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estimation of parameter σ2 20 

 The natural logarithm of the posterior probability distribution for Nash-Sutcliffe 21 

Coefficient of Efficiency (NSCE) is a first-order linear equation associated with 22 

CLM 23 

 The MCMC method based on CLM performs well in generating regular posterior 24 

distributions of model parameters and discharges, and in yielding narrow and 25 

symmetrical confidence intervals 26 

 27 

Abstract: Markov Chain Monte Carlo (MCMC) method has been increasingly popular 28 

in uncertainty analysis of hydrological simulation. In MCMC approach, deviations 29 

between model outputs and observations are commonly assumed to follow Gaussian 30 

distribution with zero medium and constant standard deviation σ2. However, the 31 

estimation of σ2 is a difficulty in terms of that it was assigned subjectively in previous 32 

studies, hindering the improvement of performance for uncertainty assessment. This 33 

work systemically investigates the statistical meaning of parameter σ2. σ could be 34 

expressed as the product of data length and two standard deviations, one of which is for 35 

observations (i.e. Obs ) and the other for Nash-Sutcliffe Coefficient of Efficiency 36 

(NSCE) (i.e. s ). A new label called Confidence Level of Model (CLM) is developed to 37 

interpret s . The natural logarithm of the posterior probability distribution for NSCE 38 

is a first-order linear equation associated with CLM. The CLM could be employed to 39 

guide the construction of s  and then the estimation of σ2. Uncertainty analysis of a 40 

flow duration curve (FDC) model is conducted using the MCMC method based on CLM, 41 

and the generalized likelihood uncertainty estimation (GLUE) method is employed for 42 

comparison. Results show that the CLM affects the MCMC results by three kinds of 43 

trade-offs, and the MCMC method based on CLM performs well in generating regular 44 



posterior distributions of model parameters and discharges. The MCMC method also 45 

yields narrow and symmetrical confidence intervals. Findings of this paper could 46 

interpret typical uncertainty behaviors commonly existing in hydrological modeling, 47 

and provide beneficial insights for the uncertainty analysis of other environmental 48 

modeling. 49 

 50 

Keywords: Uncertainty analysis; Markov Chain Monte Carlo (MCMC) method; 51 

parameter; hydrological simulation; Flow duration curve (FDC) model. 52 

 53 

1. Introduction 54 

A number of statistical methods have been proposed to quantify the uncertainty of 55 

hydrological simulation (Ren et al., 2018), for examples, the Taylor expansion-based 56 

methods (Naji et al., 1998), the stochastic response surface (SRS) method (Cryer and 57 

Applequist, 2003) and the Rosenblueth’s method (Rosenblueth, 1975). Nonetheless, 58 

most approaches suffer from the typical difficulties commonly encountered in classical 59 

statistic inferences, such as the determination of statistics for hypothesis testing and 60 

prior probability distribution for model outputs. These difficulties are even severely 61 

deteriorated for a model whose parameter space features discontinuous derivate, 62 

multimodality and curing multidimensional ridges (Vrugt et al., 2003a). Thus, an 63 

advanced uncertainty analysis method is urgently needed for assessing the uncertainty 64 

of hydrological simulation.  65 

The Bayesian approaches have been increasingly popular in uncertainty analysis of 66 

models including some complex distributed models (Kuczera et al., 2010; Marshall et 67 

al., 2004, 2005; Thiemann et al., 2001; Ajami et al., 2007). Bayesian inference is 68 

theoretically more reasonable, computationally much simpler, and is demonstrated 69 



superior to classical statistics in many studies (Kuczera and Parent, 1998; Vrugt et al, 70 

2009). It meanwhile provides the posterior distributions of model parameters and 71 

outputs (Bouda et al., 2011; Kavetski et al., 2006). Bayesian approaches provide a 72 

beneficial means to evaluate the uncertainty of hydrological models or simulation.  73 

Bayesian approaches could be classified into two classes: the pseudo-Bayesian (or 74 

informal) method and standard (or formal) Bayesian method. The Generalized 75 

Likelihood Uncertainty Estimate (GLUE) methodology (Beven and Binley, 1992) is 76 

the most widely-used pseudo-Bayesian method (Beven and Freer, 2001; Hassan et al., 77 

2008; Choi and Beven, 2007) whose target posterior distributions are commonly 78 

selected to be statistically informal distributions (Vrugt et al., 2009). Practical 79 

experiments show that the accuracy of GLUE method relies on the choice of likelihood 80 

functions and cut-off threshold to a great degree, especially for complex high-81 

dimension cases (Kuczera et al., 2007; Blasone et al., 2008a). The sampling direction 82 

and step is not well controlled and adjusted, likely leading to poor sampling and 83 

convergence efficiency. The Markov Chain Monte Carlo (MCMC) method is a typical 84 

standard Bayesian approach (Kuczera and Parent, 1998; Reis et al, 2005). In the case 85 

of hydrological simulation, MCMC method assumes that the residuals between model 86 

outputs and observations follow independent identically distributed (i.i.d.) distribution 87 

(Jin et al., 2010; Chung and Kim, 2013). The directional sampling strategy of MCMC 88 

(e.g. Metropolis-Hasting sampling, Gibbs sampling) promises the convergence of 89 

samples to target posterior distribution (Kuczera and Parent, 1998). Nevertheless, poor 90 

choices of prior distribution, proposal distribution and parameters in MCMC may lead 91 

to unsatisfying convergence efficiency (Engeland and Gottschalk, 2002). A lot of 92 

studies were carried out to increase the convergence efficiency (Ouarda et al., 2011; 93 

Lee and Kim, 2008; Huang et al., 2018; Li et al., 2018a), and a number of revised 94 



MCMC approaches were developed, for instance, the Shuffled Complex Evolution 95 

Metropolis (SCEM-UA) method (Vrugt et al., 2003a, 2003b), Sequence Evolution 96 

Metropolis (EMC) method (Zhang et al., 2009) and Bayesian Total Error Analysis 97 

(BATEA) approach (Kavetski et al., 2006). 98 

The pre-establishment of algorithmic parameters is vital to obtain the target 99 

posterior distribution in the above MCMC approaches. Efforts have been devoted to 100 

studying the algorithmic parameters. The i.i.d. distribution of residuals is normally 101 

assumed to be Gaussian distribution with zero medium and constant variance σ2 (Yang 102 

et al., 2007; Bouda et al., 2011; Ajami et al., 2007; Li et al., 2018b; Li et al., 2018c). 103 

Thiemann et al (2001) suggested a σ2 ranging from 25% to 50% of the variance of the 104 

long-term discharges. It is however ambiguous to treat parameter σ2 as constant. Some 105 

researchers removed σ2 by assuming a non-informative prior density 106 

1)|,(  tp  (Vrugt et al., 2003a). Other reports treated σ2 as one of the unknown 107 

model parameters that needed to be sampled (Liang et al., 2005; Zhang et al., 2009). 108 

Limited studies try to interpret the statistical meaning of parameter σ2, hindering the 109 

improvement of MCMC approaches. Consequently, a proper interpretation and 110 

estimation of σ2 in the case of Gaussian-type i.i.d. distribution is of urgent needed.  111 

This work aims to: (1) build a new label called Confidence Level of Model (CLM) 112 

to interpret and estimate the parameter σ2, (2) present uncertainty analysis of 113 

hydrological simulation using MCMC approach, and (3) reveal the effect of CLM on 114 

the results of uncertainty analysis. 115 

 116 

2. Methodology 117 

2.1 Bayesian approaches for uncertainty analysis  118 

Given input-output series ),( yx , model ( )M   and parameter set  , model outputs 119 



then could be expressed as follows: 120 

                      ),(~ xMy                                (1) 121 

Bayesian statistics treats model parameters as probabilistic variables and aims at 122 

obtaining the real parameter distribution by incorporating prior information with the 123 

sample information. A prior probability density )(  is used to reflect analysts’ 124 

knowledge about model parameters. A likelihood function implies the sample 125 

information. Bayesian inference is formulated as follows: 126 
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Where, )~,,|( yyx  is the posterior probability of parameter set   conditioned by 128 

input-output series ),( yx ; ),,|~( yxyf   denotes the likelihood function, which is 129 

commonly written in another form )~,,|( yyxl  . 130 
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Or 132 

               )()~,,|()~,,|(  yyxlyyx                       (4) 133 

The prior distribution is assumed a non-informative distribution. The likelihood 134 

function thus significantly affects the results of Bayesian inference.  135 

2.1.1 Markov Chain Monte Carlo (MCMC) algorithm 136 

The residuals between observations and model outputs are expressed as 137 

       ),(~ iiiii xMyyye      ni ,,2,1                    (5) 138 

Consider the residuals to be Gaussian-type i.i.d. distribution with zero medium and 139 

constant variance 
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If the residuals do not follow Gaussian distribution, Box-Cox transformation is 142 

applied before the Metropolis-Hasting judgment (Thyer et al., 2002) 143 
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The likelihood function )|( xl   is the multiple product of probabilities for all 145 

residuals (Vrugt et al., 2003a; Zhang et al., 2009) 146 
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Providing a uniform prior and removing the constant term, the posterior probability 148 

could be established. 149 

               )
2

-e x p ()()|()|(
2

1

2

t

n

i

ie

xlxp




                 (9) 150 

Eq.8 is the formal likelihood measure derived from robust statistical philosophy, 151 

reflecting the statistical nature of residuals. The general MCMC sampling is given as 152 

below (Vrugt et al., 2003b). 153 

Step 1: Randomly select a start point i  in the feasible parameter space, and 154 

calculate the posterior probability )|( xp i . 155 

Step 2: Generate a new candidate point 1i  according to a proposal distribution156 

)|( 1 iiz   , and calculate the posterior probability )|( 1 xp i  of 1i . 157 

Step 3: Metropolis-Hasting judgment: (1) randomly sample a label Z over the 158 

interval [0, 1]; (2) compute  )|(/)|(,1min 1 xpxp i   ; (3) if Z< , accept the 159 

candidate point 1i , otherwise retain at the current position, ii  1 . 160 

Step 4: Increments t. If t is less than the pre-identified population size N, return to 161 



step 1. 162 

In this work, we focus on the algorithmic parameter t  in Eq.8, which is an 163 

important parameter but always treated ambiguously in previous studies. 164 

 165 

2.2 Interpretation of the algorithmic parameter  166 

The posterior probability (Eq.9) could be adapted as 167 
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The unbiased estimation of the standard deviation for observations is formulated as 169 
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Integrating Eq.11 and the equation of Nash-Sutcliffe Coefficient of Efficiency 171 

(NSCE) (Eq. 27) into Eq.10 obtains 172 
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Where 174 

NSCEs  1                                (13) 175 

                sO b st
n   1                             (14) 176 

The original posterior probability is turned into normal distribution with the 177 

introduction of new variable s and s
 . As a variable associated with NSCE, s could be 178 

regarded as the measure for the distance from the present model state to the ideal model 179 



state (i.e. NSCE=1, s=0).The algorithmic parameter t  is expressed as the product of 180 

data length ( 1n ) and two standard deviations ( Obs  and s ). Therefore, it could 181 

be concluded that t  is statistically related not only to the observation but also to 182 

model calibration.  183 

2.2.1 Posterior probability of s and NSCE 184 

Eq.12 is the formula for posterior probability of parameter set θ rather than variable 185 

s. Supposing that the sample population is generated by a MCMC approach (Figure 186 

1(a)), it is possible that an s corresponds to a number of samples (e.g. the samples in 187 

area 
1S

  and 
2S

 ). If we put all samples with the same s (i.e. same NSCEc) into an 188 

interval 
S

  (S=1, 2, 3, … n), the posterior probability of variable s could be written 189 

as 190 

2

2
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s

s
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Where, )(sArea  is the ratio of the S
  space to the whole sample population space 192 

and 1)(
0




dssArea , )
2

exp(
2

2

s

s


  is the right half of a normal distribution 193 

(shown in Figure.1(c)). If we expect P% of the total MCMC samples to yield acceptable 194 

model outputs, there is 
1/ [2 % ]s s P   （ ） , where s


 denotes maximum s of 195 

acceptable sample and )(1-   is the inverse function of standard normal probability 196 

density. The NSCE corresponding to s


 (Eq. 13), named Confidence Level of Model 197 

(CLM) in this paper, is expressed as 198 

1 21 4[ ( %)]sCLM P                               (16) 199 

Then we can obtain 200 

1 2( 1)(1 ) / [2 ( %)]t obsn CLM P                    (17) 201 



To remove )(sArea  from Eq. 15, assume the prior distribution of )(sArea  as a 202 

uniform prior density: 203 

( ) 1Area s                                        (18) 204 

Hence we can get 205 
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The posterior probability distribution of parameter   (Eq. 12) is transformed to 207 

that of s (Eq. 19). As to NSCE, an s corresponds to only one NSCE, indicating that208 

)|()|( xNSCEpxsp  . Here we take the natural logarithm of the posterior probability 209 

for NSCE with P% set as 95%: 210 

5.4 5.4
( ( | )) (1 ) /1.64

1 1

NSCE
In p NSCE x In CLM

CLM CLM


         
      (20) 211 

Eq. 20 is a first-order linear equation of NSCE with an intercept of 212 

5.4
(1 ) /1.64

1
In CLM

CLM


        
 at the horizontal axis as well as a slope of213 

5.4

1

NSCE

CLM
. Eq. 19 and 20 are demonstrated by practical experiment in the section 4.2.3 214 

later. 215 

2.2.2 Interpretation of CLM 216 

CLM could be interpreted as the manually-decided minimum acceptable NSCE 217 

according to the inferences above. It seems that CLM in MCMC method plays a similar 218 

role as the cut-off threshold (shorten as CT) used in GLUE method. Actually, these two 219 

labels are significantly different. Firstly, CLM is a procedure-oriented label that has the 220 

function of controlling the shape of target distribution. Whereas, CT is a result-oriented 221 

label acting on the already-generated sample population, which aims at removing the 222 

non-behavioral samples with NSCE lower than CT. In short, CLM acts as outlet of a 223 

funnel and CT acts as a sieve (Figure. 1(b)). The parameter space out of CLM could still 224 

be searched with small probabilities, whereas this part is entirely cut off by CT. Besides, 225 



CLM can be deemed as a probabilistic variable or a constant, which is however 226 

impossible for CT. 227 

2.2.3 CLM acting as a constant or a probabilistic variable 228 

t  is commonly assumed to be a constant or a probabilistic variable referring to 229 

the handlings in previous studies.  230 

(1) If t  is a constant, the CLM is 231 

            1 21 4[ ( %) / ] / ( 1)t obsCLM P n                    (21) 232 

Given a common setting obst k    ( 10  k ) and P%=95%, Eq. 21 can be 233 

expressed as 234 

21 10.82 / ( 1)CLM k n                         (22) 235 

Apparently, CLM approaches to 1 with the extension of time series.  236 

(2) If t  is a probabilistic variable with density )( tf  , it is inferred as 237 

( ) ( ) ( 1 ( ) ( )ct t ct c c cF P P CLM CLM F CLM P CLM        ）         (23) 238 

   Where, ct  is a variance corresponding to a certain constant, and cCLM  is a 239 

CLM  value corresponding to ct .  240 

The probability density ( )g CLM  is therefore expressed as 241 
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 (24) 242 

Consequently, the probabilistic property of t  from experts’ knowledge is 243 

interpreted by the changes of CLM. Providing a Jeffrey prior 
1)( p (a common 244 

setting), the corresponding prior of CLM could be obtained  245 



                 
C L M

C L Mg
-1

1
)(       1CLM                    (25) 246 

The prior CLM evidently follows a similar distribution with the Jeffrey t  prior.  247 

Algorithmic parameter t  is abstract whereas the concept of CLM is concrete. It 248 

is hence readily to identify the prior information of CLM rather than that of algorithm 249 

parameter t . 250 

2.2.4 Influence of CLM on sampling results 251 

It is seen in Figure 1(c), the right part of normal distribution is the target posterior 252 

distribution. All samples just fall into the right side of s, which could be identified as the 253 

meaningful section. Figure 1(d) shows the percentage of the meaningful section to target 254 

distribution versus the change of CLM provided that the best fitting NSCE of a 255 

hydrological model in a watershed is 0.9. It could be observed that the percentage 256 

decrease slightly in low CLM section whereas sharply in middle and high CLM section. 257 

A very small ratio likely fails to generate sample population in consistence with target 258 

posterior distribution. A relatively small CLM (corresponding to high percentage) is 259 

therefore recommended to tackle this issue. On the other hand, the slope of probability 260 

density at s (NSCE=0.9) is shown in Figure 1(d). A proper slope ensures a promising 261 

occupation of the high probability space and a sufficient occupation over the low 262 

probability space. Too high slope makes heavily clustered sample population lack of 263 

sample diversity, while too low slope loses the ability of locating at the high probability 264 

space and results in frequent exchange of samples between the low and high probability 265 

spaces. The slope peaks at CLM=0.9 and extremely declines when CLM approaches to 266 

1. Details concerning the influence of CLM to the sampling results will be presented in 267 

section 4.  268 

 269 



3. Study area and Hydrological simulation  270 

3.1 Study area and data 271 

The Huangheyan region (20,930 km2), at an altitude of 4200 to 4800 m a.s.l, is 272 

located at the head of the Yellow river. The region shows a typical continental climate 273 

with hot summer and dry winter since it is far away from oceans (Cui et al., 2018; Shi 274 

et al., 2017; Kumar et al., 2019). Lack of human activities makes it an ideal natural 275 

hydrological system. The mean annual precipitation ranges from 200 to 400mm, more 276 

than 70% of which falls intensively from July to October, and 62% of the whole 277 

precipitation is snowfall. The mean annual temperature is ranged between -4℃ and 2℃ 278 

(Wang et al., 2018) and the mean annual evapotranspiration is about 1322mm (denoted 279 

by 20mm evaporating pan) (Wang et al., 2017). The data involved in this study is the 280 

observed daily discharge records at outlet of Huangheyan region during the period 281 

1996-2000. The data are collected from the local hydrology bureau and the National 282 

Climate Center. 283 

Besides, five basins including Dongwan, Luanchuan, Tantou, Xiquan and 284 

Zijingguan, are employed to further demonstrate the CLM method (Eq. 16-20). 285 

Dongwan, Luanchuan and Tantou are located in Yellow River basin, Xiquan belongs to 286 

Liao River basin, and Zijingguan is a part of Hai River Basin. These three large rivers 287 

play the key role in sustaining the social and economy development of North China.  288 

3.2 Four-parameter flow duration curve (FDC) model 289 

Flow duration curve (FDC) model can describe the statistical relationship between 290 

the ith discharge in descending order and the probabilities it is exceeded (Shao et al., 291 

2009; Yang et al., 2017). It is hence widely accepted as an informative method for 292 

displaying the complete range of river discharges from low flows to flood events (Guse 293 

et al., 2016). FDCs commonly take on various shapes according to the climatic and 294 



geomorphic characteristics in the area of interest. In this work, a four-parameter FDC 295 

model proposed by Shao (2009) is employed for simulating the discharge.  296 
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Where, Q  represents the annual mean flow; p denotes the exceeding percentage; τ is 298 

the ratio of the number of non-zero flow days to the total number of days. α, β and θ 299 

are scaling parameters associated with the physiographic factors and rainfall pattern, 300 

which are used to control the shape of FDC. Domains and meanings of these notations 301 

are listed in Table 1. It needs to be noticed that the upper bound of β is a variable 302 

restricted by the mathematical structure of Beta function. Nash-Sutcliffe Coefficient of 303 

Efficiency (NSCE) is employed here to measure the distance between observations and 304 

model outputs.  305 
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Where, iObs  and iSim  are respectively the ith observation and model outputs ranked 307 

in descending order, Obs  is the mean of observations, and n is the length of discharge 308 

series. 309 

 310 

4. Results and discussions 311 

4.1 Preparation for uncertainty analysis of FDC 312 

In this work, the MCMC sampler derives 10 parallel markov chains, each with a 313 

0

0

0















random starting point and a population of 5000 samples. The first 500 of the 5000 314 

samples is used for a burn-in period before the convergence of markov chain to target 315 

distribution. For a comparison, GLUE is employed to conduct uncertainty analysis of 316 

FDC modeling. GLUE sampler independently runs for 10 times, each time for 10000 317 

samples. NSCE is selected as the likelihood function.  318 

 319 

4.2 Posterior characteristics for parameter of FDC model  320 

4.2.1 Posterior probability of parameter α 321 

Figure 2 graphically presents the posterior characteristics of parameter α generated 322 

respectively by GLUE and MCMC method at different labels (CT=0.1, 0.5, 0.9 for 323 

GLUE and CLM=0.1, 0.5, 0.9 for MCMC). The best model efficiency of FDC (i.e. 324 

NSCE) is 0.982 and the corresponding value of parameter α is 0.65, which is calibrated 325 

by a SCE-UA approach (Duan et al., 1993). The parameter space around 0.65 is 326 

therefore characterized by a high probability. Figure 2(a) and (d) are posterior 327 

probability distributions of parameter α by GLUE and MCMC, respectively. The two 328 

approaches at low CT or CLM always perform poorly in finding the parameter space of 329 

high probability (i.e. the parameter space around 0.65), while high labels effectively 330 

improve the performance of both approaches. There are differences between MCMC 331 

results and GLUE results. Cumulative probability distributions of α by MCMC at all 332 

CLM follow normal or gamma distribution (Figure 2(e)) whereas those by GLUE do 333 

not (Figure 2(b)). The scatters by MCMC are densely concentrated near the high NSCE 334 

section (Figure 2(f), whereas the scatters by GLUE distribute dispersedly over the 335 

whole space (Figure 2(c)). The differences could attribute to the strategies of these two 336 

approaches in selection of sampling algorithms and likelihood functions.  337 

Additionally, CLM of MCMC can be a value larger than the best NSCE (0.982), 338 



whereas CT of GLUE cannot. CLM=0.99, 0.997 and 0.999 are chosen as examples 339 

(Figure 3), the second one of which is a special case where 
obst

  . The posterior 340 

density shapes like gamma distribution with slight skewness at all CLM, and steepens 341 

hugely with the increase of CLM. The exploring parameter space narrows sharply in 342 

terms of that it changes from [0,1] (CLM=0.99) to [0.5,0.8] (CLM=0.999).  343 

4.2.2 Posterior probability of other parameters 344 

Posterior distributions of the remaining three model parameters (shown as bar charts, 345 

y-axis denotes probability and x-axis parameters values), and the parameters values 346 

versus NSCE (shown as scatters, y-axis denotes NSCE and x-axis parameters values) 347 

are presented in Figure 4. Parameter β follows exponential distribution, Q obeys gamma 348 

distribution and θ distributes uniformly. However, the features of distributions are 349 

changed when CLM approaches to 1 (CLM=0.997). The distribution of parameter β at 350 

CLM=0.997 becomes gamma type, and θ follows an exponential distribution. When 351 

CLM=0.997, the scatters show peaks at the high NSCE sections and the ranges of NSCE 352 

are overly shrunk, indicating that the MCMC search is restricted into a small parameter 353 

space.  354 

In short, the approaching of CLM to 1 can amplify the microcosmic posterior 355 

characteristics of the parameter space with high probability at the cost of abandoning 356 

the macroscopical search of remaining parameter space. It could explain why the 357 

simulated posterior distributions reported before are always concentrated within very 358 

small ranges and why MCMC sampling is often trapped into local maximums (Marshall 359 

et al., 2004; Ajami et al., 2007; Kuczera et al., 2007; Blasone et al., 2008b; Vrgut et al., 360 

2009). There are no standards for identifying the best value of CLM. The selection of 361 

CLM could be regarded as a dynamical trade-off between macroscopic versus 362 

microcosmic requirements. CLM should be selected and adjusted carefully based on 363 



practical requirements. 364 

4.2.3 Posterior distributions of correlated parameters and NSCE 365 

The correlation between parameter α and β generated by MCMC at different CLM 366 

are presented in Figure 5. Rapid shrink of exploring parameter space and increase of 367 

maximum posterior probability is clearly observed with CLM approaching to 1. 368 

Samples are clustered in the case of CLM=0.999. On the contrary, the probability bars 369 

at CLM=0.9 cover the whole parameter space, leading to flat distributions, low 370 

maximum probabilities and even the occurrence of local maximum probabilities. It 371 

tends to be more obvious if CLM is settled to a smaller value. 372 

The NSCE of FDC derived by MCMC sampler are shown in Figure 6. To the best 373 

of our knowledge, it has never been discussed previously. As Figure 6 indicates, the 374 

Natural logarithm of the posterior probability densities for NSCE approximately accord 375 

with a first order linear equation at all CLM. It is worth noting that the coefficients of x 376 

are approximately equivalent to 5.4 / (1 )CLM  and the intercepts at the vertical axis 377 

approximately equal to [ (1 ) /1.64] 5.4 / (1 )In CLM CLM    . The results over 378 

another 5 basins of north China support the relation as well (Figure S1). The findings 379 

above are the powerful evidence to support Eq.20 and the subsequent inferences based 380 

on Eq.20. The markov chain tends to convergence if the Natural logarithm of NSCE is 381 

first-order linearly distributed, which actually provides a simple way to test the 382 

convergence to the target distribution. On the other hand, an increasing CLM does harm 383 

to convergence. The NSCE values at the very tails of both sides could not be sufficiently 384 

searched with their statistical probability. It may attribute to the difference between real 385 

systems and the FDC modeling, as well as the shortcomings of MCMC algorithm. With 386 

an increase of CLM, the largest posterior probability moves to the largest NSCE (0.982) 387 

at a cost that the density is biased from the first-order linear distribution. Hence, it is 388 



learned that the selection of CLM is a trade-off between accurate locating of maximum 389 

probability versus convergence to original target distribution.  390 

4.2.4 The effect of data length of observed daily discharge on obs  391 

As mentioned above, the algorithmic parameter t  is expressed as the product of 392 

data length ( 1n ) and two standard deviations ( Obs  and s ). Obs  is estimated 393 

according to the observed data. Therefore, it seems that the data length of observed 394 

daily discharge is related to the estimation of Obs  and then the estimation of t .  395 

In this section, the effect of data length of observed daily discharge on obs  is 396 

investigated. A comparison using different length of data was conducted (Figure 7). The 397 

values of obs  are estimated based on 50%, 70%, 80%, and 90% length of observed 398 

discharge data, respectively. The data was randomly sampled from the whole dataset 399 

for 1000 times. The 1000 values of obs  for each dataset (i.e. the different length of 400 

discharge data) are aggregated as box plots (Figure 7). The box-plots in Figure 7(a), (b), 401 

and (c) show the obs  values when CLM equals 0.9, 0.99, and 0.997, respectively. The 402 

values vary largely for each sampling. The range of values tends to shrink as the data 403 

length grows. That is to say, the value of obs  is more stable when using more data. 404 

Besides, the median values of obs  are almost the same despite of data length, 405 

indicating that a stable value of obs  could be estimated via sampling even though the 406 

discharge data is not enough. 1000 times sampling is recommended and the median of 407 

obs  should be employed. Therefore, it could be concluded that different length of data 408 

leads to varied values of obs , which however is a more stable value through large 409 

amount of sampling. Increasing data length gains the stability of estimation of obs . 410 

4.3 Posterior characteristics of discharge by GLUE and MCMC methods 411 



4.3.1 Posterior probability density of discharges 412 

To illustrate the posterior characteristics of discharges, three discharge points are 413 

selected as examples, namely the 100th, 600th and 1300th discharges in descending order 414 

(Figure 8). It is a five-year FDC (1825 days with 237 zero-discharge days), 100th, 600th 415 

and 1300th discharges thus could be regarded as the representatives of high, middle and 416 

low discharge schemes, respectively. All the posterior densities follow the type of 417 

gamma distributions (Figure 8). The posterior density steepens and narrows hugely with 418 

the increase of CLM (from 0.9 to 0.997). It needs to be pointed out that the algorithmic 419 

parameters ),( r  of the Gamma distributions are calculated based on statistical 420 

meaning )(/)( xDxE  and )(xEr   rather than through fitting. It indicates 421 

that the sampling is statistically reasonable.  422 

The skewness and kurtosis are plotted over the whole probability section in Figure 423 

9. Skewness and kurtosis close to 0 indicates better agreement of the density distribution 424 

with normal distribution. Compared with normal distribution, positive kurtosis implies 425 

steeper shape, and positive skewness implies a right movement of the maximum 426 

probability. The density distribution of discharges at CLM=0.9 is steeper and positively 427 

biased compared to normal distribution, which is more remarkable at the high and low 428 

probability tails. On the contrary, the skewness and kurtosis are always staying at small 429 

values throughout the probability section at large CLM (CLM>0.99), indicating a high 430 

similarity with normal distribution. Actually, a large CLM (CLM>0.99) is consistent to 431 

the common settings for   in previous studies. This could explain why the simulated 432 

discharge are normally distributed (Ajami et al., 2007; Noh et al., 2011; Vrgut et al., 433 

2009; Hu et al., 2013).  434 

4.3.2 Properties of 90% confidence intervals 435 

Another important uncertainty measure for a hydrological simulation is the 90% 436 



confidence interval. The deviation between the posterior means and observations (i.e. 437 

residuals) and the 90% confidence intervals for residuals at different CLM are shown 438 

in Figure 10. It is seen that the residuals are valued around 0, indicating that the 439 

posterior means of discharge generally match the actual discharge points. Compared to 440 

GLUE method at CT=0.9, MCMC method at CLM=0.9 yields much thinner and more 441 

symmetrical intervals in the low discharge section (i.e. the section with high 442 

probability), whereas slightly larger intervals in the high discharge section (i.e. the 443 

section with low probability). The 90% confidence interval by GLUE method is evenly 444 

spaced but underestimated, especially in the low discharge section. The increase of 445 

CLM leads to sharp shrink of the band-width, while does not change the shape of upper 446 

and lower bounds. A very large CLM (>0.99) leads to less coverage ratio of interval for 447 

the observed points. The selection of CLM is a trade-off between coverage ratio versus 448 

band-width of intervals. 449 

 450 

5. Conclusions and suggestions 451 

In MCMC approach for uncertainty analysis of hydrological modeling, residuals 452 

between model outputs and observations are commonly assumed to follow Gaussian 453 

distribution with zero medium and constant standard deviation σ2. How to identify and 454 

estimate parameter σ2 is a weak point in previous studies. In this work, the statistical 455 

meaning of parameter σ2 of Gaussian-type posterior probability distribution in MCMC 456 

method are systemically investigated. Some statistical interpretation and inferences of 457 

the parameter are presented to improve the performance of MCMC approach. A new 458 

label CLM is developed to guide the estimation of σ2. The uncertainty of the 459 

hydrological simulation by a four-parameter FDC model is assessed by means of 460 

MCMC method based on CLM, and the GLUE method is employed for comparison. 461 



Uncertainty analysis here is conducted concerning the posterior characteristics of model 462 

parameters, discharges and confidence intervals. A series of derivative conclusions are 463 

therefore achieved and major findings are summarized as follows. 464 

    (1) Parameter   is statistically related not only to the observation but also to 465 

model calibration.   is expressed as the product of data length ( 1n ) and two 466 

standard deviations, one of which is for observations (i.e. Obs ) and the other for Nash-467 

Sutcliffe Coefficient of Efficiency (NSCE) (i.e. s ). A new label called Confidence 468 

Level of Model (CLM) is developed to interpret s . The natural logarithm of the 469 

posterior probability for NSCE could be expressed as a first-order linear equation 470 

associated with CLM, which is practically demonstrated by a series of case studies about 471 

the posterior density of NSCE. 472 

(2) CLM is a label representing the manually-decided minimum of acceptable 473 

NSCE. CLM is more meaningful and dynamic than CT used in GLUE. It is a procedure-474 

oriented label used for shaping the target distribution. It can be set as a probabilistic 475 

variable or a constant. Case studies reveal that CLM remarkably affects the value of   476 

and the MCMC results. It is recommended to identify the algorithmic parameter   477 

according to CLM. 478 

(3) Different length of data leads to varied values of obs , which however could 479 

be a more stable value through large amount of sampling. 1000 times sampling is 480 

recommended and the median of obs  should be employed. Increasing data length 481 

gains the stability of estimation of obs .  482 

(4) The MCMC method based on CLM performs well in generating regular 483 

posterior distributions of model parameters and discharges, and in yielding narrow and 484 

symmetrical confidence intervals. The estimation of CLM is related to three kinds of 485 



trade-offs, including the one between macroscopic versus microcosmic requirements, 486 

the one between accurate locating of maximum probability versus convergence to 487 

original target distribution, and the one between coverage ratio versus band-width of 488 

intervals.  489 

Findings in this paper could well interpret the problems commonly encountered in 490 

traditional Bayesian uncertainty assessments and provide insights for uncertainty 491 

analysis of other environmental modeling. Nevertheless, strict mathematical proof of 492 

Eq.18 as well as the application of CLM in more complex models is necessary. It will 493 

be further studied in our future work. 494 
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Figure 1. Sample population of MCMC approach (a); Schematic map for the function of CLM and cut-off threshold (b); Distribution of 

variable s (the right half of common normal distribution) (c); The percentage of the actual sampling space to the originally 

assumed sampling space and the slope of the probability density at NSCE=0.9 versus the CLM (d). 

Figure



          GLUE approach 

     
 

            MCMC approach 

     
 

Figure 2. Posterior probability (a); Cumulative probability of parameter α by GLUE method at the cut-off threshold=0.1, 0.5 and 0.9 (b); Scatters 

of parameter α by GLUE method versus thresholds (c); Posterior probability (d); Cumulative probability of parameter α by MCMC method 

at CLM=0.1, 0.5 and 0.9 (e); Scatters of parameter α generated by MCMC method versus thresholds at CLM=0.5 (f).
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Figure 3. Posterior probability density and cumulative probability generated by MCMC 

approach at CLM=0.99, 0.997 and 0.999, respectively. 
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Figure 4. Posterior probability distributions for parameter β, Q and θ, and their scatters against thresholds 
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Figure 5. Bars of the joint posterior probability distribution for parameter α and β 

generated by MCMC approach at different CLMs (CLM=0.9, 0.99, 0.997 and 

0.999) 
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Figure. 6 Natural logarithm of the posterior probability densities generated by MCMC 

approach at different CLMs (CLM=0.9, 0.99, 0.997 and 0.999) against the NSCEs 
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Figure. 7 The values of Obs  based on different data length of observed daily discharge 

when CLM=0.9, 0.99, and 0.997, respectively.   
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Figrue 8. Posterior probability density for the 100th, 600th and 1300th discharges in descending order by MCMC 

approach at CLM=0.9 and 0.997 



   
Figure 9. Skewness and kurtosis of posterior probability densities for discharge over the 

whole probabilty domain by MCMC approach at CLM=0.9, 0.99, 0.997 and 0.999 
 
 
  



 

 
Figure 10. The residuals and the 90% confidence intervals for residuals at different 

CLMs (CLM=0.9, 0.99, 0.997 and 0.999) and CT=0.9. 
 



Table 1. Descriptions and domains of notations involved in the FDC model 

Parameter Description Units Domain 

α shape parameter impacted by rainfall patterns and physiographic factors [-] [0,1.0] 

β shape parameter impacted by rainfall patterns and physiographic factors [-] [-100,100] 

Q annual mean flow [m3/s] [0,50] 

θ shape parameter impacted by rainfall patterns and physiographic factors [-] [0.5,1.0] 

α﹒β constricted by Beta function [-] [-1,0] 
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