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Abstract

Sandwich Plate System (SPS) is a sandwich construction consisting of steel face sheets and
polyurethane core. The main objective for the steel faces is to resist bending and in-plane
loads, while the compliant core transfers shear between the faces. One important benefit
with sandwich panels is the elimination of the need for intermediate stiffeners. SPS panels
are today used in stadium and arena terraces, bridges, ships and as structural flooring.

Det Norske Veritas (DNV) is currently developing rules and guidelines for design and
installation of SPS in ship newbuildings. To do this it is important to study how the SPS
panels behave under a variety of loads such as lateral pressure load, in-plane shear load
and in-plane uni-axial compression load. Combinations of these loads are important to
study to establish strength criterias for SPS panels. Studying these load combinations is
the objective for the current study as a collaboration between the University of Oslo (UiO)
and Det Norske Veritas (DNV).

In the current study the ultimate capacity of SPS panels under lateral pressure load and
in-plane shear load has been studied both separately and in combination. In-plane uni-
axial compression load is also included in three-way interactions. Both simply supported
and clamped boundary conditions are studied to see the effect of these. Theories that
can model the separate load cases are described and compared to each other and to the
finite element results. Some theory for load combinations are reviewed, and a slightly
conservative interaction curve for different load combinations on SPS panels is suggested.
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Notation

a − panel length

b − panel width

d − distance from mid-face to mid-face

D − flexural rigidity

E − modulus of elasticity

G − shear modulus

ka − factor used for lateral pressure theories to compare results

k
′

a − correction factor used in DNV Classification Rules

K − buckling coefficient

l − length of a yield line (Y-L theory)

l − length of stiffener (often equal to a)

Mp − plastic bending moment

N − in-plane uni-axial compression load

Nult − ultimate in-plane uni-axial compression load

p − lateral pressure load

pult − ultimate lateral pressure load

pY L − yield line pressure

Q − in-plane shear load

Qult − ultimate in-plane shear load

s − spacing between stiffeners (often equal to b)

S − shear stiffness

t − thickness of a standard isotropic plate

tc − thickness of the core in a sandwich

tf − thickness of a face in a sandwich

tk − thickness added for corrosion

Wext − external virtual work

Wint − internal virtual work

α − angle between shortest panel edge and diagonal yield line (Y-L theory)

β − width over length ratio

δ − mid-panel out-of-plane dispaclement

θ − rotation of the cross section (Y-L theory)

ν − Poisson’s ratio

σY − yield stress

τc − transverse shear stress

τY − yield stress in shear

φ − panel aspect ratio
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Chapter 1

Introduction

1.1 Background

Sandwich Plate System (SPS) is a type of sandwich plate where the faces are made of steel
that resists bending and various in-plane loads, and the core is made of polyurethane that
transfers shear stresses between the two faces. One large benefit with sandwich plates is the
large increase in flexural rigidity and bending strength per unit weight. This eliminates the
need for the lowest level of stiffeners, and can simplify many constructions. SPS is currently
being used in many applications such as bridges, arena terraces and in ships. Because of
the advantages that follow with sandwich structures, it is of interest to use this type of
plates in newbuildings of ship as well. Two principal figures of SPS is shown in Figure 1.1.

(a) (b)

Figure 1.1: SPS structure compared to conventional stiffened structure (a) and SPS cross section
(b)

A panel in a ship hull structure can be subjected to a variety of loads. For instance
lateral pressure loads, in-plane uni-axial and bi-axial compression and tension loads and
in-plane shear loads. Ultimate capacity for these different loadings and combinations of
them are important under the process of dimensioning these panels. Det Norske Veritas
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(DNV) is currently making rules for the design of these panels and is therefore in collabo-
ration with the current study, analysing a wide range of panels subjected to these different
loadings to get a well understanding on how the panels behaves.

1.2 Previous Work

A wide range of theories has been reviewed in connection to this work, from theories for the
separate loading cases to the theories for combination of loads in conventional structures
and stiffened plates in ships.

Yield line theory is an easy and powerful tool to estimate an upper bound for slabs and
plates. This theory was firstly used for concrete slabs, before it was adapted to steel plates.
The theory is based on the principle of virtual work. Zhou [1] also adapted this theory to
SPS panels which will be one of the theories described in this report. Small adjustments
are made to the roof-shaped mechanism assumed in this theory to see if this gives a better
estimate, or if the difference is negligible.

Jones [2] develop a lower bound theory for steel plates by suggesting a stress field and
using the differential equation for plates. This theory is also used in this work to make a
similar lower bound solution for SPS panels. It turns out for the simply supported SPS
panels, that this value is not a lower bound solution, but almost equal to the upper bound
theory.

DNV’s rules [3] are also studied to compare the SPS panels with stiffened plates in ships.
Both pure lateral load and in-plane shear buckling are described separately, and also how
these are combined in different plating structures in a ship are included.

Paik and Thayamballi [4] gives a good description of the different load combinations and
how to dimension them in conventional steel-plated structures. This theory is reviewed in
this report, together with a similar approach for SPS panels.

Few experiments are performed on ultimate capacity of SPS panels, but Little [5] has
performed some tests on a panel subjected to in-plane uni-axial compression load and
uniform lateral pressure load. These tests were compared to finite element analyses. A
preliminary project written before the current study goes through the results obtained in
Little’s report and explains the differences between the finite element analyses and the
experiments [6].

Intelligent Engineering has also performed many analyses for different load combinations
and submitted papers on their findings.
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1.3 Objectives for the Present Study

The main objective in this project is to study ultimate capacity of SPS under the com-
bination of in-plane shear loading, uni-axial compression load and lateral pressure load.
Analysing failure modes for the separate loading cases and theory that can describe this
behaviour are of great importance. The findings will be used to find slightly conservative
interaction curves for all sorts of load combinations of the three load cases on various panel
geometries, which can serve a basis for design rules in the future. To reach this goal the
following stages are included in the project description.

1. The available literature on ultimate strength of SPS panels under the listed loading
cases will be reviewed, together with relevant literature on modelling of sandwich
panels in general.

2. On the basis of this and the experience gained in the pre-project, a modelling strategy
will be defined for use in a parametric study of the ultimate strength of SPS plates.
In addition to FE analysis, analytical or semi-analytical methods may be used if these
are fond to be consistent with FE results. This stage may involve deeper investigation
of some of the aspects studied in the pre-project.

3. Based on the above, SPS plates will be modelled with both simply supported and
clamped boundary conditions under the separate loading cases:

• uniform lateral pressure

• uniform in-plane uni-axial compression

• uniform in-plane shear

so as to obtain the variation of ultimate strength and deformation modes with plate
dimensions for a comprehensive range of SPS plate parameters. In order to limit the
number of cases analysed, existing results obtained by IE and others may be included
where these are available and considered reliable.

4. A range of combined loading cases will be analysed so as to produce a set of strength
interaction curves for two-way combinations and interaction surfaces for three-way
interactions. As for the individual loading cases, special attention will be paid to the
deformation modes failure mechanisms.

5. If possible, conservative approximations to these interaction curves and surfaces will
be established in a simplified form that is convenient for use in design codes and
classification rules.

6. Ways in which the results might be incorporated in DNV Rules will be proposed.

7. The results and recommendations will be presented in a comprehensive report.
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There were a few challenges during this project. The first of these challenges was to find
a good reference value for lateral pressure. Both upper bound and lower bound theories
and also even first surface yield are considered to find a good value that can be used in
the class rules. All of the theories described can be used in the class rules, but they would
need different safety factors with respect to how conservative they need to be. First yield
is not described further in this report since this would require much more time to make a
”similar” criterion for the in-plane shear load.

During the work with lateral pressure load another discussion came up. How is the trans-
verse shear stress in the core influencing the ultimate capacity? If the core shear stress is
higher than the bonding strength, debonding might be the governing failure mechanism.
It was decided that bonding strength needs further investigations before a clear strength
criterion on this can be made. For the interaction curves in the current study, it is however
assumed that debonding will not occur.

The last major challenge in this work was to model boundary conditions in ABAQUS
that allow all the different loading combinations and model the actual boundary condi-
tions with straight edges.

Since all these challenges took more time than anticipated, the study on pure in-plane
uni-axial compression load was very limited, and the interaction surfaces was limited to
two panels with clamped boundary conditions. The pre-project [6] gave however insights
in ultimate behaviour for uni-axial compression load, so a reference value was possible to
obtain. From this, an interaction surface formula was suggested. This formula needs never-
theless testing on a larger range of panels to provide a check of more general performance.

1.4 Presentation of Chapters in This Report

First part of this report, Chapter 2, consists of two parts; governing theory for lateral pres-
sure loads, and theory for in-plane shear load. Different approaches for the two loading
conditions are discussed and compared.

Finite element modelling in ABAQUS is the topic of Chapter 3. Here, all aspects and
difficulties discovered during the modelling are described. Also figures of the loading and
boundary conditions are included.

The main part of this report is Chapters 4, 5 and 6 where all the results are presented.
Both the separate loading cases and the different interaction combinations can be found
here. There is also included some discussions and observations in this section that ad-
dresses irregularities in the results and how these factors can be solved.

Last chapter in this study is devoted to conclusions found in the other chapters and also
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suggestions to what could and what should be studied further to get a more complete
picture of ultimate capacity of the SPS panels.
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Chapter 2

Governing Theory

2.1 Lateral Pressure Load on SPS Panels

2.1.1 Upper Bound (Yield Line Theory)

One way of estimating ultimate strength of a panel subjected to pure lateral pressure is
to use the yield line theory. The theory was originally developed by Professor K.W. Jo-
hansen, and published in his doctoral thesis in 1843 at the Danish Technical University. His
analysis was based on one-dimensional beams, but the theory has later been extended to
two-dimensional slabs and panels. A formula based on this theory was made for SPS panels
by Zhou [1] in 2008. The major advantage of this theory is the simplicity of the explicit
formula obtained, and for many years it has proved to be a powerful tool for estimating
ultimate capacity of concrete slabs and steel plates. There is however a disadvantage with
the theory as well; it gives no indication about the deflection of the panel.

The basic assumptions behind the theory are that the deflections are small compared
to the overall geometry, the in-plane forces are neglected, and the collapse must be due to
moments.

The first step in a yield line analysis is to establish a collapse mechanism for the panel
studied. It is important to bear in mind that the choice of collapse mechanism needs to be
compatible with the kinematic boundary conditions. A poor choice of collapse mechanism
gives a non-conservative solution, even though the kinematic boundary conditions are sat-
isfied, since yield line theory give an upper-bound solution for collapse load, Buyukozturk
[7].

A very common collapse mechanism used for concrete slabs and steel plates is the roof-
shaped plastic mechanism shown in Figure 2.1. In the limit state, where the plastic hinges
form and the panel is divided as shown on Figure 2.1, external virtual work from the lateral
pressure pY L is equal to the inner virtual work from the resisting internal plastic bending
moment Mp.
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a

b

α

Figure 2.1: Collapse mechanism commonly used for concrete slabs and steel plates. With
clamped boundary conditions all four boundaries are also yield lines

By known principles the work is given by load times displacement. For this case, it will be
the sum of applied pressure on each part, times the area of each part, times the distance
the centroid of the part is displaced. When the length of the panel is given as a, the width
is given as b and the angle between the diagonal yield lines and the edges are 45◦, the panel
can be divided into eight equal triangles and two equal rectangles. Each triangle has the
area of b2

8
and each rectangle has the area of (a − b) b

2
. If the displacement in the middle

of the panel is given as δ, it can be shown that the displacement on each of the triangles’
centroids will be δ

3
and the displacement on each of the rectangles’ centroids will be δ

2
.

Combining these gives the total external virtual work

Wext = 8pY L
b2

8

δ

3
+ 2pY L (a − b)

b

2

δ

2
=

pY Lδ

6

(

3ab − b2
)

(2.1)

The internal virtual work is the work done by the internal bending moment. In the limit
state, this moment will be the plastic moment of the cross section, Mp. For steel and

other single layered isotropic plates, this moment will be given as Mp = σY
t2

4
. Mp is the

only thing in the derivation of the formula that changes when the theory is adopted to
sandwich panels. For a sandwich panel, it is assumed that only the faces can take up the
yield stress, so the plastic moment for a sandwich panel will be Mp = σY tf (tf + tc) where
tf is the thickness of the face, and tc is the thickness of the core. The reasoning behind
this is illustrated in Zhou’s report [1]. The internal work is given by Wint = Mpθl, where θ
is the rotation of the cross section, and l is the length of the yield line. Sobotka [8] shows
how the rotation can be found by geometry consideration and integration for arbitrarily
placed yield lines and can be expressed as a function of δ defined in the paragraph above.
The internal work is connected to the choice of boundary conditions. For clamped panels
yield lines along the entire perimeter need to be included in contrast to simply supported
panels where only the internal yield lines are included. This results in higher bending
resistance for the clamped panels which again shows that the clamped panel can carry a
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higher lateral pressure load than the simply supported panel can. The full expression for
internal work become for clamped panels

Wint = Mpθl = 8σY tf (tf + tc) δ + σY tf (tf + tc) δ
(

4
a

b
+ 4

)

+ σY tf (tf + tc) δ
(

4
a

b
− 4

)

= 8σY tf (tf + tc) δ
(a

b
+ 1

)

(2.2)

Ultimate limit state for a general clamped plate is then given as

Wext = Wint =⇒ pY L =
16Mpka

b2
(2.3)

with ka = a/b+1
(a/b−1)+2/3

and

Mp = σY
t2

4
for standard isotropic plates

Mp = σY tf (tf + tc) for sandwich panels
(2.4)

Since simply supported panels only have the internal yield lines shown in Figure 2.1, the
expression for internal work simplifies to

Wint = 8σY tf (tf + tc) δ + σY tf (tf + tc) δ
(

4
a

b
− 4

)

= 4σY tf (tf + tc) δ
(a

b
+ 1

)

(2.5)

Ultimate limit state becomes

Wext = Wint =⇒ pY L =
8Mpka

b2
(2.6)

with the same ka defined for the clamped panel. As can be seen above, the yield line pres-
sure on clamped panels is exactly twice the yield line pressure of similar simply supported
panels.

Another similar derivation is made by Wood in 1961 for the same roof-shaped failure
mechanism. The only difference from this derivation is that Wood allows the angle be-
tween the shortest edge and the diagonal yield lines, α, to vary. In the end the angle that
gives the lowest lateral pressure is calculated. Since the yield line method is an upper
bound solution, this method will be a slightly better approximation than the one where
45◦ angles are assumed. For square plates, however, the 45◦ angle is the most critical angle.

External virtual energy for a panel where the angle between the shortest edge and the
diagonal yield line can vary, is given as

Wext =
1

2
b2δpY L

(

a

b
− 1

3
tan α

)

(2.7)
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where α is the angle, and the rest of the parameters are the same as earlier in this section.

For the simply supported panel described in Jones [2], the internal virtual work is given as

Wint = 4Mpδ
(a

b
+

cos α

sin α

)

(2.8)

For the clamped panel, yield lines along the perimeter must be included. This gives the
internal virtual work

Wint = 8Mpδ
(a

b
+

cos α

sin α

)

(2.9)

which again is twice as much as for the simply supported panel. Equating the external and
internal virtual work gives the following expression for the lateral pressure on a clamped
panel

pY L =
24Mp

b2
(

3
β
− sin α

cos α

)

[

1

β
+

cos α

sin α

]

(2.10)

where β = b/a.

To find the angle that gives the lowest lateral pressure, the stationary value, ∂pY L

∂(tan α)
= 0,

need to be found. This gives

− β
sin2 α

(3 − β tan α) −
(

1 + β
tan α

) (

− β
cos2 α

)

3 − β tan α
= 0 =⇒ tan2 α =

3 − β tan α

1 + β
tan α

(2.11)

=⇒ tan α = −β ±
√

β2 + 3 (2.12)

Since 0 < α < π/2,

tan α = −β +
√

β2 + 3 (2.13)

Equation 2.13 inserted in equation 2.10 gives

pY L =
16Mpka

b2
(2.14)

for clamped panels, and

pY L =
8Mpka

b2
(2.15)

for simply supported panels, with ka = 3
(√

3+(b/a)2−b/a
)2 for both boundary conditions.

2.1.2 Lower Bound (Jones)

Since upper bound solutions always are non-conservative, it is useful to also study lower
bound solutions to get an indication of how close the actual solution is. If the span between
upper and lower bound is small, it can be concluded that the theoretical and actual values
are close. A lower bound solution for clamped panels is derived by Jones [9].
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The principle behind the lower bound theory is to find a stress field for the panel that
satisfies the equilibrium equation found by studying force and moment equilibrium of an
infinitesimal piece of a plate. This theory lies under the assumption of small deformations
which is important to keep in mind when evaluating the results of analyses later.

p(x,y)

My

Mx + 
∂Mx

∂x
dx

Mxy + 
∂Mxy

∂x
dx

Qx + 
∂Qx

∂x
dx

My + 
∂My

∂y
dy

Myx + 
∂Myx

∂y
dy

Qy + 
∂Qy

∂y
dy

Myx

Qy

Mx

Mxy

Qx

Figure 2.2: Infinitesimal piece of a plate. The x-axis lies horizontal on the figure, the y-axis is
the other in-plane axis, and the z-axis is the out of plane axis

In Figure 2.2, the forces and moments that act on an infinitesimal element, with dimen-
sions dx and dy in x- and y-directions respectively, are plotted. The only load applied
is the lateral pressure, which for this derivation can be considered as a constant for the
whole panel. It can also be noted that Mxy = Myx since τxy = τyx is given by moment
equilibrium with respect to the z-axis.

There are three equilibrium equations the panel above can satisfy. Vertical force equi-
librium, moment equilibrium in x-direction and moment equilibrium in y-direction. These
three equations become

∂Qx

∂x
+

∂Qy

∂y
+ p = 0 (2.16)

∂Mx

∂x
+

∂Mxy

∂y
− Qx = 0 (2.17)

∂My

∂y
+

∂Mxy

∂x
− Qy = 0 (2.18)

Equation 2.17 and 2.18 can be rewritten with respect to Qx and Qy and substituted into
Equation 2.16. This gives the differential equation for a panel subjected to lateral pressure
only.

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
+ p = 0 (2.19)
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The expressions for moments over the panel are found through series expansion. If one
origin is assumed to be in the centre of the panel, it can directly be concluded that odd
terms in the expansion (i.e. x, x3, ...) cannot be present. This comes from symmetry
requirements. The moment at x = a/2 is equal to the moment at x = −a/2. For the
simply supported panel the natural boundary conditions are [2]

Mx = 0 for x = ±a/2 (2.20)

My = 0 for y = ±b/2 (2.21)

Mx = Mp for x = 0 (2.22)

My = Mp for y = 0 (2.23)

Mxy = ±Mp in the corners (2.24)

The following series expansions for the moments are proposed

Mx = c1 + c2x
2 (2.25)

My = d1 + d2y
2 (2.26)

Mxy = e1xy (2.27)

Higher order terms are not included since it would be difficult to solve the partial differential
equation (Equation 2.19) with these higher terms. Applying the boundary conditions
(Equations 2.20 - 2.24) gives the following expressions

Mx = Mp

(

1 − 4x2/a2
)

(2.28)

My = Mp

(

1 − 4y2/b2
)

(2.29)

Mxy = −4Mpxy/ab (2.30)

These expressions are then substituted into Equation 2.19 and solved with respect to the
pressure p.

p =
8Mp

b2

[

1 + b/a + (b/a)2] =
8Mpka

b2
(2.31)

where ka =
[

1 + b/a + (b/a)2].

The clamped panel has another set of natural boundary conditions

Mx = −Mp for x = ±a/2 (2.32)

My = −Mp for y = ±b/2 (2.33)

Mx = Mp for x = 0 (2.34)

My = Mp for y = 0 (2.35)

Jones [9] neglects Mxy for this boundary condition. This results in a value higher than
the true lower bound solution. The main difference between the boundary conditions
on clamped panels and simply supported panels is that clamped panels develop plastic
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moment on the panel edges too. If the same series expansion as for the simply supported
panels are used, Equations 2.25-2.26 and the clamped boundary conditions are applied,
the following expressions are obtained.

Mx = Mp

(

1 − 8x2/a2
)

(2.36)

My = Mp

(

1 − 8y2/b2
)

(2.37)

Inserted in Equation 2.19 and solved with respect to the pressure p gives

p =
16Mp

b2

[

1 + (b/a)2] =
16Mpka

b2
(2.38)

where ka =
[

1 + (b/a)2].

2.1.3 DNV Classification Rules

The DNV Classification Rules [3] consider the panel subjected to a lateral pressure as an
elastic bending problem. This is quite conservative since the bending stresses are reduced
due to the membrane effect after the panel reaches the elastic limit. According to Mürer
[10] this is compensated in the rules by allowing bending stress above the yield stress. The
panel will still have a large reserve until we have a fully plastic membrane, but this capacity
is only interesting for special cases.

The thickness requirement for plates subjected to a lateral pressure is given in the DNV
Rules as

t =
Ck′

as
√

p√
σ

+ tk mm (2.39)

where

C = is a boundary dependent factor, which normally has a value of 15.8 with equally

spaced stiffeners. The value may change depending on the local structure.

k′

a = a correction factor for the aspect ratio of a plate field

= (1.1 − 0.25s/l)2

= max 1.0 for s/l ≤ 0.4

= min 0.72 for s/l ≥ 1.0

s = stiffener spacing in m

l = stiffener span in m

p = design lateral pressure in kN/m2

σ = nominal allowable bending stress in N/mm2

tk = additional thickness to account for corrosion

An approximation to find this formula, will be to use the elasto-plastic theory on an in-
finitely long plate between two stiffeners.
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Figure 2.3: Infinitely long plate between two stiffeners

Figure 2.3 shows a unit width transverse plate strip between two stiffeners. This strip
is considered to be a beam, clamped on both edges. A local coordinate system is defined
with the x-axis along the unit width strip, and the y-axis parallel to the stiffeners. From
kinematic compatibility and the assumption of infinitely long plate in y-direction, εy = 0.
From normal plate assumptions, out-of-plane stresses are also neglected, σz = 0. This
simplifies Hook’s law

εxE = σx − νσy (2.40)

0 = σy − νσx =⇒ σy = νσx (2.41)

The von-Mises yield criterion for principal stresses under the assumption of plane stress
says

(σx)
2
Y + (σy)

2
Y − (σx)Y (σy)Y = σ2

Y (2.42)

Inserting Equation 2.41 into 2.42 give

(σx)Y =
σY√

1 − ν + ν2
(2.43)

The plastic bending moment, Mp, along this plate strip beam is, for a homogenous isotropic
cross section, given as

Mp = (σx)Y

t2

4
(2.44)

The plastic moment occurs first on the two boundaries.
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Figure 2.4: Clamped beam subjected to pressure load

The relation between the pressure and the plastic moment illustrated in Figure 2.4 can
be found with classic beam theory to be

p =
12Mp

s2
(2.45)

where s is the distance between the stiffeners, or the length of the plate strip beam. If the
equation is solved with respect to the thickness, t, and the same units as in the formula in
the class rules are used, the following expression with the elasto-plastic theory is obtained

t = 17.2s

√

p

σY

(2.46)

The formula in the rules is using an allowable stress instead of yield stress. In order to
compare the rules to the elasto-plastic theory, allowable stress must be converted to yield
stress. This gives the following expression

t = 19.15s

√

p

σY

(2.47)

The difference between the two formulas are 11%. Mürer [10] also says that this elasto-
plastic theory seems to be sufficient for normal ship plates in the plate range s/l < 80.

To compare the class rule with the other theories described in the previous Sections, 2.1.1
and 2.1.2, the units must be changed and the expression rewritten. This give

p =
16Mp

k′2
a s2

=
16Mp

s2
ka (2.48)

where ka = 1/k′2
a . s will be the same parameter as b for the other theories.

2.1.4 Comparison

All formulas derived in Sections 2.1.1 to 2.1.3 are written on the form

p = C
Mp

b2
ka (2.49)

where C = 8 for simply supported panels, C = 16 for clamped panels and ka varies with
the different methods and panel aspect ratios. This form makes it easy to compare the
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Figure 2.5: ka values for clamped panels with various panel aspect ratios, φ

different methods, simply by comparing the ka values for different aspect ratios.

Figure 2.5 shows ka-values for clamped panels. First thing to notice is the marginal dif-
ference between the two yield line theories. This means that letting the angle shown in
Figure 2.1 vary, does not influence the results greatly.

The difference between the upper bound solutions and lower bound solutions is largest
for square panels. The upper bound is 50% higher than the lower bound, but as the panel
aspect ratio increases to infinity the two different bounds approach the same value. In this
work, only the aspect ratios between 1 and 2 are studied, so the variation between the
different ka-values are for these cases large.

DNV class rules are conservative for all aspect ratios, but when the aspect ratio moves
towards infinity, all the values are the same. For square panels the DNV rules and the
Jones lower bound solution are almost identical, but for an aspect ratio between 2 and 3,
the difference between these two solutions is around 16%.

For SPS panels the plastic moment is given as Mp = σY tf (tf + tc). It has been sug-
gested as another approach to consider the two face sheets in the sandwich as equivalent to

a steel plate with Mp = 2σY
t2
f

4
. This means that the two face sheets develop a roof-shaped

mechanism separately. Following this approach leads to a far too conservative capacity.
The support gained from the core cannot be neglected.
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2.1.5 Core Shear Strength

When applying lateral loads on a sandwich panel, core shear stress also needs some atten-
tion. There are two modes of failure that can occur. The first one is core shear failure in the
middle of the cross section, and the second one is debonding between the core and the faces.

A quick way of estimating the shear stress in the core is to find the total transverse force
on the panel, divide the force on the length of the perimeter and the distance between the
midplanes of the steel faces.

τc =
pab

(2a + 2b) (tf + tc)
(2.50)

This expression gives a constant average transverse shear stress over the whole perimeter.
It is however known that the transverse shear stress is higher in the middle of the long
edges, so Equation 2.50 can only indicate whether the core shear stress is a critical phe-
nomenon or not.

The material data for the core, which is described in Chapter 3, indicates that the tensile
ultimate strength is around 39 MPa. This means that ultimate shear strength in the core
will be roughly around 20 MPa depending on which yield criterion is used, Tresca or Mises.
Bond strength between the faces and the core is highly dependent on the surface prepara-
tion of the face material, so bond strength might be lower than the core shear strength.

Intelligent Engineering (IE), Daewoo Shipbuilding and Marine Engineering (DSME) and
Lloyd’s Register (LR) have suggested a design rule for bond strength in a conference paper
[11]. This rule is given as

tn + dc ≥
βγqb

τlimit

(2.51)

where tn is the faceplate net thickness, dc is the thickness of the core, τlimit is the bond
shear stress capacity given as 6.0 MPa for watertight and deep tank bulkhead, b is the
width of the panel, β and γ are factors that vary with the panel aspect ratio and q is the
design pressure included a safety factor of 1.5.

The analyses indicate that core shear stresses of 6 MPa and higher occur in some of the
thicker panels, so bonding strength requires further study including extensive testing and
data analysis that is ongoing.

2.2 In-Plane Shear Load on SPS Panels

2.2.1 Shear Yield

There are two different failure mechanisms studied in this work related to the ultimate
capacity for in-plane shear load. The first is when the panel yields over the entire cross
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section due to high shear stress and yield lines occur with 45◦ to the panel edges. A theory
that describes this failure mechanism will be presented in this section.

Next theory studied in this work will be shear buckling followed by yield over the cross
section again followed by failure. Shear buckling will be studied closer in the next section.

Figure 2.6: Failure on a SPS panel due to shear yield over the cross section. Von Mises stress
is given in MPa

As can be seen in Figure 2.6, a 45◦ yield line is stretching from one of the long edges to
the other. After the panel reaches this point, it cannot carry any higher shear load. A
formula to predict this load has been based on the von-Mises yield criterion for pure shear.
Von-Mises criterion for pure shear is given as

τY =
σY√

3
(2.52)

where τY is the shear stress when yield occurs and σY is the tensile yield stress for the
panel. As the criterion shows, the shear yield stress is lower than the tensile yield stress.

For SPS and sandwiches in general, there are at least two different materials present,
and these materials have different yield stresses. This effect must be included in the final
expression. The ultimate load the panel can carry per unit length is the sum of the ulti-
mate load per unit length for the face sheets, and the ultimate load per unit length for the
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core.

Qult = 2τY f tf + τY ctc =
σY f√

3
2tf +

σY c√
3
tc =

1√
3

(2σY f tf + σY ctc) (2.53)

where Qult is the ultimate load per unit length, tf is the thickness of the faces, σY f is the
yield stress in the faces, tc is the thickness of the core and σY c is the yield stress in the
core. Since the yield stress in the faces is much greater than the yield stress in the core, the
contribution gained from the core can be neglected in a simplified expression for ultimate
capacity

Qult = 2τY f tf = 2
σY f tf√

3
(2.54)

2.2.2 Shear Buckling

Figure 2.7 shows the second failure mechanism studied

Figure 2.7: Failure on a SPS panel due to shear buckling. Von Mises stress is given in MPa

As can be seen in Figure 2.7, yield is developed on one of the buckles and failure fol-
lows right after. How soon the yield develops after buckling occur, depend on the initial
imperfection of the panel. In a later chapter, results from such analyses will be presented.
It turns out that the elastic critical load is a good estimate of the ultimate capacity of the
panel. Kuenzi, Ericksen and Zahn [12] presents a formula for the buckling load based on
the principle of stationary potential energy.
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The potential energy is divided in two parts; the strain energy and the potential en-
ergy from applied loads. When linear elastic isotropic material is assumed, the following
expression for the strain energy is obtained

Ustrain =

∫

V

∫

ε

{σ}T {dε}dV =

∫

V

1

2
{σ}T {ε} dV =

∫

V

1

2
{ε}T {E} {ε} dV (2.55)

where {ε} =
{

εxx εyy εxy εyz εzx

}T
, ε∗∗ are the strain components in the sandwich,

and for panels where plain stress is assumed, σz = 0,

{E} =
E

1 − ν2













1 ν 0 0 0
ν 1 0 0 0
0 0 1−ν

2
0 0

0 0 0 1−ν
2

0
0 0 0 0 1−ν

2













(2.56)

where E is the Young’s modulus and ν is the Poisson’s ratio. This gives the strain energy
expression

Ustrain =
1

2(1 − ν2)

∫

V

[

Eε2
xx + Eε2

yy + 2νEεxxεyy + (1 − ν2)Gε2
xy

+(1 − ν2)Gε2
yz + (1 − ν2)Gε2

zx

]

dV

(2.57)

where G is the shear modulus. The potential energy from the applied shear load can be
expressed as

Up =

∫

A

Nxy

(

∂w

∂x

) (

∂w

∂y

)

dA (2.58)

where Nxy is applied shear load per unit length and w is out-of-plane displacement.

Kuenzi, Ericksen and Zahn, [12], starts their analysis by assuming the out-of-plane dis-
placement. For a simply supported panel, this expression will be

w =
∞

∑

m=1

∞
∑

n=1

Cmn sin
(mπx

a

)

sin
(nπy

b

)

(2.59)

where x and y are the in-plane coordinates, and a and b are the length and width of the
panel respectively. This assumption holds through the whole thickness of the sandwich.
Kuenzi, Ericksen and Zahn [12] choose the x − y-plane to lie between one of the faces
and the core. It is also assumed that the transverse shear stresses in the core are con-
stant throughout the thickness. The in-plane displacements are also double infinite sums,
with coefficients that need to be chosen such that the total potential energy becomes as
low as possible. The following displacement components are suggested in Kuenzi et al. [12].
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The core:

ucmn
= (kmnz + qmn)

∂wmn

∂x
(2.60)

vcmn
= (hmnz + rmn)

∂wmn

∂y
(2.61)

The faces:

u1mn
= (qmn − z)

∂wmn

∂x
(2.62)

v1mn
= (rmn − z)

∂wmn

∂y
(2.63)

u2mn
= (kmntc + qmn − z + tc)

∂wmn

∂x
(2.64)

v2mn
= (hmntc + rmn − z + tc)

∂wmn

∂y
(2.65)

where u and v are displacements in x- and y- direction respectively, and the subscript c,
1, 2 refers to the core and the two faces.

It is important, when assuming displacement functions, to ensure that kinematic com-
patibility is satisfied between the faces and the core, hence for z = 0 and z = tc. To be
able to use the strain energy expression shown in Equation 2.57, the strain components
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from the displacement assumptions needs to be derived.

ε(1)
xxmn

=
∂u1mn

∂x
= (qmn − z)

∂2wmn

∂x2
(2.66)

ε(1)
yymn

=
∂v1mn

∂x
= (rmn − z)

∂2wmn

∂y2
(2.67)

ε(1)
xymn

=
∂u1mn

∂y
+

∂v1mn

∂x
= (qmn + rmn − 2z)

∂2wmn

∂x∂y
(2.68)

ε(2)
xxmn

=
∂u2mn

∂x
= (kmntc + qmn − z + tc)

∂2wmn

∂x2
(2.69)

ε(2)
yymn

=
∂v2mn

∂x
= (hmntc + rmn − z + tc)

∂2wmn

∂y2
(2.70)

ε(2)
xymn

=
∂u2mn

∂y
+

∂v2mn

∂x
= (kmntc + hmntc + qmn + rmn − 2z + 2tc)

∂2wmn

∂x∂y
(2.71)

ε(c)
zxmn

=
∂wmn

∂x
+

∂ucmn

∂z
= (1 + kmn)

∂wmn

∂x
(2.72)

ε(c)
yzmn

=
∂wmn

∂y
+

∂vcmn

∂z
= (1 + hmn)

∂wmn

∂y
(2.73)

Inserted in the equation for strain energy, the following components of energy are given

U1mn
= C2

mn

abEf

8
(

1 − ν2
f

)





















(mπ

a

)4
[

(

qmn +
1

2
tf

)2

tf +
1

12
t3f

]

+
(nπ

b

)4
[

(

rmn +
1

2
tf

)2

tf +
1

12
t3f

]

+ 2νf

(mπ

a

)2 (nπ

b

)2
[(

qmn +
1

2
tf

) (

rmn +
1

2
tf

)

tf +
1

6
t3f

]

+
1

2
(1 − νf )

(mπ

a

)2 (nπ

b

)2
[

(qmn + rmn + tf )
2 tf +

2

3
t3f

]





















(2.74)

U2mn
=

C2
mnabEf

8
(

1 − ν2
f

)


























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

(mπ

a
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(

kmntc + qmn − 1

2
tf
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12
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b
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(
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2
tf
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1

12
t3f

]

+ 2νf

(mπ

a

)2 (nπ

b
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kmntc + qmn − 1

2
tf
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1
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(mπ

a
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b
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2
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
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




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

(2.75)
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Ucmn
= C2

mn

ab

8

[

Gctc

(

(mπ

a

)2

(1 + kmn)2 +
(nπ

b

)2

(1 + hmn)2

)]

(2.76)

Ustrain =
∞

∑

m=1

∞
∑

n=1

(U1mn
+ U2mn

+ Ucmn
) =

ab

8

∞
∑

m=1

∞
∑

n=1

(

C2
mnTmn

)

(2.77)

Since an out-of-plane deflection on the panel is assumed, the potential energy from the
applied shear load can also be found

Up = Nxy
∞

∑

m=1

∞
∑

n=1

∞
∑

p=1

∞
∑

q=1

a
∫

0

b
∫

0

Cmn

(mπ

a

)

cos
(mπx

a

)

sin
(nπy

b

)

Cpq

(qπ

b

)

sin
(pπx

a

)

cos
(qπy

b

)

dydx

=















−Nxy

∞
∑
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∞
∑

n=1

∞
∑

p=1

∞
∑

q=1

a
∫

0

CmnCpq

(mπ

a

) (qπ

b

)

cos
(mπx

a

)

sin
(pπx

a

) 2nb

π (q2 − n2)
if n + q is odd

0 if n + q is even

=











−Nxy

∞
∑

m=1

∞
∑

n=1

∞
∑

p=1

∞
∑

q=1

CmnCpq

(mπ

a

) (qπ

b

) 4abnp

π2 (m2 − p2) (q2 − n2)
if n + q and m + p is odd

0 if n + q or m + p is even
(2.78)

As can be seen above, both n + q and m + p needs to be odd in order to have a nonzero
contribution from the potential energy from the load.

The total energy on the panel can then be written as

Utot = Ustrain−Up =
ab

8

∞
∑

m=1

∞
∑

n=1

(

C2
mnTmn

)

+4Nxy

∞
∑

m=1

∞
∑

n=1

∞
∑

p=1

∞
∑

q=1

CmnCpq
mnpq

(m2 − p2) (n2 − q2)

(2.79)
Next step in the analysis will be to find the stationary value. In other words, the five
following sets of conditions must be satisfied

∂Utot

∂Cmn

= 0
∂Tmn

∂qmn

= 0
∂Tmn

∂rmn

= 0
∂Tmn

∂kmn

= 0
∂Tmn

∂hmn

= 0 (2.80)
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The four last conditions in Equation 2.80 give the following relations

qmn = −1

2
kmntc

rmn = −1

2
hmntc

kmn =
1

tc

tf

[

(

mπ
a

)2
+

(

nπ
b

)2
]

− 2Gc(1−ν2

f)
Ef tf

S
D

+
[

(

mπ
a

)2
+

(

nπ
b

)2
]

hmn = kmn

(2.81)

where S = Gcd2

tc
, D =

Ef tf d2

2(1−ν2

f)
(thin-face and compliant core approximation), and d = tf +tc.

When the four parameters above is inserted into the expression for total potential energy,
the first of the five conditions above yields

b

8a3
Dπ4Cmn





[m2 + φ2n2]
2

1 + π2 D
Sb2

[

m2
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f
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
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+ 4Nxy

∞
∑

p=1

∞
∑

q=1

Cpq
mnpq

(m2 − p2) (n2 − q2)
= 0 where m,n ∈ N

(2.82)
where φ = a

b
is the length over width ratio. Nxy can be written as Nxy = D π2

b2
K where K

is the buckling coefficient.

π2Cmn

32φ3K





[m2 + φ2n2]
2

1 + π2 D
Sb2

[

m2

φ2 + n2
] +

Ef t
3
f

6D
(

1 − ν2
f

)

[

m2 + φ2n2
]2





+
∞

∑

p=1

∞
∑

q=1

Cpq
mnpq

(m2 − p2) (n2 − q2)
= 0 where m,n ∈ N

(2.83)

To find the non-trivial solution of this matrix, the determinant must be equal to zero. Stein
and Neff [13] showed that for shear buckling in standard plates the determinant could be
split in two smaller determinants. One determinant represents the symmetrical buckling
and one represents the anti-symmetrical buckling. The reason why this is possible comes
from the criteria that n + q and m + p are both odd. When all these parameters are
summed, m + n + p + q, this number must be even. This means that if m + n is even,
p + q needs to be even as well, and if m + n is odd, p + q needs to be odd. The combina-
tions of m and n that gives even numbers are representing the symmetrical buckling, and
the combinations that gives odd numbers are representing the anti-symmetrical buckling.
These determinants are implemented in a MATLAB code which is attached in Appendix
A. Clamped panels need another assumed displacement field and a similar derivation as
shown for the simply supported boundary conditions.

23



Kuenzi, Ericksen and Zahn [12] also made formulas for solving these shear buckling prob-
lems with both clamped and simply supported boundaries. These are handy, since they are
easy to use, and the critical load can be found fast. For a clamped panel the approximate
formula for the buckling coefficient yields

K =
K0Clamped

1 + π2 D
Sb2

(

K0Clamped − 4
3

[

1 + b2

a2

]) for 0 ≤ π2 D

Sb2
≤ 3

4

(

1 +
b2

a2

)

−1

(2.84)

where K0Clamped = 9+ 17
3

b2

a2 is the buckling coefficient for an ordinary isotropic homogenous
plate. For the simply supported panel the following formula is given

K =
K0SS

1 + π2 D
Sb2

(

K0SS − 1 − b2

a2

) for 0 ≤ π2 D

Sb2
≤

(

1 +
b2

a2

)

−1

(2.85)

where K0SS = 16
3

+ 4 b2

a2 is the buckling coefficient for an ordinary isotropic homogenous
plate. These formulas can also be found in Zenkert [14]. The criteria set after the buck-
ling coefficient, comes from core shear instability. It is found that when the core is very
weak, the buckling coefficient will only depend on the shear parameters K = 1

π2 D

Sb2

. This

is not, however of practical importance, since the core would need to be really thick and
soft in order to experience this instability behaviour. An ABAQUS analysis of an SPS3-
15-3 3200x6400 mm2 panel has been made to show the accuracy of the formulas described
above.

In Figure 2.8 is the eigenmode given from the ABAQUS analysis. This panel gives an
anti-symmetric eigenmode with two buckles. In Figure 2.9, the buckling coefficients for
SPS3-15-3 panels with different aspect ratios are presented. The values on the vertical axis
should be noted.

The 3200x6400 mm2 panel corresponds to a panel aspect ratio of 2, which in the graph
will be 0.5 with the axis currently used in Figure 2.9. The determinant solution with this
panel aspect ratio, corresponds to an anti-symmetric eigenmode with two buckles. This
agrees with Figure 2.8. Compared to the finite element analysis we can see that the de-
terminant solution is slightly non-conservative by around 2.8%, and that the approximate
design formula is slightly conservative by around 3.4%.
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Figure 2.8: Eigenmode of an SPS3-15-3 3200x6400 mm2 panel. Displacements are given in mm
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Figure 2.9: Shear buckling coefficient versus panel aspect ratio
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Chapter 3

Finite Element Modelling

3.0 History and Background of the Finite Element

Method

According to Cook [15] the origin of the finite element analysis as it is known today comes
from a paper by Courant in 1943 where he determined the torsional rigidity of a hollow
shaft by dividing the cross section into triangles and interpolated a stress function linearly
over each triangle from the stresses at the nodes. The first practical applications came
with the aeronautical industry in the beginning of the 1950s and finite element method
proved to be an efficient tool for several applications. In 1963, the finite element method
was recognised as a form of the Rayleigh-Ritz method and after that time, the use and
research of the finite element method has escalated significantly.

In this chapter the modelling procedure for the SPS panels will be presented along with
challenges experienced during the process and how these were dealt with. All finite element
analyses performed in this study are done with the ABAQUS software from Simulia.

3.1 Panel Geometry

To get a broad understanding of sandwich panels’ performance, it is in this study chosen
a range of quite extreme geometries with regard to the following three ratios

• face to core thickness

• panel aspect ratio

• panel thickness to width (or length)

All panels studied can be found in Table 3.1
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Table 3.1: Geometries studied in this work

Panel Aspect Ratio (a/b) Panel Width (mm) Face Thickness (mm) Core Thickness (mm)

1.0 2000 3 35
2000 10 15
2000 10 35

1.5 1200 5 32
2800 6 25

2.0 3200 3 15
3200 3 35
3200 7 35
3200 10 15

SPS panel layups are commonly written on the form SPS3-35-3 after how the cross sec-
tion is built. The first and last number describes the two face thicknesses and the middle
number describes the core thickness. All numbers are given in mm. In table 3.1 it can be
seen that there are panels with a thick core and very thin faces, and there are panels with
thick faces and a thin core. There are also panels with thin core and thin faces and thick
core and thick faces. For the completeness of the study some panels in the middle range
with more standard cross sections are included as well. Panel aspect ratio is also, as can
be seen in table 3.1, varied between 1.0 and 2.0.

3.2 Material Data

SPS is made out of two main ingredients; steel faces and a polyurethane core. The me-
chanical properties of these materials are given in Table 3.2 and Figures 3.1 and 3.2

Table 3.2: Material properties for the face and core in the SPS panel

Material Modulus of Elasticity (MPa) Poisson’s Ratio Yield Stress (MPa)

Steel 206 000 0.3 355

Polyurethane 750 0.36 0.75
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Figure 3.1: True stress-strain curve for the face material
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Figure 3.2: True stress-strain curve for the core material

As can be seen in Figures 3.1 and 3.2, non-linear material curves are used for both
the steel and the polyurethane. Table 3.2 shows the difference in yield stress for the core
material and the face material. The steel is so much stronger than the elastomer, so for
in-plane loading, the contribution from the core becomes insignificant even though the core
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is much thicker than the faces.

In a later chapter another steel type will be used. That is a normal strength structural
steel with 235 MPa yield stress instead of the 355 MPa described above. It is assumed
bi-linear steel for the normal strength steel as well.

3.3 Elements and Meshing

3.3.1 Elements

There are two different types of elements used in this study. The first element is the 8-
noded brick element in ABAQUS called C3D8R where the C stands for continuum stress
and displacement, 3D tells that this is a three dimensional element, 8 is the amount of
nodes on the brick, and R means that reduced integration is included.

Second type of elements used in this study is the 4-noded doubly curved thick shell el-
ement in ABAQUS called S4R where the S stands for stress and displacement shell, 4 is
the number of nodes and R stands for reduced integration. A small part of the study has
been to decide what element type is most suited for modelling SPS panels for the various
loadings and boundary conditions.

One of the main advantages with the solid elements over the shell elements is the abil-
ity to model very local bending effects such as local bending on the boundaries. This is
especially important for welded structures where local stresses can lead to fatigue prob-
lems.

In Figure 3.3 it can be seen that the strain is high at the edge, and is quickly reduced
towards the centre of the panel. A model with shell elements will not spot this sudden
increase in strain towards the edge of the plate.

A problem with the C3D8R elements used in this study is that it only has one inte-
gration point in each element. This makes it vulnerable for hourglassing. There is a form
of hourglass control for this type of elements, but as can be seen on Figure 3.4, this did
not help for this case.

This particular case shown in Figure 3.4 was from a shear buckling analysis. As can
be seen, the core has formed to a shape that is completely physically irrelevant. According
to the ABAQUS Documentation [16] this occurs since the elements only have one integra-
tion point. This makes it possible for the elements to distort excessively with the strain in
the integration points still equal to zero, and a mode that requires no energy emerges.

There are two solutions to this problem. First solution is to use full integration instead
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Figure 3.3: Solid elements can model local bending effects on the edges that the shell elements
cannot. The contour plot in this figure is of elastic strain in the x-direction

Figure 3.4: Hourglassing of the core in a solid model of SPS. Von Mises stress is given in MPa
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of the reduced integration. When the full integration is used the correct eigenmode can
be obtained, but the eigenvalue is far too high. In other words, the elements are too stiff.
This can only be solved by either increasing the number of elements over the thickness,
or using 20-noded brick elements instead of the 8-noded brick elements. With this change
in elements, the same eigenvalues for the solid model and the thick shell model are found,
which is promising for the thick shell model used in the analyses.

Second solution to the hourglassing problem is to use the second order element C3D20R.
These elements have more than one integration point in each element such that the zero
modes cease to exist.

Both these solutions results in a far higher amount of nodes in the analysis which re-
quires much more computer resources. Based on the experienced gained from the points
above, thick shell S4R elements has been used to run analyses on ultimate capacity in this
study with an occasional check of the results with the solid C3D8R elements.

3.3.2 Meshing

For all cases studied, a mesh consisting of 10 000 thick shell elements have been used, 100
elements in each direction for all aspect ratios. Mesh refinement analysis is performed on
the roughest mesh and shows convergence. The solid model has 75 elements along the long
edges and 50 elements along the short edge on each layer. Through the thickness, there
are two layers in each of the faces and four in the core. This gives a total of 30 000 solid
elements.

3.4 Loading

3.4.1 Load Sequence for combined in-plane shear load and lateral
pressure

Two loads are applied to the system. In-plane shear load and lateral pressure load. There
are several ways these loads can be applied. Since non-linearity and plasticity is considered,
it is necessary to consider the effect of path-dependent ultimate strength. For that reason
two different loading sequences has been analysed. The first one was proportional increase
of loads, meaning that the shear load and pressure load were increased at the same time
in a fixed ratio until failure. The second type of loading is to first apply a certain amount
of lateral pressure, before an increasing shear load is applied with the lateral pressure held
constant.

Based on the results and the experienced gained from the testing of the two different load
sequences, only the proportional increase of loads is used for the three-way interaction.
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3.4.2 Load Steps

The main method used to find the load-displacement curve was the static riks method in
ABAQUS, or more generally called the arc length method based on incremental equilib-
rium. The riks method is used for both of the load sequence; when the two loads are applied
proportionally and when the shear load is increased alone up to failure. All analyses are
made with non-linear geometry assumptions.

The second method is also based on incremental equilibrium, but does not use arc length
to find the next increment. One problem with this method is that the panel behaviour
need to be known to find the load-displacement curve. For instance if two buckling modes
have close eigenvalues, an eventual snap back cannot be modelled unless load control is
used, and if load control is used, it will not model a snap through or local peaks. For that
a displacement control is needed. This method is used when applying the lateral pressure
load alone first, as described in Section 3.4.1 above since the panel behaviour in this case
is known.

It is important to note that for the first sequence, initial imperfection should be applied
when the transverse lateral load is very low compared to the shear force. As soon as the
lateral pressure load is considerable, the influence of the imperfection becomes negligible
and can be excluded.

3.5 Boundary Conditions

3.5.1 Simply Supported

The most difficult part to implement in the model is the boundary conditions to avoid
singularities and represent the real situation in the best possible way. In this work both
clamped panels and simply supported panels with straight edges are considered. The first
boundary condition described is the simply supported one.

Firstly the whole perimeter is fixed such that it cannot translate out-of-plane. One of
the corners is restrained in both the in-plane directions, and another corner is restrained
in one of the in-plane direction. This is to prevent rigid rotation of the whole panel. The
last necessary boundary condition is the one that keeps the edges straight when loads are
applied. By coupling the nodes along the boundary such that the third rotational degree
of freedom is equal for all nodes along an edge, it seems that this requirement is fulfilled
as well. The corner nodes need special attentions in this process since they belong to two
edges. In this work, this is solved by excluding the corner nodes from the coupling on two
of the parallel edges. Since only first order elements are used, this approach seems to work
well.
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3.5.2 Clamped

Clamped panels are similar to the simply supported panels, except that the two first rota-
tional degrees of freedom are fixed along the entire perimeter as well.

Figure 3.5 shows a sketch of the boundary conditions and the applied stresses on the
SPS panels studied in this work.
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Figure 3.5: Boundary conditions and stresses on the SPS panels in the current study

33



Chapter 4

Pure Lateral Pressure Load

4.0 General

Finite element analyses have been performed to study the behaviour of SPS panels loaded
with lateral pressure. Both the upper bound estimate from the yield line theory and the
lower bound estimate from Jones [2] are included in the load-displacement curves from the
element analyses.

4.1 SPS3-15-3 3200x6400 mm2

In the first case a SPS3-15-3 panel is studied with dimension 3200x6400 mm2. The load-
displacement curve for this panel with clamped and simply supported boundaries can be
found in Figures 4.1 and 4.2.

As can be seen in Figure 4.1 the deflection under the loads specified by both the up-
per bound theory and the lower bound theory are both within the range of acceptable
deflections. The deflection under the pressure load estimated by Jones’ lower bound is
around 60 mm which is below 2% of the panel width. Yield line pressure load gives a
deflection of 2.6% of the panel width. Von Mises stress at the point where the yield line
theory predicts failure is plotted in Figure 4.3.

Figure 4.3 shows that yield is developed along the edges, but this alone is not enough
to experience failure after the yield line theory.

Considering the shape of the load-displacement curve, there is nothing that indicates a
change in panel properties between the upper bound solution and the lower bound solu-
tion. This can indicate that the deformation of the panel does not satisfy the assumption
of small deformations in the theory, thus making the theory invalid.

Figure 4.4 shows the same panel with clamped boundaries. The only difference is that
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Figure 4.1: Load-displacement curve for a SPS3-15-3 3200x6400 mm2 panel with clamped
boundary conditions
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Figure 4.2: Load-displacement curve for a SPS3-15-3 3200x6400 mm2 panel with simply sup-
ported boundary conditions
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Figure 4.3: Von Mises stress contour plot for a SPS3-15-3 3200x6400 mm2 panel with clamped
boundaries. Von Mises stress is given in MPa
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Figure 4.4: Load-displacement curve for a SPS3-15-3 3200x6400 mm2 panel with clamped
boundary conditions (10 times higher modulus of elasticity)
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the modulus of elasticity in the steel is multiplied by a factor of 10. This is done to make
the panel stiffer and thereby reduce the deformation such that the assumption of small
deformation is valid. As can be seen in Figure 4.4 the lower bound solution corresponds
now very well to the ”knee” in the curve.

Since the panel is flexible, the deformations increases quickly and the lateral load is trans-
ferred to membrane stress in the faces instead of forming plastic moments on the panel.
Failure of the panel happens when the membranes become fully plastic. This load is how-
ever extremely high, with very large deformations and cannot be used for dimensioning
purposes. Flexible panels like this should only be used in places where the lateral pressure
load is small or non-existent.

Figure 4.2 shows a similar behaviour for the simply supported panel as for the clamped
one. As was mentioned in the theory, Section 2.1.5, transverse shear stress also needs some
attention. The shear stress distribution over the cross section on the middle of the long
edges on the clamped panel described above can be seen in Figure 4.5.
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Figure 4.5: Shear stress over the cross section on a SPS3-15-3 3200x6400 mm2 clamped panel
at the upper bound pressure

Shear stress for both these two boundary conditions seems to be of no concern for this
geometry and lay-up. That counts for both the two failure mechanism; core shear failure
and debonding, since stresses for both boundary conditions are well below the critical value
given as 6.0 MPa.

4.2 SPS10-35-10 2000x2000 mm2

The previous panel was the most slender panel in this study. Next panel described is the
thickest panel in the study, with both a thick core and thick faces. This panel is a SPS10-
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35-10 with dimensions 2000x2000 mm2.
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Figure 4.6: Load-displacement curve for a SPS10-35-10 2000x2000 mm2 panel with clamped
boundary conditions

Figures 4.6 and 4.7 both show well-defined ”knee” values. This is where the panel forms
into a mechanism and the point where the yield line theory should predict collapse. The
yield pattern assumed in Figure 2.1 result in the red value in the graph. This value is
slightly higher than the ”knee” value, but since yield line theory is an upper-bound theory,
this is expected.

The contour plot in Figure 4.8 show that the mechanism assumed in the yield line theory
fits the stress distribution on the panel. After the mechanism is created, the load increases
rapidly with increasing deflection since the membrane effect is taking over. This result
shows that yield line pressure can be used for thick panels.

For the clamped panel in Figure 4.6 the ”knee” value is lying between the upper bound
and lower bound solution which is expected. The upper bound and lower bound solution
are equal for the simply supported panel. By the definition of the theory this should only
happen if this is the ’exact’ value. The upper and lower bound solution predicts a value
around 14% above the ”knee” value. Out-of-plane deformations are for these panels 2.3%
of the panel width for both sets of boundary conditions.

Maximum transverse shear stress over the cross section is found to be 18 MPa for the
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Figure 4.7: Load-displacement curve for a SPS10-35-10 2000x2000 mm2 panel with simply
supported boundary conditions

Figure 4.8: Von Mises stress of the panel when first mechanism is created. Von Mises stress is
given in MPa
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clamped panel and 15 MPa for the simply supported panel for the lower bound pressure.
In this report it is assumed that debonding and core shear failure will not occur, but the
factor needs attention in further studies. Maybe cut-offs in the final interaction curves
must be included at a later stage.

4.3 SPS3-35-3 2000x2000 mm2 and 3200x6400 mm2

The next two cases will be with a cross section with thin faces and a thick core on the
small panel (2000x2000 mm2), and on the large panel (3200x6400 mm2). The square panel
is presented first.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ultimate Strength of SPS3−35−3 2000x2000 mm 2 
                                 Clamped

Mid−panel out−of−plane deflection (mm)

Lo
ad

 (
M

P
a)

 

 

Load−displacement
Upper bound
Lower bound

Figure 4.9: Load-displacement curve for an SPS3-35-3 2000x2000 mm2 panel with clamped
boundary conditions

Figures 4.9 and 4.10 shows similar behaviour to the thick SPS10-35-10 panels presented
earlier. For the clamped panel, upper bound theory predicts failure slightly above the
”knee” value, and lower bound slightly below the ”knee” value. Upper bound solution and
lower bound solution give the same prediction for the simply supported panel which is 12%
above the ”knee” value.

Core shear stresses are 6 MPa and 5 MPa for the clamped and simply supported panel.
This should be well within the limits for core shear failure, but bonding seems to be more
critical and needs further studies.
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Figure 4.10: Load-displacement curve for an SPS3-35-3 2000x2000 mm2 panel with simply
supported boundary conditions
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Figure 4.11: Load-displacement curve for an SPS3-35-3 3200x6400 mm2 panel with clamped
boundary conditions
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Figure 4.12: Load-displacement curve for an SPS3-35-3 3200x6400 mm2 panel with simply
supported boundary conditions

SPS3-35-3 with an aspect ratio of 2 gives the load-displacement curve shown in Figures
4.11 and 4.12. This panel has similar properties to the SPS3-15-3 panel with the same
panel dimension. If the modulus of elasticity for the steel is increased with a factor of ten,
a curve with a well-defined ”knee” appears. This ”knee” value lies between the calculated
upper bound and lower bound solution. From this, it can be concluded that the assumption
of small deformations for the theories is violated, but they still may be used as a reference
value.

The deflection under the upper bound theory might be a bit too large for some appli-
cations. At least the deformation needs to be taken into account when the construction is
dimensioned.

Transverse shear stress in the core is not an issue for neither of the boundary conditions.
Magnitudes of the shear stresses are slightly above 4 MPa and 2 MPa for the clamped and
the simply supported panel respectively.

4.4 SPS10-15-10 2000x2000 mm2 and 3200x6400 mm2

The next sets of panels analysed are panels with 10 mm faces and 15 mm core. This is
a lay-up with thick faces and a thin core. Both the 2000x2000 mm2 geometry and the
3200x6400 mm2 geometry are considered.
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Figure 4.13: Load-displacement curve for a SPS10-15-10 2000x2000 mm2 panel with clamped
boundary conditions
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Figure 4.14: Load-displacement curve for a SPS10-15-10 2000x2000 mm2 panel with simply
supported boundary conditions
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Both Figures 4.13 and 4.14 indicates a vague ”knee” value. The stress plots for the panels
at the load level where yield line theory predicts the forming of a mechanism show that
the mechanism is not fully formed at this stage. It is however very close, so this is on the
limit of what can be said to be small deformations with respect to the theory. This applies
to both boundary conditions. How critical the mid-panel out-of-plane deflection is, must
be decided for each and every application.
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Figure 4.15: Shear stress over the cross section on a SPS10-15-10 2000x2000 mm2 clamped
panel at the lower bound pressure

Shear stress is quite high for these panels with almost 18 MPa for the clamped panel
and slightly above 14 MPa for the simply supported panel. This seems to be particularily
critical for the bonding. Figure 4.15 also show that the transverse shear stress in the faces
varies parabolic.

The panels in Figures 4.16 and 4.17 have a problem with flexibility. As for the other
panels in this report with dimensions 3200x6400 mm2, the deflection becomes large so fast,
that the forming of a mechanism does not happen. The deflections under the load found
by the yield line theory are 2.8% and 4.2% of the panel width for the clamped and simply
supported panel respectively.

Transverse shear stresses are for these panels 9 MPa and 5.5 MPa.
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Figure 4.16: Load-displacement curve for a SPS10-15-10 3200x6400 mm2 panel with clamped
boundary conditions
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Figure 4.17: Load-displacement curve for a SPS10-15-10 3200x6400 mm2 panel with simply
supported boundary conditions
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Figure 4.18: Shear stress over the cross section on a SPS10-15-10 3200x6400 mm2 clamped
panel at the lower bound pressure

4.5 SPS5-32-5 1200x1800 mm2

Since most of the panels in this study are of the extreme type, it is also included a panel
with more standard lay-up and geometry. The results from an analysis with SPS5-32-5
1200x1800 mm2 is plotted in Figure 4.18.
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Figure 4.19: Load-displacement curve for a SPS5-32-5 1200x1800 mm2 panel with clamped
boundary conditions
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According to the Mises stress plot, the mechanism assumed in the theory is formed at
a lateral pressure load of 1.44 MPa. This is a little above the ”knee” value, but between
the upper and lower bound. The out-of-plane deflection under the yield line pressure for
this panel is 5.8% of the panel width. Under the lower bound pressure, deflection for this
panel is 1.7%.

Transverse shear stress over the cross section is for this panel a little above 14 MPa when
the lateral pressure load is the lower bound pressure. When the lateral pressure load is the
upper bound pressure, the transverse shear stress can be estimated to be around 20 MPa
based on roughly linear properties in this region for the elastomer material. This stress is
quite high and the core strength must be evaluated.

4.6 Summary

All panels studied in this report can be divided into two groups. The first group is panels
that can be loaded up to a certain point where the forming of a mechanism starts. After
this point, the load-displacement curve flattens out until the mechanism is fully formed.
When the mechanism is formed, all loads are carried by the membranes.

The other group is the flexible panels. In this case the deformation becomes larger faster,
and the membrane takes over the load before a mechanism can be formed. This is re-
flected in the load-displacement curve by a nearly linear curve instead of a curve with a
well-defined ”knee”. For the range of panels in this study it seems to be only the panels
with dimensions 3200x6400 mm2 that falls into the group of flexible panels.

It was stated earlier that the assumption of small displacements was violated for the flex-
ible panels, but it is also shown that when the upper and lower bounds are used on the
flexible panels, they give a value that corresponds well to the ”knee” value which the panel
would have if the membranes were stiffer. This means that the bounds can be used in the
interaction curves as a common reference value.

47



Chapter 5

Pure In-Plane Shear Load

5.0 General

To be able to say something general about how the SPS panels respond to in-plane shear
load, it is vital to perform some finite element analyses. The analyses are then compared
to the theories described in Section 2.2 to see if these theories can be used, or if other
factors also need consideration.

5.1 SPS3-15-3 3200x6400 mm2

The first panel studied is a SPS3-15-3 panel with dimensions 3200x6400 mm2 which is a
thin panel. The results from the analyses are plotted in Figure 5.1.

In Figure 5.1, the yield load is far above the load-displacement curves, so in this case
it is not possible to load the panel up to this level. For the case with 1.0 mm maximum
initial imperfection, the load-displacement curve can reach over the critical buckling load.
However, when the initial imperfection is increased to 5.0 mm amplitude, the increased
imperfection leads to a load-displacement curve that is closer to the critical buckling load.
5 mm imperfection on a 3200 mm width panel is not a large imperfection, so for dimension-
ing purposes, the extra capacity the finite element analysis show after the critical buckling
load is exceeded, is not recommended to include in the total strength estimate.

For the clamped boundaries in Figure 5.2, there is a similar behavior. The panel can-
not be loaded beyond the critical buckling load. Since the clamped boundaries are stiffer
than the simply supported boundaries, this also immediately result in a higher critical
buckling load for the clamped panel. It also seems that the simply supported panel is more
sensitive to initial imperfection than the clamped panel is.

For both the two cases above, the approximate design formula seems to agree well with
the finite element analyses.
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Figure 5.1: SPS3-15-3 3200x6400 mm2 panel with simply supported boundaries subjected to
in-plane shear load
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Figure 5.2: SPS3-15-3 3200x6400 mm2 panel with clamped boundaries subjected to in-plane
shear load

49



5.2 SPS3-35-3 2000x2000 mm2

The next panel studied is SPS3-35-3 panel with dimensions 2000x2000 mm2. The Figures
5.3 and 5.4 show the results from these analyses.

For these panels the yield load is critical. The critical buckling load is in fact much
higher than the yield load. When failure due to yield occurs, boundary conditions does
not influence the result at all. Both panels shown in Figures 5.3 and 5.4 fail at a shear
load of 1.25kN/mm. There is good correspondence between the approximated buckling
load and the eigenvalue found by the finite element method.
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Figure 5.3: SPS3-35-3 2000x2000 mm2 panel with simply supported boundaries subjected to
in-plane shear load
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Figure 5.4: SPS3-35-3 2000x2000 mm2 panel with clamped boundaries subjected to in-plane
shear load

5.3 SPS3-35-3 3200x6400 mm2

The next panel has the same cross section as the previous one, but the dimensions have
changed to 3200x6400 mm2. The load-displacement curve is presented in Figures 5.5 and
5.6.

Since these panels have the same cross section as the previous panel, the yield load will
be the same for these panels too. The critical buckling load is greatly reduced from the
previous panel because of the increase in panel dimension, but the critical buckling load is
still far higher than the yield load. Also for these panels the approximated design formula
corresponds well with the finite element method.
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Figure 5.5: SPS3-35-3 3200x6400 mm2 panel with simply supported boundaries subjected to
in-plane shear load
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Figure 5.6: SPS3-35-3 3200x6400 mm2 panel with clamped boundaries subjected to in-plane
shear load
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5.4 SPS10-15-10 2000x2000 mm2 and 3200x6400 mm2

These panels had relatively thin faces and a thick core. The next two panels have two thick
faces and a relatively thin core. Figures 5.7, 5.8, 5.9 and 5.10 shows the load displacement
curves for SPS10-15-10 panels with dimensions 2000x2000 mm2 and 3200x6400 mm2.
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Figure 5.7: SPS10-15-10 2000x2000 mm2 panel with simply supported boundaries subjected to
in-plane shear load

Figures 5.7 and 5.8 shows the square panel with simply supported and clamped boundaries.
The clamped and the simply supported panels have the same ultimate load in this case,
and that load is the theoretical yield load.

The rectangular panel on Figure 5.9 and 5.10 with the SPS10-15-10 cross section is some-
how more interesting. The critical buckling load and the theoretical yield load is much
closer here than in the previous analyses. This results in a different failure mode for the
simply supported panel and the clamped one. Since the simply supported panel is more
flexible, the critical buckling load lies below the yield load, and failure occurs right after
buckling. For the clamped panel which is stiffer, the critical buckling load lies a little above
the yield load, so this panel fails due to the yield load again.

Another thing that need to be taken into account on this cross section is that the thick-
ness of the face can no longer be considered as thin compared to the core. This is one of
the fundamental assumptions when the buckling expressions are derived. For the clamped
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Figure 5.8: SPS10-15-10 2000x2000 mm2 panel with clamped boundaries subjected to in-plane
shear load
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Figure 5.9: SPS10-15-10 3200x6400 mm2 panel with simply supported boundaries subjected to
in-plane shear load
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Figure 5.10: SPS10-15-10 3200x6400 mm2 panel with clamped boundaries subjected to in-plane
shear load

panel, this matters little since the yield load theory does not assume thin faces, but for the
simply supported panel, this needs to be considered. However, since both the finite element
analysis and the numerically solved determinant give about the same critical buckling load,
the effect of thick faces does not seem to influence greatly these results.

5.5 SPS10-35-10 2000x2000 mm2

The next panel analysed is an SPS10-35-10 panel with dimensions 2000x2000 mm2.

Also for these two panels the thin face assumption is not valid. The critical buckling
load is 3-4 times the yield load, so for these thick panels buckling is not an issue.
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Figure 5.11: SPS10-35-10 2000x2000 mm2 panel with simply supported boundaries subjected
to in-plane shear load
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Figure 5.12: SPS10-35-10 2000x2000 mm2 panel with clamped boundaries subjected to in-plane
shear load
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5.6 SPS5-32-5 1200x1800 mm2 and SPS7-35-7 3200x6400

mm2

The last analyses performed on pure in-plane shear are of two panels, a SPS5-32-5 panel
with a dimension of 1200x1800 mm2 and a SPS7-35-7 panel with a dimension of 3200x6400
mm2. Both panels are clamped and the results can be seen in Figures 5.13 and 5.14.
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Figure 5.13: SPS5-32-5 1200x1800 mm2 panel with simply supported boundaries subjected to
in-plane shear load

Again yield is the limiting factor for the panels.
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Figure 5.14: SPS7-35-7 3200x6400 mm2 panel with clamped boundaries subjected to in-plane
shear load

5.7 Summary

In most of the analyses of the extreme geometries performed in this work, the limitation
of the ultimate in-plane shear load is due to yielding of the entire cross section. The ex-
ceptions are panels with thin core compared to the panel dimensions, especially with the
less stiff, simply supported, boundary.

The thin panels are also the panels that are most sensitive to initial imperfections, es-
pecially when the two critical values are close to each other.

It can also be concluded that the two theories derived in Section 2.2 describes the ul-
timate capacity, and they agree well with finite element analyses.
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Chapter 6

Interaction

6.1 In-Plane Shear Load and Lateral Pressure Load

Interaction

6.1.1 Conventional Steel-Plated Structures

Interaction curves have been made for conventional steel-plated structures [4]. A conser-
vative interaction curve based on curve fitting of square plates is given as

(

τ

τu0

)1.5

+

(

p

pu0

)1.2

= 1 (6.1)

τu0 is then the ultimate strength under pure edge shear and pu0 is the ultimate strength
under pure lateral pressure. The lateral pressure pu0 is bounded between the upper and
lower bound, and for a simply supported square panel, this is the same value for both
bounds. For a clamped square panel the difference is significantly larger between upper
and lower bound. Paik and Thayamballi [4] refer to a study by Fox in 1974, where he
shows that for clamped square panels, the collapse load equals 42.85Mp/b

2. This is slightly
closer to the upper bound than the lower bound. According to the study performed in the
current work, this value corresponds to the upper part of the ”knee” for the clamped SPS
panel which can indeed be a good reference value.

For the rectangular panels, a/b > 1, the upper bound solution seems to be used for both
clamped and simply supported panels according to Paik and Thayamballi [4]. Upper bound
and lower bound is almost identical for all panel aspect ratios when the boundaries are
simply supported. For the clamped panel, the upper bound and lower bound reach the
same value when the aspect ratio goes towards infinity. Using the upper bound sounds
therefore reasonable.

There are several approaches to decide the ultimate strength under edge shear. Paik and
Thayamballi [4] uses an empirical formula based on curve fitting from computed results.
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Their results are compared to ENV 1993-1-1 of Eurocode 3: ”Design of steel structures.
General rules and rules for buildings.” The formula of ENV 1993-1-1 is given as

τu =







τY for λ ≤ 0.8
[1 − 0.625(λ − 0.8)] τY for 0.8 < λ < 1.2
0.9/λτY for λ ≥ 1.2

(6.2)

where

λ =

√

τY

τE

(6.3)

τY is the yield stress and τE is the elastic web shear buckling stress. There are also some
more requirements for the stiffeners. For the SPS panels, more specifically the geometries
studied in this work, almost all panels fall under the first category in Equation 6.2. The
elastic buckling load is far higher than the critical yield load which means that the ultimate
load is equal to the critical yield load. There are a few panels that fall under the two other
categories too, but just using the elastic critical load seems to give a good estimate for the
ultimate load.

6.1.2 Stiffened Plate in DNV Classification Rules for Ships

The DNV Classification Rules for newbuilding of ships [3] has another approach than
the interaction curve for this load combination. For instance for a bulkhead plating, the
following procedure is used. Firstly the thickness requirement for lateral pressure given in
Equation 2.39 apply with the proper parameters. Then there is a criterion for minimum
thickness of the panel depending on the area where the bulkhead is located. Buckling
control is the next step. Depending on what area the bulkhead is located, different stability
(usage) factors η = τa/τc, are used. τa is here the calculated actual shear stress in the
bulkhead. τc is the critical shear stress in the bulkhead given from the Johnson-Ostenfeldt
correction of the elastic Euler buckling in the elasto-plastic range.

τc = τel when τel <
τf

2

= τf

(

1 − τf

4τel

)

when τel >
τf

2

τf = von Mises yield stress of the material in shear

=
σf√

3

The ideal elastic buckling shear stress, τel, is given by Allen and Bulson [17] to be

τc =
Kπ2E

12 (1 − ν2)

(

t′

b

)2

(6.4)

where K = 5.34 + 4
(

b
a

)2
is the buckling coefficient for simply supported panels, E is the

modulus of elasticity and t′ = t − tk is the thickness of the plate without the extra added
thickness to account for corrosion.
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6.1.3 Interaction for SPS Panels

The theoretical interaction curve used in this work is based on curve fitting from the
results obtained by finite element analyses on the range of different geometries. The inter-
action curve in Equation 6.1 was used as a basis and the power terms were adjusted. The
interaction curve suggested in this study is given as

(

Q

Qult

)2

+

(

p

pult

)1.2

= 1 (6.5)

where Qult is the lowest of the two shear force criteria described in Section 2.2 and pult is
for most cases the upper bound limit, but details on this will be presented later in this
section.

SPS3-15-3 3200x6400 mm2

SPS3-15-3 with dimensions 3200x6400 mm2 is the panel with the thinnest cross section
over the largest panel. The interaction curve for this panel is given in Figures 6.1 and 6.2
for clamped and simply supported boundaries respectively.
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Figure 6.1: Interaction curve with the combination of in-plane shear loading and lateral pressure
load on a SPS3-15-3 3200x6400 mm2 clamped panel

As can be seen in Figure 6.1, only a few finite element points are included, and all of
the points are in the left part of the curve where the shear load is dominant and lateral
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Figure 6.2: Interaction curve with the combination of in-plane shear loading and lateral pressure
load on a SPS3-15-3 3200x6400 mm2 simply supported panel

load is small. A lot more analyses are performed, but since the panel take up lateral
pressure in the membranes when the deflection is large enough, no clear limit line can be
found in the analyses. However when the lateral load is small and the shear load is high,
the response curve flattens out or sometimes even starts decreasing, and an ultimate load
value can be obtained. There is good correspondence between the two different loading
sequences except for the leftmost part. The proportional loading is lower than both the
theoretical interaction curve and the loading where lateral load is applied first. This is a
result of the initial imperfection of 5.0 mm on the proportionally loaded panel. As can
be seen in Figure 5.2 the panel with 5.0 mm initial imperfection has an ultimate strength
slightly lower than the elastic critical load. Since the panel where lateral load is applied
first has no initial imperfection before the lateral load is applied, the two loading sequences
give different results where imperfections influence the results. It can also be noted that
after the lateral load is increased, the two results agree very well. This means that the
initial imperfection is most critical when the panel is mostly or only subjected to in-plane
shear force.

The simply supported panel in Figure 6.2 has completely different interaction behaviour.
As can be seen in Figure 5.1 the peak value for the curve with imperfection of 5.0 mm
is 0.67 kN/mm, which is about 8% higher than the estimated elastic critical value used
as reference value in the interaction curve. The leftmost point found by finite element
analysis is showing a shear load of 0.71 kN/mm which is higher than the finite element
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analysis of pure shear load with initial imperfection of 5.0 mm. As soon as lateral load is
applied, the out-of-plane deflection from this load dominates the imperfection. When the
panel is forced into a mode that is not the critical buckling mode, the panel can be loaded
higher than the elastic critical load, but the panel will be unstable. If the panel snaps into
the critical mode, the panel will collapse if the shear load is higher than the elastic critical
load. The next point from the finite element analysis is within the expectations for an
interaction curve and would fit the theoretical curve if the reference value for shear was
taken as the value found by element analysis with 5.0 mm imperfection. Figure 4.2 shows
that the membrane effects become significant when the lateral load is between 10 kPa and
20 kPa. This is also the case in the interaction curve, thus the rest of the curve become
less interesting since the deflections now are the crucial topic.

SPS3-35-3 2000x2000 mm2

In Figures 6.3 and 6.4 is the square SPS3-35-3 panel with dimensions 2000x2000 mm2.
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Figure 6.3: Interaction curve with the combination of in-plane shear loading and lateral pressure
load on a SPS3-35-3 2000x2000 mm2 clamped panel

For both panels in Figure 6.3 and 6.4 shear yield is the failure mode. The elastic crit-
ical load is around 8 times higher than the critical yield load for the clamped panel. Since
the steel faces are the same thickness as for the previous panel the shear yield load is almost
the same for these cases. Yield load for the panel in Figure 6.3 is slightly higher since the
core is thicker and can carry a little more load, but this difference is really small and can
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Figure 6.4: Interaction curve with the combination of in-plane shear loading and lateral pressure
load on a SPS3-35-3 2000x2000 mm2 simply supported panel

be neglected. Since the dimensions of the panel are smaller, and the distance between the
two face sheets are larger, the elastic critical load is much higher for this panel. The same
conclusion can be made for the simply supported panel.

Point number three from the left in Figure 6.3 is the finite element result that has the
largest error to the theoretical interaction curve with 9% on the conservative side. The
finite element results indicate that the shear capacity is not reduced as quickly as the the-
oretical interaction curve says when the lateral load increases. For instance if the power
used on the p/pult-term is increased from 1.2 to 1.5, the results become better. The power
1.2 is however used to be conservative for all panels. To achieve a more correct interaction
curve for the SPS panels under the load combination described in this report, a larger
range of panels must be studied.

Upper bound theory seems to give the best reference value for both types of boundary
conditions. Lower bound is far too conservative for the clamped panel. For the simply
supported panel, upper and lower bound gives the same value.

SPS3-35-3 3200x6400 mm2

The next panel is almost identical to the first panel in this section. Only difference is the
core thickness which is the same as in the second panel studied. The interaction curves
can be found in Figures 6.5 and 6.6.
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Figure 6.5: Interaction curve with the combination of in-plane shear loading and lateral pressure
load on a SPS3-35-3 3200x6400 mm2 clamped panel
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Figure 6.6: Interaction curve with the combination of in-plane shear loading and lateral pressure
load on a SPS3-35-3 3200x6400 mm2 simply supported panel
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Both panels in Figures 6.5 and 6.6 fails in shear due to yielding over the cross section.
The dimensions are equal to the first panel described in this chapter except the core thick-
ness. This difference increases the elastic critical load without making the critical yield
load any higher. The result is a different failure mechanism from that for the first panel.

When it comes to the pure lateral case, this panel has the same properties as the first
panel. The length and width are large compared to the height of the cross section which
leads to flexible panels with large deformations. This panel is however slightly stiffer than
the first panel due to the thicker core, so this panel shows the same interaction curve as
the second panel described. Whether the deformations are acceptable when the panel is
subjected to mostly lateral pressure need to be decided from application to application,
but some form of displacement limit should be considered.

Finite element results seem to agree well with the interaction curve suggested in this
study. In the simply supported panel in Figure 6.6 the lower bound solution is chosen as
the reference value since it seems to give a better fit, but the lower bound and upper bound
are so close in this case that using the upper bound would work as a reference value as
well.

SPS5-32-5 1200x1800 mm2

Next panel studied, a SPS5-32-5 1200x1800 mm2 panel, is in the middle range. The faces
are slightly thicker than the previous panels and the core is around the same thickness as
the previous panel. This is also the panel in the range of study with the smallest width
and length

In these two interaction cases both load sequences has been tested. In Figures 6.7 and
6.8 the two different load sequences seem to agree well with each other and also with the
suggested interaction curve. There is one point that stands out on the simply supported
panel in Figure 6.8. That is the rightmost point and the reason is that membrane effects
has started to become significant and the load-displacement curve no longer show a clear
ultimate load.

When subjected to pure in-plane shear, yield will be the determining failure mode since
the elastic critical load is five times higher than the yield load. On the lateral pressure
side, the upper bound limit is the reference value that gives the best interaction curve.
The upper bound solution gives however a large deflection for pure lateral pressure loads.
As can be seen in Figure 4.19 the curve flattens out after the ”knee” before it increases
at a far higher deflection where the upper bound value can be found. This means that
the load does not need to be reduced much before the deformation is acceptable for most
applications. So when the safety factor is applied to the lateral loading, the deformation
will most likely be of no concern.
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Figure 6.7: Interaction curve with the combination of in-plane shear loading and lateral pressure
load on a SPS5-32-5 1200x1800 mm2 clamped panel
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Figure 6.8: Interaction curve with the combination of in-plane shear loading and lateral pressure
load on a SPS5-32-5 1200x1800 mm2 simply supported panel
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SPS7-35-7 3200x6400 mm2

Another panel in the mid-range is the SPS7-35-7 with dimensions 3200x6400 mm2. The
interaction curves are shown in Figures 6.9 and 6.10.
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Figure 6.9: Interaction curve with the combination of in-plane shear loading and lateral pressure
load on a SPS7-35-7 3200x6400 mm2 clamped panel

Shear yield is the failure mode also for this panel when subjected to pure in-plane shear
load. Due to the thicker steel faces, this panel can carry higher in-plane shear load than
the previous panel. For the clamped panel in Figure 6.9, the two finite element results that
were possible to obtain, correspond well with the interaction curve when the upper bound
solution is used as the reference value.

The simply supported panel in Figure 6.10 also gives good finite element results compared
to the suggested interaction curve. It is also possible here to obtain several more results
that give a clear ultimate capacity. The rightmost point is however an exception. Here
the membrane effect becomes significant before the ultimate capacity is reached. Also the
second rightmost point reaches far too high deflections before ultimate capacity is reached.
For this panel a lower bound reference value seems to give the best interaction curve. The
difference between upper bound and lower bound is on the other hand so low, so it would
not be a large error if the upper bound was used either.

If the three rightmost points are studied alone, they tend to show a similar behaviour
to the panel in Figure 6.2. It can quickly be noted that the ratio between the thickness of
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Figure 6.10: Interaction curve with the combination of in-plane shear loading and lateral pres-
sure load on a SPS7-35-7 3200x6400 mm2 simply supported panel

the face sheets and the core are equal for these two panels. Of course the SPS7-35-7 can
be loaded higher since the panel is thicker, but it responds the same way as the SPS3-15-3
when subjected to mostly lateral pressure.

When the panels are subjected to mostly shear, they respond differently. Due to the dif-
ference in the steel face thickness, the SPS7-35-7 panel yields, and the SPS3-15-3 buckles.
Yielding is much less sensitive to initial imperfections than buckling is and will therefore
behave more stable close to the pure shear case.

SPS10-15-10 2000x2000 mm2

Figures 6.11 and 6.12 shows the next panels in this study, square panels with thick faces
and a thin core.

The reference values for in-plane shear and lateral pressure are for these panels the same
as in most of the earlier cases. Yield limit and upper bound are used for the two loadings
respectively. In Figure 6.11 it seems that some of the finite element results are not corre-
sponding that well to the interaction curve. This is because no clear ultimate limit could
be found on the load-displacement curve. The curves almost flatten out, but still have a
small slope. Values used in the interaction curve are just the last points taken from the
analyses. This is not entirely accurate and results in the differences described above. The
simply supported panel in Figure 6.12 shows a similar mismatch for some of the points,
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Figure 6.11: Interaction curve with the combination of in-plane shear loading and lateral pres-
sure load on a SPS10-15-10 2000x2000 mm2 clamped panel
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Figure 6.12: Interaction curve with the combination of in-plane shear loading and lateral pres-
sure load on a SPS10-15-10 2000x2000 mm2 simply supported panel
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but overall there is a good correspondence between the interaction curve and the finite
element results.

SPS10-15-10 3200x6400 mm2

The last but one geometry studied in this report for two-way interaction is the SPS10-15-10
with dimensions 3200x6400 mm2.
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Figure 6.13: Interaction curve with the combination of in-plane shear loading and lateral pres-
sure load on a SPS10-15-10 3200x6400 mm2 clamped panel

The difference in boundary condition for this geometry gives a large difference in the
panel behaviour. Figure 6.13 shows the clamped panel with around the same behaviour as
most of the other panels in this study. Only two results from finite element analyses were
showing a clear ultimate load but the deviation from the curve seems to be quite good for
both of them. In this case the in-plane ultimate shear load is given as the yield load, and
the lower bound solution is used for pure lateral load. For all the cases above, the upper
bound solution can be used as a reference value for pure lateral pressure, so this panel is
standing out.

The reason for this difference lies in the choice of reference value for in-plane shear. An-
other element analysis was performed with 5.0 mm initial imperfection for the pure shear
load case. The result from this analysis was an ultimate load of around 3.64 kN/mm,
which is 11.4% less than the theoretically predicted ultimate load. Considering that 5.0
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Figure 6.14: Interaction curve with the combination of in-plane shear loading and lateral pres-
sure load on a SPS10-15-10 3200x6400 mm2 simply supported panel

mm imperfection on a 3200x6400 mm2 panel is little, it can be concluded that this panel is
very sensitive to initial imperfections. As can be seen in Figure 5.10 the difference between
the critical yield load and the elastic critical load is small. In a stress versus slenderness
plot, this panel would lie just to the left of the transition point between yield and buckling.
This is the point where the load is most dependent of initial imperfection, so the devia-
tion between the theoretical yield load and the actual load obtained in this study can be
explained from this phenomenon. In a dimensioning context, this is vital to bear in mind.
When the new reference value obtained from the element analysis is used together with
the upper bound theory for lateral pressure, the interaction curve corresponds well with
the two other finite element analyses and is slightly conservative.

The simply supported panel in Figure 6.14 is more similar to the SPS3-15-3 3200x6400
mm2 panel with simply supported boundaries. Critical load in shear is the elastic critical
load. The same aspects as was described for the SPS3-15-3 panel apply for this panel too.
Main difference is that this panel is closer to the transition point described in the previous
paragraph and the sensitivity to initial imperfection applies.

SPS10-35-10 2000x2000 mm2

Last two-way interaction analyses are on the thickest panel in the range of panels studied
in this work, a square SPS10-35-10 panel with length and width 2000 mm. Interaction
curves can be found in Figures 6.15 and 6.16.
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Figure 6.15: Interaction curve with the combination of in-plane shear loading and lateral pres-
sure load on a SPS10-35-10 2000x2000 mm2 clamped panel
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Figure 6.16: Interaction curve with the combination of in-plane shear loading and lateral pres-
sure load on a SPS10-35-10 2000x2000 mm2 simply supported panel
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Both interaction curves in Figures 6.15 and 6.16 corresponds well to the finite element
results. There is also a good correspondence between the two different types of load se-
quences. The rightmost finite element result on the simply supported panel does not agree
well with the suggested curve, but this can be expected based on the discussions made
earlier.

Conclusions from the analyses

For most of the panels in this study, the suggested interaction curve seems to give a rel-
atively good estimate of the ultimate capacity of panels subjected to in-plane shear and
lateral pressure, being slightly conservative. The reference value for in-plane shear load
are mostly taken as the yield load, but there are a few exceptions where buckling occurs.
When the two different shear criteria estimate quite different values, the lower of the two
gives the best estimate of the ultimate capacity. In this case, initial imperfections do not
influence the results greatly. However, when the two shear criteria are close in value, atten-
tion to the initial imperfections is important, since these may reduce the ultimate capacity
considerably.

The upper bound solution seems to give the best estimate of ultimate capacity under
lateral pressure load. For almost all panels, using upper bound as reference value gives the
most optimum interaction curves. The exceptions are on two simply supported panels with
the aspect ratio of 2 and one clamped panel. All of these panels can use the upper bound
solution as well, as was discussed earlier in this section under the respective panels. Up-
per bound theory and lower bound theory are almost identical for simply supported panel
under lateral pressure loading. For square panels they actually are identical, so for simply
supported panels there is no need to investigate which one will be the best reference value.
Figure 2.5 shows a larger span between upper and lower bound for clamped panels. The
two values embrace the ”knee” in all curves where such a ”knee” exists. The lower bound
solution is mostly indicating where the ”knee” starts to form, while the upper bound solu-
tion shows a point little above the place where the curve has flattened, the mechanism is
formed and the membrane effect starts to become significant. If this curve characteristic is
compared to any of the load-displacement curves where the ultimate capacity was possible
to obtain, the lower bound solution is far too conservative, and the upper bound is much
closer.

In Section 2.1.1 where the upper bound yield line theory is described, it is mentioned
the disadvantage of the theory; that there is no control of deflections. For some of the
panels this is a problem and needs to be addressed. Design rules for standard ship appli-
cations do not normally specify any displacement limit explicitly, but for high speed light
craft applications limits of 1-3% of the panel width are often used. This means that the
upper bound generally can be used to represent the ultimate capacity reference for pure
lateral pressure, but a separate deflection criterion should be applied during the process of
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dimensioning the panels.

As mentioned earlier in this thesis, it is assumed that debonding does not occur.

6.2 In-Plane Shear Load, Lateral Pressure Load and

Uni-Axial Compression Load Interaction

Possible reference values for uni-axial compression load was studied in a preliminary work
[6] and was found to be quite similar as for the shear case. Either the panel collapse due to
full yielding over the entire cross section or the panel buckles and collapse due to excessive
yielding. The latter was not spotted for any of the panels tested in this work, but the
range of panels was limited for axial compression load cases, so further studies should be
performed on this load case.

In this study it is for simplicity assumed that only the steel faces carry axial load, but
this should give a good estimate. To establish a three-way interaction surface, it is per-
formed many finite element analyses to get a wide range of comparison data. Firstly the
boundaries of the surface were studied. That is, lateral load and shear load, lateral load
and axial load, and axial load and shear load. Based on these analyses, interaction curves
have been made on the three separate load combinations. In the end, these three inter-
action curves have been combined to establish a formula for the interaction surface. The
suggested interaction surface formula found in this work is given as
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]4/3

(6.6)

where Nult is the reference value for axial load, Qult is the reference value for shear load,
and pult is the reference value for lateral pressure load.

Figure 6.17 shows an interaction surface for the SPS5-32-5 panel with dimensions 1200x1800
mm2 and clamped boundaries. Reference values for lateral pressure load and in-plane shear
load are equal to the ones used earlier. Full yield over the entire cross section is by far the
most critical reference value for uni-axial compression load. This value can be found to
be 4.26 MN when the steel with 355 MPa yield stress is used. The elastic critical load is
around 3 times higher.

Figure 6.17 show that the suggested interaction surface gives a good estimate of the ul-
timate capacity when compared to the finite element analyses performed. Same problem
occurs for three-way interaction as for the two-way interaction. When the lateral pressure
becomes dominant, it is difficult to obtain a clear ultimate value that corresponds to al-
lowable deformations and the given surface.
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Figure 6.17: Three-way interaction between uni-axial compression load, in-plane shear load and
lateral pressure load on a SPS5-32-5 1200x1800 mm2 clamped panel

To check the suggested surface interaction formula, also a completely different panel than
studied before is used. This panel is a SPS6-25-6 with dimensions 2800x4200 mm2 and
clamped boundaries. For this panel the upper bound theory is used for lateral pressure
and the yield load is used for in-plane shear. Both these reference values give a good
correspondence with the panel behaviour. Uni-axial compression load leads however to
more difficulties. The elastic critical load and yield load is relatively close, the yield load
being the lower of the two. As was described earlier in this chapter for one of the two-way
interaction curves, this closeness in critical values results in a panel which is sensitive to
imperfections. For three-way interactions, this leads to problems. If the load combination
is in-plane shear and axial load, one reference value for axial load is optimal, and for the
load combination lateral load and axial load, another reference value should be used. This
means that when the surface approaches the case with pure axial load, the value obtained
is not unique, it is path-dependent. One possible approach to this problem is of course to
use the smaller of the values but uncertainties are connected to this. How does the panel
respond to initial imperfections combined with these loadings for instance? This question
of imperfections and reference values need to be studied closer in future work.
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6.3 High Strength Structural Steel versus Normal Strength

Structural Steel

In Section 3.2 it is shown the properties of the materials used in this work. For all cases
the high strength structural steel is used. For shipping applications however, the normal
strength structural steel is more often used. A few analyses are performed to see how the
change in steel strength influences the panel behaviour.

From the in-plane shear theory section two different theories were presented. Only one
of these formulations will change depending on the yield stress of the panel, that is, the
full yield criterion. As shown in Section 5.7 most of the panels already fails due to yielding,
but for the two cases where the two criteria were almost identical, yield will now clearly
be the lowest value. This will make initial imperfections less governing and the three-way
interaction curve discussed in the previous section can now be made.
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Figure 6.18: Three-way interaction between uni-axial compression load, in-plane shear load
and lateral pressure load on a SPS6-25-6 2800x4200 mm2 clamped panel with normal strength
structural steel

A clear reference value can be defined for all the three types of loading, and the inter-
action curve can be seen in Figure 6.18. Also for this panel the finite element results
corresponds well to the suggested surface. Some panels that earlier experienced pure buck-
ling will now maybe get the same problem as the panels mentioned here, but those panels
will be of less interest, since they are too flexible for the other sets of loading types.
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For many of the panels studied in Chapter 4 a characteristic ”knee” was difficult or im-
possible to find since the panels were too flexible. If the steel used in the faces are of the
normal strength type, this ”knee” will emerge as can be seen in Figures 6.19.
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Figure 6.19: Load-displacement curve for the SPS10-15-10 2000x2000 mm2 clamped panel with
normal strength steel and high strength steel

Since the yield stress and modulus of elasticity is not connected, the two materials fol-
lows the same path up to a certain level, where the stiffness is greatly reduced on the
normal strength steel and not so much reduced for the high strength steel. This gives a
more well-defined ”knee”, and this ”knee” also occurs at an earlier stage with respect to
deformation. Both these factors are of interest for further studies on the panels.

The thick panels, such as the SPS10-35-10 panel, can carry a large lateral pressure load.
In Chapter 4 where this is presented, transverse shear stress over the cross section is also
discussed. For the thickest panels, this shear stress is really high and debonding might be
the limiting factor. If a face with a lower yield stress is used, ultimate capacity becomes
more critical again and dimensioning can be based on this instead of bond strength. Since
the bond strength is independent of the yield stress in the steel, the normal strength steel
can perform as good as the high strength steel.

Last factor that will be discussed in this context is fatigue. For some panels fatigue
issues are more critical than the loading itself, and the resistance against fatigue is almost
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identical for the two steel types. The yield stress needs to be far higher before it influences
fatigue strength. This means that in situations where fatigue is the critical factor, the two
types of steel perform about identical. The extra strength in the HS steel cannot be used.
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Chapter 7

Summary and Conclusions

Finite element analyses have been performed on 9 different SPS panels to determine their
ultimate strength under lateral pressure, in-plane shear load and for some cases also in-
plane uni-axial compression load. Both separate loading and different load combinations
are considered. The panel behaviour under the separate loading cases is studied more
closely and theoretical approaches are compared to find design criteria that can be used at
a later stage. The theories considered in this report are the yield line theory (upper bound)
[1], a lower bound theory by Jones [2] and the DNV Class Rules [3] for lateral pressure,
and von Mises yield criterion and elastic critical load for in-plane shear load. For in-plane
uni-axial compression load, yielding and buckling are used as reference values.

The geometries of the sandwich panels in this report are mostly of the extreme sort with
regard to the three ratios, face to core thickness, panel aspect ratio and panel thickness
to width. This will help categorising the panels and show what factors that influences the
ultimate capacity. Some panels with intermediate dimensions are also studied.

Most of this study is performed with thick shell elements from ABAQUS. The elements are
compared to solid elements and give satisfactory results for ultimate strength, and since
they require less computational time than the solid elements, they are a good candidate.
There are however situations where the solid elements must be used, and that is situations
where local strains in the faces can be important. This is for instance when fatigue is stud-
ied on a welded edge. The thick shell elements do not spot these local increases in strain.
For both types of elements, mesh refinement analyses are performed to verify convergence.
Since the finite element method is a form of Rayleigh-Ritz, the solution converges from the
non-conservative side.

Two different load sequences are studied in this thesis for two-way combinations between
in-plane shear load and lateral pressure load. This is to check whether the loading is path-
dependent or not and if it is path-depended, the most critical path must be found. It
seems from this study that for the given load combinations, the ultimate strength is not
path-dependent, but when the analysis were expanded to three-way interaction, problems
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occurred for a panel where yield load and buckling load were almost identical under in-
plane uni-axial compression load.

The thin panels subjected to pure lateral pressure show an almost linear behaviour on
the load-displacement curve and the region between the upper and lower bound does not
indicate any change in the panel behaviour. This indicates that the deformations are
so large, that the small deformation assumption in the upper and lower bound theory is
violated. The theory still makes a good reference point for the lateral pressure in an in-
teraction curve. These thin panels should not however be located on places where large
lateral pressure loads occur.

Thick panels show a well-defined ”knee” which is between the upper and lower bound
for the clamped panel. Upper and lower bound for simply supported panels are almost
identical and always above the ”knee”. Upper bound is used as reference value for lateral
pressure in the interaction curves.

Many of the panels experience large out-of-plane deflections when subjected to lateral
pressure. This needs to be accounted for, either by making criteria on allowed displace-
ment, or making the panels stiffer. For instance using the normal strength steel instead of
the high strength steel makes the ultimate limit state occur at smaller deflections. Further
studies are required to derive a criterion for allowed displacement.

As was mentioned earlier in this report, lateral load is not making the panel rupture
before the load is very large, but transverse shear stresses can increase and give problem
with both failure in the core and also debonding. Bonding strength is already studied a
lot, but further ongoing studies are crucial to get a good understanding of the strength
for dimensioning purposes. For some of the thick panels, the transverse shear stress is high.

Using the normal strength structural steel instead of the high strength steel will reduce the
ultimate capacity such that the bond strength and ultimate capacity are closer in value.
Since the modulus of elasticity is the same for both types of steel, the normal strength steel
will also show a more defined ”knee” and the material behaviour is easier to study. For
the two different steel types mentioned in this report, the difference in fatigue resistance is
very small, so in cases where the panel is limited by fatigue, stronger steel than the normal
steel will be a waste, since the high strength steel will not reach its full potential. This is
an interesting topic with respect to the price of the materials as well.

There are two modes of failure when the SPS panels are subjected to in-plane shear load.
Either the panel yields over the entire cross section or the panel buckles and collapses
shortly after due to yielding. Most of the panels fail due to yielding over the entire cross
section, but there are some exceptions for the thin panels in the study. For dimensioning
purposes the smaller of the two should be used, but if the two values are close, special
attention need to be taken on imperfections since the panels are sensitive to even small
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variations in the imperfection.

For the load combination with in-plane shear load and lateral pressure load, it is difficult
to define an ultimate load when the lateral pressure is dominant. This may be expected
since the panel has much more capacity than the upper bound theory prescribes when
subjected to pure lateral pressure. As the in-plane shear load become more dominant,
peak values can be obtained on the load-displacement curves. This can be seen in the
interaction curves where all finite element results are on the leftmost part of the curve.
Some of the finite element results also show different behaviour when the lateral pressure
load is very small on the thin panels. This is due to sensitivity to imperfections as was
mentioned in the previous paragraph.

For some of the panels there may be better estimates for the theoretical interaction curve
suggested, but the formula given in this thesis is made to give conservative results for all
the panels studied. Further studies on a larger range of panels are however needed to check
the performance of the formula suggested, or maybe different formulae need to be used for
the different ”types” of panels.

A formula for the interaction surface for the three load types in this study is suggested to
be

(

N

Nult

)2

+

(

Q

Qult

)2
[

1 −
(

p

pult

)1.2
]1/3

=

[

1 −
(

p

pult

)1.2
]4/3

This formula described the two panels with three-way interaction in this study well, but
extensive studies need to be performed on a wide range of geometries to ensure the perfor-
mance of the formula. It can also be noted that if the in-plane uni-axial load is set equal to
zero in the expression, the two-way interaction formula used in this report emerges.
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Appendix A

MATLAB Code

function koeffShearBuckling

Ef = 206000;%MPa

nuf = 0.3;

Ec = 750; %MPa

nuc = 0.36;

a = 6400; %mm

b = 3200; %mm

t = 3; %mm

tc = 15; %mm

d = t + tc;

Gc = Ec/(2*(1+nuc));

D = Ef*t*d^2/(2*(1-nuf^2));

S = Gc*d^2/tc;

mMax = 6;

deltaK = 0.01;

%symmetric

phi = [1:0.02:5];

M = zeros(1,size(phi’,1));

for k=1:size(phi’,1)

clear DETER;

stop = true;

K = 0;

f = 0;
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g = 0;

while stop

i=1;

j=1;

g = f;

for m = 1:mMax

for n = 1:mMax

if mod((m+n),2)==0

for p = 1:mMax

for q = 1:mMax

if mod((p+q),2)==0

if mod((n+q),2) && mod((m+p),2)

DETER(i,j) = m*n*p*q/((m^2-p^2)*(n^2-q^2));

j=j+1;

elseif n==q && m==p

DETER(i,j)=(m^2+n^2*phi(k)^2)^2*...

(t^3*Ef/(D*6*(1-nuf^2))+1/(1+pi^2*D/...

(S*b^2)*(m^2/phi(k)^2+n^2)))/...

(32*phi(k)^3*K)*pi^2;

j=j+1;

else

DETER(i,j) = 0;

j=j+1;

end

end

end

end

j=1;

i=i+1;

end

end

end

f = det(DETER);

if f > 0 && g < 0

stop = false;

M(k) = K;

elseif f < 0 && g > 0

stop = false;

M(k) = K;

end

K = K + deltaK;

end

end
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%plot(phi,M);

%antisymmetric

T = zeros(1,size(phi’,1));

for k=1:size(phi’,1)

clear DETER;

stop = true;

K = 0;

f = 0;

g = 0;

while stop

i=1;

j=1;

g = f;

for m = 1:mMax

for n = 1:mMax

if mod((m+n),2)

for p = 1:mMax

for q = 1:mMax

if mod((p+q),2)

if mod((n+q),2) && mod((m+p),2)

DETER(i,j) = m*n*p*q/((m^2-p^2)*(n^2-q^2));

j=j+1;

elseif n==q && m==p

DETER(i,j)=(m^2+n^2*phi(k)^2)^2*...

(t^3*Ef/(D*6*(1-nuf^2))+1/(1+pi^2*D/...

(S*b^2)*(m^2/phi(k)^2+n^2)))/...

(32*phi(k)^3*K)*pi^2;

j=j+1;

else

DETER(i,j) = 0;

j=j+1;

end

end

end

end

j=1;

i=i+1;

end

end

end

f = det(DETER);
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if f > 0 && g < 0

stop = false;

T(k) = K;

elseif f < 0 && g > 0

stop = false;

T(k) = K;

end

K = K + deltaK;

end

end

R = zeros(1,size(phi’,1));

for i=1:size(T’,1)

if T(i) < M(i)

R(i) = T(i);

else

R(i) = M(i);

end

end

figure(1);

axes(’LineWidth’,1.5,’FontSize’,14);

hold on;

box on;

axis([0.2 1 5 8.5]);

plot(1./phi,R,’-k’,’LineWidth’,1.5);

K0 = 16/3+4./phi.^2;

K0Cl = 9+17/3*b^2/a^2; %Clamped panel

K = K0./(1+pi^2*D/(S*b^2).*(K0-1-1./phi.^2));

KCl = K0Cl/(1+pi^2*D/(S*b^2).*(K0Cl-4/3*(1+b^2/a^2)));

T = Ef*t*d^2*pi^2/(2*(1-nuf^2)*b^2)*KCl/1000

plot(1./phi,K,’-b’,’LineWidth’,1.5);

plot(0.5,634/D*b^2/pi^2,’rx’,’LineWidth’,1.5);

hold off;

title(’Buckling Coefficient vs Panel Aspect Ratio’,’FontSize’,14);

legend(’Numerical solution of determinant’,’Approximate design formulae’,...

’Finite element analysis’,’Location’,’NorthWest’);

set(legend,’LineWidth’,1.5);

xlabel(’1/\phi’,’FontSize’,14);

ylabel(’K’,’FontSize’,14);

N = Ef*t*d^2*pi^2/(2*(1-nuf^2)*b^2)*R/1000;
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figure(2);

plot(1./phi,N,’-k’)

hold on;

P = Ef*t*d^2*pi^2/(2*(1-nuf^2)*b^2)*K/1000;

plot(1./phi,P,’-b’);

plot(0.5,634/1000,’rx’);

hold off;

title(’Buckling Load vs Panel Ratio’);

legend(’Numerical solution of determinant’,’Approximate design formulae’,...

’Finite element analysis’,’Location’,’NorthWest’);

xlabel(’1/\phi’);

ylabel(’N_{xy}(kN/mm)’);
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