
Journal of Computational Science 75 (2024) 102205

A
1
n

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

Automated parameter tuning with accuracy control for efficient reservoir
simulations
Erik Hide Sæternes a,∗, Andreas Thune a, Alf Birger Rustad c, Tor Skeie b,a, Xing Cai a,b

a Simula Research Laboratory, Kristian Augusts gate 23, Oslo, 0164, Norway
b University of Oslo, Department of Informatics, Gaustadalléen 23B, Oslo, 0373, Norway
c Equinor Research Centre, Arkitekt Ebbells veg 10, Ranheim, 7053, Norway

A R T I C L E I N F O

Keywords:
Petroleum reservoirs
Reservoir simulation
Parameter tuning
Accuracy control
High performance computing

A B S T R A C T

Computer simulations of complex physical processes typically require sophisticated numerical schemes that
internally involve many parameters. Different choices of such internal numerical parameters may lead to
considerably different levels of computational efficiency, some may even result in wrong simulation results.
The task of finding an optimal set of the numerical parameters (e.g. for the purpose of minimising the
simulation time), while ensuring an accepted level of numerical accuracy, is therefore extremely important
but challenging. In this paper, we propose a new automated search algorithm that is based on constrained
stochastic searches within the parameter space. This iterative search scheme is also equipped with an accuracy
check, which adopts several complementary measures for quantifying the similarities between time series
from different simulations, such that parameter choices that lead to insufficiently accurate results will be
automatically rejected. As a concrete scenario of usage, we have applied the automated parameter search
scheme to the open-source reservoir simulation framework OPM. An empirical study shows that a suitable
design of the optimisation objective function, together with an appropriate choice of the number of trials
per search iteration and the perturbation scale per trial, can produce fast and convergent improvements with
respect to the optimisation objective. For example, for a set of 12 numerical parameters, 30 trials from five
search iterations are sufficient for reducing the objective function by 30% for the open Norne black-oil reservoir
model. The robustness of the automated search scheme is also demonstrated for two other open reservoir
models. Moreover, it is found that the parameter values automatically identified for the Norne model can also
greatly improve the simulation efficiency of another proprietary reservoir model that has drastically different
scale, resolution and geological properties.
1. Introduction

Multi-physics processes are often modelled mathematically by sys-
tems of nonlinear partial differential equations (PDEs). In general,
analytical solutions to these nonlinear PDEs do not exist, thus ap-
proximate solutions have to be sought by some computer code that
implements a suitable numerical method. One of the complexities is
that a complete numerical algorithm for solving a system of nonlinear
PDEs can involve many numerical parameters that are not easily chosen
but can affect both the resulting accuracy and the needed computing
effort. Typical examples of such numerical parameters include the
spatial mesh resolution (i.e. the characteristic size of the individual grid
cells), the time step size as well as the parameters used to adjust it in
the case of adaptive time stepping, the threshold value for checking the
convergence of the Newton iterations within each time step that are

∗ Corresponding author.
E-mail addresses: erikhs@simula.no (E.H. Sæternes), andreast@simula.no (A. Thune), abir@equinor.com (A.B. Rustad), tskeie@simula.no (T. Skeie),

xingca@simula.no (X. Cai).

used to linearise the time-discretised equations, and the convergence
threshold value for the linear-system solver iterations within each
Newton iteration.

An ideal goal will be to find an optimal set of values for the
numerical parameters, such that a numerical solution can be computed
using the least amount of effort, while ensuring that the numerical
errors are within an acceptable level — e.g. smaller than the errors due
to inaccurate physical parameters and computer round-offs. This goal
is however still beyond today’s knowledge of numerical computing.
Instead, we can formulate a more realistic goal as the context of the
work to be presented in this paper. That is, we want to develop an
automated parameter search strategy that can find ‘‘optimal’’ values
of the most important numerical parameters, while ensuring that the
deviation from a reference numerical solution is within a prescribed
vailable online 27 December 2023
877-7503/© 2024 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.jocs.2023.102205
Received 18 July 2023; Received in revised form 24 October 2023; Accepted 21 D
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ecember 2023

https://www.elsevier.com/locate/jocs
https://www.elsevier.com/locate/jocs
mailto:erikhs@simula.no
mailto:andreast@simula.no
mailto:abir@equinor.com
mailto:tskeie@simula.no
mailto:xingca@simula.no
https://doi.org/10.1016/j.jocs.2023.102205
https://doi.org/10.1016/j.jocs.2023.102205
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.

c
i
t
w
E
r
o
s
r
a
u
o
s
c
v
e
o
s

t
a
s
u
n
t
m
w
s
t

2

t
e
b
u
s
l
t
a

f

a
e
i
u
a
p
W
r
f
t
t
o
w

2

o
s
i
v
s
s
a
l

a
p
r
n
t
d
t
o
i

a
l
t
a
n
r

w
h
c

t
W
w
t

level. Two important remarks are in order here. First, optimality is
understood as being able to minimise a prescribed real-valued objec-
tive function, which for instance reflects the computing time needed.
Second, the reference numerical solution has been computed by using
some ‘‘conservative’’ values of the numerical parameters that may
require excessive time steps, Newton iterations, and linear iterations.
The accuracy of this reference solution is either trusted or validated in
some way beforehand.

Although there exists extensive work on automated parameter tun-
ing and the general subject of optimisation in high-dimensional spaces,
our work is novel in the following aspects:

• Our automated search algorithm, to be presented in Section 3, is
different from the state of the art.

• We have added accuracy control to the individual trials executed
within the automated search algorithm, so that any sets of param-
eter values that lead to insufficiently accurate numerical solutions
are automatically discarded.

• We have combined several similarity measures, found in Sec-
tion 2, to provide extra security in the accuracy control. Several
of the adopted similarity measures are not known to have been
used in optimisation contexts.

Apart from the above-mentioned novelties, our work will also make
ontributions to the particular subject of reservoir simulation. We have
mplemented our automated parameter search strategy and applied it
o the Flow simulator of multi-phase porous media flows in reservoirs,
hich belongs to the open-source OPM software framework [1,2].
xtensive experimental results, most of which are based on three open
eservoir models, can be found in Section 4. It will be shown that
ur automated search algorithm can quickly identify close-to-optimal
ets of the numerical parameter values of the Flow simulator, and the
esulting savings in the computing time are substantial. Moreover, the
uto-identified sets of numerical parameter values, which are obtained
sing a small-scale open reservoir model, also work out-of-the-box for
ne industrial-scale proprietary reservoir model. The resulting time
avings for this real-life case are also substantial. We remark that the
apability of cheaply identifying economic sets of numerical parameter
alues is particularly important for large-scale realistic reservoir mod-
ls, because running simulation ensembles for the uncertainty analysis
f the physical parameters is a hugely resource-demanding task. Time
aving guarded by accuracy control is therefore highly desirable.

The remaining sections are organised as follows: Section 2 in-
roduces and discusses the similarity measures used to ascertain the
ccuracy of simulation results, when comparing them to a reference
imulation result. Section 3 presents our automated search algorithm
sed to iteratively find improved sets of parameter values for a target
umerical algorithm. Section 4 details the experiments carried out
o test the automated search algorithm equipped with the similarity
easures as accuracy control. Section 5 gives an overview of the earlier
ork relevant for our present work. Finally, Section 6 provides a

ummary of the findings in this paper, as well as a discussion about
he limitations and possible future work.

. Similarity measures for accuracy control

As mentioned in the preceding section, we want to be able to check
he accuracy of a new numerical solution by comparing it against an
xisting reference solution. Therefore, quantification of the difference
etween two simulation results is needed. In this work, we will make
se of several transformations, called measures, all of which give out a
ingle number that gauges the degree of similarity between two simu-
ation results. A too high or low value (depending on the measure) will
hen indicate that a new simulation result is too inaccurate (compared
gainst the reference result) and should be discarded.

In this work, we assume that the simulation results will be in the
2

orm of time series. The application scenario chosen for this paper
ddresses reservoir simulations, and hence an explanation of the rel-
vant time series data is provided here. For reservoir simulations, an
mportant quantity is the pressure at the bottom of the wells that are
sed to extract oil and gas, or inject water (or CO2). This is referred to
s well bottom-hole pressure (WBHP), which is widely used in industrial
ractice for checking the accuracy of a simulation. Since using the
BHP to identify dissimilarities between different simulations can

eveal small inaccuracies, we will make use of the time series of WBHP
or each individual well in a reservoir model. Hence, for each well in
he model and each similarity measure, we will get one number gauging
he similarity between two simulation results. That is, the total number
f values that can be used for accuracy control equals the number of
ells times the number of similarity measures chosen.

.1. Resolving non-coinciding time steps

In general, the time series of WBHP for a well is simply an array
f positive real numbers, with each value corresponding to one time
tep of the simulation. For each time series array 𝒙 = (𝑥1,… , 𝑥𝑛), there
s a corresponding array 𝒕 = (𝑡1,… , 𝑡𝑛) giving the time value for each
alue of 𝒙. Often, we want to calculate the distance between two time
eries – one from the new simulation, the other from the reference
imulation – which can be represented by two arrays 𝒙 = (𝑥1,… , 𝑥𝑛)
nd 𝒚 = (𝑦1,… , 𝑦𝑚). Note that 𝒙 and 𝒚 are not necessarily of equal
ength, due to adaptive time stepping adopted in the simulations.

The similarity measures to be detailed later in this section, however,
ll assume that 𝒙 and 𝒚 have the coinciding time steps, i.e., the same
osition in 𝒙 and 𝒚 corresponds to the same time point. Although some
eservoir models do dictate certain time points which all simulations
eed to include — that is, at which they are forced to make a stop,
hese dictated time points are often too coarse to be suitable for a
etailed comparison between two simulations. In order to utilise all
he available information from the simulations and handle the situation
f not having coinciding time steps, we need to perform some sort of
nterpolation to fill in the missing time steps in each simulation.

The interpolation is performed by starting at the initial time point
nd identifying the array which is closest forward in time (say, without
oss of generality, that it is 𝒙). We then insert the closest forward
ime point into the other time series (in this case 𝒚) by performing
n interpolation (see below). We continue this process until there are
o more time points left. In the end, we will have two longer arrays
epresenting two refined time series that have coinciding time steps.

The most obvious choice is a standard linear interpolation [3],
hich is both easy to implement and easy to visualise. Assume that we
ave two time points 𝑡𝑖 and 𝑡𝑖+1 with the corresponding values 𝑥𝑖, 𝑥𝑖+1
ontained in 𝒙. If we add an extra time point 𝑡, satisfying 𝑡𝑖 < 𝑡 < 𝑡𝑖+1,

our corresponding new value �̃� becomes

�̃� = 𝑥𝑖 +
𝑡 − 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖
(𝑥𝑖+1 − 𝑥𝑖). (1)

The above linear interpolation might not make sense for all quanti-
ies, though. In particular, a more suitable approach when dealing with

BHP is to use a step (piecewise constant) function. More concretely,
e choose between two time points the value corresponding to the later

ime point. For 𝑡𝑖 < 𝑡 < 𝑡𝑖+1 as above, we therefore simply get

�̃� = 𝑥𝑖+1. (2)

2.2. The similarity measures

In this work, we will use the following five measures: correlation,
cosine similarity, an 𝐿2-inspired measure, a relative 𝐿2 measure, and
the Jensen–Shannon divergence. It should be noted that these five mea-
sures by no means constitute an exhaustive list of relevant measures,
and that several other measures could potentially be substituted for our
choice here and yield good results. Throughout this section, we assume

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.

w
o
n
v
s
w
i

w
a
f
H
a

𝐿

w
d
a
t

𝐷

that we have two arrays 𝒙 = (𝑥1,… , 𝑥𝑁𝑡
) and 𝒚 = (𝑦1,… , 𝑦𝑁𝑡

) with
coinciding time steps of size 𝑁𝑡.

The correlation [4] between them is given by

𝜌𝒙𝒚 =
∑𝑁𝑡

𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)
√

∑𝑁𝑡
𝑖=1(𝑥𝑖 − �̄�)2

∑𝑁𝑡
𝑖=1(𝑦𝑖 − �̄�)2

, (3)

ith �̄� being the arithmetic mean of 𝒙 (and similarly for �̄�). The value
f 𝜌𝒙𝒚 will lie somewhere between −1 (when the arrays are perfectly
egatively correlated) and 1 (when we have perfect correlation). A
alue of 0 means no correlation. As we would like our arrays to be
imilar, we want them to be highly correlated. In other words, we
ould like 𝜌𝒙𝒚 to be close to 1. A value below some threshold will then

ndicate that the deviation for the new simulation result is too large.
The cosine similarity [5] is given by

cos𝒙𝒚 =
𝒙 ⋅ 𝒚

‖𝒙‖‖𝒚‖
=

∑𝑁𝑡
𝑖=1 𝑥𝑖𝑦𝑖

√

∑𝑁𝑡
𝑖=1 𝑥

2
𝑖

√

∑𝑁𝑡
𝑖=1 𝑦

2
𝑖

. (4)

If we view 𝒙 and 𝒚 as vectors in an 𝑁𝑡-dimensional space, the cosine
similarity is the cosine of the (smallest) angle between them. As for the
correlation, the cosine similarity takes values from −1 to 1, taking the
value 1 when the arrays are identical, and taking the value −1 when
the arrays are parallel but pointing in opposite directions. We want the
value to be as close to 1 as possible — or rather, we do not want the
value to be smaller than 1 minus a threshold value.

The 𝐿2-inspired measure is given by

𝐿2(𝒙, 𝒚) =

√

√

√

√
1

𝑡𝑁𝑡
− 𝑡0

𝑁𝑡
∑

𝑖=1
(𝑡𝑖 − 𝑡𝑖−1)

(

𝑥𝑖 − 𝑦𝑖
)2, (5)

ith the array (𝑡1,… , 𝑡𝑁𝑡
) giving the time steps used in the simulations,

nd 𝑡0 the time at which the simulation starts. The measure takes values
rom the positive real line, giving 0 when the arrays are identical.
ence, the higher the value for this measure, the more dissimilar the
rrays are.

The relative 𝐿2 norm is given by

2
rel(𝒙, 𝒚) =

√

√

√

√

√

∑𝑁𝑡
𝑖=1(𝑡𝑖 − 𝑡𝑖−1)

(

𝑥𝑖 − 𝑦𝑖
)2

∑𝑁𝑡
𝑖=1(𝑡𝑖 − 𝑡𝑖−1)𝑥2𝑖

. (6)

The last measure we will use is taken from probability theory,
here it is used to calculate the distance between two probability
istributions. Hence, for this measure we assume positive values for 𝑥𝑖
nd 𝑦𝑖, 𝑖 = 1,… , 𝑁𝑡, in order to avoid running into difficulties. Luckily,
his is the case for our application when using arrays of pressure values.

The Jensen–Shannon divergence [6] is given by

𝐽𝑆 (𝒙, 𝒚) =
1
2

(

𝐷𝐾𝐿

(

𝒙,
𝒙 + 𝒚
2

)

+ 𝐷𝐾𝐿

(

𝒚,
𝒙 + 𝒚
2

)

)

(7)

with the Kullback–Leibler divergence [7] defined as

𝐷𝐾𝐿(𝒙, 𝒚) =
1
𝑁𝑡

𝑁𝑡
∑

𝑖=1
𝑥𝑖 ln

(

𝑥𝑖
𝑦𝑖

)

. (8)

The Jensen–Shannon divergence is mainly used to quantify the
difference between probability distributions. Here, however, we will
simply use the arrays 𝒙 and 𝒚 as input, but we will normalise both
arrays. The measure takes values on the interval [0, ln(2)], with 0 if and
only if the arrays are identical [8]. A higher value thus signifies a higher
degree of dissimilarity.

Table 1 summarises the five similarity measures.

2.3. Choosing threshold values

Having defined the similarity measures in Section 2.2, we need to
find a suitable threshold value for each of them. The threshold values
3

Table 1
A summary of the five similarity measures used in this paper.

Symbol Name Range of values 𝒙 identical with 𝒚

𝜌𝒙𝒚 Correlation [−1, 1] 1
cos𝒙𝒚 Cosine similarity [−1, 1] 1
𝐿2(𝒙, 𝒚) 𝐿2-norm measure [0,∞) 0
𝐿2

rel(𝒙, 𝒚) Relative 𝐿2-norm measure [0,∞) 0
𝐷𝐽𝑆 (𝒙, 𝒚) Jensen–Shannon divergence [0, ln(2)] 0

should be such that simulation results that diverge too much from the
reference simulation are filtered out. At the same time, we do not want
to discard results that are accurate enough. In other words we need
to balance the two goals in such a way that we limit the number of
inaccurate simulations that are accepted, without rejecting too many
sufficiently accurate (and possibly quite efficient) simulations. Striking
a good balance will greatly affect the outcome of the optimisation
procedure.

However, the most suitable threshold values may depend on the
reservoir model used for the simulation, and hence we might not have a
one-size-fits-all situation. Also, what is considered accurate enough, or
which simulation results are diverging too much is a question without
an easy, straightforward answer. An experienced engineer who is used
to working with such models and simulations might be able to apply
expert knowledge to decide whether a specific result is accurate enough
and arrive at suitable threshold values to be used. Later on we will
provide empirically chosen threshold values which we have found to
work well in practice (see Table 2 in Section 4).

2.4. The need for using more than one measure

Suppose we use only one similarity measure to distinguish accurate
and inaccurate simulation results. If our chosen measure, at a given
threshold, lets through too many solutions which are deemed too
inaccurate, we would need to make the threshold stricter. By doing
so, we might disregard many solutions which are actually accurate
enough, thus losing out on potential improvements in efficiency (in
connection with parameter searching to be presented in Section 3). In
essence, the similarity measure functions as a filter, and making the
threshold stricter will lead to more solutions (accurate and inaccurate)
being filtered out.

If we introduce a second similarity measure, we will add a second
layer to the filtering mechanism. The idea, then, is that these two layers
will filter out different kinds of inaccurate solutions by focusing on
different aspects of the solutions. Through this feature, the thresholds
can be set slightly less strict in order to accept more of the sufficiently
accurate solutions, while still rejecting the inaccurate solutions. Hence,
the idea is to introduce several measures with different properties in
order to create a more effective filter.

As a concrete example, we can show a case in which only one
measure (in this case Jensen–Shannon) deems the simulation result as
too inaccurate, while the others stay within their respective thresholds
when using the threshold values in Table 2. Fig. 1 shows the WBHP
for one well (named D-1H) from the open Norne black-oil model [9],
for which only the Jensen–Shannon divergence indicates too much
inaccuracy. The largest deviations in pressure are around 15–20 bar,
which are higher than what would normally be accepted. Hence, it
makes sense to define this new simulation result as being too inac-
curate. (We remark that a difference in the time steps used for the
two simulation runs is not the reason for these pressure deviations.) In
case the Jensen–Shannon divergence was the only similarity measure
used, then a stricter threshold would have been chosen to filter out
inaccurate simulations that are more easily detected by the other
measures, thus risking rejection of many accurate enough simulations
as the consequence.

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
Fig. 1. WBHP for two simulation runs — one being the reference simulation result.
The WBHP is from the well named D-1H from the Norne black-oil model [9]. The
largest deviations are highlighted in the white rectangle, showing pressure deviations
of around 15–20 bar.

3. Automated searches in the parameter space

Our objective is to tune the values of a selected set of numerical
parameters of a reservoir simulator, in order to improve (i.e. decrease)
the computing time needed to complete the simulation. While doing
this, we also want to ensure that the simulation result does not become
too different from a reference simulation, guarded by the similarity
measures as described in Section 2. An automated search algorithm will
be used to find better values for the parameters — i.e. to find values
which result in faster simulations. This algorithm works by perturbing
the current best parameter set several times, and then checking whether
any improvement has been made. Each such step of performing several
perturbations of the parameter set and combining them to form an
improved set of parameter values amounts to one iteration of the search
algorithm.

Before providing a detailed mathematical description of the way
in which the parameter search is performed, a brief overview will be
given: We start out with a set of parameters (the choice of which will
be discussed later), each having an initial value (which might be the
default value, or some other value deemed suitable). We then perform
an iterative search for more efficient parameters. In each iteration, a
certain number of the parameters are perturbed based on the best set of
parameter values from the previous iteration. The performance of these
new sets of parameters is then gauged by running the simulator with
these values — one simulation per new parameter set. Having done
so, one further set of parameters is created based on the information
available from these simulations and their performance. The preferable
set of parameters is then chosen to be the set of parameters which
has the best performance. Note that the set of parameters from the
previous iteration step might prove to be better than all the new sets of
parameters, and if so, we keep this as our current best set. Note also that
if a simulation fails (i.e. the simulation does not run to completion), or
the solution from a successful simulation is deemed too inaccurate, we
discard it.

3.1. Mathematical description

Suppose we have selected for a simulator a set of 𝑛 parameters
with values 𝒑 = (𝑝1,… , 𝑝𝑛). The values 𝑝𝑖 can be integers or real
numbers, and be with or without minimum and maximum values. Let
𝑷 be the space of all possible values of 𝒑. We then create a mapping
𝜇 ∶ 𝑷 → R+ ∪ ∞ which takes the parameter values and gives out a
4

positive real number (or positive infinity). The mapping 𝜇 should be
such that a set of parameter values giving a more efficient simulation
receives a lower value. The goal, then, is to minimise 𝜇 over all 𝒑 ∈ 𝑷 .
That is, we want to find

𝒑∗ = arg min
𝒑∈𝑷

𝜇(𝒑). (9)

Hence, the mapping 𝜇 is the objective function of our optimisation
algorithm. Note that if the simulation does not run to completion for
a parameter set 𝒒, or if the simulation result is deemed too inaccurate
(by the similarity measures), we define 𝜇(𝒒) = ∞.

Ideally, as Eq. (9) states, we want to find 𝒑∗ such that 𝜇(𝒑∗) ≤
𝜇(𝒑) ∀𝒑 ∈ 𝑃 . However, finding such an optimal 𝒑∗, even if one does
exist, is practically infeasible. Hence we limit our iterative search to
finding an improved parameter set. Starting out with an array of initial
values 𝒑(0), we randomly perturb the parameters in order to find a
better set of values, and we do this iteratively until a certain criterion is
met. For each iteration, we get a new set of values 𝒑(𝑗) (possibly equal
to that from the previous iteration) satisfying 𝜇(𝒑(𝑗)) ≤ 𝜇(𝒑(𝑗−1)). To get
a more concise notation, we write 𝜇𝑗 ∶= 𝜇(𝒑𝑗).

Each iteration, from 𝑗−1 to 𝑗, is performed using the following steps:

1. We create in total 𝑚 new parameter sets 𝒑(𝑗)1 ,… ,𝒑(𝑗)𝑚 by per-
turbing 𝒑(𝑗−1) using the following formula:

𝒑(𝑗)𝑘 = 𝒑(𝑗−1) + 𝒃𝑘 ⋅ 𝒖𝑘 ⋅ 𝒑(𝑗−1) (10)

for 𝑘 = 1,… , 𝑚. The perturbation array 𝒖𝑘 = (𝑢𝑘1,… , 𝑢𝑘𝑛) is
such that 𝑢𝑘𝑖 ∼ for 𝑖 = 1,… , 𝑛, where is some probability
distribution (see Section 4.1.1 for the choice of in this work),
and 𝒃𝑘 = (𝑏𝑘1,… , 𝑏𝑘𝑛) is such that 𝑏𝑘𝑖 = 1 with a pre-specified
probability and 𝑏𝑘𝑖 = 0 otherwise. The latter array, 𝒃𝑘, is in-
cluded to make sure that not all parameter values are perturbed
simultaneously.

2. For each new parameter set 𝒑(𝑗)𝑘 , we ensure that each element
𝑝(𝑗)𝑘𝑖 is within the bounds of that parameter. That is, if 𝑝(𝑗)𝑘𝑖 is
higher/lower than the maximum/minimum value, we simply set
𝑝(𝑗)𝑘𝑖 to the maximum/minimum value. Also, we round off values
that should be integers to the nearest whole number.

3. For each new parameter set, the value 𝜇𝑗
𝑘 ∶= 𝜇(𝒑(𝑗)𝑘) is found by

running the simulation and evaluating the objective function.
4. To potentially speed up the optimisation process, we use the

𝜇𝑗
𝑘 values for the newly created parameter sets to generate yet

another parameter set 𝒑(𝑗)𝑚+1 . We do this by first calculating a
help array 𝒔 that mimics a gradient-based search direction:

𝒔 =

∑𝑚
𝑘=1

[

𝜇𝑗
𝑘 < ∞

] (

𝜇𝑗−1 − 𝜇𝑗
𝑘

)

(

𝒑(𝑗)𝑘 − 𝒑(𝑗−1)
)

∑𝑚
𝑘=1

[

𝜇𝑗
𝑘 < ∞

] , (11)

with [𝑃] being the Iverson Bracket [10], giving 1 if 𝑃 is true,
and 0 if 𝑃 is false. We then calculate

𝑝(𝑗)𝑚+1𝑖 = 𝑝(𝑗−1)𝑖 +
𝑠𝑖

𝑝(𝑗−1)𝑖 ⋅ 𝜇𝑗−1
, (12)

with (𝑠1,… , 𝑠𝑛) being the entries of 𝒔. If 𝑝(𝑗−1)𝑖 = 0, we instead
use the formula

𝑝(𝑗)𝑚+1𝑖 =
𝑠𝑖

𝜇𝑗−1
. (13)

5. Using the newly created parameter set 𝒑(𝑗)𝑚+1 , we run the simu-
lation to find the value 𝜇𝑗

𝑚+1 ∶= 𝜇(𝒑(𝑗)𝑚+1).
6. The resulting new parameter set for iteration 𝑗, 𝒑(𝑗), is then

chosen such that

𝜇𝑗 = min
(

𝜇𝑗−1, 𝜇𝑗
1,… , 𝜇𝑗

𝑚, 𝜇
𝑗
𝑚+1

)

(14)

is satisfied.

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.

r
c
m
t

j
a
i
c
h
a
a
c

𝜇

w
l
t

3

v
N
i
w
a
o
t
i
w

e
A
c
v
a
t
i

b
W
p
a
N

3

i
h
t
o

4

a
w

3.2. Optimisation target

For our application, we want a mapping 𝜇 that reflects the total
unning time of the simulation. In that way, 𝜇 will be a proxy for the
omputational requirements needed to complete the simulation, and
inimising 𝜇 will therefore indirectly amount to a minimisation of the

otal running time.
Instead of simply adopting the simulation time usage as the ob-

ective function, we choose 𝜇 as a linear combination of the Newton
nd linear iterations needed to complete the simulation. The reason
s twofold. First, the time measurement of a simulation may itself
ontain inaccuracies, especially when the simulator is run on a shared
ardware platform. Second, adjusting the weight ratio between Newton
nd linear iterations can allow optimisation for other scenarios, such
s a different preconditioner of the linear solver or another intended
omputer. In other words, we have

(𝒑) = 𝐼𝑁 (𝒑) + 𝛼𝐼𝐿(𝒑), (15)

ith 𝐼𝑁 (⋅) and 𝐼𝐿(⋅) denoting the iteration count for the Newton and
inear iterations respectively, and 𝛼 ∈ R. Now, the remaining issue is
he choice of a suitable 𝛼.

.3. Choosing the optimisation target parameter

An important part of the optimisation procedure is choosing the
alue 𝛼 in Eq. (15). This value will balance the weight given to the
ewton iterations relative to that of the linear iterations, and hence

t will likely impact the end result. In the extreme case, setting 𝛼 = 0
ill force the optimisation to disregard the number of linear iterations,
nd hence any decrease (however large) in Newton iterations might be
ffset by an increase in linear iterations, which in turn makes it difficult
o ensure that we get a speed-up for the simulation as a whole. Hence,
t makes sense to balance the linear and Newton iterations in such a
ay that the total simulation time is likely to be reduced the most.

One possible approach is to choose 𝛼 such that it mirrors the differ-
nce in computational cost between the Newton and linear iterations.
s an example, if one was to switch from a simple, computationally
heap preconditioner to another preconditioner which improves con-
ergence properties and reduces the number of linear iterations needed
t each time step, but is more computationally costly, one might want
o decrease 𝛼 to retain a good balancing between the Newton and linear
terations when performing the optimisation.

Another approach might be to set 𝛼 to be the ratio between the num-
er of Newton and linear iterations in the initial (reference) simulation.
hen choosing this approach, a shift to a more computationally costly

reconditioner with better convergence properties will again result in
change in 𝛼, since the number of linear iterations relative to that of
ewton iterations will go down.

.4. Additional settings for the optimisation procedure

In addition to the weighting of Newton iterations against linear
terations, given by 𝛼, there are several settings which might influence
ow well the optimisation procedure will perform. As discussed in Sec-
ion 2.3, the threshold values for the similarity measures are obviously
f great importance. Other potentially important settings are:

• Number of search iterations: It seems obvious that the higher
this value is, the better the optimisation procedure will perform.
While this may be true, there is a significant cost associated with
increasing the number of search iterations. Hence, we would like
to be able to set this value as low as possible, without loosing too
much with respect to efficiency of the best simulation. A suitable
number of search iterations might be found by running multiple
simulations and looking at when the optimisation seems to tail
off — that is, when the diminishing marginal improvement is so
low that carrying out more iterations of the search is not likely to
cause much improvement.
5

• Number of perturbations per search iteration: As with the
number of search iterations, increasing the number of perturba-
tions will result in increased computational requirements. How-
ever, by increasing the number of perturbations, we might be
able to reduce the number of search iterations and still get the
same improvement from our optimisation procedure. On the other
hand, increasing the number of perturbations by too much might
result in slower improvements when taking the total computa-
tional expenditure (that is, the total number of simulations that
need to be carried out) into account. Hence, a goal might be to
find the number of perturbations that will result in the lowest
possible overall computational cost.

• Probability of perturbing each individual parameter: This set-
ting is less straightforward as the two previous ones. Intuitively it
might seem reasonable that each new perturbation should involve
as much change as possible to the current best parameter settings,
in order to better explore the parameter space. However, it turns
out that limiting the number of parameters that are perturbed
simultaneously might improve the optimisation.

The above settings will be empirically studied in Section 4.2.1.

. Experiments

The purpose of this section is to carry out an empirical study of the
utomated search algorithm introduced in Section 3. More specifically,
e are interested in investigating the following questions:

1. Is the automated search algorithm able to iteratively find better
and better parameter sets that lead to improved values of the
objective function (15) defined in Section 3.2?

2. Do the improved objective function evaluations (due to reduced
Newton and linear iterations) translate to a corresponding reduc-
tion in the simulation time?

3. Is it possible to use a small-scale reservoir model to produce
improved parameter sets, and then apply these to a differ-
ent and much larger reservoir model for the same purpose of
substantially improving the simulation time?

4. Lastly, are the similarity measures described in Section 2.2
capable of acting as accuracy control when integrated inside
the automated search algorithm? How does this mechanism
of quality check compare with the standard metrics, such as
monitoring the mass balance error within a reasonable bound?

In the following, we will start with a detailed description of the
experimental setup in Section 4.1, including the chosen threshold val-
ues for the similarity measures (Section 4.1.1), the Flow reservoir
simulator and hardware used (Section 4.1.2), and the list of numerical
parameters of the reservoir simulator to be tuned by the automated
search algorithm (Section 4.1.3). We will then continue with presenting
three open reservoir models and one proprietary reservoir model to
be studied (Section 4.2). Thereafter, we will present an extensive
study of the automated search algorithm by experimenting with one
of the open reservoir models (Section 4.3), where both the robustness
and effectiveness are carefully investigated. Moreover, we will further
test the automated search algorithm on the other two open reservoir
models (Section 4.4). In Section 4.5, we will examine the effect of
applying improved parameter sets, which are obtained from running
the automated search algorithm for the Norne black-oil model, to an
industrial-scale proprietary reservoir model. Finally, we will verify in
Section 4.6 that the similarity measures have indeed ensured sufficient
accuracy of the simulation results, with respect to maintaining the mass
balance.

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
Table 2
The threshold values (for the five similarity measures) used throughout the experi-
mental part of this paper. See Table 1 for more information about each similarity
measure.

Name Threshold value

Correlation 0.995
Cosine similarity 0.995
𝐿2 measure 10−4

Relative 𝐿2 measure 0.1
Jensen–Shannon divergence 10−7

4.1. The experimental setup

4.1.1. Threshold values for the similarity measures
As discussed in Section 2.3, we need to decide which threshold

values should be used for the similarity measures. Table 2 lists the
threshold values used in the remainder of this work. These values have
been chosen through a process of trial and error, and seem to work well
for all the reservoir models used in this article.

In addition to the threshold values for the similarity measures,
there are a few choices and implementation details which should be
mentioned:

• Some numerical parameters of a reservoir simulator (as listed in
Table 3) have open bounds — e.g. (0,∞). For these, we introduce
a small value 𝜀 and let the bounds of the parameter be [𝜀,∞).
Specifically, we have used 𝜀 = 10−10, which was chosen based on
a limited amount of trial and error.

• During the first step of each iteration of the search algorithm
described in Section 3.1, the entries of 𝒖𝑘 from Eq. (10) are dis-
tributed according to the probability distribution . Specifically,
we have used 𝑈 [−1, 1] for .

• To keep any single simulation from using a huge amount of
time to complete, a cut-off is implemented. This means that any
simulation taking more than a prescribed amount of time will be
interrupted and considered unsuccessful. The current cut-off time
is set to 900 s (i.e. 15 min). This cut-off time works well for the
small open-source reservoir models used in this work, because a
simulation running for more than 900 s has a tendency to run
for much longer, and hence interrupting it will save a lot of time
in the optimisation procedure. For larger models, a longer cut-off
time may be needed.

4.1.2. The OPM flow simulator and hardware
Before delving into the actual experiments and results, however, let

us give a quick overview of the reservoir simulator software, and the
hardware used in this work. The simulator software used throughout
this work is OPM Flow, which is open-source and a part of The Open
Porous Media Initiative [1,2].

All the simulations have been run on a server with dual AMD EPYC
Milan 7763 64-core CPUs by using 32 MPI processes evenly spread
over the two CPUs. The only exception concerns the simulations of
the million-cell model described in Section 4.2.4; see Section 4.5 for
information about the hardware used for this proprietary reservoir
model.

4.1.3. Numerical parameters of the reservoir simulator
Which parameters should be targeted when searching for a better

set of parameter values? Ideally, we want to choose parameters that
have the greatest impact, and ignore those that do not contribute
much (or anything) to the efficiency of the simulation. However, some
parameters might be interdependent, meaning that changing them
simultaneously does not produce the same results as changing them
individually. Indeed, selecting the ‘‘correct’’ set of parameters is more
of an art, so some trial and error, together with the use of domain
expertise, might be needed.

Table 3 lists the parameters chosen for this paper.
6

4.2. The reservoir models

4.2.1. Norne black-oil model
The Norne model is a ‘‘real field black-oil model for an oil field

in the Norwegian Sea’’ [9]. It comes with an open license (the Open
Database License [11]), and has been widely used by many researchers
for validation and benchmarking. We will extensively experiment with
the automated search algorithm using this model in Section 4.3. The
reservoir model has in total 44 431 active cells and a total pore volume
of 673 248 728 m3.

4.2.2. Norne prediction model
The Norne prediction model [12] uses the same grid as the Norne

black-oil model introduced above. However, this so-called prediction
reservoir model does not consider a historic period, but is rather used to
simulate a future production period. This prediction model is different
from its historic counterpart, in that WBHP values are fixed whereas
the production rates become the solution variables. The model is open-
source and can be found at the Github repository of OPM [1] under the
name NORNE_ATW2013_4A_STDW.DATA.

4.2.3. Smeaheia
Smeaheia [13] is an open-source CO2 storage model of a site lo-

cated in the Norwegian North Sea. The major difference between this
reservoir model and the two Norne models is that the latter two
simulate three-phase flows in porous media, whereas the Smeaheia
model simulates two-phase flows.

4.2.4. Million-cell North Sea oil field model
We also consider a reservoir model containing approximately one

million active cells. Similar to the Norne models, this much larger
model is a realistic representation of a North Sea oil field with a black-
oil fluid system and more than one hundred production and injection
wells. This is a proprietary reservoir model.

4.3. Experimenting with the Norne black-oil model

In this subsection, we will perform experiments with the automated
search algorithm using the Norne model (see Section 4.2.1). Firstly, we
will test whether the gradient-inspired step offers an improvement, and
which values we should choose for the number of perturbations per
search iteration, as well as the probability of perturbing each individual
numerical parameter. Note that our final choices here are listed later
in Table 4. Then, we will investigate how to best choose the value 𝛼
from the optimisation target given in Eq. (15).

4.3.1. The effect of a gradient-inspired search
Before looking into the settings of the optimisation procedure, it is

interesting to check whether the inclusion of the gradient-inspired step
from Eqs. (11)–(13) in the search process is in fact fruitful. By removing
this step and instead adding one extra perturbation per search iteration
(to make sure that the same number of parameter perturbations are
tested), and comparing this with the original optimisation, we can see
whether there is anything to be gained from including the gradient-
inspired step. Fig. 2 shows a summary of 40 independent optimisations
with and without a gradient-inspired step. By independent optimisa-
tions, we simply mean that each optimisation is run separately with
the same initial settings. The stochastic nature of the optimisation
procedure results in slightly different optimisation results for each
run of the optimisation algorithm. Hence, running several independent
optimisations will allow us to get a better picture of the improvements

one can expect.

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.

o
o
i
p

g
s
o
t
t
p
g
a
t
t

4

y
n
w
c
u
t

t
n
b
(
o

b
a
m
w
y
p

4

e

Table 3
The chosen numerical parameters of the OPM Flow simulator [1] targeted by the automated search algorithm introduced in Section 3.

Name Type Default Bounds Explanation

linear-solver-max-iter Z 200 [1,∞) The maximum number of iterations for the linear solver.
max-strict-iter Z 0 [0,∞) The maximum number of Newton iterations before relaxed

tolerances are used for the CNV convergence criterion. See
tolerance-cnv(-relaxed).

flow-newton-max-iterations Z 20 [1,∞) The maximum number of Newton iterations per time step
used by the simulator.

max-welleq-iter Z 30 [1,∞) The maximum number of iterations to determine the solution
to the well equations.

newton-max-relax R 0.5 [0, 1] The maximum relaxation factor of a Newton iteration used
by the simulator.

linear-solver-reduction R 0.01 (−∞, 1] The tolerance for the linear solver. The linear solver
convergences when the residual is reduced sufficiently.

relaxed-max-pv-fraction R 0.03 [0, 1] The fraction of the pore volume of the reservoir where the
volumetric error (CNV) may be violated during strict Newton
iterations.

tolerance-cnv R 0.01 (0,∞) The maximum non-linear tolerance error. This is the local
convergence tolerance (maximum of local saturation errors).

tolerance-cnv-relaxed R 1 (0,∞) The relaxed local convergence tolerance that applies for
iterations after the iterations with the strict tolerance.

tolerance-mb R 10−6 (0,∞) The maximum mass balance error, that is the tolerated mass
balance error relative to total mass present.

tolerance-well-control R 10−7 (0,∞) The maximum tolerance for the well control equations.
tolerance-wells R 0.0001 (0,∞) The maximum non-linear error for the well equations.
Fig. 3 shows a scatter plot of the percentage improvement in the
ptimisation target for each search iteration, again with 40 independent
ptimisations. The red dots are improvements where the gradient-
nspired suggestion was the best, whereas the blue dots are the im-
rovements where one of the perturbed parameter arrays was better.

From these figures, it is clear that it is beneficial to include a
radient-inspired step in the search algorithm. However, the benefit
eems to come from rapid improvement in the first few stages of the
ptimisation. After this, the gradient-inspired step does not add much
o the performance. As such, including a gradient-inspired step seems
o allow us to run fewer search iterations to reach the same level of im-
rovement. Also, one might imagine a modified algorithm in which the
radient-inspired step is removed after a certain number of iterations or
certain percentage improvement in the optimisation goal, in order for

he algorithm to focus more exclusively on fine-grained optimisation in
he vicinity of the current best solution.

.3.2. Number of perturbations per search iteration
How many perturbations per search iteration – see Eq. (10) – will

ield the best results? While this might depend on the model, the
umerical solver, the number of processes and possibly other factors,
e might be able to find some values which work reasonably well. More

oncretely, the goal will be to see whether we can identify lower and
pper bounds at which the performance seems to drop, and through
his get a sense of which values should work best.

In order to make a fair comparison, we should make sure that the
otal number of simulations stays constant — that is, if we increase the
umber of perturbations, we should at the same time decrease the num-
er of search iterations in such a way that the number of perturbations
plus one gradient-inspired parameter configuration) times the number
f search iterations remains constant.

Fig. 4 shows the performance when creating 2, 5, 8 and 11 pertur-
ations per search iteration. Based on these plots, we can conclude that
ll four generally perform well. However, perturbing less than 5 or as
uch as 11 times seem to reduce the quality of the optimisation, and
e would therefore expect that perturbing between 5 and 8 times will
ield the best results. In the remainder of this article, we will use 5
erturbations.

.3.3. Probability of perturbing the parameters
Up until now we have only perturbed about half of the parameters

ach time we created a new parameter array, because early experiments
7

Table 4
Summary of the choices made for the optimisation algorithm, based on
the experiments discussed in Sections 4.3.1–4.3.3.

Algorithmic parameters Choice

Use gradient-inspired step Yes
Number of perturbations 5
Probability of perturbing 0.6

seemed to suggest that this was a good idea. In other words, the array
𝒃𝑘 from Eq. (10) has been such that each index 𝑏𝑘𝑖 has about a fifty-fifty
chance of being either 0 or 1. It is not immediately clear why perturbing
many or few parameters at the same time yields worse performance
than perturbing around half the parameters, but experiments do seem
to suggest such behaviour. One possible reason why perturbing few
parameters might not be a good idea, is the lack of progress that ensues,
whereas perturbing too many parameters at the same time might run
a higher risk of producing parameter settings which lead to inaccurate
(and hence non-acceptable) simulation results, due to the possibility of
making larger jumps in the parameter space.

Here, however, we present some empirical evidence to back up our
claim that perturbing about half the parameters each time is a good
idea. Fig. 5 shows the optimisation results when using different values
for the perturbation probability. The overall picture seems to be that
all values can be expected to result in a substantial improvement in
performance. However, a closer investigation reveals that a probability
closer to 0.5 than to the more extreme values of 1 and 0.1 is likely
to give a sharper increase in performance during the first stages of
the optimisation procedure. A more thorough experimentation with
perturbation probabilities centred around 0.5 shows that 0.6 performs
well — indeed slightly better than nearby values. In the remainder of
this article, we will therefore use 0.6 as the probability of perturbing
each parameter value.

Table 4 summarises the choices made for the remainder of this
work.

4.3.4. Changing the weighting inside the objective function
After having confirmed that a gradient-inspired step is beneficial

and settled on the appropriate values for the number of perturbations
per search iteration and the probability of perturbing each individual
parameter; the next topic worth investigating in-depth is the weight-
ing 𝛼 inside the linear combination which acts as the optimisation

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
Fig. 2. A comparison between optimising the numerical parameters with the gradient-inspired step from Eqs. (11)–(13) and a naïve search without the gradient-inspired step. Each
plot summarises 40 independent optimisation runs, with the red dashed line giving the mean improvement, and the different shades of grey giving the percentiles from the median
and to the 10th/90th percentile (with lighter grey being farther from the median).
Fig. 3. Percent improvements of the objective function during the iterations (showing in total 40 independent optimisations). The blue dots indicate that the improvement came
from one of the randomly perturbed parameters, whereas a red dot means the gradient-inspired step provided the improvement.
goal of our algorithm, given by Eq. (15) and discussed thoroughly in
Section 3.3.

Fig. 6 shows the results from using 𝛼 = 0.0620, which is the ratio
between the number of Newton and linear iterations used to complete
the simulation when default (initial) parameter values are used. While
there is no readily available explanation why such an approach to
8

weighting the iterations should work, experiments seem to suggest that
it is actually a fairly good way to set the value of 𝛼.

Another way to find a good value for 𝛼 is by performing linear
regression using several different simulation results (with time mea-
surements, and actual counts of linear and Newton iterations). By
running several simulations with different parameter settings, as well

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
Fig. 4. Plots showing the results from optimising the numerical parameters when using 2, 5, 8 and 11 perturbations per search iteration. Each plot summarises 40 independent
optimisation runs, with the red dashed line giving the mean improvement, and the different shades of grey giving the percentiles from the median and to the 10th/90th percentile
(with lighter grey being farther from the median).
Fig. 5. Plots showing the results from optimising the numerical parameters when using 0.1, 0.5 and 1.0 as the probability of perturbing each individual parameter value. Each
plot summarises 40 independent optimisation runs, with the red dashed line giving the mean improvement, and the different shades of grey giving the percentiles from the median
and to the 10th/90th percentile (with lighter grey being farther from the median).
as exclusive access to the computing hardware, we can use linear
regression to fit the equation

𝑇 (𝒑) = 𝛼𝑁𝐼𝑁 (𝒑) + 𝛼𝐿𝐼𝐿(𝒑) + 𝑐, (16)

that is, to determine the values 𝛼𝑁 , 𝛼𝐿 and 𝑐. The weighting parameter
will then be given by the ratio 𝛼 = 𝛼𝐿∕𝛼𝑁 . By running 20 simulations
with different parameter settings, we get an estimate for 𝛼 equal
to 0.0335. The results when using this 𝛼 value in the optimisation
algorithm are visually similar to those seen in Fig. 6.

It is not clear from the optimisation results alone which 𝛼 value
performs better. In the end, we are not really concerned about the
actual number of Newton/linear iterations, but rather the time needed
to complete the simulation. Hence, in order to fully compare the two
𝛼 values, we should estimate the reduction in time that each of these
values produce.
9

4.3.5. Impact on the simulation time
In order to measure the time for each simulation, we run 10 inde-

pendent simulations with exclusive access to the computing hardware
and measure the time taken for each of them to complete. Then, we
take the minimum of these as our time measurement.

To see how each value of 𝛼 performs, we take the results we got
from running 40 independent optimisations, and measure the time of
each parameter setting. While this requires quite a lot of computing
time, it gives us an insight into the expected performance of each choice
of 𝛼. Due to the stochastic nature of the optimisation algorithm, any
single optimisation might not paint a sufficiently accurate picture of
the expected improvement in performance.

Fig. 7 shows the mean computing times for 40 independent param-
eter optimisations for 𝛼 equal to 0.00625, 0.0335, 0.0620, 0.2025, and
0.330. As can be seen, all choices of 𝛼 is likely to yield significant
improvements in computing time. However, a very low 𝛼 (in this case

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
Fig. 6. Plots showing the results – the optimisation target (i.e. Eq. (15) giving the linear combination of iterations), the linear iterations and the Newton iterations – from optimising
the numerical parameters when using 𝛼 = 0.0620 in Eq. (15). Each plot summarises 40 independent optimisation runs, with the red dashed line giving the mean improvement, and
the different shades of grey giving the percentiles from the median and to the 10th/90th percentile (with lighter grey being farther from the median).
Fig. 7. The mean computing time when running the optimisation algorithm on Norne using the ILU0 (default) preconditioner. The data is based on 40 independent optimisation
runs for each 𝛼 value, and then 10 independent time measurements for each parameter setting, the minimum of these giving the time measurement for that set of parameters.
0.00625), is clearly performing worse than the higher values, indicating
that placing too much weight on the newton iterations (which in turn
gives less decrease in linear iterations) is not beneficial. Also, the
opposite seems to be true, at least for search iterations 1 to 15: Placing
too much weight on the linear iterations, as is the case with 𝛼 = 0.330
results in worse improvement in computing time than lower values that
give more weight to the Newton iterations.

From these observations, we can hypothesise that an optimal value
for 𝛼 is likely to lie somewhere between 0.00625 and 0.330. Note that
these exact 𝛼 values are dependent upon the use of the Norne model
— any other model is likely to require different 𝛼 values for optimal
reduction in the simulation time.

4.3.6. Running norne with CPR preconditioner
The OPM Flow simulator uses incomplete LU factorisation (ILU0) as

the default preconditioner for the linear system solver. Now, we want to
test the robustness of the automated search algorithm by adopting the
more advanced CPR preconditioner. By changing the preconditioner to
a more costly one, the most important effect will be a reduction in the
10
number of linear iterations. By carrying out the parameter optimisation
procedure in these settings, can we still get similar reductions in
iteration counts and computing time?

Fig. 8 shows the mean computing time when optimising parameters
for Norne with a CPR preconditioner, running 40 independent optimisa-
tions, clearly showing that the optimisation procedure also works well
for this preconditioner.

4.3.7. Using different numbers of MPI processes
In order to ascertain the stability of the optimisation procedure,

additional tests were performed using 4, 8 and 16 MPI processes. Fig. 9
shows the results from running 40 individual optimisations with the
settings given in Table 4. The results suggest that the number of MPI
processes does not play a crucial role with regards to the end result
of the optimisation. In fact, using fewer MPI processes seems to give
a larger improvement in the optimisation target. It should, however,
be noted that using fewer MPI processes will in general result in the
optimisation procedure taking more time to complete.

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
Fig. 8. The mean computing time when running the optimisation algorithm on Norne using the CPR preconditioner. The data is based on 40 independent optimisation runs for
each 𝛼 value, and then 10 independent time measurements for each new parameter setting, the minimum of these giving the time measurement for that set of parameters.
Fig. 9. The results from optimising the numerical parameters when using 4, 8 and 16 MPI processes (instead of 32, see Fig. 6). Each plot summarises 40 independent optimisation
runs, with the red dashed line giving the mean improvement, and the different shades of grey giving the percentiles from the median and to the 10th/90th percentile (with lighter
grey being farther from the median).
4.4. Experimenting with the other two open reservoir models

4.4.1. Running the norne prediction model
By running a completely different model (albeit on the same grid),

we can get a better picture of how general is the optimisation pro-
cedure. For the prediction model, we use production rates to gauge
the accuracy of new simulations, instead of the WBHP. Otherwise, the
algorithm works exactly the same.
11
Fig. 10 shows the mean improvement in time from running 40 inde-
pendent parameter optimisations, clearly displaying that the procedure
works well also for the prediction model.

4.4.2. Running the Smeaheia CO2 model
So far, all models considered here have been black-oil models with

three phases. It is thus interesting to see whether a two-phase model

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
Fig. 10. The mean computing time when running the optimisation algorithm on the prediction model (see Section 4.2.2). The data is based on 40 independent optimisation runs
for each 𝛼 value, and then 10 independent time measurements for each new parameter setting, the minimum of these giving the time measurement for that set of parameters.
for CO2 storage could also be input into our optimisation framework to
yield fruitful results.

Fig. 11 shows the mean improvement in time from running 40 inde-
pendent parameter optimisations. Again there is a significant reduction
in the computing time.

4.5. Applying improved parameters to a proprietary reservoir model

An interesting question is whether the parameters found by opti-
mising on a small reservoir model such as Norne, can be successfully
applied to a different, much larger model to improve the computing
time while ensuring that the simulation results remain accurate enough.
To investigate this, we will use three sets of improved parameters found
for the Norne model in Section 4.2.1 and apply these to the proprietary
black-oil reservoir model described in Section 4.2.4.

To get the improved parameter sets for this experiment, we chose
0.161 as the 𝛼 value in Eq. (15), which was based on the number of
linear and Newton iterations used to solve the large black-oil model
with default parameter settings.

The experiments on the million-cell reservoir model were conducted
on dual ARM 64-core Kunpeng 920-6426 CPUs. All simulations of the
model used 128 MPI processes. We considered four sets of parameters
including the default ‘‘conservative’’ parameter set. The total simulation
time and numbers of linear iterations and Newton iterations required
to complete the simulations for the four parameter sets are displayed
in Table 5.

The iteration counts and execution times displayed in Table 5
demonstrate that the improved parameter sets attained using simula-
tions of the Norne model also yield improved performance for the much
larger black-oil model, although the improvements with the million-cell
model are not as smooth as those with the Norne model. For all the four
parameter sets, the accumulated mass balance error for the million-cell
model (see Section 4.6) remains below 0.1%.
12
Table 5
A summary of the simulation results from running the million-cell North Sea oil
field model (see Section 4.2.4) using three improved parameter sets obtained when
optimising Norne using an 𝛼 value of 0.161. For completeness, the corresponding
measurements for the Norne black-oil model are also included.

Model name Optimisation target Linear iterations Newton iterations Time (s)

Million-cell 3937.2 12374 1945 612.73
2759.2 5399 1890 485.45
2957.9 5198 2121 515.61
2521.1 3808 1908 458.56

Norne 4993.8 22390 1389 50.60
3571.9 15055 1148 44.17
3217.4 13369 1065 42.02
3013.4 12251 1041 40.52

4.6. A look at the mass balance error

Instead of looking at the WBHP for each well in the model, previous
work has used the mass balance equation (MBE) error to ascertain the
quality of the simulation results [14,15]. Hence, it is appropriate that
we check that the improved simulation results found in this article has
an MBE error that stays close to zero throughout the simulation (i.e.
for each time step). We here look at the accumulated MBE error for
each time step, and for oil, water and gas separately. The MBE error is
calculated by (for each time step) subtracting from the initial mass in
place the current mass in place, and adjusting this by the total amount
of mass injected and extracted up to the given point in time. The current
mass in place is found by summing up the mass in place for each region
in the domain. Thus, what we end up working with is the MBE error
for the whole domain — not for each individual cell. This is on a par
with the approach taken in previous works.

Fig. 12 shows a comparison between the default simulation and an
optimised simulation result, where the accumulated MBE errors for oil,
water and gas are plotted for each time step. Although the MBE errors

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
Fig. 11. The mean computing time when running the optimisation algorithm on the Smeaheia model (see Section 4.2.3). The data is based on 40 independent optimisation runs
for each 𝛼 value, and then 10 independent time measurements for each new parameter setting, the minimum of these giving the time measurement for that set of parameters.
Fig. 12. The accumulated mass balance equation (MBE) error for oil, water and gas for the simulation of Norne [9] when using the default parameter settings (to the left) and
when using an optimised set of parameters (to the right).
are clearly quite a lot larger for the optimised simulation, they are still
less than 0.1% for each fluid and all time steps. A test of four other
randomly chosen optimised parameter settings indicates that the results
in Fig. 12 are indeed quite general, with the maximum MBE error for
any time step being just over 0.2%. These results are similar to or better
than the results from previous works.

5. Related work

Due to the nature of the work described in the earlier sections,
the following section is divided into three subsections covering first
13
the general subject of parameter optimisation, then the use of sim-
ilarity measures (especially in the context of time series data), and
finally a more concrete discussion concerning the optimisation of reser-
voir simulations (including both parameter optimisation and accuracy
control).

5.1. Parameter optimisation

Parameter optimisation is a general problem found in a multitude
of different research areas. In recent years, optimising hyperparameters
for machine learning algorithms has received much attention [16,

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
17], but applications also include flight scheduling simulations soft-
ware [18], quantification of gene expression in bioinformatics [19],
solving combinatorial optimisation problems [20], and optimisation
of chemical processes [21]. While these applications are indeed very
different from our reservoir simulator application, the general problem
of tuning parameters in order to improve performance with respect to
computing time remains the same.

In several applications, the number of parameters and the mathe-
matical properties of the parameter spaces make classical optimisation
procedures useless, as they require continuously differentiable spaces.
Furthermore, the objective function in the optimisation might not be
easily computed, as it could entail running a simulation or training a
machine learning model — both of which are generally time consuming
tasks. Hence, many approaches have been developed for optimisation in
higher dimensions which do not include mathematically well-behaved
parameter spaces, and which do not necessitate a huge amount of
evaluations of the objective function. Indeed, in the work presented
in this article both of these points had to be taken into account when
designing the optimisation procedure. As a side note, such problems
can be categorised as high-dimensional, expensive (computationally),
black-box (HEB) problems, and there are several approaches to solving
them [22].

Without the availability of a gradient to provide information about
directions that might be useful for further exploration, many optimisa-
tion methods still try to explore the parameter space in an intelligent
manner. A whole range of bio-inspired artificial intelligence algo-
rithms exist to solve this problem [23], ranging from evolutionary
algorithms [24] to particle swarm optimisation [25] and ant colony
optimisation [26]. Indeed, observing the behaviour of certain animals
and designing a metaheuristic algorithm based on this has produced
numerous optimisation approaches for high-dimensional optimisation
problems. More recent examples are whale optimisation [27], grey
wolf [28] and horse herd optimisation [29] algorithms.

Generally, metaheuristic algorithms start out with an initial set of
points in the parameter space, and then use some method to decide
which new points to investigate in the next iteration step. The new
points are chosen based on information gained from the previous points
during previous iterations. Many of these algorithms have proven useful
in practical applications, even though the mathematical rigour of the
methods tend to be limited.

Statistical approaches to parameter optimisation are also much
used, the most common of which might be Bayesian optimisation [30,
31]. Here, a statistical distribution is placed on the parameter space to
guide the search for better parameter values by locating regions for
which there is high probability of finding better parameters. Explo-
ration of the parameter space then leads to updates to the statistical
distribution, through application of Bayes’ formula.

What makes our work challenging is the presence of both a mathe-
matically ill-behaved parameter space and an objective function whose
evaluations require a lot of time. This has motivated us to develop an
optimisation algorithm which can deliver useful improvements without
too many steps (and hence objective function evaluations), or to make
use of a gradient to determine which direction to take in the parameter
space.

5.2. Similarity measures

Measuring the similarity between time series is a problem which
finds applications in a vast range of research areas, and hence there
exists lots of research on the topic [32]. The time series similarity mea-
sures used in this article can be categorised as lock-step measures, in
that they use the time series data directly in a mathematical equation,
and the time series are at the exact same temporal locations. By ex-
tracting some information from the time series (e.g. by calculating the
Fourier coefficients) and using this in the lock-step formulas, feature-
14

based measures can be obtained. A further approach is to use time
series models like the auto-regressive model. Here, the idea is to fit
a model to the time series data, and then use the resulting parameters
to calculate a distance between the data. Such approaches are called
model-based measures [33]. Lastly, there are elastic measures, such
as dynamic time warping (DTW), which work by finding the cost of
aligning the time series in the temporal domain [34].

Much, if not most, research into similarity measures for time series
focus on classification and clustering, and is not necessarily much
concerned the exact distance between two time series. In this work,
although the scale of the similarity measures differs greatly, we use
the distances to determine suitable threshold values. That is, we are
not interested in deciding whether a new time series falls into one of
several categories, but rather whether it is sufficiently close to a given
(reference) time series.

Of the time series used in this work, both the 𝐿2 norm and the
correlation coefficient have been used in the literature on measuring
the similarity between time series [35–37]. Further, some previous
work has used the cosine similarity as the basis of a comparison
between time series data [38]. An important distinction between their
use of this measure and the one used in this article, is that their version
is calculated by creating a new (adjusted) time series of the differences
between consecutive time steps, instead of using the original time series
and calculating the cosine similarity directly, using Eq. (4).

The use of Jensen–Shannon divergence to evaluate the distance
between two time series has also been investigated to some degree [39,
40]. Originally, Jensen–Shannon divergence is used to quantify the dis-
tance between two probability distributions. When using it to measure
the distance between two time series, one approach would be to first
create probability distributions from the time series data. By mapping
each entry in the time series to one of several categories (or symbols),
one can create a probability distribution by finding the frequency of
appearance of each symbol [39]. In this work we have opted for the
simpler approach of using the time series directly in the formula for
the Jensen–Shannon divergence.

As stated in Section 2.1, our work only deals with similarity mea-
sures where the time series are composed of the exact same time steps.
However, there do exist some similarity measures for which this is not
required [41].

5.3. Optimising reservoir simulations

When optimising the numerical algorithm for simulations, there are
two main approaches available. One could change the algorithm and
then run the simulation (i.e. offline optimisation), or one could run
the simulation and change the algorithm between certain time steps
or iterations (i.e. online optimisation). In this article, we have focused
on the former option. However, some work has also been done for the
latter option in the context of reservoir simulations [42,43].

There seems to be little previous work done on offline optimisation
of reservoir simulations. However, some promising work has been
published quite recently. Indeed, initial work suggested that performing
some kind of optimisation of the numerical parameters will in some
cases result in improved performance and be worth the extra time
needed to perform the optimisation, depending on ‘‘the amount of
applications, number of runs and complexity of reservoir numerical
model’’ [14].

Two approaches to the search for improved numerical parame-
ters have been investigated. Firstly, CMG Designed Exploration and
Controlled Evolution, a commercial algorithm, was used to tune the
parameters [14,44]. Later work trained several machine learning algo-
rithms to find a suitable oracle which could provide parameter settings
based on output from previous simulations [15].

Optimising without controlling the accuracy of the simulation re-
sults might lead to improved performance, but in the end useless
results. Hence, an important point in previous works has been to find

a way to control the accuracy of the simulation results — that is, to

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
make sure that no huge numerical errors have been introduced by the
changes in the numerical algorithm. This has traditionally been done
by looking at the mass balance equation (MBE) error. At the heart of
porous media flow lies the assumption of mass conservation. Hence, for
each time step of the simulation, the total mass (adjusted for injections
and extractions) should stay constant. Any inaccuracies caused by the
approximate nature of the numerical algorithm will likely result in the
MBE error being non-zero. However, by making sure that the MBE error
relative to the total mass initially in place stays sufficiently close to
zero, we can assume that the simulation results are accurate enough.
Ideally, one would like to look at the MBE error for each cell, but the
practice adopted has been to only check the global MBE error [14,15].

The work described in this article distinguishes itself from previous
work (as outlined above) in the way it solves the two problems (1) how
we optimise the numerical parameters in order to reduce the simulation
time, and (2) how we make sure that the simulation results are accurate
enough.

Our approach to the optimisation procedure does not rely on any
proprietary software, and can be easily implemented by users in a
programming language of their choice. It also lends itself easily to
substitution of the particular parameters which should be tuned, in
contrast to the oracle-approach [15] which will require retraining the
oracle after each alteration of the parameter list.

The accuracy control used in this work includes much more infor-
mation from each simulation than the approach of using the global MBE
error adopted in similar work [14,15,44]. While this is no guarantee
that the accuracy control works better, it should increase the likelihood
of picking up small divergences between simulation results typically
due to the new simulation being slightly inaccurate. It should also make
it easier to tune the thresholds in such a way that a desired degree of
accuracy is more or less guaranteed.

6. Discussion

In this work we have presented an automated optimisation proce-
dure. More concretely, we have detailed an algorithm to move through
a parameter space in search for an optimal set of parameter values,
which boosts the rate of improvement compared to a simple random
search. We have then used this method to iteratively find improved sets
of parameter values (i.e. values which result in less and less computing
time spent on the simulation) in the case of reservoir simulations.

In order to ensure the quality of the simulation results, we have
incorporated into the search algorithm five measures for comparing
time series data, and used these to check the accuracy of the well
bottom-hole pressure (WBHP) for the different wells in the reservoir
model. A too large deviation, when comparing a new simulation result
with that from a simulation using default parameters, indicates an
inadequate accuracy.

For example, compared with simulations run with the default pa-
rameters, the mean improvement in run-time when running the optimi-
sation algorithm on the Norne model for 30 iterations is around 20%.
Cutting the search earlier (e.g. after one third or half the number of
iterations) does not reduce the improvement too much, as the steepest
improvement in run-time takes place early on in the optimisation.

The method presented in this paper has the advantage of being
highly flexible. One could keep the similarity measures, while replacing
the optimisation procedure, or one could do the opposite. It is also
possible to introduce new similarity measures to complement or replace
the existing ones. Furthermore, the choice of the target time series data
as input to the similarity measures can be changed based on the choice
of model and application. As an example in the reservoir simulation
context, one could use pressure and/or saturation for each individual
computational cell instead of the WBHP for each individual well, or one
could of course use both in combination.

One limitation of the work presented here is the dependence on a
sufficiently accurate reference simulation result, and the assumption
15
that the default parameters produce such a baseline result. While
investigations into the Norne black-oil model, running multiple sim-
ulations with very strict parameter values, do indicate that the default
parameters provide sufficiently accurate results in this case, the present
work offers no general method of making sure that this is indeed the
case.

Due to a combination of the desire to make use of open-source mod-
els and the limited availability of proprietary models, the present work
makes use of models which are arguably quite small in scale. Hence,
a remaining question is whether or not the findings are applicable to
larger (more realistic) industrial models. The only use of proprietary
models can be found in Section 4.5, whereas the model itself was never
used in the optimisation procedure described in Section 3.

As future work, there are several points worthy of investigation.
Throughout this work, 32 MPI processes have been used for all sim-
ulations of the three open-source reservoir models. Although some
tests were carried out to ascertain the stability of the optimisation
procedure with regards to the number of MPI processes, one should
take a closer look at how different numbers of MPI processes might
affect the results of the optimisation procedure. Another topic is how
to best tune optimisation settings such as the choice of the constant
𝛼 in the optimisation target, the threshold values for the similarity
measures, the probability of perturbing parameters and the number of
perturbations per search iteration.

Furthermore, there are several possible similarity measures which
might be used in place of the five chosen for this work. One version
of the cosine similarity using adjusted arrays of the consecutive differ-
ences [38] seems an interesting alternative. Also, measures which do
not require coinciding time steps [41] (and hence can work without
the use of interpolation methods) should be tested. Also, the threshold
value for each individual similarity measure might be tuned in order
to get a better balance between retaining the simulation results which
are accurate enough and discarding the ones which are not.

In this work, for all the historical reservoir models, we have made
use of the well bottom-hole pressure (WBHP) to gauge the degree of
(dis)similarity between different simulation results. While this seems
to work well, it is worth investigation whether other approaches might
work similarly or better. One such approach is to look at the pressure
and saturation for each cell in the grid and compare these across
simulation results.

A central part of the automated search algorithm introduced in this
work is the optimisation target from Eq. (15). This is a rather crude
model of the computing time required to complete a simulation, and
hence it may be necessary to include cross terms and/or higher order
terms of the linear and Newton iterations in the objective function.
One might also include other variables which also contribute to the
computing time. Another topic that is worth a detailed investigation is
Eq. (12) which has been used to find a new sample by the gradient-
inspired step at the end of each search iteration. Other formulations
can be tested.

Lastly, it remains to be investigated whether numerical parameters
that are automatically identified by the optimisation procedure (when
applied to one specific reservoir model) can lead to similar performance
improvements for other simulations in an ensemble. A related question
is the suitability of the automated optimisation procedure for larger
reservoir models. Assuming that the number of numerical parameters
involved in large reservoir models is the same as in small models
(such as Norne), we expect the optimisation procedure to have the
same effectiveness, i.e., in terms of iteration and sample numbers.
However, the optimisation procedure will inevitably be very time
consuming. A possible approach is to apply the optimisation procedure
to a similar but much smaller reservoir model. The hope is that the
improved parameters can also benefit a much larger reservoir model.
The experiments reported in Section 4.5 are promising, but extensive
experimentation is needed.

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
CRediT authorship contribution statement

Erik Hide Sæternes: Conceptualization, Data curation, Formal
Analysis, Investigation, Methodology, Software, Validation, Visualiza-
tion, Writing – original draft, Writing – review & editing. Andreas
Thune: Data curation, Investigation, Software, Writing – original draft,
Writing – review & editing. Alf Birger Rustad: Conceptualization,
Funding acquisition, Resources, Writing – review & editing. Tor Skeie:
Conceptualization, Funding acquisition, Project administration, Super-
vision, Writing – original draft, Writing – review & editing. Xing Cai:
Conceptualization, Funding acquisition, Methodology, Project admin-
istration, Supervision, Writing – original draft, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The work of Erik Hide Sæternes and Andreas Thune was partially
supported by the Research Council of Norway under Grant 237898.
The work of Xing Cai was supported in part by the European High-
Performance Computing Joint Undertaking under Grant 956213, and
in part by the Research Council of Norway under Grant 329017.
The research presented in this paper benefited from the Experimental
Infrastructure for the Exploration of Exascale Computing (eX3), which
was financially supported in part by the Research Council of Norway
under Grant 270053.

References

[1] OPM, The open porous media initiative, https://opm-project.org/.
[2] A.F. Rasmussen, T.H. Sandve, K. Bao, A. Lauser, J. Hove, B. Skaflestad, R.

Klöfkorn, M. Blatt, A.B. Rustad, O. Sævareid, K.-A. Lie, A. Thune, The open
porous media flow reservoir simulator, Comput. Math. Appl. 81 (2021) 159–185,
http://dx.doi.org/10.1016/j.camwa.2020.05.014.

[3] Encyclopedia of Mathematics, Linear interpolation, https://encyclopediaofmath.
org/index.php?Title=Linear_interpolation&oldid=27068.

[4] Encyclopedia of Mathematics, Correlation (in statistics), https://
encyclopediaofmath.org/index.php?Title=Correlation_(in_statistics)&oldid=
52436.

[5] B. Li, L. Han, Distance weighted cosine similarity measure for text classification,
in: Intelligent Data Engineering and Automated Learning – IDEAL 2013, Springer
Berlin Heidelberg, 2013, pp. 611–618, http://dx.doi.org/10.1007/978-3-642-
41278-3_74.

[6] J. Lin, S.K.M. Wong, A new direct divergence measure and its character-
ization, Int. J. Gen. Syst. 17 (1) (1990) 73–81, http://dx.doi.org/10.1080/
03081079008935097.

[7] S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 22
(1) (1951) 79–86, http://dx.doi.org/10.1214/aoms/1177729694.

[8] J. Lin, Divergence measures based on the Shannon entropy, IEEE Trans. Inform.
Theory 37 (1) (1991) 145–151, http://dx.doi.org/10.1109/18.61115.

[9] OPM, Open datasets, https://opm-project.org/?page_id=559.
[10] D.E. Knuth, Two notes on notation, Amer. Math. Monthly 99 (5) (1992) 403–422,

http://dx.doi.org/10.2307/2325085.
[11] O.K. Foundation, Open data commons, https://opendatacommons.org/licenses/

odbl/.
[12] OPM, Norne data models, https://github.com/OPM/opm-tests/tree/master/

norne.
[13] Equinor ASA, Gassnova SF, Smeaheia dataset, https://co2datashare.org/dataset/

smeaheia-dataset. http://dx.doi.org/10.11582/2021.00012.
[14] G. Avansi, V. Rios, D. Schiozer, Numerical tuning in reservoir simulation: It is

worth the effort in practical petroleum applications, J. Braz. Soc. Mech. Sci. Eng.
41 (59) (2019) http://dx.doi.org/10.1007/s40430-018-1559-9.
16
[15] F. Portella, D. Buchaca, J.R. Rodrigues, J.L. Berral, TunaOil: A tuning algorithm
strategy for reservoir simulation workloads, J. Comput. Sci. 63 (2022) http:
//dx.doi.org/10.1016/j.jocs.2022.101811.

[16] L. Yang, A. Shami, On hyperparameter optimization of machine learning al-
gorithms: Theory and practice, Neurocomputing 415 (2020) 295–316, http:
//dx.doi.org/10.1016/j.neucom.2020.07.061.

[17] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T.
Ullmann, M. Becker, A.-L. Boulesteix, D. Deng, M. Lindauer, Hyperparameter
optimization: Foundations, algorithms, best practices, and open challenges,
WIREs Data Min. Knowl. Discov. (2023) http://dx.doi.org/10.1002/widm.1484.

[18] A.E.I. Brownlee, M.G. Epitropakis, J. Mulder, M. Paelinck, E.K. Burke, A
systematic approach to parameter optimization and its application to flight
schedule simulation software, J. Heuristics 28 (2022) 509–538, http://dx.doi.
org/10.1007/s10732-022-09501-8.

[19] G. AU Baruzzo, K.E. Hayer, E.J. Kim, B. Di Camillo, G.A. FitzGerald, G.R. Grant,
Simulation-based comprehensive benchmarking of RNA-seq aligners, Nature
Methods 14 (2) (2017) 135–139, http://dx.doi.org/10.1038/nmeth.4106.

[20] A.A. Juan, J. Faulin, S.E. Grasman, M. Rabe, G. Figueira, A review of simheuris-
tics: Extending metaheuristics to deal with stochastic combinatorial optimization
problems, Oper. Res. Perspect. 2 (2015) 62–72, http://dx.doi.org/10.1016/j.orp.
2015.03.001.

[21] B.J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J.I.M. Alvarado,
J.M. Janey, R.P. Adams, A.G. Doyle, Bayesian reaction optimization as a tool
for chemical synthesis, Nature 590 (2021) 89–96, http://dx.doi.org/10.1038/
s41586-021-03213-y.

[22] S. Shan, G.G. Wang, Survey of modeling and optimization strategies to solve
high-dimensional design problems with computationally-expensive black-box
functions, Struct. Multidiscip. Optim. 41 (2010) 219–241, http://dx.doi.org/10.
1007/s00158-009-0420-2.

[23] D. Floreano, C. Mattiussi, Bio-Inspired Artificial Intelligence: Theories, Methods,
and Technologies, The MIT Press, 2008.

[24] A. Slowik, H. Kwasnicka, Evolutionary algorithms and their applications to
engineering problems, Neural Comput. Appl. 32 (2020) 12363–12379, http:
//dx.doi.org/10.1007/s00521-020-04832-8.

[25] T.M. Shami, A.A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M.A. Summakieh, S.
Mirjalili, Particle swarm optimization: A comprehensive survey, IEEE Access 10
(2022) 10031–10061, http://dx.doi.org/10.1109/ACCESS.2022.3142859.

[26] M. Dorigo, T. Stützle, Ant colony optimization: Overview and recent advances,
in: Handbook of Metaheuristics, Springer International Publishing, 2019, pp.
311–351, http://dx.doi.org/10.1007/978-3-319-91086-4_10.

[27] Y. Sun, Y. Chen, Multi-population improved whale optimization algorithm for
high dimensional optimization, Appl. Soft Comput. 112 (2021) 107854, http:
//dx.doi.org/10.1016/j.asoc.2021.107854.

[28] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69
(2014) 46–61, http://dx.doi.org/10.1016/j.advengsoft.2013.12.007.

[29] F. MiarNaeimi, G. Azizyan, M. Rashki, Horse herd optimization algo-
rithm: A nature-inspired algorithm for high-dimensional optimization problems,
Knowl.-Based Syst. 213 (2021) 106711, http://dx.doi.org/10.1016/j.knosys.
2020.106711.

[30] A.H. Victoria, G. Maragatham, Automatic tuning of hyperparameters using
Bayesian optimization, Evol. Syst. 12 (2021) 217–223, http://dx.doi.org/10.
1007/s12530-020-09345-2.

[31] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, S.-H. Deng, Hyperparameter
optimization for machine learning models based on Bayesian optimization, J.
Electron. Sci. Technol. 17 (1) (2019) 26–40, http://dx.doi.org/10.11989/JEST.
1674-862X.80904120.

[32] J. Serrà, J.L. Arcos, An empirical evaluation of similarity measures for time series
classification, Knowl.-Based Syst. 67 (2014) 305–314, http://dx.doi.org/10.1016/
j.knosys.2014.04.035.

[33] T.W. Liao, Clustering of time series data — A survey, Pattern Recognit. 38 (11)
(2005) 1857–1874, http://dx.doi.org/10.1016/j.patcog.2005.01.025.

[34] C. Holder, M. Middlehurst, A. Bagnall, A review and evaluation of elastic distance
functions for time series clustering, Knowl. Inf. Syst. (2023) http://dx.doi.org/
10.1007/s10115-023-01952-0.

[35] A. Kianimajd, M.G. Ruano, P. Carvalho, J. Henriques, T. Rocha, S. Paredes, A.E.
Ruano, Comparison of different methods of measuring similarity in physiologic
time series, IFAC-PapersOnLine 50 (1) (2017) 11005–11010, http://dx.doi.org/
10.1016/j.ifacol.2017.08.2479.

[36] S. Lhermitte, J. Verbesselt, W.W. Verstraeten, P. Coppin, A comparison of time
series similarity measures for classification and change detection of ecosystem
dynamics, Remote Sens. Environ. 115 (12) (2011) 3129–3152, http://dx.doi.org/
10.1016/j.rse.2011.06.020.

[37] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, E. Keogh, Exper-
imental comparison of representation methods and distance measures for time
series data, Data Min. Knowl. Discov. 26 (2013) 275–309, http://dx.doi.org/10.
1007/s10618-012-0250-5.

[38] T. Nakamura, K. Taki, H. Nomiya, K. Seki, K. Uehara, A shape-based similarity
measure for time series data with ensemble learning, Pattern Anal. Appl. 16
(2013) 535–548, http://dx.doi.org/10.1007/s10044-011-0262-6.

https://opm-project.org/
http://dx.doi.org/10.1016/j.camwa.2020.05.014
https://encyclopediaofmath.org/index.php?Title=Linear_interpolation&oldid=27068
https://encyclopediaofmath.org/index.php?Title=Linear_interpolation&oldid=27068
https://encyclopediaofmath.org/index.php?Title=Linear_interpolation&oldid=27068
https://encyclopediaofmath.org/index.php?Title=Correlation_(in_statistics)&oldid=52436
https://encyclopediaofmath.org/index.php?Title=Correlation_(in_statistics)&oldid=52436
https://encyclopediaofmath.org/index.php?Title=Correlation_(in_statistics)&oldid=52436
https://encyclopediaofmath.org/index.php?Title=Correlation_(in_statistics)&oldid=52436
https://encyclopediaofmath.org/index.php?Title=Correlation_(in_statistics)&oldid=52436
http://dx.doi.org/10.1007/978-3-642-41278-3_74
http://dx.doi.org/10.1007/978-3-642-41278-3_74
http://dx.doi.org/10.1007/978-3-642-41278-3_74
http://dx.doi.org/10.1080/03081079008935097
http://dx.doi.org/10.1080/03081079008935097
http://dx.doi.org/10.1080/03081079008935097
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1109/18.61115
https://opm-project.org/?page_id=559
http://dx.doi.org/10.2307/2325085
https://opendatacommons.org/licenses/odbl/
https://opendatacommons.org/licenses/odbl/
https://opendatacommons.org/licenses/odbl/
https://github.com/OPM/opm-tests/tree/master/norne
https://github.com/OPM/opm-tests/tree/master/norne
https://github.com/OPM/opm-tests/tree/master/norne
https://co2datashare.org/dataset/smeaheia-dataset
https://co2datashare.org/dataset/smeaheia-dataset
https://co2datashare.org/dataset/smeaheia-dataset
http://dx.doi.org/10.11582/2021.00012
http://dx.doi.org/10.1007/s40430-018-1559-9
http://dx.doi.org/10.1016/j.jocs.2022.101811
http://dx.doi.org/10.1016/j.jocs.2022.101811
http://dx.doi.org/10.1016/j.jocs.2022.101811
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1002/widm.1484
http://dx.doi.org/10.1007/s10732-022-09501-8
http://dx.doi.org/10.1007/s10732-022-09501-8
http://dx.doi.org/10.1007/s10732-022-09501-8
http://dx.doi.org/10.1038/nmeth.4106
http://dx.doi.org/10.1016/j.orp.2015.03.001
http://dx.doi.org/10.1016/j.orp.2015.03.001
http://dx.doi.org/10.1016/j.orp.2015.03.001
http://dx.doi.org/10.1038/s41586-021-03213-y
http://dx.doi.org/10.1038/s41586-021-03213-y
http://dx.doi.org/10.1038/s41586-021-03213-y
http://dx.doi.org/10.1007/s00158-009-0420-2
http://dx.doi.org/10.1007/s00158-009-0420-2
http://dx.doi.org/10.1007/s00158-009-0420-2
http://refhub.elsevier.com/S1877-7503(23)00265-X/sb23
http://refhub.elsevier.com/S1877-7503(23)00265-X/sb23
http://refhub.elsevier.com/S1877-7503(23)00265-X/sb23
http://dx.doi.org/10.1007/s00521-020-04832-8
http://dx.doi.org/10.1007/s00521-020-04832-8
http://dx.doi.org/10.1007/s00521-020-04832-8
http://dx.doi.org/10.1109/ACCESS.2022.3142859
http://dx.doi.org/10.1007/978-3-319-91086-4_10
http://dx.doi.org/10.1016/j.asoc.2021.107854
http://dx.doi.org/10.1016/j.asoc.2021.107854
http://dx.doi.org/10.1016/j.asoc.2021.107854
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.knosys.2020.106711
http://dx.doi.org/10.1016/j.knosys.2020.106711
http://dx.doi.org/10.1016/j.knosys.2020.106711
http://dx.doi.org/10.1007/s12530-020-09345-2
http://dx.doi.org/10.1007/s12530-020-09345-2
http://dx.doi.org/10.1007/s12530-020-09345-2
http://dx.doi.org/10.11989/JEST.1674-862X.80904120
http://dx.doi.org/10.11989/JEST.1674-862X.80904120
http://dx.doi.org/10.11989/JEST.1674-862X.80904120
http://dx.doi.org/10.1016/j.knosys.2014.04.035
http://dx.doi.org/10.1016/j.knosys.2014.04.035
http://dx.doi.org/10.1016/j.knosys.2014.04.035
http://dx.doi.org/10.1016/j.patcog.2005.01.025
http://dx.doi.org/10.1007/s10115-023-01952-0
http://dx.doi.org/10.1007/s10115-023-01952-0
http://dx.doi.org/10.1007/s10115-023-01952-0
http://dx.doi.org/10.1016/j.ifacol.2017.08.2479
http://dx.doi.org/10.1016/j.ifacol.2017.08.2479
http://dx.doi.org/10.1016/j.ifacol.2017.08.2479
http://dx.doi.org/10.1016/j.rse.2011.06.020
http://dx.doi.org/10.1016/j.rse.2011.06.020
http://dx.doi.org/10.1016/j.rse.2011.06.020
http://dx.doi.org/10.1007/s10618-012-0250-5
http://dx.doi.org/10.1007/s10618-012-0250-5
http://dx.doi.org/10.1007/s10618-012-0250-5
http://dx.doi.org/10.1007/s10044-011-0262-6

Journal of Computational Science 75 (2024) 102205E.H. Sæternes et al.
[39] D.M. Mateos, L.E. Riveaud, P.W. Lamberti, Detecting dynamical changes in time
series by using the Jensen Shannon divergence, Chaos 27 (8) (2017) 083118,
http://dx.doi.org/10.1063/1.4999613.

[40] L. Zunino, F. Olivares, H.V. Ribeiro, O.A. Rosso, Permutation Jensen-Shannon
distance: A versatile and fast symbolic tool for complex time-series analysis, Phys.
Rev. E 105 (4) (2022) 045310, http://dx.doi.org/10.1103/PhysRevE.105.045310.

[41] M. Zhang, D. Pi, A new time series representation model and corresponding
similarity measure for fast and accurate similarity detection, IEEE Access 5
(2017) 24503–24519, http://dx.doi.org/10.1109/ACCESS.2017.2764633.

[42] I.D. Mishev, N. Fedorova, S. Terekhov, B.L. Beckner, A.K. Usadi, M.B. Ray,
O. Diyankov, Adaptive control for solver performance optimization in reservoir
simulation, in: Conference Proceedings, ECMOR XI - 11th European Conference
on the Mathematics of Oil Recovery, 2008, http://dx.doi.org/10.3997/2214-
4609.20146368.

[43] D. Bagaev, I. Konshin, K. Nikitin, Dynamic optimization of linear solver pa-
rameters in mathematical modelling of unsteady processes, in: Supercomputing,
Springer International Publishing, 2017, pp. 54–66, http://dx.doi.org/10.1007/
978-3-319-71255-0_5.

[44] V.S. Rios, G.D. Avansi, D.J. Schiozer, Practical workflow to improve numerical
performance in time-consuming reservoir simulation models using submodels and
shorter period of time, J. Pet. Sci. Eng. 195 (2020) http://dx.doi.org/10.1016/
j.petrol.2020.107547.

Erik Hide Sæternes received the M.Sc. degree in Industrial
mathematics from the Department of Mathematical Sciences
at the Norwegian University of Science and Technology
(NTNU) in 2020. He is currently working toward a Ph.D.
degree with the University of Oslo and Simula Research Lab-
oratory. His research topic is high performance computing
in the domain of reservoir simulation.

Andreas Thune received the M.Sc. degree from the De-
partment of Mathematics at the University of Oslo in 2017.
He is currently working toward the Ph.D. degree with the
University of Oslo and Simula Research Laboratory. His
research topic is high performance computing in the domain
of reservoir simulation.
17
Alf Birger Rustad received his Ph.D. degree in Mathematics
at the Norwegian University of Science and Technology
(NTNU) in 2001. He held a position of Associate Professor
in mathematics at NTNU between 2001 and 2003. Dr.
Rustad has worked at Equinor (previously called Statoil)
since 2003. He is currently project manager for OPM reser-
voir simulator development at Equinor’s research Centre in
Trondheim, Norway.

Tor Skeie is a professor with the University of Oslo and
Simula Research Laboratory; his research has mainly con-
tributed to the High-Performance Computing field (HPC).
Herein he has focused on effective routing, fault tolerance,
congestion control, quality of service, reservoir simulations,
edge and cloud computing. He is also a researcher with the
Industrial Ethernet and wireless networking areas. Several
of his research results have been published in the most
respected IEEE transactions and magazines.

Xing Cai received the Ph.D. degree in scientific computing
from the University of Oslo, in 1998, and was appointed
to the position of associate professor with the University
of Oslo, in 1999, later promoted to full professorship in
2008. He joined Simula with its very beginning in 2001,
taking an 80 % leave from his university position. His
research interests include parallel programming and high-
performance scientific computing on multi-core CPUs and
GPUs, numerical methods for solving PDEs, and generic PDE
software.

http://dx.doi.org/10.1063/1.4999613
http://dx.doi.org/10.1103/PhysRevE.105.045310
http://dx.doi.org/10.1109/ACCESS.2017.2764633
http://dx.doi.org/10.3997/2214-4609.20146368
http://dx.doi.org/10.3997/2214-4609.20146368
http://dx.doi.org/10.3997/2214-4609.20146368
http://dx.doi.org/10.1007/978-3-319-71255-0_5
http://dx.doi.org/10.1007/978-3-319-71255-0_5
http://dx.doi.org/10.1007/978-3-319-71255-0_5
http://dx.doi.org/10.1016/j.petrol.2020.107547
http://dx.doi.org/10.1016/j.petrol.2020.107547
http://dx.doi.org/10.1016/j.petrol.2020.107547

	Automated parameter tuning with accuracy control for efficient reservoir simulations
	Introduction
	Similarity measures for accuracy control
	Resolving non-coinciding time steps
	The similarity measures
	Choosing threshold values
	The need for using more than one measure

	Automated searches in the parameter space
	Mathematical description
	Optimisation target
	Choosing the optimisation target parameter
	Additional settings for the optimisation procedure

	Experiments
	The experimental setup
	Threshold values for the similarity measures
	The OPM Flow simulator and hardware
	Numerical parameters of the reservoir simulator

	The reservoir models
	Norne black-oil model
	Norne prediction model
	Smeaheia
	Million-cell North Sea oil field model

	Experimenting with the Norne black-oil model
	The effect of a gradient-inspired search
	Number of perturbations per search iteration
	Probability of perturbing the parameters
	Changing the weighting inside the objective function
	Impact on the simulation time
	Running Norne with CPR preconditioner
	Using different numbers of MPI processes

	Experimenting with the other two open reservoir models
	Running the Norne prediction model
	Running the Smeaheia CO2 model

	Applying improved parameters to a proprietary reservoir model
	A look at the mass balance error

	Related work
	Parameter optimisation
	Similarity measures
	Optimising reservoir simulations

	Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

