [1]. These implementations are already used in hospitals to aid in
the strategical and tactical planning. However, these tools have their limitations, in
that they do not look at the complete picture or make false assumptions to simplify
calculations.

The implementor-adversary algorithm (I-A) which will be described in this thesis
has a different approach than most other algorithms. Instead of solving a static problem,
new cuts are added continuously until we are satisfied with the solution. I-A can
handle several objectives and variables, which may also be uncertain. Linearity is not a
requirement, neither is convexity. This flexibility makes it possible to consider a bigger
picture.

Outline

The theoretical background for the algorithms will be discussed in section 1, starting
with linear programming, but also including theory on game theory, bilevel program-
ming, robust optimizations and the dynamic simplex method.

Section 2 describes the background of master surgery scheduling problems in more
detail, before it defines the model that will be used with a complete mathematical
problem statement. The model is a basis for the algorithm which will be described in
section 3, together with possible code optimizations for implementation on a computer.

In section 4 we describe the test cases, before we show the results, both in terms
of running time, convergence, and compared to other approaches. Finally, in section 5
we discuss the results and future work, before we draw a conclusion.
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1 Theoretical background

In this section we will first give a short introduction to linear programming. After
we have covered the basics, we will look at more advanced topics, like mixed integer
programming and bilevel programs. Then we will introduce game theory, before we
describe the dynamic simplex algorithm and cutting plane methods. Finally we discuss
robustness and how to solve robust programs.

1.1 Introduction to linear programming

A linear program is a problem where we seek to maximize or minimize a linear function
of some variables which themselves are restricted by a set of linear constraints defining
a convex polytope. Linear programming has a huge range of application, from logistics
to economics, from scheduling to manufacturing, and is very widely used.

1.1.1 Definitions

For a deeper and more complete introduction to linear programming, the reader can
consult books such as Vanderbei [24, chapter 1-6] or Cormen et.al. [12, pp 770-821].

Definition 1.1. A linear program in standard form (matrix notation) is a problem on
the form:

maximize: cT x (1)

subject to: Ax ≤ b (2)

x ≥ 0 (3)

The decision variables are, as the name implies, the unknowns in the problem, and
are usually denoted by x or y. An assignment of values to the decision variables is called
a solution. If the solution violates any of the constraints (2), it is called infeasible, else
it is called feasible. The purpose is to find the optimal value to an objective function
(1). A feasible solution where the objective function attains its optimal value is called
an optimal solution. A problem where there are no limits to the optimal value is called
unbounded. We usually also require the variables to be non-negative (3), though this
constraint may be circumvented.

1.2 Solving linear programs

The simplex method for solving linear programs was invented by G. Dantzig in 1947,
which led to a boost in the number of problems formulated as linear programs. Variants
of the simplex method are still among the most popular methods for solving linear
programs.

Even though Klee and Minty [20] constructed an example where the simplex method
runs in exponential time, the algorithm is very fast in practice [23], and usually out-
performs the polynomial-time ellipsoid algorithm. Later, Karmakar [19] described
polynomial-time interior point methods which now have become increasingly popular.

To solve a linear program consists of:

1. decide whether the problem is feasible (solvable)

2. if it is feasible, decide whether it is unbounded
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3. if it is bounded, find any solution x∗ where the objective function takes the
optimal value.

The simplex method is capable of all three, and also to prove that the result was
indeed correct by reordering the indices and using duality.

1.3 Duality

Definition 1.2. Given a problem in standard (matrix) form (1)-(3), the dual problem
is given by:

Minimize bT y

Subject to: AT y ≥ c

y ≥ 0

The dual to a dual problem, is the original or primal problem. The primal and
dual are closely related, not only in the coefficients, but also in solutions and optimal
value. It turns out that every solution to the dual problem gives a bound for the primal
problem and vice versa.

We will only state the results, for proofs, the reader may consult Vanderbei [24,
chapter 5].

Theorem 1.3 (Weak duality). Any feasible solution to the primal is less or equal to
any feasible solution to the dual. In other words,

cT x ≤ bT y

Thus if we have a feasible solution x to the primal and a feasible solution y to the
dual, such that

cT x = bT y

then both x and y are optimal solutions to the primal and dual problem respectively.

Theorem 1.4 (Strong duality). If a linear program has an optimal solution (i.e. it
is feasible and bounded), then the dual also has an optimal solution, and the objective
values are equal.

1.4 Integer variables

In linear programming, all constraints are linear. In particular, all variables are allowed
to take a closed interval of values. In practice, this is not always the case. When you
are to assign between 1 and 5 persons to a project, you do not want a solution which
assigns 3.5 persons.

A problem where all variables only take integer values is called an integer program
(IP). If we have both continuous and integer variables, we have a mixed integer program
(MIP).

Example 1.5 (Integer knapsack problem). Given a set of items, each with a weight
and a value, determine the number of each item to include in a collection so that the
total weight is less than a given limit and the total value is as large as possible. It
derives its name from the problem faced by someone who is constrained by a fixed-size
knapsack and must fill it with the most useful items.
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The obvious greedy solution, to pick the items with the highest value/weight ratio
does not work, as the following example shows:

Weight 2 2 3

Value 3 3 5
The item with weight 3 is the most valuable, both absolute and by ratio. However,

the two smaller items are better if your knapsack has capacity 4.
The integer knapsack problem is NP-hard, though pseudo-polynomial algorithms

using dynamic programming exist.
By reduction to the knapsack problem, it can be shown that most IPs and MIPs

are in fact NP-hard. For instance, the related problem where you have a set of items
and want to minimize the number of knapsack needed to pack them all, is called the
bin packing problem, and is also NP-hard.

1.4.1 Relaxation

We can not give up on IPs just because they are difficult. In many cases, good, even
optimal solutions can be found in reasonable time. A normal approach is to relax the
constraints, to allow for illegal solutions and hope we get a result that is not too far
away from the optimal solution, both in optimal value and in the solution vector.

An example of a relaxation is x ∈ {0, 1, 2, 3} ⇒ x ∈ [0, 3]
When we relax a problem, we search for a solution over a larger domain. Thus the

optimal value cannot be worse for a relaxed problem; there are no feasible solutions in
the original problem that are unfeasible in the relaxed problem.

max {cT x|Ax ≤ b, x ≥ 0, x ∈ Z} ≤ max {cT x|Ax ≤ b, x ≥ 0}

If we solve a relaxed problem, we thus get an upper bound on the solution of the
original problem. If we later find a solution to the original problem with optimal value
equal to the upper bound, we know that the solution must in fact be optimal.

1.4.2 Branch and bound

We have just seen how to attain an upper bound. We have also seen that any feasible
solution must be a lower bound.

Suppose we solve the relaxed problem, and we get an optimal solution x∗ which
has one or more non-integer values. Then we can add new constraints which avoid
this solution. For instance, if we have the relaxed constraint 0 ≤ x1 ≤ 4 and we get
a solution with x∗

1 = 2.5. Then, because x1 is integer in the non-relaxed problem, we
know that it must either be in the interval [0, 2] or [3, 4]. In fact, it must be in one of
the intervals [0, 0], [1, 1], [2, 2], [3, 3] or [4, 4]

These constraints are disjunct, thus we can not add all of them to the problem, as
it would obviously make our problem infeasible. But we can split the problem in two
subproblems, one with the constraint x1 ∈ [0, 2] and one with the constraint x1 ∈ [3, 4].
One or both subproblems must contain an optimal solution to the unrelaxed problem,
as we have only removed fractional infeasible solutions with x1 ∈ (2, 3)

This branching helps us restrict the problem to exclude infeasible solutions. But
now we have 2 problems to solve, instead of one. And we are not guaranteed that
these will be easy to solve either. In a problem with many integer variables, we might
have to split the problem many times. The set of problems we are considering are
called a search tree. Just by splitting a problem 20 times, we have more than a million
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subproblems (220). And there might be hundreds of integer variables taking fractional
values. We need what is called cuts, and for this we will use bounds extensively.

We will work with global lower and upper bounds. A global lower bound is the best
of all feasible solutions found so far (the goal is to maximize). A global upper bound is
the highest optimal value of all relaxed subproblems. When the global lower and upper
bound is equal, we know that we have found the optimal solution.

Similarly, we can find local lower and upper bounds, which only apply to a sub-
problem. If we find that a local upper bound < global lower bound, then we know that
we will never be able to improve the global lower bound with this subproblem, and we
can cut it away from the search tree. We say that the node is pruned.

There are basically two strategies [21, pp 358-359]. One is depth-first, that is, when
we split a problem, we only consider one branch. It has the advantage that the branch
is very similar in structure to its root, and can often to be reoptimized using a few
steps with the dual simplex algorithm. Furthermore, by finding feasible solutions, we
attain global lower bounds which may be used for early pruning, reducing the number
of nodes to consider. Finally, experience seems to indicate that feasible solutions are
more likely to be found deep in the tree than at nodes near the root.

The second strategy is to go breadth-first, where we branch all nodes at the current
level before we look at nodes deeper in the tree, but this typically requires much memory
and results in less pruning.

In practice, we almost always use a depth-first search. However, when we have
reached a leaf node (a feasible solution), there are several ways of choosing the next
active node. Traditionally depth-first searches use backtracking, we move up in the
tree until we see a branch that we have not considered before. But it is also possible
to use other criteria, such as choosing the node with the best upper bound.

1.5 Non-linearity

Until now, we have thought of the objective function as a linear function. In many
cases, we need more complex functions. The simplest of these are the piece-wise linear
functions. In figure (1) is an example of such a function.

Figure 1: Cost function

Ext

Cost

x

c1

c2

This function could model the cost of satisfying a certain demand. Negative x
means that demand is already satisfied. If we can not satisfy the demand, we have to
pay a penalty c1 for each item that is missing (e.g. to replace the missing items). After
a certain threshold Ext, the penalty c2 is much higher (because we must compensate
if all the items can not be replaced anymore).

Note that the function is convex, and that we are minimizing. This is essential,
because with a convex function, the slopes are always increasing, and it allows us to be

10



greedy.
The following linear program is sufficient for solving with the objective function

above:

Example 1.6 (minimizing convex function).

minimize: ζ = c1x1 + c2x2

x0 ≤ 0

0 ≤ x1 ≤ 2

0 ≤ x2

x = x0 + x1 + x2

The objective function ensures that we increase x0, x1 and x2 in that order, because
this will be the cheapest. We do not need to disallow solutions like (x0, x1, x2) =
(−1, 1, 3), which are feasible but unwanted, as this is inferior to the wanted solution
(0, 2, 1) where we have maximized x0 and x1 first.

We can even add up many objective functions like this, and it will work just fine.
This is because we are minimizing over convex functions, and a sum of convex functions
is also convex.

Now suppose we want to maximize ζ, maybe because we want to know the worst case
that can happen. Then the above construction will not work, because the algorithm
will increase x2 before x0 and x1. In fact, the problem is unbounded as you can choose
x0 → −∞ and x2 → ∞. We would like to force x0 to be maximal before we increase x1,
and to force x1 to be maximal before we increase x2. For this we need binary variables.

Let

y1 =

{

0 x1 = x2 = 0

1 x0 = 0
(4)

y2 =

{

0 x2 = 0

1 x0 = 0, x1 = 2
(5)

The binary decision variables y1 and y2 tell us which of the normal variables are
not allowed to be used. If y1 = 1, we may use x1 and x2, but then we also require x0 to
be at its maximum. Similarly, if y2 = 1, we may use x2, but then x0 and x1 are fixed
at their maxima. In order to accomplish this, we need to use a trick.

x1, x2 ≤ y1M (6)

x0 ≥ −(1 − y1)M (7)

x2 ≤ y2M (8)

x1 ≥ 2 − (1 − y2)M (9)

In addition come the constraints from example (1.6). Constraint (6) and (7) gives
us (4), assuming that M is large enough so that x2 < M and x0 > −M . Constraint
(8) gives us the first line in (5), while (9) gives the second line in (5). In the last case,
x0 = 0 is implied, because x1 = 2.
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1.6 Introduction to game theory

Here we will do a little sidestep and introduce another field which is closely related
to linear programming. Games have been played for thousands of years, both simple
dice games, Chess, Set, Poker and recently family games like Agricola and Bohnanza.
But we are not restricted to games with a set of rules, also situations in real life, such
as politics, economics and social relations might be modeled as games. Many of the
problems solved as LPs or MIPs can actually be modeled as games. And games may
be solved using linear programs.

Because game theory is a wide field, we will restrict the discussion to topics relevant
to scheduling problems.

Thus we will only look at finite two-player zero-sum sequential games. These are
games for two players where the payback for the first player is the loss of the other and
vice versa (zero-sum). Furthermore we assume that the number of choices available for
both players is finite. In a sequential game (as opposed to simultaneous games), the
second player knows the action taken by the first player.

The players can choose between different strategies. Let us denote the strategies for
the first player by x ∈ X and for the second player by y ∈ Y . The payback (for the first
player) is a result of the different strategies, and hence it can be denoted by a function
f(x, y). The payback for the second player is −f(x, y) as the game is zero-sum.

The goal of the first player is to choose a strategy as to maximize his outcome.
However, after having seen his choice, the second player will try to maximize her out-
come, in other words, minimize his. If both play optimally, we get the following value
of the game:

ζ = max
x∈X

min
y∈Y

f(x, y)

1.6.1 Dominant strategies

A dominated strategy xd is a strategy that will never be optimal, because it is worse
than another dominating strategy xD. In other words, f(xd, y) ≤ f(xD, y) ∀y ∈ Y .
Similarly, we can talk about dominated and dominating strategies yd and yD for the
second player, where f(x, yd) ≥ f(x, yD) ∀x ∈ X

Identifying and removing dominated strategies is very important, because it reduces
the problem size, which makes it easier to solve, without affecting the value of the game.
The process of removing dominated strategies may be repeated until the game contains
no more dominated strategies.

1.6.2 α-β-pruning

In addition to using dominated strategies, we can use a technique called α-β-pruning.
In short, we stop checking when we know that we cannot improve our solution. We
have an example in figure (2). Remember that the first player wants to maximize and
the second wants to minimize. The numbers are the value for the first player.

The left, dashed, branch is dominated by the middle branch, and should be removed
from consideration if we know this beforehand. After we have searched through the
middle branch, we have a lower bound of 3. When we search the right branch, we
quickly encounter 1, which gives us an upper bound of 1 for the right branch. We
can prune the rest of the branch, as the first player will never enter it; the middle will
always be a better choice. The dotted nodes are never considered and we see that the
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Figure 2: Example of dominated strategies and pruning

3

3

Dominated

3 3 4

3

6 3 4

1

1 9 0

Pruned

actual value of the left branch should be 0, not 1. But it does not change the value of
the root node anyway, and need not be considered.

Note that after removing the left branch from the tree, we now see that the second
player has a dominating strategy which it did not have before. The right branch (with
4 and 0) is always better than the left branch (with 6 and 1).

1.6.3 Upper and lower bounds

If a sequential game is too large or complex to be solved efficiently, we may solve simpler
problems to get upper and lower bounds. To get an upper bound, we can either restrict
the second player or relax the first player (relaxation: see section 1.4.1). In the first
case, we only consider a subset Ŷ ⊂ Y .

ζ
Ŷ

= max
x∈X

min
y∈Ŷ

f(x, y)

As we minimize over a smaller set, we get an upper bound: ζ
Ŷ
≥ ζ. We can also relax

X so that we maximize over a larger set. This might seem counterintuitive, to increase
the problem size. It can, nonetheless, make the problem easier to solve if we can use
another algorithm. For instance, if we take the convex hull X̄ of the points in X. Then
X̄ ⊃ X, but we can now use linear programming whereas the other set could require
integer programming. Also in this case we get an upper bound:

ζ ≤ ζX̄ = max
x∈X̄

min
y∈Y

f(x, y)

Similarly we get a lower bound if we only consider a subset X̂ ⊂ X or a relaxation
Ȳ ⊃ Y

ζ ≥ ζ
X̂

= max
x∈X̂

min
y∈Y

f(x, y)

ζ ≥ ζȲ = max
x∈X

min
y∈Ȳ

f(x, y)

These upper and lower bounds can be used for α-β-pruning, the I-A algorithm in
section 1.8.1, and also to prove correctness of a solution; if we have found an upper and
lower bound with the same value, we know that lower bound = optimal value = upper
bound. If the gap between the bounds is small, we can estimate the maximum error of
a solution and thus prove that a solution is approximately correct.
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1.7 Bilevel programming

A natural extension to non-convex constraints (1.5) is bilevel programming (BLP).
A bilevel program (BLP) is an optimization problem which itself contains another
optimization problem. For a survey of bilevel programming, the reader may consult
Dempe [14] or Colson et. al. [11].

In general, a bilevel program can be written

max
x

F (x, y)

such that y solves this problem

max
y

f(x, y)

g(x, y) ≤ 0

x ∈ X,y ∈ Y

The inner or lower problem, to find y, is also called the followers problem, while
the outer or upper BLP is called the leaders problem.

Another way to write the inner constraints is

y ∈ argmax{f(x, y) : g(x, y) ≤ 0, y ∈ Y }

F and f are the objective function for the leader and follower respectively, while g

are constraints. X and Y are the domains from which we can choose x and y, and can
also be viewed as constraints. Care should be taken when writing the constraints for
the leader, in order not to restrict the follower.

BLP is used in many fields like politics, economics, management and engineering.
It may, for instance, involve a decision maker who sets a price, makes a law or similar,
and wants to maximize the outcome, assuming that all followers act rationally. This
rationality is defined by the followers problem.

1.7.1 Solving BLP by strong duality

If we could formulate a BLP using only one LP (or MIP), it might be much easier to
solve, as we can use standard techniques and computer programs. This encourages us
to represent the inner problem as constraints to the outer problem.

Now suppose the inner problem is a standard LP. Then it is easy to find the dual
of the inner problem. Assuming that both the inner problem and its dual are feasible,
then we know by strong duality (theorem 1.4) that the problems must have the same
optimal value.

The new problem is then:
maximize outer objective function
subject to outer constraints

inner constraints
inner dual constraints
inner objective value = inner dual objective value

Even if this formulation looks innocent, it may be very hard to even find feasible
solutions. The reason is that the last 3 constraints require you to actually solve an LP
program to optimality. Moreover, if the inner problem is not a standard LP program, it
might not have any solution at all, as the strong duality theorem is not valid for integer
programs for instance. Numerical errors might cause the gap to be strictly positive.
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1.8 Dynamic simplex method

The dynamic simplex method (DS) [13, section 1.2] is a way of solving linear programs,
when the size of the constraint matrix is too large to be written explicity, typically
because there are too many constraints. We may then use a cutting plane algorithm,
by starting with a smaller problem and generate constraints on the fly as they are
needed.

Suppose the problem is

maximize: cT x

subject to: Ax ≤ b

where A and b have extremely many rows. However, we do not know which of the rows
that are required when we start solving the problem.

We can rewrite the constraints using set notation: x ∈ P where P = {x ∈ R
N :

Ax ≤ b}. We want to solve this problem by starting with a relaxation on P , and add
new constraints, or cuts, when needed, until we have found an optimal solution. Such
cuts were first introduced by Gomory, and later described by Bender [5].

A separation oracle is an algorithm which either concludes that a point x̄ ∈ R
N

satisfies all the constraints Ax̄ ≤ b, in other words, that x̄ ∈ P . Or if not, returns any
constraint that is violated:

∑

j aijx̄j > bi.
The separation oracle is independent of the rest of the method, and may use any

algorithm to find the answer.
We may now combine the ideas to form an algorithm:

Algorithm 1.7 (dynamic simplex).
Problem: Find optimal solution to {max cT x : Ax ≤ b, x ∈ R

N}
Output: Optimal solution x∗

Initialization: We start with a some of the rows in A and b defined by an index set
I, and define P1 = {x : AIx ≤ bI , x ∈ R

N}. Because we use a subset of the constraints,
P1 ⊃ P

1. Solve: Find an optimal solution x̄ to the linar program {max cT x : x ∈ Pi}.

2. Test: Then use the separation oracle to check if x̄ ∈ P . If it is, we are done.
Otherwise, the oracle will return a violated constraint

∑

j aijx̄j > bi.

3. Cut: Define Pi+1 = {x ∈ Pi :
∑

j aij x̄j ≤ b}. In other words, we add a
new row from the constraints in order to remove the unwanted solution x̄ and
hopefully others. Because we add a new constraint separating x̄, we have that
Pi ⊃ Pi+1 ⊃ P . Now we may solve the problem again with the new set Pi+1

1.8.1 Implementor-adversary approach

A special case of the dynamic simplex method is the implementor-adversary approach
(I-A), which was successfully applied on portfolio optimization problems by Bienstock
[7, 8].

Suppose we have a problem that can be written like a sequential game:

find ζ∗ = min
x∈X

max
y∈Y

f(x, y)

Even though not required, we will suppose f is linear in x and y, as this is sufficient for
our purposes. Sequential zero-sum games is a special class of bilevel programs, where
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the objective functions for the leader and follower are the same, just negated. It is easy
to see that we can also rewrite the problem as follows:

find ζ∗ = min
x∈X,y∗∈Y

f(x, y∗) (10)

f(x, y∗) ≥ f(x, y) ∀y ∈ Y (11)

The interpretation of (11) is that given a solution x for the first player, the best
response for the second player is y∗, in other words f(x, y∗) = maxy∈Y f(x, y).

This problem can now be solved using the DS algorithm (1.7): we replace Y with
a subset Ỹ and solve this smaller problem. Then we extend Ỹ to cut away unwanted
solutions. The difference from standard DS is that instead of adding constraints to
remove infeasible solutions, I-A add constraints and variables. We have one variable
for each x ∈ X and each y ∈ Ỹ , and Ỹ is extended during the algorithm.

Because I-A has as special structure of being a sequential zero-sum game, and we
may exploit this fact to make more efficient algorithms, by using techniques from section
1.6.

Throughout the algorithm we maintain upper and lower bounds on the optimal value
ζ∗, which can be used for early termination of the algorithm with approximate solutions.
These bounds can be found using theory from section 1.6.3. This is an important
difference from the general dynamic simplex method, which only have upper bounds
(because we have interchanged minimization and maximization, this corresponds to the
lower bound in I-A).

Algorithm 1.8 (Implementor-adversary).
Problem: Find ζ∗ = minx∈X maxy∈Y f(x, y)
Output: optimal solution x∗ ∈ X such that ζ∗ = maxy∈Y f(x∗, y)
Initialization: Ỹ = {y0}, lower bound L = −∞, upper bound U = ∞

1. Implementor problem (Solve): Solve minx∈X maxy∈Ỹ f(x, y) with solution
x∗. Set lower bound L = maxy∈Ỹ f(x∗, y)

2. Adversarial problem (Test): Solve maxy∈YK
f(x∗, y) with solution y∗. Up-

date upper bound by setting L = min(U, f(x∗, y∗))

3. Test (Cut): If U −L is small enough, less than a chosen ǫ (may be 0), go to the
final step. Else we add a new cut so as to define Ỹ = Ỹ ∪ y∗ and go to step 1.

4. Final step: Use any solution x∗ where the corresponding adversarial value was
at a minimum: maxy∈YK

f(x∗, y) = U .

Worth noting is that, while the optimal solution to the implementor problem is
strictly non-decreasing (because Ỹ ⊂ Ỹ ∪ y∗), we have no convergence on the adver-
sarial problem, except that it must converge when x∗ is globally optimal. This can be
demonstrated by an example:

Example 1.9. Let Z = {z ∈ [0, 4]3 : z ∈ Z,
∑

z = 6}. Suppose you must solve the
following problem:

min
x∈Z

max
y∈Z

ζ =
∑

max(y − x, 0)

Instead of considering all 19 elements in Z, we decide that we will use the I-A
algorithm. As an initialization step, we set Ỹ = y0 = {0, 0, 0}
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In the first step in the first round, we could get the solution x∗ = {2, 2, 2}. In fact,
any solution would have ζ = 0. We update the lower bound L = 0.

The adversary will use the solution x∗ found by the implementor to generate an
optimal solution y∗ = {4, 1, 1} with ζ = 2 to the adversarial problem. Note that
there exist 9 solutions which are all optimal, and we can choose any. We update
Ỹ = {{0, 0, 0}, {4, 1, 1}} and U = 2.

In the second round, we get x∗ = {4, 1, 1}, ζ = 0 with no update to the lower bound.
Now there are several solutions to the adversarial with ζ = 4, for instance y∗ = {0, 2, 4}

Ỹ = {{0, 0, 0}, {4, 1, 1}, {0, 2, 4}} while the upper bound stays at 2.
In the third round, one of the optimal solutions is x∗ = {2, 1, 3}, ζ = 2 where we

will have to update the lower bound L = 2. We will finish as L = U . We can use any
solution where the following adversarial objective value was optimal, in this example we
must choose the first solution x∗ = {2, 2, 2}. Note that the last solution x∗ = {2, 1, 3}
is not optimal, as the adversarial solution y∗ = {3, 3, 0} has ζ = 3.

Another curiousity is that with bad parameters, we may end up with dominated
solutions (section 1.6.1). This can be demonstrated by a similar example:

Example 1.10. Let Z = {z ∈ [0, 5]3 : z ∈ Z,
∑

z = 5}. Suppose you must solve the
following problem:

min
x∈Z

max
y∈Z

ζ =
∑

max(y − x, 0)

The optimal value is 4. This is because all the numbers in x cannot be 2 or higher. We
may without loss of generality suppose this is the first number: x = (1, a, b) where a

and b are arbitrary integers. Then the response y = (5, 0, 0) yields an objective value
of 4, which is the best we can do, as x = (0, a, b) is even worse with an objective value
of 5.

However, the solution x = (1, 1, 1) also yields an objective value of 4, even though
it is dominated by x = (1, 2, 2).

In general we would like to remove dominated strategies, as these can never improve
the worst case, and will also worsen the average case. It need to be specified in the
model though.

1.8.2 Correctness

We may use section 1.4.1 to argue that the solutions found during iteration of I-A are
actually upper bounds. Thus when we find a feasible solution, then this must also be
optimal.

By section 1.6.3, the solutions to the implementor and adversarial problem are
upper and lower bounds respectively to the real objective value ζ∗. We can never jump
past the optimal objective value, as it would contradict the fact that the solution values
are lower and upper bounds. If U = L, we thus know that ζ∗ = U = L. Furthermore,
we also have an optimal solution from our implementor step.

A similar argument holds for the dynamic simplex method in section 1.8, where
intermediate solutions x̄ yield upper bounds and the last, feasible solution, yields a
lower bound.

We may accept an approximate solution x with ζ = f(x, y) = L ≤ ζ∗ ≤ U , in which
case we have limited the deviation from the optimal value to U − L.

Thus we have proved that if the algorithm stops, it must either have found an
optimal solution, or a sufficiently good solution. What remains is to prove that the
algorithm eventually stops.

17



1.8.3 Termination

To prove termination on I-A, we must prove that the algorithm stops after a finite
number of steps.

We will assume that Y is finite. Since we always add an element y∗ to Ỹ , eventually
Y = Ỹ , and the implementor will solve minx∈X maxy∈Y f(x, y), which by definition
has the optimal value ζ∗.

We must still prove that we always add a new element to Ỹ . Assume that the
optimal solution to the implementor problem is x∗ and that the optimal solution to the
adversarial problem is y∗ with y∗ ∈ Ỹ . Then:

U ≤ max
y∈Y

f(x∗, y)

= f(x∗, y∗) by assumption

≤ max
y∈Ỹ

f(x∗, y) {y∗} ⊂ Ỹ

= min
x∈X

max
y∈Ỹ

f(x, y) by assumption

≤ L

and we have that x∗ must indeed be a global optimal solution.
Thus the algorithm stops after at most |Y | steps and gives a correct result. If we

have linearity, then by section 1.8.4, we only need to consider vertices of the convex
hull of Y , which can make the algorithm considerably more efficient. This is true, also
when Y is a polytope with an infinite number of interior points.

The dynamic simplex method converges if the number of constraints is finite. How-
ever, if we have a quadratic objective function and infinitely many constraints, the
dynamic simplex method may never terminate, as this example shows:

{max ||x|| : ||x|| ≤ 1}

. It is impossible to define the unit circle as a finite intersection of half-planes, thus
you can always find a solution x̄ with ||x̄|| > 1.

1.8.4 Code optimizations

By algorithm or code optimizations we mean modifications to an algorithm or a com-
puter program to make it work more efficiently or use fewer resources, not solutions to
an optimization problem.

Even though we have no guarantee that the iterative cutting planes algorithm con-
verges fast, experiments indicate that the number of iterations needed is low. Still there
are several measures we may take to speed up convergence and also running time.

First we note that the adversary only needs any solution that proves that the
implementor solution is suboptimal. This way we can simplify the adversary and save
running time. Note that in the last step, when the implementor has found a global
optimal solution, the adversary must find an optimal solution and also prove that it is
optimal.

Although we only need any solution from the adversary, we should really consider
finding a good solution. Suppose that an element ȳ ∈ Y is a convex combination of
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other points in Y :

ȳ =
∑

y∈Y

λyy

∑

y∈Y

λy = 1

λy ≥ 0

Then, by linearity, we have that

f(x, ȳ) = f(x,
∑

y∈Y

λyy) =
∑

y∈Y

λyf(x, y)

The above equivalence also shows that we do not actually need to generate all points
in Y , but we can restrict ourselves to the vertices of the convex hull of Y .

However, if the bottleneck is in the implementor problem, there are several possible
algorithm optimizations. We may reduce the number of iterations if we start with
several points in Ỹ rather than one or none. The condition is that the points are
chosen carefully using a good heuristic. The drawback is increased complexity in the
implementor problem because of the added constraints.

Another code optimization is warm starting. We may exploit the fact that one
implementor problem instance is very similar to the next one, as we only add one
constraint. The previous solution can be used as a starting point for the current prob-
lem, instead of solving it from scratch. This is already available in several commercial
solvers.

Similar to warm starting is head starting. This is when we instead of using the
initialization set Ỹ = y0, create our own set of adversarial solutions which can be
added to Ỹ . This set can be created using heuristics, but we can also use a relaxed
version of the implementor program for this purpose.

1.9 Robust optimization

So far, the constraints have been written in stone. We have one constraint matrix A with
bounds b and a coefficient vector c, all given as input. In real life, however, numbers are
not always that certain. Moreover, small changes in input might worsen the objective
value drastically, or even make our solution infeasible. It might be possible to make
small changes to our solution to make it feasible, but it also might not. Fischetti and
Monaci [15] describe many of the methods used to handle uncertainty.

Robust optimization (RO) takes the uncertainty into account when solving the
problem by requiring that a solution is feasible for any constraint matrix A ∈ A 1. RO
was first described by Soyster [22] who devised a scheme with column-wise uncertainty.
Each column Aj in the constraint matrix A was allowed to take any value in a convex
set Kj .

min cT x

subject to:
∑

j

Ajxj ≤ b, ∀Aj ∈ Kj

1uncertainty in coefficients and bounds can be modeled by additional variables and constraints in A
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However, as there are no restrictions on uncertainty in rows, all constraints in any
can take their worst-case value at the same time. Because a solution is bounded by the
worst case constraint in any row, it is bounded by the worst case in all rows. [22]

min cT x

subject to:
∑

j

a∗ijxj ≤ bi, ∀i, a∗ij = sup
Aj∈Kj

(Aj)i

This may easily lead to overconservative solutions with optimal values far from the
nominal solutions, if we find feasible solutions at all.

To solve a RO problem, we just assume the worst in all rows and solve it normally
using any LP solver.

1.9.1 Ellipsoidal robustness

Robust optimization is indeed robust; any feasible solution remains feasible, even for
the worst case scenario. Still we might be interested in relaxing the robustness in order
to improve the optimal value. As an alternative, Ben-Tal et al. [3, 4] suggested using
ellipsoidal uncertainties. Because the euclidean norm is used, this approach lead to
quadratic programs (QP) with constraints on the form

aT
i x + αi ≥‖ Bix + bi ‖, i = 1, . . . ,M

where αi are fixed reals, ai and bi are fixed vectors, and Bi are fixed matrices of
proper dimentions. ‖ · ‖ is the normal euclidean norm, leading to quadratic terms.

The quadratic terms make the problem more difficult to solve, but state-of-the-art
LP solvers are able to solve QP efficiently using interior-point methods.

1.9.2 Bertsimas and Sim

Later, Bertsimas and Sim (BS) [6] suggested another approach which protects against
scenarios where at most Γi coefficients in row i are allowed to deviate at the same time,
while the others stay at their nominal value. The approach can be formulated:

min cT x + max
{S0: S0≤Γ0}







∑

j∈S0

ĉjxj







subject to:
∑

j

aijxj + max
{Si:Si≤Γi}







∑

j∈Si

âijxj







≤ bi ∀i

where c and aij are nominal values, and c+ ĉ and aij + âij are the maximum values,
and Si is the set of variables allowed to deviate from the nominal values.

The resulting solutions are always feasible if the assumptions we made above are
correct, but even if more than Γi variables change in row i, the solution is feasible with
a high probability.

The approach works, even if Γi is not integer, in that case the last constraint is only
a little uncertain corresponding to the fractional part of Γi. It also works with MIP, i.
e. when some or all the x have integrality constraints.

This problem can be solved as a linear program using strong duality, as described
in section (1.7.1) and [6], by adding extra constraints and variables.
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1.9.3 Light robustness

As even the BS approach might be too conservative, Fischetti and Monaci [15] suggested
another approach. The basic light robustness approach is an extension to BS which
replaces hard with soft constraints. When a soft constraint is violated, it results in a
penalty in the objective function. The new objective is to minimize the sum of these
penalties.

min
∑

γi (12)

subject to:
∑

j

aijxj + max
{Si:Si≤Γi}







∑

j∈Si

âijxj







− γi ≤ bi ∀i (13)

∑

j

aijxj ≤ bi ∀i (14)

cT x ≤ (1 + δ)z∗ (15)

The original bounds in the nominal problem are hard constraints (14), while in the
robust inequalities (13), the excess can be absorbed by slack variables γi at a penalty
in (12). To ensure a good optimal value, we require that the new objective value is not
much worse than the nominal objective value z∗ (15). δ is a constant which influences
the degree of robustness.

21



2 Model

In this section we will describe a mathematical model of a practical problem, namely
master surgery scheduling (MSS).

The master surgery schedule (MSS) is a cyclic timetable that defines the number
and type of operation rooms available, which hours the rooms will be open, and which
surgical groups or surgeons are to be given priority for the operating room time. For
instance, orthopedic may have operation room 2 for the block defined as every other
Tuesday between 10:00 and 16:00. The schedule is cyclic and repeats itself after a
certain time (e.g. every 2 weeks), and is used as a template by the admission planner
assigning patients to blocks.

First we will give a background to the different aspects of surgical planning, with
notation, then we will describe the problem, both with constraints and objectives,
discuss how we can add robustness to the model, before we put it all together into a
mathematical problem statement.

2.1 Introduction

At a hospital, you typically have different surgical groups like orthopedics or gynecology,
and each of them has the ability to treat a set of patients. There are also nurses,
anesthesiologists and other professions, which may or may not be considered a part of
the group.

The surgeons work on patients, which are grouped according to the surgery needed,
but may also be grouped according to difficulty, i. e. how much time is needed to treat
each patient, measured in hours.

In addition to personnel, you also have resources like, for instance, operation rooms
and equipment.

The patients are in need of elective and emergency surgery. The former is planned,
while the latter are operations which have to be done within 24 hours, in many cases
within fewer hours. Emergency surgery can disrupt the surgery plan, as it is prioritized
above elective cases, but on the other hand, we do not want to allocate too many re-
sources to emergency surgery because of inefficiency. Demand for emergency surgery is
highly unpredictable and usually not included in any surgery planning, though hospitals
might allocate spare resources to be used for emergencies.

To ease short time planning, hospitals try to maintain queues in all groups. This
way, there are always patients to fill in the schedule, even leading to increased efficiency
if the number of is lower than expected. Long queues, however, lead to problems, both
for the patients, who risk adverse effects, and to the hospitals, who risk being penal-
ized. Many hospitals operate with internal thresholds. Any queue within this limit is
considered acceptable. Exceeding the internal threshold will come to the attention of
the management, but has few consequences. Violating the external threshold, however,
will typically imply a penalty on the hospital, and is strongly unwanted. Hospitals can
manage queue length by redistributing the available resources where they are needed
most, but, in the best of cases, this is done infrequently.

In order to manage queue lengths, we need to consider the demand. There might
be long term changes in the demand, like less lung cancer due to less smoking, but
also seasonal changes, like more broken hips during winter. Seasonal changes may be
absorbed in the full year average, but long term changes should be reflected in a new
plan.
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Not only does the expected demand vary. The actual demand may deviate from
the expected demand due to epidemics, accidents, or simply by random fluctuations.
This uncertainty can make a good plan considerably worse. However, if we give up
optimality and aim a little lower, we may absorb these deviations and improve the
worst-case situations. Such solutions are called robust.

The plan should not only consider the patients at the hospital, but also the person-
nel. In particular, the use of overtime should be minimized, and there might be other
objectives too.

2.2 Notation

The set of surgical groups is denoted by G. The set of rooms is denoted by R. MSS
spans over a set of days D and weeks W . Each day is divided into blocks, denoted by
B with a given starting and ending hour. We can group the blocks according to the
block lengths L, to form B(l), l ∈ L. The period from 10:00-12:00 on Tuesday in week
2 is an example of a block of length 1 (each time slot lasts for of 2 hours).

The set of overlapping blocks is denoted by E. Two blocks are overlapping if the
day and week are equal, and if the time periods are overlapping at least one point
(b1, b2) ∈ E ⇔ b1, b2 ∈ B and b1 ∩ b2 6= ∅

A choice of g ∈ G, r ∈ R, b ∈ B is called a pattern, and the set of patterns is denoted
by P . With P (g) we denote the set of patterns with a fixed surgical group g. Similarily
P (r, l) is the set of patterns with a given room r and block length l.

The demand for each group and length is denoted by y. It can either be given as
input to the problem, or it can be a decision variable, depending on the problem.

If the demand is not met, we can talk about excess demand or queues q. Queues
can also be split in internal and external queues, the external queue being used only if
the total queue is exceeding the threshold Ext.

2.3 Master surgery scheduling problems

The MSS problem is to create an optimal schedule. We need to assign blocks and rooms
to the different groups in order to fulfill the wishes of the hospital.

But there are several ways of modeling MSS. First you need a way of represent-
ing your schedule, then you can consider all the different constraints and objective
functions.

2.3.1 Representing schedules

There exist several alternative representations of schedules, a natural choice is, for
instance, the time slot formulation, where you introduce a binary variable xg,r,t for
each group g, room r and time slot t which is 1 if and only if r is assigned to g at
time t. This formulation presents a number of difficulties when trying to represent slot
contiguity, which is important in case of difficult patients requiring several time slots.

We will instead use the pattern formulation, where for each pattern p = (g, r, b) ∈ P ,
we introduce a binary variable xp. The difference from the time slot formulation is that
we use blocks instead of time slots, which enable us to assign longer, continuous blocks.
With this formulation, one pattern corresponds to one patient.
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2.3.2 Representing demand

The demand y will be grouped according to surgery g and the length l needed. Thus
yg,l denotes the expected number of patients who need l time slots of treatment from
surgical group g. In other words,

∑

l l · yg,l is the total number of time slots required
by group g during the time horizon.

2.3.3 Constraints

We have three basic constraints: There cannot be more than one group in a room at a
given time.

∑

p1∈P (r,b1)

xp1
+

∑

p2∈P (r,b2)

xp2
≤ 1 ∀r ∈ R, (b1, b2) ∈ E

Similarly, a group cannot be in more than one place at the same time.

∑

p1∈P (g,b1)

xp1
+

∑

p2∈P (g,b2)

xp2
≤ 1 ∀g ∈ G, (b1, b2) ∈ E

And finally, you cannot split rooms and groups, thus x should be a binary variable.
These are the only constraints used in the thesis, but it is easy to add new ones when

required. If we want to fix some patterns in the schedule, we just set the corresponding
x to 1. Likewise, if we know that some patterns are illegal, for instance, if a team or
room is unavailable at a certain time, or that a team and a room are incompatible, this
is also easy. We just set the corresponding x to zero.

More complicated constraints are also possible, as long as we can express them as
a linear combination of x. The problem does not necessarily become more complicated
either. With more constraints, we should expect the problem to be solved faster, as
the feasible region is smaller.

2.3.4 Objective function

The objective in Minimum Queue MSS (MQ-MSS) is to assign patterns such that the
queues are as short as possible. The queue qg,l is defined as the difference between
the demand yg,l and the number of assigned blocks

∑

p∈P (g,l) xp. In other words: the
number of unscheduled patients. In particular the queues should not exceed a certain
threshold Ext. For this we use an objective function designed to increasingly penalize
longer queues.

Definition 2.1 (objective function in MQ-MSS).

f(q) =
∑

g∈G

∑

l∈L

fg,l(qg,l)

where fg,l is a non-decreasing, convex, piece-wise linear function defined as

fg,l(q) =











0 q < 0

l · c0 · q 0 ≤ q < Ext

l · c0 · Ext + l · c1(q − Ext) Ext ≤ q

Thus the marginal cost for the queues is c0 for the first Ext units, and c1 for
the following queue units. Everything is multiplied with the difficulty, so as not to
discriminate the difficult patients.
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Further theory on piece-wise linear functions can be found in section 1.5.
In Minimum overtime MSS, we fix the maximum queue length and ask ourselves,

what is the minimum amount of overtime that we need? More specifically, every pattern
now has a non-negative cost cp, and the objective is to minimize the total cost cT x.
The expensive patterns, using blocks with much overtime, would only be assigned if it
were really needed.

In addition to the normal constraints, it is also required that the queue is shorter
than a given threshold: qg,l ≤ Ext [Extg,l]

A hybrid model is also possible, where the objective function penalizes both long
queues and the use of overtime. The different objectives must then be given weights
relative to their importance.

2.4 Robustness

In standard robust optimization, as described in section 1.9, we add uncertainty sets to
all variables in the LP or MIP. In this problem, however, most variables are structural
and never uncertain. Either a group is present somewhere, or it is not. Therefore only
the demand will be uncertain.

A classical assumption is that each demand yg,l belongs to an interval [bg,l, βg,l].
The lower bound b is sometimes also denoted as the nominal value. However, this
assumption is much too pessimistic. Indeed, it is a common experience that, even
though the demand of a specific type of operation can actually take any value in the
interval, all demands will not assume their upper bounds simultaneously.

We could model the demand as random variables with a given statistical solution,
and use the information we have on the distributions to find a solution with an optimal
expected value. This is denoted by stochastic programming, and is outside the scope
of this thesis. The readers may consult [9].

Instead, we assume that the overall demand of surgery operation hours is limited by
some upper bound K. This gives us the following set from which we can draw demand
vectors.

YK = {y : yg,l ∈ [bg,l, βg,l], yg,l ∈ Z,
∑

g∈G

∑

l∈L

l · ygl ≤ K]}

The demand should be integral, because there will always be an integer number of
patients coming to the hospital.

The number K will also be called a knapsack constraint, due to the similarity to the
knapsack problem (Example 1.5). The reason for the factor l is that we want to find
balanced solutions by limiting the total number of hours. Without the factor, when
we only limit the number of patients, the solutions are skewed towards the demanding
groups, because these are the worst ones that the adversary can choose.

The knapsack constraint is inspired by ellipsoidal robustness, (section 1.9.1), only
here we are using the L1 manhattan norm instead of the L2 euclidean norm, to avoid
quadratic programs.

It could also be said that it is along the lines of Bersimas and Sim (section 1.9.2),
but where we limit the total demand instead of the number of variables which are
allowed to change.

We have also used an idea from light robustness (section 1.9.3), that we do not
require all demands to be met, rather we operate with soft constraints. Excess demand
can be absorbed in queues, but at a cost.

25



If we, on the other hand, drop the knapsack problem, we are left with the set

Y = {y : yg,l ∈ [bg,l, βg,l] ∀g ∈ G, l ∈ L}

Y is a hyperrectangle or an orthotope, where the demand for each group is inde-
pendent from that of all the other groups, and can take any value in an interval. The
idea that uncertainty variables are independent of each other is what characterizes the
original robust optimization. As we see in the discussion in section 1.9, robust opti-
mization often leads to overconservative solutions. Indeed, we see that the worst case
demand in our problem is simply y = β, and all other demand vectors are dominated
by this worst case.

Still, because of the simple model that follows, robust optimization is widely used,
and the set Y will be used in the reference solution which is used for comparing different
models (section 3.4).

2.5 Mathematical problem statement

Now that we have defined all parts of the problem, we can write the complete mathe-
matical model.

Definition 2.2 (Minimum queue-MSS).

min
x

f(q) (16)

subject to:
∑

p1∈P (r,b1)

xp1
+

∑

p2∈P (r,b2)

xp2
≤ 1 ∀r ∈ R, (b1, b2) ∈ E (17)

∑

p1∈P (g,b1)

xp1
+

∑

p2∈P (g,b2)

xp2
≤ 1 ∀g ∈ G, (b1, b2) ∈ E (18)

y ∈ argmax{f(q) : y ∈ YK} (19)

qg,l = yg,l −
∑

p∈P (g,l)

xp ∀g ∈ G, l ∈ L (20)

xp ∈ {0, 1} ∀p ∈ P (21)

The problem is bilevel, as it involves the solution of a “second level” optimization
problem (19), which says that the demand should be chosen as bad as possible with
respect to the assignment x. Constraint (17) and (18) from section 2.3.3 ensures that
the rooms and groups are not assigned twice for 2 overlapping blocks. The queues (20)
and objective function (16) are as in section 2.3.4. Constraint (21) ensures that the
decision variables are binary.

In case of the reference solution, we replace constraint (19) with y = β.
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3 Algorithm

While the model in section 2 is mathematically correct, it is not designed for being
solved by a computer. In this section, we will write an algorithm based on the mathe-
matical model, which will later be implemented and solved using computer programs.

First we will discuss how to implement the different parts of the model, before we
put everything together to create a complete algorithm. At the end we will also talk
about code optimizations.

3.1 Introduction

The problem statement in section 2.5 is written from a mathematician’s point of view.
It is possible to solve by enumerating all possible combinations of the variables x and
y, and choose the combination which best satisfies all the constraints. But by the time
this algorithm had solved a moderately large test set, we would all have been long dead.
We could even run out of memory, just by listing all combinations of y. Instead we see
that we are dealing with a bilevel program which is described in section 1.7.

Due to a non-standard objective function, we cannot use strong duality as in section
1.7.1. Instead we will use the implementor-adversary approach described in section
1.8.1.

3.2 Transforming the model

The formulation used in the implementor-adversary algorithm (I-A) is

Definition 3.1 (Implementor-adversary formulation).

find ζ∗ = min
x∈X

max
y∈Y

f(x, y)

while the model is formulated in definition (2.2).
In order to use I-A, we need to transform the model to the format in definition (3.1)
First we need to change the objective function. As the queues q are functions of

the demand y, and the assignments x from (20), we may simply replace f(q) with the
equivalent function f(x, y) and drop q from the model, as it is not used elsewhere.
Furthermore, constraint (19) may be moved to the objective function, as they contain
the same function f .

This gives us the following objective:

min
x

max
y∈YK

f(x, y)

If we write the remaining constraints (17), (18) and (21) as a new constraint x ∈ X,
we have exactly the form as in definition (3.1).

3.3 Implementing implementor-adversary

We recall from section 1.8.1 that the I-A algorithm is written

Algorithm 3.2 (implementor-adversary algorithm).
Problem: Find ζ∗ = minx∈X maxy∈YK

f(x, y)
Output: [near] optimal solution x∗ ∈ X such that ζ∗ = maxy∈YK

f(x∗, y) − [ǫ]
Initialization: Ỹ = {b}, lower bound L = −∞, upper bound U = ∞
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1. Implementor problem: Solve minx∈X maxy∈Ỹ f(x, y) with solution x∗. Set
lower bound L = maxy∈Ỹ f(x∗, y)

2. Adversarial problem: Solve maxy∈YK
f(x∗, y) with solution y∗. Update upper

bound by setting L = min(U, f(x∗, y∗))

3. Test: If U −L is small enough, go to the final step. Otherwise we add a new cut
so as to define Ỹ = Ỹ ∪ y∗ and go to step 1.

4. Final step: Use any solution x∗ where the corresponding adversarial value was
at a minimum: maxy∈YK

f(x∗, y) = U

We will proceed by describing the different parts in detail.

3.3.1 Implementor problem

The implementor problem is to solve minx∈X maxy∈Ỹ f(x, y) From the model in section
2.5, we see that the implementor problem is large, as X is a large set. It is the bottleneck
in our algorithm, and code optimizations are essential for improving running time.

In particular, we have a large number of binary variables (21) which slows down
the program. The binary constraints are necessary to arrive at a valid solution, but if
we relax integrality constraint we still get a valid lower bound. The relaxation should
be considerable in order to simplify the problem sufficiently, but it should also be close
enough to the original problem, to attain a good lower bound and a good response
from the adversary. Also note that the upper bounds found may be wrong, because
the adversary responds to relaxed, and thus invalid, solutions x∗. This is also a reason
for the relaxation to be close to the original.

With this in mind, we will replace the integrality constraints on x with:

0 ≤ xp ≤ 1 ∀p ∈ P (22)
∑

p∈P (g,l)

xp = sgl ∈ Z ∀g ∈ G, l ∈ L (23)

The sum of all assignments for each group and difficulty is used in constraint (20)
when calculating the queue, and thus also the objective function. Hence these sums
should not be relaxed, that is, they should still be integral (23). The decision variables
in (22) have no direct influence on neither the objective function, nor the adversary,
and may be relaxed to allow fractional values, though the bounds (0 and 1) should still
be the same.

As a consequence of the relaxation, we must also change the equations (17, 18)
to avoid solutions like x = (0.5, 0.5, 0.5) for 3 or more mutually incompatible patterns.
Instead we redefine E, to form E(bi) = {bj |bi∩bj 6= ∅}. If bi ∈ B(1) is a block consisting
of only one time slot, then E(bi) is the set of all blocks containing this time slot.

∑

b∈E(b1)

∑

p∈P (r,b)

xp ≤ 1 ∀r ∈ R, b1 ∈ B(1) (24)

∑

b∈E(b1)

∑

p∈P (g,b)

xp ≤ 1 ∀g ∈ G, b1 ∈ B(1) (25)

Constraint (24) restricts the rooms, so that for each timeslot, it is used by at most
1 group. It may be used fractionally by several groups, but not adding up to more than
1. This constraint replaces (17).
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Similarily, (25) replaces (18) to ensure that a group can not be in more than one
place (added up), during any time slot.

This gives us the following mixed integer program:

Minimize: ζ (26)

Subject to:
∑

b∈E(b1)

∑

p∈P (r,b)

xp ≤ 1 ∀r ∈ R, b1 ∈ B(1) (27)

∑

b∈E(b1)

∑

p∈P (g,b)

xp ≤ 1 ∀g ∈ G, b1 ∈ B(1) (28)

sgl =
∑

p∈P (g,l)

xp ∀g ∈ G, l ∈ L (29)

0 ≤ xp ≤ 1 ∀p ∈ P (30)

sgl ∈ Z ∀g ∈ G, l ∈ L (31)

q0,y,gl + q1,y,gl + sgl ≥ ygl ∀y ∈ Ỹ , g ∈ G, l ∈ L (32)

q0,y,gl ≥ 0 ∀y ∈ Ỹ , g ∈ G, l ∈ L (33)

q0,y,gl ≤ Ext ∀y ∈ Ỹ , g ∈ G, l ∈ L (34)

q1,y,gl ≥ 0 ∀y ∈ Ỹ , g ∈ G, l ∈ L (35)

ζ ≥
∑

g∈G

∑

l∈L

l · (q0,y,gl · c0 + q1,y,gl · c1) ∀y ∈ Ỹ (36)

Constraints (27) and (28) are the same as (24) and (25), while constraints (29), (30)
and (31) are the relaxations described in (22) and (23).

The variables q0,y,gl and q1,y,gl defined in constraint (32)-(35) are the resulting in-
ternal and external queues respectively, when the demand is y. Internal queues are
between 0 and Ext (33)-(34), while the external queues have no restrictions, except be-
ing non-negative (35). These constraints corresponds to the intervals in the objective
function in definition 2.1.

We also see that the sum in (36) is equivalent to the definition of f(q) in definition
2.1.

ζ is at least as high as the objective value in (36) from any of the demand vectors in
Ỹ , and because we want to minimize ζ (26), it must be equal to the maximum objective
value. In other words, ζ = minx maxy∈Ỹ f(x, y), as required.

Note that if the set of demand scenarios Ỹ that we consider is large, we get pro-
portionally many variables and constraints in (32)-(36).

3.3.2 Adversarial problem

The purpose of the adversary is to find cutting planes which can be used to remove
unwanted solutions on the x variables. Cuts are found by solving maxy∈YK

f(x∗, y),
where x∗ is an optimal solution to the implementor problem.

As the set YK is relatively small, this is a fairly easy problem. We need to be
careful though, as we are maximizing over the non-concave function f described in
section 2.3.4.

We will use the same notation as in section 3.3.1. Let q0,gl denote the internal
queue, 0 ≤ q0,gl ≤ Ext and let q1,gl denote the external queue, only used if the internal
queue is at its maximum.
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To maximize over a non-concave function is difficult; we need to introduce binary
variables (42) as described in section 1.5.

This gives us the following mixed integer program:

maximize: f(q) =
∑

g∈G

∑

l∈L

(l · c0 · q0,gl + l · c1 · q1,gl) (37)

subject to: ygl − q0,gl − q1,gl + Mz0,gl ≥
∑

p∈P (g,l)

xp ∀g ∈ G, l ∈ L (38)

q0,gl + Mz0,gl ≤ M ∀g ∈ G, l ∈ L (39)

q1,gl + Mz1,gl ≤ M ∀g ∈ G, l ∈ L (40)

q0,gl + Mz1,gl ≥ Ext ∀g ∈ G, l ∈ L (41)

z0,gl, z1,gl ∈ {0, 1} ∀g ∈ G, l ∈ L (42)

ygl ≥ bgl ∀g ∈ G, l ∈ L (43)

ygl ≤ βgl ∀g ∈ G, l ∈ L (44)
∑

g∈G

∑

l∈L

l · ygl ≤ K (45)

ygl ∈ Z ∀g ∈ G, l ∈ L (46)

(47)

The objective function (37) is just the same as in section 2.3.4. M is a sufficiently
high constant. Thus constraint (39) is equivalent to z0,gl = 1 ⇒ q0,gl = 0 and (40) to
z1,gl = 1 ⇒ q1,gl = 0. Constraint (41) is the same as z1,gl = 0 ⇒ q0,gl ≥ Ext.

(40) and (41) ensures that before the external queues are assigned, the internal
queues must be full (= Ext). Without this constraint, the program would assign the
expensive external queues first, because they contribute more to the objective function.

Constraints (39) and (38) allow us to set the queue to zero (z0,gl = 1), and thereby
ignoring the normal constraint that demand = queues + assigned blocks. Thus we are
not forced to choose demand ≥ assigned blocks, as we otherwise would have been. This
is important, because the implementor should not impose restrictions on the adversary.

Finally, constraints (43)-(46) makes sure that the demand is in the set YK as defined
in section 2.4.

3.3.3 Test and final step

After solving the implementor and adversarial problems, we have found a solution x∗

and the response y∗. If the response proved the optimal value found by the implementor
was incorrect, we would like to extend Ỹ by defining Ỹ = Ỹ ∪ y∗. This way we cut
away the unwanted solution x∗, and hopefully many more.

We know that the optimal value to an optimal solution must lie in the interval
[L,U ], between the lower and upper bound. In particular it cannot be less than L.
Thus if the response was not too bad in terms of optimal value (not too far from L),
we might be satisfied with our solution x∗.

Or if we improved the lower bound, we might be satisfied with an earlier solution x,
which had a corresponding adversarial optimal value not too far from L. We can then
return that solution which we now know was not too far from the real optimal value
anyway.
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3.3.4 Final iterations

When the algorithm (3.2) stops, a [near] optimal solution to the relaxed problem has
been found. Most probable this solution is not valid to the non-relaxed problem, and
we need to search further. By relaxing, the optimal value to the implementor problem
never gets worse. Thus we can keep the lower bound, and we can also keep the set Ỹ ,
which are all valid demand vectors. However, we must discard the upper bound.

We can now add the missing constraint in the implementor problem

xp ∈ {0, 1} ∀p ∈ P

and solve it normally, using the same algorithm (3.2). As we may keep the lower bound
L, and also the set Ỹ , we expect the problem to be solved fast, because the relaxed
problem is not very different from the non-relaxed.

3.3.5 Head start

Instead of starting with Ỹ = {b}, we may create a larger starting set using a heuris-
tic. This will save iterations in the cutting-plane algorithm, but it will also make the
implementor problem larger and thus more complicated.

A starting set should try to cover as many extreme cases as possible, because an
adversary solution will typically be extreme. Because of the high cost of long queues
in the objective function, an adversary will try to max out demand where he can make
long queues, while saving demand where the queues will be short or negative (section
1.8.4).

Using the idea above, we chose the following heuristic:

1. Assign the minimum demand to all groups (required)

2. order the groups

3. assign maximum demand to the first group, then the second group

4. continue until knapsack constraint is reached

5. rest of the groups will have minimum demand

The only part missing is how to order the groups. One way is to use cyclic ordering
[1, 2, . . . , n], [2, . . . , n, 1], . . . , [n, 1, . . . , n − 1]. Another way is to use a random permu-
tation [π(1), π(2), . . . , π(n)]. Where we have used a head start, we first used cyclic
ordering, then random permutations if we wanted more demand vectors in the starting
set.

3.4 Reference solution

In order to test the algorithm, we wanted a reference solution. For this we use the
cutting plane algorithm as in section 3.3, but with one small difference: Ỹ = {β}.
Because β is the worst case demand possible, the adversary will not be able to find
any demand vector with a worse objective value, thus the algorithm will stop very fast
after only one iteration.
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3.4.1 Quadratic objective function

As the reference solution only considers the worst case demand, we could expect that
the queues are long. In particular the queues will exceed the external threshold Ext

in all or almost all groups. In such a case, the objective function is in practice linear,
which opens up for skewed solutions. This is because a balanced solution with q =
(Ext + 10, Ext + 10) has the same objective value as an unbalanced solution with
q = (Ext + 20, Ext).

In order to fix this, we made a second objective function, which is still piecewise
linear, but with so many pieces that it in practice is quadratic.

Note that because we have different objective functions, the objective values can
not be compared. We can, however, compare the solution with other solutions found
using, for instance, the standard reference solution in section 3.4, or the I-A algorithm
in section 3.3.

3.5 Implementation

Even though the simplex algorithm is mathematically simple, it is numerically unstable.
In addition we were more interested in the model and the algorithm than the program-
ming, and decided to use an existing solver. Of the solvers we could use, CPLEX [18]
is definitely one of the best ones, allowing us to solve MIPs with a reasonable size fast.

There are three ways to run CPLEX that we considered. First you have the graph-
ical OPL studio which is good for writing models fast, with its compact input format.
It lacks a good programming interface though, and runs only on windows.

The other extreme is the callable library, where you write a program in for instance
C++, and call the CPLEX library methods. This offer total control and should be the
fastest. C++ is even my favorite programming language, but we discarded this method
because we did not need the low-level control offered.

Perfect for our purpose was the stand-alone command-line CPLEX program. It has
pre-built commands for reading a problem in standard LP format, adding additional
constraints to a problem, writing the solution to file and of course to solve a problem.

I could either send instructions to CPLEX, wait for the results and quit. Or we could
use the interactive mode which was perfect when running the implementor-adversary
algorithm.

Python is a high-level programming language which is great for fast development,
and offers a relatively easy interface to process management. We ended up building a
python script acting as a controller. It had two CPLEX instances as child processes,
and handled the communication between them. It also had methods for parsing the
output and generating the LP files needed by the CPLEX processes. When it decided
that an optimal solution had been found, it would generate a run plot using gnuplot,
with statistics on running time and convergence.

This program took some time to write, but made it very easy to test new objective
functions and constraints, or new input to the problem. It is very inspiring to have an
idea and see the results in a matter of minutes

We also used some PHP scripts so that we could write input to the python scripts
through a web browser. With these scripts we could also organize the input sets and
also view the results after the program had finished. For some time we also ran CPLEX
through the web server, but had to stop because of security issues.

The biggest problem with the program is the “just one more feature”-approach. Af-
ter a while, the program is quite messy and difficult to understand. The computational
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results can be verified though, by looking at the generated .lp files which can be solved
by CPLEX manually.

3.5.1 Code optimization

Most of the execution time (> 90%) is used in the CPLEX processes, therefore we did
not bother to optimize the python scripts. There are a lot of parameters that can be
set in CPLEX which affects the methods used for solving programs. We have not tried
many of these settings, but my impression is that CPLEX is very capable of choosing
the best settings automatically. And for our purposes, we would probably use more
time testing out settings than we would save on running times.

The best optimizations were the ones made to the model and algorithm. And citing
Donald Knuth: “premature optimization is the root of all evil”. First after we are
certain which model and algorithm to use, we should put an effort in optimizing.

3.5.2 Auxiliary constraints

Sometimes even state-of-the-art programs like CPLEX are not as smart as you should
expect. Then it is possible to help it along the way.

Even though it should be obvious, that when you add constraints to a problem, the
optimal solution cannot improve, it may not be seen by the solver. In that case we
may add the constraint that ζ ≥ lower bound. It does not change the problem, and
can only improve running time.

It is also possible that there might be two or more solutions, where both have the
same optimal value, but one is dominated by the other. We were surprised to see
solutions with holes in the schedule and also assignment of blocks to groups who for
certain are not going to need them.

These dominated solutions can be removed by adding tie-breaking rules or heuris-
tics, without changing the optimal value. We have removed holes in the schedule, but
there are still a few suboptimal schedules which are marked in the text.
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4 Results

In this section we will discuss how to test the programs, describe the test cases, and
also show the results in terms of running time and optimality for a large number of
different inputs and algorithm parameters.

In order to test the programs, both in terms of running time and in optimality,
we need test cases. First we need data which can be put into our model and used in
the algorithms. But we also want to test the solutions found by the algorithms with
realistic demand scenarios.

4.1 Model input

We created the model input with two aims in mind. It should be as realistic as possible,
modeling something that could have happened. But we also wanted it to be compu-
tationally challenging. In particular it should disfavor greedy algorithms to show the
potential of robust optimization.

In the end we came up with two input data sets, a normal and a large. They have
much in common, every week consists of 5 days, and every day consists of 6 unit blocks
or time slots (denoted by hours, though in practice a unit block would be 2 hours.
With 6 · 2 hours, we include overtime). Both have 6 surgeon groups, and each group
have patients in 4 different difficulty classes, each requiring 1-4 unit blocks depending
on class. Thus we consider 24 classes in total. We also have 5 rooms available in both
cases.

With 5 rooms and 6 surgeon groups, rooms is the main limiting constraint, though
surgeon resources may also be limiting, especially if some groups are in a great demand.

With 6 unit blocks, there are a total of 18 blocks each day (6,5,4,3 blocks of length
1,2,3,4).

4.1.1 Normal input data set

This is a schedule running for 1 week, thus it has 1 ·5 ·6 = 30 unit blocks. With 5 rooms
and 6 surgeon groups, we have 30 · 5 = 150 “room hours” and 30 · 6 = 180 “surgeon
hours”.

The demand for each class is given in the following table:
hours 1 2 3 4 Total blocks Total hours

group 1 5-7 2-5 3-5 0-1 10-18 18-36
group 2 4-5 1-3 1-3 4-7 10-18 25-48
group 3 2-3 5-6 1-3 2-4 10-16 23-40
group 4 2-3 4-6 0-0 2-4 8-13 18-31
group 5 3-5 5-6 2-4 1-2 11-17 23-37
group 6 4-7 3-4 3-5 1-2 11-18 23-38

Sum 20-30 20-30 10-20 10-20 60-100 130-230
The first and second number in each cell is the lower and upper limit, respectively.

Total blocks is the sum over all block lengths for each group. Total hours is the number
of blocks times the length of the block. Lower limits are summed together, as well as
upper limits.

The limit on the total number of hours was set to 150, 155 or 160. The adversary
could in other words distribute blocks with a extra demand of 20-30 hours in addition
to the lower limit of 130.
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The total number of integer decision variables are 18 · 5 · 1 · 6 · 5 = 2700 (blocks/day,
days, weeks, surgeon groups, rooms).

The parameters for the objective function are c0 = 1 and c1 = 3, and Ext = 1. In
other words, the cost of the first queue unit is 1, while the cost is 3 for every following
queue unit.

4.1.2 Large input data set

To really test the algorithm, we made a second test set spanning over 7 weeks. Thus the
number of room and surgeon hours is increased 7-fold to 1050 and 1120 respectively.

hours 1 2 3 4 Total blocks Total hours

group 1 7-10 55-70 14-20 2-3 78-103 167-222
group 2 14-18 62-75 2-4 0-0 78-97 144-180
group 3 31-40 84-95 1-2 0-0 116-137 202-236
group 4 13-15 20-35 1-2 0-0 34-52 56-91
group 5 5-10 73-90 17-25 1-2 96-127 206-273
group 6 16-25 53-70 2-4 0-0 71-99 128-177

Sum 86-118 347-435 37-57 3-5 473-615 903-1179
The quantities are taken from a realistic scenario from a hospital, and we see that

reality is not always well-balanced. Group 4 has little to do, while groups 5, 3 and 1
will most likely have to work the maximum 210 hours. We chose a length of 7 weeks
to make the number of possibilities as high as possible and to disfavor a simple greedy
solution.

The total number of blocks was limited by 950 to 1050, thus we could distribute 47
to 147 extra hours.

The total number of integer decision variables are 18 ·5 ·7 ·6 ·5 = 18900 (blocks/day,
days, weeks, surgeon groups, rooms).

The parameters for the objective function are c0 = 1, c1 = 3 and Ext = 3. To
reflect the larger input data, the external threshold was increased.

4.2 Running time

The main results on running time are given in table (1).
Name consists of the test set (normal/large), the size of the knapsack constraint

(KC) in parenthesis, and the head start (section 3.3.5) given in number of cyclic (up
to 24) + random adversary solutions. Imp. and adv. is the running time in seconds
for the implementor and adversary program respectively, and total is the sum of these.
Total iter. is the total number of iterations needed until an optimal solution was
found. Relaxed and relaxed iter is the time and number of iterations needed for the
relaxed problem.

The first line is a normal test set with KC 150 and no head start, but with integer
constraints on the decision variables x as in section 3.3.4, but from the beginning.

Run plots for the normal input set are shown in figures (3)-(15), which show the
progress of the algorithm in more detail, both convergence and running time. The
optimal value was 42, 52 and 62 for the input with knapsack constraint 150, 155 and
160 respectively.

For the large input sets, the run plots are shown in figures (16)-(18). The optimal
values was found to be 94, 181 and 200 for the large input with KC 950, 1000 and 1050
respectively.
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Table 1: Running time of cutting planes algorithm with different input
name imp. adv. total total iter. relaxed relaxed iter.

normal(int) - 0 591 10 601 36 - -
normal(150) - 0 328 11 339 39 333 38
normal(150) - 24 498 10 509 33 507 32
normal(150) - 48 583 9 592 26 581 25
normal(150) - 100 812 8 821 21 819 20
normal(150) - 200 302 3 305 6 263 2
normal(150) - 400 378 2 381 3 378 2
normal(150) - 800 790 7 797 5 739 3
normal(155) - 0 2566 27 2594 87 2473 76
normal(155) - 24 3727 26 3753 74 3703 69
normal(155) - 100 5585 30 5616 67 5534 63
normal(160) - 0 17529 97 17627 230 17625 229
normal(160) - 24 35950 102 36053 223 36051 222

large(950) - 0 1630 14 1645 22 1358 15
large(1000) - 0 852 13 866 20 804 15
large(1050) - 0 10628 57 10686 82 8555 55

Figure 3: Run plot: normal input with no head start.
Total demand was limited to 150 hours. Did not solve relaxed problem first, used
integer variables all the time
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Figure 4: Run plot: normal input with no head start.
Total demand was limited to 150 hours.
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Figure 5: Run plot: normal input with head start 24.
Total demand was limited to 150 hours.
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Figure 6: Run plot: normal input with head start 48.
Total demand was limited to 150 hours.
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Figure 7: Run plot: normal input with head start 100.
Total demand was limited to 150 hours.
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Figure 8: Run plot: normal input with head start 200.
Total demand was limited to 150 hours.
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Figure 9: Run plot: normal input with head start 400.
Total demand was limited to 150 hours.
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Figure 10: Run plot: normal input with head start 800.
Total demand was limited to 150 hours.
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Figure 11: Run plot: normal input with no head start.
Total demand was limited to 155 hours
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Figure 12: Run plot: normal input with head start 24.
Total demand was limited to 155 hours
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Figure 13: Run plot: normal input with head start 100.
Total demand was limited to 155 hours
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Figure 14: Run plot: normal input with no head start.
Total demand was limited to 160 hours
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Figure 15: Run plot: normal input with head start 24.
Total demand was limited to 160 hours
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Figure 16: Run plot: large input with no head start.
Total demand was limited to 950 hours
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Figure 17: Run plot: large input with no head start.
Total demand was limited to 1000 hours
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Figure 18: Run plot: large input with no head start.
Total demand was limited to 1050 hours
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Table 2: Summary of solution with cutting plane algorithm on normal input. KC =
150 hours

hours 1 2 3 4 Total blocks Total hours

group 1 6 3 3 0 12 21
group 2 5 2 1 4 12 28
group 3 2 6 1 3 12 29
group 4 2 5 0 3 10 24
group 5 4 5 2 1 12 24
group 6 5 3 3 1 12 24

Sum 24 24 10 12 70 150

4.3 Solutions

4.3.1 Cutting plane - normal input

We have included three of the solutions from the normal input, with KC 150, 155 and
160. With the KC150 solution, we have used the non-relaxed problem, and in all cases
only the final, and thus feasible solution is included. We used the run with no head
start.

The solutions are shown in tables (3), (5) and (7), with summaries in tables (2),
(4) and (6).

4.3.2 Reference solution - normal input

We also solved the problem using the reference solution described in section 3.4, both
with the same objective function as the cutting plane algorithm, but also with a
quadratic objective function (section 3.4.1. The solutions are shown in tables (8)-(11)
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Table 3: Solution with cutting plane algorithm on normal input, KC = 150 hours
Room 1 Room 2 Room 3 Room 4 Room 5

Day 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

H 1 2 5 3 6 3 6 4 6 2 2 3 3 2 5 5 1 6 5 3 4 5 1 1 4 6
H 2 2 5 3 6 3 6 4 4 2 2 3 3 2 1 5 1 6 5 3 4 5 2 1 4 6
H 3 4 3 3 6 5 3 4 4 3 2 2 5 2 1 1 1 6 5 2 4 5 2 1 4 6
H 4 1 3 3 6 5 3 4 4 3 3 2 1 2 1 1 4 5 5 2 4 6 2 6 4 6
H 5 5 3 3 4 5 3 4 1 3 3 2 1 2 6 2 4 5 5 2 4 6 2 6 1 6
H 6 5 3 6 4 1 3 4 1 3 3 2 2 2 5 2 6 5 5 2 4 1 6 3 1 6

Table 4: Summary of solution with cutting plane algorithm on normal input. KC =
155 hours

hours 1 2 3 4 Total blocks Total hours

group 1 6 3 4 0 13 24
group 2 4 2 2 4 12 30
group 3 2 5 2 2 11 26
group 4 2 5 0 2 9 20
group 5 3 5 2 1 11 23
group 6 5 3 4 1 13 27

Sum 22 23 14 10 69 150

Table 5: Solution with cutting plane algorithm on normal input, KC = 155 hours
Room 1 Room 2 Room 3 Room 4 Room 5

Day 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

H 1 1 2 4 5 6 6 1 6 6 3 3 4 5 1 1 2 3 1 2 5 4 6 2 3 2
H 2 1 2 4 4 6 6 1 6 6 3 3 4 5 1 1 2 3 1 2 4 4 6 2 3 2
H 3 1 2 3 4 2 5 1 6 5 3 3 4 5 2 1 2 3 1 6 4 4 5 2 3 5
H 4 6 2 3 6 2 5 6 6 5 3 3 4 1 2 6 2 3 5 1 1 4 5 2 3 5
H 5 6 2 3 6 2 5 6 6 5 3 2 4 2 2 6 3 3 5 1 4 4 5 1 3 5
H 6 6 2 3 6 2 5 6 2 4 1 2 4 6 2 6 3 1 5 1 4 1 5 1 3 5

Table 6: Summary of solution with cutting plane algorithm on normal input. KC =
160 hours

hours 1 2 3 4 Total blocks Total hours

group 1 6 3 4 0 13 24
group 2 4 2 1 4 11 27
group 3 2 6 2 2 12 28
group 4 2 5 0 2 9 20
group 5 4 5 3 1 13 27
group 6 5 3 3 1 12 24

Sum 23 24 13 10 70 150
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Table 7: Solution with cutting plane algorithm on normal input, KC = 160 hours
Room 1 Room 2 Room 3 Room 4 Room 5

Day 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

H 1 1 5 5 3 4 3 3 1 4 3 5 2 6 1 6 4 4 3 5 5 2 1 2 2 2
H 2 1 5 5 3 4 3 3 1 4 3 5 2 6 1 6 4 4 2 5 5 2 1 4 2 2
H 3 6 5 5 4 3 3 6 2 1 4 4 2 6 2 6 5 4 1 3 5 2 3 4 6 2
H 4 6 6 3 6 3 3 1 2 3 4 1 2 1 5 6 5 4 5 2 5 2 3 6 1 2
H 5 6 6 3 6 6 3 1 2 3 4 1 4 1 5 1 5 5 5 2 3 2 3 6 1 2
H 6 6 6 3 6 6 3 1 2 3 4 1 4 1 5 1 5 5 5 2 3 2 3 6 1 5

Table 8: Summary of solution with reference algorithm on normal input
hours 1 2 3 4 Total blocks Total hours

group 1 6 4 4 0 14 26
group 2 4 2 1 4 11 27
group 3 2 5 1 2 10 23
group 4 2 5 0 3 10 24
group 5 4 5 3 0 12 23
group 6 5 3 4 1 13 27

Sum 23 24 13 10 70 150

Table 9: Solution with reference algorithm on normal input
Room 1 Room 2 Room 3 Room 4 Room 5

Day 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

H 1 1 2 3 6 3 3 1 2 1 6 2 4 5 3 4 4 6 4 2 2 5 3 1 5 1
H 2 4 5 5 6 3 3 1 6 4 6 2 4 2 3 4 1 6 4 2 2 5 3 1 5 1
H 3 4 5 5 6 4 3 2 6 4 6 2 6 2 3 3 1 3 4 2 2 6 1 1 5 1
H 4 4 1 1 6 4 1 2 6 1 6 2 5 2 4 3 5 3 4 2 2 6 6 3 5 5
H 5 4 1 1 6 4 1 2 6 3 6 2 5 2 4 3 5 3 4 5 2 6 6 3 1 5
H 6 4 1 1 6 4 1 2 6 3 1 2 5 5 2 3 5 3 4 5 6 6 6 2 1 5

Table 10: Summary of solution with reference algorithm, quadratic objective function,
on normal input

hours 1 2 3 4 Total blocks Total hours

group 1 5 4 4 0 13 25
group 2 4 1 0 5 10 26
group 3 2 4 2 2 10 24
group 4 2 5 0 3 10 24
group 5 4 4 3 1 12 25
group 6 6 2 4 1 13 26

Sum 23 20 13 12 68 150
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Table 11: Solution with reference algorithm, quadratic objective function, on normal
input

Room 1 Room 2 Room 3 Room 4 Room 5

Day 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

H 1 5 3 5 6 5 3 2 1 1 2 4 5 2 4 6 2 1 6 5 3 6 6 4 2 1
H 2 1 3 5 6 5 3 6 1 1 2 4 4 2 4 6 2 1 6 5 3 6 5 4 2 1
H 3 1 2 5 6 5 3 6 1 1 2 4 4 3 4 6 2 3 2 5 3 6 5 4 2 1
H 4 1 2 6 3 5 3 6 1 1 2 4 4 3 4 4 2 3 2 5 6 6 5 4 2 1
H 5 3 2 5 3 5 5 6 1 1 1 4 5 3 5 4 1 4 2 6 6 6 3 4 2 3
H 6 3 2 5 3 3 5 6 1 2 5 4 5 3 6 1 1 4 2 1 6 6 3 4 4 2

Table 12: Summary of solution with cutting plane algorithm on large input. KC = 950
hours

hours 1 2 3 4 Total blocks Total hours

group 1 10 59 19 3 91 197
group 2 18 66 2 2 88 164
group 3 33 88 0 0 121 209
group 4 16 28 2 5 51 98
group 5 5 77 17 0 99 210
group 6 24 67 2 2 95 172

Sum 106 385 42 12 545 1050

4.3.3 Cutting plane - large input

We have also solved the large input set with three different values for KC: 950, 1000
and 1050. Because the schedules are so large, we have only included one of them in
full, in table (15). The summaries are in tables (12), (13) and (14)

4.3.4 Reference solution - large input

The large input was also solved using the reference solution from section 3.4, and the
result are summarized in table (16)

4.4 Optimality testing

Solutions found by a LP or MIP can be proven to be optimal. But they are only optimal
in terms of the specific constraints and optimal function. In our case with the cutting

Table 13: Summary of solution with cutting plane algorithm on large input. KC =
1000 hours

hours 1 2 3 4 Total blocks Total hours

group 1 7 67 18 3 95 207
group 2 17 72 4 0 93 173
group 3 34 88 0 0 122 210
group 4 13 32 2 3 50 95
group 5 5 74 19 0 98 210
group 6 20 63 3 0 86 155

Sum 96 396 46 6 544 1050
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Table 14: Summary of solution with cutting plane algorithm on large input. KC =
1050 hours

hours 1 2 3 4 Total blocks Total hours

group 1 11 67 17 3 98 208
group 2 18 72 3 0 93 171
group 3 36 87 0 0 123 210
group 4 15 32 2 0 49 85
group 5 7 82 13 0 102 210
group 6 22 66 4 0 92 166

Sum 109 406 39 3 557 1050

plane algorithm, optimality is defined by having the minimal worst case bound, when
the adversary can choose freely from YK .

Two question we can ask ourselves is if the worst case bound is representative for the
average performance, and what happens if we draw scenarios with a different knapsack
constraint, or none at all?

There are more than 5 billion demand scenarios only on the normal input (for
normal input: |Y | = 5, 804, 752, 896. Large input: |Y | = 4, 550, 926, 270, 464, 000), and
we would like to see how the solutions perform on average too, not just on the worst
cases. We are also interested in what happens when the demand is not as expected and
the knapsack constraint is violated.

Thus we would like to look at how good the solutions are in practice, by drawing
demand scenarios from random distributions and comparing how the demand is met
by the different solutions. We want to find the expected value of the objective function.

To find the expected value of a function, we can either find the probability of each
input, and use this with the function value to calculate the expected value as an integral
or a sum. Or we can use the monte-carlo method [16] to draw a random sample from
the set of all demand scenarios. The latter is by far the easiest and fastest, and also
yields good results.

The function used for comparison is the same as the piece-wise linear objective
function used in both the cutting plane algorithm and the reference solution (but not
the quadratic reference solution).

4.4.1 Sampling distributions

We still need a statistical distribution from which we draw the random sample. The
distribution should match a realistic distribution of the actual demand. For simplicity
we chose a binomial distribution; first we assign the minimum demand to all groups.
Then for all groups, we look at the potential demand for extra patients, and for each
patient we flip a coin to see if he should be included or not. Note that the coin is not
necessarily fair, we can change the probability to adjust the expected total demand.

In all but 2 cases, the samples were filtered, only using those with a total demand
equal to a certain value, like a knapsack constraint. In one case, we used a binomial
distribution without filtering, and in the last case a uniform distribution was used,
drawing demands for each group/length randomly between the lower and upper bound
inclusive.

In all cases, sample size was 100,000, drawn randomly and independent, with re-
placement. All solutions were tested on the same samples.
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Table 15: Solution with cutting plane algorithm, large input. KC = 1000 hours
Room 1 Room 2 Room 3 Room 4 Room 5

Day 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Hour 1 5 5 3 4 2 1 3 5 1 6 3 1 1 6 3 2 4 4 5 5 6 2 6 3 1
Hour 2 1 5 3 4 2 5 6 5 1 6 3 1 1 3 3 2 3 4 5 5 6 2 6 2 1
Hour 3 1 3 3 4 5 5 6 5 1 1 2 1 1 3 2 6 5 2 5 3 3 2 6 2 6
Hour 4 1 3 3 4 5 5 1 1 3 1 2 6 5 6 2 6 5 2 5 3 3 2 6 1 6
Hour 5 1 6 3 5 1 5 1 1 3 3 3 5 5 6 6 4 3 6 2 2 6 4 2 1 5
Hour 6 1 6 3 5 1 5 1 1 3 3 3 5 5 6 6 4 3 6 2 2 6 4 2 1 5

Hour 1 5 6 6 2 1 3 1 5 1 2 2 2 2 4 6 1 3 4 3 5 4 5 3 5 3
Hour 2 5 6 1 2 1 6 1 5 1 2 2 4 2 4 6 1 3 4 3 5 3 5 3 5 3
Hour 3 5 6 1 3 1 6 1 5 1 6 2 4 3 5 2 1 3 6 2 5 3 5 2 6 3
Hour 4 2 5 2 3 5 5 1 5 1 6 6 6 3 5 2 1 3 6 2 1 3 2 1 6 3
Hour 5 3 5 2 4 5 5 1 5 3 6 6 6 6 6 3 1 3 3 1 1 2 2 1 5 4
Hour 6 3 5 2 4 5 5 1 5 3 6 4 2 6 6 3 1 3 3 1 1 2 4 1 5 4

Hour 1 1 4 2 6 3 5 5 3 3 2 3 1 1 5 5 6 3 5 2 1 2 2 6 1 4
Hour 2 1 4 2 6 3 5 5 3 3 6 3 1 1 5 5 6 2 5 2 1 2 3 6 1 4
Hour 3 5 4 3 5 3 2 3 4 3 6 3 5 1 6 5 6 2 5 2 1 1 1 6 1 4
Hour 4 5 4 3 5 3 2 3 4 3 6 3 5 1 6 5 6 2 5 2 1 1 1 6 1 4
Hour 5 3 5 6 4 2 2 1 4 6 1 6 3 1 3 3 5 2 5 5 5 1 6 3 1 4
Hour 6 3 5 6 4 2 2 1 4 6 1 4 3 1 3 3 5 2 5 5 5 1 6 3 1 6

Hour 1 3 5 5 3 1 4 3 6 2 3 1 1 2 1 2 5 6 3 4 6 6 2 1 5 5
Hour 2 3 5 5 2 1 4 3 6 3 3 1 1 2 1 2 5 6 3 4 6 6 2 1 5 5
Hour 3 5 5 3 2 2 3 6 5 6 6 2 1 2 3 3 1 2 6 1 5 6 3 1 5 1
Hour 4 5 5 3 2 2 3 6 5 1 6 2 1 2 3 3 1 2 1 4 5 4 3 6 5 1
Hour 5 3 5 3 5 2 2 6 6 1 5 1 1 2 3 6 5 3 1 2 3 4 2 5 6 1
Hour 6 3 5 3 5 2 2 6 6 1 5 1 1 2 3 6 5 3 1 2 3 6 2 5 6 1

Hour 1 2 4 3 5 5 3 2 2 2 2 5 3 1 3 3 1 5 6 4 6 4 1 5 1 1
Hour 2 2 4 3 5 5 3 2 2 2 2 5 3 1 3 3 1 5 6 4 6 4 1 5 1 1
Hour 3 1 2 6 1 1 6 1 2 5 3 5 6 3 3 6 3 3 5 4 2 2 5 1 6 5
Hour 4 1 2 4 1 1 6 1 2 5 3 5 6 3 4 6 3 3 5 3 2 2 5 1 6 5
Hour 5 1 3 4 1 5 3 2 5 3 3 6 4 1 4 1 2 5 2 2 2 5 1 3 5 4
Hour 6 1 3 4 4 5 3 2 5 3 3 6 4 1 6 1 2 5 2 2 2 5 1 3 5 4

Hour 1 1 4 5 4 2 5 3 1 3 5 2 6 2 2 3 4 5 6 1 1 3 2 3 5 6
Hour 2 1 2 5 2 2 5 1 3 6 5 2 6 1 5 1 6 5 2 1 3 3 3 6 3 6
Hour 3 4 2 5 2 2 5 1 3 6 5 1 6 1 5 1 6 5 2 1 3 3 3 6 3 6
Hour 4 4 6 6 2 2 3 2 1 5 5 1 1 3 3 3 5 5 5 1 1 2 3 4 6 6
Hour 5 5 5 2 2 4 1 6 1 5 5 3 1 3 3 3 4 2 5 1 1 2 3 6 6 2
Hour 6 5 5 2 3 4 1 6 1 5 5 3 1 3 2 3 4 2 5 1 1 2 3 6 6 2

Hour 1 1 1 5 3 5 5 4 1 6 3 2 2 3 1 4 3 5 2 5 1 6 3 4 2 2
Hour 2 1 1 5 3 5 5 4 1 6 3 2 2 3 1 4 3 5 2 5 1 6 3 4 2 2
Hour 3 5 6 5 5 3 3 3 2 6 6 2 4 3 1 1 1 1 6 3 5 4 5 1 2 2
Hour 4 5 6 5 5 3 3 3 2 1 6 2 4 3 4 1 1 1 6 3 5 4 5 1 2 2
Hour 5 1 5 5 2 5 6 1 6 1 4 3 2 4 4 6 5 4 1 5 1 4 3 3 3 3
Hour 6 1 5 5 2 5 6 1 6 1 4 3 2 4 4 6 5 4 1 5 1 4 3 3 3 3
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Table 16: Summary of reference solution large input.
hours 1 2 3 4 Total blocks Total hours

1 10 67 17 2 96 203
2 18 72 2 0 92 168
3 36 87 0 0 123 210
4 15 35 1 0 51 88
5 6 69 22 0 97 210
6 25 70 2 0 97 171

Sum 110 400 44 2 556 1050

Table 17: Optimality on cutting plane vs. reference solutions, distributions as in cutting
plane algorithm.

150 155 160

Name Max St.dev Mean Max St.dev Mean Max St.dev Mean

Normal(int) 42 5.0155 14.6062 47 5.8324 19.2231 58 6.5407 24.2318
N(150)-0 41 5.0512 15.0967 48 5.8815 19.8534 60 6.6106 25.0122

N(150)-24 42 5.0148 14.6053 47 5.8306 19.2214 58 6.5428 24.2266
N(150)-48 42 5.0132 15.7429 49 5.8528 20.5299 60 6.5835 25.6762

N(150)-100 41 5.0513 15.166 47 5.8816 19.9188 58 6.6087 25.0549
N(150)-200 42 4.9939 14.469 48 5.804 19.0035 56 6.4925 23.8889
N(150)-400 42 5.0523 15.1647 47 5.8848 19.9159 58 6.6056 25.0482
N(150)-800 42 4.9766 15.3698 47 5.7965 20.1672 58 6.505 25.3503

N(155)-0 41 4.8664 13.7765 48 5.6714 18.1993 54 6.38 22.9951
N(155)-24 42 4.9574 15.9979 48 5.8358 20.9577 56 6.5573 26.2268

N(155)-100 42 4.8104 15.8434 48 5.6853 20.7643 57 6.4061 25.9982

N(160)-0 41 4.881 14.251 48 5.7055 18.8096 54 6.4139 23.7506
N(160)-24 42 4.8432 14.3189 48 5.6657 18.8754 53 6.3721 23.7787

N(ref.) 48 6.0597 18.2982 58 6.8416 22.729 64 7.4639 27.5197
N(ref.qua) 55 6.4454 23.5485 66 6.9679 27.8029 68 7.3368 32.3257

4.4.2 Comparison of solutions - normal input

The summary of the results is found in tables (17) and (18). The names are as in table
(1), but with ref meaning the reference solution and ref.qua meaning the reference
solution with quadratic objective (section 3.4).

The tables show the worst objective value from the samples, the standard deviation
(st.dev) and the mean. This has been calculated for all samples and all solutions.

4.4.3 Comparison of solutions - large input

The summary of the results are found in table (19), all samples are from the binomial
distribution, filtered to extract the samples with total demand 950, 1000, 1050, 1100,
1150 and 1179 hours. Because the maximum number of hours was 1179, this is also
what the reference solution was optimized for.

In addition to the tables, we have also included histograms to show more details of
the results, not just the mean, worst case and standard deviation. The plots for the
test cases 950-1150 (1179 is just a single point) are found in figures (19)-(23).
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Table 18: Optimality on cutting plane vs. reference solutions, other distributions.
190 uniform binomial 190

Name Max St.dev Mean Max St.dev Mean Max St.dev Mean

Normal(int) 98 8.3716 62.1015 119 16.9761 54.4077 122 15.3214 62.6615
N(150)-0 101 8.4704 64.0121 123 17.2666 56.0836 124 15.5903 64.5843

N(150)-24 99 8.3702 62.1024 119 16.9729 54.4069 123 15.319 62.6609
N(150)-48 100 8.563 63.3885 120 16.948 55.0981 124 15.3265 63.9162

N(150)-100 99 8.4713 63.5172 121 17.2022 55.5609 124 15.5486 64.1094
N(150)-200 96 8.2853 60.6545 116 16.5463 53.0898 117 14.8872 61.222
N(150)-400 101 8.4773 63.5186 123 17.1919 55.5627 124 15.5445 64.1138
N(150)-800 99 8.3263 64.1199 123 17.2342 56.0675 125 15.5771 64.7093

N(155)-0 95 8.2455 59.2308 113 16.7581 51.8848 115 15.1383 59.7758
N(155)-24 103 8.5509 65.4136 125 17.7563 57.0784 130 16.092 66.0364

N(155)-100 104 8.4518 64.7262 127 18.0158 56.3766 129 16.3359 65.3008

N(160)-0 100 8.3585 61.1695 117 17.3765 53.5395 123 15.7114 61.6831
N(160)-24 96 8.2798 60.6451 116 17.297 53.0629 119 15.6516 61.2161

N(ref.) 101 8.8298 62.8331 115 16.7498 55.248 119 15.2677 63.2885
N(ref.qua) 100 8.0559 65.1561 113 14.523 58.2472 119 13.4363 65.7056

Table 19: Optimality on cutting plane vs. reference, large input
950 1000 1050

Name Max St.dev Mean Max St.dev Mean Max St.dev Mean

L(950) 52 4.3074 16.3414 95 9.2535 40.2957 159 13.9631 92.0094
L(1000) 52 4.9809 15.2158 92 10.4993 36.9883 132 12.4063 71.3496
L(1050) 83 9.0418 38.7329 105 11.5113 56.4183 141 12.6039 80.8508
L(ref.) 83 8.8516 41.2878 121 11.2699 67.8522 160 12.2672 99.7554

1100 1150 1179 (maximum)

L(950) 229 13.8108 171.6244 311 8.6602 271.7384 336 0 336
L(1000) 183 12.4638 122.5297 237 8.4328 201.2303 257 0 257
L(1050) 173 12.3555 119.6301 212 7.9087 182.1708 230 0 230
L(ref.) 183 11.6021 140.0351 217 7.6496 190.9286 225 0 225
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Figure 19: result histogram, large input, KC = 950 hours.
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Figure 20: result histogram, large input, KC = 1000 hours.
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Figure 21: result histogram, large input, KC = 1050 hours.
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Figure 22: result histogram, large input, KC = 1100 hours.
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Figure 23: result histogram, large input, KC = 1150 hours.
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4.4.4 Optimality of intermediate solutions

The cutting plane algorithm solves MSS each time we run the implementor. Thus we
may use one of the intermediate solutions instead of waiting for the algorithm to finish.
We tested the 35 intermediate solutions + the final solution from the run on the normal
input, with KC = 150 and integrality constraints.

We drew 100,000 samples from the binomial distribution where the total demand
was 150 hours, and compared the worst case, mean and standard deviation. The results
are shown in table 20. We have also included the time until the solution was found and
the optimal value of the implementor (impl.) and adversary (adv.). The worst and
mean values are also plotted against the provably worst case found by the adversary in
figure (24).

Because we solved the integer problem, all intermediate solutions are feasible. This
is not the case with the relaxed problem where we might have solutions with fractional
decision variables.

However, because the sum over the groups and lengths
∑

p∈P (g,l) xp is integer, the
relaxed solution should not differ too much from an integer solution.

4.4.5 Suboptimal solutions

As described in section 3.5.2, there can be dominated solutions with block assignment
that exceed the upper bound on the demand. From the normal input with integrality
constraints, the intermediate solutions 1,2 and 23 are dominated with 6, 1 and 1 un-
necessary block respectively. The normal input with knapsack constraint 150 and head
start 800 also has 1 unnecessary block.

On the large input, there were 10, 3 and 1 unnecessary blocks on the problems with
knapsack constraint 950, 1000 and 1050 respectively.
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Table 20: Statistics on intermediate solutions from cutting plane algorithm
Time Impl. Adv. Worst Mean St.dev.

1 1 0 44 44 18,66865 4,5822
2 2 19 51 49 20,4563 5,864
3 4 22 49 49 20,20062 5,6537
4 6 28 49 49 18,20486 5,7249
5 15 28 44 44 15,75146 4,8323
6 24 31 47 45 18,11227 5,1992
7 25 31 44 44 16,4543 5,0249
8 36 32 44 44 14,81595 4,9915
9 44 33 45 44 15,837 5,1271

10 59 35 53 47 18,79476 5,7315
11 79 36 45 43 15,52263 5,1081
12 97 37 49 47 18,79386 5,8359
13 118 37 47 47 17,24463 5,7035
14 128 37 49 45 18,28234 5,7474
15 137 38 44 42 14,22672 4,9939
16 158 38 49 45 18,02076 5,7066
17 190 39 51 47 17,69959 5,8072
18 211 39 48 44 15,82593 5,1002
19 275 40 51 45 17,82842 5,812
20 282 40 49 45 17,45182 5,7118
21 294 40 42 42 15,40355 4,981
22 299 40 51 49 18,45066 5,7558
23 309 40 44 42 15,70395 5,02
24 316 40 44 42 14,87516 5,0523
25 345 40 49 43 17,66427 5,7218
26 373 40 44 42 15,76221 4,9939
27 415 41 42 42 14,37632 5,0082
28 420 41 42 42 14,67971 4,9892
29 434 41 49 49 17,18925 5,6461
30 449 41 49 44 17,43782 5,7108
31 452 41 49 45 17,65095 5,692
32 462 41 50 50 18,33876 5,7243
33 473 41 42 42 14,45507 5,0024
34 493 41 42 42 14,59415 5,0175
35 508 41 42 42 14,45162 4,9942
36 601 42 42 42 14,59415 5,0175
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Figure 24: Optimality analysis. Note that left y-axis is for the adversarial solution and
the worst case sample, while the right y-axis is for the average.
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5 Discussion

In this section we will comment the results in section 4, in particular, which methods
were found to be successful, but also what was found less efficient. Finally we discuss
possible future work and draw a conclusion.

5.1 Running time

The results from (4.2) clearly show that the implementor-adversary algorithm is an
effective alternative to traditional algorithms, solving large test cases in reasonable
time. It was a little surprising to see that the large test input was not much harder
to solve than the normal input, even with the 7-fold increase in binary variables. The
actual input values had much greater impact on the running time, and we were surprised
to see how different knapsack constraints greatly affected running time. After all, the
constraint was only used in the adversary, which was extremely fast anyway. The
increased number of iterations can explain parts of the increased running time, but not
all.

Running time was also influenced by the mathematical model and how it was trans-
lated into equations which were sent to CPLEX. An example of this is the room and
group constraints, that a room or group can only be used at most once at any time. By
using a formulation with pairwise incompatible blocks, the algorithm was very much
slower, even though the formulations were mathematically equivalent. Even obvious
improvements on the algorithm described in section 3.5.2 had a significant impact on
the running time.

5.2 Convergence

Table (1) shows that the number of iterations needed is typically very low. The con-
vergence was even faster on the large test set, suggesting that the number of adversary
solutions required are more related to the dimension of the adversary solution space,
than the actual number of possible solutions. Or more specific, to the number of vertices
in the adversary polytope (section 1.8.4).

There were some unused group/lenghts in the large problem, thus the dimension
was slightly lower than in the normal input. Changing the knapsack constraint greatly
affected the number of vertices though, and also had a large effect on convergence.

However, drawing any conclusion is difficult because of the randomness in the al-
gorithm; when facing two or more equivalent solutions, there was no deterministic rule
as to which solution should be chosen, neither for the implementor, nor the adversary.
And there were few measures taken to avoid dominated strategies (section 1.10). Fur-
ther testing is needed to determine what really affects convergence and how to improve
it.

As expected, adding a head start (section 3.3.5) reduced the number of iterations
needed and also increased the objective values of the implementor from the beginning.
The latter is useful for obtaining a good lower bound fast. Despite improving con-
vergence, the head start did not boost running times in general. In most cases the
algorithm ran considerably longer due to the increased complexity.

While the implementor optimal value clearly converges, there are no indications
that the adversarial optimal value does the same. The reason why this is possible
is explained in example (1.9). On the other hand, the upper bound (the minimal
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adversarial value so far) converged in most cases considerably faster than the lower
bound.

5.3 Test analysis

As section 4.4.2 and 4.4.3 show, the cutting plane algorithm yields good results, com-
pared to the reference solutions. Even when demand was not as expected, the algorithm
still performed well in many cases. The crucial factor was whether the test scenarios
were close enough to the adversary solutions used in the algorithm. In particular, sec-
tion 4.4.3 suggest that it actually can be an advantage to slightly underestimate the
adversary. Suboptimality (section 4.4.5) should be taken into account, but the general
trend is clear.

Another very interesting result is from table (20) and figure (24). It shows how
the mean, worst sample and adversarial optimal value are strongly correlated. The
implementor optimal value, on the other hand, had no such relation with respect to
the test results.

The strong correlation, together with fast convergence on the upper bound, argues
for an early termination of the algorithm, where the best of the intermediate solutions
is used.

Furthermore, the final solution was not necessarily optimal, because some interme-
diate solutions were slightly better.

5.4 Issues

Although the implementor-adversary algorithm was successful, there are issues that
should be considered when trying to implement the algorithm. The objective function
must reflect the intention of the model. In public healthcare, to limit the worst case is
a good objective, but should we also care about the average case, and maybe include
it as a secondary objective? The latter requires either a different model, or heuristics
on the final solution.

For the algorithm to converge, we need the same objective function in both the
adversary and implementor, and care should be taken to ensure this. This is particularly
important if the complexity of the objective function increases and we need different
implementations (section 1.5).

The adversary solution space is a critical parameter. If there exists one potentially
very strong adversary solution, the implementor must use many resources to counter
just that one scenario, leaving less resources to other scenarios. For example, if the
knapsack constraints are changed as to restrict the number of patients instead of the
total number of demand hours, then there exists a very strong scenario with only
difficult patients with a potentially large impact on the optimal value, because the
function is weighted. To limit the worst case, the implementor must assign many
resources to these patients, leading to a skewed solution which on average has a poor
objective value.

5.5 Future work

One question we did not have time to investigate deeply is what affects the convergence
of the implementor-adversary algorithm. Are there measures we can take to ensure that
the number of iterations stay low? Will it always converge fast, also if applied to other
models? What characterizes the intermediate solutions, in particular the adversarial
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solutions, and can this knowledge be used to improve the head start scenarios? Because
convergence is crucial for the feasibility of the algorithm, it is certainly something that
should be studied further.

In connection with MSS, it is essential to ask the involved parties at the hospital
which objectives should be prioritized. Assumptions that may be obvious for anyone
working at a hospital may be unknown to mathematicians implementing the model,
and especially to the computer programs solving the model. We have cooperated with
hospitals, but need to ensure that the model complies with the intentions of the hos-
pitals. This thesis solves a subproblem of surgery scheduling, namely management of
queues, but it could easily be extended to cope with other hospitals wishes.

To limit implementor complexity and improve running time, it might be necessary
to replace parts of the strong MIP-formulation with faster heuristics. The tradeoff with
heuristics on the implementor are suboptimal solutions and thus false lower bounds.
Good heuristics on the adversary may provide the algorithm with a better head start
than the current randomly greedy heuristic, with no risk of false bounds.

5.6 Conclusion

The iterative cutting plane method discussed in this paper seems well-capable of han-
dling realistic models from robust surgery scheduling. We expect that the method will
prove useful with regard to scheduling problems, either on its own, or in combination
with other algorithms. We also expect it to be useful in many other contexts besides
scheduling.
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