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Abstract. To improve the user experience, service providers may sys-
tematically record and analyse user interactions with a service using
event logs. User journeys model these interactions from the user’s per-
spective. They can be understood as event logs created by two indepen-
dent parties, the user and the service provider, both controlling their
share of actions. We propose multi-party event logs as an extension of
event logs with information on the parties, allowing user journeys to be
analysed as weighted games between two players. To reduce the size
of games for complex user journeys, we identify decision boundaries
at which the outcome of the game is determined. Decision boundaries
identify subgames that are equivalent to the full game with respect
to the final outcome of user journeys. The decision boundary analysis
from multi-party event logs has been implemented and evaluated on the
BPI Challenge 2017 event log with promising results, and can be con-
nected to existing process mining pipelines.

Keywords: User journeys · Event logs · Weighted games · Decision
boundaries

1 Introduction

In a competitive market, a good user experience is crucial for the survival of
service providers [1]. User journeys model the interaction of a user (or customer)
with a company’s services (service provider) from the user’s perspective. One
of the earliest works to map user journeys was proposed by Bitner et al. in the
form of service blueprinting [2]. Current tools can model and analyse individual
journeys with the aim to improve services from the customers’ point of view [3,4].

User journey analysis methods based on event data exploit events recording
the user interactions with a service and its underlying information systems. Due
to the sequential nature of user-service interactions, process mining techniques
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that assume grouped sequences of events as input, have been used to analyse
user journeys [5–8]. For example, Bernard et al. explore and discover journeys
from events [7] and Terragni and Hassani use event logs of user journeys to give
recommendations [5]. Input events are treated in the same way as for the analysis
of business processes: each journey is an instance of a process (case) recorded in
a sequence of events (trace) where each event represents an activity occurrence.

In contrast to a business process, which may include numerous actors and
systems, a user journey is a sequence of very specific interactions between two
parties: the user, and one or more service providers. This invites a specific view on
the source event log, where some events are controlled by the user and others by
service providers. At the end of the journey, some events represent desirable out-
comes for the service provider (positive events) whereas others represent unde-
sirable outcomes (negative events). Such partition of the event log into desired
and undesired cases or process outcomes has been explored before. Deviance
mining classifies cases to investigate deviations from expected behaviour [9]. A
binary partition of the event log into positive and negative cases was used in, e.g.,
logic-based process mining [10,11] and error detection [12]. Outcome prediction
aims to predict the outcome of a process case based on a partial trace [13,14].
However, these works do not consider the interactions between user and service
providers in user journeys as interactions between independent parties. Results
of game theory have previously been used by Saraeian and Shirazi for anomaly
detection on mined process models [16] and by Galanti et al. for explanations in
predictive process mining [17]; in contrast to our work, these works do not use
game theory to account for multiple independent parties in the process model.

In this paper, we propose a multi-party view for user journeys event logs
and present a model reduction based on game theory. We have recently shown
how to model and analyse a user journey as a two-player weighted game, in a
small event log (33 sequences) from a real scenario that could be manually anal-
ysed [15]. However, in scenarios with a large number of complex user journeys,
the resulting game can be challenging for manual analysis. This paper intro-
duces a k-sequence transition system extension on the directly follows graph of
the multi-party game approach presented in [15], and proposes a novel method to
automatically detect decision boundaries for user journeys. The method can be
useful for the analysis of the journeys since it identifies the parts from where the
game becomes deterministic with respect to the outcome of the journey, i.e., the
service provider has no further influence on the outcome afterwards. We apply
our method to the BPIC’17 dataset [18] as an example of complex user-service
interactions, which is available in a public dataset. BPIC’17 does not include
information on which activities are controlled by the user (a customer is apply-
ing for a loan) and which are controlled by the service provider (a bank). We add
this information based on domain knowledge and define multi-party event logs as
an extension of event logs with party information for user journeys. The appli-
cation on BPIC’17 demonstrates the feasibility and usefulness of our approach.
Our results show that we can automatically detect the most critical parts of the
game that guarantees successful and, respectively unsuccessful, user journeys.
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Fig. 1. Construction of the decision boundary reduction.

This analysis could be extended with automated methods targeting predictive
and prescriptive analysis, e.g., recommendations for process improvement.

The outline of our paper is illustrated in Fig. 1. Section 2 introduces necessary
definitions and summarizes user journey games. These are extended with a novel
game theoretical reduction method in Sects. 3 and 4. Section 5 illustrates our
reduction method and the results on BPIC’17 and Sect. 6 concludes the paper.

2 User Journey Games

This section provides background on our previous work on user journey
games [15]. The input to the user journey analysis is an event log [19] stor-
ing records of observations of interactions between a user and one or more ser-
vice providers. An event log L is a multiset of observed traces over a set of
actions [19]. Given a universe A of actions, traces τ ∈ L are finite, ordered
sequences 〈a0, . . . , an〉 with ai ∈ A , i.e., L ∈ B(A ∗). Given an event log L, we
introduce the concept of a multi-party event log L = 〈L,P, I〉 in which each event
belongs to a party, where P is the set of parties and the function I extends the
traces τ ∈ L with information for each event about the initiating party from P .

Transition systems S = 〈Γ,A,E, s0, T 〉 have a set Γ of states, a set A of
actions (or labels), a transition relation E ⊆ Γ ×A×Γ , an initial state s0 ∈ Γ and
a set T ⊆ Γ of final states. A weighted transition system S extends a transition
system S, with a weight function w indicating the impact of every event [20].
Weighted games partition the events and consider them as actions in a weighted
transition system, controllable actions Ac and uncontrollable actions Au [21].
Only actions in Ac can be controlled. Actions in Au are decided by an adversarial
environment. When analysing games, we look for a strategy that guarantees a
desired property, i.e. winning the game by reaching a certain state. A strategy is
a partial function Γ → Ac ∪ {λ} deciding the actions of the controller in a given
state (here, λ denotes the “wait” action, letting the adversary move).

User journeys capture how a user moves through a service by engaging in
so-called touchpoints, which are either actions performed by the user or a com-
munication event between the user and a service provider [3]. User journeys are
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inherently goal-oriented. Users engage in a service to reach a goal, e.g. receiv-
ing a loan or visiting a doctor. If they reach the goal, the journey is successful,
otherwise unsuccessful. This can be modelled by a transition system with final
states T , and successful goal states from a subset Ts ⊆ T : every journey end-
ing in t ∈ Ts is successful. A journey’s success does not only depend on the
actions of the service provider—the journey can be seen as a game between ser-
vice provider and user, where both parties are self-interested and control their
share of actions. We define user journey games as weighted transition systems
with goals and self-interested parties [15]:

Definition 1 (User journey games). A user journey game is a weighted
game G = 〈Γ,Ac, Au, E, s0, T, Ts, w〉, where

– Γ are states that represent the touchpoints of the user journey,
– Ac and Au are disjoint sets of actions respectively initiated by the service

provider and the user,
– E ⊆ Γ × Ac ∪ Au × Γ are the possible transitions between touchpoints,
– s0 ∈ Γ is an initial state,
– T ⊆ Γ are the final states of the game,
– Ts ⊆ T are the final states in which the game is successful, and
– w : E → R specifies the weight associated with the different transitions.

The analysis of services with a large number of users requires a notion of user
feedback [3]: Questionnaires provide a viable solution for services with a limited
number of users, but not for complex services with many users. In a user journey
game, the weight function w denotes the impact that an interaction has on the
journey. A user journey game construction is described in [15]. When building
user journey games from event logs, we used Shannon entropy [22] together with
majority voting to estimate user feedback without human intervention. The more
certain the outcome of a journey becomes after an interaction, the higher the
weight of the corresponding edge. Gas extends weights to (partial) journeys so
they can be compared. Given an event log L and its corresponding weighted
transition system S, the gas G of a journey τ ∈ L accumulates the weights when
replaying τ along the transitions in S, G(τ) :=

∑
ai∈τ w(ai).

Formal statements about user journey games can be analysed using a model
checker such as Uppaal Stratego [23]. Uppaal Stratego extends the
Uppaal system [24] by games and stochastic model checking, allowing proper-
ties to be verified up to a confidence level by simulations (avoiding the full state
space exploration). If a statement holds, an enforcing strategy is computed. To
strengthen the user-focused analysis of user journeys, we assume that an adver-
sarial environment exposes the worst-case behaviour of the service provider by
letting the service provider’s actions be controllable and the user’s actions uncon-
trollable. For example, let us define a strategy pos for always reaching a successful
final state. Define two state properties positive for a successful and negative
for an unsuccessful final state. The keyword control indicates a game with an
adversarial environment and A<> searches for a strategy where the flag positive
eventually holds at some state in all possible paths of the game:
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Algorithm 1. Decision Boundary Detection
Input: User journey game G = 〈Γ, Ac, Au, E, s0, T, Ts, w〉, unrolling constant n
Output: Decision Boundary M ⊂ Γ
1: Assert Termination of Model Checker
2: Initialize mapping R : Γ → {True,False}
3: for State s ∈ Γ do
4: Game G′ ← Descendants(s)
5: Game G′′ ← Acyclic(G′, n)
6: Update R(s) ← Query(G′′)

7: Set ΓP ← {s ∈ Γ | ∧
R(s′) ∀s′ ∈ Descendants(s)}

8: Set ΓN ← {s ∈ Γ | ∧ ¬R(s′) ∀s′ ∈ Descendants(s)}
9: Add State spos and sneg to G � States implying outcome

10: for State s ∈ Γ do
11: if s ∈ ΓP then Merge(G, spos, s)
12: else if s ∈ ΓN then Merge(G, sneg, s)

13: M ← ∅
14: for State s ∈ Γ do � Build decision boundary
15: if {spos, sneg} = {t | t ∈ (s, t) ∈ E} then M ← M ∪ {s}
16: return M

strategy pos = control: A<> positive .

If the strategy pos exists, it can be further analysed and refined to, e.g., minimize
the number of steps or gas to reach a final state within an upper bound time T:

strategy min = minE(steps) [t<= T] : <> positive under pos .

Strategies can be stochastically evaluated using a number of runs X, e.g., evaluate
the minimal gas of the refined strategy within an upper bound time T:

E[t<=T; X] (min: gas) under min.

3 Decision Boundaries

A decision boundary abstracts a game to focus on crucial parts from where the
future outcome is decided. Finding the decision boundary in a complex game can
be useful; e.g., there might be no guarantee to find a successful game strategy
pos (see Sect. 2). Such a strategy can only be found for certain states in the
game, which may be scattered around and therefore hard to analyse when using
non-automatic methods. Moreover, detecting the decision boundary that lead
to outcomes in the game from where there is no possibility of recovery can be
used to propose further recommendations for service improvement. Figure 1b
and 1c illustrate the game abstraction using decision boundaries. The red and
green marked parts of the game in Fig. 1b display guaranteeing areas. Once the
journey reached a state within those areas, the outcome becomes deterministic.
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Since all reachable states from a red or green state share the same outcome, they
can be abstracted away (Fig. 1c).

Algorithm 1 computes the decision boundary for a game G. The mapping R,
from states s to Boolean, stores whether there exists a successful strategy pos
that starts from each state s ∈ Γ (Lines 2–6). The algorithm computes a reach-
able sub-game G′ for every state s using the function Descendants(s), which
computes the parts of G which are reachable from s by path exploration. Func-
tion Acyclic(G′, n) unrolls n times all loops in G′, e.g. by a breadth-first search
strategy. An example of loop-unrolling in games is displayed in Fig. 2. The result-
ing acyclic game G′′ is then model checked with Query(G′′) to look for a suc-
cessful strategy pos. The result is stored in R(s).

Furthermore, some states are segregated into two sets, ΓP and ΓN , based
on the results from the previous computation (Lines 7–8). States from which
it is only possible to reach positive, respectively negative, results are assigned
to ΓP , respectively ΓN . States in these sets guarantee the outcome of the game.
The game is simplified by abstracting all states in ΓP , respectively ΓN , into one
state spos, respectively sneg, using the function Merge (Lines 9–12). Once one
of these states is reached, the journey becomes deterministic; the service provider
has no further influence on the final outcome. The states which point to spos and
sneg form the decision boundary (Lines 13–15).

4 Mining Decision Boundaries

Fig. 2. Unrolling example.

Event logs obtained from user journeys
record actions performed by several parties.
A user can send messages to a service offered
by a service provider and a service provider
can send messages to a user currently using
the service. It is common practice that arte-
facts of these actions are recorded in the ser-
vice provider’s event logs, particularly the
order of actions. However, knowledge about
which party has triggered which action is
commonly ignored while collecting such logs.

In this paper, we approximate multi-party
event logs L by pre-defining a party func-
tion I mapping actions a in event log L to
a party in P = {C,U}, where C denotes the
service provider and U the user. For simplicity, we assume that different service
provider parties are captured by the same party C.

We can now build a user journey game from a multi-party event log fol-
lowing [15] (see Fig. 1 for an overview). We then extend the obtained directly
follows graph to a k-sequence transition system Sk

L = 〈Γ,A,E, s0, T 〉 [25], which
considers states that record the last k actions happening in the traces of L
and stores them in a single state; e.g., the 2-action states of trace 〈a, b, c〉
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are {〈a〉, 〈a, b〉, 〈b, c〉}. This abstraction captures more information in the game,
improving the precision of the game and the alignment between game and log.

We insert an initial state s0 at the beginning of each trace τ ∈ L, and a
final state t ∈ T at the end of each trace τ ∈ L. Let H denote the set of states
corresponding to the k-sequence abstraction for all traces in L, then the states
are defined by Γ ⊆ {s0} ∪ T ∪ H. The transition relation E is constructed over
adjacent actions in all traces τ ∈ L. An edge (si, ai+1, si+1) is in E if there is a
trace τ ∈ L where the last action in state si is followed by the last action ai+1 in
si+1. A transition with action ai+1 in Sk

L, means that the corresponding action
has also been performed in τ .

The constructed transition system Sk
L is transformed into a user journey

game by computing the weights on the transitions (see Sect. 2), and applying
function I to compute the set Ac = {a | I(a) = C} of actions controlled by the
service provider and the set Au = {a | I(a) = U} of actions controlled by the
user. The user journey game is used to compute its decision boundary (Sect. 3).
States behind the decision boundary are merged into successful and unsuccessful
states (Fig. 1c). The result is a strongly reduced game preserving all information
on the decision structure.

5 Evaluation on BPIC’17

The BPI Challenge 2017 (BPIC’17) [18] provides an event log recording actions
in loan applications from a Dutch financial institute. Since this event log has
records of interactions between users and a service provider, including calls, it
is a suitable event log for user journey analysis. However, we needed to make
assumptions to complete the missing information for our scenario, e.g., which
journeys are successful or unsuccessful and infer the party function I with knowl-
edge about which actions are triggered by which party.

The event log contains activities from the following groups: Application (A),
Offer (O) and Workflow (W) [26]. Recorded journeys in the log can end with
three different states: (1) an offer is accepted, (2) the application is declined, or
(3) the application is cancelled. We define a party function I, based on domain
knowledge and official information given in the BPIC’17 forum.1 We assume that
only users can cancel, submit or complete an application, and that users decide
whether calls take place. We further assume that accepted offers are successful
journeys, cancellations are unsuccessful journeys: both parties would prefer a
different outcome since the user spent time in the service and the bank invested
resources, and declined applications are neither successful nor unsuccessful jour-
neys: users followed the whole process without achieving their goal (the bank has
to decline certain offers to protect the users, e.g., from unsustainable debt). We
exclude declined application journeys from the analysis, given their ambiguity.

BPIC’17 is known to include a substantial change in the service provider’s
process, called a concept drift [27], in July 2016. To investigate how this change
impacts the user journey game, we split the log at this month and investigate

1 https://www.win.tue.nl/promforum/categories/-bpi-challenge-2017.

https://www.win.tue.nl/promforum/categories/-bpi-challenge-2017
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both parts separately. The first part contains traces until 30.06.2016, while the
second part contains traces after 01.08.2016.

5.1 User Journey Game Generation

We now report on the generation of the user journey game for the BPIC’17 event
log, with focus on the preprocessing of the data. The full implementation is given
in the accompanying artefact.2 We pre-processed BPIC’17 by discretising the call
durations according to their length, tagging different offers inside one trace, and
ignoring incomplete journeys. This was necessary since records of call durations
vary between seconds to hours and several call interactions in one journey consist
of repeated adjacent occurrences of events associated to one call. To discretise the
duration, we first aggregate repeated and adjacent calls. After the aggregation,
we consider calls with duration under 10 min as “short”; between 10 min and 4 h
as “long”; and above 4 h as “super long”. Single calls with a speaking time below
60 s are omitted in the aggregation. Records of multiple offers can be present in
the same journey. One of these offers can be accepted while the remaining are
cancelled. To simplify journeys, every event associated to an offer or cancellation
is ignored after one of the offers is accepted. Offers are automatically cancelled
if there is no response after 20 days. We differentiate between actively cancelled
offers and cancellations due to time-out, and ignore incomplete journeys and
journeys with declined applications.

We further simplify the event log by removing events that do not influence
the journey; e.g., W Call after offers is always followed by A Complete, therefore
one of them can be removed systematically. We removed outliers and only kept
journeys whose variance is present in the corresponding log more than once.
Journeys resulting in a cancellation are considered unsuccessful, thus Sneg is
attached to them; Spos is attached to the successful ones. After preprocessing,
we generated the user journey game, following the method of Sect. 4. We first
generated the transition system S3

L, with sequence history 3. The party func-
tion I and weight w transformed S3

L into a user journey game.

5.2 Simulation

Fig. 3. Simulations under different
strategies.

Stochastic simulations can help a service
provider to evaluate strategies, to guide their
users along their services, before implement-
ing them. We evaluated different strategies
on the user journey game for BPIC’17 until
July, using Uppaal Stratego to learn and
compare the outcomes. In the experiments
reported in this section, we consider three
strategies. In the strategy max, the service

2 https://github.com/smartjourneymining/bpi games/releases/tag/EdbA22.

https://github.com/smartjourneymining/bpi_games/releases/tag/EdbA22
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provider can guide the user through the service by maximizing the final gas,
while in the strategy step the service provider is minimising the expected num-
ber of steps. We also consider a strategy with the combination of both, both.
Furthermore, we treat the user as controllable to allow a comparative analysis
between the strategies, so that all the strategies reach a positive final state.

Fig. 4. Decision boundaries (Blue) for both
BPIC’17 Event Logs. (Color figure online)

The simulations in Fig. 3 show
the developments of the gas value
under different strategies. The sim-
ulations reveal that users have to
endure a dip in their gas at the
beginning of their journey to reach
the positive final state. From the
customer’s perspective, it is not
optimal to have negative expe-
riences (negative gas) to com-
plete the service successfully. The
strategy max achieves the highest
amount of gas, 33% above step,
but it also causes the largest mini-
mum, 50% more than step, within
the dip. The strategy step reduces
the number of taken steps by 30%,
and improves the gas minimum by
33%, but it also reduces the final
gas by 25%. The combined strategy
both maximizes the final gas while
minimising the expected number
of steps, and yields a comparable
high maximum as max, while reduc-
ing the number of steps by 22%
and holding steps’s improved min-
imum.

5.3 Decision Boundary

An exhaustive search over all
states revealed the decision bound-
aries for both BPIC’17 event
logs, using the algorithm in Algo-
rithm 1. Figure 4a shows the deci-
sion boundary for the first part, i.e.
until July, and Fig. 4b for the sec-
ond part. The states positive and negative incorporate all states with a certain
outcome. Blue states mark the decision boundary. Time-out cancellation edges
are violet, edges with a positive weight are green and edges with a negative
weight are red.
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We first report on the outcomes of the analysis for the first event log and then
for the second one. Our analysis revealed the existence of few paths to successful
final states, and that several journeys time-out very far into the application
process.

Analysing the decision boundary reveals that most states are negatively
biased and have a direct connection to negative. With uncontrollable user actions,
the service provider has no means to guide the user to a successful outcome,
except for a small positive cluster around positive. Most positive states require
long journeys. A detailed analysis reveals that four out of five states in the deci-
sion boundary are related to calls. The action “W Call incomplete files” leads to
the decision boundary from two states and “O Sent (online only)” (only sending
the offer online) from two other states.

The figure reveals many time-out cancellations from various states during
the journey, even for paths that are very far into the application process. Such
cancellations are unsatisfactory for both the service provider and user, since both
parties invested time and resources into the journey and preferred a different
outcome. The service provider can draw two action recommendations: reaching
the positive outcome should be simplified, thus the decision boundary could be
extended, and well-progressed journeys should be increasingly prevented from
time-outs, thus reducing the number of time-outs of progressed journeys.

Figure 4b shows the process model for the later data set. The figure shows
that the process model changed significantly after the concept drift in Juli 2016.
The new decision boundary inherits all states except one and contains one new
state. The positioning of the new boundary has improved. The decision bound-
ary improved in two parts: it reaches further into the negative part of the game
and increased in size. While the previous decision boundary contained only five
states, the updated decision boundary contains seven states. The updated deci-
sion boundary includes four out of five states of the previous decision boundary
and the fifth state lies now before the decision boundary. Additionally, it con-
tains three new states: one was previously in the positive cluster, one was prior
to the decision boundary and one new state.

Besides the total number of nodes also the reachability of the decision bound-
ary improved. The number of nodes reaching the decision boundary increased
by 1

3 . The amount of timeouts within advanced journeys is reduced. Customers
that continue far into the journey are more prone to finish successfully or to can-
cel by themselves. The average number of actions from start to time-out reduced
from 5.4375 to 5, thus the user journey improved generally.

The service provider can now start to investigate the actions related to states
in the decision boundary.

6 Conclusion

This paper proposes a novel view on user journey event logs by introducing multi-
party event logs that differentiate between the actors of actions leading to events.
To promote a user-centric view, the service provider is modelled as controllable
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and the user as uncontrollable. Based on such a multi-party event log, we show
how to use user journey games to model the interaction between user and service
provider, and use model checking to find strategies with guaranteed outcomes.

We introduce an analysis to identify decision boundaries; these constitute a
crucial part of a game at which the outcome of the user journey is determined.
Decision boundaries are useful since strategies that guarantee a positive out-
come for all paths are unlikely in complex user journeys. The decision boundary
additionally serves to reduce the size of the game. This enables us to apply the
user journey game approach to the BPIC’17 dataset, which is a real-life event
log of a complex user journey that can be transformed to a multi-party event
log. The decision boundary gives clear insights into determining factors for the
BPIC’17 user journey before and after a concept drift. Our analysis reveals the
changes done in the workflow and demonstrates the support and applicability for
further analysis through our method, assuming a transformation of the BPIC’17
event log into a multi-party event log, and assuming that users actually have an
influence on their journey through their active decisions.

User journey games and decision boundary analysis open many interesting
directions for future work. We plan to combine user journey games with well-
established process mining tools to discover process models for behaviour leading
to determining states. Furthermore, we would like to automate recommendations
for improvement, based on the decision boundary. While the decision boundary
is helpful for analysing the interaction between a user and service providers, the
analysis is still hand-made. We also plan to generalise the approach to cyclic
models to make it agnostic to the current unrolling bound n in each cycle. Fur-
thermore, we would like to investigate probabilistic games to capture ambiguities
within user actions. Finally, we would like to implement a multi-party event log
in cooperation with companies to study real interactions between user and ser-
vice provider.
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