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A B S T R A C T

We propose a novel stochastic time series model able to explain the stylized features of daily irradiation level
data in 5 cities in Germany. The model is suitable for applications to risk management of photovoltaic power
production in renewable energy markets. The suggested dynamics is a low-order autoregressive time series
with seasonal level given by an atmospheric clear-sky model. Moreover, we detect a skewness property in
the residuals which we explain by a winter–summer regime switch. The stochastic variance is modeled by
a seasonally varying GARCH-dynamics. The winter and summer standardized residuals are proposed to be a
Gaussian mixture model to capture the bimodal distributions. We estimate the model on the observed data, and
perform a validation study. An application to energy markets studying the production at risk for a PV-producer
is presented.
1. Introduction

The rapid growth of solar energy production from photovoltaic
technology brings new types of risk to the energy market. With sig-
nificant volumes of electricity coming from solar power many energy
systems are now exposed to the stochastic changes in irradiation levels
primarily driven by fluctuating cloud cover. The situation is similar
with other renewable energy sources most importantly power pro-
duction from wind. Stochastic factors such as irradiation levels and
wind speeds are intermittent, hard to predict and highly variable,
and they bring weather related risk to the forefront of financial risk
management in many energy markets. New financial instruments have
been introduced to allow market participants to manage the related
risks more efficiently. The growing share of renewables in the energy
mix has also changed the way markets operate. The intraday market
is much more active today with participants trading very short term
contracts, for delivery within the hour, in order to manage sudden large
changes in the volumes produced from renewable sources.

There is an emerging academic literature devoted to the chal-
lenges brought about by the increased dependency on renewable en-
ergy sources. Of particular interest for risk management purposes are
time series models that are able to accurately represent the underlying
processes as well as being useful for calculating prices and risks. The
literature on solar energy modeling from this perspective is still rather
scarce. Two recent studies that model solar energy production directly
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1 https://atmosphere.copernicus.eu/data.

using data on production volumes from transmission system opera-
tor (TSO) areas in Germany are (Benth and Ibrahim, 2017; Lingohr
and Müller, 2019). Aggregated production for large areas have very
different dynamics compared to single locations. Production at single
locations or smaller areas are however of critical interest in many
applications. In addition, production data is only available for large
areas. In order to assess the time series dynamics of solar energy pro-
duction at specific coordinates a different approach is needed. A way
forward is to instead model the irradiation level at a given coordinate
directly and map it to energy output using a production function.
This approach is also advocated by many market professionals, see
e.g. De Jong (2020), and it is the one we pursue. Data on various
measures of solar irradiation is available for arbitrary coordinates from
several different data providers. We use data from CAMS (Copernicus
Atmosphere Monitoring Service) which is based on satellite imagery
and can be downloaded for any coordinate included in the spatial
coverage of the service.1 Europe is e.g. fully covered and we choose
to work with data for locations in Germany. Production functions
for power production using different photovoltaic technologies have
been extensively studied in the associated engineering literature, see
e.g. Huld et al. (2011) and Kaldellis et al. (2014).

The main contribution of this paper is a stochastic time series model
for solar irradiation. Having a stochastic, and dynamically consistent,
time series model is paramount for many applications and we therefore
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focus our attention on developing such a model. The model we propose
is demonstrated to capture the most salient features of the time series
dynamics of solar irradiation. Among these features are seasonal and
auto-regressive effects in both the level and variance of irradiation.
There are also seasonal dependencies in the distributional properties
of data. Residuals are shown to follow distinctly different bimodal
distributions in summer and winter. These distributions are fitted very
closely by bimodal Gaussian mixture distributions. Our model is consis-
tent with all these characteristics using only standard time series tools.
The simplicity of the model makes it easy to estimate and evaluate
which is appealing in both academic and applied work.

The paper (Casula et al., 2020) is similar to ours in some respects.
The authors propose a stochastic time series model for solar irradia-
tion and also considers financial applications. However, their model
does not acknowledge the very strong seasonality in the conditional
volatility and disregards the bimodality and seasonal dependency of
the distribution for the residuals. We find that these features constitute
important aspects of irradiation data. Accurate description of volatility
and distributional properties are particularly important for applications
in finance and should not be ignored.

We end the paper with an example application to the management
of volume risk for a solar energy producer. There are many other
applications that could be addressed with our model. In Cuppari et al.
(2021) the authors bring attention to the prospect for landowners to
reduce financial risk by co-locating agriculture and solar power pro-
duction technology. Their analysis is built on an interesting application
of diversification and takes a stochastic irradiation level as one model
input. The articles (Benth and Ibrahim, 2017; Casula et al., 2020)
both employ their models to the valuation of different types of options
on the revenue stream of a solar park. The authors in Lingohr and
Müller (2019) use their model to analyze a futures contract written on
solar energy production. They envision a contract similar in spirit to
the wind power production futures contracts traded on the European
Energy Exchange (EEX). Another important application is investment
decisions for the construction, and location, of new solar parks. Our
model is perfectly suited for all these applications. It would also be
of interest to develop multivariate time series models e.g. for wind
speed, temperature, solar irradiation and electricity prices considered
jointly. Such models should ideally build on, and be consistent with,
the univariate time series dynamics of each component. Our model
provides a natural benchmark for the irradiation part of such models.
Detailed investigations of these interesting topics are left for future
research.

2. The stochastic model and irradiation data

2.1. Description of data

We use data obtained from CAMS (Copernicus Atmosphere Moni-
toring Service) which is a part of the European Union’s Earth obser-
vation programme and implemented by ECMWF (European Centre for
Medium-Range Forecasts).2 The data from CAMS is based on satellite
magery and model input to account for the impact of clouds and other
tmospheric conditions. We refer to the CAMS user guide (CAMS, 2019;
schwind et al., 2019; Lefevre et al., 2017; Qu et al., 2017) for detailed
ccounts of the methods used. The data is free of charge and can be
ownloaded for arbitrary coordinates given the spatial coverage of the
ervice. One of the stated goals of the service is to provide radiation
ata accurate enough for scientific and commercial use in applications
o solar energy production. The data is quality controlled and validated
n a quarterly basis, see CAMS (2019). Data from CAMS has also been
valuated in several academic studies and fares well in comparison

2 Data from the CAMS service is provided by their CAMS data store found
t https://atmosphere.copernicus.eu/data.
2

a

Table 1
Latitude and longitude for the locations.

Location Latitude Longitude

Hamburg 53.4361 9.6311
Berlin 52.6306 13.6263
Nürnberg 49.4073 10.9265
Stuttgart 48.9296 9.2896
München 48.4437 11.3660

to other data sources, see e.g. Marchand et al. (2020) and Yang and
Bright (2020). In Marchand et al. (2020) CAMS data is compared to
the HelioClim-3 database, which is also based on satellite imagery, for a
number of locations in Germany. Both data sources are found to be able
to accurately represent the temporal and spatial variation in irradiation
data. The authors point out that satellite based irradiation data has been
shown to have a higher accuracy compared to data based on reanalysis
(as e.g. the ERA5 and MERRA-2 databases) and that CAMS is a widely
used and reliable data source.3

While Germany has many weather stations that measure solar ir-
radiation, only a few of them can provide high quality data, see
e.g. Marchand et al. (2020) for a discussion of this point. In most
practical cases for energy production the irradiation must be evaluated
at coordinates without available high quality measurements. Hence we
prefer to model satellite based data directly since it will be the most
relevant data scenario for applications envisioned for our model. Our
view is that working with this data provides the most information for
potential users.

In this study we choose to model global horizontal irradiance (GHI)
which is the radiation received on a horizontal plane from all direc-
tions. It is the most relevant measure for photovoltaic energy produc-
tion and it is measured in Wh/m2. We use data on GHI collected at
11:00 (UCT), around the peak time for solar intensity, for different
coordinates in Germany. The locations of our selected coordinates are
situated near Hamburg, Berlin, Stuttgart, Nürnberg and München. Our
choice of coordinates gives a reasonable coverage of different parts of
Germany and makes it possible to address differences between locations
that are both close and far apart.

Our final dataset consists of 11 years of daily observations sampled
at 11:00 pm (UCT) for each location during the period 2010-01-01 to
2020-12-31. Data from the 10 year period 2010-01-01 to 2019-12-31 is
used as in-sample for estimation and analysis, and the last year (2020-
01-01 to 2020-12-31) is used in an out-of-sample model prediction
exercise as part of the model validation. Leap year days in 2012, 2016
and 2020 were removed. There are very few missing data points with
a maximum of 13 out of 4015 observations for Hamburg and Stuttgart.
For the out-of-sample period there are no missing observations. We
replace missing values using linear interpolation between the nearest
observed hours.

The coordinates for the selected locations are given in Table 1
and descriptive statistics are given in Table 2. The mean radiation
increases with decreasing latitude which not unexpectedly tells that
the more southern locations display higher average radiation levels.
We also observe that the standard deviation is higher for the southern-
most locations. Additionally, we notice that the locations situated more
to the west has a slightly lower standard deviation than the eastern
locations. The maximum and minimum values for the irradiation data
are confirming higher irradiation for lower latitude. The skewness is
positive for all locations but with the southern locations displaying
lower values.

3 The ERA5 and MERRA-2 databases are operated by ECMWF and NASA
espectively and are both based on reanalysis. We refer to their respective web-
ites at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
nd https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ for more information.

https://atmosphere.copernicus.eu/data
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
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Fig. 1. Time series of irradiation 𝐺(𝑡).
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Table 2
Descriptive statistics for the locations.

Location Mean Std.dev. Max Min Skewness

Hamburg 382.3726 244.3257 897.8311 36.8759 0.3111
Berlin 393.1779 247.1781 896.1819 38.8503 0.2673
Nürnberg 450.5042 262.8204 951.5443 47.8573 0.1819
Stuttgart 434.7473 257.1569 940.1480 51.1439 0.2072
München 456.2307 264.8277 956.9816 63.8053 0.1753

Solar irradiation is influenced by astronomical and atmospherical
onditions. Extraterrestrial radiation is the amount of irradiation before
t reaches the atmosphere. It can be regarded as a deterministic function
nd is determined from the relative positions of the earth and the sun.
or all our locations the extraterrestrial radiation peaks on June 20 and
akes its lowest value on December 20. Extraterrestrial radiation is re-
uced through absorption and scattering by particles in the atmosphere.
he irradiation levels reaching the ground is therefore substantially

ower even under clear sky conditions. Due to random interference of
louds and particles irradiation levels at the ground are also stochastic.
he cloud cover is a very important stochastic component of irradiation
ata and it may change drastically even over short periods of time. Such
apid changes in the cloud cover occur more frequently in the summer
ausing highly variable irradiation levels. The variations in summer are
mplified by the seasonally higher levels; the appearance of sudden
louds may cause the irradiation to drop sharply from a very high level
hus creating large swings. During the winter on the other hand, the
ariation is smaller due to periods of more persistent overcast skies and
ower overall irradiation levels.

Fig. 1 plots the time series of irradiation values for our 10 year
n-sample period and for all locations. The graphs show the strong sea-
onal pattern present in solar irradiation data. Much of the seasonality
s determined from the deterministic extraterrestrial radiation but may
lso be influenced by seasonal factors in the atmosphere. It can also
e noted from Fig. 1 that the summer periods display larger variations
ompared to the winter periods.

.2. Time series dynamics

In a given location, let 𝐺(𝑡) be the GHI at times 𝑡 = 0, 1,…. We
3

model 𝐺(𝑡) as the sum of a deterministic seasonal component 𝑆(𝑡) and s
a stochastic process 𝑍(𝑡) as

𝐺(𝑡) = 𝑆(𝑡) +𝑍(𝑡). (1)

t is natural to base the seasonal component 𝑆(𝑡) on the extraterrestrial
adiation which is the amount of radiation reaching the outer boundary
f the earth’s atmosphere. The extraterrestrial radiation is determined
y the earth’s movement around the sun and can for all practical
urposes be regarded as a deterministic function of time. At a given
oordinate and time 𝑡 the extraterrestrial radiation is given by

(𝑡) = 𝐾
(

1 + 0.033 cos
( 360𝑡
365

))

cos(𝜃(𝑡)) (2)

In Eq. (2), 𝐾 is the solar constant which we set to 𝐾 = 1367 (W/m2)
and cos(𝜃(𝑡)) is the zenith angle at the selected coordinate at time 𝑡.4
The function 𝜃(𝑡) is implicitly determined from the solar zenith angle
iven by

cos(𝜃(𝑡)) = cos(𝑙𝑎𝑡) cos(𝑤(𝑡)) cos(𝛿(𝑡)) + sin(𝑙𝑎𝑡) sin(𝛿(𝑡)) (3)

here 𝑤(𝑡) and 𝛿(𝑡) are the solar hour angle and declination, resp.,
nd 𝑙𝑎𝑡 denotes the latitude of the selected coordinate. We refer to
ppendix A on how to determine the solar hour angle and declination.

The seasonality in GHI is closely linked to that of the extraterrestrial
adiation. Actual GHI may also be affected by seasonal components in
he atmosphere and most importantly in the cloud cover. Since the ex-
raterrestrial radiation is not affected by clouds and other atmospheric
onditions it attains much larger values than actual GHI received at
he ground level. This means that extraterrestrial radiation must be
alibrated to GHI data 𝐺(𝑡) in order to achieve a proper seasonal
djustment. We propose to use the following seasonality function based
n 𝛬(𝑡),

(𝑡) = 𝛬(𝑡)
(

𝑎0 + 𝑎1𝑒
−𝑎2∕ cos(𝜃(𝑡))

)

(4)

here 𝑎𝑖, 𝑖 = 0, 1, 2 are constants and cos (𝜃(𝑡)) is given in (3). The
unction (4) can be motivated e.g. by the simple parametric clear sky

4 The solar constant actually varies to some degree, e.g. due to variations
n the earth–sun distance, sun spot activity, etc. Different proposed values of
he solar constant can be found in the literature. The differences are small and
he specific value does not matter for our purposes since we will calibrate the
easonality function to data.
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model presented in Hottel (1976). A parametric clear sky model is
a deterministic model for radiation under the assumption of cloud
free conditions but taking other atmospheric conditions into account,
and should give an upper bound for the actual GHI. The clear sky
model in Hottel (1976) has additional equations for determining the
parameters 𝑎0, 𝑎1, 𝑎2 but can be written on the simplified form (4).

clear sky model is calibrated to radiation data under clear sky
onditions. However, our aim is not to recreate a clear sky model, we
re instead using the functional form for 𝑆(𝑡) in order to achieve a

viable seasonal adjustment of 𝐺(𝑡). This means that we can settle for
the simpler specification in (4).

We model the seasonally adjusted series 𝑍(𝑡) = 𝐺(𝑡) − 𝑆(𝑡) as an
AR(p) process according to

𝑍(𝑡) =
𝑝
∑

𝑖=1
𝛽𝑖𝑍(𝑡 − 𝑖) + 𝑢(𝑡) (5)

ith constant coefficients 𝛽𝑖, 𝑖 = 1,… , 𝑝. The modeling approach in
qs. (1) and (5) is strongly supported by the theoretical and empirical
nalysis in Benth and Šaltytė Benth (2012). With this specification 𝑆(𝑡)
ecomes the seasonal mean function that the irradiation level 𝐺(𝑡) mean
everts to which is an appealing property. The residual process 𝑢(𝑡) in
5) is specified as

(𝑡) = 𝜎(𝑡)𝑒(𝑡) (6)

here 𝜎(𝑡) is a time varying conditional volatility. We find that the
onditional variance of 𝑢(𝑡) is heteroscedastic, containing both seasonal
nd ARCH effects. There are physical reasons for expecting volatility
lustering in irradiation data. Scattered and rapidly moving clouds
ill cause more variation in solar irradiation and can persist for some
ays. A thick cloud cover on the other hand will lead to less variation
hat can persist for a few days. These effects could be sources of
olatility clustering. We account for seasonality and volatility clustering
y specifying the conditional variance as
2(𝑡) = 𝜎2𝑆 (𝑡)𝜎

2
𝐺(𝑡) (7)

ith a deterministic seasonal component 𝜎2𝑆 (𝑡) multiplied by a GARCH-
ype component 𝜎2𝐺(𝑡). We are using a multiplicative structure similar
o Benth and Šaltytė Benth (2012). The seasonal component 𝜎2𝑆 (𝑡) is
iven by a truncated Fourier series containing three terms,

2
𝑆 (𝑡) = 𝑐0 + 𝑐1 cos

( 2𝜋𝑡
365

)

+ 𝑐2 sin
( 2𝜋𝑡
365

)

(8)

This formulation is widely used for seasonal volatility modeling, see
e.g. Campbell and Diebold (2005), Härdle and Lopez Cabrera (2012)
and Benth and Šaltytė Benth (2012, 2013) for applications to tempera-
ure and wind speed modeling, and Benth et al. (2008) for applications
o energy prices. The parameter restriction 𝑐0 >

√

𝑐21 + 𝑐22 ensures that
he seasonal variance 𝜎2𝑆 (𝑡) is positive. See Appendix B for details. It is
ossible, and straightforward, to include more trigonometric terms in
8) but we find that three terms are sufficient. Extending the Fourier
eries beyond three terms did not result in a substantially different
easonality curve for the variance. In order to keep the number of
arameters low we settled for the three term model presented here. The
uto-regressive GARCH component 𝜎2𝐺(𝑡) is assumed to take the form

of a standard GARCH(1,1)-process based on the residual series 𝑣(𝑡) =
(𝑡)∕𝜎𝑆 (𝑡) standardized by the seasonal component. The specification
ecomes
2
𝐺(𝑡) = 𝜔0 + 𝜔1𝜎

2
𝐺(𝑡 − 1) + 𝜔2𝑣

2(𝑡 − 1) (9)
= 1 − 𝜔1 − 𝜔2 + 𝜔1𝜎

2
𝐺(𝑡 − 1) + 𝜔2𝑣

2(𝑡 − 1)

The unconditional variance of the GARCH part is given by 𝜔0(1 −
𝜔1 − 𝜔2)−1 and should be equal to one since it operates on the partly
standardized residuals 𝑣(𝑡). We therefore employ the parametrization
𝜔0 = 1−𝜔−𝜔2 which ensures this property and in addition avoids the

2 2
4

issue of identifying two separate intercepts in 𝜎𝑆 (𝑡) and 𝜎𝐺(𝑡). s
The final model component left to specify is the driving noise
process 𝑒(𝑡). We find that the irradiation time series display seasonal
behavior also in the third moment. The skewness of irradiation data
has a clear seasonal pattern turning negative during the summer period
from being positive in winter. Our empirical results show that this
effect is important for both the understanding of irradiation data and
for model fit. The actual definitions of the summer and winter spans
are determined from empirical considerations. All our locations display
similar patterns and it is a feature that we have not seen documented
in other studies. It is common to find bimodality in the distribution
of high frequency radiation data. The bimodal property is commonly
explained as representing states of either cloudy or clear sky conditions.
To account for both the effects of seasonal skewness and bimodality we
model the process 𝑒(𝑡) as

𝑒(𝑡) = 𝑑(𝑡)𝜖𝑆 (𝑡) + (1 − 𝑑(𝑡))𝜖𝑊 (𝑡) (10)

here 𝑑(𝑡) is a simple dummy-process that takes the value 1 in summer,
nd the value 0 in winter, and the processes 𝜖𝑘, 𝑘 ∈ {𝑆,𝑊 }, are as-
umed to be independent iid sequences of Gaussian mixture distributed
andom variables. The probability densities for 𝜖𝑘, 𝑘 ∈ {𝑆,𝑊 } are given
y,

𝑘(𝑥) = 𝑞𝑘𝑓1,𝑘(𝑥) + (1 − 𝑞𝑘)𝑓2,𝑘(𝑥), 𝑥 ∈ R, 𝑘 ∈ {𝑆,𝑊 } (11)

here 𝑓𝑚,𝑘(𝑥) are the densities of Gaussian random variables with
eans 𝜇𝑚,𝑘 and variances 𝜈2𝑚,𝑘 for 𝑚 = 1, 2 and 𝑘 ∈ {𝑆,𝑊 }. We use the
otation GM(𝜇1, 𝜇2, 𝜈21 , 𝜈

2
2 , 𝑞) for such a Gaussian mixture distributions

ith two components. The parameter 𝑞 is the prior probability of being
n the first state 𝑚 = 1. With this notation we thus have

𝑘(𝑡) ∼ GM(𝜇1,𝑘, 𝜇2,𝑘, 𝜈21,𝑘, 𝜈
2
2,𝑘, 𝑞𝑘), 𝑘 ∈ {𝑆,𝑊 } (12)

The moments of Gaussian mixture distributions for 𝜖𝑆 (𝑡) and 𝜖𝑊 (𝑡)
re easily calculated given the probability densities (11). We intro-
uce the following notation for the expected value, variance and the
entralized third moment of 𝜖𝑘(𝑡), 𝑘 ∈ {𝑆,𝑊 },

𝜇𝑘 = E
[

𝜖𝑘(𝑡)
]

𝛴2
𝑘 = Var

(

𝜖𝑘(𝑡)
)

𝑘 = E
[

(

𝜖𝑘(𝑡) − E
[

𝜖𝑘(𝑡)
])3

]

nd state, without proof, the following explicit expressions,

𝜇𝑘 = 𝑞𝑘𝜇1,𝑘 + (1 − 𝑞𝑘)𝜇2,𝑘

𝛴2
𝑘 = 𝑞𝑘

(

𝜈21,𝑘 + 𝜆21,𝑘
)

+ (1 − 𝑞𝑘)
(

𝜈22,𝑘 + 𝜆22,𝑘
)

𝛺𝑘 = 𝑞𝑘
(

3𝜆1,𝑘𝜈21,𝑘 + 𝜆31,𝑘
)

+ (1 − 𝑞𝑘)
(

3𝜆2,𝑘𝜈22,𝑘 + 𝜆32,𝑘
)

where 𝜆𝑚,𝑘 = 𝜇𝑚,𝑘 − 𝜇𝑘, for 𝑚 = 1, 2. The skewness of 𝜖𝑘(𝑡) is given by
𝛺𝑘∕𝛴3

𝑘 .
Given the independence between 𝜖𝑆 (𝑡) and 𝜖𝑊 (𝑡) it follows that the

corresponding moments of 𝑒(𝑡) are given by

E [𝑒(𝑡)] = 𝑑(𝑡)𝜇𝑆 + (1 − 𝑑(𝑡))𝜇𝑊
Var (𝑒(𝑡)) = 𝑑(𝑡)𝛴2

𝑆 + (1 − 𝑑(𝑡))𝛴2
𝑊

E
[

(𝑒(𝑡) − E [𝑒(𝑡)])3
]

= 𝑑(𝑡)𝛺𝑆 + (1 − 𝑑(𝑡))𝛺𝑊

ote that with 𝜇𝑆 = 𝜇𝑊 = 0 and 𝛴2
𝑆 = 𝛴2

𝑊 = 1 we also have E [𝑒(𝑡)] = 0
nd Var (𝑒(𝑡)) = 1 for all 𝑡. With Var (𝑒(𝑡)) = 1 the skewness of 𝑒(𝑡) is

kew (𝑒(𝑡)) = 𝑑(𝑡)𝛺𝑆 + (1 − 𝑑(𝑡))𝛺𝑊 (13)

hich is time-varying and provides a natural channel for explaining
he skewness patterns observed over the year. This completes our
escription of the model. In the next section we demonstrate the models
bility to account for the many particular features of irradiation time

eries data.
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Fig. 2. Irradiation 𝐺(𝑡) (blue) and fitted seasonal function 𝑆(𝑡) (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
Fig. 3. Autocorrelation function (ACF) (left panel) and partial autocorrelation function (PACF) (right panel), for the seasonal adjusted series 𝑍(𝑡) = 𝐺(𝑡) − 𝑆(𝑡).
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. Estimation and validation

.1. Estimation

We propose a stepwise estimation strategy that allows for verifi-
ation of crucial model properties at each stage. Stepwise estimation
trategies have been used by many other authors in similar models,
ee e.g. Alaton et al. (2002), Härdle and Lopez Cabrera (2012), Camp-
ell and Diebold (2005) and Benth and Šaltytė Benth (2012, 2013).
sing stepwise estimation has many advantages, being fast and easy

o perform. Since standard errors are not obtained from a single objec-
ive function confidence intervals must be treated with some caution.
5

owever, checking crucial model properties at each step shows that
he estimated model performs well in capturing stylized features of the
ata. For ease of exposition we illustrate the estimation using data only
or the Hamburg location. All parameter estimates for Hamburg are
resented in Table 3. The corresponding results for the other locations
re presented in Table 4 in Section 3.2. The features observed at the
amburg location are similar to the other locations.

The first step is to calibrate the seasonal function 𝑆(𝑡) given in (4)
o data 𝐺(𝑡). From (4) we have

𝑆(𝑡)
= 𝑎0 + 𝑎1 exp

(

−𝑎2∕ cos(𝜃(𝑡))
)

𝛬(𝑡)
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Table 3
Parameter estimates and standard errors for all model parameters for the Hamburg
location. The parameters 𝑐0, 𝑐1, 𝑐2, and their standard errors, have been divided by
00.
Parameter Estimate Std.Err. Parameter Estimate Std.Err.

𝑎0 0.2003 0.0374 𝜇1,𝑆 −1.0407 0.0350
𝑎1 0.5993 0.0172 𝜇2,𝑆 0.6688 0.0192
𝑎2 0.4270 0.0779 𝜈21,𝑆 0.3703 0.0279
𝛽1 0.2259 0.0143 𝜈22,𝑆 0.2606 0.0132
𝛽2 0.0605 0.0141 𝑞𝑆 0.3912 0.0149
𝑐0 191.0228 4.4450 𝜇1,𝑊 −0.7188 0.0115
𝑐1 −173.1130 4.6303 𝜇2,𝑊 0.9479 0.0370
𝑐2 36.5643 2.6998 𝜈21,𝑊 0.1341 0.0062
𝜔1 0.6165 0.1277 𝜈22,𝑊 0.5601 0.0376
𝜔2 0.0798 0.0164 𝑞𝑊 0.5687 0.0135

Table 4
Parameter estimates and standard errors for all locations except Hamburg. The
corresponding results for Hamburg are given in Table 3. In this table the parameters
𝑐0, 𝑐1 and 𝑐2 have been divided by 100.

Parameter Berlin Stuttgart Nürnberg Nürnberg

𝑎0 0.0927 −0.2316 −0.2878 0.0019
(0.0771) (0.4741) (0.4525) (0.2100)

𝑎1 0.6851 1.0084 1.0565 0.8149
(0.0492) (0.4383) (0.4195) (0.1678)

𝑎2 0.3168 0.1777 0.1725 0.2809
(0.0771) (0.1216) (0.1069) (0.1287)

𝛽1 0.2686 0.2467 0.3234 0.2728
(0.0140) (0.0143) (0.0143) (0.0140)

𝛽2 0.0532 0.0641 – –
(0.0139) (0.0144) – –

𝑐0 190.1884 261.4136 231.7968 273.2423
(4.8957) (6.3013) (5.9295) (7.3385)

𝑐1 −172.1055 −210.5509 −192.4294 −217.5883
(5.1640) (7.1180) (6.6297) (8.0930)

𝑐2 32.7133 37.2395 35.7742 50.6053
(2.9577) (4.6673) (4.2530) (5.2746)

𝜔1 0.6829 0.6103 0.5823 0.5103
(0.1188) (0.0838) (0.1522) (0.0697)

𝜔2 0.0794 0.0963 0.0921 0.1477
(0.0183) (0.0155) (0.0200) (0.0173)

𝜇1,𝑆 −0.9814 −1.1085 −1.0022 −1.0530
(0.0443) (0.0363) (0.0499) (0.0442)

𝜇2,𝑆 0.6785 0.6423 0.6576 0.6465
(0.0222) (0.0125) (0.0199) (0.0140)

𝜈21,𝑆 0.4399 0.4863 0.4980 0.5428
(0.0359) (0.0353) (0.0423) (0.0421)

𝜈22,𝑆 0.2603 0.1724 0.2372 0.1814
(0.0142) (0.0074) (0.0124) (0.0083)

𝑞𝑆 0.4087 0.3669 0.3962 0.3804
(0.0187) (0.0124) (0.0188) (0.0149)

𝜇1,𝑊 −0.6868 −0.6945 −0.6190 −0.7008
(0.0138) (0.0128) (0.0163) (0.0125)

𝜇2,𝑊 0.8987 1.0679 1.1079 1.0210
(0.0522) (0.0267) (0.0432) (0.0319)

𝜈21,𝑊 0.1549 0.1830 0.2242 0.1615
(0.0082) (0.0080) (0.0104) (0.0071)

𝜈22,𝑊 0.6790 0.3722 0.4731 0.4616
(0.0521) (0.0236) (0.0384) (0.0306)

𝑞𝑊 0.5668 0.6059 0.6416 0.5930
(0.0184) (0.0111) (0.0152) (0.0123)

where 𝛬(𝑡) is the extraterrestrial radiation in (2). We use this form and
calibrate the parameters 𝑎0, 𝑎1, 𝑎2 by minimizing the function

𝑄(𝑎0, 𝑎1, 𝑎2) =
𝑇
∑

𝑡=1

(

𝐺(𝑡)
𝛬(𝑡)

−
𝑆(𝑡)
𝛬(𝑡)

)2
.

with non-linear least squares. Fitting the parameters to 𝐺(𝑡)∕𝛬(𝑡) in-
tead of directly to 𝐺(𝑡) helps produce more precise estimates. The
uantity 𝐺(𝑡)∕𝛬(𝑡) is sometimes referred to as the clearness index and
n some studies it is used as the only seasonal adjustment which may
e sufficient for very short periods of time or when observations are
ggregated and studied on lower time frequencies. This approach is
6

not sufficient to remove the seasonality from our data which is on
a high frequency and not in aggregated form. The irradiation time
series 𝐺(𝑡) together with the fitted seasonal curve 𝑆(𝑡) are plotted in
ig. 2. The function 𝑆(𝑡) is capturing the seasonality in the level of
(𝑡) very well. Estimates of 𝑎0, 𝑎1, 𝑎2 are presented in Table 3. The
ean of the irradiation 𝐺(𝑡) is 382.37 and the mean of the calibrated

unction 𝑆(𝑡) is 382.44. Fig. 3 shows the autocorrelation function (ACF)
nd partial autocorrelation function (PACF) for the seasonally adjusted
eries 𝑍(𝑡) = 𝐺(𝑡) − 𝑆(𝑡). There are no signs of seasonal dependency in
he ACF for 𝑍(𝑡) showing that the seasonal level adjustment performs
ell.

The ACF for 𝑍(𝑡) suggests that a low order AR-structure is a suitable
odel structure. This is confirmed by the PACF which indicates that

n order of 𝑝 = 2 is sufficient to describe the autocorrelation structure.
efore estimating the AR-parameters in (5) we subtract the mean of
he seasonally adjusted series 𝑍(𝑡). Any remaining mean is very small
ut may vary between locations depending on the seasonal fit. With an
rder of 𝑝 = 2 for the zero mean AR-model for 𝑍(𝑡) we need to estimate
he parameters 𝛽1 and 𝛽2. This is done using a standard least squares
it. The estimates for these parameters can be found in Table 3 together
ith their estimated standard errors. The AR-parameters 𝛽1 and 𝛽2 are

ignificant and positive.
From the estimated AR-model part 𝑍(𝑡) we can now obtain observa-

ions of the process 𝑢(𝑡) from (5). The ACFs for 𝑢(𝑡) and 𝑢2(𝑡) are plotted
n Fig. 4. There are no seasonal and serial dependencies in the ACF
or 𝑢(𝑡). The residuals 𝑢(𝑡) also passes the Ljung–Box test with a 𝑝-value
f 0.4001. The ACF for 𝑢2(𝑡) on the other hand shows strong seasonal
ariation. There are also low order ARCH effects but these are hard to
lance from Fig. 4. Both these effects are accounted for by the volatility
tructure specified by the conditional variance in (7). We estimate the
arameters 𝑐𝑖, 𝑖 = 0, 1, 2 of the seasonal part 𝜎2𝑆 (𝑡), and the parameters
1 and 𝜔2 of the GARCH part 𝜎2𝐺(𝑡) jointly using quasi-maximum-

ikelihood based on a Gaussian underlying distribution for 𝑢(𝑡). Then
e fit the Gaussian mixture distributions to the fully standardized

esiduals 𝑒(𝑡) = 𝑢(𝑡)∕𝜎(𝑡). In a final step we re-estimate the variance
arameters from maximum likelihood based on the fitted Gaussian
ixture distributions as recommended e.g. by Engle and Gonzlaez-
ivera (1991). This step does not change the parameter estimates for

he dominating seasonal variance much and overall model performance
s unaffected. Before discussing the estimation of the distributional part
f the model in more detail we first examine the observed residuals 𝑒(𝑡)
nd the variance parameters.

From the estimated conditional volatility 𝜎(𝑡) we can now study the
bserved residual series 𝑒(𝑡). Fig. 4 shows the ACFs of 𝑒(𝑡) and 𝑒2(𝑡). As
an be seen, both the seasonality and ARCH-effects have been removed.
udging from these graphs our model adequately describes seasonal
nd auto-regressive components present both in the conditional mean
nd variance of radiation data. The estimates of 𝑐𝑖, 𝑖 = 0, 1, 2, are
resented in Table 3. The estimate of 𝑐0 corresponds well to the
mpirical standard deviation of 𝑍(𝑡);

√

𝑐0 is estimated equal to 138.21
which can be compared to a standard deviation of 138.9 for 𝑍(𝑡).
The estimates of 𝑐1 and 𝑐2 multiplying the trigonometric terms in (8)
are of different signs and magnitude producing a slight shift away
from a symmetric seasonal pattern for the year. The seasonal variance
attains its maximum in late June and its minimum in late December.
The parameters 𝜔1 and 𝜔2 are both significant and fulfill the standard
conditions for positivity and stationarity for a GARCH(1,1) process. We
remark that the impact of the GARCH-part is low compared to the
seasonal variance. As mentioned there are physical reasons to expect
clustered variance, and we do detect some large autocorrelations in
squared residuals and receive significant parameter estimates, which
motivates inclusion of the GARCH-part.

To motivate our model for 𝑒(𝑡) in (10) we have plotted the observed
residual series 𝑒(𝑡) in Fig. 5. The left panel shows the actual series for
𝑒(𝑡) and the right panel shows a simulated series from our estimated
model. The time series plot of 𝑒(𝑡) in the left panel indicate that there
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Fig. 4. Autocorrelation functions (ACF) for 𝑢(𝑡) (upper left), 𝑢2(𝑡) (upper right), 𝑒(𝑡) (lower left), and 𝑒2(𝑡) (lower right).
Fig. 5. Time series plots of observed 𝑒(𝑡) (left panel) and simulated 𝑒(𝑡) (right panel).
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are still seasonal effects left, despite having successfully adjusted for
seasonality both in the level and conditional variance of data. The right
panel, with simulated data, shows that our model is consistent with this
behavior.

In Fig. 6 we have plotted the ACF for 𝑒3(𝑡) for both the actual series
(left panel), and for simulated data from the estimated model (right
panel). The left panel indicates a weak but clear seasonal pattern in
the ACF over the year. Again, the right panel, based on simulated data,
demonstrates our models ability to capture also this feature.
7

f

The remaining seasonality in 𝑒(𝑡), demonstrated in Figs. 5 and
, is related to time variation in the skewness of irradiation data.
s explained below the seasonal variation in skewness is due to the

act that the distributions for the residuals are distinctly different in
he summer and winter periods. Fig. 7 plots the monthly empirical
stimates of the skewness for 𝐺(𝑡) and 𝑒(𝑡) (left panel) and the same
stimate for 𝑒(𝑡) together with the skewness function from the estimated
odel (right panel). The monthly skewness estimates are calculated
rom grouping data according to month for all observations during
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Fig. 6. Autocorrelation functions (ACF) for 𝑒3(𝑡) based on observed (left panel) and simulated (right panel) data.
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our 10 year sample. We included skewness estimated for both the
original radiation time series 𝐺(𝑡) and the residuals 𝑒(𝑡) in the left panel
to show that the time variation in skewness is not an artifact of the
model steps preceding the construction of 𝑒(𝑡). The small differences
in skewness estimates between 𝐺(𝑡) and 𝑒(𝑡) are due to the seasonal
adjustment function 𝑆(𝑡). The estimates based on 𝑒(𝑡) show that the
skewness changes in a periodical pattern over the year. It is positive
in the months November–February and turns negative in the months
March–October. This seasonal time variation in skewness is a distinct
feature of irradiation data. It is observed at all our locations and we
have not seen it documented in the related literature before. The reason
for these differences are likely to be related to different cloud conditions
during the year with more sustained periods of overcast skies in winter.
This explanation is very much in line with the results we find below
when we proceed to fit different Gaussian mixture distributions to the
summer and winter residuals.

Since the months with positive/negative skewness are the same
across locations we label them as summer (March-October) and winter
(November-February). The skewness estimates displayed in Fig. 7 show
that the shift from positive to negative, and back again, occur quite
rapidly during the spring and autumn seasons. In between the shifts
the skewness varies much less. This behavior motivates our simple
definition of the summer and winter without sacrificing any crucial
information. We have tested basing the summer definition instead on
the period where the extraterrestrial radiation exceeds its mean level.
Since extraterrestrial radiation is deterministic this gives the same
summer period for any year and does not depend on data. This led
to a summer definition that again is the same across locations (up to a
maximum difference of one day) and gave similar empirical results. We
prefer to use our empirically motivated definition since it is the same
for all locations, transparent, and yielding a slightly better model fit.

In the right panel of Fig. 7 we show the skewness function (13) im-
plied by our model compared to the skewness estimates from residual
data 𝑒(𝑡). Our model generates a skewness function that is constant in
the summer and winter periods, and explains rather well the overall
skewness pattern of the data. Comparing the model implied skewness
8

with the empirical estimates for the summer and winter periods we d
regard our simple skewness model to reach a satisfactory level of fit.
The empirical skewness for summer is −0.3946 and our model gives
a skewness of −0.3929. For the winter period the empirical estimate
is 0.6785 and the model gives 0.6704. Moreover, the comparisons
between the observed and simulated 𝑒(𝑡) in Figs. 5 and 6 show that
our simple model structure is in close alignment with data.

The time variation in skewness is explained by the fact that the
distributions for irradiation are very different in the winter and summer
periods. A typical feature of high frequency irradiation data is that
the distribution is bimodal. In Fig. 8 we plot the histogram of the
residual series 𝑒(𝑡) where we have superimposed a standard kernel den-
sity estimate using a Gaussian kernel with correspondingly optimized
bandwidth. The bimodal feature is clearly displayed. All our data series
show similar behavior. The shape of the histogram of 𝑒(𝑡) reveals an
important characteristics of the data and it is one we would like to be
able to recreate with our model. However, as observed in our previous
discussion the residual series 𝑒(𝑡) is not an iid sequence and hence
the histogram is not a valid representation of the actual distribution
of 𝑒(𝑡). Fitting a Gaussian mixture distribution directly to 𝑒(𝑡) would
provide an accurate recreation of the histogram, however, due to the
temporal dependence in the data series, it would not be consistent. By
instead separating 𝑒(𝑡) into summer and winter residuals our model can
accomplish this is in a fully consistent way.

We assume Gaussian mixture distributions with two components
for both the summer and winter residuals. The parameters of these
distributions are estimated using the EM-algorithm where the 𝑘-means
lgorithm is employed to initialize a grouping of data into the different
omponents. This is a standard method of estimating Gaussian mixture
istributions, see e.g. McLachlan and Peel (2000), and we have used the
atlab routine fitgmdist. The estimates are presented in Table 3. In our
odel setup we fit different Gaussian mixture distributions for the sum-
er and winter residuals. At the model level these distributions should
ave zero expected value and unit variance to avoid introducing a small
ime-variation in the mean and variance. In empirical studies there is
early always some mismatch between the empirical moments of a
esidual series and the corresponding moments implied by the fitted

istribution. Such deviations usually have no empirical consequences
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Fig. 7. Empirical skewness per month plotted against the day of year. Left panel plots skewness estimated for radiation data 𝐺(𝑡) (green) and for residuals 𝑒(𝑡) (blue). Right panel
show estimated skewness for 𝑒(𝑡) (blue) and the skewness function obtained from the estimated model (orange). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 8. Histogram (normalized) for residuals 𝑒(𝑡) and corresponding kernel density estimate (red curve).
since they typically are very small. We nevertheless employ a simple
practical procedure to ensure that the estimated distributions have
expected value of zero and unit variance. The EM-algorithm generates
parameter estimates that closely matches the first three moments of
the residuals. In order to cancel out any small deviations from zero
mean and unit variance in the data, we estimate the Gaussian mixtures
on residuals modified by an extra standardization using the empirical
mean and standard deviation. By virtue of the EM-algorithm this minor
adjustment gives us parameter estimates that imply theoretical zero
expected values and unit variances to very close approximation. This
9

procedure have negligible effects on data since the mean and variance
are already close to zero and one, and it does not affect the skewness.
We have compared estimation results obtained with and without this
extra standardization and the differences in parameter estimates are
very small and does not affect the distributional fit to any significant
degree. We still keep it since it gives consistency with regard to the
model and its components. The procedure ensures that the estimated
distributions for 𝜖𝑆 (𝑡) and 𝜖𝑊 (𝑡) have expected values of zero and
unit variances, and hence by implication that also E[𝑒(𝑡)] = 0 and
Var 𝑒(𝑡) = 1.
( )
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Fig. 9. Histogram (normalized) for winter (left panel) and summer (right panel) residuals 𝜖𝑊 (𝑡) and 𝜖𝑆 (𝑡) respectively.
The random variables 𝜖𝑆 (𝑡) and 𝜖𝑊 (𝑡) follow Gaussian mixture
distributions with two components and thus have the stochastic rep-
resentations,

𝜖𝑘 = 𝐵𝑘𝑌1,𝑘 + (1 − 𝐵𝑘)𝑌2,𝑘, 𝑘 ∈ {𝑆,𝑊 }

where 𝐵𝑘 is a Bernoulli random variable with parameter 𝑞𝑘 (i.e. P(𝐵𝑘 =
1) = 𝑞𝑘), and the components 𝑌1,𝑘 are Gaussian random variables. It
is natural to interpret the Gaussian components 𝑌1 and 𝑌2 as states
of either cloudy or clear sky conditions respectively. We consistently
estimate one Gaussian component with a negative mean and one with a
positive mean. The interpretation is that the component with negative
mean corresponds to the state of cloudy conditions and we refer this
state to component 1 in both summer and winter. Component 2 is then
representing the state for clear sky conditions and the parameter 𝑞𝑘 is
the a priori probability of being in the cloudy state.

Fig. 9 shows the normalized histograms of the summer and winter
residuals together with the Gaussian mixture densities implied by the
parameter estimates. The fit is excellent in both cases and the graphs
display interesting differences between the summer and winter periods.
Both densities are bimodal but with shoulder-like appearances having
one peak significantly higher than the other. For the winter period
the mixture distribution has a positive skewness and a significant left
peak indicating that the state of cloudy conditions is dominant and
carries more probability mass. The opposite situation is seen for the
summer period which has a negative skewness and a significant right
peak with the probability mass shifted towards the clear sky state. The
estimate of the a priori probability for the cloudy state is 𝑞𝑆 = 0.3912
for the summer, which corresponds to a 0.6088 probability for the clear
sky state. In the winter the probability for the cloudy state is higher
and estimated to 𝑞𝑊 = 0.5687. We note that the underlying Gaussian
distributions for the cloudy state has a higher variance in summer while
the opposite is true in the winter. This is also a natural result consistent
with irradiation levels being more dispersed and variable in cloudy
conditions during summer.

In Fig. 10 we show that our model is capable of reproducing the
histogram of the observed series 𝑒(𝑡). In Fig. 10 we have again plotted
the normalized histogram for 𝑒(𝑡) together with the kernel density
estimate, but also added the kernel density estimate obtained from a
10
simulated 10-year sample of 𝑒(𝑡) generated by the estimated model.
From Fig. 9 we know that our model is highly consistent with the
empirical distributions of summer and winter residuals, and Fig. 10
shows that the model is also consistent with the histogram of 𝑒(𝑡). The
fit in Fig. 10 is rather remarkable given that the model is fitted to
summer and winter residuals separately and not on the observed 𝑒(𝑡),
and the fact that the kernel estimate representing the model is obtained
from a single run of simulated data. Different simulations will produce
different levels of agreement but we find the fit to be quite stable across
simulations.

As a final remark on the estimation results we emphasize that in
addition to providing a convincing representation of the irradiation
time series our model is highly tractable. The model structure is both
simple and transparent. It is based on standard time series model
components and it is very easy to estimate and simulate.

3.2. Validation

We validate our proposed model along two different dimensions.
First, we investigate the model’s ability to represent irradiation data
at other locations. This part is done by estimating the model on the
remaining four locations in our dataset. We present and discuss the
overall model performance at these locations. With residuals obtained
for the summer and winter periods at each location we also calculate
empirical correlations between the different sites. Second, we perform
a standard validation exercise where we study day-ahead predictions
and associated confidence intervals.

Parameter estimates for the four remaining locations are presented
in Table 4. We use the PACF of 𝑍(𝑡) = 𝐺(𝑡)−𝑆(𝑡) to determine the order
𝑝 in the AR-part (5) of the model. The AR-order is 𝑝 = 2 for Hamburg,
Berlin and Stuttgart but for Nürnberg and München an order of 𝑝 = 1
is found to be sufficient. Overall, the model fit is similar across all
locations and with rather small differences in parameter estimates. We
observe the same basic features as presented for the Hamburg location
only with slight variations.

Our definition of the summer and winter periods is based on the
months where we observe negative empirical skewness. These periods
are the same for all locations. Fig. 11 plots the empirical monthly
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Fig. 10. Histogram (normalized) for residuals 𝑒(𝑡) and corresponding kernel density estimate (red curve). The green curve is the kernel density estimate obtained from simulated
𝑒(𝑡) from the estimated model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
skewness together with the skewness function implied by the parameter
estimates for all locations. The skewness patterns are very similar across
locations.

In Fig. 12 we plot the histogram of the residual series 𝑒(𝑡) together
with superimposed kernel density estimates both from data and simu-
lations constructed from the estimated models. The bimodal mixture
distributions provide an excellent fit in all cases. There are some
notable differences in the histograms. Hamburg and Berlin display two
peaks of comparable height while the southern locations Nürnberg and
München exhibit a significantly lower left peak.

The estimation results from the different locations show that the
model works well for all the selected coordinates thus providing further
validation. Indeed, irradiation data at all locations display the same fea-
tures and are in fact very similar with regard to underlying stochastic
and seasonal properties. The small differences in the AR-order, ranging
between 𝑝 = 1 and 𝑝 = 2, is also a sign of the model specification
being stable. We conclude that the model structure we have proposed is
stable across locations and provides a satisfactory fit at each coordinate.
These results indicate that the model structure should be relevant
for Germany and most likely for large parts of Europe that share a
similar climate. However, other climate types may certainly display
quite different properties of solar irradiation and require modifications
to the model structure.

The estimated models allow us to identify the summer and winter
residuals 𝜖𝑆 (𝑡) and 𝜖𝑊 (𝑡) for each coordinate. Since these are assumed
iid we can calculate empirical (sample) correlations for the summer and
winter periods between the different locations. These correlations are
reported in Tables 5 and 6. As can be expected the correlations decrease
with physical distance. The distances (in km) are reported in Table 7.
Taking Hamburg as a reference point we see that e.g. the summer corre-
lations are steadily decreasing from a correlation of 0.4165 with Berlin
to 0.0809 with München. The southern locations Stuttgart, Nürnberg
and München are more closely situated and display higher correlations.
We find the highest correlation in summer to be 0.6581, found between
Nürnberg and Stuttgart, while the highest winter correlation is 0.5874
found between Nürnberg and München.

We also study one-day-ahead predictions of the irradiation level
using as out-of-sample the year 2020. The purpose of our prediction
study is to confirm that the model produces sensible predictions and
associated confidence intervals. The predicted irradiation at time 𝑡 + 1
11
Table 5
Correlation estimates calculated from summer residuals.

Hamburg Berlin Stuttgart Nürnberg Nürnberg

Hamburg 1.0000 0.4165 0.1626 0.1786 0.0809
Berlin 1.0000 0.1794 0.2833 0.1473
Stuttgart 1.0000 0.6581 0.5488
Nürnberg 1.0000 0.6276
München 1.0000

Table 6
Correlation estimates calculated from winter residuals.

Hamburg Berlin Stuttgart Nürnberg Nürnberg

Hamburg 1.0000 0.3458 0.1167 0.1299 0.0195
Berlin 1.0000 0.1977 0.2463 0.1697
Stuttgart 1.0000 0.5579 0.5262
Nürnberg 1.0000 0.5874
München 1.0000

Table 7
Distances (in km) between locations.

Hamburg Berlin Stuttgart Nürnberg Nürnberg

Hamburg 0.0 281.7 501.7 456.9 568.2
Berlin 0.0 512.0 405.1 492.1
Stuttgart 0.0 130.3 161.7
Nürnberg 0.0 111.9
München 0.0

based on the information 𝑡 at time 𝑡, is given by the conditional
expectation 𝐺(𝑡 + 1) = E

[

𝐺(𝑡 + 1)|𝑡
]

. From (1) and (5) we have

𝐺(𝑡 + 1) = 𝑆(𝑡 + 1) +
𝑝
∑

𝑖=1
𝛽𝑖𝑍(𝑡 + 1 − 𝑖) + 𝜎(𝑡 + 1)𝑒(𝑡 + 1)

from which it follows that

𝐺(𝑡 + 1) = 𝑆(𝑡 + 1) +
𝑝
∑

𝑖=1
𝛽𝑖𝑍(𝑡 + 1 − 𝑖)

using that E
[

𝜎(𝑡 + 1)𝑒(𝑡 + 1)|𝑡
]

= 0 since 𝜎(𝑡+1) is known at 𝑡 and 𝑒(𝑡+1)
is independent of 𝑡. From (5) we have that 𝑍(𝑡+1−𝑖) is known at time
𝑡 for 𝑖 > 0 and can be expressed in terms of 𝑆(𝑡+ 1− 𝑖) and 𝑍(𝑡+ 1− 𝑖).
The one-day predictions are thus easily calculated. Confidence intervals
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Fig. 11. Empirical monthly skewness estimates (blue) and model fitted skewness functions (red) for all locations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 12. Histogram (normalized) for residuals 𝑒(𝑡) and corresponding kernel density estimate (red) for all locations. The green curves are the kernel density estimates obtained
from simulated 𝑒(𝑡) from the estimated models. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
for 𝐺(𝑡 + 1) can be calculated from simulations. To simulate from the
conditional distribution of 𝐺(𝑡 + 1) at 𝑡 we only need to draw random
numbers from the distribution of 𝑒(𝑡 + 1). This amounts to simulating
from a Gaussian mixture distribution, either from 𝜖𝑆 (𝑡+ 1) or 𝜖𝑊 (𝑡+ 1)
depending on the value of 𝑑(𝑡 + 1), and can be done very efficiently
using standard methods. From a simulated sample of 𝑀 observations
from 𝑒(𝑡+1) we calculate the empirical quantiles 𝜆𝛼∕2 and 𝜆1−𝛼∕2 to form
100(1 − 𝛼)% confidence intervals for 𝐺(𝑡 + 1).
12
We illustrate the predictions for the location near Hamburg. In
Fig. 13 we have plotted data and one-day predictions for each day in
2020 together with the estimated 95% confidence bounds, calculated
from using 𝑀 = 50,000 simulations each day. The prediction errors
and the length of the confidence intervals varies with the seasonal
conditional volatility. In the Hamburg case the confidence bounds are
exceeded 3.84% of the 365 days consistent with the assumed confi-
dence level of 5%. Predicting irradiation levels from one day to the next
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Fig. 13. Time series of irradiation data 𝐺(𝑡) (blue), and day-ahead predictions 𝐺(𝑡) (green) with 95% confidence bounds (red), for the out-of-sample period of 2020. Hamburg
location. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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is a challenging task given the large day-to-day variations present in
data. Given our statistical model setup, based only on irradiation data
itself, the predictions are reasonably accurate. The mean prediction
error in summer is −12.70 and in winter it is 8.06. These numbers
are small compared to the mean irradiation levels of 517.53 and
131.88 and correspond to −2.45% and 6.11% in summer and winter
respectively.

4. Application to PV risk management in power market

Production volumes from renewable generation assets cannot be
perfectly forecasted due to the intermittent and stochastic fluctuations
in solar irradiation. The deviation between the forecasted day-ahead
production and the actual production typically gives rise to an imbal-
ance cost component, which impacts the producer in the imbalance
market, see De Jong and Kovaleva (2021) for a detailed discussion. For
reasons of operational risk management and for investment decisions, it
is therefore of practical interest to properly understand the distribution
of day-ahead production volume as this is the major determinant of
future income streams. In analogy with the commonly used Value-at-
Risk measure used in financial markets we define the Production-at-
Risk (P@R) as a quantile of the distribution for day-ahead production
volume.

We apply the proposed model to estimate the P@R for a hypotheti-
cal PV solar park by simulating the future solar irradiation distribution
and transforming it to production volumes by using a production
function. Several mathematical models of PV production functions have
been developed and tested for different solar cell technologies, see
e.g. Huld et al. (2011) and Kaldellis et al. (2014). We employ a simple
linear model which is also used in De Jong (2020) and in Kaldellis et al.
(2014). The PV power production per square meter, ℎ(𝐺, 𝑇 ), is defined
as a function of the solar irradiation 𝐺 and the operating temperature
𝑇 according to the expression

ℎ(𝐺, 𝑇 ) = 𝜅1𝐺
[

1 − 𝜅2
(

𝑇 − 𝑇𝑟𝑒𝑓
)]

(14)

where the parameter 𝜅1 is the efficiency of transforming solar energy
into electrical power at the reference temperature 𝑇𝑟𝑒𝑓 , and 𝜅2 is the
temperature coefficient, which is determined by the cell technology and
13

the reference temperature. In this application we assume an efficiency c
of 20%, a reference temperature of 𝑇𝑟𝑒𝑓 = 25 degrees Celsius, and a
temperature coefficient of 0.5%. This corresponds to 𝜅1 = 0.2 and 𝜅2 =
.005. Under the given assumptions, and a solar irradiation of 1000 W
er square meter, a 50 000 m2 solar park produces 10 MWh of electricity
er hour for a constant operating temperature at 25 degrees Celsius.
his situation is a slight variation of the example studied in De Jong
2020).

At time 𝑡 the produced volume (in MWh) from this solar park is

(𝑡) = 0.05 × ℎ(𝐺(𝑡), 𝑇 (𝑡))

e treat the temperature as a deterministic external input. The impact
f temperature on produced volumes is small compared to irradiation
nd its contribution to the variance of production even smaller. Con-
itional on time 𝑡 information the distribution function of 𝑉 (𝑡 + 1)
s

𝑡(𝑥) = P𝑡 (𝑉 (𝑡 + 1) ≤ 𝑥) = P𝑡 (𝐺(𝑡 + 1)𝐻(𝑡 + 1) ≤ 𝑥)

here we denote 𝐻(𝑡) = 0.05𝜅1
[

1 − 𝜅2
(

𝑇 (𝑡) − 𝑇𝑟𝑒𝑓
)]

. It is straightfor-
ard to show that in our proposed model

𝑡(𝑥) = 𝑞𝑘𝐹1,𝑘
(

𝑦𝑡(𝑥)
)

+ (1 − 𝑞𝑘)𝐹2,𝑘
(

𝑦𝑡(𝑥)
)

(15)

here 𝑘 = 𝑆 if 𝑑(𝑡+1) = 1 and 𝑘 = 𝑊 otherwise, 𝑦𝑡(𝑥) is the transformed
oint

𝑡(𝑥) =
1

𝜎(𝑡 + 1)

(

𝑥
𝐻(𝑡 + 1)

− 𝑆(𝑡 + 1) −
𝑝
∑

𝑗=1
𝛽𝑗𝑍(𝑡 + 1 − 𝑗)

)

(16)

and 𝐹𝑚,𝑘(𝑥) are the corresponding Gaussian distribution functions for
omponents 𝑚 = 1 and 𝑚 = 2. Note that at time 𝑡 all the terms
n (15) are known; they are either deterministic or can be computed
rom historic values in our model. The conditional distribution function
n (15) is itself useful for risk management allowing probabilities for
ifferent scenarios to be easily calculated.

For a given value of 𝛼 ∈ (0, 1) the day-ahead P@R at time 𝑡, denoted
(𝑡, 𝛼), fulfills the relation

𝑡 (𝜆(𝑡, 𝛼)) = P𝑡 (𝑉 (𝑡 + 1) ≤ 𝜆(𝑡, 𝛼)) = 𝛼 (17)

he P@R value 𝜆(𝑡, 𝛼) must be solved for numerically from (17). This

an be done using simulation or a standard root-finding algorithm
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Fig. 14. Production-at-Risk at 10% (blue) and 5% (red) for a 50 000 m2 solar park at the Hamburg location for year 2020. Included are also predicted day-ahead production
olume (orange) and seasonal volume (green). All numbers expressed in MWh. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
here (15) and (16) are used to express 𝐹𝑡 (𝜆(𝑡, 𝛼)) in (17). In our exam-
ple we focus on the left tail of the distribution but a corresponding P@R
for the right tail can be defined similarly with obvious modifications.

The P@R has a clear dependence on the volatility and shape of the
distribution of solar irradiation data. As demonstrated in this paper
the solar irradiation distribution exhibits a complicated time structure,
which makes it a non-trivial task to dynamically estimate the P@R.
We illustrate this by calculating P@R for the hypothetical solar park
described above on each day in our out-of-sample data for the year
2020. The solar park is assumed to be located at the Hamburg coordi-
nate and we use the parameter estimates in Table 3 in the calculations.
The impact of the temperature on the variation of produced volume
is minor and for simplicity we cancel it from our calculations by
assuming 𝑇 = 𝑇𝑟𝑒𝑓 = 25. This is obviously unrealistic, especially for
the winter period, but the point of this exercise is to illustrate the
temporal behavior of the P@R on which the temperature can only
have a small influence compared to irradiation. Fig. 14 show the
P@R calculated at the 5% and 10% levels for each day in 2020. The
predicted and seasonal volumes are also plotted for reference. These are
obtained from plugging the predicted, 𝐺(𝑡+1), and the seasonal 𝑆(𝑡+1)
irradiation, into the production function. The P@R-levels in Fig. 14
display significant seasonal variations both in the level and variance.
The P@R values naturally follows the seasonality in the irradiation
level. It is also clearly visible that the P@R is more variable in the
summer. It can also be noted that the 5% and 10% P@R values are
much closer during winter compared to summer. This is an effect of
the seasonal dependencies present in the distribution of irradiation.
The P@R values plotted in Fig. 14 were calculated using simulation.
The actual production volumes exceeded the 10% and 5% P@R during
2020 at 36 and 14 instances respectively. This corresponds to 9.86%
and 3.84% of the days which is in close agreement with the selected
probability levels.

To give some numerical insight we compare the P@R on three
different dates. On March 16 the actual produced volume is 4.44 MWh
and the 10% and 5% P@R are 2.22 and 1.84. This means that the
probabilities that the next day production falls below 1.84 and 2.22
MWh are 5% and 10% respectively. The 10% P@R corresponds to a
50% drop in production from the 16th to the 17th. The maximum
14

production in 2020 occurs on May 28 at 8.68 MWh. The P@R values
calculated for May 28 were 3.59, at 10%, and 3.05 at 5%. In contrast,
the lowest production in 2020 is 0.45 MWh recorded on Dec 23 with
P@R values calculated to 0.41, at 10%, and 0.35, at 5%. The difference
in P@R for the 10% and 5% levels on the day of maximum production
is 0.55 which is substantial in terms of MWH. On the day of minimum
production the difference is significantly smaller at 0.07 MWh. These
differences are in fact rather typical for the summer and winter periods
and are caused by the different stochastic and seasonal properties of
solar irradiation over the year.

5. Concluding remarks

We have proposed a stochastic time series model for the daily
(around noon) irradiance in 5 different cities in Germany. Our model
is based on a careful analysis of the stylized facts of irradiance levels
observed in a long time series of data recordings. Based on astronomical
knowledge of the sun’s position to the earth, we have explained the
mean variation in irradiance by a clear sky model, while the first
order stochastic effects are captured by an autoregressive time series
of order 2. The residuals show seasonality in both their variance and
skewness, where the latter effect has to the best of our knowledge
never been observed nor modeled effectively. We suggest a summer
and winter parameter changing between two different regimes. The
variance is modeled as the product of a seasonally varying function
and a GARCH(1,1)-model. The standardized residuals turn out to be
uncorrelated Gaussian mixture models, where the bimodality of the
distributions in winter and summer can be attributed to the clouds’
interference with the sun.

Our proposed model is estimated to daily data, and validated in a
prediction study. It is demonstrated that the model captures well the
stylized features of irradiance in the studied locations. We presented an
application to energy markets, where we show how PV-producers may
use the model to assess their risk based on the measure Production at
Risk.

Our model and analysis can be extended in several directions. A
natural first step is to move towards a higher time resolution and
consider an hourly stochastic time series model. Such a model will be
interesting for applications in the intraday power market, where PV

producers say, can hedge their exposure in the day ahead market. We
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expect an hourly model to lead to further challenges in capturing a
daily seasonality profile, in particular around the hours of sunrise and
sunset. Most likely, the memory effect in the time series model will
show a higher order of autoregression.

In our study we have considered the correlation across 5 locations
in Germany. Several interesting applications call for a spatial stochastic
model, which is another interesting extension of our proposed irra-
diation dynamics. Our analysis indicates a declining correlation of
irradiance residuals with distance. A spatial model must detect the
spatial correlation structure in terms of distance to define a random
field model (see Cressie and Wikle (2011)). Moreover, one must also be
able to describe the other parameters of the model as functions of their
geographic coordinates. Such a model will be very useful in studies of
finding the optimal location of a PV installation, or in combining PV
sites in a risk hedging study analogous to Benth et al. (2021).

The irradiation in a location is sensitive to variations in the cloud
cover. Our model does not explicitly take into account the effect of the
shifting cloud cover over a location. We remark that including cloud
cover data for specific coordinates would likely have to use different
data sources and that it then may prove difficult to reach adequate
consistency between the series. Furthermore, variation in cloud cover
is closely connected with the wind field at cloud level, which also
correlates with temperature. The power curve of a PV-panel depends
on ground temperature. It is a challenge to pin down realistic stochastic
models combining all these factors.

Intraday solar production depends on the movements of the solar
irradiation over the course of the day, reaching its peak around midday.
Unfortunately, this pattern does not coincide well with the demand
profile for electricity, which typically peaks in the morning/evening
due to the increased human activities at these times of the day. This
supply/demand discrepancy leads to a situation where the net demand
(demand minus renewable production) falls into a slump during the
midday hours, with relatively low demand and high solar generation,
and in the morning/evening it sharply peaks due to high demand and
low solar generation. The intraday net demand visually resembles the
shape of a duck and is commonly known as the ‘‘duck curve’’. The
duck curve points to a problematic situation since it originates from a
supply/demand mismatch, which needs to be compensated by conven-
tional production technologies, such as gas or coal, and their flexibility
comes at a high economic cost. With an increasing share of renewable
production in the power system the duck curve is, ceteris paribus, likely
to be even more pronounced in the future. This makes a challenge
for the renewable expansion and several solutions to the problem are
currently being explored. One promising alternative, which is presently
investigated and implemented, is to store the oversupply from the
midday solar production in short-term batteries in order to flatten
the duck curve. In fact, the stochastic control problem for battery
optimization requires a stochastic solar irradiation model as input data,
which is an important motivation for the model proposed in this paper.

We leave these interesting and challenging questions of potential
model extensions and applications to future studies.
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Appendix A

In this appendix we describe how the solar hour angle 𝑤 and decli-
nation 𝛿 are determined. We give only a brief description and we refer
to Duffie and Beckmann (2013) where more details and explanations
can be found. The solar hour angle is given by

𝑤 = 15◦(𝐿𝑆𝑇 − 12)

where 𝐿𝑆𝑇 is the local solar time. The local solar time 𝐿𝑆𝑇 is obtained
from the local time 𝐿𝑇 and a time correction 𝑇𝐶 as

𝐿𝑆𝑇 = 𝐿𝑇 + 𝑇𝐶∕60.

The time correction 𝑇𝐶 is calculated from

𝑇𝐶 = 4(𝐿𝑆𝑇𝑀 − 𝑙𝑜𝑛) + 𝐸

here 𝐿𝑆𝑇𝑀 = 15◦𝑈 where 𝑈 is the offset to UTC time (U = +1 in
Central European Time (CET)), 𝑙𝑜𝑛 is the longitude, and 𝐸 denotes the
so called Equation of Time given by

𝐸 = 229.2 (0.000075 + 0.001868 cos(𝐵) − 0.032077 sin(𝐵)

− 0.014615 cos(2𝐵) − 0.04089 sin(2𝐵))

ith 𝐵 = (𝑛−1)360∕365 where 𝑛 is the yearday which may be expressed
s a continuous variable.

The declination 𝛿 is directly given by

= 23.45◦ sin
(

360(284 + 𝑛)
365

)

There are more accurate, and complicated, expressions available to
determine the Equation of Time 𝐸 and the declination 𝛿, see Duffie
nd Beckmann (2013). The formulas presented here are sufficient for
ur purposes since they are only used to construct the seasonal function
hat we calibrate to data.

ppendix B

In this appendix we provide details on the parameter restriction for
he seasonal variance. The seasonal variance part can be written
2
𝑆 (𝑡) = 𝑐0 + 𝑐1 cos(𝑘𝑡) + 𝑐2 sin(𝑘𝑡)

where 𝑘 = 2𝜋∕365. Using the trigonometric relation

sin(𝑘𝑡 + 𝑧) = cos(𝑘𝑡) sin(𝑧) + sin(𝑘𝑡) cos(𝑧)

we can write

𝜎2𝑆 (𝑡) = 𝑐0 + 𝑐 sin(𝑘𝑡 + 𝑧)

where 𝑐 =
√

𝑐21 + 𝑐22 and 𝑧 is the number such that tan(𝑧) = 𝑐1∕𝑐2, 𝑐2 ≠ 0.
he smallest possible value of 𝜎2𝑆 (𝑡) is therefore 𝑐0−𝑐 and the restriction

√

𝑐2 + 𝑐2
𝑐0 > 1 2 thus ensures positivity.
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Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eneco.2022.106421.
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