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Summary

This thesis explores two specific applications of null baseline model comparisons in

the context of quantitative research in international large-scale educational assessments.

Both applications make use of a null baseline model in which all observed variables are

assumed to be uncorrelated.

Articles 1 and 2 focus on model fit evaluation with the Comparative Fit Index (CFI).

Here, the fit of a model of interest is compared against the fit of the null baseline model.

Two simulation studies clarified the meaning and behavior of the CFI, as well as the

consequences for the commonly used rule-of-thumb for model fit evaluation, as a function

of the null baseline model. Both articles end with the general reminder that incremental

fit indices are relative measures with the null baseline model as a standardized metric,

and thus their values should not be compared in an absolute sense nor should universal

rules-of-thumb be adopted.

Articles 3-6 focus on random response behavior in the TIMSS 2015 student question-

naire. To assess the prevalence of and to identify those students likely engaging in random

response behavior, we adopted a mixture item response theory (IRT) approach. In this

approach, a relative comparison definition for random responders is used based on a con-

trast between a measurement model (reflecting regular response behavior) and a uniform

null baseline model (reflecting random response behavior). The articles investigated the

prevalence, impact, and characteristics of random responders, as well as where and how

often random response behavior occurs. Results showed that: (i) The average prevalence

of random responders was estimated at 7.5% [0-38%]; (ii) The overall impact of random

responders on aggregated-level was fairly limited; (iii) Scale position and scale charac-

ter were important determinants for the prevalence of random responders; (iv) Certain

groups of students (e.g., students in higher grades or male students) were more likely

to be identified as random responders; and (v) Random responding is not necessarily a

consistent behavior across the questionnaire.

This thesis was supported by a research grant [FRIPRO-HUMSAM261769] of the

Norwegian Research Council and has been carried out at CEMO: Centre for Educational

Measurement at the University of Oslo.





Sammendrag

Denne avhandlingen ser på to spesifikke anvendelser av nullmodell-sammenligninger.

Sammenligningene utforskes ved å benytte data fra internasjonale storskalaundersøkelser

innenfor utdanningsforskning. Begge anvendelsene bruker en nullmodell der ingen av de

observerte variablene antas å korrelere.

Artikkel 1 og 2 fokuserer på evaluering av modelltilpasninger ved bruk av Comparative

Fit Index (CFI). Her blir evaluering av en valgt modells tilpasning sammenlignet med

tilpasningen for nullmodellen. To simuleringsstudier bidro til å få klarhet i betydningen

og funksjonen til CFI i tillegg til å avdekke konsekvensene av å bruke den vanlige tom-

melfingerregelen for vurderinger av modelltilpasninger som en funksjon av nullmodellen.

Begge artiklene avsluttes med en generell påminnelse om at trinnvise tilpasningsmål er

relative mål når nullmodellen brukes som en standardisert enhet, som videre fører til

at CFI-verdiene ikke kan sammenlignes i absolutt forstand. I tillegg advares det mot å

benytte universelle tommelfingerregler.

Artiklene 3-6 fokuserer på tilfeldig svaratferd i elevspørreskjemaet til TIMSS 2015.

For å måle utbredelsen av tilfeldig svaratferd og for å identifisere elever med slik at-

ferd, brukte vi en tilpasset «mixture item response theory (IRT)» tilnærming. I denne

tilnærmingen benyttes en relativ definisjon for tilfeldig svaratferd. Definisjonen tar ut-

gangspunkt i kontrasten mellom en målingsmodell som gjenspeiler vanlig svaratferd og en

enhetlig nullmodell som gjenspeiler tilfeldig svaratferd. Artiklene undersøkte utbredelsen,

virkningen og egenskapene til elever med tilfeldig svaratferd, samt hvor og hvor ofte til-

feldig svaratferd forekommer. Resultatene viste at: (i) Gjennomsnittlig andel elever med

tilfeldig svaratferd ble estimert til 7,5% [0–38%]; (ii) På et aggregert nivå er den generelle

virkningen av tilfeldig svaratferd ganske begrenset; (iii) Skalaposisjon og -karakter var

viktige faktorer i forekomsten av elever med tilfeldig svaratferd; (iv) Enkelte elevgrupper

(f.eks. elever i høyere klassetrinn eller gutter) hadde høyere sannsynlighet for å bli iden-

tifisert som tilfeldig svarende; og (v) Å svare tilfeldig er ikke nødvendigvis en konsekvent

handling gjennom hele spørreskjemaet.

Denne avhandlingen ble finansiert av forskningsmidler fra Norges forskningsråd [FRI-

PRO-HUMSAM261769] og har blitt utført ved CEMO: Centre for Educational Measure-

ment at the University of Oslo.





I

Null Baseline Modeling Approaches with Applications in

International Large-Scale Educational Assessments

A man from Mars, asked whether or not your suit fits you, would have trou-

ble answering. He could notice the discrepancies between its measurements

and yours, and might answer no; he could notice that you did not trip over

it, and might answer yes. But give him two suits and ask him which fits you

better, and his task starts to make sense, though it still has its difficulties.

(Edwards, 1965)1

With this example Edwards (1965)1 illustrated that in order to draw proper conclu-

sions one needs a point of reference to compare against. The same principle also holds

within a measurement context. Consider for example a student who chooses the correct

response option for 5 out of 10 yes/no test items. Is that a good or bad performance? In

an absolute sense, the student got half of the items correct, yet if you realize that some-

one who randomly guesses is also expected to get half of the items correct, the student’s

performance is less than impressive.

This latter example shows that the interpretation of any measured quantity in an

absolute sense is quite hard. Yet it also shows that providing a point of reference, to

which a measured value can be compared, creates added value as it can help to make a

better evaluation of the quality of the measured quantity. This point of reference is an

essential condition for comparison and is key to meaningful interpretation of the measured

values in a relative sense (Raivola, 1985)2. In this process of comparing measured values

against this point of reference or baseline, further meaning can be gained. Some would

even go as far as stating that something only has value and meaning in comparison to

something else (e.g., Royall, 1997)3.
1Edwards, W. (1965). Tactical note on the relation between scientific and statistical hypotheses.

Psychological Bulletin, 63, 400–402.
2Raivola, R. (1985). What is comparison? Methodological and philosophical considerations. Com-

parative Education Review, 29 (3), 362–374.
3Royall, R. (1997). Statistical evidence: A likelihood paradigm. Chapman & Hall.
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These comparative principles come naturally to most people, yet they also prove to

be a useful tool in other more complex settings in research. This thesis explores two

specific instances where comparison plays a crucial role. The first instance relates to

the evaluation of the fit of statistical models through model comparison. The second

instance relates to model building for evaluating response behavior of students on self-

report questionnaires in international large-scale educational assessments. Overall, this

thesis aims to examine and clarify how null baseline models can be effectively used as

informative comparison grounds in research applications.

Outline of the Thesis

This thesis is article-based, meaning the basis consists of several journal articles (see

overview below), supplemented with an extended abstract or so-called ‘kappe’. The

extended abstract, which started with the current introduction, provides room for a

more general introduction to and reflections upon different aspects of the articles and the

overarching theme.

The thesis is structured in such a way that it begins with the extended abstract and

ends with the articles (i.e., Chapters 4-9). However, it is recommended to first read the

articles and then the extended abstract. The extended abstract itself has begun with

the more general part that provides some overarching reflections on the general theme

of null baseline model comparison and ends in Chapter 3 with further reflections on the

comparative use of models. In Chapter 1 and Chapter 2, the two different null baseline

model comparison applications are discussed in more detail. As the two applications

come from different perspectives, Table 1 provides a brief preview of what will be their

main differences and common ground.

Application 1

The first application focuses on the meaning of null baseline model comparisons using

the Comparative Fit Index (CFI) in the evaluation of structural equation models which

are widely used in the social sciences. To this date, the evaluation of model fit remains

a crucial, yet difficult topic. There have been many cautious notes and examples in the

literature that show that fit indices and their rules-of-thumb —for determining whether
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or not the fit of a model of interest is acceptable— do not always work as intended, as

they have been shown to be sensitive to different data and model characteristics. Yet

regardless of the warnings fit indices and their rules-of-thumb are still being used in a rigid

and binary fashion. With this application, we specifically tried to re-establish what CFI

stands for. Different simulation studies were included to provide a better understanding

of the behavior and performance of CFI as a function of the null baseline and to clarify

why current practice is not ideal.

Table 1

Overview of the Main Differences and Common Ground for the Two Applications of

Model Comparison in this Thesis.

Common Ground

Model-based approach in a measurement context

Comparison to provide meaning using a Null Model as baseline

Assessment of Fit

Complementary Perspectives

Application 1:

Model Fit Evaluation with CFI

Application 2:

Random Responders in TIMSS

Object of Comparison Model-centered Group-centered

Goal of Comparison Justification Classification

Data-Model Fit Variable-based Person-based

Application 2

The second application addresses the issue of random responders in in the Trends

in International Mathematics and Science Study (TIMSS) 2015 assessment throughout

different empirical studies. While the results of international large-scale educational

assessments are widely used for research and educational policy, their low-stakes character

(i.e., no direct consequences for the participating students) makes them vulnerable to

invalid response behavior. Depending on the severity of this behavior, this can lead
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to problems with the interpretation of the assessment results. The studies within this

application are built around the development of a mixture model, incorporating a uniform

null baseline model and a measurement model, to distinguish between individuals who

are genuinely answering to the questionnaire and individuals who are choosing responses

randomly throughout as if they disregard what is asked from them. This methodology

can be especially useful in the context of measurement validity and data quality.

Contributions

By showing how null baseline models are effectively used in practice, for model fit

evaluation in structural equation modeling and for the detection of random responders,

this thesis contributes to the provision of methodological understanding and tools for

better research practice. In particular, by reminding quantitative researchers that make

use of fit indices what the indices actually measure, this work hopefully provides a starting

point for more deliberate decision-making when evaluating models in practice. At the

same time, the thesis hopefully increases awareness among testing organizations and

educational researchers about the need for data quality monitoring for the survey part of

international large-scale educational assessments.
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1 Application 1:

Model Fit Evaluation with the Comparative Fit Index

1.1 Background

An important topic within the context of Structural Equation Modeling (SEM) is

model fit. Model fit refers to the ability of a model to reproduce (the observed relations

between the variables in) the data. In practice, the data (i.e., the responses given by N

individuals on p variables) is summarized in a sample-observed covariance matrix of size

p×p (e.g., Bentler & Bonett, 1980). The model describes the expected relations between

the variables and the outcome from estimating the model based on the data is a model-

implied covariance matrix of similar size (i.e., p×p). In the model evaluation process, this

model-implied covariance matrix will be compared against the sample-observed covariance

matrix and fit indices are used to summarize the discrepancy between them by some

quantity.

1.1.1 Fit Indices: Quantifying and Summarizing Model Fit

The use of fit indices as a way to assess model fit can be traced back to the χ2 test

of exact fit. Comparing the sample-observed and model-implied covariance matrices, the

specific null hypothesis being tested by this χ2 test is one of no difference between both

covariance matrices. Assuming that the model is correct and the assumptions are met,

the χ2-statistic is asymptotically distributed as a central χ2-distribution based on the

degrees of freedom of the model. This distribution can be used to determine the p-value

for testing the null hypothesis with respect to the observed χ2-value. In general, as the

difference between the sample-observed and model-implied covariance matrices becomes

larger, the χ2-value will increase and will be less compatible with the tested hypothesis.

Unfortunately, the χ2 test is also familiar with some problems related to significance

testing. A review by Ropovik (2015) showed that, in practice, the most common reason

for not reporting the χ2 test statistic is its sensitivity to sample size. It is too liberal

for large sample sizes, rejecting the null hypothesis of equal fit too easily. In addition,

the null hypothesis of no difference might also be unreasonable, especially when the goal
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is to find and accept a working model. In general, too much focus on statistical testing

can also lead to disregarding or changing relevant and theoretical sound models without

proper justification for it (Bentler & Bonett, 1980).

Nowadays, a lot of alternative fit indices are available to supplement the narrow

perspective of null hypothesis testing provided by the χ2 test of exact fit. In general,

three broad classes of fit indices can be distinguished: absolute fit, parsimony fit, and

incremental fit indices. In short, absolute fit indices use the data as a point of reference

against which the fit of a model is compared, where fit is determined by the degree of

discrepancy between the model en data (i.e., either sample-observed and model-implied

correlation or covariance matrices). Lower values for the absolute fit indices indicate

smaller discrepancies and thus better fit. The parsimony fit indices are characterized

by incorporating penalties for model complexity (e.g., more parameters) when assessing

model fit. The incremental fit indices compare the fit of a model against the fit of a more

restricted baseline model. In general, higher values for the incremental fit indices indicate

better fit (e.g., Brown, 2015; Kline, 2016).

1.1.2 Qualitative Model Evaluation

In practice, these alternative fit indices are often used for qualitative evaluation of a

model in terms of good or bad model fit. With the main question being what rule to

abide by to indicate good or bad fit? (Brown, 2015). For that, researchers often turn

back to the different rules-of-thumb that have been proposed over time for determining

whether the fit of the model is indeed acceptable. Nowadays, the most commonly used

rules-of-thumb seem to originate from the simulation study by Hu and Bentler (1999),

who evaluated the performance of various different fit indices.

In practice, problems arise as these rules-of-thumb seem to be universally applied,

even though literature has shown the sensitivity of fit indices and their rules-of-thumb

to different data and model characteristics (for a review see e.g., Niemand & Mai, 2018).

As a consequence, the rules-of-thumb do not always lead to a correct evaluation of the

model. This should not be unexpected, as it resonates well with warnings from Hu and

Bentler (1999) with respect to the generalizability of their results beyond the conditions
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studied and warnings against using single criteria and rigid rules. Yet, one potential

explanation for the continued use of these rules-of-thumb across any and all situations is

that “researchers need them because it is unclear how one can reach qualitative judgements

in their absence” (Lai & Green, 2016, p.211). In addition, there have been concerns that

the use and meaning of fit indices are not well understood in general (e.g., McDonald

& Ho, 2002). Hence, it is not illogical to observe oversimplified rule-based behavior.

Without good understanding of what the fit indices actually stand for it is difficult to

put results into perspective and the most straightforward approach is to rely on fixed

rules and procedures and justify choices by referring to some authority. If anything, this

also suggests that it might be important to reassess the nature of the different fit indices

and their role in model evaluation.

The general aim of the first two articles was to get a better understanding of fit

indices. Yet given the number of fit indices available (i.e., Marsh et al. already evaluated

29 fit indices in 1988 and the number of fit indices still continues to increase), it is not

feasible to address them all at once. Therefore, we focused on the class of incremental (also

comparative or relative) fit indices, which is also the class most in line with the comparison

principles in the introduction. The CFI, in particular, has been chosen because it is one

of the most used indices in practice (e.g., Jackson et al., 2009; McDonald & Ho, 2002;

Ropovik, 2015).

1.1.3 Rationale behind Incremental Fit Indices

Central to model fit evaluation with incremental fit indices is the comparison of a

model of interest to a more restricted baseline model. In practice, a null baseline model

in which all observed variables are assumed to be uncorrelated has taken off as the default

baseline model. The incremental fit indices are also considered practical measures as they

give an indication of the improvement in fit of a model of interest over a more restrictive

baseline model and they provide information about the value of the model of interest in

explaining the data (Bentler & Bonett, 1980). The relation between the models involved

in the comparison can be depicted by means of a continuum of models, from the worst-

fitting baseline model (M0) to the perfect-fitting or saturated model (MS). The role of
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the incremental fit indices is to assess where the model of interest is located within this

continuum (see also Figure 1). It follows that the closer the model of interest is located

towards the baseline model, the smaller the improvement in fit (Bentler, 1990).

Figure 1

Continuum of Models and Incremental Fit.

M0

model of
interest MS

Note. Considering a continuum of models, the improvement in fit of a model of interest over

a more restrictive baseline is dependent on where the model of interest is located within the

continuum.

1.1.4 The Comparative Fit Index

The Comparative Fit Index (CFI) is an index that describes the proportional im-

provement in fit of a model of interest compared to a baseline model by “[summarizing]

the relative reduction in noncentrality parameter of two nested models” (Bentler, 1990,

p.238). The noncentrality parameter λm of a model m can be seen as an indicator of

model misspecification as it quantifies the discrepancy between the estimated fit for the

model (i.e., χ2
m value) and the expected value for the sample if the model is correctly

specified (i.e., model’s degree of freedom dfm). The value of CFI is based on the ratio of

misspecification of both models and the sample estimator is given by:

CFI(I,0) = 1− λI

λ0

= 1− χ2
I − dfI

χ2
0 − df0

where the subscript indicates whether the statistics are of the model of interest I or

the null baseline model 0. The continuum of CFI (see Figure 2) is usually normed to

reflect a [0,1] interval5, with higher values indicating larger improvement in fit, or higher

correspondence between the model of interest and the data over the null baseline model.

A CFI of .90 implies that the fit of the model of interest is 90% better than that of the

baseline model.

5Normed value for CFI(I,0) = 1− max (λI,0)
max (λ0,λI,0)



5

Figure 2

Graphical Representation of the Comparative Fit Index.

M0

(CFI=0)

model of
interest

(CFI=1)

MS
λI

λ0

Note. M0 = null baseline model; λ0 = noncentrality parameter of the null baseline model; MS

= saturated model; λI = noncentrality parameter of the model of interest.

1.1.5 Origin of Rules-of-Thumb for Incremental Fit Indices

As mentioned before, the incremental fit indices are supposed to give an indication of

the improvement in fit of a model of interest over a more restrictive baseline model. Yet

early on, it had already been acknowledged that it might be hard to interpret the scale

of incremental fit indices and that people probably need more guidance in using them.

Therefore, Bentler and Bonett (1980) tried to attribute some practical meaning to the

value of fit indices. They stated that “In our experience, models with overall fit indices

of less than .90 can usually be improved substantially” (Bentler & Bonett, 1980, p.600).

Not surprisingly, using values of at least .90 for indicating acceptable model fit seem to

be found as the initial rule-of-thumb used in practice (see the review of e.g., McDonald

& Ho, 2002). Yet the interesting part here is that, while McDonald and Ho (2002) found

that in the late 90’s most researchers used the .90 rule-of-thumb for incremental fit indices

like CFI, CFI itself didn’t even exist when this rule-of-thumb came to be in 1980. Over

time, the performance of this and other rules-of-thumb has been questioned and more

formal investigations of their adequacy followed. With that respect, Hu and Bentler’s

study (1999; see also Hu and Bentler, 1998) has become most influential for research

practice and caused a transition in the model evaluation process. Based on their results,

people have taken .95 as the new core threshold with CFI values ≥ .95 indicating good

model fit, which, to this day, remains the most prevalent rule-of-thumb used in practice.
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1.1.6 Room for Improvement vs. Is it Good Enough?

To me, the current use of fit indices seems to indicate a more important shift in inter-

pretation with respect to the perception of the guideline provided by Bentler and Bonett

(1980). Where Bentler and Bonett (1980) explicitly mention that certain models can be

improved upon (see quote above), we see in practice that their guideline is perceived as

a way to determine which models are good enough. More specifically, it has led to the

concept that if the value of a fit index conforms to some rule-of-thumb then the model

should be deemed acceptable (in this specific case values of at least .90). Thus, dividing

the continuum of models we saw earlier in different sections and depending on the section

in which the model of interest is located, a certain qualitative value is assigned to the

model of interest (for an illustrative example, see Figure 3). This qualitative interpreta-

tion seems to be deeply rooted in practice. According to a review by Ropovik (2015) the

most important question with respect to model evaluation is whether the fit of the model

is good enough for further analysis and interpretation (Ropovik, 2015), like a box that

needs to be checked without considering what the value for the incremental fit indices

actually stands for.

Figure 3

(Qualitative) Model Evaluation with Incremental Fit Indices.

M0 MS

poor
fit

acceptable
fit

good
fit

great
fit

Models of Interest

worst-fitting
model

perfect-fitting
model

Note. Considering a continuum of models, the qualitative value assigned to a model is

dependent on the section in which the model of interest is located. The figure is adapted from

Longitudinal structural equation modeling by T. D. Little, 2013, The Guilford Press.

1.2 Conceptual Framework of Articles

As mentioned before, the aim of the first two articles was to get a better understanding

of the CFI (e.g., what the index stands for, how we should use it, and why it behaves
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as it does). In these articles, we tried to clarify the meaning and behavior of the CFI,

as well as the consequences for the commonly used rule-of-thumb, as a function of the

null baseline. The importance of the baseline had already been implied by the study of

Marsh et al. (1988). Their study showed that the incomparability in the performance of

fit indices was influenced by the fit of the null baseline. While both articles in this thesis

include an explicit decomposition of the null baseline model as a way to get more insight

into the specific components that are responsible for influencing the behavior of CFI,

their main focus is slightly different (see Figure 4). ‘Article 1: Metric Space’ for example,

discusses the so-called metric space principle (or baseline principle) which explains why

the rule-of-thumb for CFI cannot work across any and all situations and in addition shows

how/to what degree this principle, as a function of the components of the null baseline

model, influences the behavior of CFI across different conditions. ‘Article 2: Multivariate

Dependence’ on the other hand, concentrates on a specific element of the baseline and

uses the alleged impact of model type as a way to discuss how it is the ability of a model

to capture the most dominant correlation in the data, instead of the average correlation,

that is crucial when considering the performance of CFI. The overall conclusion is that

exactly because incremental fit indices are relative measures, they should be treated as

such: Values should not be compared in an absolute sense across any and all situations,

nor should universal rules be adopted.
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Figure 4

Overview of the Different Articles about Model Fit Evaluation with CFI.

Model Fit Evaluation with CFI -
Role of the null baseline model

Í
Article 1:

Metric Space -

Performance of CFI across dif-
ferent baseline conditions &
why rules-of-thumb cannot be
universally applied

�
Article 2:

Multivariate Dependence -

The role of data correlation:
determinant vs. average
correlation

1.2.1 Metric Space Principle

The value for CFI depends on both the fit of a model of interest as well as the fit of

the null baseline model. Given the specific formulation, it follows that the fit of the null

baseline serves as the standard for comparison. In ‘Article 1: Metric Space’, we refer to

this standard as the ‘CFI metric space’, which can be visualized as a one-dimensional

line with noncentrality as a unit (see also Figure 5: Panel A). The endpoints of the

metric space are set by the null- and saturated model. Yet, the length of the metric

space is determined by the noncentrality of the null model, with the noncentrality for the

saturated model always being equal to zero.

The main idea here is that CFI and its rule-of-thumb become less useful when the

metric space is shorter. The shorter the metric, the more similar all models are in the

model comparison, making it harder to differentiate between the model(s) of interest,

null model, and saturated model. Panel B in Figure 5 provides a visual representation to

clarify the metric space principle (see also ‘Article 1: Metric Space’). The figure shows

two cases where the size of the metric space is different. Comparing the two cases, the

metric space for case 1 could be considered relatively large with λ0 = 25. Within this
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space, we have two models with slightly different noncentrality values (i.e., λ1 = 1 and

λ2 = 3). Translating these values to the CFI interval results in values of CFI(1,0) = .96

and CFI(2,0) = .88. In the second case where with λ0 = 5 the metric space is much

shorter, the two models are also only two noncentrality units apart (i.e., λ1 = .6 and

λ2 = 2.6). However, translating this to the CFI interval results in values of CFI(1,0) = .88

and CFI(2,0) = .48.

Figure 5

Baseline Comparison for CFI.

λ0 = 25
13

0 Case 1

λ0 = 5
0.62.6

0 Case 2

CFI = 0
.96.88.48

1

B.

M0 MS

CFI metric space: λ-unit

λm

A.

Note. Illustration of the metric space principle. Where M0 = null baseline model; λ0 =

noncentrality parameter of the null baseline model; MS = saturated model; λI = noncentrality

parameter of the model of interest.

The first thing to notice is that although the difference between the models in terms of

absolute misspecification is equal in both cases, the difference in the corresponding CFI-

values for the two models is much lower in the case where we have the smaller metric

space. This also implies that a reduction in the size of the metric space has a negative

effect on the ability of CFI to differentiate between models. In situations similar to the

second case, where small differences in noncentrality lead to much bigger differences in
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CFI-values, interpretation of these values based on a fixed rule-of-thumb can become

especially problematic as it could lead to very different conclusions with respect to model

fit evaluation.

In addition, one could wonder whether these differences are meaningful in practice.

For example, consider that in the second case the null baseline model already shows

adequate fit. In such a situation, it might not only be more difficult for a model to do

better, but more importantly, regardless of the CFI value, either being .48 or .88 it should

reflect this adequate fit. Yet, interpretation based on rules-of-thumb does not take this

‘base’ fit into consideration.

Thus, what this hopefully shows is that the meaning we assign to CFI should be

dependent on context and not some fixed rule-of-thumb. At the same time, this also

implies that values for CFI cannot directly be interpreted and compared if we don’t

know what baseline we are dealing with. Look for example at the situation where both

case 1 and case 2 contain a model of interest with an equal CFI-value (i.e., CFI = .88).

Relatively speaking the models of interest show equal improvement in fit over the null

baseline model. Yet, the misspecification as measured by the noncentrality parameter

is lower in the second case than in the first. Thus in case 2, where the metric space is

relatively small, one might say that there is hardly room for more improvement, while

in case 1 some progress can potentially still be made. The main point here is that one

CFI-value is not the other as they are not based on the same proportion. Thus, for fair

(qualitative) interpretation of CFI we need to acknowledge that the CFI metric space

has an influence on its behavior/performance and thus, we should take this baseline into

consideration when using this fit index in the model evaluation process.

1.2.2 Key Components of the CFI Metric Space

As the CFI metric space serves as a standard for comparison, it is also important to

know which specific components play a role here to further increase understanding of the

behavior of CFI. Based on characteristics of the null baseline model, decomposition of

this baseline for CFI can be reduced to λ0 = − log |R|(n− 1)− p(p− 1)/2 (see Appendix

A in ‘Article 1: Metric Space’ or ‘Article 2: Multivariate Dependence’) and thus the
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three key components being: (i) the number of items p, (ii) sample size n, and (iii) the

amount of correlation in the data as part of − log |R| (with |R| being the determinant of

the observed correlation matrix). For specific predictions regarding the influence of the

different components on the behavior of CFI in practice, see ‘Article 1: Metric Space’.

1.2.3 Degree of Multivariate Dependence vs. Average Correlation

While ‘Article 1: Metric Space’ showed that the data correlation is the most important

factor with respect to the size of the metric space, ‘Article 2: Multivariate Dependence’

provided a more detailed evaluation of the role of the data correlation in the performance

of CFI. More specifically, it focused on how the impact of this data correlation is defined.

For example, at some point I was taught that the value for CFI depends on the average

size of the pairwise correlations in the data, with the idea that the value for CFI will

not be that high, if this average correlation is not that high. Similarly, it has been

brought up that one could manipulate the value for incremental fit indices by artificially

changing the average correlation (e.g., Rigdon, 1998a) While there is some value in these

statements, as higher average correlations do help, the role of the correlation in the null

baseline is actually represented by the determinant |R|, which does not simply reflect the

average correlation in the data. Yet, in some way it is understandable that people tend

to talk about the average, because it is not necessarily clear how a determinant changes

as a function of a single pairwise correlation (see also Lai & Green, 2016), while people

probably have a better intuition with respect to the average.

Figure 6

Determinant vs. Average Correlation
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Note. r̄ = average correlation; |R| = determinant of the correlation matrix.
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For example, take a look at Figure 6. Both correlation matrices do have an equal

average correlation of .40, yet the determinant differs across the two situations. In matrix

R1 all pairwise correlations are equal to .40, while in matrix R2 they are all equal to

.30 except for one pair, where the correlation is much higher. In this case, it is the

second situation that is characterized by a lower determinant. For the determinant of a

correlation matrix it follows that |R| = 1 if all rij = 0, otherwise |R| < 1. Yet, with

respect to the correlation matrices, this example indicates that it is the most dominant

correlation that is most important for the value of the determinant, instead of the average

correlation. However, that does not mean that the most dominant correlation always

refers to a single highest correlation-pair, like in this example. It captures something

broader, like dominant correlation dimension(s) where you can have group(s) of items

with high mutual correlations. It is important that a model is able to capture all those

dimensions. ‘Article 2: Multivariate Dependence’ elaborates these points and stresses

that CFI evaluates fit in terms of the determinant as opposed to the average pairwise

correlation.

1.3 Highlights of Articles

Article 1: Metric Space

Despite the sensitivity of fit indices to various model and data characteristics in struc-

tural equation modeling, these fit indices are used in a rigid binary fashion as a mere

rule-of-thumb threshold value in a search for model adequacy. Here, we address the be-

havior and interpretation of the popular Comparative Fit Index (CFI) by stressing that

its metric for model assessment is the amount of misspecification in a baseline model

and by further decomposition into its fundamental components: sample size, number of

variables and the degree of multivariate dependence in the data. Simulation results show

how these components influence the performance of CFI and its rule of thumb in prac-

tice. We discuss the usefulness of additional qualifications when applying the CFI rule of

thumb and potential adjustments to its threshold value as a function of data character-

istics. In conclusion, we at a minimum recommend a dual reporting strategy to provide

the necessary context and base for meaningful interpretation and even more optimal, a
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move to using CFI as a real incremental fit index intended to evaluate the relative effect

size of cumulative theoretically motivated model restrictions in terms of % reduction in

misspecification as measured by the baseline model.

Article 2: Multivariate Dependence

This note serves as a reminder that incremental fit indices are a form of standardized

effect sizes and hence, all reservations with respect to interpretations of standardized effect

sizes also transfer to their interpretation. Such a realization has major implications for

the interpretation and use of incremental fit indices, for the theoretical (im)possibility of

default universal rules of thumb in their application, and for simulation studies mapping

incremental fit indices as if their value is comparable in an absolute sense across any

and all conditions. A small but illustrative working example centered around the alleged

impact of model type will drive these points home.

1.4 Method of Study

The common methodological feature of the two studies within Application 1 is that

they are both simulation-based studies evaluating the performance of CFI and its rule-of-

thumb across different conditions. Here, I will briefly introduce the advantage of adopting

a simulation approach and discuss the concrete implementation used in the articles.

The first advantage of this simulation approach is that the ‘truth’ is known and

this knowledge can be used in the evaluation process. Second, simulation studies are

considered (empirical) experiments. They are set up in a well-controlled environment in

which the ‘truth’ can be systematically varied to accommodate to different conditions.

As a result, the effect of the systematic manipulations of potentially important design

factors on performance can be easily observed without being dependent on existing data

sets that meet certain criteria. Yet, while the flexibility of simulation studies does allow

for the ‘truth’ to be manipulated in many different ways, the design of the simulation

study should be in line with research objectives and should be kept feasible in practice and

theoretically justified, instead of a mere random manipulation of anything and everything.

Thus, given the goals for the first two articles, the experimental factors in the studies

were chosen to reflect the key components of the CFI metric space: (i) the number of
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items p, (ii) sample size n, and (iii) the amount of correlation in the data as part of the

determinant of the observed correlation matrix |R|.

Figure 7

Simulation Process Applied in the Context of Model Fit Evaluation.

Population
Model1.

Population Info
(Σm)2.

Sample Info
(S)3.

Estimated Model
(Σ̂m)4.

Model fit
5.

Model
Evaluation6.

Specify Model {p, r}

Specify Sample {n}

Rule-of-Thumb

Repeat

Note. p = number of items; r = pairwise item correlation; n = sample size; Σm = model-implied

population covariance matrix; S = sample-observed covariance matrix; Σ̂m = model-implied

sample covariance matrix.

1.4.1 Implementation of Simulation

Population-level . The general simulation process is reflected in Figure 7. The

first step in the process was defining the overall structure of the true population model

used for data-generation. In ‘Article 1: Metric Space’ for example, this was a one-factor

model with p items and equal correlations of size r between all items. While the general
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structure of the model is set, the data-generating process requires further specification of

the population model to create a condition-specific population covariance matrix in step

2. In this part of the process, specification of the model is derived from manipulations to

the number of items p, as well as |R| by changing to what degree the variables correlate.

The model-implied population covariance matrix (Σm) is then formed by combining the

expected model-implied population correlation matrix and randomly generated variances

from a uniform distribution (i.e., s ∼ U(.75, 2)).

Sample-level . Manipulations to sample size n are taken into consideration going

into step 3, where a sample-observed covariance matrix (S) is drawn from a Wishart

distribution: S ∼ W(Σ, n − 1), where Σ is the condition-specific population covariance

matrix. Manipulation of sample size n will lead to the sample-observed covariance matrix

being more or less variable with respect to the true population covariance matrix. This

sample-observed covariance matrix provides a summary of the data that is sufficient for

model estimation in the next step such that generating item-level data was not required.

In step 4, a model is to be fitted to the sample-observed covariance matrix, resulting

in the model-implied sample covariance matrix (Σ̂m). Note that the model to be fitted

can be the true population model or an alternative misspecified model. Subsequently, the

sample-observed and model-implied covariance matrix are used to determine fit according

to CFI in step 5. Obviously, one sample does not tell the whole story as a different

sample could potentially lead to (slightly) different results. Therefore, steps 3 to step 5

are repeated, resulting in a sampling distribution of CFI-values reflecting the variation

in fit values of the estimated model for data of sample size n from the population model.

Based on this sampling distribution, in step 6 the performance of the rule-of-thumb for

CFI (i.e., CFI ≥ .95 indicating acceptable fit) can be evaluated. In the end, steps 2 to

step 6 are to be repeated for each experimental condition separately.

1.4.2 Added Value

One of the reviewers from ‘Article 1: Metric Space’ asked if it would not be sufficient

to consider the population version for CFI, describe how CFI depends on both fit of

the null model as well as the model of interest and just stick with the conclusion that
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correlation has an impact on the null baseline model, instead of doing a whole simulation

study.

One important consideration here is that in practice people tend to work at sample-

level and not population-level. The example in Figure 5 showed how slightly different

fitting models can have a huge impact on the values that we get for CFI. In a similar

fashion, sampling variability can be expected to have a bigger impact on the estimated

CFI values in situations where the metric space is shorter. To what extent exactly? That

is hard to quantify a priori based on mere intuition. This is exactly where the added

value of a simulation study comes into play as it can provide more insight into the degree

of variability in CFI related to sampling variability as a function of changes in the size

of the null baseline. Surely, the behavior of CFI is based on more than just its baseline.

Where the formulation of CFI clearly expresses the relations, the simulation can directly

address the impact of bias and variance in fit for both the null baseline as well as the

model of interest and how they together influence the performance of CFI. If we would

want to put a number on the degree of variability, the results in ‘Article 1: Metric Space’

showed for example how in certain situations sample CFI values between .57 and 1.00

would be realistic values to expect for a true model. Yet, this large variation in CFI values

also suggests that using (the common rule-of-thumb for) CFI might not be informative in

those situations. In addition, ‘Article 1: Metric Space’ also showed indications of when

the general metric space principle might not hold (e.g., low-sample-size-low-correlation

situations dealing with more severe bias and sampling variation for the model of interest).

If anything, this shows how the simulation study can provide a more nuanced view on

the performance and use of CFI in practice.

1.4.3 Ethics & Good Scientific Practice6

The data used for the studies within Application 1 is simulation-based. A benefit

of using this type of data is that it doesn’t require ethical approval (Sigal & Chalmers,

2016) as it has no impact on humans, animals, and environment (Ören, 2000). Yet, in the

broader context of good scientific practice one thing to consider is that it is important to
6Part of this section is based on a course paper written for ‘UV9010: Research Ethics’ at the faculty

of Educational Sciences, University of Oslo.
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pay attention to deliberate choices in the research process (e.g., NESH, 2016). Although

simulation studies offer the flexibility to randomly manipulate anything and everything,

one should be mindful that the research remains meaningful and useful. In practice,

this means that good research design for simulation studies should focus on formulating

questions that are relevant from a theoretical perspective and that within the design of

the study there should always be a link to applied research (Paxton et al., 2001). As

will also be discussed later on (see the ‘Experimental Factors’ -section), the experimental

conditions considered in ‘Article 1: Metric Space’ for example were inspired by general

theory and situations encountered in practice. In addition, one should make sure that

the results of simulation studies are not deceiving. For instance, one should not only

focus on the specific conditions where a theory or method is supported but also pay

attention to the conditions where a theory does not hold or where a method is not the

preferred one. We for instance highlighted conditions in ‘Article 1: Metric Space’ where

the metric space principle did not hold (i.e., when increasing the number of variables in

low-sample-size-low-correlation conditions).

1.5 Design Considerations

1.5.1 Justification of Choices and Alternative Decisions

With any simulation study, one can wonder how realistic the configuration has been.

Therefore some of the decisions made in the different steps of the simulation process for

the studies in ‘Article 1: Metric Space’ and ‘Article 2: Multivariate Dependence’ are

highlighted here.

Population Model. Clearly, the data-generating population model used in ‘Article

1: Metric Space’ was quite simple, yet we decided against including more complex models.

First, changing the used population model, for example by changing the factor structure

or releasing the constraint on the correlation patterns, would not change the underlying

metric space principle. It would however make it less transparent how the different

components are moving. Specifically the expected behavior of |R| would become less

clear as the size of the correlations as well as the number of variables is manipulated.

With the focus being on understanding the role of the null baseline in model fit evaluation
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with CFI, the structure was kept simple and constant to keep things straightforward. In

Application 2 we will also see that the assumption of unidimensional constructs is not

uncommon in practice.

Considering ‘Article 2: Multivariate Dependence’, besides the one-factor model, an

orthogonal three-factor population model with independent cluster structure (i.e., the

factors are unrelated and each of the items only loads on one factor) was also applied.

The clusters were of similar size and the items within a cluster were expected to have

equal correlations of size r between them. Here one could argue that in multi-factor

models the factors are usually correlated, yet again a pragmatic choice was made here.

For the example in ‘Article 2: Multivariate Dependence’ the specific type of model used

doesn’t matter. It actually shows that CFI is insensitive to model type given a constant

degree of multivariate dependence as given by |R|. From that viewpoint, the specific set

of models considered in ‘Article 2: Multivariate Dependence’ does allow for easy calcula-

tion of the model-implied correlation that belongs to a specific value of the determinant;

specifically due to the lack of between-factor correlations in combination with the con-

stant cluster structure within each factor. Surely, translation between determinants and

correlation matrices can also be done for other population models, but this will not be

as straightforward as with the used models.

Experimental Factors. In ‘Article 1: Metric Space’, all three components related

to the CFI metric space were manipulated and used in a full-factorial design. At the

minimum, it was made sure that the foundation of the experimental manipulations was

informed by general theory or applications in practice. Further extension of the chosen

levels of the experimental factors would of course allow for an illustration of the effect

of the experimental factors over an even wider range of settings. With additional or

alternative factor levels, the value-specific recommendations in ‘Article 1: Metric Space’

might somewhat change. Yet again, the general underlying baseline principle does not

change and the main ideas will still generalize quite well.

In ‘Article 2: Multivariate Dependence’ on the other hand, the simulation served

for didactical purposes and experimental manipulations were kept to a minimum. The
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conditions were set up in a way that there are two data-generating population models

that have an equal determinant, equal within-factor item correlations, or equal average

correlation (see also Table 1 in the corresponding article). The results of ‘Article 1:

Metric Space’ were used to inform the selection of the two scenarios. Specific conditions

were selected based on whether we could expect CFI to work well for the one-factor

model (i.e., [relative] low model rejection rates given that the used model was correctly

specified). In both scenarios 1 and 2, the number of items p, as well as sample size n

were kept constant, and only the strength and/or correlation structure was adjusted to

comply with the primary setup. The results do generalize to other conditions as well,

although the pattern of results is slightly more or less pronounced.

Population Covariance Matrix. In creating the population covariance matrices,

the population variances were obtained from a specific uniform distribution: s ∼ U(.75, 2).

The decision on using this specific interval has been an arbitrary choice. Yet it does

not have any consequences as any other choice would have led to similar results (given

estimated models of interest that perfectly reproduce the variances, as is the case here).

In this part of the process, the correlations as specified in the model-implied correlation

matrix are the most important element.

Estimated Model. For the study in ‘Article 1: Metric Space’, the true population

model was refitted in step 4. The main consideration was that it seems to be common

in practice for people to act on finding support for their model. Even if this means

applying different types of adjustments to the model until it shows adequate fit (e.g.,

Ropovik, 2015). Therefore, the focus was on evaluating the performance of CFI in the

ideal situation of a correctly specified model. This also indicated that there was no error

related to the misspecification of the model and that only sampling variability will play

a role in performance.

At the same time, this also points in the direction of considering alternative misspec-

ified models. Some people actually argue that evaluating performance in non-optimal

situations (i.e., model not being correct in the population) might be more valuable in

practice (e.g., MacCallum, 2003). The difficulty that arises here is that misspecification
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needs to be modeled in some way. What makes it even more difficult is that the impact of

misspecification will be dependent on the strength of the other paths/correlations in the

models, which directly implies that the impact will be different across different conditions;

what might be ignorable in one situation, can be critical in another.

For the limited conditions considered in ‘Article 2: Multivariate Dependence’, we did

try to address the impact of misspecification on the performance of different fit indices.

To make sure that the misspecification would be sufficiently large to clearly show up in the

results, not getting caught up in the differential impact of smaller misspecifications (e.g.,

omitting a certain number of paths), we fitted models in step 4 that were plain wrong

(i.e., fitting a one-factor model when true population model is a multi-factor model and

vice versa). Clearly, absolute levels of misspecification should still not be compared, with

the misspecification being realized differently. Yet we hoped that this would give a very

crude indication of what can be expected performance-wise in the extreme case where

the estimated model is incorrect in the population. With the fit indices ideally indicating

‘bad’ fit with respect to the rules-of-thumb.

1.5.2 General Design Challenge

A general threat to more exploratory simulation studies is that they might not always

reflect the process you have in mind. Consider how manipulating one experimental factor,

might also impact other theoretical important factors that are related to the outcome.

One should be aware that failing to address these confounding relations might give rise to

misleading results and recommendations. In our case, the explicit decomposition of the

null baseline model guided and created more awareness of how the different components

are related and allowed us to shed light on examples of confounding relations found in

the literature. In ‘Article 2: Multivariate Dependence’ this had particular emphasis as

we showed how being aware of the underlying processes can help to address potential

misrepresentations with respect to the role of model type on model fit evaluation and to

prevent flawed conclusions. More detailed information about the different examples will

follow below.

In ‘Article 1: Metric Space’ for example, the confounding relation revolved around
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manipulating the number of variables. In general, the effect of increasing the number

of variables does not stand on its own, as the determinant |R|, which is a key element

in the null baseline, is also dependent on the number of variables. This also implies

that any effect found cannot be solely contributed to changes in the size of the model.

Theoretically speaking it is possible for the determinant to not be affected by increasing

the number of variables, but only in the very specific case when the added variables have

zero correlations with the other variables and each other, which is not only highly unlikely

in practice but also defeats the purpose of modeling those variables.

‘Article 2: Multivariate Dependence’ showed that there is a confounding relation

between the determinant |R| and model type. To evaluate the alleged impact of model

type on the performance of fit indices, we introduced different data-generating population

models. Yet, by changing the structure of the population model, one also readily changes

the degree of multivariate dependence in the population, as each model differently defines

where the correlation in the population correlation matrix can be found (i.e., generating

data based on different population models will impact the determinant of the sample-

observed correlation matrix). This also implies that the baseline fit for each of the model

types will be different as the underlying data will be different. With large differences

in the null baseline, it is no longer possible to just attribute any difference in fit to the

different types of models and that is something one should be aware of. Only if we

take this confounding relation into consideration and adjust the population correlations

for the difference in determinant, fair comparisons among different model types can be

made. For the CFI this would in fact mean that sampling distributions would be entirely

equivalent when estimating the correctly specified model.

1.6 Reflections on Model Fit Evaluation

1.6.1 Remaining Challenges

While addressing the basic mechanisms underlying CFI in ‘Article 1: Metric Space’

and ‘Article 2: Multivariate Dependence’ did shed some light on the performance of CFI

and its rule-of-thumb, it is probably too ambitious to expect this to immediately change

how people will use fit indices in practice. In general, it can be expected that changes
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in rule-based procedures might be hard to accomplish. For quite some time now, calls

have been made to promote more nuanced use of fit indices. Yet, often it seems, at least

to me, as if they merely propose optimizing ‘non-ideal’ procedures such that users can

maintain current practice of using rules-of-thumb for model fit evaluation.

One example can be found in ‘Article 1: Metric Space’, where we also looked at

an additional qualification stating that “CFI should not be computed if the RMSEA

of the null model is less than .158 or otherwise one will obtain too small a value of

the CFI” (Kenny, 2015). The simulation results showed that even adopting this extra

fixed criterium still does not work (i.e., correctly identifying the true model as a good

fitting model, with a binary decision rule that works at least 95% of the time). Yet, the

underlying idea might still have some merit if we take it as a more general indication of

a situation when not to use fit indices (i.e., in case of low data correlation, incremental

fit indices might not be that informative due to high variation in performance).

Another example can be found with McNeish and Wolf (2021, 2022) who also made

an attempt to promote more nuanced model evaluation. They tried to improve the

generalizability of rules-of-thumb by providing flexible rules better suitable for the specific

context a researcher is working with (i.e., rules being adapted based on model and data

characteristics). In theory, the new rules-of-thumb can be easily obtained with their web-

based application. These rules are based on the ability of a specific fit index to distinguish

between the researcher’s model (treated as if the model was true) and different levels of

misspecified models. One drawback is that currently only a limited number of situations

are considered (i.e., set of models, data type, and estimation method) and researchers

don’t have an influence on the type of model misspecification considered.

While both examples strive for more nuanced decision-making and reporting, the

adjusted procedures don’t necessarily provide an indication of why this is important or

how the fit indices work. Thus one important question that we should ask ourselves is how

we can increase awareness about the nature of fit measures and incorporate what we have

learned (i.e, the role of the null baseline in model fit evaluation and model comparison)

into practical recommendations? In both articles, we urged for explicit reporting on fit
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of the null baseline model. In absolute sense, reporting on the baseline does not provide

a direct indication of whether or not the size of the metric space is sufficient for model

differentiation, as this will still depend on context. Being able to use this information for

better interpretation of the magnitude of incremental fit indices will require some insight

about common values for the baseline within a specific research context, yet this will take

time to establish. In the meantime, we hoped that, at the minimum, explicit reporting

of the baseline would make the impact of the baseline visible when interpreting and/or

comparing values of incremental fit indices. This should be a relatively straightforward

addition when reporting results, with the necessary information being easily extracted

from default software. Based on the review by Jackson et al. (2009) we also consider this

a relevant call in practice, as they found that reporting on baseline statistics (i.e., χ2 and

degrees of freedom) is only sparsely done (i.e., only considered in 7.2% of the evaluated

studies). For the studies that do report on this, it is however not clear if or how these

values were being used, so maybe there is still more room for improvement here.

1.6.2 Change in Model Testing Strategy

In an ideal situation, we might not just want to optimize existing procedures, instead,

we might need to strive for a change in strategy when interpreting incremental fit indices.

The most important feature of model evaluation with fit indices is that it is not a binary

process, but instead, fit indices are continuous measures of model-data fit (e.g., Hu &

Bentler, 1998). With current practice, where people are holding on to rules-of-thumb and

focusing on the ‘absolute’ fit of a single model, this feature is disregarded. Incremental

fit indices are also considered valuable in comparing substantive competing models. So

instead of using them for a single model in a search for model adequacy, it would be

preferred to use them in a model testing strategy in line with original recommendations

(e.g., Bentler & Bonett, 1980).

Comparing models for a single data set has the advantage of a similar baseline metric

for interpretation and being able to compare the magnitude of the incremental fit indices

more gradually. Conceptually, comparing models in this way should also provide more

information about the practical importance of the specific parts that differ across the
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models (Bentler & Bonett, 1980) in terms of deviations from the null baseline model.

With current practice, this type of part-specific information (‘local misfit’) quickly dis-

appears when summarizing the fit of a single model by means of a 1-number summary.

In practice, it might still be hard for people to let go of the rules-of-thumb completely.

It has for example been questioned how fit indices can be practically used to compare

between competing models if there are no criteria that indicate what difference is con-

sidered meaningful (e.g., Marsh, 1998). So the difficulty here might be that there is still

some personal intuition or reasoning required about what reduction in misspecification

is considered meaningful in a specific situation.

Clearly, none of these recommendations will solve all issues at once. For some, the

issues related to the use of fit indices and their rules-of-thumb are sufficient to warn

against using any of them (e.g., Barrett, 2007). For others, the adequacy of a model

should not be judged in isolation but together with sample size, model complexity, or

more local measures of fit (e.g., Brown, 2015; Kline, 2016; Miles & Shevlin, 2007; Sobel &

Bohrnstedt, 1985). Yet, if we eventually want to use fit indices in a way that does justice

to what these measures represent, we might need to start by changing how we learn about

incremental fit indices and their rules-of-thumb. Hopefully, ‘Article 1: Metric Space’ and

‘Article 2: Multivariate Dependence’ contributed to this by putting the meaning and

behavior of incremental fit indices into perspective and reminding people of the underlying

mechanisms that play an important role here, as a starting point to evoke more deliberate

model fit evaluation in practice.

1.6.3 Choice of Baseline Model

It has been stated that ‘the incremental fit indices depend critically on the availability

of a suitably framed [baseline] model’ (Bentler & Bonett, 1980, p.604). For selecting or

specifying an appropriate baseline model, it has been recommended to choose the most

restrictive model that would still be considered in practice (e.g., Bentler & Bonett, 1980).

In practice, this led to a default use of the null baseline model. Yet, one can wonder

whether this is a logical choice. What value can be assigned to a model of interest if it is

compared against a model that expects zero correlation across all variables? It can be said
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that the evaluation that is being made here is quite liberal and in general it is expected

that not much is needed for a model of interest to demonstrate improvement in fit. Or at

least one should hope that a theoretically justified model does better than ‘nothing’ (i.e.,

absence of any relation). Yet the fact that improvement might be perceived as relatively

easy, also implies that this might not be a direct test for the strength of the model of

interest. One might be able to ascribe more value to the model of interest if it was tested

against a stronger competitor.

A potential stronger competitor can be found in the rather general but reoccurring

theoretical concept of a so-called crud factor. The main idea here is that in psychological

and behavioral research all variables are correlated with each other to some degree, even

though clear theoretical justification for these correlations might be lacking (e.g., Meehl,

1990b). If we know that things tend to correlate, should we not take this knowledge into

account when selecting a baseline model? Failing to do so might lead to comparisons that

are misleading, as a model with zero correlation can no longer be considered a proper

and theoretically defensible model in practice (Rigdon, 1996). In addition, the model of

interest might otherwise also be valued for its ability to capture correlation in the data

that has no theoretical support whatsoever (Rigdon, 1998a). Yet, how to use this prior

knowledge in selecting or specifying a proper baseline model?

In the null baseline model, the correlations between the variables are constrained to

be zero, while the mean and variances are freely estimated. Rigdon (1998a) for example

proposed one way of accounting for the crud factor by promoting an equal correlation

baseline model. In this model, the correlations between the variables are no longer as-

sumed to be zero, but instead, they are constrained to be equal, without setting explicit

expectations about the crud factor effect. In contrast, Sobel and Bohrnstedt (1985) argue

that in order to make progress, it is not only about including prior knowledge, but the

selection or specification of the baseline model should also be driven by explicit theoreti-

cal considerations regarding the relations. Building on this, an even stronger competitor

might then be formed and more information might be gained by incorporating theoretical

predictions about the direction of the effects (see also Rigdon, 1998b), or alternatively,
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by putting a number on the relations that could be expected by default (see also Meehl,

1990b). In practice of course, one would first need to know what would be the appropri-

ate size (and direction) of the crud factor. Based on experience, Meehl (1990a) expresses

that it might not be unreasonable to expect estimates of r = 0.30. On the other hand,

Ferguson and Heene (2021) are more cautious and give r = 0.10 as a lower-bound esti-

mate. Orben and Lakens (2020) plea for a more structured estimation of the crud factor

effect within different research areas, as a clear systematic overview is currently lacking.

Going forward, it would be important for researchers to reach a consensus about

what would be an appropriate baseline model within a specific domain and given specific

applications. In general, this can be any model as long as the baseline is nested within

the model of interest (e.g., Widaman & Thompson, 2003). However, at the same time, we

should not forget that changing the baseline also has an influence on the model evaluation

process. First, in default software, the calculation of fit indices is based on the default null

baseline model. Even though it is possible to set the baseline manually7, it does require

researchers to adapt their standard procedures (e.g., Widaman & Thompson, 2003).

Second, rules-of-thumb for model evaluation are even less applicable in this situation,

as the simulation studies on which they are based used the default null baseline model

in the calculation of the fit indices. While some plea for a re-examination of the existing

rules-of-thumb (e.g., Rigdon, 1996; Widaman & Thompson, 2003), others have stated

outright that “if there is not sufficient generality across different applications in the use

of M0 as a worst fitting model that can be used to anchor the lower end of incremental

fit indices, then M= [the new baseline], for which no guidelines are even offered, must be

even less useful in this respect” (Marsh, 1998, p.81). If anything, this restates the idea

that people need guidance in making qualitative judgments about models.

This also brings up the question if this approach will ever really take off in practice. In

the late 90’s Rigdon (1996, p.377) stated that “it is unlikely that there will be a movement

toward an alternate baseline model anytime soon” and so far it still does not seem to be

7For example with R::lavaan (Rosseel, 2012), calculation of fit indices can be based on an alterna-
tive model, by providing this alternative model to the baseline.model argument in the fitMeasures

function.
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common practice. Yet, despite the complications, changing the baseline is not something

that should be disregarded by default. In general, there will be situations in which the

null baseline model is considered an inappropriate comparison model (e.g., due to nesting

issues), and as a result, the fit indices can no longer be interpreted as a valid measure of

improvement of fit (for more guidelines on how to specify a baseline model suitable for a

specific research context, see Sobel & Bohrnstedt, 1985; Widaman & Thompson, 2003).

Consequently, adjustments to the baseline should and cannot always be avoided.

Additionally, Sobel and Bohrnstedt (1985) argue that a comparison to a stronger, more

meaningful baseline model is needed to contribute to scientific progress of the current state

of knowledge (see also Chapter 3). Following Sobel and Bohrnstedt (1985), one could

say that the value of a model of interest is in its ability to better capture the data that

could be done based on the current state of affairs. Yet, substantive improvement cannot

be proven in comparison to a null baseline model where there is ‘nothing’, no theory nor

prior knowledge. Therefore, Sobel and Bohrnstedt (1985) believe that the baseline model

should not be the worst-fitting model unless the research is completely exploratory, but

instead, it should be one that incorporates the current state of knowledge and theory

within a given domain. The application of the crud factor effect is just one illustration.
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2 Application 2: Characterization of random responders in the

TIMSS 2015 student questionnaire

2.1 Background

Since the late ’50s, there has been ongoing interest in comparing student achievement

and its determinants across countries. Over the years, the number of participating coun-

tries has grown and more and more topics have been covered in different international

large-scale assessments (ILSA) in education (Gustafsson, 2008). Not only does the data

collected by these international large-scale assessments provide us with a wide variety

of research opportunities, it is certainly used as well. Over the years there has been a

tremendous increase in the number of studies that use these assessment results to an-

swer a broad range of research questions (e.g., Hernández-Torrano & Courtney, 2021;

Hopfenbeck et al., 2018). Yet, paying attention to the quality of these assessment results

is crucial (e.g., Gustafsson, 2008) as the quality of the conclusions that are drawn is

dependent on the quality of the corresponding data.

One major consideration is that these types of assessments are typically low-stakes

for the students (e.g., there are no consequences for performance and no explicit benefits

for participation). This in itself already makes different people wonder whether or not

students’ responses can still be trusted in a sense that they still reflect true knowledge,

abilities, or opinions related to the assessment content. If students would not respond

accurately or thoughtfully, this could potentially lead to problems with the use and

interpretation of the assessment results. Thus from a quality assurance viewpoint, it

is important to pay attention to undesirable or invalid response behavior.

2.1.1 What Has Been Done?

While a lot of research addresses concerns about how genuine students are responding,

there is still a lot of ground to clear to determine the prevalence, generality, and impact of

this invalid response behavior within the context of ILSAs. Within this context, the two

most common approaches to address the validity of item responses are using either self-

report measures or response times. Both approaches have some distinct features related
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to measurement and can be differentiated from the approach we adopted in our articles,

for a general overview see Table 2.

Self-report Measures. Using self-report measures can be described as an indirect

measurement approach. The measures are used to collect information about the quality

of item responses on the assessment, often in relation to achievement, yet there is no focus

on the actual responses given on the assessment by the students. With this approach,

students are merely asked to rate their behavior on the assessment. For example, students

can be asked to indicate to what degree they ‘put in good effort throughout the ... test’

(e.g., Hopfenbeck & Kjærnsli, 2016). While these measures are generally easy to use

and flexible in design, one major drawback is that they are often very general or global

measures, in a sense that they try to say something about a test or questionnaire as a

whole. Yet working on such a global level also implies there is no direct link with the

actual responses that people want to draw conclusions about. In addition, people need

to be aware that self-report measures are potentially biased as they themselves also rely

on students responding genuinely as expected to this measure (cf. circularity). If they

don’t, this might already distort conclusions about the quality of the actual responses of

interest.

Response Times. The response time approach can also be described as indirect.

This approach is applied in achievement testing and seems to focus more on how students

responded than on the actual response itself. Here, reaction time information is collected

and used to identify responses that are given too fast (i.e., ‘rapid-guess’) for students to

properly process the question and thus, for the response to be considered reflective of a

student’s true knowledge or ability (e.g., Wise & Kong, 2005). In contrast to self-report

measures, the response time approach does work on item-level, meaning that the quality

of each item can be addressed separately. Yet a difficulty here is that the conclusions that

can be drawn are to some extent dependent on an arbitrary cutoff to distinguish between

students showing valid or “too fast” invalid response behavior. In addition, response time

indices can be said to be general measures, as they do not pick up on a specific type of

response behavior, but can rather pick up multiple response patterns. However currently,
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the biggest disadvantage is that item-level response times are not always available. For

example, assessments are either not computer-based or response times are only available

for the achievement part of assessments and not for the surveys. In addition, there are

some questions about how ethical this approach is, as response time data can be collected

and used without informing the respondents (Leiner, 2019).

Response-based Approach. There are some instances where response-based ap-

proaches are used in the context of ILSAs (for an example of the application of person-fit

indices see e.g., Hopfenbeck & Maul, 2011). Yet, like the response time-based approach

these measures can be very generic/aspecific in a sense that they pick up on multiple

response patterns. In our adopted response-based approach, we tried to create a direct

link between the conceptual definition of invalid response behavior and the quality of the

item responses. More detailed information about this approach will be provided later,

but for now it should be noted that, like the response time approach, our approach is

more locally oriented, using information related to the items of interest. The difference

is that while our approach uses the actual item responses as provided by the students,

the response quality is addressed at scale-level. With respect to the implementation of

the approach, a sufficient number of items and response options per item are required to

enable the detection of invalid response patterns.

Table 2

Comparison of Different Approaches to Invalid Response Behavior.

Features
Approach

Self-report Response-time Response-based

Direct vs. Indirect Indirect Indirect Direct

Measurement level Global Local: Item-level Local: Scale-level

Implementation Easy & economical, Not always available Sufficient number of items

yet potentially biased / categories required

Note. Our approach: response-based
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2.2 Conceptual Framework of Articles

2.2.1 Random Responders & Random Responding

In our studies, we specifically focused on random responding, one type of response

behavior often associated with the low-stakes context and that is generally perceived

to be harmful. In the different articles, we conceptually describe random responders

as students who at times provide “responses without meaningful reference to the test

questions” (Berry et al., 1992, p.340, see also ‘Article 4: Where’ & ‘Article 5: Who’) or

“unrelated responses ... as if (s)he was not even reading the items and choosing a response

option randomly throughout” (van Laar & Braeken, 2022, p.4, see Article 3). Either way,

random responding can be situated as a type of non-response, where the responses that are

provided by the students do not contain valid information with respect to the assessment

content (see Article 6).

Labelling Controversy. The ‘Random Responder’ label has been proven to be

a rather controversial choice with regular reactions by reviewers indicating that one of

several alternative terms would be more proper. I would like to explain here why our

adopted definition/labeling is not an unfortunate mistake, but an intentional choice.

With respect to alternative terms for random responding, there is for instance a large

literature base in social science survey research that talks in terms of careless or insuffi-

cient effort responding (e.g., Huang et al., 2012; Meade & Craig, 2012). This formulation

emphasizes the underlying causes of invalid responding and individuals’ underlying inten-

tions. I personally feel strongly that these causes/intentions cannot be directly verified as

you would somehow be expected to successfully regulate post hoc introspection of the in-

dividual’s thinking while responding to the questionnaire. This seems hard to accomplish

based on the limited information we have at hand: the pattern of given item responses.

Furthermore, the terms careless/insufficient effort responding are umbrella terms in a

sense that they could accommodate many different response patterns, both random as

well as more systematic.

The random responding formulation is not our own invention. It seems to have its

roots in psychology/personality assessment (e.g., Baer et al., 1997; Berry et al., 1991)
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and is still in use today (e.g., Credé, 2010; Kim et al., 2018). Even with this formulation,

it is in practice quite easy to speculate about intentions as well. Yet the more technical

papers emphasize how the resulting item response pattern appears to an objective outside

observer. It is this latter perspective that we also have adopted, without putting forward

any requirements on why the response pattern emerges. Thus, in this sense the chosen

label perhaps also immediately signals my research perspective on the issue of invalid

random responding.

An alternative terminology that could perhaps be considered more neutral, but also

much broadly applicable, can be found in the person-fit literature, where originally Levine

and Rubin (1979) introduced the term measurement appropriateness to discuss persons

who responded in line or counter to a measurement model of focus.

2.2.2 Operationalization of Random Responders

In our own approach, we use a relative comparison definition for random responders

based on a contrast between a measurement model and a null baseline model. We make

the implicit assumption that there is at least one group of students that respond in a

regular fashion to the questionnaire of interest such that a measurement model does

approximately apply to at least part of the population. We expect there to be another

group of students for which this measurement model is less fitting and whose response

patterns are more compatible with a uniform null baseline model reflecting more random

response behavior.

In our articles, we considered there to be two different groups of responders, regu-

lar responders and random responders, and both groups are expected to show different

response behavior. The underlying idea is also represented in Figure 8 and provides a

direct link with the observed item response patterns given on a survey scale.

Regular responders were expected to respond consistently according to their own

opinion and beliefs. In terms of model specification, these students follow a systematic

measurement model (see Figure 8a) where there is a common latent trait (i.e., circle)

which can be seen as the common cause underlying the students’ item responses (i.e.,

squares) as indicated by the arrows going down. Another group of students, labeled the
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random responders, were expected to provide unsystematic random response patterns

across the items, such that the responses no longer reflect a student’s own opinions

or beliefs. The latter model can be seen as an application of the null model, where all

observed variables are assumed to be uncorrelated, but now with the additional restriction

that observed variables are uniformly distributed (i.e., each response category has an

equal probability of being selected). In Figure 8b this is represented by the latent trait

no longer being connected with the item responses and all squares being divided into

equal (category) parts.

Random responders are students who have response patterns that are more similar to

what can be expected under this null model (i.e., students providing unrelated responses)

compared to what could be expected from the other group of students under the mea-

surement model. One important consideration here is that we do not imply in any way

that random responding is something that can be regarded as an attribute of students or

something that they do deliberately. The operationalization of random responding does

not in any way indicate how or why random response patterns came to be.

Figure 8

Framework to Define and Operationalize Random Responders.

(a) Regular Responders:

Systematic Model

(b) Random Responders:

Null Model

Note. Symbols follow standard path diagram conventions, with squares representing observed

variables (i.e., item responses); circles, latent variables (i.e., trait to be measured by the scale

of items); arrows indicating dependence relations; vertical lines, response category thresholds.

Adapted and reprinted under the terms of CC-BY-NC from “Random responders in the TIMSS

2015 student questionnaire: A threat to validity?” by S. van Laar and J. Braeken, 2022, Journal

of Educational Measurement.
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2.2.3 Research Questions

While all studies within Application 2 revolve around random responding, they focus

on different aspects of this behavior/phenomenon. For example, questions that are con-

sidered logical to answer are related to the following pointers: (i) prevalence, (ii) impact,

(iii) where, (iv) who, and (v) how often. For an overview of the specific questions being

answered in each of the articles see Figure 9. One question we did not address is why

students are random responding. As indicated earlier this is due to the lack of data or

means to study this within what is given in the current research context. Yet, I will

return to this open question in a later section.

Figure 9

Random Pictograms Representing the Different Articles about Random Responders.

�
Prevalence - How many of the students would qualify as
random responders? (Article 3)

` Impact - Do scale-related inferences change when we ex-
clude random responders? (Article 3)

� Where - Do scale position and questionnaire length influ-
ence the prevalence of random responders? (Article 4)

Ò
Who - Which students are more likely to be identified as
random responders? (Article 5)

n
How often - How consistent are students responding ran-
domly? (Article 6)

2.3 Trends in International Mathematics and Science Study (TIMSS)

In the different articles, we have tried to address the aforementioned questions us-

ing the TIMSS 2015 student questionnaire. In general, TIMSS is outlined as an inter-

national large-scale assessment used to monitor mathematics and science achievement
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among fourth- and eighth-grade students across different countries (e.g., Mullis & Mar-

tin, 2013). In 2015, the sixth round of the TIMSS assessment was conducted. Besides the

main focus on student achievement, TIMSS 2015 also contains a Context Questionnaire

Framework which is to provide additional background information about the different

contexts for learning (e.g., community, home, school, or classroom) mathematics and sci-

ence as reported by students, parents teachers and/or principals (e.g., Mullis & Martin,

2013).

The student questionnaire is one of the contextual questionnaires that are part of the

TIMSS 2015 assessment. Besides some basic demographics and background information

about the home and school context, the student questionnaire’s main focus is on students’

attitudes towards learning mathematics and science (Mullis & Martin, 2013). This type of

contextual information is often used in relation to student achievement and to compare

differences in educational learning outcomes across countries (Mullis & Martin, 2013).

With more than 580.000 participating students in TIMSS 2015 (Mullis et al., 2016), this

provides a huge amount of potentially valuable data.

2.3.1 Why TIMSS?

Clearly, data from other international large-scale assessments are also available. Yet,

what I personally appreciate in TIMSS is how well information regarding the scales in the

student questionnaire is documented. In addition, the TIMSS eighth-grade student ques-

tionnaire comes in two versions, allowing for the investigation of the role of questionnaire

characteristics on response behavior.

Figure 10 shows an overview of the scale structure of the student questionnaire(s) in

the different grades. Following the documentation, the fourth-grade student question-

naire contains eight standalone scales, while the student questionnaire for the eight-grade

contains either 10 or 19 standalone scales (for information on the specific scales see Fig-

ure 10). In the latter case, the specific number of scales is dependent on the structure

of the science program for a given country. In the integrated science version, science is

treated as a single subject, while in the separated science version each science domain is

addressed separately. For the latter version this means that the "Students Like Learning
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Science", "Students’ View on Engaging Teaching in Science Lessons" and "Student Con-

fident in Science" scales are available for every science subject separately (i.e., in order

of appearance: Biology, Earth Science, Chemistry, and Physics). The science scales in

both student questionnaires do have the same structure. For the items in the separated

student questionnaire, it is just the word ‘science’ that is replaced by the name of the

specific science domain (e.g., ‘I enjoy learning science’ vs ‘I enjoy learning Chemistry’).

Figure 10

Structure of the Different Student Questionnaires in the TIMSS 2015 Assessment.

Note. With respect to the structure of eighth-grade student questionnaires, in the integrated
science version science is treated as a single subject, while in the separated science version each
science domain (i.e., biology, earth science, chemistry, and physics) is addressed separately.
With respect to the number of scales within each domain, each page corresponds to one unique
scale. This comes down to eight scales for the fourth grade, 10 for the eighth-grade integrated
science version, and 19 for the eighth-grade separated science version. Within the context of
General School Experience, the scales are ‘Students’ sense of school belonging’ and ‘Student
bullying’. Within the context of Student Engagement and Attitudes, each of the student
questionnaires contains the ‘Students like learning subject ’, ‘Students’ views on engaging
teaching in subject lessons’, and ‘Students confident in subject ’ scales for both mathematics
and science (or biology, earth science, chemistry, and physics separately). In addition, both
eighth-grade versions also contain the ‘Students value mathematics’ and ‘Students value science’
scales.
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2.3.2 Why the Student Questionnaire?

In practice, the student questionnaire is used by a lot of researchers to answer a wide

variety of research questions and it serves an important role in putting the achievement

results into context. In addition, the student questionnaire also benefits from larger

sample sizes, more scales, and lower non-response rates than for example the teacher

and principal questionnaires. Thus, more data to systematically examine our research

questions under a larger and wider scope.

Remarkably, up to this point, the student questionnaire has received less attention

(time- and resource-wise) compared to the achievement part of the assessment (e.g.,

Rutkowski & Rutkowski, 2010), not only from the organizational side but also with

respect to validity research. Yet, with the student questionnaire playing such a prominent

role in research, it is important to closely and thoroughly inspect the quality and potential

limitations of this data. As a start, the articles within Application 2 can hopefully

contribute to this purpose by shedding some light on potential issues with the quality of

the actual responses provided by the students on the student questionnaire.

2.4 Highlights of Articles

As mentioned before, all studies within Application 2 revolve around random respond-

ing, yet they focus on different aspects of this behavior/phenomenon. Table 3 provides

an overview of the specific study characteristic across the different articles. In addition,

in what follows I will provide a brief summary of the different articles and address the

question why students might be random responding.

Article 3: Prevalence & Impact

Given the limited information surrounding random responding in international large-

scale educational assessments, the aim of this study was to investigate the prevalence of

random responders and their impact on scale-related inferences (i.e., scale score distri-

bution, reliability, between-scale correlation, and correlations with achievement) in the

TIMSS 2015 student questionnaire. To this end, a mixture IRT model approach was used

to identify those students who would qualify as random responder. The results showed
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that the prevalence, based on the number of students being classified as a random respon-

der by the model, was non-zero across all countries and scales, with an average of 6%.

The overall impact of random responders on aggregated-level results was fairly limited.

Even though there were some differences in analysis results with and without random

responders, these differences were not representing any qualitative changes.

Article 4: Where

It has been generally acknowledged that response behavior might change as students

progress through a questionnaire due to changes in their subjective experience with the

survey. Based on this idea, the aim of this study was to investigate the impact of two

questionnaire characteristics, scale position and questionnaire length, on the prevalence

of random responders. For this, we made use of the natural variation in questionnaire

length in the two versions of the TIMSS 2015 eighth-grade student questionnaire (i.e.,

considering 10 scales in the integrated science version and 19 sales in the separated science

version). The mixture IRT model approach was used to assess the prevalence of random

responders for each scale and subsequently, a cross-classified linear mixed model approach

was adopted to investigate how the prevalence of random responders varied as a function

of scale position and questionnaire length. The results showed no support for the effect of

questionnaire length, yet we did find a positive effect for scale position, with an increase of

5% in random responding over the course of the questionnaire. However, scale character

turned out to be an unexpected but more important determinant. Scales about students’

confidence in mathematics or science showed an increase of 9% in random responding,

which is double the impact of scale position.

Article 5: Who

The low-stakes character of international large-scale assessments is often considered

a contributing factor to invalid response behavior. At the same time, one might wonder

if there are certain students that might be more prone to providing invalid responses in

such a context. Specifically, the aim of this study was to examine which students are

more likely to be identified as random responders across six different scales, related to

students’ attitudes and beliefs in mathematics and sciences, in the TIMSS 2015 fourth-
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and eighth-grade student questionnaire. First, a mixture IRT model approach was used

to assess the random responder status for each student in 22 different countries at each

of the scales. Subsequently, we examined whether the prevalence of random responders

was a function of grade, gender, socioeconomic status, spoken language at home, or

migration background and summarized the results by means of a random effects meta-

analytic model. In general, the results showed that being a student in higher grades,

being male, reporting to have fewer books, or speaking a language different from the test

language at home were all considered risk factors for random responding.

Article 6: How often

At the individual-level, one can wonder when someone is identified as a random re-

sponder on one scale whether their results on the other scales should be deemed invalid

as well. At the same, this can be expected to be different for different students as they

might respond to questionnaires in a different fashion. The aim of this study was to

investigate and compare how consistent different students are in their random respond-

ing across the TIMSS 2015 eighth-grade student questionnaire. The mixture IRT model

approach was used to assess the random responder status for each student in 7 different

countries at each scale and subsequently, a latent class model was adopted to identify

different types of random response profiles. Overall, the results showed four distinct pro-

files of random responding that we described as: A majority of consistent non-random

responders, intermittent moderate random responders, frequent random responders, and

students that were exclusively triggered to respond randomly on the confidence scales in

the questionnaire. These profiles generalized quite well across countries.
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Table 3

Overview of Study Characteristics in the Context of Random Responding.
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2.4.1 Not Addressed: Why

One question that we have not addressed in our articles, but seems to interest many

people, is why students tend to respond randomly. Especially the low-stakes character of

the assessments is considered a contributing factor to invalid responses where scores are

no longer representative of the construct under study (e.g., Wise & DeMars, 2005). In this

context, speculations about the reasons underlying random responses, or invalid response

behavior in general, are usually in terms of a lack of motivation/engagement/effort by

the individual.

A popular theoretical framework for motivation within the field of education is the

expectancy-value model (e.g., Eccles & Wigfield, 2002; Wigfield & Eccles, 2000). In

this model, a person’s response behavior on a task (e.g., task choices, invested effort,

persistence, and performance) is influenced by their motivational disposition resulting

from the interplay between expectancy beliefs and task-value beliefs (see Figure 11). The

former are a person’s beliefs about being able to succeed in a certain task and the latter

is more about the reasons a person puts forward for engaging with the task. A person’s

task-value beliefs are determined by four components: (i) how important is it for the

person to do well; (ii) the level of interest in the task or how much enjoyment the person

does get out of the task; (iii) the degree to which the task relates to the person’s individual

goals; and (iv) how big of an investment the person needs to make perform the task (e.g.,

time, pressure, missed opportunities).

Although an attractive general framework, I feel it falls somewhat short in adequately

capturing the case of random responders in low-stakes assessments. Penk and Richter

(2017), for instance, point out that there is mostly a one-sided focus on task-values

in the interpretation of test-taking motivation in low-stakes testing, whereas the role

of expectancy-related beliefs is hardly discussed. With no personal consequences for

performance and no feedback on the correctness of the provided responses (Cole et al.,

2008) in the achievement tests of the international large-scale assessments, it becomes

indeed less straightforward to conceptualize what type of expectancy beliefs might still

apply. To an even greater extent, this also applies to the student questionnaires, where
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for most of the items there is no objectively correct answer. Thus what would ‘ability’

and ‘succeeding in the task’ look like for individual students in such a situation?

On the other side, the low-stakes character (i.e., lack of personal consequences for per-

formance and no explicit benefits for participation for an individual student) is logically

expected to lead to weak task-value beliefs which will contribute to lower motivation on

the assessment, and as a consequence less effort and less valid responses. Although it

is acknowledged that the degree to which the low-stakes context impacts task-value be-

liefs differs among students (e.g., Wise & DeMars, 2005), this simplified linear reasoning

leads to quite speculative overly strong statements: “Without consequences for perfor-

mance, many students will not give their best effort to such low-stakes tests; as a result,

their assessment test scores may not serve as valid indicators of what they know and

can do.” (Wise & DeMars, 2005, p.1). These statements seem to imply that a person’s

motivational beliefs have a direct deterministic and stable influence on their test-taking

behavior. Yet, seeing value or having positive expectancy beliefs is not a deterministic

guarantee for being motivated, nor does a low motivation necessarily prevent people from

responding in a regular valid fashion to the assessment. Typically only low to moderate

positive correlations are found between self-reported motivation/effort measures and ac-

tual response behavior/achievement measures (e.g., Butler & Adams, 2007; Eklöf et al.,

2014; Hopfenbeck & Kjærnsli, 2016). Hence, I think that it is important to acknowledge

that, in contrast to the simplified interpretation of the Expectancy-Value model, there is

not a deterministic one-to-one mapping between its components and that there is some

uncertainty in the chain of relations. Otherwise, such statements make it too “easy for

stakeholders ... to conclude that below-expected performance levels are due to lack of

motivation, whether that be the true state of affairs or not” (Thelk et al., 2009, p.129).

As a further complication, both a person’s beliefs, motivation, and test-taking be-

havior are likely not a generally applicable phenomenon, but can potentially change

throughout the assessment depending for example on the assessment content or dura-

tion. This would also imply that a single global measure of motivation might not be

sufficient and other specific and/or dynamic dimensions need to be added. For example,
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the study by Penk and Richter (2017) followed the structure of the Expectancy-Value

model, and found a decrease in students’ test-taking effort and perceived value within

a single cognitive test at group-level, while expectancy beliefs remained rather stable.

In a survey context, Galesic (2006) also reported changes in self-reported interest and

testing burden depending on the varying content aspects in the blocks of the survey.

General observations of response behavior being more consistent within assessment parts

of similar nature go back to early classics such as Cronbach (1950) and interpretations of

declining response quality as a function of test fatigue or boredom are widely represented

within the literature. In our own work, ‘Article 4: Where’ and ‘Article 6: How often’

both expand on these issues and provide empirical support for the claim that random

response behavior is non-constant throughout the survey. An interesting question could

be whether these observed changes in random response behavior would coincide with a

change in test-taking motivation and/or changes in motivational beliefs.

In conclusion, figuring out why students provided invalid random response patterns

on the assessment could be very interesting, yet remains quite challenging as we currently

lack a comprehensive theoretical framework and also proper measurement tools. Current

attempts have mostly relied on self-report measures addressing motivation or effort on

the assessment as a whole or on post hoc interviews (e.g., Butler & Adams, 2007; Eklöf,

2007; Hopfenbeck & Kjærnsli, 2016; Hopfenbeck & Maul, 2011). The former lacks speci-

ficity in their link to the actual responses provided by students, ignores the non-constant

characteristic of the phenomenon, and is somewhat circular in nature (cf. asking someone

by means of a survey whether they are motivated to answer such a survey). The latter

relies on the ability of students to discuss one’s own response processes during the assess-

ment in retrospect, which might not always be that reliable. While these are good initial

attempts, we will need to move a step further if we want a proper answer to the question

of why. The good news is that other questions that are focusing more on actual response

behavior can be answered with the current methodology and without the requirement of

knowing exactly why a given response pattern was provided.
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Figure 11

The Expectancy-Value Theory Model in the Context of Test-Taking Motivation.

Motivational Disposition Response Behavior

Expectancy-
Related Beliefs

Task-Value
Beliefs

i Importance
ii Interest
iii Utility
iv Cost

A
bi

lit
y

R
ea

so
n

Effort

Performance/
Response Quality

Note. Adapted from “Change in test-taking motivation and its relationship to test performance

in low-stakes assessments” by C. Penk and D. Richter, 2017, Educational Assessment, Evaluation

and Accountability.

2.5 Method of Study

The four studies within Application 2 are all empirical studies using TIMSS data and

applying quantitative methods with a hybrid mixture model as common methodological

feature. Here, I will briefly introduce the history behind this model and discuss the

concrete implementation used in the articles.

Latent class models are part of the larger statistical class of mixture models (e.g.,

McLachlan et al., 2019). These models are often used when population heterogeneity is

expected with two or more groups in the population that show distinct response behavior,

but where group membership is in fact not observed. In the context of educational

measurement, the idea of population heterogeneity was explored when discussing the

possibility of different problem-solving strategies for cognitive tests, with initial work

dating back to the 1990’s (e.g. Kelderman & Macready, 1990; Mislevy & Verhelst, 1990;

Rost, 1990). Initially, the focus was on two-class mixture models of common item response

models for binary responses. Yet, extensions to multiple classes, polytomous responses,
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and less common item response models followed soon after (Jin et al., 2018; Sen & Cohen,

2019; von Davier & Carstensen, 2007).

One specific mixture model proposed and labeled by Yamamoto (1989) as the HY-

BRID model can be seen as the parent model of the mixture IRT model we applied

throughout all studies within Application 2. The HYBRID mixture model consisted of

one class that followed a common item response model for binary responses and other

classes where item responses were expected to be independently distributed following a

Bernoulli distribution where the probability of correct response potentially varies across

items and classes (i.e., in line with prototypical item response patterns that are assumed

to reflect different response processes). It was labeled HYBRID as it is a mixture of

two different types of models: IRT and non-IRT. As pointed out by for instance von

Davier and Carstensen (2007), there is also an alternative perspective on the HYBRID

model. From this perspective, both mixture component models are treated as latent

variable measurement models, yet one of them is much more constrained than the other.

This perspective allows this type of HYBRID models to be estimated in software such

as Mplus. This is also the strategy followed in our implementation of the polytomous

extension of Yamamoto (1989)’s HYBRID model (for an example of Mplus syntax, see

‘Article 4: Where’ or ‘Article 6: How often’, Appendix A).

Figure 12 summarizes the formulation of the adopted mixture IRT model. The prob-

ability of the vector of item responses Y (i.e., Pr(Y|C = c)) is formulated as a weighted

sum across the C = 2 classes of the prior probability of belonging to a class c (i.e.,

Pr(C = c)) and the conditional probability of the response vector given that you would

be a member of class c (i.e., Pr(Y|C = c); see left panel of Figure 12). The formulation

for the conditional probability of the response vector depends on the specific class. For

one class it follows a graded response model (Samejima, 1969); a common latent vari-

able measurement model for polytomous item responses where the item responses are

assumed to be conditionally independent given the latent variable. For the other class

the formulation is in line with a null baseline model; following a multinomial distribu-

tion where each response category has an equal probability of occurrence and the item
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responses are assumed to be independent (see middle panel of Figure 12). The regular

measurement model is obtained when the prior probability for the second class is fixed

at 0. The null baseline model is obtained when the prior probability for the second class

is fixed at 1. In the mixture model, the prior class probabilities by definition sum up to

1 (i.e., Pr(C = RR) = 1− Pr(C = \RR)).

For model estimation, typical algorithms for mixture models such as the expectation-

maximization algorithm can be applied in combination with a multi-start procedure to

counter the usual concerns of local maxima. For classification purposes, Bayes theorem

can be applied to obtain the maximum a posteriori membership classification in which a

person is assigned to the class for which their item response pattern has the highest pos-

terior probability given the estimated mixture model. The latter posterior probabilities

are obtained as:

Pr(C = c|Y) =
Pr(C ∩Y)

Pr(Y)
=

Pr (C = c) Pr (Y|C = c)∑2
j=1 Pr (C = j) Pr (Y|C = j)
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Figure 12

Graphical Representation of the Adopted Mixture Model Approach.

Y

\RR RR

Pr(C = \RR) Pr(C = RR)
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Null

Model

Pr(Y)

Pr(C = c)

Pr(Y|C = c)

= Σc

×

Note. Y: vector of item responses; C = c: membership in class c; Pr(C = \RR): mixture
component weight for the regular responders; Pr(C = RR): mixture component weight
for the random responders; GRM: graded response model.

2.5.1 Considerations for Valid Use of the Model.

While mixture IRT models have been around since the 1990s, their application be-

yond methodological papers is still limited. At the same time, real empirical data is

often messier than any simulation design and corresponding data example. Thus, some

caution is needed when using these mixture models in practice in order to secure their

appropriateness and utility value.

Initially, we for instance also considered a variant of our mixture model in which the
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uniformity restriction on the response distribution in the null baseline model was omitted

and only independence of the item responses was assumed. Yet, the application of this

non-uniform model raised quite a few conceptual questions by one of the reviewers for

‘Article 3: Prevalence & Impact’. The most difficult feature of this variant is when one

needs to consider the substantive interpretation of the estimated non-uniform category

thresholds. Here, with this non-uniform variant, it is much more difficult to clearly

demarcate the interpretation of this mixture component and consequently, this variant

was abandoned and only the uniform variant was considered.

Some of the challenges of empirical data were made clear by the, for me infamous,

case of Botswana where somewhat odd results appeared. Botswana showed a very high

prevalence of random responders and close-to-zero or even negative factor loadings for

some items in the measurement model. Yet in theory, the scale was supposed to be uni-

dimensional. These anomalies were a signal that the measurement model was not very

applicable to Botswana. Such findings lead to the quality criteria we imposed for use

of the mixture model results: When (1) two or more standardized item discrimination

parameters (i.e., factor loadings) were below .40 and/or (2) the classification entropy

was not at least .70, the particular case and model were disregarded for further analy-

ses. Without a strong measurement, the distinction to and meaning of the null baseline

model also becomes too blurred and any further classification in random and regular

responders seems unwarranted. With the transition to more digital assessments, things

like response times might become more readily available, also for the survey part of the

international large-scale assessments. In the future, the inclusion of such auxiliary in-

formation can potentially be used to further strengthen the model’s application and the

resulting classification.

2.5.2 Ethics & GDPR8

The data used for the studies within Application 2 comes from the TIMSS 2015

assessment conducted by the International Association for the Evaluation of Educational

Achievement (IEA). IEA has made anonymized data files publicly available in the TIMSS

8Part of this section is based on a course paper written for ‘UV9010: Research Ethics’ at the faculty
of Educational Sciences, University of Oslo.
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2015 International Database9. In line with Section 10 of the guidelines for research ethics

from NESH (the National Committee for Research Ethics in the Social Sciences and the

Humanities), using this type of data as part of the research project does not require further

approval (e.g., from students or the Norwegian Centre for Research Data [NSD]). It has

been stated that while re-using anonymized data files it is important to pay attention to

the source of the data with respect to ethical processes (European Commission, 2021). In

the background, all countries participating in the TIMSS 2015 assessment gave permission

for releasing their country-data (Foy, 2017) and the IEA Data Processing and Research

Center followed standardized procedures to protect anonymity and integrity of the data

and arranged secure storage of the original data. For the newer cycles of TIMSS, more

explicit information about the implementation of the General Data Protection Regulation

(GDPR) rules are documented within their data protection declaration10.

Because the data we used had already been previously collected, we had no influence

on the study design or data collection itself. Yet, there are also more general norms

and values that researchers should take into account (NESH, 2016). Concepts such

as data integrity, reproducibility, and communication of the results are acknowledged

as important factors related to research ethics (e.g., ASA, 2018; NESH, 2016). For

example, in line with section F of the Ethical Guidelines for Statistical Practice from the

American Statistical Associations (2018) to promote reproducibility, we provided code

for the general model we used to identify random responders (see Appendix A in ‘Article

4: Where’ or ‘Article 6: How often’).

But maybe more importantly, being honest and open about results is key to good

research practice (e.g., ASA, 2018; NESH, 2016). We were not in any way invested in

any particular outcome related to international large-scale assessments, nor were we out

to prove certain predetermined biases or hypotheses; instead we let the data speak for

itself. Based on encounters with an occasional reviewer who objected to the method and

the article because not enough random responders were identified and the impact was

minimal, this might not always be self-evident in practice. In any case, we tried to discuss

9TIMSS 2015 Database: https:// timssandpirls. bc. edu/ timss2015/ international-database/
10IEA & GDPR: https:// iea. nl/ publications/ timss-2019-data-protection-declaration/

https://timssandpirls.bc.edu/timss2015/international-database/
https://iea.nl/publications/timss-2019-data-protection-declaration/
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all the relevant decisions being made in the process, such that others can make their own

conclusions.

2.6 Validity. Observable Consequences and Unobserved True Responses of

Random Responders

As mentioned before, data from ILSAs are used to answer a wide variety of research

questions. To ensure the trustworthiness of the conclusions or decisions that are being

made based on this data, one should pay attention to the validity of the assessment

results (e.g., Taylor, 2013). From one perspective it can be said that validity indicates

the extent to which the evidence supports or refutes the proposed interpretations and

uses of the assessment results (e.g., AERA et al., 2014; Taylor, 2013). What stands out

here, is that focus is not on the assessment itself, but on its outcomes (e.g., AERA et al.,

2014). In general, validity threats can then be seen as those factors that question the

trustworthiness of the conclusions or decisions we make (Taylor, 2013). It is important

to be aware of and collect information about these types of factors to help guide sound

interpretation of assessment results (e.g., AERA et al., 2014).

The ‘Standards for Educational and Psychological Testing’ provide guidelines for as-

sessing validity - and contains a specific section on the ‘use and interpretation of edu-

cational assessment’. One specific threat to validity highlighted by the Standards is the

influence of ‘students’ motivation to do well’. As we saw before, lack of motivation is

one reason often brought forward for explaining why assessment results might not be

reflective of what students really know and can do. This also relates to the main idea

that the validity of the assessment results is to a large extent dependent on getting valid

responses. Students providing random responses on the questionnaire scales would clearly

be in opposition to that idea.

In what follows, the focus will be on scale score interpretation, where this will be lim-

ited to what the scores mean (e.g., scores describe the current level of attitude or belief of

students). Lacking valid interpretation, the use of scale scores for further inferences and

decisions will be impaired. First, I will discuss the consequences of having responded ran-

domly on scale score interpretation at individual and more aggregate levels of inferences.



51

Second, I will address the complex question of what the unobserved true responses might

have been if random responding had not occurred. Note that I will assume that the items

used in TIMSS are representative of the corresponding constructs, thus the content and

structure of these constructs will not be discussed here in this context (but are of course

also up for debate when considering the larger validity question).

2.6.1 Observable Consequences of Random Responding

Scores for Individuals. Whereas there is no direct problem for scale score interpre-

tation for individual students identified as regular responder, being identified as random

responder, in contrast, threatens by its very definition a valid score interpretation for

such an individual. The responses given are considered to not be consistent with their

own opinions and beliefs related to the questionnaire content, and as such their scale

score would just reflect random noise and be nigh non-interpretable. While we analyze

the individual response patterns, we don’t know why students might have responded as

they did. Yet, if we in general consider them to be true random responders, a conse-

quence would be that the scores of these students cannot be accurately interpreted as

representing the students’ current level of attitudes or beliefs.

Of course, there is always some uncertainty in classification/identification and there

might be a chance that the apparent random response pattern is actually the true response

pattern of a student (see e.g., the tweet below by Payne, 2022).

What if the low effort, random responding we see on internet surveys is

not an aberration, but a good reflection of how people really are? Maybe

most people, most of the time, are just as shallow-thinking and random-

responding in daily life. It would explain some things, no? (Payne, 2022)

Aggregate Scores. In practice, the assessment results in international large-scale

assessments are not used to draw conclusions about individual students, but are used

to draw conclusions about groups of students or differences between groups. Consider

there is a group of students for which we want to say something about their average
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level of attitudes or beliefs. A complication might arise as this group could potentially

include some random responders. The corresponding aggregated scale scores would be

the result of mixing valid scale scores of regular responders with invalid scale scores of

random responders. If this is the case, can the average level we find for a construct still

be interpreted as the true average for the group? One thing we could do is to investigate

how scores would change if we excluded those random responders since their individual

responses cannot be interpreted.

The impact of excluding random responders will depend on different factors. One

could consider the size of the random responder group relative to the size of the regular

responder group as for example reflected in prevalence statistics. While non-ignorable

prevalence rates can indeed add to the distortion of aggregate scores, the presence of

random responders itself is not a sufficient condition for finding differences in statistics

and related inferences at the aggregate level. By definition, the random responders on

a scale are expected to score around the midpoint of the scale. Logically this would

imply that random responders have more impact on the scale mean, the further away the

regular responders as a group score from this midpoint (i.e., higher score separation). At

the same time, more heterogeneity within the regular responder group will decrease the

impact of the random responder group on the mean and other univariate scale statistics.

Thus, within a group that has rather homogeneous scores around the midpoint of the

scale, random responders will only function as an additional unbiased noise factor, not

substantively distorting the group mean nor related inferences. Keeping everything else

equal, the impact of excluding random responders will increase as the difference in scores

between the two groups increases (Credé, 2010).

2.6.2 Unobserved True Responses

Yet, this is not the end of the story with respect to score interpretation, as the validity

also depends on what they would have answered if the students did not respond randomly.

Only under the assumption that the true responses of the random responders would be in

line with the rest of the students, removing the random responders from the data would

provide an average score that can be interpreted as the average level on the construct
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for the group as a whole. On the other hand, this also implies that, if this assumption

is not applicable in practice, scores for the group without random responders might still

not provide a valid indication of the average levels of the attitudes or beliefs within the

group.

An alternative mechanism to consider is that the random responders are in fact all

belonging to a specific subgroup. For example, in ‘Article 5: Who’ we saw that being

a student in a higher grade, being male, reporting to have fewer books, or speaking

a language different from the test language at home were considered risk factors for

random responding. To the extent that these risk factors relate to the attitudes or beliefs

under investigation, this could also potentially impact score interpretation. For example,

consider a situation where only males are identified as random responders and where

males and females score differently on the construct. If we would exclude the males in

this situation aggregate scale score statistics might be affected by the different ratio of

males and females in the group. As a consequence, problems with score interpretation

might still arise depending on the severity of this imbalance.

If we would assume that the true responses of the random responders in this situation

would be in line with the rest of the males, we could potentially replace their scores

with plausible values from the score distribution among the other males as a solution

to provide a valid indication of the average levels of the attitudes or beliefs within the

whole student group. Of course, the fact remains that we don’t know what responses

they would have given if they had not responded randomly. However, in this situation it

might still be the safer option to treat the random responders like the other males, than

removing them and considering them to be like everyone else (cf. imbalance issue).

One huge caveat remains, those more problematic situations where we don’t have any

indication of who the random responders are and where unknown but systematic mech-

anisms elicit random response behavior in select individuals with specific (unobserved)

true scale scores. Without further insight or data, none of the above working assumptions

can support valid score interpretation in such a case.

Thus, next to the two preconditions of non-ignorable prevalence and score separation
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(from midpoint), the actual consequences of having random responders present on ag-

gregate scale score interpretation will also depend on the underlying mechanisms similar,

as is the case for more traditional non-response (e.g., Groves & Peytcheva, 2008; Hedlin,

2020), that are commonly framed in terms of Rubin’s (1976) framework of missing com-

pletely at random (MCAR), at random (MAR), or not at random (MNAR). Notice the

similarities to these three formal mechanisms in the preceding paragraphs.

2.6.3 Relations among Scale Scores in the Presence of Random Responders

In practice, people tend to not only look at average scale scores (and other summary

statistics), but often also relate scores on one scale with scores on other scales. Everything

discussed thus far applies to scores on each of the scales separately, but the extent to

which random responders systematically co-occur across scales adds another layer to the

problem.

Some scenarios are sketched in Figure 13. When the regular responders respond on

average across the midpoint on both scales (i.e., low score separation with the random

responder group), the exclusion of random responders will have a mostly ignorable impact

on the estimated correlation between scale scores (see Panel A). In contrast, when there

is a clear score separation between the regular and the random responder group on both

scales, the extent of the overlap between the random responder groups is crucial for the

type of impact that will occur upon the exclusion of the random responders. When ran-

dom responders are consistent across scales, they form a highly influential leverage point

pulling any correlation between the two scales, and the removal of random responders

from the data can potentially dramatically impact the estimated correlation (see Panel

B). In contrast, when the random responder group on the first scale is mutually exclusive

to the random responder group on the second scale, random responders would mostly

disturb variance estimates (given score separation on both scales between random and

regular responders) and thereby upon removal change the estimated correlation between

the two scales (see Panel C). Hence, finding a noticeable prevalence and score separation

between the random responder group and the regular responder group are not sufficient

preconditions for finding inferential impact with respect to correlations, and variances
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and correlations within the regular responder group as well as the type of overlap in

the random responder groups across the scales will be additional moderating factors. In

practice, it can be even more complicated if selection effects are at play and only people

with a certain score range on one scale, end up random responding on the other scale.

Thus, in the end correlations between scales can be impacted in either direction or remain

unaffected, and are all still depending on the non-response mechanisms at play underlying

the unobserved true responses for the random responders.

In ‘Article 3: Prevalence & Impact’ we did not find substantial qualitative differences

in a set of correlations (and other descriptive statistics) after excluding random responders

in our case study four scales of the TIMSS student questionnaire. This particular result is

linked to the relatively low prevalence of random responders, in combination with sizeable

variation in scale scores among the regular responder groups, low score separation, and

low consistency in random responding across scales. Note that also ‘Article 6: How often’

points at random responders not being very consistent in being random responder across

scales, which excludes the most impactful scenario of Panel B. While these results give

reason to be cautiously optimistic with respect to the anticipated impact of in/excluding

random responders for inferences at the aggregate level, they should not be taken for

granted. Furthermore, as before, we should keep in mind that the full consequences of

random responders on the interpretation of scores also depend on the unobserved true

scale scores of the random responders. The implicit assumption, made by us and others,

that random responders —if they had not responded randomly— would have scored like

everyone else, is not per se a natural given. Hopefully, this also makes it clear that

it is hard to make general predictions about the impact of random responders on the

overall correlation between scale scores and the validity of score interpretations, as it

does depend on features of the particular study setting and non-response mechanisms

underlying random responding.
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Figure 13

Potential Consequences of Random Responders.

Note. The green dots represent the regular responders. The purple dots represent those
students who are identified as random responders on both, scale A and scale B. The blue dots
represent those students who are identified as a random responder on either scale A or scale B.
Depending on the situation, the impact of the random responders on the overall correlation
between the scale scores on scale A and scale B differs. In panel A, removing the random
responders (i.e., 25% of total) does not influence the correlation (i.e., r = −.31 for the whole
group and r = −.32 for the regular responders). In panel B, removing the random responders
(i.e., 25% of total) does decrease and change the direction of the correlation (i.e., r = .67 for
the whole group and r = −.32 for the regular responders). In panel C, removing the random
responders (i.e., each random responder group contains 12% of the total) does result in a
stronger, yet negative correlation (i.e., r = .11 for the whole group and r = −.32 for the regular
responders).

2.7 Reflections on Random Responders

2.7.1 Prevention of Random Responding

The main goal of any questionnaire is to get valid information from the respondents.

Random responders are clearly not providing the desired responses. One question we can

ask ourselves is whether prevention is possible? This question, not limited to random

responding, has gained a lot of attention within many research contexts.

Incentives. Prior research has for example investigated whether the presence of in-

centives or increasing the stakes (e.g., academic grades, course credits, feedback, financial

reward, or other prizes) could encourage individuals to provide more valid responses and

to complete the questionnaire (e.g., Baumert & Demmrich, 2001; Galesic, 2006; Gibson

& Bowling, 2020; Huang et al., 2012). Yet, the literature shows mixed results in this

respect, making it difficult to identify a generic solution. Furthermore, some solutions
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commonly used in an achievement test context might already not be feasible with survey

questionnaires. For example, performance-based incentives will be difficult to implement

as there are no clear right or wrong answers on a survey question about students’ opinions,

beliefs, or attitudes. While financial rewards might be ethically questionable and come

with no guarantee for achieving their goal (i.e., more truthful answers) (Finn, 2015).

In the TIMSS assessment, a booklet design, as well as pauses in-between assessment

parts, are implemented (Mullis & Martin, 2013) such that the test burden and testing time

for students are reduced. Yet, to the best of my knowledge, there were no other official

procedures in place with TIMSS 2015 to promote valid responding and data quality.

Yet, what has been stated is that “In more than half of the cases (61% at the fourth

grade and 65% at the eighth grade), school coordinators indicated that students were

given special instructions, motivational talks, or incentives by a school official or the

classroom teacher prior to testing” (Martin et al., 2016, p.9.14). Galesic and Bosnjak

(2009) state that in situations in which students are expected to participate (as is the

case for TIMSS), incentives and social pressure typically become more important than

any personal interest. As such, it could have been interesting to see if there would

be any difference in random responding across the different instruction-incentive-social-

pressure conditions in practice. Even part of the between-country differences might be

related to how international large-scale assessments are introduced to and regarded by the

participating students. That this can differ quite heavily across countries is illustrated

by the following quote:
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But I digress. My colleague, Sung-Ho Kim, observed the administration of

the IAEP [International Assessment of Educational Progress] tests in Korea.

He noted that, although the students chosen to take the test were selected

at random, just as in all the other countries, they were not anonymous.

No individual scores were obtained, but it was made quite clear that these

chosen students were representing the honor of their school and their country

in this competition. To be so chosen was perceived as an individual honor,

and hence to give less than one’s best effort was unthinkable. Contrast this

with the performance we would expect from an American student hauled

out of gym class to take a tough test that didn’t count. (Wainer, 1993, p.13)

Unfortunately, we do not have information on such practices in the publicly available

data to relate this to any of our results.

Warnings & Attention Checks. In addition to the provision of positive incentives,

there are other approaches around which have a more negative connotation, like the use

of warnings or the inclusion of bogus items or instructed response items. Consider, for

example, the study by Gibson and Bowling (2020) where the respondents were provided

with the following warning: “Please be aware that I will use sophisticated statistical con-

trol methods to detect the accuracy and thoughtfulness of your responses. If you do not

provide accurate and thoughtful responses to today’s survey, you will not receive course

credit for completing the survey.” (Gibson & Bowling, 2020, Supplementary Material 3;

see also Bowling et al., 2021; Huang et al., 2012). In this case, the incentive comes in

the form of punishment instead of a reward. The bogus or instructed response items on

the other hand have somewhat of a double function. Initially, these types of items are

supposed to give an indication if the provided data can be trusted. Yet, at the same

time it is deemed good practice to include a warning at the start of the survey to inform

respondents that such items can be included. But even without an explicit warning, by

their irregular nature, these items might also give the respondents the impression that

they are being monitored.
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This feeling of being monitored, explicitly through warnings or implicitly by observ-

ing bogus items, hopefully encourages respondents to respond less randomly. Yet, the

approach can become quite invasive and could actually be counterproductive. The bo-

gus or instructed response items for example, are at risk of being perceived as ‘trick’

items (Meade & Craig, 2012), deliberately misleading to see if the respondents pay atten-

tion, which in addition might also be considered unethical by students and stakeholders

(Hooper, 2022). Silber et al. (2022) showed that over 35% of the respondents feel ‘con-

trolled’ or ‘manipulated’ by these types of items. These approaches might indeed not

always result in more valid responses and easier detection of invalid response behavior.

Galesic (2006) for example, has reasons to believe that monitoring respondents, by re-

peatedly asking them about how they experience the questionnaire (i.e., as an indicator

of response quality), might have adverse effects, resulting in respondents not completing

the questionnaire. This also complicates matters further, as it has been stated that for

the best detection results of invalid responses it would be good to include multiple indi-

cators throughout the questionnaire (Curran, 2016). In addition, Silber et al. (2022) for

example also show that even if students are being aware of these indicators, they might

actually choose not to respond to them, which also defeats their usefulness.

Despite the mixed results for both the positive and negative incentives in the literature,

I do want to believe that it will be possible to reduce invalid responding in some way or the

other, although I also realize that we won’t be able to ever completely eliminate it. At the

same time, we can also wonder whether it is really necessary to use countermeasures and

monitor behavior of the respondents. Credé (2010, p.602) states that “the rate of random

responding is nonzero for most populations and is likely to fall somewhere between 1%

and 10%, although higher rates are certainly possible under certain circumstances.” If we

take this into consideration, general prevalence rates that might not be too bad, maybe

the best thing we can do is make researchers aware of the different factors potentially

influencing data quality and address them after data collection.

One example could be to follow our adopted approach in ‘Article 3: Prevalence &

Impact’, where we assigned respondents into different groups based on their response be-
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havior and performed sensitivity checks for the robustness of the results. Alternatively,

Goldammer et al. (2020) also summarizes some other routes one could consider, such

as incorporating levels of invalid responding as an additional covariate or method fac-

tor in the model or treating invalid responses as a missing data problem. But first, it

is important to bring sufficient attention to invalid response behavior and its potential

consequences. For some time there have been indications that, in certain research ar-

eas, these are underexposed topics that don’t get enough credibility. As a consequence,

standard procedures for the detection of invalid responses are often lacking (e.g., Hooper,

2022; Liu et al., 2013; McGonagle et al., 2016). In the end, regardless of the specific

route chosen, all efforts to explore the presence of random responding (and other forms

of invalid response behavior) (e.g., Cronbach, 1950; Curran, 2016; Huang et al., 2012) will

hopefully result in increased awareness and a better understanding of the large amounts

of data that are available for international large-scale educational assessment and the

like.

2.7.2 Generalization of Results

The overall average prevalence rates (across different countries, scales and/or grades)

among the different studies in this thesis ranged between 6% and 10%. At first sight, this

is well in line with the general trends found among other studies. Of course, under spe-

cific conditions higher rates can occur, yet in the broader literature, common estimates

for typical cases are often around 10% (e.g., Credé, 2010; Curran, 2016). Based on this

there are no strong reasons to believe that these numbers wouldn’t extend to other inter-

national large-scale assessments as well. Let’s for example consider PISA (Programme

for International Student Assessment from OECD) and PIRLS (Progress in International

Reading Literacy Study from IEA). The PISA assessment is conducted among 15-year-

old students, while PIRLS is conducted among fourth-graders. Most of our results are

based on the eighth-grade students that participated in the TIMSS 2015 assessment, with

some results present for fourth-grade students as well. What we saw in ‘Article 5: Who’

is that students in the higher grades have a higher odds of being identified as random

responders. With that respect, it would be logical to assume that the results might be
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more easily generalizable to results in PISA.

On the other hand, the PISA assessment is said to have a different focus, while the

student questionnaire for PIRLS 2016 has the same setup as the TIMSS 2015 fourth-

grade student questionnaire. It even has the same type of questionnaire scales and some

similar items, although focused on reading instead of mathematics or science. Yet, as

we saw in ‘Article 3: Prevalence & Impact’ and ‘Article 6: How often’, students don’t

seem to be very consistent in their random response behavior across the questionnaire.

This makes us believe that random responding is likely not a generally applicable trait

and that scale characteristics matter. We saw for example in ‘Article 4: Where’ that

scale content seemed to be rather important, with the confidence scales showing higher

prevalence rates of random responders than all the other scales. As there is likely less

overlap in questionnaire scales and item wording between TIMSS and PISA, it would be

logical to assume that the findings generalize less well to PISA than to PIRLS, and other

cycles (assuming questionnaire content and formulation don’t largely differ and that there

are no huge cohort-differences). Alternatively, it could also be that the items that are

different in PIRLS and the fact that they relate to reading, are also the specific cases that

could actually make a difference. Overall, it seems wise to be cautious when considering

the content of the questionnaire. Yet, in order to make more definitive statements about

how and to what degree the different assessments might be impacted, it would probably

be good to first figure out what the specific content or wording aspects are that would

make a difference and continue from there.

In the end, it is complicated to say something about the actual differences that could

be expected across the different assessments. While the general view does not directly

give any reasons to worry about extreme random responding, if we want to be sure, we

have to check it. There can always be that special case that stands out.
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3 Further Reflections on the Comparative Use of Models

In both applications, a selected null baseline model takes the center role in the com-

parison process. In the different applications of this null baseline model, its meaning is

established in terms of a relative comparison to a measurement model of interest. By

doing this, we hope to learn from the model comparison, either in terms of model fit

improvement or in terms of measurement appropriateness. In both cases, the choice of

baseline – for model comparison or for the mixture component – is crucial for inferences

that follow their application.

3.1 Model Fit: Variable-based and Person-based

For Application 1, we explicitly looked at model fit by means of incremental fit indices.

While it might not be directly apparent, the random responders in Application 2 could

potentially also serve as a measure of model fit. For both applications, it can be said

that the selected baseline model reflects some noise pattern and it is expected that any

proper measurement model should be able to show better performance if the provided

responses are in line with the measurement model. While both applications can give

some indication about model fit, the underlying approach is different and model fit will

be quantified differently.

Application 1 addressed model fit from a variable-based perspective. Within this per-

spective, model fit is quantified by determining to what extent the observed relations

between the variables are better explained by a measurement model than a null baseline

model. In contrast, Application 2 approached model fit from a more person-based per-

spective. From this perspective, the focus is more on ‘How many people in the study

behaved or responded in a manner consistent with theoretical expectation?’ (Grice et

al., 2020, p.444). Where the percentage of people that (do not) fulfill this criteria can

be seen as a person-centered quality measure (Grice et al., 2020). More specifically, for

Application 2, we assumed there to be two different groups of students following different

models describing the relation between their item responses. Building on the idea of a

person-centered approach, one could say that the prevalence of random responders can
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serve as a person-centered measure of badness-of-fit. In this case, model fit would reflect

the ‘quality’ of the measurement model by indicating the percentage of students for which

the response patterns are more in line with the measurement model than with the null

baseline model.

Visually, as for CFI, this relation can also be depicted by means of a continuum,

yet now ranging from the null baseline model to the measurement model of interest (see

Figure 14). The continuum itself represents 100% of the response patterns. In this case,

the prevalence estimate serves as an indicator dividing the continuum into two parts: the

proportion of response patterns in line with a null model (left side) and the proportion

of response patterns in line with a measurement model (right side). If the measurement

model would be able to describe the response patterns of all students, the indicator would

be located on the far-left side and the bar would be completely gray. Yet, as the indicator

moves more to the right side, a larger part of the sample does not fit with the measurement

model of interest, indicating worse fit with respect to the measurement model.

Figure 14

Person-Centered Approach to Model Fit.

M0 MI

proportion of response patterns
in line with null model

proportion of response patterns
in line with measurement model

Note. The red line represents the estimated prevalence of random responders.

In both applications, we could also identify different characteristics influencing model

fit. Yet as the applications address model fit from a different viewpoint, the characteristics

are also different in nature. In Application 1, the features that influence fit are based

on more factual data characteristics such as the number of items, sample size, and the

degree of multivariate dependence. Whereas in Application 2, we saw that the features

that influence fit are based on person and assessment characteristics such as gender,

grade, SES, and scale position.
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3.2 Compared to What?11

3.2.1 Multiple Comparison Grounds of Interest: Accuracy versus Usefulness

As mentioned before, in both applications we considered the null baseline model as the

standard for making comparisons. Yet in practice, many other comparisons could have

been made instead. For example, as we shortly pointed out in Application 1, when using

incremental fit indices the comparison being made does not necessarily have to involve

this specific null baseline model. Sobel and Bohrnstedt (1985) for example believe that

the baseline should be one that incorporates the current state of knowledge and theory

within a given domain. At the same time, there is also the idea that the baseline should

not be replaced, but alternatives should be added to model comparison practices instead

(e.g., Marsh, 1998; Rigdon, 1998). The underlying idea is that more information will

be available if a model of interest is compared to a set of alternative models, instead of

just a single one. Building on this idea, one might want to consider comparing a series

of models. For example, consider not only comparing the measurement model against

the original and alternative baselines, but also comparing the different alternative models

with each other, or comparing different substantive models like the model testing strategy

described in Application 1. In the end, this would lead to a whole range of relative fit

values.

Similarly, for Application 2 we used the null baseline model for representing an aber-

rant random response pattern. However, the concept of invalid response behavior is of

course not limited to random responding and can be viewed as a much broader umbrella

term including many different response styles, sets, or tendencies (e.g., Cronbach, 1950;

McGrath et al., 2010; Messick, 1991). This also implies that we could have made many

different modifications to the mixture model we worked with. We could for example have

considered changing the baseline model, simultaneously including more than two groups

of responders to take into account other possible response sets, or put other restrictions on

the measurement model. Each mixture component and comparison would have provided

11Part of this section is based on a course paper written for ‘UV9002: Philosophy of Science’ at the
faculty of Educational Sciences, University of Oslo.
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us with different information.

At the same time, we also need to be aware that we can be at risk of taking the

comparison process too far by differentiating between too many alternative models or too

many groups of responders. For example, taking this to the extreme in the context of the

mixture model, we could end up with a separate class for each person or alternatively,

each response pattern could potentially be linked to a specific response style. Yet, what

can then still be considered genuine or valid responses? In theory, a mixture model with

that many classes will probably be perfectly accurate, yet in practice, the usability gets

lost as the model no longer provides a useful summary. This point can also be related to

a part of the story ‘Sylvie and Bruno concluded’ (see the excerpt below).

Mein Herr looked so thoroughly bewildered that I thought it best to change

the subject. ‘What a useful thing a pocket-map is!’ I remarked.

‘That’s another thing we’ve learned from your Nation,’ said Mein Herr,

‘map-making. But we’ve carried it much further than you. What do you

consider the largest map that would be really useful?’

‘About six inches to the mile.’

‘Only six inches!’ exclaimed Mein Herr. ‘We very soon got to six yards to

the mile. Then we tried a hundred yards to the mile. And then came the

grandest idea of all! We actually made a map of the country, on the scale

of a mile to the mile!’

‘Have you used it much?’ I enquired.

‘It has never been spread out, yet,’ said Mein Herr: ‘the farmers objected:

they said it would cover the whole country, and shut out the sunlight! So we

now use the country itself, as its own map, and I assure you it does nearly

as well.’ (Carroll, 1983, p.403)

What this example shows me is that we will end up with an unworkable model if we

take the comparison to the extremes and expect 1-on-1 similarity between all possible

elements in the real world and the model. At the same time, when focusing on creating the
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most accurate or perfect-fitting model, we should keep asking ourselves what the model

actually symbolizes. In general, as capturing the phenomenon under study becomes

more important than the phenomenon itself (Schouten, 1992) we are at risk of losing the

meaning that can be attributed to the modeling process. Any perfect model that cannot

be used, will not provide any new information about the world. In the end, it seems to

come down to a trade-off between accuracy and usability when working with models to

evaluate complex systems or phenomena.

3.2.2 Using Models: Attainability of Truth versus Progress

When comparing two models, the relative evidence for a model A over a model B, does

not necessarily represent evidence for model A on its own (Royall, 1997). Relating this to

model fit evaluation with CFI, the measurement model might show better overall fit than

the null baseline model, yet this does not imply that the measurement model itself is a

good model or even correct. In theory, there could still be non-ignorable misspecification

even with ‘good fit’ (although chances get smaller with better CFI values). Similarly,

in the context of random responding, the mixture model only indicates whose response

patterns are more consistent with a null baseline model than the measurement model, by

comparing the two options. It does not mean that students were consciously responding

randomly or that there are no other ways to characterize the distinct response patterns.

In an ideal situation, one might want the model to be the true or the perfect represen-

tation of the phenomenon under study, yet in practice this is not attainable. In general,

it seems to be acknowledged that by nature models are always approximations of the phe-

nomena under study or to put it differently, they are always wrong to some degree (e.g.,

MacCallum & Austin, 2000; MacCallum, 2003; McDonald & Ho, 2002). Models can be

defined as providing a “specification of a theory” (Hélie, 2006, p.1) by operationalization

of a phenomenon under study. Yet, due to the complex nature of the real world, models

will not be able to capture this completely as they are a simplified representation of the

phenomenon. Models not being 100% true does however not mean that all models are

useless nor that we cannot learn from them.

According to Morrison and Morgan (1999), models can be seen as instruments that
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are used to incorporate and connect knowledge about theories and the world. One way

of learning through models actually occurs by using them, for example by applying the

model to data and making estimations (Giere, 2004; Morrison & Morgan, 1999) or by

making adjustments to the model (Morrison & Morgan, 1999). Thus, the best we can do

in order to make progress is to build our models around the theories that currently have

the largest evidence base, while acknowledging there might still be some inconsistencies

that we are not yet aware of. At least this will provide us with a functional working

model and the opportunity to use and compare the model against a meaningful baseline,

observe consequences, make conclusions, and continue learning.

This might also be related to the original idea of adopting a model-testing strategy

when using incremental fit indices for model evaluation. CFI and other incremental fit

indices provide a 1-number summary for describing the level of agreement between the

model and the data. These summary values are used to provide a qualitative value

judgement about a model and are generally expected to conform to some threshold for

indicating ‘good’ model fit. Yet this is probably not how science should work and does

not say anything about where the model could potentially be improved. Thus, instead

of ‘[evaluating] a single model in isolation, it is often more informative and productive

to compare a set of alternative models and possibly to select a preferred model from the

set.’ (MacCallum, 2003, p.130). At the same time, we need to remain open to make

adaptations to our models as new knowledge becomes available and practice changes.

But in the end, it is this whole process of learning through models that will enable us to

say something about different phenomena in the world.
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Understanding the Comparative Fit Index:

It’s all about the base!

Despite the sensitivity of fit indices to various model and data characteristics in

structural equation modeling, these fit indices are used in a rigid binary fashion as

a mere rule of thumb threshold value in a search for model adequacy. Here, we ad-

dress the behavior and interpretation of the popular Comparative Fit Index (CFI)

by stressing that its metric for model assessment is the amount of misspecification

in a baseline model and by further decomposition into its fundamental components:

sample size, number of variables and the degree of multivariate dependence in the

data. Simulation results show how these components influence the performance of

CFI and its rule of thumb in practice. We discuss the usefulness of additional qual-

ifications when applying the CFI rule of thumb and potential adjustments to its

threshold value as a function of data characteristics. In conclusion, we at a min-

imum recommend a dual reporting strategy to provide the necessary context and

base for meaningful interpretation and even more optimal, a move to using CFI as a

real incremental fit index intended to evaluate the relative effect size of cumulative

theoretically motivated model restrictions in terms of % reduction in misspecifica-

tion as measured by the baseline model.

The evaluation of model fit remains a crucial yet controversial topic in the application

of structural equation models. In line with concerns that a focus on mere statistical

significance testing would lead to disregarding or changing relevant and theoretical sound

models without proper justification for it (Bentler & Bonett, 1980), a whole range of

alternative goodness-of-fit indices is currently available for model evaluation beyond the

traditional chisquare significance test of exact fit. As part of the general trend to report

multiple fit indices (e.g., Jackson et al., 2009; Ropovik, 2015), McDonald and Ho (2002)

point out that “it is sometimes suggested that we should report a large number of these

indices, apparently because we do not know how to use any of them” (p. 72). This
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statement highlights a common concern about current model evaluation practices that

are characterized as thoughtless routine applications of binary (good/bad) rules of thumb

for fit indices.

Different cut-off criteria or rules of thumb have been proposed over time (e.g., Bentler

& Bonett, 1980; Hu & Bentler, 1999; Schermelleh-Engel et al., 2003). In particular,

Hu and Bentler’s (1999) suggested criteria gained huge popularity. Yet, Hu and Bentler

(1999) themselves stressed that “it is difficult to designate a specific cutoff value for each fit

index because it does not equally well with various conditions” (p. 27). Their underlying

simulation study was based on only a few conditions with either a simple or a complex

structure with fixed values for a three-factor confirmatory factor analysis model with 15

manifest variables. Their note of caution resonates well with more recent findings in the

literature where simulation studies have illustrated the sensitivity of fit indices and their

rules of thumb to various data and model features such as sample size, model size and

type, strength of relations within the measurement model, and violations of distributional

assumptions (for a review, see e.g., Niemand & Mai, 2018). Nevertheless, people have

been universally applying the rules of thumb regardless of their own specific context,

study design, data, or model. The main point of concern is exactly this thoughtless

default way of applying rules of thumb (Marsh et al., 2004). One reason given for abiding

by such a thoughtless rule-based approach is that “researchers need them because it is

unclear how one can reach qualitative judgements in their absence” (Lai & Green, 2016,

p. 221).

Overall, one major point of concern with respect to the application of SEM in practice

is the lack of deliberate decision making in all parts of the process (McDonald & Ho,

2002). In order to make more informed decisions with respect to the use of fit indices

it is important to know how these fit indices work. Yet what ‘good’ fit means and how

fit indices map onto this meaning is not well understood (Lai & Green, 2016). Hence,

if we would desire not mere mindless rule-following but more deliberate practice when

assessing model fit, we need to better clarify what type of fit each of the different indices

stand for and to provide a better insight in their inner workings to understand why fit
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indices behave like they do.

Here, we will try to make one step into that direction by focusing on the Comparative

Fit Index (CFI) (Bentler, 1990), the most-used statistic among the class of comparative

goodnes-of-fit indices (for reviews covering time periods in the interval 1995-2013, see

e.g., Jackson et al., 2009; McDonald & Ho, 2002; Ropovik, 2015). A decomposition in

the main components that play a role in the CFI’s baseline comparison allows to clarify

CFI’s meaning and behavior, explain some of the mixed results in the SEM simulation

literature regarding its sensitivity to model and data characteristics, and highlight the

(limited) generalizability of common rules of thumb for CFI and factor analysis. We hope

that this exposition can help guide the decision-making process in practice and lead to

smarter, more deliberate inferences when interpreting the CFI for model fit evaluation.

A decomposition of the Comparative Fit Index

In contrast to absolute fit or parsimony fit indices (e.g., Brown, 2015), the class of

comparative fit indices promotes comparison in fit between a model of interest and a more

restricted baseline model. This fit assessment strategy has its foundation with Bentler

and Bonett (1980) and involves a continuum of models from the worst fitting null model

to the perfect fitting or saturated model. The role of the comparative fit indices is to

assess where the model of interest is located within this continuum.

Within this class, Bentler’s (1990) Comparative Fit Index (CFI) is an “index to sum-

marize the relative reduction in noncentrality parameter of two nested models” (p. 238).

The noncentrality parameter λm of a model m can be seen as an indicator of model mis-

specification as it quantifies the amount of deviation between the estimated χ2 value and

the expected χ2 value (i.e., dfm, the model’s degree of freedom) for the sample under the

assumption that the model is correct: λm = χ2
m − dfm. The value of CFI is then based

on the ratio of misspecification of both models:

CFI(m,b) = 1− λm

λb

= 1− χ2
m − dfm
χ2
b − dfb

(1)

where the subscript indicates whether the statistics are of the model of interest m or the
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baseline model b. The one-minus-noncentrality-ratio is there to turn it from a relative

misspecification measure into a relative goodness-of-fit measure. Note that the CFI is

usually truncated to the [0, 1] interval, although technically values higher than one can

arise if the model of interest fits better in a noncentrality sense than the saturated model

(e.g., perfect fit with less then full parameters) and values below zero can arise if the

model of interest fits worse than the baseline model.

Null baseline. A so-called null model in which all observed variables are uncorrelated

has taken off as the default baseline model for popular applications of CFI. Following

the idea of Bentler and Bonett (1980), the CFI(m,0) can be referred to as an ‘index of

information gained’ by the model of interest over the more restrictive null model. Hence,

conceptually it is similar to an R-square, a relative reduction in ‘unexplained’ variance,

whereas a CFI(m,0) could then be seen as a relative reduction in ‘unexplained’ variance-

covariance. From here on we will drop the subscripts referring to the models being

compared, if we talk about the CFI with the null model as default baseline.

Rules of thumb. For determining whether a model shows adequate fit according to

the CFI, different rules of thumb have been proposed. Early on up to the late 90’s, values

of at least .90 for comparative fit indices were assumed to indicate decent model fit (for

a review, see McDonald & Ho, 2002). This rule of thumb has been mostly motivated

based on experience by expert users: At CFI origins, “In our experience, models with

overall fit indices of less than .90 can usually be improved substantially” (Bentler &

Bonett, 1980, p. 600) or more recently, “In my experience, models with .90+ values for

the CFI . . . can be quite acceptable models” (Little, 2013, p. 116). The currently most

common CFI standard is based on the influential simulation study by Hu and Bentler

(1999): “the results suggest that, for the ML method, a cutoff value close to .95 for . . .

CFI . . . are needed before we can conclude that there is a relatively good fit between

the hypothesized model and the observed data” (p. 1). As indicated earlier in the

introduction, even about the core rule of thumb, stating CFI ≥ .95 for good model fit,

there have been many cautionary notes and simulation studies have illustrated that its

applicability varies depending on data and model characteristics.
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If we would desire more deliberate practice when assessing model fit using CFI values,

then knowing the inner workings of this measure is an essential requirement. So how does

this CFI really work? Additionally, can knowledge of its inner workings indeed shed some

light on the performance of the CFI rules of thumb under various data characteristics?

CFI as a relative measure with a variable metric space

Equation 1 clarifies that the CFI is a relative measure with its denominator set by the

noncentrality of the baseline model. Now suppose there is a line that represents the CFI

metric. The metric space endpoints are set by the null and saturated model. The length

of the line is determined by the noncentrality of the null model, as the noncentrality for

the saturated model is zero. Given the formulation of CFI, this metric space serves as

standard for comparison. Conceptually, the length of the line, the CFI metric space, has

an influence on the behavior of CFI. Having more space, will allow for a finer grained

differentiation. Having less space, makes the CFI to become less useful. The rationale

is that in general it is harder to differentiate between models as they are becoming

more similar. When placing a model of interest in the metric space, it will always be

closer related to both the null and the saturated model as the line becomes shorter. As

a consequence, a comparison in terms of CFI values is no longer based on the same

standard when the denominator, the baseline noncentrality, is different among the cases

being compared.

As an example to drive this idea home, consider the following two cases for which the

size of the CFI metric space is different. The baseline noncentrality in the first case is

λ0 = 25. Within this space two models with slightly different noncentrality values can

be placed. Overall their values only differ by 2 units, with λ1 = 1 and λ2 = 3 being the

noncentrality value of the first and second model, respectively. Translating this to CFI

values, this results in values of CFI(1,0) = .96 and CFI(2,0) = .88. Now consider the second

case in which there is a shorter metric space with baseline noncentrality λ0 = 5. Here

as well, we have two models that only differ by 2 noncentrality units, now with λ1 = .2

and λ2 = 2.2. However, translating this to CFI interval, values of CFI(1,0) = .96 and

CFI(2,0) = .56 are obtained. This example demonstrates the impact of widely differing
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metric spaces as defined by the baseline noncentrality. The difference in CFI-fit between

the two models is huge between the two cases whereas the difference in terms of absolute

misspecification as expressed by the noncentrality index is exactly the same. Sampling

variability can also be expected to have a huge impact in the second case, a small difference

in noncentrality value can lead to widely differing CFI values when baseline noncentrality

is small. Thus, the main conclusion is that we cannot interpret a CFI-value of a model

or differences in CFI between models without considering the fit of the CFI baseline

model for the same sample data. This is similar advice as with any ratio or risk measure,

you cannot ignore the numerator and denominator when interpreting a percent; Or more

colloquially speaking, whereas a small percent of everything is a lot, a large percent of

nothing, is still nothing.

Null model baseline noncentrality as key factor

For the default CFI with a null model as baseline, the null model noncentrality λ0

is the key to CFI behavior and interpretation as it sets the metric space that serves as

standard for comparison. With F being the ML discrepancy fit function (e.g., Bollen,

1989) between the observed and null-model-implied covariance matrices S and Σ̂0, the

null model noncentrality can be rewritten and simplified as follows to identify its key

components:

λ0 = max (χ2
0 − df0, 0)

= max
(
F (S, Σ̂0)(n− 1)− df0, 0

)

= max (− log |R|(n− 1)− p(p− 1)/2, 0)

(2)

where R is the observed correlation matrix, n the sample size, and p the number of

manifest variables (for the derivation, see Appendix A).

Equation 2 clarifies that the CFI metric space is a function of correlation (i.e., gener-

alized variance as expressed by the determinant of the data correlation matrix), sample

size, and number of variables. Notice that all three core components of the null model

baseline noncentrality are completely data dependent. In an ideal situation with a lot

of correlation in your data, large sample sizes and not too many variables, CFI would

allow you to make a fine-grained differentiation between models in terms of relative non-
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centrality. These ideal conditions are quite in line with common sense guidelines for the

application of SEM. There are some more general intuitions that can be derived a priori

from this decomposition that can be linked to findings in the SEM model fit literature.

Sample size n. Originally, comparative fit indices were conceptualized as ‘indices

of information gained’ and should be independent of sample size (Bentler & Bonett,

1980). However, previous studies (e.g., Heene et al., 2011; Hu & Bentler, 1999; Marsh

et al., 2004; Shi et al., 2019) as well as the decomposition show that CFI is clearly

dependent on sample size. In this case, with higher sample sizes resulting in higher

baseline noncentrality values and better expected performance.

Number of variables p. In the literature (e.g., Shi et al., 2019) a general trend

has been reported that more variables complicate the use of CFI and its default rule of

thumb. At first sight the decomposition supports this notion as more variables leads to

lower baseline noncentrality making model differentiation more difficult. However there

is a confounding factor that is easily forgotten, the determinant |R| is also a function

of the number of variables p, and with more variables more non-zero correlations can in

principle occur in the correlation matrix R. Hence, the number of variables only has

a clear negative effect on CFI if p(p − 1)/2 the degrees of freedom of the null model

outweighs the contribution by − log |R|(n− 1).

In the extreme theoretical situation in which only additional uncorrelated variables

are added this will be always the case, as this has no impact on the latter factor. Yet

the more correlation the added variables contribute the faster the negative effect of the

number of variables disappears (i.e., the logdeterminant factor increases nonlinearly).

Hence, it should thus not be surprising that Shi et al. (2019) found that, for correctly

specified models, the effect of p on performance of CFI’s rule of thumb was dependent on

the size of the factor loadings they used. Hence, CFI also follows the general principle

that having more signal in the data facilitates matters, whereas adding more noise further

confounds matters.

Data correlation R. As already indicated in the previous paragraph, the more the

data is unlike the null model, the higher the baseline noncentrality and the easier CFI
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can differentiate between models. The study by Heene et al. (2011) also showed that per-

formance of CFI’s rule of thumb is dependent on used factor loadings. It should also not

be surprising that performance issues became more severe as the sample size decreased

(Heene et al., 2011), as there is a synergistic interaction between n and − log |R| as

reflected by the prominent role of their product in the decomposition. Given the formu-

lation, a decrease in both components will provide the smallest metric space, providing

worse conditions for model differentiation.

Now that we have identified the core components that play an integral part in the

baseline comparison for CFI we will first zoom in further on CFI in relation to different

data characteristics, by assessing the impact of sampling variability on the proposed

metric space principle and the extent to which this relates to the general applicability

of the common rule of thumb for CFI. Secondly, we will follow up on an additional

qualification on when the general CFI rule of thumb can be used. We end the paper with

a more general discussion on implications of these results and with recommendations for

the use of CFI and its common rule of thumb in practice.

Sampling variability & CFI

At population level, CFI is determined by the population model noncentrality λ
(Σ)
m

and the population null baseline noncentrality λ
(Σ)
0 . When the estimated model is the

true population model, λ(Σ)
m shows perfect fit (λ(Σ)

m = 0) and consequently the population

CFI will always equal one. This means there is only systematic variation in λ
(Σ)
0 , caused

by variation in the components that make up the CFI metric space. Even though this

does not have a direct influence on the CFI value at population level, it will set the

basis for sample performance of CFI: a larger null baseline noncentrality λ
(Σ)
0 provides a

more solid basis for model differentiation. In practice, the two noncentralities at sample

level λ(S)
m and λ

(S)
0 will be prone to sampling variability and potentially also sample bias.

Depending on the extent that both noncentralities are somewhat differently affected, this

could lead to differences in results compared to our expectations.
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Monte Carlo Simulation Design

We considered a simple one-factor data-generating population model with equal factor

loadings implying equal correlations between all items. The focus was on the use of

correctly specified models, as it seems that the goal of most people is not to falsify their

model, but to find an adequate model as starting point for further analysis (e.g., Ropovik,

2015). Given this focus on adequate model fit, it would be good to know whether CFI’s

rule of thumb can meet its purpose in the ideal case of a correctly specified model.

Experimental Factors. The conditions studied are related to the three components

of the baseline noncentrality provided by the decomposition of CFI: sample size n, number

of variables p, and data correlation R.

First, sample size is varied (n ∈ {100, 200, 500, 1000}). More information is present

with increasing sample size, such that there is less uncertainty in making inferences about

model fit. Minimum sample size requirements around 150-200 have been proposed for

SEM (e.g., Barrett, 2007; Boomsma, 1985; Kenny, 2015; Muthén & Muthén, 2002), yet

in practice about 1 in 5 studies uses sample sizes below 200 (MacCallum & Austin, 2000)

and around 8-18% uses sample sizes below 100 (Jackson et al., 2009).

Second, the number of variables is varied (p ∈ {4, 8, 12, 24}), as previous research has

shown that the number of variables does have an influence on model evaluation (e.g.,

Moshagen, 2012; Shi et al., 2019; Shi et al., 2018).

Third, the degree of data correlation as expressed by |R| is varied through the chosen

data-generating population model. The use of the one factor homogeneous factor loading

model as population model allows to make this determinant a direct function of one

correlation number r, where |R| = [1+(p− 1)r][1− r](p−1) (e.g., Graybill, 1983) with r ∈

{.1, .2, .3, .5, .7, .9}. According to Brown (2015), in practice standardized factor loadings of

at least .3 or .4 are considered the norm for a meaningful interpretation, which corresponds

in our simulation setup to values of r = .09 and r = .16, respectively. Hair et al. (2006) are

stricter and require factor loadings to be above .5 or even .7 in the context of validation

studies, which corresponds to values of r = .25 and r = .49.

Experimental Design. These three experimental factors are combined into a full
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factorial simulation design leading to n(4) × p(4) × r(6) = 96 experimental conditions.

Within each condition, 1000 sample covariance matrices S were drawn from a Wishart

distribution, S ∼ W(Σ, df), where Σ is the model’s population covariance matrix and df

the model’s degrees of freedom. The model was then refitted to each of the generated

samples. The simulation and analyses were conducted in R (R Core Team, 2020) through

custom scripts in combination with the lavaan package for R (Rosseel, 2012).

Outcome measures. For each sample, the sample non-centrality of the baseline

model and of the fitted model – being the numerator and denominator of the CFI, re-

spectively – are computed. The CFI of the fitted model is assessed and used to decide

whether or not the fitted model is judged to be of good fit according to the .95 rule of

thumb (i.e., CFI<.95 leads to rejection of the model).

Monte Carlo Simulation Results

Full results of the 96 experimental conditions of the Monte Carlo simulation study are

reported in table-format in Appendix B. In what follows, we will report on general trends

for the respective outcome measures and zoom into specific conditions when relevant.

Null baseline noncentrality λ
(S)
0 . Given that noncentrality parameters are shifted-

versions of the chisquare statistic (i.e., λ0 = χ2
0 − df0), the same sampling distributions

would apply under asymptotical theory given regularity conditions (e.g., Steiger et al.,

1985), implying a central or noncentral chisquare distribution depending on whether or

not the model is correctly specified. Yet note that for the null baseline model it has been

found that a noncentral chisquare distribution does not properly describe its sampling

distribution beyond its central tendency (Curran et al., 2002). However, the sample

null baseline noncentrality does follow nicely the population trends (see Table 1) that are

function of the earlier identified three components of the metric space. Where an increase

in either of the components has a positive effect on the baseline noncentrality. Notice

that the sampling variation unaccounted for by the design factors is almost non-existing

(i.e., 1− η2total = .001).
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Table 1

Eta square (η2) effect size patterns for the main components of the CFI metric space

across different outcome measures in the main simulation study.

η2

term λ
(Σ)
0 λ

(S)
0 λ

(S)
m CFI < .95

p .124 .134 .276 .010 .025

r .268 .265 .000 .129 .364

n .146 .144 .033 .076 .212

p× r .135 .134 .000 .011 .028

p× n .081 .080 .075 .022 .068

r × n .163 .160 .000 .081 .227

p× r × n .082 .081 .000 .029 .076

total 1 .999 .384 .358 1

Note. λ
(Σ)
0 = population value of the null baseline noncentrality; λ

(S)
0 = sample value of the

null baseline noncentrality; λ
(S)
m = sample noncentrality for the estimated true model; CFI =

sample CFI value for the estimated true model (i.e., CFI = 1 − λ
(S)
m /λ

(S)
0 ); < .95 = model

rejection rate or percentage of replications where the sample CFI value for the estimated true

model is below .95. η2’s are based on the type-III sum of squares in a full factorial ANOVA.

Comparing the theoretically expected λ
(Σ)
0 with the sample average λ

(S)

0 (see Table B1)

indicates that a small upward sampling bias for λ
(S)

0 is present. This bias tends to become

more severe with additional variables p. The relative effect of this upwards bias is worse for

the lower sample size conditions, but has less of an impact with increased correlation r as

the corresponding increase in the absolute value of λ
(S)

0 dwarfs the bias. One consequence

of the upward bias is that all small-sample-with-limited-correlation conditions that had

a similarly restricted non-optimal baseline at population level, now at sample level are

ordered as a function of the number of variables p.

Model noncentrality λ
(S)
m . Under asymptotical theory given regularity conditions

(e.g., Steiger et al., 1985), the χ2
m fit statistic when the true model is estimated, is

expected to follow a central chisquare sampling distribution with mean df. Hence, the
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sample noncentrality of the model λ
(S)

m should tend to its expected value 0.

However, some upward sampling bias in λ
(S)

m is present for almost all simulation con-

ditions, although in absolute terms this is smaller than for λ
(S)

0 .The true model’s noncen-

trality (and hence its sampling bias) is most affected by the number of variables p (see

Table 1), and in contrast to its prominent role in the null model unaffected by the amount

of correlation r. The most severe bias is observed in the low-sample-size-many-variables

conditions (p = 24, n = 100). Overall, increasing sample size seemed to reduce the bi-

asing effect of the additional variables. The finding of large sampling bias as a function

of increasing number of manifest variables and moderated by sample size corresponds to

earlier findings in the literature (e.g., Moshagen, 2012). Notice that the sampling varia-

tion unaccounted for by the design factors (i.e., 1− η2total = .671) is also much higher for

the model noncentrality than for the null baseline noncentrality (i.e., 1− η2total = .001).

Comparative Fit Index (CFI). The asymptotically-derived sampling distribution

of the CFI has not yet been established in the literature although logically it would

conform to the sampling distribution of a ratio of two dependent shifted (non)central

chisquare distributions, with the caveat that even a shifted noncentral chisquare is not

fully applicable for the null baseline model. What we identified so far in the simulation

study is that sampling affects the numerator λ
(S)
m and denominator λ

(S)
0 of the CFI in a

slightly different fashion. The resulting effect patterns on CFI in our simulation design

(see Table 1) reflect this duality and lead to a mix of both λ-patterns, with the most

central role for correlation r followed by sample size n, whereas the effect of the number

of variables p has become negligible.

As we looked at CFI values for estimated true models, all observed CFI values should

be indicative of the kind of sample values that can be expected to express good model

fit. The 5% CFI quantile shows that the expected range of realistic CFI values actually

varies greatly and covers a broad range across conditions (see Table B1). This difference

becomes most prominent in those conditions where low sample size co-occurs with low

correlation. In the most extreme situation (i.e., n = 100, p = 24, r = .1), 5% of the

replications even have CFI values below or equal to .57. As reference to get the picture of
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the whole range, 16% of replications in this condition still have CFI values above or equal

to .95. At the same time, for some conditions (e.g., but not exclusively, the conditions

where correlation r = .9) the range of realistic CFI values is much more limited as the

5% quantile was already as high as .99 or even 1.

Rule of thumb CFI ≥ .95. The common rule of thumb for CFI states that CFI

should be at least .95 to speak of acceptable goodness of fit, and otherwise if CFI < .95

one would reject the model. Given that the true model is fitted each time, the ideal

outcome is of course a rejection rate of 0%. The results in Table B1 however, show that

this is not accurate for all conditions. The median rejection rate is 0% but the average is

8% with a maximum of 84%. Of our 96 conditions, 43 had a non-zero rejection rate and

27 a rejection rate larger than 5%.

These results follow automatically from the observed ranges of CFI values for a true

model not being consistent with the range implied by the rule of thumb [.95, 1]. The

much wider or at times more narrower range of observed CFI for the estimated true

model would imply that the rule of thumb should/could in fact be made more lenient or

strict depending on the situation. A point to which we will return in the discussion.

Metric space principle CFI|λ(S)
0 . In line with our starting ‘metric space’ principle

that the baseline determines differentiation power of CFI, the effect size patterns (see

Table 1) for the model rejection rates given the rule of thumb follow the trends for the

(sample and population) null baseline noncentrality yet with a diminished role of the

number of variables p. Hence, increasing the metric space by increasing CFI’s denomi-

nator through increasing either of the three design components has a positive effect on

the size of λ(S)
0 , the size and range of CFI values, and the resulting model rejection rates

according to the common rule of thumb (see also Table B1 for a detailed overview of

results).

The observed diminished role of p is due to the set of conditions where low sample

sizes are combined with low correlation in the data (i.e., n = 100 & r ≤ .5 or n = 200 &

r ≤ .2) where a larger number of variables p leads to higher (see the excerpted conditions

in Table 2) instead of the generally expected lower rejection rates. Sampling variability
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and bias in those conditions destroy the regularity of the metric space principle. Focusing

on one of the low-sample-size-low-correlation conditions, Figure 1 shows an example of

how sampling variation in λ
(S)
m relates to sampling variation in λ

(S)
0 as a function of the

number of variables p. The horizontal and vertical line in the figure respectively show

the average value of λ(S)
m and λ

(S)
0 within a specific condition. Given the definition of CFI

(see Equation 1), the diagonal line is the critical line representing the combination of λ(S)
m

values and λ
(S)
0 values that result in CFI = .95. When replications are positioned in the

area above this line, the corresponding CFI value will always be below .95, leading to

rejection of the model. In other words, the values of λ(S)
m in these situations are becoming

too large compared to their λ(S)
0 counterpart to acquire good model fit according to CFI.

While replications positioned on or below the diagonal line correspond to good model fit

according to the .95 rule of thumb for CFI.

For both, λ(S)
m and λ

(S)
0 , their mean values increase with additional variables p as seen

in their respective marginal distributions. However, the trend in λ
(S)
m seems to be domi-

nant over the trend in λ
(S)
0 , as with additional variables p, λ(S)

m results in more extreme

values relative to the λ
(S)
0 counterparts as seen in the heavier right tail in the distribution

of the former. As a consequence, more replications are wrongly classified as showing

inadequate model fit. In these specific conditions, problems in CFI performance are due

to the strong sampling variation and bias in the numerator λ
(S)
m that counteracts the

positive effect of increased average size of the metric space reflected by the denominator

λ
(S)
0 .
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In the majority of the cases, this bias-interference is not applicable and the general

metric-space principle works out despite sampling variation and bias in CFI’s numerator

and denominator. Figure 2 serves as an illustration of this principle. Whereas the distri-

bution of λ(S)
m remains relatively constant across increasing correlation, the distribution

of λ
(S)
0 takes big steps upwards, dwarfing any sampling bias in λ

(S)
m . The increase in

correlation leads to a big increase in null baseline noncentrality which goes together with

a decrease in the rejection rates of the CFI for the correctly specified model. The same

results hold with increasing sample size n, whereas for increasing number of variables p

it is less demarcated due to the opposing bias in λ
(S)
m .

Don’t interpret CFI depending on RMSEA of null model?

As indicated before, additional specifications on the use of the general rule of thumb

for CFI have been around. For example, one lesser known qualification advocated for on a

popular web resources on SEM fit indices recommends that “CFI should not be computed

if the RMSEA of the null model is less than .158 or otherwise one will obtain too small a

value of the CFI” (Kenny, 2015). However, formal support for this recommendation was

not given. Hence, we used the results from the main simulation study to follow up on the

usefulness of this specific qualification in practice. We expected that if this rule of thumb

works, cases where RMSEA0 < .158 co-occur with a CFI value below the commonly

adopted .95 threshold more often than not for models that fit.

As an initial rough effectiveness indicator of this rule of thumb we cross-classified

all replications for each condition from the main simulation study based on whether the

sample RMSEA0 and CFI values were below or above their respective thresholds (see

Table 3). On average the incidence of RMSEA0 < .158 amounted to 31% of the cases.

Given RMSEA0 < .158, the probability for also obtaining a CFI value below .95 was

on average 17.5% with a range across conditions between 0 and 84.2%. The reason for

this wide range can be clearly illustrated by translating the RMSEA0 < .158 into a

corresponding required value for the null baseline noncentrality λ.158
0 = RMSEA2

0 × (n−

1) × df0. This threshold null baseline noncentrality λ.158
0 value indeed only depends on

two design factors - the number of variables p (η2 = .483), sample size n (η2 = .225) -
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, and their interaction n × p (η2 = .293), but not on the third factor data correlation r

(i.e., η2 = .000 for r, p×r, r×n, & p×r×n). As one example, Table 4 clearly illustrates

the ignorance of this RMSEA0 < .158 threshold for the conditions where sample size

n = 200 and df0 = 28 (i.e., number of variables p = 8). Note that these results generalize

across the other conditions. The RMSEA0 < .158 specification wrongly assumes a null

baseline noncentrality λ.158
0 that remains constant regardless of the correlation r in the

data, whereas CFI and its denominator the null baseline noncentrality λ0 are highly

sensitive to exactly this correlation.

Table 3

Cross-classification of all replications in the main simulation study based on their

RMSEA0 and CFI value relative to the corresponding thresholds.

RMSEA0

CFI < .158 ≥ .158

≥ .95 24.91% [0-100%] 67.17% [0-100%]

< .95 6.29% [0-84.2%] 1.64% [0-21.1%]

Note. RMSEA0 = RMSEA values for the null baseline model; CFI = CFI values for the

estimated true model. For the the proposed rule of thumb to work, RMSEA0 values below .158

ought to co-occur with CFI values below .95. Each cell in the cross-classification contains the

overall average percentage and range of average percentages of replications across conditions in

the main simulation study that is consistent with its thresholds-requirements.

In the end, the overall negative predictive value of the .158 rule of thumb appears to be

not too reliable (i.e., Pr(CFI < .95|RMSEA0 < .158)). Hence, it varies highly whether we

can indeed expect too low CFI values given a correctly specified model when RMSEA0 <

.158. On the other hand, the correct decision of acceptable fit (i.e., CFI ≥ .95) is taken

in on average 95.8% (range across conditions = 52.9-100%) of the cases that RMSEA0 ≥

.158. Hence, the overall positive predictive value (i.e., Pr(CFI ≥ .95|RMSEA0 ≥ .158)) of

the .158 rule of thumb is more promising. The reason for this difference is that for specific
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settings the null baseline noncentrality corresponding to the RMSEA0 = .158 threshold is

unreachable. This is illustrated in the latter columns of Table 4, where for this particular

case of n = 200 and p = 8, RMSEA0 values below .158 can only occur in conditions

with correlations r below .3 (i.e., λ(S)
0 < λ.158

0 ). Note that the specific breakdown point

does vary depending on sample size n and number of variables p. In the end, this leads

exactly to flagging down some of the conditions in which the CFI baseline for comparison

is rather too small for effective model differentiation.

Table 4

Attainability of the threshold: Sensitivity of the null baseline noncentrality and CFI to

data correlation r in relation to the constant RMSEA0 rule of thumb and corresponding

threshold in terms of the null baseline noncentrality λ.158
0 .

r
threshold

λ
(Σ)
0

λ
(S)
0 CFI

RMSEA0 λ.158
0 M MIN MAX M MIN MAX

.1 .158 139.099 13 43 0 106 .95 .55 1.00

.2 .158 139.099 109 139 53 265 .98 .78 1.00

.3 .158 139.099 245 275 152 453 .99 .92 1.00

.5 .158 139.099 642 667 397 970 1.00 .96 1.00

.7 .158 139.099 1303 1324 1019 1655 1.00 .98 1.00

.9 .158 139.099 2798 2832 2409 3326 1.00 .99 1.00

Note. The results stem from the main simulation study and show an example for the conditions

where the sample size n = 200 and the number of variables p = 8. RMSEA0 = RMSEA

threshold of the null baseline model; λ.158
0 = .158 threshold for RMSEA0 translated in terms

of null baseline noncentrality; λ
(Σ)
0 = population value of the null baseline noncentrality; λ

(S)
0

= sample value of the null baseline noncentrality; CFI = CFI value for the estimated true model.

In sum, despite its relatively good average positive predictive value, the proposed .158

rule of thumb does not fully meet its purpose. In its current form it is too general and

ignores the role of one of the key components of CFI (cf. data correlation). In light of the
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wide range of values and variation in performance, it does not seem advisable to utilize

a fixed general RMSEA threshold as the conclusive answer for assessing whether or not

to apply the CFI for fit assessment.

Discussion

If we would desire not mere mindless binary rule-following but more deliberate practice

when assessing model fit, we need to better clarify what type of fit each of the different

indices stand for and to provide a better insight in their inner workings to understand

why fit indices behave like they do. In this study, we started with such endeavour for the

Comparative Fit Index.

CFI is a relative model fit measure expressed as a ratio of the noncentrality of the

model of interest to that of a baseline comparison model. In essence this implies that

the CFI is in fact a standardized statistic where the standard of comparison is typically

provided by the noncentrality of the null model that is by default chosen as comparison

model. This does mean that one CFI is not the other because the baseline standard, the

noncentrality of the null model, is determined by data dimensions (i.e., n×p) and amount

of multivariate dependence in the data (i.e., |R|). This is important as the implications of

absolute value judgement of good fit according to CFI might not correspond to the relative

improvement CFI stands for. With a small CFI metric space, low relative improvement

does not necessarily imply that a model is not good in terms of absolute fit, while a

high relative fit given a large metric space can still be associated with a large amount

of absolute misspecification. The broader the baseline, the less strict the CFI ≥ .95

rule of thumb becomes as more absolute misspecification is allowed for a model that is

considered to adequately fit. This natural feature of a standardized/relative measure

such as CFI, brings Moshagen and Auerswald (2018) to caution strongly against CFI’s

use for evaluating absolute fit of a single model.

However, such decontextualized assessment of fit of a single model is unfortunately

quite common place in practice with the default application of the binary rule of thumb:

CFI ≥ .95 means “good fit” whatever that might mean. If we formalize the latter as

correctly identifying the true model as a good fitting model, with a binary decision rule
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that works at least 95% of the time, our simulation results show that the rule of thumb

needs to be adjusted based on data characteristics or only be applied under certain

qualifications.

Qualifications for use of CFI’s rule of thumb. Our results illustrate the the-

oretically derived principle that a wider basis for model differentiation is provided by

increasing the three core components of the null baseline noncentrality – sample size n,

number of variables p, and multivariate dependence as reflected by |R|, the determinant

of the data correlation matrix. This results in high rates of qualifying the correctly spec-

ified model as having good fit in high signal to noise conditions, that is high correlation

with added high sample size regardless of the number of variables. In contrast, in low

signal to noise conditions, that is low sample size and low correlation, the CFI ≥ .95

rule was too strict and an increase of the number of variables made matters even worse.

In the latter conditions, the null baseline model is already quite close in absolute fit to

the correctly specified model, hence it is less likely to observe a huge relative change of

95% of that small distance even for a correctly specified model. Consequently, a word

of caution for the current binary use of the CFI ≥ .95 rule of thumb in such conditions

is in order. Sample sizes below 200 are unfortunately not uncommon (Jackson et al.,

2009; MacCallum & Austin, 2000) and the prevailing pragmatic idea that standardized

factor loadings of .3 (r = .09) and .4 (r = .16) are sufficient for meaningful interpretation

(Brown, 2015) seems too optimistic.

The CFI ≥ .95 rule of thumb would approximately work in this 95% correct sense as

a function of sample size and correlation: for n = 1000, a correlation of at least r = .1,

for n = 500, a correlation of at least r = .2 is required, for n = 200 a correlation of at

least r = .3, and for n = 100 a correlation of at least r = .5. Based on our simulation

results, a conjecture could be put forward that a baseline noncentrality of λ(S)
0 ≥ 1400

provides a sufficient broad metric space for fine-grained model differentiation using the

CFI (e.g., conditions in line with this requirement had very narrow CFI range for the true

model and far above the .95 rule of thumb). This is a conservative guideline as things

do not necessarily look bad in all smaller baseline conditions. Although the general CFI
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metric-space principle holds, the specific values suggested here are of course based on the

limited set of levels of factors considered in the small simulation study, and would be

somewhat adjusted with availability of results for more factor levels (e.g., extra sample

size conditions) or even other design factors such as the data-generating model. Yet, the

general identified patterns related to the CFI baseline are mostly data driven and core

points and non-value specific recommendations can in that sense be trusted to generalize

quite well.

We already mentioned that these type of additional qualifications, on when the CFI

rule of thumb can be used, are not something new. Specifically, we looked into the

recommendation not to use CFI if the RMSEA of the null model is less than .158 (Kenny,

2015). Even though this qualification does attempt to provide a more nuanced reporting

of CFI, the simulation results showed that in light of its wide variation in performance

across conditions, it is not advisable to use this specific qualification without careful

deliberation. Yet, the underlying idea does contain merit as it essentially intends to filter

out cases where there is a lack of covariance and high levels of noise in the data. Perhaps,

we should not even consider SEM in such cases in the first place (e.g., Barrett, 2007) or at

the minimum realize that it’s not reasonable to expect a large relative fit difference from

a null baseline model that itself is already very closely fitting to the data in an absolute

parsimony fit sense.

Adjusting CFI’s rule of thumb. Alternatively, instead of including additional

qualifications on when to use CFI’s rule of thumb, we could also adjust the rule of thumb

depending on data characteristics. The general pattern of results shows that the CFI

threshold should even become stricter in the more optimal situations (high correlation

r, high sample size n: CFI 5% quantiles as high as .99), while it needs to be reduced

considerably in the less optimal situations (low correlation r, low sample size n). The

latter could even result in setting a threshold value as low as CFI ≥ .57 for a specific

condition (n = 100, p = 24, r = .1). When realistic CFI values for a true model cover

such a broad range, CFI looses its informativeness for absolute model fit assessment.

Effect size. Another more drastic, but likely preferable alternative to including
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additional qualifications on when to use CFI’s rule of thumb or adjusting its threshold

value as a function of data characteristics, would be to actually interpret CFI’s value.

In this respect, it is useful to see CFI as an extension of the linear regression model’s

R-square effect size measure to the broader SEM field. Both measures have indeed a

similar setup:

r2Y |X = 1− SSerror

SStotal

CFI(m,0) = 1− λm

λ0

effect size = 1− misspecification target model vs saturated model

misspecification null model vs saturated model

This further clarifies that in essence, CFI is, like the R-square, a standardized effect

size measure and hence all reservations with respect to interpretations of standardized

effect size measures (e.g., Baguley, 2009) transfer to the interpretation of CFI. Such a

realization has two major implications.

Firstly, CFI can be a useful benchmark metric for interpreting the relative magnitude

of the effects within the same application dataset. Having a set of competing models, CFI

can be used to quantify the effect size of the paths in which the models differ. In other

words, we are using CFI as intended as an incremental comparative fit index among a set

of models for the same dataset and interpreting its value in terms of relative magnitude.

Secondly, comparing CFI’s across different datasets is not straightforward as given

their standardized nature, a value of .95 is indeed similar in relative magnitude, but not

necessarily in absolute magnitude. The latter would require that the denominator in

CFI’s formula remains constant across datasets. Where R-square is a relative reduction

in variance not accounted for, and the denominator is a proxy for total variance in the

outcome variable, CFI is a relative reduction in model noncentrality, and – when the

baseline model is the null model – the denominator can be seen as a proxy for the

amount of generalized variance in the manifest variables of the model, the determinant

of the observed correlation matrix |R|. An interpretation of CFI in terms of absolute

magnitude would require an interpretation of the amount of generalized variance, that

is the value of this determinant. The determinant of a correlation matrix can be seen
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geometrically as the volume of the swarm of standardized data points, with |R| = 1 in

case of all zero-correlations (corresponding to a ‘ball’ in a multidimensional plane) and

with |R| = 0 for a matrix with perfect linear dependence (a ball flattened along at least

one dimension). Whereas people in practice often already find it hard to interpret the

absolute magnitude of a variance, it is fair to say that even fewer people have a good

intuition about what a large or small generalized variance or determinant is for their

dataset. The current lack of straightforward interpretability of CFI in terms of absolute

magnitude essentially disqualifies it in practice for assessing the absolute fit of a single

model or for comparing model fit between different datasets.

Nevertheless, the central role of this determinant should revive some interest in un-

derstanding classic measures of multivariate statistics (e.g., Anderson, 1958) to further

our understanding of more modern SEM practices. In the meantime, we recommend im-

plementing a reporting standard where next to the CFI also its denominator, the baseline

model’s noncentrality λ0 is reported to provide some context for interpretation. These

quantities are generally available or easy to request in common SEM software such as

Mplus or R:lavaan. If the default null model is chosen as baseline, explicit reporting of

its three key components – sample size n, number of manifest variables p, determinant of

the observed correlation matrix |R| – would help in gaining some intuition on common

reference values for these data characteristics12 in your field of application and eventually

allow for a better interpretation of relative and absolute magnitude of CFI even across

datasets.

Other Considerations. One limitation of the current study is that we only con-

sidered the default null model in which all observed variables are uncorrelated while

looking at the performance of CFI. However, it was already discussed by Bentler and

Bonett (1980, p. 604) that “the incremental fit indices depend critically on the availabil-

ity of a suitable framed null model”. Widaman and Thompson (2003) argue that there

are numerous situations in which the default null model would be an improper choice.

Different alternatives for specification of a proper baseline model can be found in the liter-

12In a linear model, it is similarly good practice to report next to the R-square also the total variance
of the outcome variable (or alternatively the residual standard deviation) to contextualize the percentage.
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ature (e.g., Little, 2013; Widaman & Thompson, 2003). While Widaman and Thompson

(2003) already touched upon it, going forward it is important to systematically evaluate

the potential influence of the chosen null model on performance evaluation of the dif-

ferent comparative fit indices under different circumstances, as well as the substantive

consequences of comparing a model of interest to a more meaningful baseline model.

In this study, we focused on the typical maximum likelihood estimator used in struc-

tural equation modelling, yet it would be of interest to expand the study to other es-

timators in particular for the categorical data case, both including limited-information

estimators based on the polychoric correlation matrix or bivariate contingency tables as

well as full-information estimators based on the item response patterns (cf. item response

theory tradition). A move to the categorical case might also essentially call for a differ-

ent baseline model; for categorical data, correlations are strongly constrained by their

marginal distributions as mean and variance are intertwined.

Another avenue for further research would be to explore the impact of transitioning

from classic estimates for the two noncentrality parameters in the CFI to bias-corrected

estimates as for instance suggested by Raykov (2005). Raykov did add caution as for

instance a bias-correction bootstrap estimate of noncentrality is feasible, but the prop-

erties of the approach for this particular case have not been fully studied. Yet deflating

differential sampling bias in both numerator and denominator of CFI could potentially

ensure that its sampling behavior is even more systematic and in line with the driving

components of the baseline.

Conclusion

To conclude, the CFI does what it is supposed to do, but we haven’t been using it in

a smart fashion. The CFI is a relative fit measure where the standard for comparison is

provided by the noncentrality of the (null) baseline model. The common CFI ≥ .95 rule

of thumb implies that regardless of context we are happy with a reduction of 95% of the

misspecification by the null model. Current practices make us prone to hunting down this

magic CFI ≥ .95 value as a pseudo absolute fit measure disregarding the existence of the

baseline. CFI as an absolute but meaningless criterion that needs to be fulfilled to achieve
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an adequate model that can serve as starting point for further analysis. To help remedy

this, we recommend that at a minimum a dual reporting standard is followed where both

model of interest and the (null) baseline model are evaluated to provide proper context

for interpretation of the CFI value. By making the presence of the baseline (and its core

components) explicit in the reporting, the need to take it into account when interpreting

fit indices also becomes explicit and non-ignorable. Even more optimal would be if CFI

is not simply used as a mere number in a search for model adequacy but used as a real

relative fit index intended to evaluate the relevance of cumulative theoretically motivated

model restrictions in terms of % reduction in misspecification as measured by the baseline

model (Bentler & Bonett, 1980).
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Appendix A: Noncentrality λ0 of the null model

λm = χ2
m − dfm (1)

= Fm(n− 1)− dfm (2)

= (log |Σ̂m| − log |S|+ tr(SΣ̂−1
m )− p)(n− 1)− dfm (3)

Equations 1-3 outline how the noncentrality parameter of any model would be estimated

as the difference between the model’s chisquare against the saturated model and the

model’s degrees of freedom. The model’s chisquare value is based on the product of the

sample size n and the minimum value Fm of the used fit function. Under maximum likeli-

hood estimation, Fm is a function of the discrepancy between the model-implied variance-

covariance matrix Σ̂m and the observed variance-covariance matrix S (e.g., Bollen, 1989),

where p represents the number of observed variables and tr(X) and |X| are respectively

the trace and determinant of a matrix X.

Key in getting to the expression for the noncentrality λ0 for the null model (Equation 2

in the main text) is that the minimal fit value F0 for the null model can be further

simplified using the fact that the model-implied covariance matrix under the null model

comes down to a diagonal matrix diag(S) with the observed variances on the diagonal (cf.

Equation 5). This results in SΣ̂−1
0 leading to a matrix with all ones on the diagonal such

that the trace equals the number of observed variables p and cancels out the subsequent

−p term in the expression for F0 (cf. Equation 6).

F0 = log |Σ̂0| − log |S|+ tr(SΣ̂−1
0 )− p (4)

= log |diag(S)| − log |S|+ tr(Sdiag(S)−1)− p (5)

= log |diag(S)| − log |S|+ p− p (6)

Using the fact that the determinant of a matrix product can be split into products of

determinants, each of the remaining two log determinants can be written out given that
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a variance-covariance matrix S is a multiplicative function of a corresponding correlation

matrix R and an inverse diagonal matrix with standard deviations on the diagonal. Thus

we have

log |S| = log |
√
diag(S) R

√
diag(S)| (7)

= log |
√
diag(S)|+ log |R|+ log |

√
diag(S)| (8)

= log

p∏

j=1

√
Sjj + log |R|+ log

p∏

j=1

√
Sjj (9)

= log

p∏

j=1

Sjj + log |R| (10)

and

log |diag(S)| = log |
√
diag(S) I

√
diag(S)| (11)

= log

p∏

j=1

Sjj + 0 (12)

where Equation 12 makes use of the fact that the correlation matrix of a diagonal variance-

covariance matrix is an identity matrix I which determinant is exactly equal to 1.

The re-expressions of the log determinant terms in Equations 10 and 12 allow to

simplify the expression for F0 further by elimination

F0 = log |diag(S)| − log |S| (13)

= log

p∏

j=1

Sjj − log

p∏

j=1

Sjj − log |R| (14)

= − log |R| (15)

such that the estimated noncentrality of the null model comes down to

λ0 = F0(n− 1)− df0 = − log |R|(n− 1)− p(p− 1)/2

where p(p− 1)/2 is the degrees of freedom of the null model.
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Caught Off Base: A Note on the Interpretation of Incremental

Fit Indices

This note serves as a reminder that incremental fit indices are a form of standardized

effect sizes and hence, all reservations with respect to interpretations of standard-

ized effect sizes also transfer to their interpretation. Such a realization has major

implications for the interpretation and use of incremental fit indices, for the theoret-

ical (im)possibility of default universal rules of thumb in their application, and for

simulation studies mapping incremental fit indices as if their value is comparable in

an absolute sense across any and all conditions. A small but illustrative working ex-

ample centered around the alleged impact of model type will drive these points home.

Model fit assessment and model comparison remain universally important but also

confusing topics in structural equation modeling (SEM). Tons of model fit tests and

diagnostic fit indices have been introduced for purpose of model fit assessment – with

Marsh et al. for instance already looking at 29 fit indices early on in 1988 – and new

developments are abundant and extend fit indices beyond their initial boundaries (e.g.,

non-normal data, bias-reduction; see for example Raykov, 2005; Yuan & Bentler, 2000).

Recent practice has arguably converged to reporting multiple fit indices and following

rules of thumb based on the work by Hu and Bentler (1999), with the chisquare statistic

(χ2), Root Mean Square Error of Approximation (RMSEA), and Comparative Fit Index

(CFI) among the popular indices to use and report (Jackson et al., 2009). For model

assessment guidelines and rules of thumb for fit indices to work, they should be proven to

function rather universally across a broad scope of data and model characteristics. Yet,

the extensive simulation literature on this matter has already put forward many factors

that are influencing the general applicability of the rules of thumb (for a review, see e.g.,

Niemand & Mai, 2018) leading to a general caution on their universality.

This general caution is also readily ignored in practice where a binary search for

adherence with the rules of thumb for a range of fit indices is the factual norm. The

latter might come across as a surprise, but is in line with McDonald and Ho (2002) who
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state that “it is sometimes suggested that we should report a large number of these indices,

apparently because we do not know how to use any of them” (p. 72), resulting in a lack

of deliberate decision making. In order to make more informed decisions with respect to

the use of fit indices it is important to know how these fit indices work. However, as Lai

and Green (2016) point out “the meaning of ‘good’ fit and how it relates to fit indices are

not well understood in the current literature” (p. 234).

This manuscript sets out to remind/clarify what the meaning of good fit is for incre-

mental fit indices and what implications this should have for their use in practice. The

alleged impact of model type on incremental fit indices is used as a working example to

elucidate the actual impact of the baseline as opposed to the type of target model.

Incremental Fit Indices

Incremental fit indices such as the Normed Fit Index (NFI: Bentler & Bonett, 1980),

Comparative Fit Index (CFI: Bentler, 1990), or Tucker-Lewis Index (TLI: Tucker &

Lewis, 1973) are part of a family of relative fit measures for structural equation modeling

that involves locating a model of interest within a continuum of models from the worst

fitting baseline model to the perfect fitting or saturated model. Incremental fit indices

are much like SEM counterparts of r-square indices in linear regression.

r2Y |X = 1− SSerror

SStotal

NFI(m,b) = 1− χ2
m

χ2

b

CFI(m,b) = 1− λm

λb
= 1− χ2

m−dfm
χ2

b
−dfb

TLI(m,b) =
χ2

b
/dfb−χ2

m/dfm

χ2

b
/dfb−1

effect size = 1− misspecification of target model ‘m’ vs saturated model

misspecification baseline model ‘b’ vs saturated model

(1)

Note. r2
Y |X = r-squared, relative reduction in prediction error of Y given predictors X; SSerror = error

sum of squares, sum of squared differences between each data point yi and their estimated value ŷi;

SStotal = total sum of squares, sum of squared differences between each data point yi and the average

y; NFI = Normed Fit Index; CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; with λm =

noncentrality parameter of a model of interest; λb = noncentrality parameter of a baseline model; χ2
m

= chisquare of a model of interest; χ2
b = chisquare of a baseline model; dfm = degrees of freedom of a

model of interest; dfb = degrees of freedom of a baseline model.
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Equation 1 shows that each of the measures renorms the misspecification of the target

model13 in terms of the magnitude of the corresponding misspecification of a baseline

model. In other words, the baseline model functions as the standard of comparison.

Null model as Baseline

When incremental fit indices are seen in practice, the default baseline model is the

null model where all manifest variables are assumed to be uncorrelated. Hence, the

core component in the denominator of the incremental fit indices then becomes χ2
0 , the

chisquare of the null model (with degrees of freedom df0 = I(I−1)/2) and I the number of

manifest variables). Under the default maximum likelihood estimator, the latter chisquare

reduces to minus the log determinant of the observed correlation matrix − log |R| (up

to a sample size factor) (for the derivation, see Appendix A). Thus, the standardized

metric of the incremental fit indices with null baseline is set by this determinant, a single

number representing a generalized measure of variance across your entire dataset. By

definition, the determinant of a correlation matrix can be seen geometrically as the volume

of the swarm of standardized data points, with |R| = 1 in case of all zero-correlations

(corresponding to a ‘ball’ in a multidimensional plane) and with |R| = 0 for a matrix

with perfect linear dependence (a ‘ball’ flattened along at least one dimension). As Lai

and Green (2016) correctly mention, how the determinant changes as a function of a

single particular correlation in the correlation matrix is generally opaque. What is clear

however, is that the determinant is a real multivariate measure and not simply represents

the magnitude of the average correlation, but more something like the magnitude of

the dominant correlation (the determinant is equal to the product of eigenvalues of the

correlation matrix). Although perhaps not coming across as the most intuitive metric,

this determinant does form the core of the standardized metric underlying the popular

incremental fit indices in structural equation modeling. Thus, in essence, incremental fit

indices are in fact a form of standardized effect size measure and hence, all reservations

with respect to interpretations of standardized effect size measures (e.g., Baguley, 2009)

13NFI uses absolute misspecification as given by the model’s chisquare to the saturated model, CFI
uses the model’s noncentrality parameter (λ = χ2 − df), and TLI the ratio of chisquare to degrees of
freedom of the model.
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also transfer to their interpretation. Such a realization has major implications for the

interpretation and use of incremental fit indices, for the theoretical (im)possibility of

default universal rules of thumb in their application, and for simulation studies mapping

incremental fit indices as if their value is comparable in an absolute sense across any

and all conditions. We will drive these points home using a small but illustrative working

example centered around the alleged impact of model type and end with a brief discussion

elaborating on these implications.

Impact of Model Type?

Reviewing the literature for the differential impact of model type on the behavior

of fit indices leads to calls for caution when intending to apply general cutoff criteria

across different model types. Considering a range of SEM models, Fan and Sivo (2007)

concluded for instance that CFI sampling distributions are sensitive to differences in

model type and that this becomes more apparent with increased model misspecification.

Similarly, in their famous benchmark study, Hu and Bentler’s (1999) simulation results

showed differences between simple and more complex structured confirmatory factor anal-

ysis models. When comparing simple and approximate simple structure factor models

Beauducel and Wittmann (2005) further observed differences among fit indices and what

magnitude of secondary loading misspecification they tolerate depending on the rule of

thumb applied.

Changing the model type implies changing where the correlation can be found in the

model’s implied correlation matrix. A one-factor model with equal loadings for 6 observed

variables implies a homogeneous correlation all across the 6-by-6 correlation matrix R1.

In contrast, an orthogonal two-factor model with independent cluster structure and equal

loadings for each of the three variables per factor implies a block-structured correlation

matrix R2, with 0 correlation on the between-block cells and homogeneous correlation

for within-block cells (see Equation 2).
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R1 =




1 r r r r r

1 r r r r

1 r r r

1 r r

1 r

1




R2 =




1 r r 0 0 0

1 r 0 0 0

1 0 0 0

1 r r

1 r

1




(2)

So does the behavior of the incremental fit indices really depend on which type of model

is being considered?

Three Data-Generating Models

We will consider three data-generating population models M1, M2, and M3. M1 is the

aforementioned one-factor model with equal factor loadings, and both M2 and M3 take

the form of the aforementioned orthogonal multi-factor model with independent cluster

structure and equal factor loadings (see also Equation 2). The difference between models

M2 and M3 is that in the former the degree of multivariate dependence as given by the

determinant of the model-implied correlation matrix |R| is equal to that in model M1,

whereas in the latter the size of the within-block correlation rb (or similarly, the square

root of the homogeneous factor loading) is equal to that of model M1.

Study Design

Two Simulation Scenarios. To materialize this, consider the following two sce-

narios where sample size n = 200, number of variables I = 12, and degrees of freedom

df = 54. Model M1 was set to have a within-block correlation of rb = .40 resulting in

determinant |R1| = .02 in scenario 1 or a within-block correlation of rb = .2 resulting

in determinant |R1| = .27 in scenario 2. Building from there, Model M2 and M3 were

set to contain B = 3 independent cluster blocks with Ib = 4 indicators per block (i.e.,

I = 3 × 4 = 12), where for model M2 the within-block correlation rb was set such that
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the determinant of its implied correlation matrix would equal14 that of model M1 and

for model M3 the within-block correlation would simply be set equal to that of model

M1. Table 1 summarizes the relevant features of the three data-generating models under

both scenarios. Notice that models M2 and M3 also have close to equal average implied

correlation (r̄). The two scenarios only differ in the amount of correlation present in the

data.

Crossfitting: 3×2 conditions. For each data-generating model – M1, M2, and M3

–, 5000 replicates were generated by simulating sample covariance matrices Sm drawn

from a Wishart distribution with population covariance matrix composed from the I × I

model-implied population correlation matrix RM and I population variances sampled

from a uniform distribution on the interval [.75, 2]. To each replicate, both a one-factor

model and an orthogonal three-factor model with independent cluster structure were

fitted using maximum likelihood estimation. This cross-fitting procedure results in having

a correctly specified and one misspecified model for each data-generating condition. Data

simulation and analyses were conducted in R (R Core Team, 2020) through custom scripts

in combination with the lavaan package (Rosseel, 2012).

Study Objective. This study design will aid in gaining insight into how different fit

indices operationalize “model fit” and in particular how incremental fit indices should be

interpreted as a function of their baseline when dealing with both correctly as well as

misspecified target models. Note that the sample size and the number of variables are

purposively kept constant to exclude potential confounding due to the model size effect

on bias in the sample chisquare (e.g., Moshagen, 2012).

14Given the homogeneity within and across blocks, the required within-block correlation can be ob-
tained from the fact that the determinant for M2 reduces to the product of the within-block determinants
and the relation |RM1| = [1 + (I − 1)rb][1− rb]

I−1 (e.g., Graybill, 1983).
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Results

Correctly-Specified Models

Absolute Fit. Estimating a correctly-specified model results in a sample chisquare

statistic χ2
m of the target model m to the saturated model that has a near-zero value

plus some upwards bias that is a function of sample size and the number of variables

(Moshagen, 2012). The latter two data characteristics are constant across the three data-

generating model conditions, which should result in similar bias magnitude. Hence, if

we fit correctly-specified models to data of each of the three data-generating models, we

would theoretically expect to see the exact same central chisquare distribution to pop up

for the chisquare model fit statistic. Figure 1 illustrates and confirms these theoretical

predictions based upon the 5000 replicates. For the chisquare statistic χ2
m the distribution

is indeed equivalent up to minor Monte Carlo variation under each of the three data-

generating models when a correctly specified model is fitted, with about 92.5% of the

5000 replications per data-generating model resulting in a non-statistically-significant

chisquare statistic (i.e., χ2
m ≤ 72.15, the 5% critical value for df = 54). Withstanding the

difference in the amount of data correlation between the scenarios, these results do apply

to both scenario 1 and scenario 2.

As a corollary, given that the RMSEA is a function15 of only the target model’s

chisquare, degrees of freedom, and sample size, the same equivalence of distributions

across the three data generating model conditions also holds for this member of the

family of parsimony fit indices. For the RMSEA, equivalent distributions were indeed

observed (M = .015, and SD = .016, across all models) with values for 95% of the

replicates falling in the interval [.00, .05].

Incremental Fit. The same equivalence of distribution across all of the data-

generating models does not apply for the incremental fit indices, neither across scenarios

nor within a scenario. For instance, although the CFI is on average as high as .99 in sce-

nario 1, only the distribution under M1 and M2 is similar, but characterized by heavier

15Root Mean Square Error of Approximation: RMSEA =

√
χ2
m
−df√

df(n−1)
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tails in the case of M3 with a lower adjacent16 CFI value of .95 and a minimum of .89

compared to a lower adjacent CFI value of .97 and a minimum of .94 for both M1 and

M2 (see Figure 2). When applying the commonly adopted .95 rule of thumb, this would

result in assessing 4% of the correctly specified M3 models as showing non-acceptable fit

to the data, compared to close to 0% for M1 and M2. With the lower amount of data

correlation in scenario 2, this pattern of findings reproduces but with larger sampling

variation in CFI values under all models, resulting in assessing 14 and 15% of replicates

under M1 and M2 as non-acceptable according to the CFI ≥ .95 rule of thumb with

lower adjacent CFI values of .92 and .92 and minima of .81 and .84 compared to 29%

of non-acceptably fitting replicates under M3 with lower adjacent CFI value of .85 and

minimum of .70.

The equivalence of CFI distributions under M1 and M2 is due to both having a similar

CFI numerator (i.e., based on the χ2
m of a correctly specified model with the same degrees

of freedom and equal sample size) and denominators with similar baseline value based

on χ2
0 = − log(|R|)(n − 1), reflecting the degree of multivariate dependence in the data

(see Table 1). In contrast, M3 also has a similar numerator but has a smaller baseline

which makes it harder to differentiate between the model of interest and the baseline

model, resulting in the heavier CFI tails under M3. In scenario 2, with the amount of

data correlation being lower compared to scenario 1, the smaller baseline for all three

data-generating conditions amplifies the variation in CFI including numerous observed

values that are not even in line with the common rule of thumb guidelines for correctly

specified models.

Trends similar to CFI’s apply to other incremental fit indices, but the increased sam-

pling variance in scenario 2 and the heavier tail under M3 now apply to both the lower

and upper tail of the distribution as both TLI and NFI are, in contrast to CFI, not

restricted to an upper bound of 1. In sum, these trends show that the degree of multi-

variate dependence plays an integral part in the observed differences in CFI distribution,

the performance of common rules of thumb, and variation in the sampling distribution

16Lower Adjacent Value: the smallest observation above or equal to the lower inner fence (i.e., first
quartile minus the interquartile range) in a boxplot.
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of the incremental fit indices by changes in the baseline for comparison, regardless of

changes in model type.

Figure 1

χ2-distribution under Correctly- and Misspecified Models.
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Note. The dotted line corresponds to the 5% critical value χ2
df=54 = 72.15. With χ2

m chisquare

of the model of interest; |R| determinant of the model-implied population correlation matrix

as expression of the degree of multivariate dependence; rb within-block correlation. In both

scenarios, sample size n = 200. The misspecified model is a multi-factor model for the one-factor

model, and vice versa (see also Table 1).
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Figure 2

CFI-distribution under Correctly- and Misspecified Models.
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Note. The dotted line corresponds to the commonly adopted .95 CFI rule of thumb. With |R|
determinant of the model-implied population correlation matrix as expression of the degree of

multivariate dependence; rb within-block correlation. In both scenarios, sample size n = 200.

The misspecified model is a multi-factor model for the one-factor model, and vice versa (see

also Table 1).
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Misspecified Models

Absolute Fit. To consider misspecified models we fitted an orthogonal multi-factor

model with independent cluster structure to data generated under M1(one-factor model

with equal loadings), and a one-factor model to data generated under models M2 and M3

(orthogonal multi-factor models with independent cluster structure and equal loadings)

(see Table 1). The resulting misspecified models, denoted by M1′, M2′, and M3′, have

absolute misspecification as measured by χ2
M′ of a similar magnitude for M1′ (χ2

M1’ : M =

395) and M3′ (χ2
M3’ : M = 345), but about one and a half times larger misspecification

for M2′ (χ2
M2’ : M = 576) in scenario 1 (see left panel of Figure 1). For scenario 2, the

chisquare values reduced as they were bounded by the lower amount of data correlation.

Differences in chisquare values between models were more compressed with M2′ still the

lowest (χ2
M2’ : M = 215), now more closely followed by M1′ (χ2

M1’ : M = 194), but still

a good distance to M3′ (χ2
M3’ : M = 123). Under each data-generating condition, the

misspecified model resulted in rejecting the chisquare test of equal fit to the saturated

model for almost exactly 100% of the replicates.

In terms of parsimony-adjusted absolute fit as measured by the RMSEA the chisquare

values translated to an average RMSEA of .18, .22, and .16 for M1′ to M3′, respectively

under scenario 1 and reduced to about half those values in scenario 2 (with the lower

amounts of data correlation) to an average RMSEA of .11, .12, and .08 for M′1 to M3′,

respectively. As a consequence, applying the popular rule of thumb of RMSEA below

.08 in scenario 2, would wrongly assess M3′ as an acceptable fitting model for 52% of the

replicates.

Incremental Fit. When looking at incremental fit indices, the magnitude pattern of

misspecification shifts compared to the absolute fit indices. For scenario 1, M1′ results in

higher incremental fit values than both M2′ and M3′, and the latter two being equal in size

(e.g., see left panel of Figure 2; CFI: M = .56, .34,&.35, respectively). The magnitude

of CFI values seem to imply that M1′ is the least misspecified, and M2′ and M3′ the

most misspecified among the three models (i.e., M1′ < (M2′,M3′)). In contrast, the

magnitude order of χ2 indicated M3′ and M1′ to be the least misspecified and M2′ the
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most misspecified (i.e., (M3′,M1′) < M2′).

How can these irreconcilable differences in assessment of the magnitude of model mis-

specification or model fit be explained? Well, M2′ and M3′ are both one-factor models

wrongly fitted to data from a multi-factor, whereas M1′ is a one-factor model wrongly fit-

ted to a multi-factor model, and hence the obvious culprit for these CFI differences must

be the difference in model type? Yet, by making such an inference, we would be caught

off base by not accounting for the nature of incremental fit indices and applicable baseline

differences. Whereas chisquare and RMSEA are more absolute measures of misspecifica-

tion (raw or parsimony-adjusted), the incremental fit indices are relative measures with

the amount of absolute misspecification under the baseline model as standardized metric.

Although M1′ and M3′ have similar χ2
m values (i.e., basis of the numerator in incre-

mental fit indices) for the target model, the baseline model in case of data generated

under M1 has a larger χ2
0 value than under M3, leading to M1′ > M3′ in CFI value.

Hence, relatively speaking in CFI terms, the model M1′ is less badly misspecified com-

pared to the baseline model for data from M1 than is the model M3′ compared to the

baseline model for data from M3. Furthermore, a large χ2
m is divided by a large baseline

chisquare in M2′’s case and that happens to result in a CFI value similar to dividing a

smaller target model chisquare by a smaller baseline chisquare in M3′’s case.

In other words, by trying to compare CFI values across models fitted on different

datasets, we are looking at values on different standardized metrics as if they were com-

parable in an absolute sense and are now essentially ignoring the fact that we are com-

paring different units, literally, percentages of different baseline totals. Note that the

same reasoning applies to scenario 2, although the pattern of incomparable values across

models differs.

Implications

What all of this hopefully clarifies, is that we should resist the temptation to interpret

values of incremental fit indices as if they were comparable in an absolute sense because

they are only comparable in the case that their baselines are comparable at the data level

(e.g., for CFI the noncentrality parameter of the baseline model λb) and not at the mere
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conceptual level (i.e., it is not sufficient that both baseline models are the null model).

Such a realization has major implications for the interpretation and use of incremental

fit indices, for the theoretical (im)possibility of default universal rules of thumb in their

application, and for simulation studies mapping incremental fit indices as if their value

is comparable in an absolute sense across any and all conditions.

Theoretical (im)possibility of default universal rules of thumb. The fact that,

in contrast to absolute fit indices, the distribution of incremental fit indices even varies

across correctly specified models of equal degrees of freedom and with equal sample size

(cf. compare top panels of Figure 1 and 2) implies that adopting a universally applicable

general cutoff rule of thumb might not be the most fruitful idea for incremental fit indices.

This is not illogical. When placing a target model of interest along a relatively small

baseline-to-saturated continuum as in scenario 2 (i.e., in case of a null baseline reflected

by a small value of |R|), it will always be closely fitting in absolute sense to both the

baseline and the saturated model, as all models are relatively alike. This implies that

model differentiation is unreliable in case of a small baseline, incremental fit indices

become less informative, and placing a fixed threshold for a universal rule of thumb

becomes nigh impossible (see also, van Laar & Braeken, 2021). The opposite holds in

case of a large baseline.

Baseline differences as confounder in simulation studies. Realizing the non-

ignorability of the baseline not only applies to SEM practitioners in the field, but also

to past and future simulation studies where values of CFI, TLI, and family are simply

tracked regardless of baseline comparability, leading to an obvious confound in their de-

sign, comparative statements, and recommendations for relative fit measures. In general,

we argue that to further advance our joint understanding of goodness-of-fit measures and

their behavior in practice within the SEM field, we need more theoretically driven and

less exploratory simulation studies. The latter are too much at risk of making conclu-

sions based on artifacts in the chosen design factors. One element in an exploratory study

design potentially impacts many other easily overlooked confounding factors under the

hood.
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Determinant not average pairwise correlation. In SEM, the relative model dis-

crepancy to the null baseline, in incremental fit indices stemming from the chisquare, does

not take into account the location of the correlation in the data that your model fails to

capture nor does it encode how much of the average correlation your model has captured,

but instead it encodes how much of the dominant correlation (i.e., the determinant is

the product of eigenvalues of R) in the data the model captures. The central role of this

determinant should revive some interest in understanding classic measures of multivari-

ate statistics (e.g., Anderson, 1958) to further our understanding of more modern SEM

practices. Whereas people in practice often already find it hard to interpret the absolute

magnitude of a variance, it is fair to say that even fewer people have a good intuition

about what a large or small determinant (i.e., generalized variance) is for their dataset.

Explicit reporting of this determinant17 |R| would help in gaining some intuition

on common reference values for this data characteristic in your field of application and

eventually allow for a better interpretation of the relative and absolute magnitude of

incremental fit indices with the null model as baseline, even across datasets. By making

the presence of the core components of the null baseline explicit in the reporting, the need

to take it into account when interpreting incremental fit indices also becomes explicit and

non-ignorable (for a small reporting example and corresponding R syntax, see Appendix

B).

Note that this rationale with respect to interpretation is not necessarily limited to

incremental fit indices. There are other fit measures it could be extended to, even though

their baseline for meaningful interpretation might be different. For example, the Stan-

dardized Root Mean Square Residual (SRMR) fit index is also a standardized measure,

and hence similar interpretation and practice recommendations should apply here. The

core difference to the incremental fit indices considered here is that SRMR is residual-

based and not chisquare-based. As a consequence, SRMR’s metric is not a function of the

determinant but of the average observed pairwise correlation r̄. In our small working ex-

17The determinant of the observed correlation matrix |R| can be easily extracted from default software.
For R::lavaan, this can be extracted from the fitted model, in the example syntax stored in an object
labeled “fit”: exp(-(fitmeasures(fit)[["baseline.chisq"]]/(inspect(fit, "nobs")-1))).
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ample, the SRMR distributions for correctly specified models would indeed be equivalent

under M2 and M3, but not under M1, as the former two have equal average correlation

values but differ from M1’s average correlation value. In other words, SRMR evaluates

fit in an average pairwise dependence sense, in contrast to incremental fit indices who

evaluate fit in terms of multivariate dependence (i.e., |R|). Realizing this difference helps

in understanding what type of model fit each fit index codes for. Yet for all standardized

fit indices the base for interpretation needs to be taken into consideration and absolute

value judgements across any and all conditions are not recommended.

Transferability. Although our working example is rather small, the underlying prin-

ciples should apply across different scenarios. Even when extending the scope to mod-

els involving mean-structure, other baselines than the null model (e.g., Rigdon, 1998;

Widaman & Thompson, 2003), non-normality corrections, or different estimation meth-

ods, the formulas for numerator and denominator and the character and metric of the

baseline might slightly change, but the practical implication that incremental fit indices

are only large or small in comparison to a data-specific baseline, and not a universal

threshold reference value, will never disappear.

Practical Recommendation

CFI, TLI, and the entire incremental fit family are improperly treated in the current

all too common one-off model assessment approach where they are seen as an absolute

value in a mere search for a model adequacy threshold number. Instead, in a reasoned

model comparison strategy, incremental fit indices are a useful benchmark metric for

interpreting the relative magnitude (i.e., effect size) of the paths in which the set of

competing models differ. Thus, we should strive to use incremental fit indices (Bentler &

Bonett, 1980) as intended, to evaluate the relevance of cumulative theoretically motivated

model restrictions in terms of % reduction in absolute misspecification as measured by

the adopted baseline model.
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Appendix A

The Chisquare of the Null Model is Proportional to Minus the

log Determinant of the Observed Correlation Matrix

(χ2
0 ∝ − log |R|)

For the default CFI with a null model as baseline, the value of CFI is based on the

ratio of misspecification between the model of interest and the null model:

CFI(m,0) = 1− λm

λ0

= 1− χ2
m − dfm
χ2
0 − df0

(1)

Equation 1 shows how the misspecification of both models would be estimated by their

noncentrality parameter, being the difference between the model’s chisquare of exact

fit against the saturated model and the model’s degrees of freedom. Focusing on the

denominator of CFI, the standard of comparison, and hence the core component of CFI,

is then χ2
0−df0, the chisquare of the null model with degrees of freedom df0 = I(I−1)/2)

and I the number of manifest variables. The chisquare value of the null model can be

rewritten as the product of the sample size n and the minimum value F0 of the used fit

function to estimate the models (i.e., χ2
0 = F0(n− 1)).

Under maximum likelihood estimation, F0 is a function of the discrepancy between

the model-implied variance-covariance matrix Σ̂0 under the null model and the observed

variance-covariance matrix S (e.g., Bollen, 1989), where tr(X) and |X| are respectively

the trace and determinant of a matrix X (cf. Equation 2).

F0 = log |Σ̂0| − log |S|+ tr(SΣ̂−1
0 )− I (2)

= log |diag(S)| − log |S|+ tr(Sdiag(S)−1)− I (3)

= log |diag(S)| − log |S|+ I − I (4)

Key in getting to the expression for the chisquare χ2
0 for the null model as mentioned

in the main text (i.e., − log |R| up to a sample size factor), is that the minimal fit value

F0 for the null model can be further simplified using the fact that the model-implied

covariance matrix under the null model comes down to a diagonal matrix diag(S) with
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the observed variances on the diagonal (cf. Equation 3). This results in SΣ̂−1
0 leading

to a matrix with all ones on the diagonal such that the trace equals the number of

observed variables I and cancels out the subsequent −I term in the expression for F0 (cf.

Equation 4).

Using the fact that the determinant of a matrix product can be split into products of

determinants, each of the remaining two log determinants can be written out given that

a variance-covariance matrix S is a multiplicative function of a corresponding correlation

matrix R and an inverse diagonal matrix with standard deviations on the diagonal. Thus

we have

log |S| = log |
√
diag(S) R

√
diag(S)| (5)

= log |
√
diag(S)|+ log |R|+ log |

√
diag(S)| (6)

= log
I∏

j=1

√
Sjj + log |R|+ log

I∏

j=1

√
Sjj (7)

= log
I∏

j=1

Sjj + log |R| (8)

and

log |diag(S)| = log |
√
diag(S) I

√
diag(S)| (9)

= log
I∏

j=1

Sjj + 0 (10)

where Equation 10 makes use of the fact that the correlation matrix of a diagonal variance-

covariance matrix is an identity matrix I which determinant is exactly equal to 1.

The re-expressions of the log determinant terms in Equations 8 and 10 allow to simplify
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the expression for F0 further by elimination

F0 = log |diag(S)| − log |S| (11)

= log
I∏

j=1

Sjj − log
I∏

j=1

Sjj − log |R| (12)

= − log |R| (13)

such that the denominator of CFI under the null model comes down to

λ0 = χ2
0 − df0 = F0(n− 1)− df0 = − log |R|(n− 1)− I(I − 1)/2
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Appendix B

Mini Example to Report Incremental Fit Indices with

Corresponding R::lavaan Code

The SEM-package lavaan (Rosseel, 2012) in the free statistical software environment

R (R Core Team, 2020) contains a built-in dataset variant of a well-known study by

Holzinger and Swineford (1939). Situated in the study of human intelligence, the dataset

contains scores on I = 9 cognitive ability tests (named variables x1 to x9 in the dataset)

for n = 301 children. In practice, we advocate the use of incremental fit indices as

intended, that is in the context of a reasoned model comparison strategy. Without being

able to elaborate too much on specifics of the field nor dataset, we can still posit a fairly

realistic set of competing models for the current context as an example in case, but with

a somewhat simplified underlying theoretical motivation.

Set of competing models

A historical finding in the intelligence field is that cognitive tests, no matter their

specifics, tend to positively correlate within a general population. This would correspond

to a so-called positive manifold as reflected by the appropriateness of a one-factor model

M1 covering all 9 tests. Yet the 9 cognitive tests are said to have some common structural

elements, with the first three tests being more the visuo-spatial type, the second three

tests being more verbal-text related, and the last three more speed-based. It would be

natural to expect these clusters to also be reflected in the strength of the intercorrelations

between the test scores. Yet how this exactly surfaces, one can disagree about. Model M2a

considers three orthogonal factors, one for each of the three independent item clusters.

This models also implies that intercorrelations among cognitive tests of different type

would be negligible. Model M2b with three oblique factors, one for each of the three

independent item clusters, offers a less strict perspective by implying that the dominant

correlation is within the clusters, but allowing some correlation between clusters. A final

model M3 covers all bases by considering a one factor model but with residual correlations

among cognitive tests within the same cluster.

The model comparison strategy further involves locating the set of competing models
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within a within a continuum of models from the worst fitting baseline null model M0 to the

perfect fitting saturated model MS (Bentler & Bonett, 1980). The results are summarized

and reported in Table B1. Corresponding R-code for the models and results can be found

at https:// osf. io/ f6jnm/? view_ only=e367c654fbcd47248667e170442592c3.

Results

We can see that accounting for the implied positive manifold or the expectation that

performance on cognitive tests correlate by default as in M1, reduces the specification

error in terms of the multivariate degree of dependence present in the data by 68%

(CFI(M1,M0) = .68). Note how in a linear regression, one would generally already be

quite happy with such a relative reduction in predictor error variance as implied by

an r-square of .68. Although the model does not fit close to perfect in an absolute

sense, there is sufficient to disregard the implied uncorrelatedness of test performances

by model M0. At the same time we see that ignoring the positive manifold idea and only

accounting for the cluster structure as in M2a leads to a reduction of 86%, an additional

18% reduction in misspecification error of the multivariate dependence compared to M1.

This finding implies that the dominant correlation structure in the dataset is indeed

between cognitive tests of the same type. Allowing for some structural intercorrelation

between the clusters does reduce misspecification somewhat more with an additional 7%,

amount to a total reduction of 93% under M2b. Further covering both perspectives with a

structural positive manifold and variable residual interdependence within a cluster, as in

M3, leads to additional reduction of 5% in misspecification error, bringing us, relatively

speaking within 2% (CFI(M3,M0)=.98), in the immediate neighbourhood of the ‘perfect’

yet unstructured saturated model MS.

Simplified conclusion

In a reasoned model comparison strategy, incremental fit indices are a useful bench-

mark metric for interpreting the relative magnitude (i.e., effect size) of the paths in which

the set of competing models differ. Together these results imply that the paths corre-

sponding to the cluster structure in terms of cognitive test type are clearly pronounced,

but that not all cognitive tests adhere to a strict clustering and still intercorrelate across
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type as well. When inspecting the correlation matrix among the cognitive tests, you can

also clearly see the cluster structure, but also the first visuo-spatial test correlating with

the majority of other tests regardless of type.

Notice that in our assessments there was no explicit need of rules of thumbs nor a

focus on absolute fit, as in the end interest would be more about strengths of the different

perspectives as put forward by the competing models. This appears to us as more healthy

approach than a one-off model assessment approach using binary conclusions based on

indefensible universal rules of thumb (e.g. CFI≥ .95). For one specific study, the value

of reporting determinant, sample size, and number of variables might not be directly

apparent. Yet, these summary statistics would become relevant once you intend to com-

pare incremental fit indices across different studies to assess whether one study’s 93%

is comparable to another study’s 95%, and for general meta-analysis purposes. Hence,

we recommend including these by default, and doing so is luckily extremely simple in

practice.

Table B1

Model Comparison Results for the Set of Competing Models.

M0 M1 M2a M2b M3 MS

χ2 919 312 154 85 35 0

df 36 27 27 24 18 0

p <.001 <.001 <.001 <.001 0.010 1.000

λ 883 285 127 61 17 0

CFI(m,0) 0.00 0.68 0.86 0.93 0.98 1.00

|R| = 0.047, n = 301, I = 9.

Note. λ = noncentrality for the estimated model (i.e., λ = χ2 − df); CFI = CFI value for

estimated model (i.e., CFI(m,0) = 1− λm

λ0
); |R| = determinant of the observed correlation matrix

(i.e., the degree of multivariate dependence); n = sample size; I = number of items. Here one

would typically further clarify the model specifications and highlight the differences among the

models. Yet, to keep the appendix compact see text above.
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Random responders in the TIMSS 2015 student questionnaire:

A threat to validity?

The low-stakes character of international large-scale educational assessments implies

that a participating student might at times provide unrelated answers as if s/he was not

even reading the items and choosing a response option randomly throughout. Depend-

ing on the severity of this invalid response behavior, interpretations of the assessment

results are at risk of being invalidated. Not much is known about the prevalence

nor impact of such random responders in the context of international large-scale ed-

ucational assessments. Following a mixture item response theory (IRT) approach, an

initial investigation of both issues is conducted for the Confidence in and Value of

Mathematics/Science scales in the Trends in International Mathematics and Science

Study (TIMSS) 2015 student questionnaire. We end with a call to facilitate further

mapping of invalid response behavior in this context by the inclusion of instructed

response items and survey completion speed indicators in the assessments and a habit

of sensitivity checks in all secondary data studies.

International large-scale educational assessments are used to describe, compare, and

monitor student achievement in different educational domains and across different coun-

tries. In general, by providing information on contextual factors as provided by the

student questionnaire and staff survey with respect to the learning processes that can be

related to the student outcomes on the achievement tests, these assessments aim to inform

curriculum and education policy to improve learning (e.g., International Association for

the Evaluation of Educational Achievement [IEA]: Trends in International Mathematics

and Science Study [TIMSS] and Organisation for Economic Co-operation and Develop-

ment [OECD]: Programme for International Student Assessment [PISA]). The impact of

international large-scale educational assessments on policymaking has been widely doc-

umented (e.g., Hopfenbeck et al., 2018). The amount of participants together with the

inclusion of different countries and repeated assessments over time makes these large-

scale educational assessments an extensive source of potentially valuable information in
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national and international contexts. This treasure trove of information is also recognized

and exploited in an ever-increasing number of studies that use data collected in these

assessments to answer a wide variety of research questions (for a review, see Hopfenbeck

et al., 2018).

Although the availability of such extensive amounts of information in publicly avail-

able databases sounds very promising in terms of research opportunities, the validity of

the conclusions we draw is of course dependent on the quality of the assessment and the

corresponding data. To ensure the highest quality, both the central as well as national

institutes behind these international large-scale educational assessments invest a lot of

time, effort, and resources in the design, data collection, analysis, and preparation of

the data and its documentation for the databases of these assessments. Yet, one factor

that organizing parties logically lack control over is the actual response behavior of the

students participating in these international large-scale educational assessments.

This lack of control with respect to actual response behavior is of course not unique to

the survey part specifically or international large-scale educational assessments in general,

yet this type of assessment can be expected to be extra susceptible to invalid response

behavior due to their low-stakes character and generally young target population. In

absence of direct consequences or other incentives, the students that are required to

fill in these international large-scale educational assessments, might not always respond

accurately or thoughtfully (e.g., Curran, 2016; Eklöf, 2010), but instead these young ado-

lescents might respond without meaningful reference to the test items or survey questions

(Berry et al., 1992). Regardless of whether it is due to insufficient effort, thoughtlessness,

or lack of seriousness, such behavior would make that responses no longer accurately

reflect knowledge, abilities, or opinions related to the assessment content, but are being

distorted by contextual factors (e.g., Cronbach, 1950; Messick, 1984). Depending on how

prevalent this invalid response behavior is across the educational assessments, any type

of inference based on these assessments, either research conclusions or policy changes, is

at risk of being invalidated in spirit of the old adagium “garbage in, garbage out”.

Although there are a lot of conjectures about invalid response behavior and its conse-
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quences for the validity of results in the international large-scale educational assessments,

the corresponding evidence base on its prevalence and its impact on inferences is rather

scarce. This is rather striking and hugely unfortunate as invalid response behavior is

directly linked to data quality, and data quality is at the very essence of all secondary

analyses that are run on the datasets of these assessments. We see three core challenges

contributing to the non-ideal current status that are all three connected to the inherently

exploratory character of the act of data quality monitoring for invalid response behavior.

First, invalid response behavior is a broad concept giving rise to a whole range of at

times inconsistently used definitions and terminology such as insufficient effort, disen-

gaged, careless, unmotivated, random, inconsistent, non-contingent, variable, or content-

independent responding (cf., Huang et al., 2012) and in addition, it invigorates debate re-

garding plausible underlying mechanisms. Within the context of international large-scale

educational assessments, these plausible underlying mechanisms have attracted research

attention, whereas the basic identification and prevalence of invalid response behavior

has not gained as much traction.

For example, students’ self-reported test motivation (Eklöf, 2007) or effort (Butler

& Adams, 2007) has been measured using custom survey scales (often added as a na-

tional option) and correlated to the achievement scores on the cognitive test component

of the assessments for a specific country or set of countries (r ≈ .25, see e.g., Eklöf et

al., 2014; Hopfenbeck & Kjærnsli, 2016). Yet, how does self-reported motivation/effort

translate into actual invalid responses given on the overall assessment or help in assessing

their prevalence? In a study by Eklöf et al. (2014) 37% of students reported they did

not do their very best on the test, whereas 81% of the students agreed they could have

worked harder on the test. Students’ self-reported perceived intentions are a complex

indirect measure and do not necessarily have a simple one-to-one translation into the

actual prevalence of invalid response behavior demonstrated in the assessment. Given

the scope of the international large-scale educational assessments, one can also wonder

whether self-reported generic motivation/effort is a constant across the assessment and

equally applicable to all parts of the cognitive achievement test component and survey
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component of the assessment. Furthermore, the self-report approach has a circular char-

acter to it considering that it comes down to asking students how motivated they are in

a questionnaire for which they might not be motivated to begin with. Thus, although

underlying mechanisms are of definite interest to potentially intervene and remedy invalid

response behavior, it is also a challenging subject and not directly fruitful for answering

the more primordial question of how prevalent this invalid response behavior is and what

impact it has on inferences based on the international large-scale educational assessments.

Second, a rather loose and unsystematic link exists between the definition of invalid re-

sponse behavior adopted in a study, mostly in terms of theorized unobservable intentions

of participants to the assessment, and the subsequently chosen operationalized measure

of invalid response behavior. Different types of post-hoc diagnostic methods are available

for the detection of invalid response patterns, including response time analyses, outlier

analyses, individual consistency measures, and person-fit statistics (for an overview, see

e.g., Curran, 2016; Meade & Craig, 2012). Yet most of the detection tools are either

generic and hence not clearly linked to a specific definition of a type of invalid response

behavior or when they are more specifically aimed at the detection of a set of invalid

response patterns, they lack specificity in the sense that they also pick up other response

patterns (e.g., Hong et al., 2020; Karabatsos, 2003). The difficulty with most methods

lies with the decision of, to some extent, arbitrary cutoff values to distinguish between

individuals showing in/valid response behavior (Curran, 2016; Hong et al., 2020). Cur-

ran, Kotbra, and Denison (as cited in Meade & Craig, 2012) showed that the prevalence

of invalid response behavior varied from 5% to 50% depending on how invalid response

behavior was operationalized (for similar results Beck et al., 2019; Huang et al., 2012).

In the context of international large-scale educational assessments, the validity study by

Hopfenbeck and Maul (2011) on the PISA 2006 learning strategy scale provides for in-

stance a good discussion of the potential value, but also the interpretation difficulties

when employing invalid-response detection techniques to further our understanding of

the interaction between students and these assessments. One thing is clear; When trying

to assess and identify invalid response behavior, it is important to pay attention to the
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specific methodology used as reported results highly vary as a function of these opera-

tionalizations, making the definition of invalid response behavior more operationally than

conceptually grounded.

Third, the sheer size and diversity of the assessments make that data quality monitor-

ing in international large-scale assessments in education has much more ground to cover

than a similar endeavor in research using a personality inventory for instance. Preven-

tive measures taken by TIMSS that will contribute to data quality, are the implemented

booklet design and pauses in-between assessment parts (Mullis & Martin, 2013) such that

test burden and testing time are kept within boundaries for the students. Standard data

management procedures are also in place to ensure the highest quality and consistency

for the TIMSS data files (e.g., out-of-range values; multiple responses; recoding logically

invalid or missing responses). Yet, to the best of our knowledge TIMSS does not focus

on underlying response processes (e.g., motivation, effort, or willingness to cooperate)

nor do their manuals (e.g., Martin et al., 2016; Mullis & Martin, 2013) mention the use

of different detection methods for flagging invalid response patterns or behavior for the

student questionnaire. One can argue whether this data quality monitoring and assess-

ment is the responsibility of the organizing party, of the research community, or up to

individual researchers as part of a sensitivity check for their specific study. The Standards

for Educational and Psychological Testing (AERA, 2014) do call on test developers, ad-

ministrators, and researchers alike to document sources of construct-irrelevant variance

to provide further context for test-based analyses and inferences.

This Study

In what follows, we will investigate the prevalence of so-called random responders

and their impact on inferences related to the TIMSS student questionnaire. This survey

part of the international large-scale educational assessments typically receives both less

investment and attention when compared to achievement tests, although both are equally

important to put results in context (e.g., Rutkowski & Rutkowski, 2010). After clarifying

why we chose to focus on this particular type of invalid response behavior, we outline the

adopted mixture item response theory (IRT) approach to detect random responders and
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how it operationalizes “random” and hence defines the type of invalid response behavior

it can study. Using this mixture IRT approach, we will identify the students which are

likely engaging in random response behavior, resulting in a prevalence estimate of random

responders. An impact assessment is run by means of a sensitivity study comparing the

results of analyses with and without the identified random responders. The approach pro-

vides educational researchers with a model-based procedure to chart the issue of random

responding in line with the Standards for Educational and Psychological Testing (AERA,

2014). We will illustrate the method for two student survey scales in each TIMSS domain

– “Value of” and “Confidence in” Mathematics/Science – for a subset of five countries.

This study design allows to make a tentative exploration of where the biggest source of

variation in prevalence and impact of random responders lies: At the country side or the

scale side.

Random Responders

Here, we explicitly focus on so-called “random responders”. Random responding is

defined as a response set (Cronbach, 1950) in which a person provides mostly unrelated

responses to a survey scale of interrelated items as if s/he was not even reading the

particular items and choosing a response option randomly throughout.

Risk factors. Meade and Craig (2012) highlight four risk factors that contribute to

the occurrence of such invalid response behavior: limited respondent interest, survey dura-

tion/length, lack of personalization/large social distance, and environmental distractions.

Unfortunately, the international large-scale educational assessments can be considered to

tick all these boxes except for the latter one (i.e., assuming relatively standardized test

administration conditions in participating classes across countries). First, the assessments

are low-stakes, not directly of interest to the student, students don’t receive any personal

feedback afterwards, and yet participation is implicitly compulsory. In the specific case of

TIMSS, this means that once a school agrees to participate in the assessment, all eligible

students in the sampled classes are expected to participate in the assessment (Martin et

al., 2016). Second, the assessments are quite comprehensive and hence lengthy, making

them prone to fatigue, inattentiveness, or boredom effects. The actual testing times for
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the achievement part of different assessments are in general set between 80–120 minutes

(e.g., technical guides of TIMSS: Mullis & Martin, 2013; PIRLS: Mullis & Martin, 2015;

PISA: OECD, 2017). In addition, the survey component of the assessment is typically

administered after the achievement test component, further exacerbating the issue for

the former component by adding an additional 15–35 minutes of testing time. Finally,

there is no social connection with the big organizations behind these assessments and,

given that participants are part of a random sample, there is no room for personalization.

In the end, it does seem reasonable to expect that some of these factors are somewhat

moderated depending on how the student is introduced to the survey by their classroom

teacher or by the national attitude towards these assessments (e.g., Sjöberg, 2007). Yet,

overall it seems natural to expect some degree of random response behavior to surface in

the international large-scale educational assessments.

Prevalence. As indicated earlier, estimates of the prevalence of random responders

in the international large-scale educational assessments are currently lacking in the litera-

ture. Prevalence estimates from other domains vary widely depending on the population

and assessment being investigated, but also based on the specific method used to identify

the random responders (Credé, 2010; Meade & Craig, 2012). The former variation across

populations and assessments is logical, but also implies that it is hard to make predic-

tions for the prevalence in the international large-scale educational assessments where

many distinct populations are involved and also a wide variety of content domains are

considered in the survey. Credé (2010, p.602) summarizes the current state of knowledge:

“the rate of random responding is nonzero for most populations and is likely to fall some-

where between 1% and 10%, although higher rates are certainly possible under certain

circumstances.”.

Definition: Operationalization. Repeating an earlier general point, the variation

in prevalence estimates across methods stresses that it is eventually the operationalization

by the method that sets the definition of what/who a random responder is, and hence that

this is a crucial choice in the study of this phenomenon. Here, our adopted operational

framework is depicted in Figure 1. In this path diagram, the squares represent the
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observed responses on the items of a survey scale and the circle represents the underlying

latent trait (e.g., ability, knowledge, attitude, ...) of the person responding to this scale.

Regular responders are expected to answer consistently according to their own latent trait

such that it can be considered the common cause underlying the given item responses

by a person as indicated by the arrows going from the circle to the squares in Figure 1a.

Formally, this implies that a person’s item responses are conditionally independent given

the person’s latent trait. In contrast, for random responders, their item responses do not

necessarily reflect their latent trait and are expected to be mutually independent (cf. the

absence of arrows between circle and squares in Panel 1b). More specifically, the random

responders are expected to respond uniformly at random, such that each response option

has an equal probability of occurrence. This is symbolized in Panel 1b by the vertical

line bisecting the square area in equal halves to represent the corresponding response

distribution within an item.

Figure 1

Framework to Operationalize and Define Random Responders in terms of (conditional)

Independence and Uniformity of Item Responses.

(a) Regular Responders:

Measurement Model

(b) Random Responders:

Null Model

Note. Symbols follow standard path diagram conventions, with squares representing observed

variables (i.e., item responses); circles, latent variables (i.e., trait to be measured by the scale

of items); arrows indicating dependence relations; vertical lines, categorical thresholds.

Mixture IRT approach. We will adopt a mixture IRT approach (for a review, see

Sen & Cohen, 2019) to explicitly model the possibility of two underlying yet unobserved

groups in the population, students engaging in regular response behavior versus students
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engaging in invalid random response behavior. In our approach, we extend an instance of

the HYBRID model by Yamamoto (1989) from binary in/correct responses on achieve-

ment tests to the polytomous case for survey responses (for other example extensions,

see e.g., Jin et al., 2018). The resulting model is a mixture IRT model in which the com-

ponent model for the regular responders is a graded response model (Samejima, 1969)

consistent with panel A in Figure 1 and the component model for the random responders

is a null model consistent with panel B.

More formally, the likelihood of a person’s p item response vector Yp under the mixture

model is formed by the weighted sum of the mixture component model likelihoods

l(Yp = yp) =Pr(C = RR) Pr(Yp = yp|C = RR) +

Pr(C = \RR) Pr(Yp = yp|C = \RR),

with usual restrictions that component weights Pr(C = RR) and Pr(C = \RR) sum up

to 1 and are each larger than 0. The component weight Pr(C = RR) can be interpreted as

a prevalence estimate for random responders, a model-based estimate for the percentage

of random responders on the scale.

The mixture component model for the regular responders (i.e., C = \RR) follows the

graded response model where item responses of a person are conditionally independent

given the person’s latent trait θp

Pr(Yp = yp|C = \RR) =

∫

θ

∏

i

Pr(Ypi = ypi|θp)h(θ)dθ. (1)

In the graded response model, the conditional cumulative distribution function (cdf) of

answering in a category k (k = 1, 2, . . . , K) or lower on item i given the person’s latent

trait θp is written as

F (Ypi = k|θp) =
1

1 + exp
(
−αi

[
θp − β

(\RR)
ik

]) ,

in which αi is recognized as item discrimination parameter and β
(\RR)
ik as item category

threshold parameter. The item response probabilities are formed as differences of adjacent
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category cdf’s: Pr(Ypi = k|θp) = F (Ypi = k|θp)− F (Ypi = k − 1|θp).

The mixture component model for the random responders follows a reduced formula-

tion omitting the common latent trait that previously linked responses within a person,

such that item responses are mutually independent as in a null model

Pr(Yp = yp|C = RR) =
∏

i

Pr(Ypi = ypi), (2)

with cdf formulated as

F (Ypi = k) =
1

1 + exp
(
−β

(RR)
k

) .

The item category threshold parameters are different from those in the regular responder

component model and are fixed to β
(RR)
k = − log(K/k − 1) such that each response

category has an equal chance of occurrence.

Detection of Random Responders. The mixture model approach allows to classify

persons using their posterior most likely component membership as regular or as random

responder based on their observed item response pattern (i.e., Pr(C = RR|Yp) vs Pr(C =

\RR|Yp)). Hence in contrast to more untargeted methods, the identification of random

responders is now the result of an explicit link between the conceptual definition of

the invalid response behavior and its observable expression in terms of expected response

patterns as formalized by the mixture model. There is no need to set arbitrary thresholds

for classification as classification is internal to the model approach and the crispness of

the classification can be evaluated using accepted criteria such as entropy.

Impact. The presence of random responders to your survey scale will essentially add

noise to your sample data and therefore has the potential to confound measurement and

related inferences. The general intuition is that the random responders themselves can

be considered a source of measurement error for your survey data and therefore that you

would expect a general attenuation effect (Spearman, 1904) to occur for any correlation

with a measure from a scale affected by random responders. So, we would be at risk

of underestimating correlations, factor loadings, reliability, and other related statistics

between variables and/or constructs.
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In practice, this attenuation-intuition is a slight overgeneralization as the impact

of random responders will depend on several factors (i.e., the percentage of random

responders in your sample, the consistency of the random responders across scales, and the

distribution of scale scores for the regular responders) and can essentially lead to either of

three options: no change, attenuation, but also the reverse, inflation (for an overview, see

Credé, 2010). Credé (2010) concludes that even with percentages of random responders

as low as 5%, observed correlations can be significantly distorted “in a manner that

is comparable to the effects of other important study artifacts such as range restriction,

dichotomization of continuous variables, and score unreliability” (p.609). Thus, we should

not underestimate the potential threat that random responders could form to the validity

of our inferences based on survey data from the international large-scale educational

assessments.

Method

The data that will be used stems from the Trends in International Mathematics and

Science Study (TIMSS) 2015 cycle. TIMSS is an international large-scale educational

assessment used to monitor mathematics and science achievement among representative

samples of fourth- and eighth-grade students across different countries and is conducted

every four years since 1995. Next to achievement measures, TIMSS also collects informa-

tion about the context for learning through among others a student questionnaire focusing

on students’ engagement and attitudes towards learning mathematics and science.

Sample

From the 40 unique countries (i.e., technically all education systems including the

regional benchmarking participants) who administered TIMSS to the eighth grade in

2015, a sample of five countries was selected for analysis based on their average coun-

try achievement scores in mathematics and science, and their type of science program.

With the highest performing country – Singapore –, two countries with mathematics and

science achievement above the TIMSS scale average of 500 – England and Norway –,

and two countries with achievement scores below average – Malaysia and Jordan –, the
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selection covers the whole achievement scale. All selected countries have an educational

curriculum containing an integrated science program. This implies that these countries

all administered the same student survey with the science-related student questionnaire

scales referring to science as a general subject (i.e., no distinction between biology; earth

science; chemistry; and physics). This helps between-country comparability of at least

some of the many contextual factors.

Note that Norway will be represented twice. For the 2015 assessment, Norway ad-

ministered TIMSS to both the eighth grade, as well as the ninth grade18. Given that

we don’t expect any substantial differences in random response behavior between both

adjacent cohorts, we believe we can consider both Norwegian grades as an opportunity

for direct internal replication of results in at least one country.

Measures

Value/Confidence in Achievement Domain. Within each of the TIMSS achieve-

ment domains (i.e., Mathematics and Science), we focused on two scales – the Value

of Mathematics/Science (VoM/VoS) and the Confidence in Mathematics/Science scales

(CiM/CiS) – from the student questionnaire. Hence, we have two constructs in two do-

mains. The relation between student Value/Confidence and academic achievement has

gained much attention in the literature and is of direct interest to educational stakehold-

ers, and is therefore a relevant subject area to investigate the potential impact of random

responders on the validity of inferences.

The Confidence in Science (CiS) scale contains eight items, and the Value of Science

scale (VoS), Confidence in Mathematics scale (CiM), and Value of Mathematics scale

(VoM) contain nine items each. For each item, a student indicated to what extent s/he

agrees with the given statement on a 4-point Likert scale, ranging from 1 (agree a lot) to

4 (disagree a lot) (for the statements, see Martin et al., 2016).

Academic Achievement. Per domain, Mathematics and Science, a set of five so-

called plausible values is provided as an estimate for the student’s latent underlying

18The government argued that due to the nature of the first grade in the Norwegian school system,
Norwegian grade 9 is more comparable to grade 8 internationally. After 2015, only the fifth grade and
the ninth grade will participate in TIMSS.
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proficiency on the achievement test part of TIMSS. The plausible values are a consequence

of the booklet design underlying the achievement test, where the number of items is so

large that it is strategically distributed across the sample of students in a country, such

that a simple sum or average score is no longer directly comparable, and more advanced

estimates are needed (e.g., Von Davier et al., 2009). These plausible values will be used

and analyzed accordingly as a measure of student achievement when investigating the

impact of random responders on the relation between Confidence/Value and academic

achievement across the selected countries.

Design. The main consideration to reduce the response burden of students was the

implementation of a booklet design. Overall, the achievement test for the eighth-grade

students consists of about 450 multiple-choice and constructed-response items, yet stu-

dents only answer a limited range of items given the applied design. Students are assigned

to one booklet and for the eighth grade each booklet consists of four blocks with 12-18

items. The blocks are administered in two parts (i.e., focus on mathematics or science)

and the testing time for each part was set at 45 minutes, with a 30-minute break in be-

tween (e.g., Mullis & Martin, 2013). After a second break, the student questionnaire was

administered to every student that took part in the main assessment. For the selected

sample of countries, the complete student questionnaire consisted of 10 scales and addi-

tional items on student background information (Martin et al., 2016). The testing time

for the student questionnaire was set at 30 minutes. Students were not allowed to leave

the room or start with a new section even if they had already completed the task within

the set time frame (Martin et al., 2016). Hence, there is no reward for rushing through

the assessment as students had to remain seated in class and received the same break

time. The actual testing time for an eighth-grade student in the TIMSS 2015 assessment

was set at 120 minutes in total plus the time for the two breaks (Mullis & Martin, 2013).

Statistical Analysis

The mixture models were estimated using Mplus Version 8.1 (Muthén & Muthén,

1998–2017) through the MplusAutomation package for R version 0.7-3 (Hallquist & Wi-

ley, 2018). We used full-information maximum likelihood estimation with robust stan-
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dard errors and the accelerated expectation-maximization algorithm with 400 random

starts, 100 final stage optimizations, and 10 initial stage iterations. Model estimates and

prevalence/impact statistics accounted for the TIMSS sampling design through the total

student weights. To not confound results with any measurement non-invariance issues,

the mixture model was estimated for all country-scale combinations separately. Analysis

scripts were run under R version 4.0.0 (R Core Team, 2020).

Modelling approach. For each scale, a series of three models was estimated: the

null model; the graded response model; and the mixture model. Model comparison

through information criteria (i.e., AIC & BIC, Wagenmakers & Farrell, 2004) allows to

assess (i) the initial starting ground for each of the component models (null & graded

response model) in the mixture, (ii) reasonableness of considering people consistently

responding to the scale (graded vs null), and (iii) reasonableness of considering the two

types of responders instead of one homogeneous population (graded vs mixture). With

K = 4 ordinal response categories for an item, category thresholds were fixed at β(RR)
k =

{−1.099, 0, 1.099} for the null models.

Classification Validity Checks. To ascertain whether the mixture model provides

a solid basis for further classification, and hence the detection of random responders, we

implemented two classification validity checks. First, we required a classification entropy

of at least .70 to ensure that the mixture is able to provide a crisp classification separation

of the sample in a group of random responders and a group of regular responders. Second,

the component model for regular responders in the mixture was inspected to ensure

that it indeed reflected persons consistently responding on a unidimensional scale (i.e.,

compatible with a common underlying latent trait); when two or more standardized item

discrimination parameters (i.e., factor loadings) dropped below .40, this validity criterion

was not met. Cases for which the inclusion criteria do not turn out positively will be

disregarded for further analyses and reporting (i.e., some blanco cells might appear in

the results).

Random Responders: Group Validation. For the group of students classified as

random responders, we will evaluate whether their response patterns are indeed displaying
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the characteristics as prescribed under the adopted random responder definition: (i) re-

sponses between items ought to be unrelated as evidenced by close-to-zero inter-item cor-

relations, (ii) marginal response distributions per item ought to be close to uniform, and

(iii) with individuals tending to make use of the full range of the likert scale as evidenced

by the average number of response alternatives used across the survey scale. Empiri-

cal evidence against would question the operational success of the approach, dismissing

the random responder class of the mixture model as a spurious class accommodating

some undefined model assumption violations of the regular IRT measurement model(e.g.,

Bauer & Curran, 2014). In contrast, empirical evidence in favor would support a strong

interpretation in terms of a random responder group and population heterogeneity.

Random Responders: Prevalence and Overlap. We assessed prevalence by the

number of students in our sample classified as a random responder by the model. Overlap

in classification as random responder was assessed pairwise, across scales, using a simple

percentage of those jointly classified as random responder with the corresponding odds

ratio as an effect size measure for the interdependence between both classifications.

Random Responders: Impact. The impact of students being flagged as random

responders on results and conclusions was evaluated by comparing results with and with-

out random responders (i.e., “without” means here that corresponding observations on

the scale on which respondents were flagged, were set as missing). We inspected the scale

score’s distribution and reliability, but also correlations between scales across/within do-

mains and with achievement in the corresponding domain. In evaluating impact focus is

on effect size measures and graphical representations to avoid a too narrow perspective

focusing on mere statistical significance.

Results

Mixture Model Results

Model Comparison

Model fit of the series of three item response models for each of the four scales per

country are presented in Appendix A (see Table A1). In Table 1, we zoom in on the
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results for the Confidence in Mathematics (CiM) scale among Norwegian ninth-grade

students as similar results applied to the other scales and countries.

Table 1

Model Fit of the Series of three Models for the Confidence in Mathematics Scale for

Norwegian Ninth-Grade Students.

model #par -LL AIC BIC wAIC wBIC

M1: null model 0 56372 112743 112743 0 0

M2: graded response model 36 41082 82236 82468 0 0

M3: mixture model 37 40499 81071 81309 1 1

Note. #par = number of parameters; -LL = -log-likelihood; AIC = Akaike Information

Criterion; BIC = Bayesian Information Criterion; wAIC = weighted AIC; wBIC = weighted

BIC.

The huge improvement in fit for the graded response model (M2) over the null model

(M1) supported the notion that the scale is unidimensional and that at least a substantial

portion of people respond accordingly. Yet, assuming a completely homogeneous popula-

tion was untenable as the random responder mixture model (M3) on its turn outperformed

the graded response model (M2). Although differences in AIC and BIC were smaller in

relative magnitude within this last comparison, the differences were consistently in favor

of the mixture model, with model weights unanimously distributed to this specific model

among the set of 3 alternative models for the data at hand. This supported the notion

of population heterogeneity in the manner of responding to the scale and the mixture

modelling approach. Note that the pattern of results was also internally replicated for

Norwegian eighth-grade students.
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Figure 2

Loading Patterns of the Non-random Responders Component Model in the Mixture

Model.
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Note. In line with responding consistently across items on a unidimensional scale, strong
item loadings are expected for the non-random or “regular” responders. Loadings below
.40, as indicated by the dashed grey line, are considered weak. The figure row facets are
formed by the scales with acronyms being construct (i.e., Confidence in/Value of) domain
(Mathematics/Science) combinations. Items {2, 3, 5, 8, 9} on the CiM scale and items {2, 3, 7,
8} on the CiS scale are reverse-coded due to negative item wording. The figure column facets
are formed by the countries: Malaysia, Jordan, Singapore, England, and Norway eighth and
ninth grade, respectively.

Within-Class Model Characterization

We first characterized the estimated loadings of the non-random responders com-

ponent model in the mixture model to verify that the non-random responder class is

indeed responding consistently across items in line with a unidimensional scale. Under

the assumption that the scales are unidimensional, strong loadings were expected across

all items in the regular responder class. Otherwise the interpretation of those ending

up classified as not being a member of the random responder but of the “regular” (i.e.,

non-random) responder class would no longer be comparable across scales and countries.

Generally, a clear unidimensional structure was found with average loadings ranging

from .67 to .88 across countries and scales. However, deviations from this general trend
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occurred for the Confidence in Science scale in Jordan and Malaysia. In these cases, only a

subset of items – specifically the reversed worded items – had strong loadings, whereas the

loadings reduced to zero for the remaining items (see Figure 2). In Jordan, the Confidence

in Mathematics scale showed a similar but less demarcated pattern, where strong loadings

for reverse-coded items were combined with more moderate to weak loadings for the

remaining items. In all three cases the validity criterion was not met and the non-random

responder class could not be simply interpreted as regular responders to a unidimensional

scale, and consequently these cases were therefore omitted from further analyses.

Validation of the Random Responders Class

To validate that the students classified as random responders have a response pattern

that can be considered “random”, we took a closer look at the observed response patterns,

as well as the correlation between item pairs. From a theoretical viewpoint, and as implied

by the underlying model, the responses in the population were expected to be uncorrelated

and every response option was expected to have an equal chance of occurrence. Yet in

practice, when looking at the students classified according to the model, results will

be prone to sampling variation and classification errors. Consequently, the observed

distribution of responses and the theoretically expected distribution cannot be expected

to be one-to-one comparable. Similarly, correlations will not be exactly zero and might

show some deviations in either direction. Moreover, this sampling variation in results

might be further enlarged by the potentially low sample size in the random responder

class. Yet, to have confidence that the random responder class was actually “random”, the

responders in the random class should still follow the expected patterns approximately.
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Table 2

Use of Response Scale: Average Number of Response Options Selected per Scale by Reg-

ular and Random Responders.

Mathematics Science

ISO group Confidence Value Confidence Value

n count n count n count n count

NOR \RR 4360 2.47 4547 2.47 4392 2.33 4400 2.31

RR 298 3.34 99 3.47 253 3.22 237 3.46

NO8 \RR 4471 2.49 4639 2.38 4453 2.30 4525 2.29

RR 275 3.44 88 3.29 290 3.23 209 3.43

ENG \RR 4438 2.63 4641 2.50 4279 2.30 4543 2.29

RR 289 3.49 83 3.37 421 3.34 133 3.44

SGP \RR 5634 2.46 5840 2.42 5563 2.18 5722 2.13

RR 454 3.38 246 3.46 520 3.13 355 3.39

JOR \RR x x 7469 2.03 x x 7224 1.74

RR x x 272 3.35 x x 477 3.44

MYS \RR 8282 2.42 9041 2.15 x x 8184 1.80

RR 1394 3.48 604 3.40 x x 1282 2.90

Note. The results show to what extent the complete response scale is used. The ISO codes refer

to the countries: Norway, ninth and eighth grade respectively, England, Singapore, Jordan, and

Malaysia. The group variable refers to the different groups of responders, with \RR = regular

responders or the whole sample without random responders; RR = random responders; n =

weighted sample size; and count = the average number of response options selected.

Use of Response Scales. Figure 3a and Figure 3b show the distribution of the ob-

served responses given by the average proportion of how often a specific response category

was selected among all students in a specific class for each country-scale combination. The

common trend within the regular responder classes was that on average these students

tended to select the “agree” response options (i.e., reflected by the top two categories in

the figure) and they did this to a larger degree than their counterparts in the random re-
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sponder class. In contrast, the random responder classes showed a strong general pattern

where all response options were equally well represented. Malaysia might be singled out

by a lower proportion of “disagree a lot” responses on the Value of Science scale. Yet, in

this case the distribution of responses was restricted by the baseline probability for this

specific category. Across all items this response option was only selected by 2.6% of the

total number of participating students. Furthermore, students in the random responders

class used on average one additional category when responding to the questionnaire (i.e.,

RR = 3.4 and \RR = 2.3; see Table 2) which was in line with a more random and less

consistent use of the response scale.

Dependence between item pairs. Whereas the regular or non-random responders

showed a degree of consistency in responding with average correlations across item pairs

ranging from .43 to .64 for all country-scale combinations, the overall relation between

item responses was lacking for all the random responder groups. On average the random

responder classes showed near-zero correlations across item pairs (see Table 3). Even

though individual item pairs showed some sampling variation in either direction for the

random responders, the strength of the relation between the item responses was of dif-

ferent orders of magnitude than for the corresponding regular or non-random responder

classes. Within each scale-country combination the majority of individual item pairs

showed weak positive or negative relations at best.

Overall, these clear differences in observed response patterns between the classified

groups were in line with the theoretically motivated specifications of the mixture model

and provided further support for regarding the random responder classes as “random re-

sponders” (i.e., response patterns for students in these classes are conform expectation for

random responders) and not as mere spurious classes accommodating undefined residual

misfit.
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Figure 3

Use of Response Scale by Regular and Random responders.

(a) Regular Responders: Distribution of Selected Response Options Across Scales and Countries
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(b) Random Responders: Distribution of Selected Response Options Across Scales and Countries
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Note. The vertical axis in Panel A and Panel B provides the average cumulative proportion for
selecting a specific category or lower across scale items, respectively for the regular responders
and random responder group. The number in each bar element reflects the average response
proportion for that specific category in answering to a specific scale. From bottom to top
the reflected categories range from “disagree a lot” to “agree a lot” and end with the missing
responses. Under the component model for the random responders, the probability for each
category was expected to be 0.25. The scale acronyms are construct (i.e., Confidence in/Value
of) domain (Mathematics/Science) combinations. The figure column facets and ISO codes are
formed by the countries: Norway ninth and eighth grade respectively, England, Singapore,
Jordan, and Malaysia.
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Table 3

Average correlation across all item pairs for the ‘Confidence in’ and ‘Value of’ Mathe-

matics and Science scales.

Regular Responders Random Responders

ISO Mathematics Science Mathematics Science

M Q1 Q3 M Q1 Q3 M Q1 Q3 M Q1 Q3

C
on

fi
d
en

ce

NOR 0.64 0.59 0.69 0.59 0.53 0.64 0.03 -0.21 0.30 0.06 -0.21 0.43

NO8 0.59 0.55 0.65 0.56 0.52 0.63 0.00 -0.29 0.28 0.04 -0.22 0.38

ENG 0.51 0.40 0.61 0.61 0.58 0.67 0.02 -0.21 0.26 0.04 -0.23 0.38

SGP 0.60 0.53 0.68 0.64 0.59 0.68 0.06 -0.17 0.27 0.13 -0.14 0.32

JOR x x x x x x x x x x x x

MYS 0.43 0.34 0.52 x x x 0.02 -0.21 0.32 x x x

V
al

u
e

NOR 0.51 0.45 0.58 0.59 0.54 0.63 0.02 -0.11 0.12 0.07 -0.10 0.22

NO8 0.49 0.42 0.54 0.60 0.54 0.66 0.05 -0.09 0.23 0.04 -0.12 0.18

ENG 0.46 0.39 0.53 0.61 0.56 0.67 0.00 -0.16 0.18 0.03 -0.15 0.09

SGP 0.46 0.40 0.55 0.56 0.48 0.64 0.02 -0.07 0.14 0.08 -0.04 0.16

JOR 0.51 0.44 0.60 0.61 0.57 0.66 -0.05 -0.15 0.03 0.00 -0.09 0.04

MYS 0.52 0.43 0.61 0.62 0.54 0.71 0.06 0.00 0.12 0.09 0.04 0.14

Note. The results show the dependence in responses across all item pairs. For the random
responder group, correlations are expected to be centered around zero. The ISO codes refer to
the countries: Norway, ninth and eighth grade respectively, England, Singapore, Jordan, and
Malaysia. With M = mean; Q1 = first quartile; Q3 = third quartile.
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Prevalence of Random Responders

The classification results using the mixture approach indicated that the prevalence

of random responders was estimated on average at 6% across countries and scales. The

regular non-random responder class and random responder class were well-separated as

indicated by entropy values well above .70 (see Appendix B, Table B1), leading to a crisp

classification (i.e., a participant’s posterior membership probability for one class tended

to clearly outweigh the other class’ membership probability).

Figure 4

Percentage of Random Responders under the Mixture Approach.
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Note. The figure column facets are formed by the countries: Norway ninth and eighth grade

respectively, England, Singapore, Jordan, and Malaysia. The scale acronyms are construct (i.e.,

Confidence in/Value of) domain (Mathematics/Science) combinations.

Variation across countries and scales. Most of the variation in prevalence oc-

curred between countries, with the average prevalence of random responders across scales

ranging from 4.5% for Norway’s eighth grade (i.e., 4.8% for the ninth grade) up to 11.4%

for Malaysia. With respect to the different scales, the across-country averaged prevalence

rates were somewhat closer together with 3.3% for the VoM scale, 6.3% for the VoS, 7.3%

for the CiS scale, and 8.0% for the CiM scale.
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Zooming in further on the results some tentative prevalence patterns were observed

(see Figure 4). The most affected cases were displayed by Malaysia on the Confidence

in Science scale with 14.4% of random responders and the ‘Value of Science’ scale with

13.6% of random responders. Notice that beyond Malaysia no other country showed

prevalence rates above 10%. In addition, the overall random responder prevalence rates

on the Confidence scales tended to be higher than those on the Value scales. Especially

within the mathematics domain this pattern was unequivocal, with prevalence rates that

were up to three times higher.

Overlap across scales. Overall, the generally low overlap percentage and low to

moderate classification log odds ratios across pairs of scales (see Appendix B, Table B1)

provided no indication to conclude that it were always the same students that were

classified as random responder across all four scales. Only about 1% of students ended

up being classified as a random responder across individual pairs of scales. Yet note

that the minimum prevalence rate across the pair of scales serves as an upper bound to

this overlap. In general, there was however stronger dependence in classification between

scales assessing the same construct (i.e., Confidence or Value) compared to between scales

assessing the same domain (i.e., Mathematics or Science).

Impact of Random Responders on Scale-related Inferences

To assess the potential impact of the student classified as random responders on

inferences related to the Confidence and Value scales under investigation, we conducted

a small sensitivity study. With this objective in mind we computed relevant statistics

of interest with and without the random responders present in the data (for the latter,

answers were recoded as missing for the random responders). In addition, we will also

report on the relevant statistics for the random responder groups to characterize how these

compared to the regular or non-random responder groups. Thus, three sets of results are

reported: results for the whole sample, for the whole sample without random responders,

and for the random responders only. Note that due to relatively low prevalence rates

of random responders, the latter third set of results was often based on correspondingly

quite low sample sizes.
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Figure 5

Distribution of Mean Scale Scores With and Without Random Responders.
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Note. For the scale scores, item responses were recoded such that higher mean values were in-

dicative of higher Confidence/Value levels (0 = ‘disagree a lot’; 1 = “disagree a little”; 2 = “agree

a little”; and 3 = ‘agree a lot’). The figure row facets are formed by the scales with acronyms

being construct (i.e., Confidence in/Value of) domain (i.e., Mathematics/Science) combinations.

The maximum scale score is 27 for the CiM, VoM, and VoS scales and 24 for the CiS scale. The

grey lines indicate the scale midpoints. The figure column facets are formed by the countries:

Norway ninth and eighth grade respectively, England, Singapore, Jordan, and Malaysia. The

horizontal axis refers to different groups of responders, with all = the whole sample; \RR

= regular responders or the whole sample without random responders; RR = random responders.

Scales Scores. In general, the random responders tended to score as expected closer

around the midpoint of the scale (i.e., 12 for CiS and 13.5 for the other scales), visibly

lower than the non-random responder groups (i.e., an average difference of 4.7 points)

and more homogeneous as a group (i.e., less variation in score distribution) (see Figure 5).

Even though there were large differences in score distribution between those two responder

groups, the distribution of scale scores stayed fairly stable when removing the random

responders (i.e., whole sample vs. non-random responders only). Hence, at the level

of the scale score distribution, the impact of the generally small proportion of random

responders was rather limited. In general, the average scale score went up by just .2
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points across countries and scales when removing the random responders.

Cronbach’s Alpha. Looking at reliability, similar patterns of results were found.

In line with expectations, the reliability of the scale for the random responder groups

was too low to be meaningful (see Figure 6), while reliability for all of the available

non-random responder groups was above .80. Thus again there were large differences in

results between the two responder groups, yet excluding the random responders resulted

in a minimal increase in Cronbach’s alpha. Yet, do keep in mind that the starting

reliability for the whole sample was already close to or above .80, and that obviously it

was hard to effectuate a large increase in those cases (i.e., the maximum increase was .06

points for Malaysia on the CiM scale).

Figure 6

Scale Reliability With and Without Random Responders.
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Note. The figure row facets are formed by the scales with acronyms being construct (i.e.,

Confidence in/Value of) domain (i.e., Mathematics/Science) combinations. The figure column

facets are formed by the countries: Norway, ninth and eighth grade respectively, England,

Singapore, Jordan, and Malaysia. The horizontal axis refers to different groups of responders,

with all = the whole sample; \RR = regular responders or the whole sample without random

responders; RR = random responders.

Between-scale Correlations. To examine the relations between Confidence and

Value on the same domain (i.e., CiM:VoM and CiS:VoS) or relations within constructs

A3.26



across the Mathematics and Science domain (i.e., CiM:CiS and VoM:VoS), we looked

at pairwise correlations with and without random responders. As mentioned before, on

the scales where students were classified as a random responder, their respective scale

score was set as missing. In this case, results for the random responder group are not

discussed separately, as the number of students being classified as random responders

simultaneously across different scale pairs is too limited for meaningful interpretation.

In general, the exclusion of the random responders from the whole sample gave rise

to correlation differences ranging only from -.04 to .02 across countries and scales (see

Table C1). The largest difference was observed for England where a correlation of .50

between Confidence and Value of Science increased to .54.

Correlations with Achievement. In addition, we examined how “Confidence in”

and “Value of” Mathematics/Science as reported by the students in the questionnaire were

related to the students’ achievement scores on the corresponding domain in the assess-

ment. For the random responder groups, the average across countries correlation between

Confidence/Value and Achievement was r = .25/.11 for Mathematics and r = .21/.14 for

Science (see Table C1b). In comparison, for the regular responder groups, the average

across countries correlation between Confidence/Value and Achievement was r = .49/.17

for Mathematics and r = .36/.21 for Science. The difference in the relation between

Confidence and Achievement was stronger than between Value and Achievement. The

higher correlation between Confidence and Achievement was in line with theory, as the

Confidence scale in TIMSS can also be regarded as a proxy for self-efficacy, a known

correlate of achievement. Yet again, although the differences between the random and

regular responder groups were at times quite sizeable, the impact of the random respon-

ders on the point estimates remained rather limited. The differences in the correlations

with achievement ranged from -.03 to .03 points across countries and scales when exclud-

ing the random responders from the total sample. In this case, the largest difference was

observed for Malaysia for both correlations with Mathematics Achievement.
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Discussion

The aim of the present study was to investigate, using a mixture IRT approach, the

prevalence of random responders and their impact on scale-related inferences related

to the TIMSS 2015 student questionnaire. The prevalence of random responders was

assessed as non-zero across all country-scale combinations of the subset under study with

prevalence rates ranging from 1.8% to 14.4%. These estimates are in line with prevalence

rates found in for instance personality research (for an overview see e.g., Credé, 2010) and

by rapid-guessing approaches in low-stakes achievement tests in an educational context

(e.g., Wise et al., 2020).

Individual-level. From a validity perspective, empirical support for two different

responder groups present in the data, portraying different underlying response patterns,

might in itself already have some implications. Compared to the regular responder groups,

the random responder groups tended to use more response options in a more uniform fash-

ion and their response patterns were less consistent (i.e., showing near-zero correlations

across item pairs). Given that the observed responses for the random responder groups

are so different from what would be expected if students respond according to their own

opinions and beliefs related to the questionnaire content, the interpretation of scores is

no longer informative for students classified as random responder. In this sense, random

responders are by their very definition a threat to validity at the individual level.

Group-level. In some cases the differences in response behavior also lead to large

group differences in the scale-related impact statistics (i.e., internal scale statistics, cor-

relations across scales, and correlations with achievement). It has especially been these

differences between the actual responder groups (e.g., (un)motivated; (in)sufficient effort

groups) that have been of particular interest in the context of international large-scale ed-

ucational assessments (for examples in terms of average achievement scores see e.g. Eklöf

et al., 2014; Hopfenbeck & Kjærnsli, 2016; or average accuracy scores see e.g., Michaelides

et al., 2020). Because the random responder group by definition tends to score near the

survey scale average, larger group differences on the relevant impact statistics coincide

with more homogeneous outspoken responses (i.e., far from the theoretical scale average)
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by the regular group. In our study, the results showed that in the most extreme cases, the

regular or non-random responder groups had scale scores up to nine points higher given a

maximum scale score of 27; scale reliabilities up to .93 points higher; or correlations up to

.34 points higher, compared to the random responder groups. Such differences are quite

disconcerting and hence random responders can be a real threat to validity at the group

level when studying differences between groups that contain disproportionate numbers of

random responders.

Aggregated-level. Moving one step further, we compared analysis results for the

whole sample with and without random responders included. Overall, the impact of

random responders on the inferences at the aggregate level was rather limited. This does

not mean that there were no quantitative differences in analysis results with and without

random responders included, yet these differences were not representing any relevant

qualitative changes in the results and conclusions. This result at the aggregate level is in

contrast to the validity consequences at the individual level and the group level.

Group differences in themselves are not a sufficient precondition for finding inferential

impact at the aggregate level. For example, the impact of random responders on the

correlations between substantive measures is not only influenced by the difference in

correlation between the two responder groups but also by the prevalence rate of the

random responders and of how strongly their total scale scores are separated from the

regular responders. Keeping everything else equal, impact will increase as the proportion

of random responders or score separation increases (Credé, 2010).

In this study, the overall prevalence rates for the random responder groups stayed

within limits and the average group differences were small. All combined this results in the

random responders forming a non-influential and small outlier group that is out crowded

by the typically large samples (i.e., n = 4000 as the target sample size in TIMSS) of

regular responders in the international large-scale educational assessments. Compare this

to other non-educational contexts such as personality tests or psychological assessments

where the ruling impression is that random responders would have a large impact, but

where sample sizes tend to be smaller and prevalence rates and group differences tend
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to be larger. Yet in an educational context, the limited impact on the aggregated level

results is not a one-off finding in the literature. Wise et al. (2020), for example, found in

a large-scale educational achievement testing context that aggregated school-level scores

remained rather stable after filtering out random responders based on their response

times (i.e., so-called rapid guessing response behavior). Using similar methodology, Wise

(2006) found a small positive effect on the correlation between information literacy and

SAT achievement scores; the reported increase of .01-.03 is similar in magnitude to what

was found in the present study.

Limitations and Other Considerations. The non-extreme prevalence of random

responders and robustness of the reported results might give the community reason to be

moderately optimistic about data quality of the survey and ignorability of the issue of

random responders. Yet we do have to keep in mind the necessary caveats with respect

to generalization of the findings.

First, the study considered one set of rudimentary inferential results. More complex

analyses could concern more scales, variables, and interrelations. In these situations, small

effects of the presence of random responders could potentially accumulate to noticeable

differences in inferential conclusions at some point. Especially when the focus would be

on the outcome of the statistical significance filter (cf., the tentative simulation study by

Rios (2021) pointing at an increased type-I error rate in measurement invariance testing).

Alternatively, there could also be situations in which the presence of random responders

in itself is sufficient to raise some concerns, regardless of their influence on scale-related

inferences. For example, representativity of the sample could be impaired if it would be

non-random groups of students engaging in random response behavior. If these students

are removed, any conclusions or policy recommendations based on these results might be

somewhat restricted.

Second, the study investigated only one particular model-defined way of invalid re-

sponse behavior. Giving responses that are more in line with a random responder than

with a regular responder is only one manifestation of invalid response behavior. In prac-

tice, many other (more systematic) types of invalid response behavior could have been

A3.30



considered (e.g., straightlining, inconsistent responding, and speeding). By focusing on

one specific pattern of invalid response behavior, the prevalence estimates will be a conser-

vative estimate of overall invalid response behavior. Different patterns of invalid response

behavior also have different impact and it could be interesting to see if their combined

effect would lead to more pronounced impact results. Yet, different patterns of invalid

response behavior will require different methods for detection (e.g., Hong et al., 2020;

Huang et al., 2012; Meade & Craig, 2012).

Third, the study considered a sample of five countries and two scales per domain,

the Value of Mathematics/Science and the Confidence in Mathematics/Science, from

the TIMSS 2015 eighth-grade student questionnaire. There is no guarantee that the

results will transfer perfectly to other survey scales. Furthermore, scales with few items

and/or items on which the sample of respondents do not use the full range of response

options will make it hard to distinguish between any type of responder, random or non-

random. Generalization to other countries, other TIMSS cycles, or other international

large-scale educational assessments is not guaranteed. Eklöf (2010) for instance suggests

that the motivation to participate in TIMSS might be influenced by grade level, and there

might be other covariates or contextual factors that can potentially give rise to more/less

random response behavior. In this respect, the transition of TIMSS to a computer-

based assessment administration system and observed mode effect (Fishbein et al., 2018),

might or might not be related to the typical increase in random response behavior when

comparing paper-and-pencil to computer-based administration (Beach, 1989). Therefore,

regardless of our initial set of positive results it would be good to remain cautious and

further investigate, monitor, and keep track of random response behavior and the impact

this might have on results and conclusions from international large-scale educational

assessments.

Conclusion

When further exploring invalid response behavior in the context of international large-

scale educational assessments, we do want to call for establishing a clear link between

the operational detection method and the definition of invalid responders, without the
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need to put forward intangible theories on underlying reasons or intentions. In contrast,

adopting generic definitions such as “insufficient effort responding” would “underscore

the cause of the response behavior without presupposing specific response patterns or

outcomes” (Huang et al., 2012, p.100). Yet, the responses students provide on a ques-

tionnaire are the only visible piece of information we have in order to say something

about the behavior of those students on the questionnaire. Regardless of the used detec-

tion method, we are only able to flag those students likely engaging in invalid response

behavior. Their response pattern does not provide any explanation of why they responded

as they did. Different manifestations of response behavior can have similar underlying

mechanisms, whereas similar responses can be caused by different intentions. The defini-

tion of “random responder” following the proposed mixture approach does not imply that

the person is consciously or intentionally randomly responding in an absolute sense, but

merely that they have a response pattern that is more consistent in a relative sense with

people whose responses to the scale would be unrelated across items than with people

whose item responses are related in a common-cause latent variable sense19. Admittedly,

this is a very operational definition, but it does not confound interpretation with im-

plications and/or connotations about (un)conscious intentions that are hard to capture.

The response pattern is more random than regular, the individual’s underlying response

processes are unknown. Instead of directly diving into the deep with the more ambi-

tious higher-order goal of understanding students’ intentions and response processes, it

is more realistic and fruitful at this point to first tackle the already difficult enough task

of implementing a thorough data quality monitoring system for international large-scale

educational assessments and make a start at more systematically charting the land of

invalid response behavior in these assessments. The mixture IRT approach used in this

study is one possible tool in such monitoring system.

Practical Recommendations. The low-stakes character of international large-scale

educational assessments and individual and cross-cultural/national differences cannot be

made to disappear, but it is important to remain vigilant on data quality to not destroy

19Yamamoto (1989) would refer to this as the “unscalable” class.
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for policymakers and researchers alike, the treasure trove of information collected in

these large endeavours. However, currently it is mostly left to the users of the large-

scale assessments to assure the validity of the results (Braeken, 2016) and take care of

the broader data quality. From this perspective, it would be ideal if the community

of researchers using the data from the international large-scale educational assessments

forms a habit to by default conduct and report sensitivity checks to study the robustness

of their findings. Flagging suspect survey responders and inspecting whether results

change substantially when these flagged responders are removed. The current study can

be seen as one example illustration of this practice.

However, it seems natural that a more structured data quality monitoring process

would be centrally organized or at least facilitated. To the organizing parties and stake-

holders of the international large-scale educational assessments, we would therefore make

a plea for the default inclusion of proven standard survey measures to facilitate detection

of invalid response behavior (e.g., Breitsohl & Steidelmüller, 2018; Leiner, 2019): (i) the

inclusion of an instructed response item (e.g., "Please mark slightly agree") or bogus

item (e.g., "I have never used a computer") at a few random moments throughout the

survey for an individual pupil in combination with a warning at the start of the survey

that such items can be included, and (ii) the provision of individual survey completion

speed indicators to help track rushed responding (cf. analogue to rapid guessing in the

achievement context, e.g., Michaelides et al., 2020; Wise et al., 2020) with the ethical

requirement that participants are informed about such data being collected. The recent

move to computer-based assessment, would make it straightforward to implement both

measures. The extra structure in design and data will make the regular response patterns

more predictable and facilitates the detection of irregular invalid responses.

In an ideal world, all stakeholders would have access to a chart of invalid response

behavior indicators and trends across countries and scales to further guide any inferences

and policy recommendations based on the international large-scale educational assess-

ments and provide a possibility for an informed response to those sceptical about the

value of the survey data and robustness of related inferences. In other words, a lot of
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work is still on the table.
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Appendix C: Scale Related Impact of Random Responders

Table C1

Correlations With and Without Random Responders.

(a) Between-Scales Correlations.

ISO
CiM:VoM CiS:VoS CiM:CiS VoM:VoS

all \RR RR all \RR RR all \RR RR all \RR RR

NOR 0.38 0.40 * 0.42 0.45 * 0.44 0.46 * 0.54 0.55 *

NO8 0.34 0.36 * 0.43 0.45 * 0.40 0.40 * 0.52 0.52 *

ENG 0.34 0.35 * 0.50 0.54 * 0.28 0.29 * 0.48 0.48 *

SGP 0.35 0.35 * 0.47 0.47 * 0.16 0.16 * 0.44 0.44 *

JOR 0.35 x x 0.38 x x 0.36 x x 0.51 0.51 *

MYS 0.24 0.27 * -0.05 x x 0.03 x x 0.41 0.39 *

(b) Correlations with Achievement.

ISO
CiM:Mathematics VoM:Mathematics CiS:Science VoS:Science

all \RR RR all \RR RR all \RR RR all \RR RR

NOR 0.61 0.62 0.28 0.25 0.25 0.23 0.45 0.45 0.28 0.20 0.20 0.10

NO8 0.58 0.58 0.27 0.19 0.18 0.29 0.37 0.36 0.18 0.14 0.13 0.15

ENG 0.47 0.47 0.25 0.13 0.12 0.01 0.40 0.40 0.28 0.26 0.25 0.13

SGP 0.42 0.42 0.27 0.13 0.13 0.01 0.25 0.25 0.10 0.27 0.27 0.19

JOR 0.38 x x 0.16 0.16 -0.08 0.39 x x 0.17 0.17 -0.02

MYS 0.34 0.37 0.17 0.23 0.20 0.18 -0.18 x x 0.24 0.21 0.31

Note. Correlations are based on total scale scores, as well as achievement scores. The scale
acronyms are construct (i.e., Confidence in/Value of) domain (i.e., Mathematics/Science)
combinations. For the scale scores, item responses were recoded such that higher mean values
were indicative of higher Confidence/Value levels (0 = “disagree a lot”; 1 = “disagree a little”;
2 = “agree a little”; 3 = “agree a lot”). The ISO codes refer to the countries: Norway, ninth
and eighth grade respectively, England, Singapore, Jordan, and Malaysia. Results are given
for different groups of responders, with all = the whole sample; \RR = regular responders or
the whole sample without random responders; RR = random responders. With respect to the
between-scale correlations in Panel A, results for the random responder group are not presented
(*), due to too limited number of students being classified as random responder across different
scale pairs.
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Prevalence of Random Responders as a function of Scale

Position and Questionnaire Length in the TIMSS 2015

eighth-grade Student Questionnaire

This study examined the impact of two questionnaire characteristics, scale position

and questionnaire length, on the prevalence of random responders in the TIMSS 2015

eighth-grade student questionnaire. While there was no support for an absolute effect of

questionnaire length, we did find a positive effect for scale position, with an increase of

5% in random responding over the course of the questionnaire (in both the shorter and

the longer version). However, scale character turned out to be an unexpected but more

important determinant. Scales about students’ confidence in mathematics or science

showed an increase of 9% in random responding, which is double the impact of scale

position. Potential mechanisms underlying the confidence case and general implications

of the results for questionnaire design are discussed.

Survey answers can be distorted by construct-irrelevant factors that influence response

behavior. A potential measurement validity problem arises here as the corresponding

scale scores might no longer accurately reflect knowledge, abilities, or opinions related to

the survey content (e.g., Cronbach, 1950; Messick, 1984). A prominent contextual factor

that tends to trigger such invalid response behavior is a low-stakes-low-effort situation,

a context characterizing for instance most international large-scale educational assess-

ments such as IEA’s Trends in International Mathematics and Science Study (TIMSS) or

OECD’s Programme for International Student Assessment (PISA). For students partici-

pating in these types of assessments, there are no personal consequences linked to their

responses on the assessment, and hence, students might not always respond accurately

or thoughtfully, but instead shift to responding with the lowest effort (e.g., Curran, 2016;

Eklöf, 2010).

In this study, we will specifically focus on random responding, which is one type of

response behavior that is considered a typical expression of this low-stakes-low-effort
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context where students provide “responses without meaningful reference to the test ques-

tions” (Berry et al., 1992, p.340). Specifically, using TIMSS 2015 as a case study, we will

investigate the prevalence of random responders among the students across the different

scales of the TIMSS eighth-grade student questionnaire and in the different participating

countries. Profiting from the large-scale of the TIMSS study and the natural variation in

questionnaire version among countries, the potential impact of two construct irrelevant

external factors, scale position and questionnaire length, on random responding will be

explored.

Questionnaire characteristics in Context: Scale Position × Questionnaire

Length

Scale position. One of the most common risk factors that has been hypothesized to

influence response quality is item position. In the context of low-stakes assessments in

the personality and survey literature, invalid response behavior appears to become more

frequent near the end of the questionnaire, regardless of the specific content of the items

considered (Bowling et al., 2021; Galesic & Bosnjak, 2009). With respect to random

responding, rapid-guessing research provides an example of the specific impact of item

position on this type of behavior. The underlying idea is that when responses are given

too fast, students have not been able to accurately reflect on the given questions and the

“answers given during rapid-guessing are essentially random” (Wise & Kong, 2005, p.167)

and no longer reflective of their true knowledge or abilities. For achievement tests, rapid

guessing studies have shown that items located closer to the end of the assessment tend

to receive more random responses overall (e.g., Wise et al., 2009).

Although most research has focused on item-level position effects, every extra scale

added to a questionnaire can be seen as an additional group of items that need to be

answered, and hence the position effect would naturally extend to the scale level. For

example, in a small-scale study with university students, Merritt (2012) included one

additional scale on affective committment to a questionnaire, either at the beginning or

the end, with the latter position resulting in more invalid responding. Similarly, when

looking at two blocks of items of differing contents (i.e., numeracy and literacy) in an
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educational achievement test, Goldhammer et al. (2017) found for both blocks that when

presented in the first versus second part of the assessment, more invalid response behavior

was observed in the latter position. As students progress through the questionnaire, they

can be prone to experience for example boredom, disinterest, inattentiveness, or fatigue,

and as a consequence, provide responses that are no longer accurate or thoughtful.

Hypothesis 1. Scales at a later position in the questionnaire display a higher prevalence

of random responders compared to scales at an earlier position.

Questionnaire length. Based on the notion of similar underlying mechanisms, a

second potential risk factor that has been put forward is questionnaire length (e.g., Meade

& Craig, 2012). However, the literature shows mixed results with respect to the relation

between questionnaire length and response quality. Herzog and Bachman (1981) used

two types of questionnaires in their study, a short 45-minute version and a long 2-hours

version, and found higher levels of overly uniform responding in the longer questionnaire.

In a similar fashion, longer internet surveys were characterized by lower completion rates

(e.g., Deutskens et al., 2004; Galesic & Bosnjak, 2009). In contrast, Boe et al. (2002)

found that the ‘persistence to respond’ to the TIMSS 1995 student questionnaire, as

measured by the percentage of missing responses across the entire questionnaire, was not

significantly related to the length of the administered questionnaire. Furthermore, in a

set of small-scale studies with university students, Gibson and Bowling (2020) showed

that the influence of questionnaire length for personality assessments is dependent on

the context of questionnaire administration and on the operationalization or detection

method for invalid response behavior. Even though the literature is not unanimously in

agreement, we would still expect that a longer questionnaire length coincides with more

random responding overall, even in the TIMSS student questionnaire, as it has been

stated that “among the few documented problems detected by the national monitors

were students complaining about the length of the Student Questionnaire” (Martin et al.,

2016, p.6.19).

Hypothesis 2. Longer questionnaires display a higher prevalence of random responders

compared to shorter questionnaires.
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Position × Length. The final external factor that we will take into consideration

is the interplay between scale position and questionnaire length. Wise et al. (2009) for

example wondered whether adjustments to questionnaire length might be sufficient to

counteract the observed position effects. Yet current literature shows that it is hard

to pinpoint a generic criterion for the optimal length of a questionnaire as this would

among other things depend on the amount of invalid response behavior that is considered

acceptable, as well as on more pragmatic contextual factors (e.g., the context of adminis-

tration) (Bowling et al., 2021). In addition, invalid response behavior appears related to

questionnaire length or the number of questions overall. For example, Deutskens et al.

(2004) not only found that fewer respondents are finishing an internet survey as it gets

longer, but that the respondents would finish less of the longer questionnaire percent-

wise. Hence, respondents’ subjective perception of questionnaire length and the pace at

which they proceed through the questionnaire might actively moderate potential position

effects. A longer questionnaire might drain a respondent’s resources at a faster pace by

sheer negative anticipation for what’s still waiting ahead. Note that this would imply a

synergistic interaction between scale position and questionnaire length.

Hypothesis 3. In longer questionnaires, scales at a later position in the questionnaire

display an even higher prevalence of random responders compared to scales at an earlier

position, than in a shorter questionnaire.

This study

When studying the impact of scale position and questionnaire length on random re-

sponse behavior an ideal setup would be a large-scale experimental design where we, under

controlled scale-content conditions manipulate these two external content-irrelevant fac-

tors and randomize thousands of participants across the experiment while administering

the resulting questionnaire versions under low-stakes conditions to our target population

of high school students. Yet, such an extensive experiment might not be a realistic en-

deavor. As illustrated in the previous subsection, studies in the literature are mostly

based on personality questionnaires administered to relatively small convenient samples

of university students in typical Western countries, on internet surveys with somewhat
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larger but still non-random samples of participants, or on achievement tests in combi-

nation with response-time data (cf. rapid guessing). Simply extrapolating the evidence

base from these types of study designs and contexts to random responding on low-stakes

questionnaires for high school students in large-scale educational assessments in a more

international context seems not warranted. Thus, more specific tailored research is needed

to answer our research questions.

Here, we will be using the eighth-grade student questionnaire of Trends in Interna-

tional Mathematics and Science Study (TIMSS) 2015 as a specific case study. Profiting

from the large-scale of TIMSS, the study has large representative random samples of

eighth-grade students in each of the participating countries, bringing along extra gener-

alization support and potential systematic country variation that can be of interest to

educational stakeholders. Furthermore, the TIMSS 2015 student questionnaire provides

natural variation in scale position and questionnaire length across countries as two ver-

sions of the questionnaire were administered. The specific version that was administered

in a country depended on the structure of the science curriculum program taught by that

country. The student questionnaire under the separated science program is much longer

than under the integrated science program (i.e., respectively 19 and 10 scales beyond

basic demographics/background information). The order of the scales in each version

remains constant across administrations and the first 6 scales and the last scale of both

versions were similar for all students. Furthermore, most scales had a similar setup with

respect to question format and answer alternatives, with some being replicates if it were

not for subject domain differences (e.g., confidence in biology or confidence in chem-

istry). All these features allow studying random response behavior as a function of the

two content-irrelevant factors of interest: scale position and questionnaire length.

Note that there are no response times available for the student questionnaire (so

far, these have typically only been available for the achievement tests part of the in-

ternational large-scale assessments), and hence popular rapid guessing methodology to

identify random responders is not an option. Self-report data or convincing psychologi-

cal effort-related proxies are also lacking. Instead, we will rely on an operationalization
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of random response behavior by van Laar and Braeken (2022) that is directly based on

the questionnaire responses given at scale level and uses a mixture item response theory

(IRT) approach (for a review, see Sen & Cohen, 2019) to explicitly model the possibility

of two underlying yet unobserved groups in the population, students engaging in regular

response behavior versus students engaging in invalid random response behavior across

the items of a scale.

Method

The data that will be used comes from the Trends in International Mathematics and

Science Study 2015 cycle. TIMSS is an international large-scale educational assessment

used to monitor mathematics and science achievement among representative samples

of fourth- and eighth-grade students across different countries. Besides the achievement

measures, TIMSS also collects information about the home, school, and classroom context

for learning. As mentioned before, in this study we focus on the non-achievement part

of the assessment, with a specific focus on the student questionnaire. Besides some basic

demographics and background information, the main focus of the student questionnaire

lies with students’ attitudes towards learning mathematics and science (Mullis & Martin,

2013).

Assessment Duration. For the eighth grade, the achievement test of TIMSS con-

sisted of two sections (i.e., focus on mathematics or science). For each of these sections

the testing time was set at 45 minutes with a 30-minute break in between (e.g., Mullis &

Martin, 2013). Only after a second break, the student questionnaire was administered as

a third section. The student questionnaire was administered to every student that took

part in the TIMSS 2015 achievement test. The testing time for the student questionnaire

was set at 30 minutes. The total testing time for an eighth-grade student in the TIMSS

2015 assessment (i.e., all 3 sections) is then 120 minutes in total plus the time for the two

breaks (Mullis & Martin, 2013). Students were not allowed to leave the room or start

with a new section even if they had already completed the task within the set time frame

(Martin et al., 2016). Hence, there is no reward for rushing through the assessment as

students had to remain seated in class and everyone also gets the same break time.
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Student Questionnaire Length

For the eighth grade, there are two versions of the student questionnaire. The version

that is administered depends on the science curriculum program within a country. One

version is for countries teaching science as a single or general subject (i.e., integrated

science program), while the other version is for countries teaching science as separate

subjects (i.e., separated science program). This distinction between the science programs

also comes with natural variation in questionnaire length as implied by the different

number of survey scales within the specific versions of the questionnaire. The separated

science program has the longer questionnaire (i.e., 19 scales) with an additional 9 scales

compared to the student questionnaire for the integrated science program (i.e., 10 scales).

Student Questionnaire Scales

The student questionnaires contain survey scales related to the following domains:

school climate for learning, school safety, and student engagement and attitudes towards

mathematics or science (Martin et al., 2016) (for information on the specific scales see

Table 1). The three scales affected by the structure of the science program are the “Stu-

dents Like Learning Science”, “Students’ View on Engaging Teaching in Science Lessons”

and “Students Confident in Science” scales. For countries with an integrated science pro-

gram, each of these scales only appears once, while for countries with a separated science

program each of these scales is available for each science domain separately (i.e., in order

of appearance: Biology, Earth Science, Chemistry, and Physics). The science scales in

both student questionnaires do have the same structure. For the items in the separated

student questionnaire, it is just the word ‘science’ that is replaced by the name of the

specific science domain (e.g., ‘I enjoy learning science’ vs ‘I enjoy learning chemistry’).

The set of scales contains between 7 and 10 items for each scale, for which a student

needed to indicate to what extent s/he agrees with the given statement or indicate how

often a specific situation has occurred to them on a 4-point Likert scale, ranging from 1

(agree a lot or at least once a week) to 4 (disagree a lot or never).
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Scale Position

Scale position is defined by the order in which the survey scales appear in the stu-

dent questionnaire. Starting at position zero is the first substantive scale (i.e., students’

sense of school belonging) that followed after 14 more general questions about students’

background. After this first scale, the other survey scales followed in succession in the

questionnaire. An overview of the survey scales and their position in each version of the

student questionnaire can be found in Table 1.

TIMSS Sample: Countries

All 40 regular participating countries that administered the eighth-grade TIMSS as-

sessment in 2015 or 2016 have been included in the analyses. Note that some countries

used the opportunity to administer the TIMSS assessment to the ninth grade instead

of the regular eighth grade for better comparability with curricula (i.e., Botswana and

South Africa), for better comparability of results with other countries (i.e., Norway) or to

better match the TIMSS age criteria (i.e., England and New Zealand) (e.g., Martin et al.,

2016). Of the included countries, 29 teach an integrated science program, while the other

11 countries teach a separated science program20. In what follows, we will refer to the

countries by the ISO country codes as used in the TIMSS data files (see also footnote 20).

Prevalence of Random Responders

A mixture item response theory model framework (Mislevy & Verhelst, 1990; Sen

& Cohen, 2019; Yamamoto, 1989) was adopted to operationalize and define the target

outcome variable of interest PREV (RR), the prevalence of random responders on a

particular survey scale. The approach by van Laar and Braeken (2022) assumes that there

are two distinct, yet unobserved latent groups of responders in the population expressing

20Integrated Science Program: Australia, AUS; Bahrain, BHR; Botswana, BWA; Canada, CAN; Chile,
CHL; Chinese Taipei, TWN; Egypt, EGY; England, ENG, Hong Kong SAR, HKG; Iran, Islamic Rep.
of, IRN; Ireland, IRL; Israel, ISR; Italy, ITA; Japan, JPN; Jordan, JOR; Korea, Rep. of, KOR; Kuwait,
KWT; Malaysia, MYS; New Zealand, NZL; Norway, NOR; Oman, OMN; Qatar, QAT; Saudi Arabia,
SAU; Singapore, SGP; South Africa, ZAF; Thailand, THA; Turkey, TUR; United Arab Emirates, ARE;
United States, USA.

Separated Science Program: Armenia, ARM; Georgia, GEO; Hungary, HUN; Kazakhstan, KAZ;
Lebanon, LBN; Lithuania, LTU; Malta, MLT; Morocco, MAR; Russian Federation, RUS; Slovenia, SVN;
Sweden, SWE.
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different response behavior on a survey scale: regular or non-random responders and

random responders (see Figure 1).

Figure 1

Mixture IRT model Framework to Define and Operationalize Random Responders in

terms of Independence and Uniformity of Item Responses.

(a) Regular Responders:

Measurement Model

(b) Random Responders:

Null Model

Note. Symbols follow standard path diagram conventions, with squares representing observed

variables (i.e., item responses); circles, latent variables (i.e., trait to be measured by the scale

of items); arrows indicating dependence relations; vertical lines, response category thresholds.

Reprinted under the terms of CC-BY-NC from “Random responders in the TIMSS 2015

student questionnaire: A threat to validity?” by S. van Laar and J. Braeken, 2022, Journal of

Educational Measurement.

The regular responders are expected to respond consistently according to their own

opinions and beliefs related to the questionnaire content of the items on the scale, in line

with a traditional latent variable measurement model (see Figure 1a, the ‘circle’ is the

common cause of the ‘squares’) such as the graded response model (Samejima, 1969). In

contrast, the random responders are expected to provide responses that do not reflect

their opinions and beliefs, but are more haphazard, in line with a null model implying

independent item responses that have an equal chance of falling in either of the possible

response categories (see Figure 1b, the ‘squares’ are mutually disconnected, nor influenced

by the ‘circle’; all squares are divided into uniformly equal category parts).

Under the mixture IRT model, the likelihood of a person p’s item response pattern yp

(see Equation 1) is written as a weighted sum of the two mentioned model expressions:

the joint probability of the observed item response pattern given the person’s latent trait
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value under the graded response model multiplied by Pr(\RR) the prior probability for

a person to be a member of the regular responder group plus the joint probability of

the observed item response pattern under the null model multiplied by Pr(RR) the prior

probability for a person to be a member of the random responder group.

L(Yp = yp) =

Pr(\RR)
∏

i Pr(Ypi = ypi|θp, \RR)

+

Pr(RR)
∏

i Pr(Ypi = ypi|RR)

(1)

Although seemingly much more complex, this mixture model in fact has only one

additional parameter21 when compared to the regular measurement model. This param-

eter Pr(RR) can be interpreted as a model-based estimate of the prevalence of random

responders on the survey scale for the item response data the mixture model is applied

to.

Thus, this mixture IRT model was estimated for each of the scale-country combina-

tions in the current study. The resulting estimates for the mixture weight P̂r(C = RR)

will be used as an estimate of the prevalence of random responders on the survey scale for

that country, and hence is the actual outcome variable PREV (RR) for further analyses

targeting our core research questions. If the mixture model for a specific country-scale

combination failed either of two quality checks, the corresponding outcome was set to

missing. First, the measurement model for the regular responders in the mixture was

inspected to ensure that it reflected a clean unidimensional model (i.e., compatible with

the assumed common trait for the survey scale). This criterion was not met when two

or more standardized item discrimination parameters (i.e., factor loadings) were below

.40. Secondly, a classification entropy of at least .70 was required to ensure that the

mixture model was able to provide a good enough distinction between the two latent

groups of responders. To further assess model adequacy we gathered model comparison

21The part of the model accommodating the possibility of random responders in the population has
no unknown parameters as item response probabilities are known and assumed to be uniformly equal
across categories and items, such that only the mixture weights Pr(RR) and Pr(\RR) remain as extra
model parameters, which reduces to one given that Pr(RR) + Pr(\RR) = 1.

A4.11



evidence using BIC and BIC weights (Nylund et al., 2007; Wagenmakers & Farrell, 2004)

contrasting the null model with the graded response model and the mixture IRT model.

Statistical Analysis

A cross-classified linear mixed model approach was adopted to investigate how the

prevalence of random responders on a survey scale varied as a function of the scale’s

position in the questionnaire and the length of the student questionnaire it is part of.

The study design has a cross-classified cluster structure as multiple prevalence estimates

are observed within each country (i.e., across scales), but also for each survey scale

multiple prevalence estimates are observed (i.e., across countries). As a consequence, the

outcome variable PREV (RRcs) in the model is the random responder prevalence for a

given country c on a given scale s, reflecting the countries-by-scales cross-classification. A

series of five models was fitted to investigate the main research questions. As a baseline

model we used a varying-intercepts model (M0) capturing variation in the prevalence

of random responders across countries and scales, accounting for the heterogeneity and

dependence structure implied by the cross-classified study design:

PREV (RRcs) = β0 + β0c + β0s + εcs

β0c
iid∼ N (0, σ2

country)

β0s
iid∼ N (0, σ2

scale)

εcs
iid∼ N (0, σ2

residual)

(2)

The general intercept β0 reflects the average expected prevalence of random respon-

ders for an average country on an average scale. The country-varying (random) intercept

β0c and scale-varying (random) intercept β0s allow for a systematic deviation in the preva-

lence for a specific country c or specific scale s, respectively. The residual εcs allows for

unexpected deviations in prevalence for a specific country-scale combination not accom-

modated by both country and scale main effects in the model.

Our core research questions would imply that when adding scale position and ques-

tionnaire length as predictors to this model, variation in both features would be related

to the systematic variation in prevalence of random responders across scales (i.e., σ2
scale).

A4.12



Hence, the four models building on the presented baseline model will incrementally add

both predictors (and their interaction) to the equation. The percentage of systematic

variation in prevalence among the survey scales that is accounted for by the predictors

(i.e., R2
scale) will be used as a general effect size measure for each model.

Statistical Software. The mixture IRT models were estimated using Mplus Version

8.2 (Muthén & Muthén, 1998–2017) through the MplusAutomation package for R version

0.7-3 (Hallquist & Wiley, 2018) (for an example of Mplus syntax see Appendix A). We

used full-information maximum likelihood estimation with robust standard errors and the

expectation-maximization acceleration algorithm with a standard of 400 random starts,

100 final stage optimizations, and 10 initial stage iterations. Mixture model estimates

accounted for the TIMSS sampling design through the total student weights. The cross-

classified mixed models were estimated using the lme4 package for R version 1.1-27 (Bates

et al., 2015). As recommended by Snijders and Bosker (2012) we used residual maximum

likelihood estimation for estimation of the model parameters, but maximum likelihood

estimation for model comparison inference by means of likelihood ratio tests. All analysis

scripts were run under R version 4.0.0 (R Core Team, 2020).

Results

Descriptives

Data. Given that 29 countries teach an integrated science program and 11 countries

teach a separated science program the study started with 499 country-scale combinations.

However, prevalence estimates are not available for all combinations. For 7 combinations

this was related to data collection procedures (i.e., the scale was not administered or the

data is not available for public use), while 35 combinations did not fulfill the mixture

model quality checks (for an overview see Table 2). Together, this results in an effec-

tive sample size of 457 country-scale combinations for further analyses. Across all 457

combinations, the null model is never supported (BIC weight = 0 for all, average BIC

= 145747) and the model comparison evidence is close to unanimously in favor of the

mixture IRT model (average BIC = 90608; BIC weight = 1 for 435 combinations), with
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the regular graded response model (average BIC = 91855) being favored in only 13 com-

binations (all representing the ‘Student bullying’ scale with prevalence estimates below

1%). On average 93% (range: 70–100%) and 89% (range: 47–100%) of the scales have

an effective prevalence estimate for countries with an integrated science and a separated

science program structure, respectively. For survey scales shared by both science pro-

grams, prevalence estimates are available for 95% (75–100%) of the countries; for scales

unique to the integrated science and separated science programs, this comes down to 90%

(69–100%) and 85% (73–100%) of the corresponding countries, respectively. In sum, we

have a solid empirical basis for further analyses.

Baseline Model M0. The estimated prevalence of random responders on an average

scale ranged from 6.3% to 15.4% (M = 8.9%) across countries. The estimated prevalence

for an average country ranged from 1.9% to 20.2% (M = 8.9%) across scales. The

variation in prevalence (σ̂2
total = 37.8) was primarily due to systematic differences between

scales (σ̂2
scale = 25.5, 67% of the total variance) and only to a lesser extent to systematic

differences between countries (σ̂2
country = 3.8, 10% of the total variance).

The systematic variation in the prevalence of random responders and how it relates

to scale position and questionnaire length will be discussed in the next subsection, but

first the systematic variation across countries will be briefly addressed. The expected

prevalence of random responders for an average country on an average scale was estimated

to be about β̂0 = 8.9%. Yet on average, Georgia, Qatar, and Armenia showed higher

levels of random responders across scales, while Russia, Australia, Sweden, Kazakhstan,

England, Canada, and Norway tend to show lower levels (see Figure 2).
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Figure 2

Differences in Prevalence of Random Responders across Countries.
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Note. The vertical gray line represents the prevalence of random responders for an average
country on an average scale under the baseline model M0 (β̂0 = 8.9%). The black horizontal
lines are 95% confidence intervals of the country-specific deviations in prevalence (∆PREV(RR))
to that average.
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Prevalence(RRcs) = Scale Position × Questionnaire Length

It was expected that survey scales at a later position would display higher prevalence

rates. The model results (see Table 3) indicated that the expected difference in preva-

lence rate as a function of differences in scale position was positive, yet not significantly

different from zero (β1 = .12, χ2
(M0,M1)(1) = 1.28, p = .257, R2

scale = 10.1%). The longer

questionnaire was expected to display higher prevalence rates, yet no empirical support

was found for this hypothesis (β2 = .06, χ2
(M0,M2)(1) = 0.01, p = .935, R2

scale = 0%). Con-

sidering both scale position and questionnaire length jointly as predictors in the model,

lead to similar results (χ2
(M0,M3)(2) = 1.31, p = .521, R2

scale = 10.2%), and no support for

the hypothesized synergistic interaction was found either (χ2
(M3,M4)(1) = .88, p = .349,

R2
scale = 16.9%).

Overall these results were not in line with expectations. However, when visualizing the

data, an unexpected but impactful factor for the prevalence of random responders appears

(see Figure 3). The black lines in Figure 3 show the country trends of the prevalence

of random responders across scales in the student questionnaire. What becomes visible

is that the prevalence rates show a systematic occurrence of several spikes throughout

the survey in each of the countries. Two spikes occur for the integrated science program,

and three more spikes (i.e., 5 in total) occur in the longer questionnaire of the separated

science program. The locations of these spikes in prevalence are not randomly distributed

but coincide with the locations of the confidence scales in the questionnaire. In the

integrated science program the spike in prevalence occurs for both confidence scales (i.e.,

mathematics and science), and in the separated science program for all five confidence

scales (i.e., mathematics, biology, earth science, chemistry, and physics). Given the clear

impact of the confidence scales on the prevalence patterns, it makes sense to take this

factor into consideration and to revisit our hypotheses adjusting for this unexpected

confounder.
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Table 3

Cross-classified mixed models of the prevalence of random responders as a function of

scale position and questionnaire length.

M0 M1 M2 M3 M4

Parameter Estimates

predictor β̂ SE β̂ SE β̂ SE β̂ SE β̂ SE

β0: intercept 8.90 1.14 7.92 1.39 8.88 1.18 7.93 1.39 6.54 2.00

β1: position 0.12 0.11 0.13 0.11 0.39 0.30

β2: length 0.06 0.81 -0.12 0.82 0.33 0.96

β3: position×length -0.17 0.19

Variance Components

σ2
country 3.8 3.9 4.0 4.0 4.0

σ2
scale 25.5 22.9 25.5 22.9 21.2

σ2
residual 8.5 8.5 8.5 8.5 8.6

R2
scale 10.1% 0.0% 10.2% 16.9%

npar 4 5 5 6 7

-2LL 2428.2 2426.9 2428.2 2426.9 2426.1

Note. npar = number of parameters; -2LL = deviance; R2
scale = percentage of systematic

variation in the prevalence of random responders across scales under M0 that can be attributed

to differences in the predictor(s) in the corresponding model (M1 - M4). Located at position

zero is the first substantive scale that followed after 14 more general background questions.

Length is a binary variable differentiating between the shorter student questionnaire with 10

survey scales (i.e., length = 0) and the longer student questionnaire with 19 survey scales (i.e.,

length = 1).
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Figure 3

Observed Prevalence of Random Responders per Country across Scales by Science Pro-

gram.

(a) Integrated Science Program
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Note. The solid black line represents the observed prevalence of random responders across

scales. The dashed grey lines represent the average prevalence on the first and the last scale

across countries in the corresponding questionnaire. The spikes in prevalence are related to the

confidence scales; within the integrated science questionnaire located at position 4 and 8 and

within the separated science questionnaire located at position 4, 8, 11, 14, and 17 (i.e., indicated

by the grey vertical bars).



Table 4

Revisited with confidence in mind: Cross-classified mixed models of the prevalence of

random responders as a function of scale position and questionnaire length.

M0c M1c M2c M3c M4c

Parameter Estimates

predictor β̂ SE β̂ SE β̂ SE β̂ SE β̂ SE

β0: intercept 6.14 0.54 4.57 0.51 6.22 0.58 4.70 0.52 3.53 0.61

βconfidence 9.89∗ 1.39 9.23∗ 1.20 9.88∗ 1.39 9.17∗ 1.19 8.79∗ 1.17

β1: position 0.22∗ 0.05 0.23∗ 0.05 0.50∗ 0.10

β2: length -0.25 0.57 -0.67 0.57 -0.04 0.62

β3: position×length -0.22∗ 0.08

Variance Components

σ2
country 2.1 2.1 2.1 2.1 2.1

σ2
confidence 30.9 31.3 30.9 31.3 31.7

ρ 0.26 0.24 0.27 0.27 0.27

σ2
scale 3.6 1.3 3.6 1.3 0.9

σ2
residual 3.1 3.1 3.1 3.1 3.1

∆R2
scale 8.7% 0.0% 9.0% 10.3%

npar 7 8 8 9 10

-2LL 2046.7 2035.4 2046.5 2034.0 2025.9

Note. npar = number of parameters; -2LL = deviance; ρ = correlation between country-varying

coefficient for confidence and the country-varying intercept; ∆R2
scale = percentage of reduction

in σ2
scale under M0 uniquely attributed to the difference in the predictor(s) in the model beyond

confidence. Calculated as the difference between the reduction attributed to the combined

effect of confidence and the predictor(s) in the corresponding model (M1c - M4c) and the

reduction attributed to confidence on its own in M0c;
∗ = p < .05. Confidence is a binary

variable differentiating between non-confidence (i.e., confidence = 0) and confidence scales (i.e.,

confidence = 1). Located at position zero is the first substantive scale that followed after 14

more general background questions. Length is a binary variable differentiating between the

shorter student questionnaire with 10 survey scales (i.e., length = 0) and the longer student

questionnaire with 19 survey scales (i.e., length = 1).
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Hypotheses Revisited with Confidence in Mind

To account for the spikes in prevalence, we added a binary predictor variable differen-

tiating between non-confidence (i.e., confidence = 0) and confidence (i.e., confidence = 1)

scales to the model. As Figure 3 also showed that the degree of irregularity for the confi-

dence scales varied across countries, we allowed for a country-varying (random) coefficient

for confidence with mean βconfidence and variance σ2
confidence and potentially correlated with

the country-varying intercept β0c. Model results are summarized in Table 4.

The prevalence of random responders on an average non-confidence scale for an

average country was estimated to be β̂0 = 6.14%, whereas the corresponding preva-

lence for an average confidence scale was expected to be β̂confidence = 9.89% higher

(χ2
(M0,M0c)(3) = 381.51, p < .001, R2

scale = 86.1%). Hence, there is clear statistical sup-

port for a systematic spike in the prevalence of random responders on the survey scales

measuring confidence. When compared to the variation in prevalence across countries for

non-confidence scales σ̂2
country = 2.1, the corresponding variation across countries for the

difference between confidence and non-confidence scales is more sizeable σ̂2
confidence = 31.3.

The latter result reflects the differences in height of the spikes in the different countries in

Figure 3, whereas the baseline prevalence trends are more similar in nature. There was no

clear pattern between country differences in prevalence heights for non-confidence scales

and country differences in prevalence spike heights for confidence scales (i.e., ρ̂ = .26).

The addition of the new binary predictor effectively detrends the prevalence patterns

across the student questionnaire for the unexpected spike pattern due to the confidence

scales, allowing us to revisit the original hypotheses adjusting for that systematic distor-

tion. As effect size measure ∆R2
scale will be used, the difference between the model’s R2

scale

and the reference R2
scale under M0c the baseline model augmented with the new binary

confidence predictor. Hence, this measure will quantify the unique contribution of scale

position and questionnaire length to systematic variation across scales in the prevalence

of random responders beyond what is accounted for by the confidence spike pattern.

Accounting for the confidence spikes, a scale located five positions later in the ques-

tionnaire is expected to have about 1% higher prevalence of random responders than
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the earlier scale (β1 = .22, χ2
(M0c,M1c)(1) = 11.31, p < .001, ∆R2

scale = 8.7%); a result

supporting Hypothesis 1. Yet, no statistically significantly higher prevalence was found

in countries teaching the separated science program when compared to those with the

integrated science program (β2 = −.25, χ2
(M0c,M2c)(1) = .19, p = .666, ∆R2

scale = 0%),

and hence no empirical support was found for Hypothesis 2 that the prevalence of ran-

dom responders would be a function of questionnaire length. When looking jointly

at scale position and questionnaire length, there was support found for an interaction

(χ2
(M3c,M4c)(1) = 8.11, p = .004, ∆R2

scale = 10.3%), yet not one of the hypothesized

synergistic type. Figure 4 illustrates that in contrast to expectations the differences in

prevalence between scales at subsequent positions are estimated to be larger in the shorter

questionnaire than in the longer questionnaire. Notice that regardless of the length of

the questionnaire, the prevalence estimate for an average survey scale at the first and

last position in the respective questionnaire is estimated to be about 3.5% and 8.5%,

respectively.

Figure 4

Prevalence of random responders as a function of scale position and questionnaire

length in TIMSS 2015 under the cross-classified mixed model M4c.
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Note. The TIMSS 2015 student questionnaire consisted of 10 survey scales for countries with
an integrated science program, whereas it consisted of 19 survey scales for countries with a
separated science program. For the model parameters of model M4c, see Table 4.
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Discussion

The aim of the present study was to investigate the impact of two questionnaire

characteristics, scale position and questionnaire length, on the prevalence of random

responders in the TIMSS 2015 eighth-grade student questionnaire. Although random

responders still provide responses to the items of a questionnaire scale, their responses

can be seen as a type of non-response, as they would not lead to valid inferences on their

actual attitudes or beliefs that were intended to be measured. It has been suggested that

as students progress through a questionnaire they will experience for example boredom,

disinterest, inattentiveness, or fatigue and consequently engage in random responding.

Accordingly, a higher prevalence of random responders was hypothesized for scales at a

later position in the questionnaire and for the longer version of the two questionnaires,

and an even higher prevalence for later scales in the longer questionnaire (i.e., a synergistic

interaction between scale position and questionnaire length).

Questionnaire Length. We found no clear difference in the prevalence of random

responders between the longer student questionnaire administered in countries with a sep-

arated science program and the shorter student questionnaire administered in countries

with an integrated science program. In a similar fashion, Boe et al. (2002) also didn’t

find an effect of questionnaire length when they looked at student response omission

rates (labeled ‘task persistence’) in the TIMSS 1995 student questionnaire. A skeptical

interpretation could attribute this finding to the difference in countries between the two

questionnaire versions, but it has also been suggested that most educational and psy-

chological questionnaires are just not long enough to find an effect on response quality

to begin with (e.g., Bowling et al., 2022). In broader survey situations where there is a

larger time and length difference, questionnaire length does seem to have an effect (e.g.,

Herzog & Bachman, 1981). Yet the mixed results in the literature with respect to ques-

tionnaire length suggest that actual effects will also depend on (i) the content or context

of the specific questionnaire under consideration (e.g., Gibson & Bowling, 2020; Rolstad

et al., 2011) and (ii) on the subjectively perceived length of the questionnaire instead

of its actual length (Helgeson et al., 2002). Although there had been some complaints
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reported by the students about the length of the student questionnaire (Martin et al.,

2016), the current null finding with respect to questionnaire length does seem to suggest

that the differences in test burden and testing time for the two versions of the TIMSS

2015 student questionnaires were kept within seemingly reasonable boundaries.

Scale Position. We found support for a scale position effect with a significantly

higher prevalence of random responders for scales at a later position in the question-

naire compared to scales at an earlier position. Over the course of both questionnaires,

the prevalence of random responders increased by 5%, from 3.5% on an average scale

at the beginning to 8.5% at the end of the student questionnaire. The effect of scale

position actually being stronger within the shorter version of the student questionnaire

contrasted with the hypothesized synergism which would have implied the opposite trend.

Galesic (2006) suggests that again students’ relative perception of the questionnaire plays

a role. Hence, students might consider scale position being considered relative to the per-

ceived length of the questionnaire. Relatively speaking, with every additional scale in

the shorter questionnaire more of the questionnaire has passed percent-wise (i.e., the

progress signified by 1 scale is 10% in the shorter questionnaire compared to 5% in the

longer questionnaire). This might have potentially influenced the students’ subjective

perception of how much they already had completed and how much was still left, and

influenced how they would engage with further scales in the questionnaire22.

The Case of the Confidence Scales. The most striking result with respect to

the prevalence of random responders across the student questionnaire were the spikes in

prevalence among all confidence scales (i.e., mathematics and science subject domains)

with on average an extra 9% prevalence compared to other scales. This difference due

to the specific scale character is double the size of the above-discussed 5% prevalence

difference due to the maximal scale position difference. The implication of this finding

is that random responder prevalence is not only depending on the ‘endurance’ of the

students throughout the questionnaire. So what is so special about the confidence scales

22Note that students are only familiar with the version of the student questionnaire administered to
them, they are not able to compare the length with the other version and as such have no baseline but
their own perception.

A4.24



that they elicit more random response behavior? Focusing on the characteristics of the

confidence scales might provide some indications of what is going on.

First, the confidence scales are mixed-worded scales. It has been argued that reversed-

worded items are more difficult to process (e.g., Marsh, 1986; Swain et al., 2008). Al-

though the confidence scales are not the only mixed-worded scales in the student ques-

tionnaire, they do have the largest amount of reversed-worded items (e.g, 4 out of 9

reversed-worded items for confidence in mathematics compared to 2 out 9 items for the

like-learning scales) which could contribute to a larger impact (e.g., Schmitt & Stults,

1985).

A second characteristic to consider is the type of items in the confidence scales. Be-

cause some of the items are related to self-concept (e.g., Michaelides et al., 2019), one

could argue that items are more comparative in nature as opposed to more absolute/fac-

tual. Important here is that perceptions students have about themselves are always made

in comparison to some standard, either internally (i.e., own performance in one subject

with own performance in another subject) or externally (own performance with the per-

formance of other students) (e.g., Marsh & Hau, 2004). Examples of items administered

in the student questionnaire are “mathematics is harder for me than any other subject”

or “mathematics is more difficult for me than for many of my classmates”. Items that

require comparisons, with additional changing or ambiguous standards and definitions of

self, might just be more difficult to answer.

Both speculative explanations touch upon extra cognitive processing demands and

perceived ambiguity or difficulty of the items in the confidence scales. This would be in

line with the study by Baer et al. (1997) where the core reasons given by participants for

random responding were difficulties in understanding items and difficulties in deciding on

the response, in contrast to for instance lapses of concentration or boredom. Yet, these

more abstract item characteristics are at the same time intertwined with the concrete scale

contents ‘confidence in a school subject’. On the upside, the fact that the confidence

spikes generalized across different participating countries in TIMSS 2015 implies some

generality of the underlying reasons.
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Although TIMSS is low-stakes in all participating countries and there are solid stan-

dardized procedures for (back)translation of the different scales and administration of

the questionnaire as a whole, this of course does not cancel out any further interplay

with national context, socio-cultural aspects, language connotations, and differences in

motivation and implicit communication surrounding TIMSS. Such contextual differences

are reflected in the observed variability across countries in the average prevalence of ran-

dom responders. Also when looking at the Confidence scales, the spikes in prevalence are

for instance more outspoken in countries from the Middle-East region. Further research

would need to dig into whether these scales are indeed eliciting more random respond-

ing or whether these questionnaire scales are being completely differently interpreted or

approached by students in those regions than elsewhere23.

The current study exploited the natural variation in scale position, questionnaire

length, and scale characteristics found in the TIMSS 2015 student questionnaire, but to

be able to clearly separate the influence of item characteristics and contents an experi-

mental study would be called for in which item formulation of the questionnaire scales

is systematically varied independently of scale contents. Yet, to implement such an ex-

periment at a similar large-scale and level of generality as TIMSS 2015 might perhaps

prove to be unrealistic. Complementary, we should also not dismiss the value of a more

qualitative follow-up. Being classified as a random responder by the mixture IRT model

does not imply that the student has deliberately responded randomly, but merely that

the pattern of responses given is more random-like than it is consistent with the scale.

Cognitive interviews and related techniques might provide insight into students’ under-

standing and interpretation of the items in the confidence scales, into their processes to

arrive at a response, but also into their feelings towards the scale contents in the ques-

tionnaire (e.g., Karabenick et al., 2007). Such research could potentially also shed light

on other potential risk factors that have been put forward by Meade and Craig (2012)

with respect to the general quality of responses (e.g., respondent interest, social contact,

23Note that among the 35 of 499 scale-country combinations not meeting the quality criteria for the ap-
plication of the mixture IRT to random responder detection, 27 combinations involved confidence scales,
of which 18 did not meet the standardized loadings criterion, implying weakness of the unidimensional
measurement model for these cases.
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and environmental distraction).

Conclusion

In sum, we conclude that one can indeed expect more students to engage in random

responding on scales towards the end of the questionnaire in a large-scale educational

assessment such as TIMSS. This seems likely related to more of a subjective relative

evaluation for each individual, as in “aren’t we there yet?”, than to an objective physical

criterion in terms of questionnaire length. Yet, when considering such response behavior,

characteristics (item formulation and/or contents) of the questionnaire scales seem to be

more crucial than expected. This implies that researchers and questionnaire designers

want to better ensure that their target population is eager and willing to fully engage

with the questions asked to increase response validity. The target population’s subjective

experience with the questionnaire can influence the quality of their responses given. We

hope that the study’s findings can contribute to convincing the organizations behind

the international large-scale assessments in education of the value of investing in more

extensive cognitive techniques and test panels. In general, an increased involvement of

the target student population could benefit the design of the questionnaire scales.
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Appendix A

Mplus syntax of mixture IRT model for the ‘students value

mathematics’ scale in Norway

TITLE:
Norway_SQM20;

DATA:
file = "NOR_SQM20.dat";

VARIABLE:
names = IDSCHOOL IDSTUD TOTWGT

BSBM20A BSBM20B BSBM20C BSBM20D
BSBM20E BSBM20F BSBM20G BSBM20H BSBM20I;

missing = .;
usevariables = BSBM20A BSBM20B BSBM20C BSBM20D

BSBM20E BSBM20F BSBM20G BSBM20H BSBM20I;
categorical = BSBM20A BSBM20B BSBM20C BSBM20D

BSBM20E BSBM20F BSBM20G BSBM20H BSBM20I;
idvariable = IDSTUD;
weight = TOTWGT;
cluster = IDSCHOOL;
classes = c(2);

ANALYSIS:
type = mixture complex;
algorithm = INTEGRATION EMA;
estimator = MLR;
process = 3;
starts = 400 100;

MODEL:
%overall%

F BY BSBM20A -BSBM20I *;
F@1;
[F@0];

%c#1%
F BY BSBM20A -BSBM20I *;
F@1;
[F@0];
[BSBM20A$1 -BSBM20I$1 ];
[BSBM20A$2 -BSBM20I$2 ];
[BSBM20A$3 -BSBM20I$3 ];

%c#2%
F BY BSBM20A -BSBM20I@0;
F@0;
[F@0];
[BSBM20A$1 -BSBM20I$1@ -1.09861228866811];
[BSBM20A$2 -BSBM20I$2@0 ];
[BSBM20A$3 -BSBM20I$3@1 .09861228866811];

OUTPUT:
stdyx;

SAVEDATA:
file = cpr_NOR_SQM20.dat;
format = free;
save = cprobabilities;

Note. The item category threshold parameters in Class 2 (i.e., random responder class) are set
on a logistic scale and correspond to cumulative response category probabilities of 25%, 50%,
and 75% (i.e., 1/(1+exp(threshold))). A more detailed description of the model can be found
in van Laar and Braeken (2022).
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Who are those Random Responders on your Survey?

The case of the TIMSS 2015 student questionnaire

A general validity and survey quality concern with student questionnaires under low-stakes

assessment conditions is that some responders will not genuinely engage with the ques-

tionnaire, often with more random response patterns as a result. Using a mixture IRT

approach and a meta-analytic lens across 22 educational systems participating in TIMSS

2015, we investigated whether the prevalence of random responders on six scales regarding

students’ attitudes and beliefs in mathematics and sciences was a function of grade, gen-

der, socio-economic status, spoken language at home, or migration background. Among

these common policy-relevant covariates in educational research, we found support for small

group differences in prevalence of random responders (OR ≥ 1.22)(average prevalence of

7%). In general, being a student in higher grades, being male, reporting to have fewer

books, or speaking a language different from the test language at home were all risk factors

characterizing random responders. The expected generalization and implications of these

findings are discussed based on the observed heterogeneity across educational systems and

consistency across questionnaire scales.

International large-scale assessments in education (ILSAE), such as IEA’s Trends in

International Mathematics and Science Study (TIMSS) or OECD’s Programme for In-

ternational Student Assessment (PISA), can provide input on current policy-relevant

research questions with respect to inequality and inequity (e.g., Hopfenbeck et al., 2018).

ILSAE tend to consist of both an achievement test component and a questionnaire com-

ponent. The collected data allows for educational research that assesses potential differ-

ences in achievement and/or attitudes between, for instance, students of differing gender,

socio-economic status, or migration background (e.g., Hopfenbeck et al., 2018), often in

combination with a search for protective or risk factors with respect to such differences by

comparing classroom practices and other contextual factors. In this way, ILSAE can help

shape educational policy by clarifying standards and providing a wide basis of reference
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comparisons for education systems, informing curriculum reforms, identifying investment

targets based on poor performance in certain subject domains or by specific groups, and

guiding resource allocation for optimization of classroom practices and teacher training

(for a review, see e.g., Hernández-Torrano & Courtney, 2021).

Although a potential treasure trove, ILSAE have some inherent limitations such as

providing less fine-grained learning achievement outcomes than the regular system of

school exams (Clarke & Luna-Bazaldua, 2021) and relying on self-report measures for

many relevant contextual factors or background variables (e.g., Hopfenbeck & Maul,

2011; Rutkowski & Rutkowski, 2010), and all this in a low-stakes assessment context

(e.g., Eklöf, 2010). There is no immediate feedback nor negative or positive consequences

for the students participating in the ILSAE. Hence, data quality and validity issues are

of concern for everyone involved in these huge projects. A general concern is that not all

students are providing genuine responses and that this might distort results to the extent

that it could lead to misguided conclusions and educational policy recommendations.

Random responding by students on questionnaire scales of the survey is one type of

invalid response behavior that comes across as especially threatening or harmful. Random

responding is described as providing “responses without meaningful reference to the test

questions” (Berry et al., 1992, p.340) often ascribed to among others insufficient effort,

carelessness, thoughtlessness, disengagement, or lack of seriousness and motivation on the

part of the person responding to the survey (e.g., Huang et al., 2012). Hence, it is rather

intuitive to understand the validity concerns (e.g., Cronbach, 1950; Messick, 1984) that

having random responders on your survey would raise.

Although observable responses are still provided by the person, a random responder

can be seen as causing a form of nonresponse error, because we end up lacking accurate

data on the genuine attitude or information the person is surveyed about. Hence, as

with nonresponse rates (e.g., Bethlehem, 2009; Cochran, 1951), low prevalence of ran-

dom responders in the sample can be regarded as a quality indicator of both survey and

corresponding survey data, whereas a high prevalence makes the quality of survey re-

sults open for critical debate. Similar to more traditional nonresponse (e.g., Groves &
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Peytcheva, 2008; Hedlin, 2020), the biasing impact will not only depend on the preva-

lence but also on the underlying mechanism as commonly framed in terms of Rubin’s

(1976) framework of missing completely at random (MCAR), at random (MAR), or not

at random (MNAR). Hence, it might be useful to think in similar terms about random

responders when considering their potential impact. If minority groups or groups with

other specific characteristics have a higher prevalence of random responders, such sys-

tematic disproportionate differences can jeopardize the representativeness of the sample,

and if the propensity of engaging in random responding relates to the survey outcomes of

interest, this can potentially skew, bias, and invalidate any inferences/conclusions based

on the questionnaire scales (for a similar point on nonresponse, see e.g., Richiardi et al.,

2013).

This Study

In this study, we performed an initial exploration of this validity issue for survey scales

inquiring about students’ attitudes towards mathematics and science in the TIMSS 2015

assessment (Martin et al., 2016). We conducted a study across 22 participating educa-

tional systems, comparing whether student groups —defined in terms of research- and

policy-relevant covariate information on grade (age), gender, socio-economic status, spo-

ken language at home, and migration background —differed in their odds of having been

classified as a random responder on six TIMSS student questionnaire scales about stu-

dents’ attitudes and beliefs towards Mathematics and Science. Findings will inform about

the potential differential prevalence of random responders among the student groups.

Identifying Random Responders. Detection methods for random responding are

either based on auxiliary information at the item level such as item response times or are

based on the actual item response pattern across a questionnaire scale. The response-

time approach leads to an operationalization in terms of so-called ‘rapid guessing’, where

an item response is given in too little time for the person to have actively processed the

actual survey question (Wise, 2017). Although very fine-grained, this approach requires

the availability and precise measurement of response time at the item level, as well as the

setting of a reasonable threshold for when a response is considered ‘too fast’. For sur-
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veys where items on questionnaire scales are not presented one at a time, such auxiliary

item-level information is not obvious to obtain (in contrast to achievement tests where

it is more typical to show one problem at a time). The item response pattern approach

requires methods to quantify unexpected variability across responses compared to a typ-

ical consistent pattern of responses across the questionnaire scale (e.g., Curran, 2016).

This makes the approach less suitable for questionnaire scales that are not targeting a

reflective construct (as compared to a more formative construct such as socio-economic

status) and not feasible for single items (due to a lack of related items as a comparison

base).

In absence of useful auxiliary information at the item level, we conducted scale level

detection of random responding following a mixture item response theory (IRT) approach.

More specifically, we used an extension of the HYBRID model by Yamamoto (1989) to

the polytomous case for survey responses as proposed by van Laar and Braeken (2022).

Hence, every student was classified as a random responder or a typical responder on the

questionnaire scales under investigation.

Survey Scales. Among the survey scales present in TIMSS 2015, we focused on those

related to students’ attitudes and beliefs towards mathematics and science. This is an

active and relevant area of research in education where there is a general worry about the

decline in positive attitudes and beliefs with increasing age and grade or educational level

(Potvin & Hasni, 2014). How these attitudes and beliefs relate to educational achievement

varies on what exactly is surveyed. Students’ confidence in mathematics or science tends

to be positively related to achievement in the corresponding subject (Wigfield & Eccles,

2002), whereas achievement’s relation with valuing the subject is typically weaker (Lee &

Stankov, 2018). Educational stakeholders and governments are invested in these topics as

a common educational policy objective aims to encourage students to choose more STEM-

related subjects (Science-Technology-Engineering-Mathematics) in higher education to

fill job market shortages in those areas and support technological innovation.

TIMSS 2015 surveyed both grade 4 and grade 8 students on their views on engaging

teaching, their confidence, and how they like learning in each of the two subject domains
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(Mathematics and Science) separately, and this in a multitude of educational systems

across the world. The three type of scales were almost exactly the same across the

subject domains and grades in both format and wording, and a thorough translation

process was applied to support the international administration of the survey. Thus, this

set of survey scales (3 types × 2 domains × 2 grades = 12 scales) in TIMSS 2015 offered

a good variety that helps to set the context for the potential generalization of the study’s

findings.

Covariates for the Differential Prevalence Study. When considering potential

group differences in the prevalence of random responders, we followed the implicit hy-

pothesis that if a participant needs to mentally push him/herself to read and respond to

the items on a survey scale, the participant will be more inclined to answer randomly as a

low-effort efficient reaction or due to misunderstanding of the survey question and/or re-

sponse options. This implicit hypothesis and the relevance to educational policy were the

two criteria that informed our choice of covariates to study. A third, more methodologi-

cal criterion that came into play is that one wants to avoid having to rely on unreliable

self-report group covariate information to define the groups of relevance. The group in-

dicators that are based on self-report were restricted in this study to simple questions,

early in the survey, that directly relate to a participant’s identity and are expected to be

more reliable and elicit higher veracity.

The TIMSS survey was administered to children in grade 4 as well as young adolescents

in grade 8. Both grade populations responded to quite similar surveys, but they are not

guaranteed to respond in a similar fashion. One can argue that questions about attitudes

and beliefs towards mathematics and sciences might require more effort from those in the

lower grades as it might be less obvious for them to relate to or understand the questions

(e.g., Mellor & Moore, 2013). On the other hand, students in the higher grades are said to

be more sceptical and critical towards time and effort investment affecting their response

motivation (e.g., Rosenzweig et al., 2019; Silm et al., 2020). Hence, although a grade-

differential prevalence of random responders sounds not too unreasonable to expect, it is

less clear what direction this would take.
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Although also available as a self-report measure, information on the gender of a stu-

dent was directly available as registered by the TIMSS test administrators. With respect

to potential gender differences in the prevalence of random responders, a literature review

by DeMars et al. (2013) concluded that overall, when considering attendance, response

times, and self-reported effort, females would be expected to put more effort into low-

stakes tests than males. The review mostly covered achievement tests, but it sounds

reasonable to extend a similar expectation to a survey context. Tentative explanations

for such differential prevalence bring up gender-stereotyped personality trait differences

in terms of conscientiousness and agreeableness (see also Bowling et al., 2016; Löckenhoff

et al., 2014).

In education, the link between socio-economic status (SES) and educational outcomes

(for an achievement-focused review, see e.g., Sirin, 2005) is a robust finding and reason

for concern and research on educational inequalities and inequity. As a proxy for a

student’s SES, we used the self-reported estimate of the number of books at home. Based

on a comparison with official register data in Sweden, Wiberg and Rolfsman (2021)

recommended the use of this self-report measure, with the added benefit that it is simple

and has low omission rates. In the survey non-response literature (e.g., Goyder et al.,

2002), it is common to find lower non-response rates with higher SES, and this at all

stages of the survey data collection. Reasons for this non-response trend are less clear,

but speculated to be linked to socio-psychological factors. Following these findings, we

expected to observe a similar difference in the prevalence of random responders between

low and high SES groups.

Spoken language at home might be another potential factor related to the differential

prevalence of random responders. When the language of the survey is different from the

language the student speaks at home, this might require more effort, both cognitively

in terms of ease of understanding as well as mentally in terms of engagement/relating

to the survey. In the context of achievement tests for young adults, Goldhammer et al.

(2017) observed that a difference between test and home language was related to more

disengagement as measured by more rapid-guessing. Hence, also for the prevalence of
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random responders, we expected a similar difference to apply.

We also considered migration background, an issue that is often of prime interest for

policymakers. Based on the self-reports on whether their respective parents were born in

the country where the survey was administrated, a crude student migration background

index was constructed. General expectations on the relation of this covariate to the

prevalence of random responding are hard to make as the contextual factors surrounding

immigration will heavily differ depending on the educational system.

Furthermore, we will map and report resulting patterns of student group differences in

the prevalence of random responders across the different educational systems participating

in TIMSS2015, but, lacking a well-justified theory on such cross-system differences, no

further hypotheses were made.

In sum, the key research question addressed by this study is ‘who are the random

responders on the students’ attitudes and beliefs in mathematics and science survey

scales of TIMSS 2015?’. More specifically, we investigated whether being classified as

random responder instead of typical responder is associated with student characteristics

such as grade, gender, SES, spoken language at home, or migration background.

Method

TIMSS is an international large-scale assessment of mathematics and science, which

has been conducted normally every four years since 1995. TIMSS 2015 provides the sixth

assessment of trends in the fourth grade and/or eighth grade of fifty-seven educational

systems and seven benchmarking participants, including assessments of mathematics and

science achievement as well as context questionnaires collecting background information

(Mullis & Martin, 2013).

The student questionnaire is part of the context questionnaires and is given to each

student who takes part in the assessment, with some questions identical for the fourth-

graders and eighth-graders. The student questionnaire for eighth grade has an integrated

version and a separated version, depending on the implemented science program in the

educational system. The integrated version is for those with science as a single or general

subject, while the separated version is for those where science is separated into different
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subjects, including biology, earth science, chemistry, and physics.

Sample

We considered the educational systems that participated in both the mathematics and

the science assessment of TIMSS 2015, with both grade four and grade eight students,

and that were not one of the added benchmarking participants. Furthermore, to retain

close comparability of student questionnaires between grades four and eight, we only

included educational systems with an integrated science program. This ensured that

student questionnaires are consistent in terms of questionnaire length, scale items, and

scale position. In total, 22 educational systems24 meet these inclusion criteria: Australia

(AUS), Bahrain (BHR), Canada (CAN), Chile (CHL), Chinese Taipei (TWN), England

(ENG), Hong Kong SAR (HKG), Iran, Islamic Rep. of (IRN), Ireland (IRL), Italy (ITA),

Japan (JPN), Korea, Rep. of (KOR), Kuwait (KWT), New Zealand (NZL), Norway

(NOR), Oman (OMN), Qatar (QAT), Saudi Arabia (SAU), Singapore (SGP), Turkey

(TUR), United Arab Emirates (ARE), and United States (USA).

TIMSS’s target sample size for the number of students to be reached within an edu-

cational system is n = 4000 (if student population size and other practicalities permit).

For the set of educational systems in this study, sample sizes ranged from 3593 grade 4

students in Kuwait to 21177 in the United Arab Emirates, and from 3759 grade 8 stu-

dents in Saudi Arabia to 18012 in the United Arab Emirates. Table A1 and Table A2 in

the Appendix summarize these and other descriptive statistics.

Measures

The measures used in this study were all part of or based on items in the TIMSS

2015 student questionnaire. The student questionnaire covers basic background questions

about the students and their home situation, and it includes questions about the students’

school experiences, attitudes, and beliefs with respect to school subjects and homework.

24Their corresponding (ISO) code will be used as the label in figures and tables.
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Survey Scales: Students’ Attitudes and Beliefs in Mathematics and Science

The six survey scales measured three types of student attitudes and beliefs on two sub-

ject domains (mathematics and science): Like Learning Mathematics (variables: ‘ASB01A’-

‘ASB01I’ in grade 4, ‘BSBS17A’ - ‘BSBS17I’ in grade 8), View on Engaging Teach-

ing in Mathematics Lessons (variables: ‘ASB02A’-‘ASB02J’ in grade 4, ‘BSBS18A’ -

‘BSBS18J’ in grade 8), Confidence in Mathematics (variables: ‘ASB03A’-‘ASB03I’ in

grade 4, ‘BSBS19A’ - ‘BSBS19I’ in grade 8), Like Learning Science (variables: ‘ASB04A’-

‘ASB04I’ in grade 4, ‘BSBS21A’ - ‘BSBS21I’ in grade 8), View on Engaging Teaching

in Science Lessons (variables: ‘ASB05A’-‘ASB04J’ in grade 4, ‘BSBS22A’ - ‘BSBS22J’

in grade 8), and Confidence in Science (variables: ‘ASB06A’-‘ASB06G’ in grade 4,

‘BSBS23A’ - ‘BSBS23H’ in grade 8). These were Likert scales of between 7 and 10 items

using four categories ranging from ‘agree a lot’, over ‘agree a little’/‘disagree a little’, to

‘disagree a lot’. The Like Learning scales (abbreviated as Like-M and Like-S) contain

items related to how the student perceives and enjoys the subject and are also referred to

as measuring intrinsic motivation (e.g., Michaelides et al., 2019). The Confidence scales

(abbreviated as Conf-M and Conf-S) contain items related to students’ self-concept with

respect to the subject domain (e.g., Michaelides et al., 2019). The View scales (abbre-

viated as View-M and View-S) contain items related to how the student perceives their

teacher’s interaction with both the subject and the students.

Covariates: Five Student Characteristics

Five student characteristics were considered as covariates potentially related to the

prevalence of random responders on the questionnaire scales in an educational system in

TIMSS 2015 (for descriptive statistics by grade and per educational system, see Table A1

and Table A2).

Grade. The student’s grade is a non-student-reported variable based on whether

the student was part of the grade four or grade eight administration of the student

questionnaire (TIMSS provides separate datasets per grade by country). This grade

variable was dummy coded, with grade four coded as zero, and grade eight coded as one.

Note that some educational systems, for reasons related to curriculum or the current state
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of education, decided to participate with different grades than four and eight (i.e., Norway,

England, and New Zealand participated with grade five and grade nine). Regardless, these

grades will still be labeled four and eight during the analyses. There were no missing

data for this background variable.

Gender. For gender, we used the non-student-reported variable ‘ITSEX’ from the

Student Tracking Form, which is filled out by the test administrators (e.g., Martin et al.,

2016). This gender variable was dummy coded, with female coded as zero, and male

coded as one. The male-to-female student ratio was about 50/50 in both grades of all

participating educational systems (the biggest imbalance was 54% to 46% in Hong Kong).

There were no missing data for this background variable.

Self-reported Socio-Economic Status (SES). The students reported an estimated

number of books at home on an ordered scale of five categories: “None or very few (0-10

books)”, “Enough to fill one shelf (11-25 books)”, “Enough to fill one bookcase (26-100

books)”, “Enough to fill two bookcases (101-200 books) and “Enough to fill three or more

bookcases (more than 200 books)”. The five categories of this number of books variable

(‘ASBG04’ and ‘BSBG04’ in grade 4 and grade 8 student questionnaire, respectively)

were recoded to a scale ranging from 0 to 4. The distribution of the number of books

variable varied widely across educational systems and grades. For example, in Korea 29%

of fourth-graders and 25% of eighth-graders reported having 101-200 books, and 44% and

39% reported having more than 200 books at home, respectively. In contrast, only 11%

of fourth-graders reported having more than 100 books in Chile and only 10% of eighth-

graders in Kuwait. In most educational systems no more than 5% of the students did not

provide a response to this survey question, with the exception of fourth-grade students

in Saudi Arabia (9%), and students of both grades in Kuwait (10%).

Self-reported Language at Home. The students reported their frequency of speak-

ing the language of the achievement test and student questionnaire at home on an ordered

scale of four categories. This language variable (i.e., ‘ASBG03’ in the grade 4 student

questionnaire and ‘BSBG03’ in the grade 8 student questionnaire) was dummy coded,

collapsing the categories “never” and “sometimes” to be coded as zero, and collapsing the
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categories “almost always” and “always” to be coded as one. The proportion of students

considering themselves to speak (almost) always the language of the test at home var-

ied largely across the educational systems, from only 19% in Kuwait to 100% in Korea.

In most educational systems, eighth graders reported more often than fourth graders to

(almost) always speak the language of the test at home, with an average between-grade

difference of 9 percentage points. On average, about 5% of the students in an educational

system did not respond to this survey question, with the largest proportion of missingness

(up to 10%) in Kuwait.

Self-reported Migration Background. Students were asked whether their mother

was native-born and whether their father was native-born. Both the father variable

(i.e., ‘ASBG06A’ in grade 4 and ‘BSBG09A’ in grade 8)’ and the mother variable (i.e.,

‘ASBG06B’ in grade 4 and ‘BSBG09B’ in grade 8) had three response categories: “Yes”,

“No”, and “I don’t know”. A dummy variable was created based on whether the student

reported, on at least one of the two variables, their parent to be foreign-born. A combi-

nation of one native-born and either an omitted or “I don’t know” response resulted in a

missing score on this dummy variable; the same holds for a combination of responses only

consisting of an omitted or “I don’t know” response. The proportion of students reporting

to have at least one foreign-born parent varies widely across educational systems, from

as low as 1% in Korea to as high as 66% in the United Arab Emirates. On average about

6% of the students in an educational system missed a score on the migration dummy,

with the largest proportion of missingness (up to 22%) for grade 4 students in Taiwan

and the United States.

Outcome: Classification as Random Responder

Following a mixture item response theory (IRT) approach (Sen & Cohen, 2019), we

classify a student as a random or as a typical responder, for each of the six survey

scales considered in this study, using an extension of the HYBRID model by Yamamoto

(1989) to the polytomous case for survey responses as proposed by van Laar and Braeken

(2022). Classification is based on the maximum posterior class membership probability

of a mixture model consisting of two classes. The approach assumes that there are two
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distinct, yet unobserved latent groups of responders in the population expressing different

response behavior on the survey scale: the class of ‘random responders’ and the class of

‘typical responders’ (see Figure 1). In the class reflecting the typical responders, a student

is assumed to provide responses across items in a consistent fashion according to their

value on the underlying common latent trait (see Figure 1a). In the class reflecting the

random responders, a student is assumed to provide unrelated responses across items

in a more haphazard fashion (see Figure 1b). More specifically, this comes down to a

mixture of (i) a graded response model (Samejima, 1969) for ordered item responses

and (ii) a null model with independent item responses that have an equal chance of

falling in either of the possible response categories. Note that because the class model

for random responders has only fixed known parameters, the mixture model only has one

extra parameter to estimate compared to a conventional graded response model, being the

mixture class weight which can be seen as the prevalence estimate of random responders

in the population.

Estimation. The mixture IRT model was estimated separately for each scale per

educational system in each grade. Models were estimated in Mplus Version 8.2 (Muthén &

Muthén, 1998–2017) through the MplusAutomation package for R version 0.7-3 (Hallquist

& Wiley, 2018). We accounted for the total student weights in the TIMSS sampling design

and used full-information maximum likelihood estimation with robust standard errors

and the expectation-maximization acceleration algorithm with a standard of 400 random

starts, 100 final stage optimizations, and 10 initial stage iterations. For each model, the

resulting classification variable was a dummy variable with a typical responder being

coded zero and a random responder coded as one. These dummy variables were the main

outcome variable for further analyses in the current study.

Quality Check. If the mixture model for a specific country-scale combination failed

either of two quality checks, the corresponding outcome variable was set to missing. First,

the measurement model for the typical responders in the mixture was inspected to ensure

that it reflected a clean unidimensional model (i.e., compatible with the assumed common

trait for the survey scale). This criterion was not met when two or more standardized item

A5.12



discrimination parameters (i.e., factor loadings) were below .40. Secondly, a classification

entropy of at least .70 was required to ensure that the mixture model was able to provide

a good enough distinction between the two latent groups of responders.

Figure 1

Mixture IRT model Framework to Define and Operationalize Random Responders in

terms of Independence and Uniformity of Item Responses.

(a) Typical Responders:

Measurement Model

(b) Random Responders:

Null Model

Note. Symbols follow standard path diagram conventions, with squares representing observed

variables (i.e., item responses); circles, latent variables (i.e., trait to be measured by the

scale of items); arrows indicating dependence relations; vertical lines, response category

thresholds. Typical responders: conditional independence given the latent trait; Random

responders: mutual independence with uniformly distributed response categories (cf. squares

divided into equal parts and no relation with circle or other squares). Reprinted under the

terms of CC-BY-NC from “Random responders in the TIMSS 2015 student questionnaire:

A threat to validity?” by S. van Laar and J. Braeken, 2022, Journal of Educational Measurement.

Statistical Analysis

Odds ratios (OR) were computed as an effect size measure comparing whether the

odds of having been classified as a random responder on a specific survey scale are dif-

ferent between the student groups identified by the respective covariate. Odds ratios of

1.22, 1.88, and 3.00 were interpreted as small, medium, and large effect sizes, respectively

(Olivier & Bell, 2013) (for negative dependence, the corresponding inversed values are

.82, .53, and .33). Computations were student-weighted in accordance with the TIMSS

sampling design and run via the R-package ‘survey’ (Lumley, 2010). For the grade covari-

ate, the data was combined across grades, per educational system by scale combination,
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to allow for a comparison between grade 4 and grade 8 students. For the grade covariate

the odds ratio was computed for each scale based on the across-grades pooled dataset per

educational system; For the four other covariates, the odds ratio was computed within

each grade, per educational system by scale combination. Hence, a total of 1188 (i.e.,

(1 + 4× 2)× 22× 6) odds ratio estimates were obtained.

To summarize the abundance of results, we made use of meta-analytic tools (e.g.,

Borenstein et al., 2021) via the R-package ‘metafor’ (Viechtbauer, 2010). Confidence

intervals of the average log odds ratio (i.e., log(OR)) were computed under the random

effects meta-analytic model with educational systems taking the role of the independent

‘studies’. These confidence intervals were supplemented by corresponding prediction in-

tervals for a randomly selected individual system estimate; the width of the prediction

intervals relative to the confidence interval reflects the amount of heterogeneity in effect

size among the educational systems. The further away the prediction interval stretches

from the confidence interval, the more different the effect sizes across systems are. We

briefly summarized noticeably system-specific patterns in the text and included forest

plots in the Appendix that display the individual estimates per covariate for each educa-

tional system, per grade by survey scale combination. All analysis scripts were run under

R version 4.0.0 (R Core Team, 2020).

Results

Prevalence of Random Responders

As mentioned before, we had two quality checks to determine whether the resulting

classification following the mixture IRT approach to detect random responders could be

relied on for further analyses. For the Like and the View scales in both grades and both

Mathematics and Science, the random responder classification passed the quality checks

for all educational systems without exception. This was not uniformly the case for the

Confidence scales. In grade 4, the classification for seven and eight educational systems

(out of 22) did not pass the quality checks for Mathematics (i.e., ARE, BHR, IRN, KWT,

OMN, QAT, SAU) and Science (i.e., ARE, BHR, CHL, IRN, KWT, OMN, QAT, SAU),
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respectively. In grade 8, this was the case for four and three educational systems (out of

22) in Mathematics (i.e., BHR, KWT, OMN, SAU) and Science (i.e., BHR, OMN, SAU),

respectively. Notice that it was mostly the same subset of educational systems that did

not pass the quality checks for the Confidence scale; mainly due to the questionnaire

scale not adhering in those systems to the anticipated unidimensionality of the construct.

For the corresponding educational systems not passing the quality checks, no further

analyses linking the random responder classification to covariates will be performed, such

that they will further appear as missing in the summary graphics and statistics reported.

For countries that passed the quality checks, the average prevalence of having been

classified as a random responder on the Like and View scales was around 4%, ranging

from 1% to 11% across educational systems and grades (see Figure 2), while the average

prevalence on the Confidence scales was somewhat higher at about 11%, ranging from 2%

to 27%). The overall average prevalence (across scales, grades, and educational systems)

was around 7%.
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Figure 2

Estimated Prevalence of Having Been Classified as a Random Responder on the six

Questionnaire Scales across Educational Systems.
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Note. Circles and triangles represent grade four and grade eight, respectively. Educational
systems were ordered by across-grade-and-scale average prevalence, with the gray dashed line
being the across systems and across grades average for the scale.

Random Responder = f(Grade)

The relation between having been classified as a random responder and grade differed

across the six scales. On average across the 22 educational systems, grade eight students

had significantly higher odds of having been classified as a random responder than grade

four students on both View scales (OR = 1.79, small to medium effect size) and the Like

Science scale (OR = 1.33, small effect size), whereas no such support was found on both

Confidence scales and the Like Mathematics scale (see Figure 3, the confidence intervals

(black diamonds) of View-M, View-S, and Like-S exceed zero; the confidence intervals

of Conf-M, Conf-S and Like-M include zero). The width of the prediction intervals in
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Figure 3 did imply heterogeneity among the educational systems. For instance, Iran

showed the most obvious grade difference in the prevalence of random responders (OR

= 2.84, medium effect size), especially on the View Mathematics scale (OR = 8.67, large

effect size), while Singapore showed an opposite grade difference (i.e., grade 8 < grade 4)

in five of the six scales (OR = 0.68, small effect size).

Figure 3

Meta-analytic confidence and prediction intervals for the odds of having been classified

as a Random Responder as a function of the student’s Grade.
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Note. The black diamond represents the confidence interval around the estimated average
log odds ratio across educational systems, and the whiskers extending the diamond define
the corresponding prediction interval for a randomly sampled educational system. The gray
dashed vertical line is drawn at log(OR) = 0, corresponding to independence between the
covariate and the random responder classification. For the estimates per system, see Appendix:
Figure A1 and Tables A1-A2. A positive/negative log(OR) indicates that the odds of having
been classified as a random responder is higher/lower for grade 8 than for grade 4 students.
Results are reported for six scales in the TIMSS 2015 student questionnaire measuring three
types of students’ attitudes and beliefs in Mathematics and Science.

Random Responder = f(Gender)

On average across the 22 educational systems, male students had significantly higher

odds of having been classified as a random responder, and this on all six scales and in both

grades (see Figure 4, all confidence intervals (black diamonds) exceed zero). The average

odds ratio for the six scales ranged from 1.10 to 1.58, with a median of 1.46 (i.e., log(OR)

= .38), corresponding to a significant but small effect size, and hence gender difference

in the prevalence of random responders. Although the gender difference applied quite

generally, the width of the prediction intervals in Figure 4 implied heterogeneity among
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the educational systems. For instance, Chile and the USA were the educational systems

where the gender difference was almost absent (i.e., log(OR)≈ 0), whereas Saudi-Arabia

and Oman were two educational systems with a more pronounced gender difference in the

prevalence of random responders (i.e., medium OR effect sizes). For Norway, there was

no support for a gender difference for either View scale, but it had the highest observed

gender difference among systems on the Like Mathematics scale (average OR = 2.51

across grades).

Figure 4

Meta-analytic confidence and prediction intervals for the odds of having been classified

as a Random Responder as a function of the student’s Gender.
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Note. The black diamond represents the confidence interval around the estimated average
log odds ratio across educational systems, and the whiskers extending the diamond define
the corresponding prediction interval for a randomly sampled educational system. The gray
dashed vertical line is drawn at log(OR) = 0, corresponding to independence between the
covariate and the random responder classification. For the estimates per system, see Appendix:
Figure A2 and Tables A1-A2. A positive/negative log(OR) indicates that the odds of having
been classified as a random responder is higher/lower for male than for female students. Results
are reported for six scales in the TIMSS 2015 student questionnaire measuring three types of
students’ attitudes and beliefs in Mathematics and Science.

Random Responder = f(Number of Books at home [SES])

On average across the 22 educational systems, students with a higher self-reported

number of books at home had significantly lower odds of having been classified as a

random responder on the Like scales (average odds ratio across grades: OR = .93 for

Mathematics; OR = .87 for Science) and the Confidence scales (average odds ratio across

grades: OR = .85 for Mathematics; OR = .81 for Science), but no support for such
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relation was found on the View scales (see Figure 5). Note that the number of books

covariate had 5 ordered categories, and the interpretation here was for only one category

difference, hence the difference between students with the most (more than 200 books)

and the fewest (0-10 books) self-reported number of books at home was expected to

be four units. For instance, the median of the across-systems average odds ratios for

the six scales was .91 (i.e., log(OR) = -.09) in one unit difference, leading to a small

effect size of OR = .70 when comparing the two scale-extremes (i.e., exp(−.09 × 4) =

exp(−.09)4). The prediction intervals indicated that most educational systems showed

that students reporting to have more books at home had significantly lower odds of

having been classified as a random responder on the Confidence scales. Yet, the width

of the prediction intervals in Figure 5, for these and the other four scales, did imply

heterogeneity among the educational systems. For instance, Chile and Saudi Arabia

were the educational systems where the number of books difference was almost absent

(i.e., average log(OR)≈ 0), while England and New Zealand had the largest OR effect

sizes among systems (average OR = .82 and .83, respectively). For Ireland, there was

no support for a number-of-books difference for the Like Mathematics and View Science

scales, but it had the highest observed number of books difference among systems on the

Confidence in Science scale (average OR = .68). At the individual educational system

level, the confidence intervals for fourth grade are generally wider than for eighth grade

(see Appendix: Figure A3).
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Figure 5

Meta-analytic confidence and prediction intervals for the odds of having been classified

as a Random Responder as a function of the student’s Number of Books at Home.

Grade 4 Grade 8
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Note. The black diamond represents the confidence interval around the estimated average log
odds ratio across educational systems, and the whiskers extending the diamond define the
corresponding prediction interval for a randomly sampled educational system. The gray dashed
vertical line is drawn at log(OR) = 0, corresponding to independence between the covariate and
the random responder classification. For the estimates per system, see Appendix: Figure A3
and Tables A1-A2. Number of Books at Home is coded 0=None or very few (0-10 books) /
1=Enough to fill one shelf (11-25 books) / 2=Enough to fill one bookcase (26-100 books) /
3=Enough to fill two bookcases (101-200 books) / 4=Enough to fill three or more bookcases
(more than 200 books), hence a positive/negative log(OR) indicates that the odds of having
been classified as a random responder is higher for students who reported having more/fewer
books at home. Results are reported for six scales in the TIMSS 2015 student questionnaire
measuring three types of students’ attitudes and beliefs in Mathematics and Science.

Random Responder = f(Language at Home)

On average across the 22 educational systems, students who more often speak the

test language at home had significantly lower odds of having been classified as random

responders than those who don’t speak the same language at home, and this on all six

scales and in both grade four and grade eight (see Figure 6, all confidence intervals are

below zero). The average odds ratio for the six scales ranged from .68 to .89, with a

median of .84 (i.e., log(OR) = -.17), corresponding to an ignorable to small effect size.

The width of the prediction intervals in Figure 6 did imply heterogeneity among the

educational systems, with prediction intervals even wider and more negative effect sizes

for individual systems in grade eight than in grade four. For instance, Japan showed the

most obvious language-related prevalence difference (average OR = .37, medium effect
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size). Note that the language covariate had extreme distributions in some educational

systems, such as in Japan and Korea where very few students reported speaking any

other language at home (1-2% of fourth and eighth graders in Japan and close to 0%

of eighth-graders in Korea), contributing to wider confidence intervals in these systems.

Qatar’s grade eight was the only educational system where speaking the same language

had a positive relation to having been classified as a random responder (average OR =

1.46, small effect size).

Figure 6

Meta-analytic confidence and prediction intervals for the odds of having been classified

as a Random Responder as a function of the student’s Spoken Language at Home.

Grade 4 Grade 8
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Note. The black diamond represents the confidence interval around the estimated average
log odds ratio across educational systems, and the whiskers extending the diamond define
the corresponding prediction interval for a randomly sampled educational system. The gray
dashed vertical line is drawn at log(OR) = 0, corresponding to independence between the
covariate and the random responder classification. For the estimates per system, see Appendix:
Figure A4 and Tables A1-A2. Language at Home is coded 1 = Always or almost always speak
<language of test> at home / 0 = Sometimes or never speak <language of test> at home,
hence a positive/negative log(OR) indicates that the odds of having been classified as a random
responder is higher for students more/less frequently speaking <language of test> at home.
Results are reported for six scales in the TIMSS 2015 student questionnaire measuring three
types of students’ attitudes and beliefs in Mathematics and Science.

Random Responder = f(Migration Background)

On average across the 22 educational systems, no significant relation was found be-

tween having at least one foreign-born parent (versus both native-born parents) and

having been classified as random responders on all six scales for both grades. How-
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ever, the width of the prediction intervals in Figure 7 did imply heterogeneity among

the educational systems, with different directions of effect sizes for individual systems

(see Appendix: Figure A5). For instance, the United Arab Emirates and Qatar showed

the strongest negative migration background prevalence differences (i.e., students with at

least one foreign-born parent had significantly lower odds of having been classified as ran-

dom responders than those with both native-born parents, average OR = 0.55 and 0.56,

respectively, medium effect sizes), whereas Turkey and Iran showed the strongest positive

migration background prevalence differences (i.e., students with at least one foreign-born

parent had significantly higher odds of having been classified as random responders than

those with both native-born parents, average OR = 2.49 and 1.90, respectively, medium

effect sizes). Note that some educational systems such as Japan and Korea had few

students with migration backgrounds (i.e., under 5%), contributing to wider confidence

intervals in these systems.
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Figure 7

Meta-analytic confidence and prediction intervals for the odds of having been classified

as a Random Responder as a function of the student’s Migration Background.

Grade 4 Grade 8
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Note. The black diamond represents the confidence interval around the estimated average
log odds ratio across educational systems, and the whiskers extending the diamond define
the corresponding prediction interval for a randomly sampled educational system. The gray
dashed vertical line is drawn at log(OR) = 0, corresponding to independence between the
covariate and the random responder classification. For the estimates per system, see Appendix:
Figure A5 and Tables A1-A2. Migration background is coded 1=At least one foreign-born
parent / 0=Both native-born parents, hence a positive/negative log(OR) indicates that the
odds of having been classified as a random responder is higher/lower for students with than
without migration background. Results are reported for six scales in the TIMSS 2015 student
questionnaire measuring three types of students’ attitudes and beliefs in Mathematics and
Science.

Discussion

Although observable responses are still provided, a random responder can be seen

as causing a form of nonresponse error, in that we end up lacking accurate data on

the genuine attitude or information the student is surveyed about. Similar to more

traditional nonresponse, a low prevalence of random responders can be seen as a quality

indicator for both the survey and response data resulting from the survey. We found an

overall prevalence of random responders ranging from 1% to 27%, with an average of 7%

across educational systems for the six TIMSS 2015 scales measuring students’ attitudes

and beliefs in mathematics and science. Hence, supporting the quality of international

large-scale assessments in comparative educational research, this prevalence is relatively

low. Yet this 7% average does represent some of those students that typically make

up for the stereotypical anecdotes that are underlying general concerns about whether
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students provide genuine valid responses to the questionnaire in these typical low-stakes

assessments. The range of prevalence estimates is comparable to numbers found in the

literature for self-report inventories in other fields (e.g., Credé, 2010; Steedle et al., 2019).

Differential Prevalence of Random Responders. Similar to nonresponse (e.g.,

Richiardi et al., 2013), the impact of the prevalence of random responders crucially de-

pends on who they are, these random responders. If minority groups or groups with other

specific characteristics have a higher prevalence of random responders, such systematic

disproportionate differences can jeopardize the representativity of the sample and if the

propensity of engaging in random response behavior relates to the survey outcomes of

interest this can potentially skew, or at worst invalidate, inferences/conclusions based

on the questionnaire scales. The key research objective in this study was to investi-

gate whether random responders were disproportionately present in groups defined by

research- and policy-relevant covariates. We used a mixture IRT approach to classify

students as random responders and meta-analysis summaries to present our results for

each of six questionnaire scales across 22 educational systems and two grades.

We found a small to medium grade difference in prevalence for the View scales (and

the Like-S scale), with grade eight students having higher odds of having been classified as

a random responder than grade four students on average across educational systems. This

was counter to our implicit hypothesis that assumed the questionnaire to be less taxing for

the students in the later grade, but it could very well be consistent with a higher intrinsic

motivation of younger kids versus young adolescents, similar to the observed decline for

achievement tests in students’ expectancies and task values (e.g., Rosenzweig et al., 2019).

We found a small gender difference in prevalence, with male students having higher odds

of having been classified as a random responder than female students. This seems in line

with the stereotype expectation that girls are more diligent and that boys would put in

less effort in low-stakes situations (e.g., DeMars et al., 2013). Context-wise, a small SES

difference in prevalence was found for all scales except the View scales, with students

reporting having fewer books at home also having higher odds of having been classified

as a random responder than students reporting having more books at home. This SES
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difference is in line with findings in the more general nonresponse literature (Goyder et

al., 2002). A small to ignorable language difference in prevalence was also found, with

students speaking a language at home different from the test language having higher odds

of having been classified as a random responder than students with matching language,

with the trend being more pronounced in grade four than in grade eight. This is in line

with a priori expectations following the ease of understanding and mental engagement,

and consistent with findings in the rapid guessing literature (e.g., Goldhammer et al.,

2017). For immigration background, no empirical support for a difference in prevalence

was found using the crude self-reported parents’ birthplace indicator.

Generalizability. The findings of this initial study indicate that who are random

responders is not entirely random. The obvious caveat remains that there still might be

other crucial covariates than those considered here on which the two groups might sys-

tematically differ. As noted in the introduction, some of that covariate information might

not always be as easy to measure reliably and validly. One should especially be aware of

the catch-22 risk of using self-report measures to characterize responders that might not

genuinely report back on those indicators. Furthermore, some of the available covariate

indicators might be suboptimal: the number of books for SES or parents’ birthplace for

migration background might not necessarily be the optimal indicators in all cultures or

not all younger kids might in fact be able to reliably provide such information. Thus

it would be good not to generalize the null findings for the latter covariates beyond the

specific operationalization used in this study.

With respect to the scales, only the View scales showed a grade difference in prevalence

and almost no SES difference in prevalence, whereas the Confidence scales had a higher

overall prevalence of random responders (i.e., on average 11%). Note that the Confidence

scales also tended to fail quality checks for mostly the Middle East countries, indicating

larger measurement issues there for the majority of students. Altogether these findings do

indicate that whatever the mechanisms are underlying random responding, these won’t

be all generic or uniformly applicable across scales. This implies a crucial role for scale

contents and for how students (i.e., the target population) engage with or understand the
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questionnaire scale contents.

The observed heterogeneity across educational systems implies that context does mat-

ter. Whereas on average a difference in prevalence between two covariate groups might

be absent, it might still apply to an individual educational system. For example, a high

SES difference in prevalence was observed in England and New Zealand, and grade eight

students in Qatar that spoke the same language at home as the test surprisingly had

higher odds of having been classified as a random responder than those who did not. The

latter finding is likely due to the somewhat atypical immigrant population in Qatar com-

pared to other systems in our study. Similarly, when considering language and migration

background, the native culture was so dominant in Japan and Korea that the minority

groups were very small, leading to somewhat larger but also more uncertain prevalence

differences than elsewhere.

Handling Random Responders. Having been classified as a random responder

does not necessarily mean that one consciously and purposefully provides random re-

sponses. The classification has only a direct binding to the observed response pattern

and not to the underlying intentions or response process. Random response patterns can

equally arise due to incidental inattention or lack of understanding of the question or

uncertainty about the applicability of response options, and so on. In this sense, it is

perhaps more natural to qualify the responses given as nonresponse instead of as definite

invalid. Hence, we recommend similar approaches as used in the handling of missing

data, to deal with data from random responders (e.g., Meng, 2012). This would imply

sensitivity analyses comparing inferences with and without the inclusion of the detected

random responders and techniques such as multiple imputation on a rich feature set of

relevant covariates and survey design variables to comply with a missing-at-random work-

ing assumption. Note that the latter does not mean completely at random (for which we

have indications it is not), but conditional on the relevant covariate group differences as

suggested in explorative studies like the current study.

A5.26



Conclusion

Similar to missingness rates, prevalence rates of random responders don’t tell the

whole story, as their influence will depend on the underlying mechanism: the other vari-

ables involved and who in effect provides the nonresponses. This study has shown the

prevalence of random responders on questionnaire scales in international comparative

educational research to be a function of common policy-relevant covariates. Therefore,

we call for two actions: (i) For individual researchers using data from the questionnaires

of the international large-scale assessments in education, a default practice of sensitivity

analyses and robustness checks; (ii) For the larger testing organizations (e.g., OECD or

IEA), the default inclusion of a wide arsenal of survey quality indicators including not

only prevalence but also relations to covariates, and this for a larger set of non-response

behavior including random responders.
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Appendix A

Table A1

Distribution of the covariates for fourth-grade students.
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BHR 50 50 20 29 25 11 11 3 31 66 3 52 36 12 4146

CAN 49 51 10 21 38 17 13 2 24 74 2 45 42 12 12283

CHL 49 51 31 33 22 6 5 3 10 87 3 84 8 8 4756

ENG 51 49 10 22 34 18 14 3 17 81 2 52 34 13 4006

HKG 46 54 14 20 32 18 16 1 29 70 1 36 47 17 3600

IRN 49 51 40 27 18 6 6 2 33 65 2 78 12 10 3823

IRL 47 53 9 20 33 20 16 1 12 83 5 69 26 5 4344

ITA 49 51 17 35 28 10 8 1 16 83 1 75 21 4 4373

JPN 50 50 12 29 37 13 8 0 2 98 0 94 3 3 4383
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SGP 48 52 10 21 37 18 13 0 51 49 0 47 44 9 6517

TUR 49 51 22 33 28 8 5 4 15 80 5 84 7 8 6456

TWN 49 51 19 25 29 13 13 0 40 59 1 65 13 22 4291

USA 51 49 13 23 33 15 13 3 20 76 3 51 27 22 10029
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Table A2

Distribution of the covariates for eighth-grade students.
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How Randomly are Students Random Responding to your

Questionnaire? Within-Person Variability in Random

Responding across Scales in the TIMSS 2015 eighth-grade

Student Questionnaire

Questionnaires in educational research assessing students’ attitudes and beliefs are low-

stakes for the students. As a consequence, students might not always consistently respond

to a questionnaire scale, but instead provide more random response patterns with no clear

link to items’ contents. We study inter-individual differences in students’ intra-individual

random responding profile across 19 questionnaire scales in the TIMSS 2015 eighth-grade

student questionnaire in seven countries. A mixture IRT approach was used to assess stu-

dents’ random responder status on a questionnaire scale. A follow-up latent class analysis

across the questionnaire revealed four random responding profiles that generalized across

countries: A majority of consistent non-random responders, intermittent moderate random

responders, frequent random responders, and students that were exclusively triggered to

respond randomly on the confidence scales in the questionnaire. We discuss implications

of our findings in light of general data-quality concerns and the potential ineffectiveness of

early-warning monitoring systems in computer-based surveys.

A large research base in the educational sciences is built on studies using question-

naires to survey students’ values, beliefs, and attitudes towards school subjects such as

mathematics and science (Eccles & Wigfield, 2002; Linnenbrink & Pintrich, 2002; Os-

borne et al., 2003; Potvin & Hasni, 2014). This research base includes both smaller-scale

individual research-team studies and larger-scale international comparative studies such

as OECD’s Program for International Student Assessment (PISA) or IEA’s Trends in In-

ternational Mathematics and Science Study (TIMSS). The research results are typically

used to evaluate and contextualize educational practice and inform educational policy.

Yet, research on such attitudinal constructs is low-stakes for the students as it has

no direct consequences or relevance for themselves (in contrast to for instance cognitive
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achievement tests or exams). At the heart of educational and psychological measurement,

even before Cronbach’s (1946) treatise on response sets and validity, there is a core concern

that students might not always respond accurately or thoughtfully to a questionnaire,

but instead shift to responding with the lowest effort (e.g., Curran, 2016; Eklöf, 2010;

Huang et al., 2012) such that their item responses and scale scores might no longer

accurately reflect the constructs that the questionnaire scales were intended to assess

(e.g., Messick, 1984). One of the ways this can express itself is that instead of the expected

consistent item response pattern on a questionnaire scale, a more random response pattern

is provided with no clear link to items’ contents.

Individuals engaging in random response behavior on a questionnaire scale can poten-

tially distort inferences on basic item statistics, reliability, dimensionality, and intercor-

relations within and between constructs (e.g., Credé, 2010; Huang et al., 2012; Liu et al.,

2019; Maniaci & Rogge, 2014; Meade & Craig, 2012). Random responding can be seen as

a type of nonresponse; even though responses are observed, genuine information on the

actual response that the individual would have given, if they would have responded in a

regular non-random fashion, is missing. Hence, the underlying process giving rise to the

nonresponse is crucial both for understanding the phenomenon as well as for assessing

its expected impact and how to handle it in data analyses (cf. M(C/N)AR missing-

ness framework, Rubin, 1976). Typically, scale and item means are biased towards their

midpoint and residual item variances tend to be inflated, whereas scale and item covari-

ances within and between other constructs can be biased in either direction or remain

unaffected. Higher impact can be expected with increased prevalence and when regular

consistent responders tend to score further away from the midpoint.

Random responding is speculated to occur due to among others carelessness, insuf-

ficient effort, disengagement, or lack of motivation and seriousness on behalf of the re-

spondent (e.g., Huang et al., 2012). To the extent that it are almost always the same

individuals that are random responding on scales throughout the questionnaire, the va-

lidity threat is mostly located within the student responding. By implication, random

responding would then be mostly beyond our reach unless we manage to figure out in-
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dividualized incentives that convince these students to genuinely engage with the survey

in a low-stakes context. On the other hand, to the extent that individuals systemati-

cally vary the extent of their random response behavior throughout the questionnaire,

the validity threat could be due to specific triggers in their questionnaire progress or

scale content or type. The latter aspects would provide possible pathways to redesign

and modify the questionnaire to dampen the triggers and reduce the general validity

threat. In contrast, when random responding occurs more incidentally among individu-

als throughout the questionnaire, there are no clear levers for reducing its prevalence, but

the impact of such random responding can also be expected to be minimal as it would

conform to a completely-at-random nonresponse pattern (cf. MCAR, Rubin, 1976).

Thus, the distinct patterns in within-person variation in random responding become

especially important (Molenaar, 2004, see also) if we want to extend conclusions about

individuals based on limited information as in a data quality monitoring or screening

system. For example, if a student is identified as a random responder on one scale,

what does this imply for the rest of the questionnaire? Can their responses on other

scales in the questionnaire still be trusted or are they all to be considered invalidated?

By studying the inter-individual differences in intra-individual random response behavior

across the questionnaire scales in a survey, we aim to further clarify to what extent

random responding would be a systematic biasing factor that potentially threatens and

distorts inferences made from the survey data and shed further light on potential factors

triggering such random response behavior.

Individual differences in random responding across questionnaire scales

There are different ideas of how response behavior is actualized over the course of a

questionnaire at the individual level. Most of these ideas can be traced back to ancient-

old discussions in the general field of individual differences such as the trait versus state

(e.g., Schmitt & Blum, 2020) or person versus situation (e.g., Fleeson, 2004) debates.

Trait perspective. A person-central or trait perspective would prescribe that in-

dividuals have the tendency to respond to a questionnaire in a consistent manner (e.g.,

favoring a certain response option, speeding, or guessing) and that this response behavior
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is reflective of underlying personality traits and relatively stable across time (e.g., Messick,

1991). Cronbach (1950) indicates that especially within a singular-content questionnaire

this consistency of response behavior should become clear. This does not imply that indi-

viduals will respond perfectly consistent, as it has generally been considered that no trait

is perfectly stable. Yet, from this viewpoint, it is expected that if respondents would have

engaged in random responding on one scale they would also have an increased probability

of being identified as a random responder on any of the other scales in the questionnaire,

and limited within-person variability in random responding across the questionnaire is

implied.

Bowling et al. (2016) provide tentative evidence on temporal stability and correla-

tions with personality traits, which would be consistent with a trait-based individual

differences perspective. Other findings in the literature cast doubt on whether such in-

dividual consistency in random responding across the questionnaire is a realistic pattern

to expect. For a sequence of achievement tests in a USA context, Soland and Kuhfeld

(2019) conclude that rapid guessing is not longitudinally stable, but some cross-sectional

correlations with other trait measures were observed. For a low-stakes scientific reasoning

test, Wise et al. (2009) note that only a small percentage of college students appeared to

have engaged in random response behavior on the majority of the questionnaire. Simi-

larly, self-reports in personality research indicated that of the 52% of college students who

reported themselves to have engaged in some level of random responding on the MMPI-2

questionnaire, only 3% indicated to have responded randomly to ‘many’ or ‘most’ of the

items (Berry et al., 1992). Given such findings and the fact that most surveys in large-

scale educational research are also non-singular in contents, we expect that only for a

limited number of individuals a universally applicable ‘random responder’ trait applies

in an educational survey context.

State perspective. Alternatively, random response behavior could be more of a tem-

porary state that expresses itself only in specific parts of a questionnaire regardless of

the content. In the personality assessment literature, the perspective of so-called ‘back-

random’ responding has especially gained much attention (e.g., Clark et al., 2003; Gallen
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& Berry, 1997; Pinsoneault, 2007). Once an individual’s internal ‘cognitive resources’

have been depleted and/or they are no longer willing to actively engage with the ques-

tionnaire, the individual switches from regular response behavior to expressing random

response behavior and carry on to do so for the remainder of the questionnaire (Bowl-

ing et al., 2021; Clark et al., 2003). Notions of boredom, disinterest, inattentiveness,

or fatigue are indicated as potential underlying drivers of the phenomenon. From this

viewpoint, it is expected that once individuals are identified as random responder on a

scale, they will also have a higher probability to be identified as random responder on

the scales following that scale in the questionnaire.

For a low-stakes information literacy test, Wise (2006) found that several partici-

pants switched to random response behavior over the course of the test and persisted to

do so for most of the remainder of the test (see also, Cao & Stokes, 2007). Similarly,

self-reports in personality research asked about “the proportion of test questions which

you were unable to pay attention to and answered randomly” (Berry et al., 1992, p.341)

and 42–52% of the individuals across different samples indicated the most common place

for them was towards the end of the questionnaire (from response options: mostly in

the first part; mostly in the middle part; mostly in the last part; scattered through-

out). For achievement testing, Ackerman and Kanfer (2009) concluded that subjective

test fatigue was better predicted by individual differences in personal motivation than by

mere physical differences in test length. If back-random responding is indeed more of a

personal motivation issue, then the low-stakes character of many assessments in educa-

tional research can be considered to be a facilitating factor for back-random responding.

Whether and the point at which this within-person shift to random response behavior

can be observed, will vary across the questionnaire from person to person depending on

their general engagement with the questionnaire. Thus, good questionnaire design would

target the survey to the intended population, inquire about aspects that speak to this

population, and allow generous time to complete the survey; In such an ideal situation,

back-random responding should theoretically be a rare phenomenon.

Situation perspective. Whereas the previous perspectives seek the triggers for
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random response behavior mostly internal to a person, one could also posit that external

triggers could play a role. Cronbach (1950) indicated that response sets are more stable

within singular-contents questionnaires and that response sets become more influential

as items become more difficult or ambiguous. Similarly, Baer et al. (1997) indicated that

the two main reasons for giving random responses were difficulty in understanding the

question or in deciding on the response alternative. From this viewpoint it is expected

that if respondents would engage in random responding on one scale they would also

have an increased probability of being identified a as random responder on a similar scale

in the questionnaire, but not a dissimilar scale; where similarity is either in contents or

response type. This implies limited within-person variability across similar scales, but

large within-person variability between dissimilar groups of scales.

Idiosyncratic perspective. Another alternative is that random response behavior

is more unsystematic in nature, an extremely volatile state, meaning that the reasons

for random responding on one scale and not on another are rather idiosyncratic to the

individual. This would be reflected by individuals switching behavior multiple times

and engaging in random responding rather haphazardly throughout the questionnaire.

Switching behavior might not be uncommon in practice. Baer et al. (1997) observed

that of the 73% of young adolescents who reported themselves to have engaged in some

level of random response behavior on a personality inventory, the majority of respondents

indicated this behavior to be scattered across the questionnaire. Similarly, Berry et al.

(1992) found that 18–32% of the individuals across different samples reported having

engaged in random responding in a random fashion. From this viewpoint, the probability

of being identified as a random responder on one scale would be independent of someone’s

response behavior on the other scales and consequently, it would not be possible to make

any predictions about the validity of the complete set of responses on all scales in the

questionnaire.

The literature is scarce and inconclusive on which patterns of within-person variabil-

ity will be dominant, or even present or absent. Hence, the core research question is

exploratory in nature and can be regarded as a step in charting this unknown territory.
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To study this research question we selected the 2015 cycle of the Trends in Mathemat-

ics and Science Study (TIMSS 2015: Martin et al., 2016) as it collected responses from

large random samples of students, in multiple educational systems across the world, to

a large-scale student survey with many questionnaire scales covering students’ attitudes

and beliefs towards relevant subjects that are popular with educational researchers and

policy makers alike.

The many methodological approaches to detect random response behavior that rely

on auxiliary resources or require long scales with many items (e.g. Rupp, 2013), are not

applicable to most education survey research as both features are typically impractical

and as a result absent. In achievement testing, an operationalization utilizing reaction

time information on the item level to identify what is labeled a ‘rapid guess’ (see e.g.,

Wise et al., 2009) has gained traction. A rapid guess is framed as a response given within

such a limited time span that it is clear that the individual did not spend sufficient

time to consider and process the question asked, and as a consequence provided an

essentially random response. Unfortunately, even when the survey would be computer-

based, item-level reaction times are unattainable as items of a questionnaire scale are

typically presented all at once on the screen. Given that there is also no single correct

response on a survey item, aberrant responses are less obvious unless they form a very

systematic pattern (e.g., diagonal responding across the items of a questionnaire scale)

and we can for instance also not identify students that perform below chance level. The

use of bogus items or instructed response items (Breitsohl & Steidelmüller, 2018; Leiner,

2019) is also not commonplace in educational survey research, and the debate is not yet

settled on whether these tools are even an ethical practice or effective. In the end, one

needs to resort to the pattern of actual item responses given to the different questionnaire

scales in the survey. Given the absence of auxiliary elements for the TIMSS 2015 student

questionnaire, we will employ a mixture item response theory (IRT) approach (van Laar

& Braeken, 2022) to explicitly model the possibility of two underlying yet unobserved

groups in the population, students engaging in regular response behavior versus students

engaging in more random response behavior across the items of a questionnaire scale.
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This means that random response behavior is operationalized at scale-level directly based

on item responses given on that scale by the student. This is perhaps a more coarse

operationalization than what would be possible otherwise with auxiliary information,

but this is compensated by the presence of up to 19 scales in the TIMSS 2015 student

questionnaire allowing for a sufficient range to explore within-person variability.

Method

TIMSS is an international large-scale assessment of mathematics and science, which

has been conducted every four years since 1995. TIMSS 2015 provides the sixth assess-

ment of trends in the fourth grade and/or eighth grade of fifty-seven educational systems

and seven benchmarking participants. TIMSS 2015 includes assessments of mathematics

and science achievement as well as context questionnaires collecting background informa-

tion (Martin et al., 2016). The data used in this study stems from the student question-

naire for the eighth-grade students. The student questionnaire covers basic background

questions about the students and their home situation, but also questionnaire scales about

the students’ school experiences, attitudes, and beliefs with respect to school subjects and

homework. TIMSS’s target sample size for the number of students to be reached within

an educational system is n = 4000 (if student population size and other practicalities

permit).

The assessment of the students in TIMSS 2015 was separated into three sections. The

students first have the achievement tests, with 45 minutes of testing time per section (i.e.,

mathematics and science) with a 30-minute break in between. After the achievement tests

a second break followed after which the student questionnaire was administered to every

student that took part in the TIMSS 2015 achievement test. The testing time for the

student questionnaire was set at 30 minutes. The total testing time for an eighth-grade

student in the TIMSS 2015 assessment (i.e., all 3 sections) is then 120 minutes in total

plus the time for the two breaks. The times were set such that in principle students do

not need to rush to complete a section. Students were not allowed to leave the room or

start with a new section even if they had already completed the task within the set time

frame (Martin et al., 2016). Hence, there is no reward for rushing through the assessment
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as students had to remain seated in class and everyone also gets the same break time.

Outcome: Random Responder Status

A mixture item response theory model framework (van Laar & Braeken, 2022) was

adopted to operationalize and define the target outcome variable of interest, the random

responder status of a student on a particular scale in the TIMSS 2015 student question-

naire. The approach assumes that there are two distinct, yet unobserved latent groups

of responders in the population expressing different response behavior on a questionnaire

scale: regular or non-random responders and random responders (see Figure 1).

Figure 1

Mixture IRT model Framework to Define and Operationalize Random Responders in

terms of Independence and Uniformity of Item Responses.

(a) Regular Responders:

Measurement Model

(b) Random Responders:

Null Model

Note. Symbols follow standard path diagram conventions, with squares representing observed

variables (i.e., item responses); circles, latent variables (i.e., trait to be measured by the scale

of items); arrows indicating dependence relations; vertical lines, response category thresholds.

Reprinted under the terms of CC-BY-NC from “Random responders in the TIMSS 2015

student questionnaire: A threat to validity?” by S. van Laar and J. Braeken, 2022, Journal of

Educational Measurement.

The regular responders are expected to respond consistently according to their own

opinions and beliefs related to the questionnaire content of the items on the scale, in line

with a traditional latent variable measurement model (see Figure 1a, the ‘circle’ is the

common cause of the ‘squares’) such as the graded response model (Samejima, 1969). In

contrast, the random responders are expected to provide responses that do not reflect

their opinions and beliefs, but are more haphazard, in line with a null model implying
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mutually independent item responses that have an equal chance of falling in either of the

possible response categories (see Figure 1b, the ‘squares’ are mutually disconnected, nor

influenced by the ‘circle’; all squares are divided into uniformly equal category parts).

Under the mixture IRT model, the likelihood of a person p’s item response pattern yp

(see Equation 1) is written as a weighted sum of the two mentioned model expressions:

the joint probability of the observed item response pattern given the person’s latent trait

value under the graded response model multiplied by Pr(\RR) the prior probability for

a person to be a member of the regular responder group plus the joint probability of

the observed item response pattern under the null model multiplied by Pr(RR) the prior

probability for a person to be a member of the random responder group.

L(Yp = yp) =

Pr(\RR)
∏

i Pr(Ypi = ypi|θp, \RR)

+

Pr(RR)
∏

i Pr(Ypi = ypi|RR)

(1)

Notice that this mixture model has only one additional to-be-estimated parameter

compared to the regular measurement model. The part of the model accommodating

the possibility of random responders in the population, only has fixed parameters as

item response probabilities are known and assumed to be uniformly equal across cat-

egories and items. Given that the mixture weights sum up to one by definition (i.e.,

Pr(RR) + Pr(\RR) = 1), only one extra parameter needs to be estimated. Pr(RR) can

be interpreted as a model-based estimate of the prevalence of random responders on the

questionnaire scale. The resulting estimated model can be used to classify individuals

according to their individual item response pattern in one of the two classes based upon

their maximum posterior class membership probability. Thus, on the particular ques-

tionnaire scale, an individual student is (classified as) a random responder RRp = 1 if

Pr(RRp = 1|yp) =
Pr(RR)

∏
i Pr(Ypi=ypi|RR)

L(Yp=yp)
> .5, and RRp = 0 otherwise. For each scale

in the questionnaire, such a mixture IRT model will be estimated and used to compute

the random responder status of the individual students having responded to that scale,
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resulting in a binary profile of random responder status across scales in the questionnaire

for each individual.

If the mixture model for a questionnaire scale failed either of two quality checks, the

corresponding random responder status for that scale was set to missing for all students:

(1) When the measurement model of the regular responder class had two or more stan-

dardized item discrimination parameters (i.e., factor loadings) below .40, the scale was

considered unscalable for the majority population (i.e., no clean unidimensional scale

structure); (2) When classification entropy dropped below .70 we concluded that the

mixture model was unable to provide a good enough distinction between the two latent

groups of responders.

Study Design: Sample & Student Questionnaire

Sample

Inclusion criteria. We study the students participating in TIMSS 2015 in the set

of countries that have a so-called separated science program where all four subjects (i.e.,

biology, chemistry, earth science, and physics) are taught as independent subjects in

the curriculum (instead of as part of one big integrated science subject). This choice is

motivated by the useful features it brings to our study design: The student questionnaires

in these countries contain extra scales and additional structure, as now students’ values

and attitudes were asked towards the four different science subjects instead of the single

integrated science subject in other countries. The higher number of scales is beneficial

for the study of intra-individual variability across scales and the additional questionnaire

structure allows investigating whether subject matter or scale-specifics could be potential

triggers for random responding.

Exclusion criteria. Although Malta and Sweden follow a separated science pro-

gram, their students do not necessarily follow all four science subjects, and hence these

countries were excluded from our sample. Lebanon and Morocco were excluded from the

sample as the random responder mixture classification did not meet the required quality

criteria for the majority of questionnaire scales. The latter points to larger discrepancies

in those countries such as the scales not being unidimensional and/or specific items being
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unscalable.

Effective sample. Applying inclusion and exclusion criteria to TIMSS 2015 results

in the following set of seven countries (ISO-code) in our study: Armenia (ARM), Georgia

(GEO), Hungary (HUN), Kazakhstan (KAZ), Lithuania (LTU), Russia (RUS), and Slove-

nia (SVN). In both Armenia and Georgia, a single (but different) questionnaire scale did

not meet the classification quality criteria and here the random responder status RRp was

set to missing for all students on that scale in the corresponding country (i.e., Confidence

in chemistry for Armenia and Like learning earth science for Georgia).

TIMSS Student Questionnaire

The random responder status of a student will be estimated for 19 scales in the

TIMSS student questionnaire. These scales were each intended to reflect a unidimensional

construct and contained between 7 to 10 Likert items for which a student needed to

indicate to what extent s/he agrees with the given statement or indicate how often a

specific situation has occurred to them on a 4-point response scale, ranging from 1 (agree

a lot or at least once a week) to 4 (disagree a lot or never). The scales cover constructs

such as students’ sense of belonging, bullying, value of mathematics, value of science,

and a set of three scales on like learning, views on engaging teaching, and confidence in

each of five school subjects (mathematics, biology, earth science, chemistry, and physics).

Note that the set of starting questions on students’ background and home educational

resources will not be considered in our analyses as those were single items of varying

response formats that did not form a reflective scale.

Statistical Analysis

To determine the random-responder status of each student on the different scales, the

confirmatory mixture IRT model of van Laar and Braeken (2022) for ordered polytomous

indicators was run independently per scale-by-country combination (for sample Mplus

syntax, see Appendix A). To determine latent class random responder profiles across

the whole questionnaire, an exploratory sequence of unstructured latent class models

for binary indicators was fitted independently per country, and the number of classes

(i.e., profiles) was determined by means of BIC (e.g., Nylund et al., 2007). For gen-
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eralization and interpretability, we match-aligned the resulting classes across countries.

The expectation is that each country will show at the minimum a majority class with

a close-to-consistent profile of non-random responding across the questionnaire, whereas

expectations for the number and profile-type of additional classes are less clear.

Model-implied random responder rates will be computed to visualize the latent classes

and these profiles will be supplemented by class-specific within-person statistics sum-

maries. For the latter, we first compute for each individual a set of statistics based on

their random responder profile (i.e., the binary sequence of their random responder sta-

tus across scales in the questionnaire). The number of runs (i.e., a sequence of constant

random responder status across subsequent scales) and the maximum run length would

inform about the individual within-questionnaire consistency. Their switching behavior

is more directly quantified through the 1st order transition probabilities giving the prob-

ability of (not) being a random responder on the current scale given that you were (not)

a random responder on the previous scale (i.e., Pr(RRscale = 1|RRprevious scale = 1) and

Pr(RRscale = 0|RRprevious scale = 0). The number of Guttman errors (Guttman, 1950)

in the binary sequence formed by the profile informs about the level of within-person

sequential inconsistency and a high number of errors would be incompatible with the

earlier mentioned back-random responding profile.

Both the mixture IRT models and the latent class models were estimated using full-

information maximum likelihood in Mplus Version 8.2 (Muthén & Muthén, 1998–2017)

through the MplusAutomation package for R version 0.7-3 (Hallquist & Wiley, 2018),

with robust standard errors and the expectation-maximization acceleration algorithm

with a standard of 400 random starts, 100 final stage optimizations, and 10 initial stage

iterations. All analyses accounted for the TIMSS sampling design by applying the total

student weights in Mplus for the models and through the survey R package (Lumley,

2020) for the descriptive statistics. Analysis scripts were run under R version 4.0.0 (R

Core Team, 2020).
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Results

Descriptives

About 4500 students filled in the TIMSS 2015 student questionnaire in each of the

seven countries, with sample sizes ranging from n = 4028 in Georgia to n = 4917 in

Armenia. The prevalence of random responders among students in these countries varied

across the scales, with the minimum RR prevalence observed on the Student Bullying

scale (across-countries median prevalence = 0%) and the maximum RR prevalence on

the Students Confident in Physics scale (across-countries median prevalence = 17%).

On average, Georgia had the highest median within-person RR proportion across scales

(11% or 2 out of 18 scales), while at least half of the students were not identified as RR

on any scale (median within-person RR proportion = 0%) in 4 out of 7 countries (i.e.,

Kazakhstan, Lithuania, Russia, Slovenia).

Missing random responder status RRp. When no item responses on an entire

scale were observed for an individual student, there was also no data to assign a posterior

class membership to the student and the student’s random responder status on that scale

was set to missing. About 4% of the students did not have a random responder status on

1 to 2 scales, and for another 4% this was the case on 3 or more scales. Across countries,

slightly higher missingness percentages were observed for Georgia (12% missed 1 to 2

scales and 6% missed 3 or more scales) and Armenia (6% missed 1 to 2 scales and 6%

missed 3 or more scales). Reasons underlying the missing responses are unknown and

could be ascribed to a multitude of factors leading the student to either purposefully

or accidentally skipping a page and as such an entire scale of the questionnaire. The

missingness was generally observed to be randomly distributed across scales with miss-

ingness percentages on average below 6%. The exception was Georgia where missingness

was concentrated on scales linked to the earth science subject (up to 10% of students

were missing their random responder status on these scales). Yet, across all countries

the majority of students, on average about 92% (ranging from 82% in Georgia to 97%

in Lithuania and Russia), had a random responder status (RRp = 1 : yes/0 : no) for

each of the administered scales in the TIMSS 2015 student questionnaire. Thus, for the
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subsequent latent class analyses modeling random responder profiles across scales, a stu-

dent’s missing random responder status on a scale will be treated as missing at random.

When computing the within-person descriptive statistics, a student’s random responder

status pattern across scales is used as is, skipping missing classifications (i.e., this implies

that a missing status on a scale does not break a run). This treatment brings a slight

within-person consistency bias, but given the low amount and randomness of missings,

the inferential impact can be expected to be limited.

Latent Class Profiles of Random Responder status across the questionnaire

When determining the number of latent classes, the normalized BIC plot showed

uniformly across countries a huge drop after one class followed by a quadratic inverse

U-shape with the minimum at 4 (see Figure 2). To complement the relative perspective

offered by the normalized BIC plot, we also computed model-weights based on raw BIC

values (Wagenmakers & Farrell, 2004). Model weights for the 4-class solution were close

to the boundary value of 1, clarifying that the 4-class solution is also the single preferred

solution. Entropy values for the 4-class models ranged from .73 to .82, indicating that

students could be classified in a rather clear crisp fashion across the classes. These model

comparison results support the hypothesis of population heterogeneity in terms of random

responding across the scales in the student questionnaire and suggest there to be four

distinct latent profiles in each of the seven countries.
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Figure 2

Normalized Bayesian Information Criteria as a function of the Number of Latent

Classes.
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Note. The Bayesian information criteria (BIC) were normalized, where in each country the

normalized BIC = [BIC-min(BIC)]/[max(BIC)-min(BIC)]. As a result, the latent class model

with the highest BIC has a value of 1 and that with the lowest BIC has a value of 0. The

model with the lowest BIC (indicated by the cross symbol in the plot) has the better balance

between goodness-of-fit to the data and model complexity and is to be selected for inference

and generalization purposes.

Figure 3 displays the resulting random responder status probability profiles for the

four-class solution in each of the seven countries. For each class, the vertical axis repre-

sents the probability of having a positive random responder status on a given scale in the

student questionnaire. On the horizontal axis, the respective scales are listed in order

of occurrence in the questionnaire and can be grouped (cf. dotted gray vertical lines) in

terms of the particular subject domain (cf. single gray letter) they relate to.

The four classes corresponded to four distinct random responder across-scales profiles
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that could be neatly matched across countries. Table 1 provides per class an overview

of relevant within-person statistics that can help to further characterize what type of

within-person random responder across-scales patterns can be observed in each of the

four classes.

Consistent non-random responders. The profile for the majority class (Figure 3:

lightest gray with diamond points) indicates close to zero probabilities of a positive ran-

dom responder status for all scales, suggesting that this class bundles students that are

(almost) never classified as a random responder on any of the scales. This is further

corroborated by an across-students average within-person maximum run length of a zero

random responder status close to the total of scales in the questionnaire, a first-order tran-

sition probability Pr(RRscale = 0|RRprevious scale = 0) close to 1, and hardly any Guttman

errors (Table 1). All these average within-person statistics imply large within-person

consistency and point to generally (close-to) all-zeroes random responder status patterns

for students in this class.

Random responders triggered exclusively by the Confidence scales. The

profile for a second class runs rather parallel with the majority class, were it not for

the substantially higher probabilities of positive random responder status on the five

subject-specific Confidence scales (Figure 3: darkest gray with square points). Notice

that this pattern indeed repeats across countries, although the peaks at the confidence

scales do vary in height across countries (in Armenia the Confidence in Chemistry scale

is absent as it did not meet quality criteria). This profile suggests that this class bundles

students that are exclusively classified a as random responder on the confidence scales,

and not elsewhere in the questionnaire. This is further corroborated by students having

on average a positive random responder status on 57% of the Confidence scales, but on

only 6% of the other scales in the questionnaire.

Frequent random responders. The response probability profile for the minority

class (Figure 3: dark gray with circle points) has the highest probabilities of a positive

random responder status for all scales, suggesting that this class bundles students that

are frequently classified as a random responder on any of the scales (i.e., on average
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on about 43% of the scales). The individual student patterns in this class are far from

consistent, with transition probabilities close to 50/50 in either way, and many Guttman

errors (see Table 1).

Intermittent moderate random responders. The profile for the third class indi-

cates non-zero but low probabilities of a positive random responder status for most scales

(Figure 3: light gray with triangle points). Individual students have on average on about

3 scales (i.e., 16% of the questionnaire) a positive random responder status, spread out

across two runs, and resulting in on average 4 Guttman errors (see Table 1). Together

with the response profile of this class, these within-person statistics results imply that

random responding in this class is more intermittent across the questionnaire and without

clear systematic trends across students in this class.
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Figure 3

Random Responder Status Probability Profiles for the Four-Class Solution.
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Table 1

Class Sizes and Class Averages of Within-Person Statistics across seven Countries.

Consistent Frequent Intermittent

non-RR RR Conf RR RR

Class Size 3295 490 186 641

Class Proportion [.53, .76] [.07, .24] [.03, .07] [.10, .18]

Pr(RR=1) [.01, .04] [.17, .24] [.40, .51] [.15, .22]

Number of Runs (RR=1) [0, 1] [3, 4] [4, 5] [2, 3]

Number of Runs (RR=0) [1, 2] [4, 5] [4, 5] [3, 4]

Maximum Run Length (RR=1) [1, 1] [1, 2] [3, 5] [1, 2]

Maximum Run Length (RR=0) [15, 18] [6, 9] [4, 5] [8, 10]

Pr(RRscale = 1|RRprevious scale = 1) [.00, .03] [.05, .12] [.43, .58] [.15, .25]

Pr(RRscale = 0|RRprevious scale = 0) [.96, .99] [.67, .81] [.49, .59] [.77, .85]

Guttman Error [0, 1] [5, 6] [6, 8] [4, 6]

Note. The median class size across countries is reported. The reported intervals provide

the range of average values across the seven countries. A run is liberally defined here as a

within-person sequence of constant random responder status across scales. A missing status for

a scale was ignored and considered to not break up a run.

Back-random responders. None of the class profiles corresponded to the pattern

you would expect under back-random responding. Among all 32086 students, there were

only 590 students who showed a non-zero proportion of random responding in combination

with zero Guttman errors, a set of within-person statistics that would surface under back-

random responding. Yet of those 590 students, 506 responded randomly only to the last

scale (and 55 to the two last scales). Similarly, among all 32086 students, only 34 and

114 students had 4 out of the last 6 scales and 3 out of the last five scales a random

responder status and a non-responder status elsewhere. These findings seem to suggest

that the occurrence of back-random responding is at most a rarity in our sample with

the TIMSS 2015 student questionnaire.
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Discussion

In this study, we explored intra-individual variability in random responding behavior

across questionnaire scales in the TIMSS 2015 student questionnaire. The objective was

to clarify to what extent random responding is a more systematic trait-like behavior or

more state-like as in activated once a personal threshold has been breached (cf. back-

random responding) or when triggered by specific contents or type of a scale, or more

haphazard due to more idiosyncratic instances.

Our latent class analyses uniformly converged on a four-class solution with four dis-

tinct random responding profiles that generalized well, both in class size as well as in

profile character, across the seven countries under study. Do note that the sample con-

tains eighth-grade students in countries with a separated science program in their school

curriculum and that are mostly located in Eastern Europe. Hence, there are potentially

some shared contextual influences that need to be taken into account when extrapolating

results outside this age group or towards other countries elsewhere.

The identified majority class reflects within-person profiles in which no random re-

sponding occurs on scales throughout the questionnaire. Although the students have

nothing to gain or lose from filling in the low-stakes questionnaire, the majority appears

to respond to the scales in a rather construct-consistent manner. This is a reassuring

finding for TIMSS 2015, and by extension also for the potential of other low-stakes edu-

cational surveys.

In contrast, the identified minority class reflects within-person profiles that randomly

responded on almost half of the scales in the questionnaire. This class profile can be

speculated to correspond well to explanations of random responding in terms of careless-

ness, insufficient effort, or lack of motivation and seriousness on behalf of the respondent

(e.g., Huang et al., 2012). The relatively high frequency of random responding also ques-

tions the general trustworthiness of the delivered responses on the questionnaire by those

students, even on scales for which the student was not classified as a random responder.

A slightly larger class shows an intermittent random responding pattern across the

questionnaire with a much more moderate frequency of occurrence, about 3 scales or 16%
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of the questionnaire. Here, random responding can be considered more incidental due to

undefined idiosyncratic features and occasional lapses of engagement by the student. To

the extent that this is indeed a reflection of completely-at-random events, data quality

and inferences should remain relatively unharmed.

In contrast to the former classes for which there were no obvious systematic observable

triggers for the random response behavior, a fourth class reflected within-person profiles

where the students responded randomly but exclusively to the confidence scales. Such a

systematic pattern cannot be ascribed to momentary lapses in engagement or insufficient

effort, nor to response type artefacts (4-point Likert items were used uniformly across the

questionnaire), but we ought to look at item contents. Participants in a study by Baer

et al. (1997) also reported that their core reasons for random responding were not lapses

of concentration or boredom, but mostly difficulties in understanding items or deciding

on the response. A similar phenomenon could be at play here. Perhaps the students in

this latent class genuinely find it uncomfortable to publicly disclose their confidence in

school subjects? Examples of items on such a confidence scale are for instance “math-

ematics is harder for me than any other subject” or “mathematics is more difficult for

me than for many of my classmates”. Students’ perceptions about themselves are always

made in comparison to some standard, either internally (i.e., own performance in one

subject with own performance in another subject) or externally (own performance with

the performance of other students) (e.g., Marsh & Hau, 2004). Items that require com-

parisons, with additional changing or ambiguous standards and definitions of self, might

just be more difficult to answer or could result in internal inconsistencies in perception

for certain individuals. Hence, one cannot exclude the possibility that these students in

fact provided genuine valid responses from their individual viewpoints. This type of more

systematically triggered random responding could be considered more harmful than the

intermittent random responding and, in our particular case, this raises questions for the

validity and data quality of the confidence scales in the questionnaire.

We found no support for so-called back-random responding profiles (e.g., Clark et

al., 2003; Gallen & Berry, 1997), where students are assumed to switch from regular
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responding to random responding once they reached their ‘threshold’. The lack of back-

random responding implies that explanations in terms of a full-blown depletion of internal

cognitive resources or alternatively a firm conscious decision to no longer actively engage

with the questionnaire are not applicable. TIMSS states that there is ample time for

the student to fill in the questionnaire, that the general task demands of the assessment

are not out of bounds, and that there is also no benefit in rushing through the survey

(one has to stay in class anyhow for the allotted time). Hence, this non-speeded no-rush

low-stakes character of the questionnaire potentially sets (part of) the context to the

null-finding on back-random responding, and we caution against generalizing this finding

to educational surveys under more rushed speededness conditions.

Currently, we were restricted to implementing a scale-level mono-method assessment

of random responding (van Laar & Braeken, 2022) which operationalized random re-

sponding as providing item responses on a scale more alike patterns resulting from a

random responder reference group than alike the consistent response pattern by the ‘reg-

ular’ population. This does mean that some aberrant response patterns won’t be picked

up (e.g., straightlining on scales with unidirectional items). At the inferential level, the

current approach also ignores the classification uncertainty in random responder status

assessment as the maximum posterior binary membership classification is used as a binary

outcome. To allow a broader grip and strengthen the detection of random responders,

auxiliary data is needed that allows for a multi-method approach using for instance bo-

gus items (e.g., “I am not in grade eighth”), instructed-response items (e.g., “Please mark

slightly agree”), duplicate items (cf. so-called lie-scales in personality questionnaires),

and the provision of individual survey completion speed indicators (e.g., Leiner, 2019).

Conclusion

Whereas non-compliance and manipulation checks have become more and more a de-

fault part of experimental design, similar data quality checks or monitoring procedures are

not yet commonplace in educational science research using questionnaires and surveys.

Ethical questions remain as this monitoring needs to be communicated to the partici-

pants and potentially creates an atmosphere of mistrust and ambiguity which might also
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aversively affect the quality of response. From a perspective of implementing a monitor-

ing system, the intermittent character of random response behavior in one of the classes

does not hold much promise for the value of an early warning monitoring system and one

might even wonder whether the added value of monitoring outweighs the potential nega-

tive impact of the ‘big brother is watching you’ impression that such a monitoring system

might bring along to the students. The confidence-exclusive class also sketches that, in

a questionnaire context where there is no objectively correct answer, the label ‘random’

might also be a misnomer; let alone imagine the potential mishap when one would as-

cribe it to insufficient effort and actively communicate it as such to a participant. Given

these practical complications and the finding that the majority of students do not end

up as random responders in the survey, we would advise against implementing an active

monitoring system with early warnings for the students. Instead, we would advocate for

a passive monitoring system, including survey completion speed indicators, to support

post-survey response data quality checks and including student-level diagnostic indicators

in the publicly available datasets of the survey to allow secondary data analysts to run

proper sensitivity checks to assure robustness of their research findings. Next to enabling

such sensitivity checks, we should also not underestimate proper survey design and here

one can step things up in educational research by valuing the power of cognitive labs

and the feedback of survey panels that are not filled with ‘academic experts’ on the con-

structs to be measured, but with members of the actual target group. The information

these panels bring can potentially help detect, before any large-scale implementation, the

unintended triggers to random response behavior in the questionnaire.
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Appendix A

Sample Mplus syntax of the mixture IRT model for the ‘students

value mathematics’ scale in Kazakhstan.

TITLE: Kazakhstan_SQM20;

DATA: file = "KAZ_SQM20.dat";

VARIABLE:
names = IDSCHOOL IDSTUD TOTWGT

BSBM20A BSBM20B BSBM20C BSBM20D
BSBM20E BSBM20F BSBM20G BSBM20H BSBM20I;

missing = .;
usevariables = BSBM20A BSBM20B BSBM20C BSBM20D

BSBM20E BSBM20F BSBM20G BSBM20H BSBM20I;
categorical = BSBM20A BSBM20B BSBM20C BSBM20D

BSBM20E BSBM20F BSBM20G BSBM20H BSBM20I;
idvariable = IDSTUD;
weight = TOTWGT;
cluster = IDSCHOOL;
classes = c(2);

ANALYSIS:
type = mixture complex;
algorithm = INTEGRATION EMA;
estimator = MLR;
process = 3;
starts = 400 100;

MODEL:
%overall%

F BY BSBM20A -BSBM20I *;
F@1;
[F@0];

%c#1%
F BY BSBM20A -BSBM20I *;
F@1;
[F@0];
[BSBM20A$1 -BSBM20I$1 ];
[BSBM20A$2 -BSBM20I$2 ];
[BSBM20A$3 -BSBM20I$3 ];

%c#2%
F BY BSBM20A -BSBM20I@0;
F@0;
[F@0];
[BSBM20A$1 -BSBM20I$1@ -1.09861228866811];
[BSBM20A$2 -BSBM20I$2@0 ];
[BSBM20A$3 -BSBM20I$3@1 .09861228866811];

OUTPUT: stdyx;

SAVEDATA:
file = cpr_KAZ_SQM20.dat;
format = free;
save = cprobabilities;
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