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Abstract  6 

Compound hydrometeorological extremes have been widely examined under climate change, they have 7 

significant impacts on ecological and societal well-being. This study sheds light on a new category compound 8 

of contrasting extremes, namely compounding wet and dry extremes (CWDEs). The CWDEs are 9 

characterized as devastating dry events (EDs) accompanied by wet extremes (EWs) in a given time window. 10 

Notably, we first adopt a separate system to identify coinciding events considering the different evolving 11 

processes and impacting patterns of EDs and EWs. The peak-over-threshold and standardized index methods 12 

are used in a daily and monthly window to identify EWs and EDs respectively. Furthermore, the spatial-13 

temporal changes and risky patterns of CWDEs are fully understood by using the Mann-Kendall test, the 14 

Ordinary Least Squares, and the Global and Local Moran indices. Germany is the study case. As one major 15 

finding, the results indicate a pronounced seasonal effect and spatial clustering pattern of CWDEs. The 16 

summer is the most vulnerable period for CWDEs, and the spatial hotspots are mainly located in the southern 17 

tip of Germany, as well as in the vicinity of the capital city Berlin. Besides, robust uptrends of CWDEs in all 18 

aspects have been discovered over long periods, and the moist climate and complex geography collectively 19 

contribute to severe CWDEs. Unexpectedly, the study finds that compounding events in dry regions are 20 

mainly driven by wet extremes while they are more dependent on dry anomalies in wet regions. The research 21 

contributes to the discoveries of compound extremes which are composed of individual hazards with distinct 22 

features. Related findings will aid decision-makers in producing effective risk mitigation plans that prioritize 23 

vulnerable regions with limited resources during climate change. Lastly, the robust framework and open 24 

access data allow for extensive exploration of various compounding hazards in different regions. 25 
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1 Introduction  29 

Hydrometeorological extremes (HMEs) can be characterized by significant water surplus and deficit 30 

phenomena, resulting from meteorological anomalies (Abbate et al. 2021, Ciccarese et al. 2020, Zuzani et al. 31 

2019). Typically, dry and wet extremes, such as floods and droughts, will lead to water stress on crops and 32 

cause human beings and livestock to suffer physiological pressure (Iizumi and Ramankutty 2015, Lucas et 33 

al. 2014), and end up with ecological disturbance, agricultural losses, and socioeconomic disruption (Apurv 34 

et al. 2017, Kreibich et al. 2022, Tabari et al. 2021). In addition to the incidence of these single hazards, 35 

recent studies have been devoted to changing patterns of compound HMEs (CHMEs), such events can be 36 

interpreted as extreme impacts that depend on multiple variables or events (Leonard et al. 2013, Zhang et al. 37 

2021, Zscheischler et al. 2018) and can produce hazardous and higher consequences than individuals types 38 

(Schumacher et al. 2019, Yang et al. 2022). Given the global hydrological cycle is expected to intensify in a 39 

warming world, possible threats will come with complex interactions of multiple extremes with upgrading 40 

intensity and magnitude (Chen et al. 2020, Gu et al. 2022, Zscheischler et al. 2019). Hence, a better 41 

understanding of CHMEs is urgently needed, particularly about their physical characteristics and potential 42 

changes, to manage relevant disasters and advance climate adaptation strategies. 43 

Global studies have examined correlations between a variety of hazards and identified the hotspots of up to 44 

20 kinds of CHMEs (Ridder et al. 2020, 2022). On a regional scale, many scholars have dedicated to the 45 

interplay of certain compound events, such as the attention on compound extreme dry events (EDs) (Feng et 46 

al. 2021, Mukherjee and Mishra 2021, Vogel et al. 2021, Wu et al. 2022) and compound wet extremes (EWs) 47 

(Bermudez et al. 2021, Jang and Chang 2022, Lai et al. 2021, Saharia et al. 2021). Yet, there is a real dearth 48 

of information regarding the compound events of contrasting types of HMEs, such as the CWDEs where 49 

devastating dry events are accompanied by wet extremes within a given time window (Liu et al. 2018, Shi et 50 

al. 2022). Although EDs and EWs act like incompatible hazards, they develop in the same hydrological cycle 51 

and are strongly connected to physical and societal processes across space and time (Ji et al. 2017, Tian et al. 52 

2014). Several historical CWDEs have been documented, examples include phenomenal extremes occurring 53 



in England and Wales (Parry et al. 2013), Tasmania and Queensland in Australia (CSIRO 2014, News 2019), 54 

Yangtze River basin in China (Shan et al. 2018), etc. It is reported that such hazards often lead to more drastic 55 

ecological and socioeconomic effects (Sadegh et al. 2018, Shi et al. 2020, Visser-Quinn et al. 2019, Bi et al. 56 

2022), including deteriorated soil water holding capacity and soil erosion (Chen et al. 2020), land degradation 57 

(Handwerger et al. 2019), water pollution (Huang et al. 2019), crop yield reduction (Bi et al. 2022), etc. Given 58 

the limited disaster management resources, scientific studies associated with CWDEs are expected to help 59 

integrate EWs’ risk reduction with EDs’ prevention, contributing to a more efficient and resilient socio-60 

hydrological system. 61 

The credible characterization of CHMEs is essential for accurate risk analysis, it requires in-depth research 62 

to enhance both theoretical frameworks and practical tools. Typically, CWDEs can be detected based on 63 

single EWs and EDs where precipitation is considered as the key factor, as it plays a key role and can be 64 

explained as the climatology of the precursors to HMEs (Anderson et al. 2019, Garg and Mishra 2019, 65 

Hellwig et al. 2020). Various standardized index methods (SIM) are used universally to identify CWDEs. 66 

For example, Shi et al. (2020) explored the combination dynamics of EWs and EDs by using the seasonal 67 

Standardized Precipitation Index (SPI); at a smaller scale, the monthly Standardized Precipitation 68 

Evaporation Index (SPEI) and self-calibrated Palmer Drought Severity Index (PDSI) were adopted to discuss 69 

the sequential or concurrent EWs and EDs (Chen et al. 2020, De Luca et al. 2020, Qiao et al. 2022). However, 70 

most research on CHMEs took the same approach with a unified time window to extract EWs and EDs 71 

simultaneously. The fact is that the two hazards have distinct evolving dynamics and impact mechanisms. 72 

Instead of the creeping and accumulative effects of EDs (Bachmair et al. 2016), a rapid process of destructive 73 

disasters could be facilitated by EWs, such as landslides and flash floods caused by days or even hours of 74 

heavy precipitation (Lin et al. 2020, Matanó et al. 2022). Adopting a longer window, even a monthly scale, 75 

may dilute the time effect of EWs and underestimate the extremity of EWs and attendant impacts. However, 76 

identifying EDs based on a shorter time window could overestimate EDs and produce a cluttered result with 77 

noise (Ho et al. 2021; Li et al. 2020). The dilemma necessitates an enhanced identification of CWDEs which 78 

can consider critical and distinct traits of EWs and EDs all at once.  79 

To narrow the aforementioned gaps, the study focuses on the novel category of compound extremes and aims 80 

to develop a reliable identification method. Based on this, the spatiotemporal changes and driving forces of 81 

the events will be further investigated. To this end, we extract CWDEs based on the SIM and peak-over-82 



threshold (POT) in a separate identifying window. The monthly extraction of EDs but daily detection of EWs 83 

are determined concerning the distinct evolving process and time effect between the two extremes. 84 

Furthermore, long-term investigations of EDs, EWs, and CWDEs are conducted spanning seven decades. 85 

We evaluate the temporal changes of extremes by using the Ordinary Least Squares and the Mann-Kendall 86 

test methods, and the Global and Local Moran Index is applied to explore spatial clustering patterns. Instead 87 

of studying specific CHMEs, the derived systematic overviews can assist in comprehending and detecting 88 

changes over the past (Nyeko-Ogiramoi et al. 2013) and support the sustainable management of disaster risk 89 

(Abbate et al. 2021).  90 

Germany is selected as a case study. As a temperate region, it has received less attention compared with 91 

traditional arid and humid regions. However, the area has been witnessing more threatening HMEs due to 92 

climate change and anthropocentric influence, consequently causing serious injuries, fatalities, and economic 93 

losses (Erfurt et al. 2019, Kaiser et al. 2021, Wieland and Martinis 2020). Therefore, the research carried out 94 

will greatly benefit the study domain around prevention and early warning of CHMEs. More importantly, it 95 

will broaden insights into HMEs and provides a new angle to identify coinciding events of multiple hazards 96 

with distinct characteristics. 97 

The rest of the paper is organized as follows. Section 2 introduces the study area and used data. In Section 3, 98 

we display the methods involving the identification of extreme events, temporal trends analysis, and spatial 99 

clustering. The results on spatiotemporal characteristics of EDs, EWs, and CWDEs are depicted in Section 100 

4. In Section 5, we discuss further the identification, behaviors, and driving forces of CWDEs. Section 6 101 

summarizes the primary contribution and key findings of the current work. 102 

2 Study Area and Data 103 

2.1 Study area 104 

As a classic temperate region, Germany is located in the central part of Europe, spanning from 47°N to 55°N 105 

and from 5°E to15°E, as shown in Figure 1. With an area of 357,022 𝑘𝑚2, the study domain stretches 853 106 

kilometers from its northern border with Denmark to the Alps in the south. Being one of the four largest food 107 

producers in the European Union (Klöckner 2020), half of the German territory is utilized for farming 108 

purposes, which makes it more vulnerable to HMEs because of potential huge crop losses. Furthermore, the 109 



elevation of the area increases from north to south (Figure 1), the highest latitude refers to 2938m. A 110 

moderately continental climate dominates the area with an increasing gradient from west to east. Both 111 

climatic and geographical conditions lead to clear patterns of precipitation, temperature, and snow coverage 112 

in the region (Merz et al. 2018).  113 

As a temperate region, Germany experiences mean annual temperatures and precipitation averaging 10°C 114 

and 729 mm, respectively, over a long period (https://climateknowledgeportal.worldbank.org/). However, 115 

record-breaking droughts have occurred extensively in recent years, such as the events spanning 2015, 2018, 116 

2019, and 2022 (Ihinegbu et al. 2022, Report, 2022, Schuldt et al. 2020). On the other hand, it has been 117 

observed that the development of EWs favors specific atmospheric conditions in the temperate region, 118 

manifesting as occurrences like flash floods and extreme precipitation (Meyer et al. 2020). Hence, a thorough 119 

investigation into the characteristics of HMEs becomes imperative. Such an in-depth study holds the potential 120 

to alleviate and avoid adverse effects on both the ecological environment and socio-economy. 121 

https://climateknowledgeportal.worldbank.org/


 122 

Figure 1. Overview of the study area. The national territory is divided into 16 distinct states and encompasses 123 

a complex river network of ten basins. The lowland region of northern Germany extends from the north to 124 

the foreland of the central German uplands, while the southernmost part of the country is rugged mountainous 125 

terrain.   126 

2.2 Data  127 

The data used in the study are from three aspects, and more information and pre-processing are described as 128 

follows.  129 

(1) For meteorological data, long-term grided precipitation series on various space-time scales can be 130 

accessed from the ERA5-Land reanalysis datasets in the European Centre for Medium-range Weather 131 



Forecasts (https://cds.climate.copernicus.eu/cdsapp#!/home). The study extracted daily and monthly 132 

precipitation with 0.1° spacing in both longitude and latitude for the 1950–2021 time period. Precipitation 133 

provided on the reanalyzed platform is a three‐dimensional data set generated from a large number of 134 

atmospheric, land, and oceanic climate variables, which have good accuracy across Europe (Hu and Franzke 135 

2020, Rivoire et al. 2021). In addition, the database offers a subset of other water and energy variables at 136 

equal or finer spatial resolution, such as temperate, radiation, and soil water, thereby making further 137 

continuous studies possible.  138 

(2) The administration boundaries and divisions were obtained from BKG (2015, 2017) and LfU (2017), and 139 

the elevation data were taken from the European Environment Agency (2016). 140 

(3) The catchment information was from the Environment Center of the European Commission 141 

(https://ec.europa.eu/environment/water/participation/map_mc/countries/germany_en.htm) where multiple 142 

dividing levels for entire European basins can be found.  We integrated the details from both level 5 and 143 

level 6 to develop an authoritative distribution of the basin map, which is coordinated with the Report from 144 

the Commission to the European Parliament and the Council. 145 

3 Methodology 146 

To investigate CWDEs, the study first identifies the different climatic regimes from the whole area, and the 147 

extraction of the extreme events is applied to the sensitive regions selected. Based on the dataset of all 148 

extremes, the spatial distribution and temporal changes are further analyzed in detail. We classify the 149 

methodologies implemented into four main procedures, which are further elaborated in the sub-sections 150 

following.  151 

3.1 Pooling regional climatic regimes  152 

The dissimilar spatial features and changes in HMEs are found between dry and wet regimes  (Allan et al. 153 

2010, Donat et al. 2016). For capturing the refined differences between extremes’ behaviors, the study pre-154 

extracts wet (WRs) and dry regions (DRs) from the whole area at first. Examinating hydrometeorological 155 

variables facilitates the assessment of the long-term effects of climate change and further classification of 156 

climatic regimes (Ahmed et al. 2019, Pour et al. 2020). There are extensive methods to partition dry and wet 157 

https://cds.climate.copernicus.eu/cdsapp#!/home
https://ec.europa.eu/environment/water/participation/map_mc/countries/germany_en.htm


regimes spatially (Ullah et al. 2022). One effective approach of them is based on representative values of 158 

long-series precipitation data. For example, average precipitation (Han et al. 2019, Li et al. 2023) and 159 

equivalent percentiles (33.3th and 66.67th) of precipitation series (Schurer et al. 2020) were utilized in 160 

previous studies. Here, we try to achieve a more precise and reliable partitioning result by analyzing various 161 

percentiles. With 5% as the step, the study scrutinizes all relevant percentiles of monthly precipitation over 162 

the long climatological period.  163 

Based on precipitation distributions, we further utilize the Getis-Ord (Gi*) to delineate DRs and WRs from 164 

all grid cells. The method tests the spatial associations of the higher and lower values based on the hypothesis 165 

that spatial features are distributed randomly in the whole area (Chowdhuri et al. 2022, Qiang 2019). The 166 

statistic index, called Gi_Bin, will be returned from the calculation and can determine whether the original 167 

assumption is accepted or refused. Specifically, the statistic values corresponding to the P-value and Z-score 168 

are used to display significant confidence about the assessment for the value given. The signs of the value 169 

represent higher and lower values out of the whole area. In our application, the positive Gi_Bin values are 170 

the wet regions with higher precipitation in the long run, and vice versa for dry regions represented by the 171 

negative values. The pixels are considered reliably dry/wet regions only when they meet the entry confidence 172 

level: P≤0.5, |Gi_Bin|≥ 2. The Gi_Bin statistic is given as:  173 
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Gi_Bin (𝐺𝑖
∗) falls into [-3,3], and when |Gi_Bin| ≥ 2 indicates there is an over 95% statistical confidence to 179 

consider the spatial value given as a dryspot or wetspot. Lastly, we discuss all results derived from different 180 



percentiles and compare them with annual average precipitation to determine the final thresholds for 181 

classification. 182 

3.2 Identifying extreme events  183 

As a bivariate hazard, the CWDEs discussed are driven by EDs and EWs. The extraction procedures of EDs 184 

and EWs are separated considering the different developing procedures and influencing mechanisms. 185 

Specifically, we adopt a daily scale to pool EWs but a monthly window to detect EDs, and the identification 186 

of CWDEs is based on the concurrent scenarios of individual events. It is noted that concurrent events are 187 

not constrained to occur at the same minute strictly; they are defined as a concurrence within a limited time 188 

window. More details and reasons for identifying scales and processes are given in the following. 189 

(1) Wet extremes 190 

The POT is applied to find EWs on a daily scale. Since the study focuses exclusively on extreme wet 191 

anomalies, we adopt the 99th percentile as the threshold that stems from the daily precipitation dataset across 192 

the nation. This choice aligns with the recommendations of the Expert Team on Climate Change Detection 193 

and Indices (ETCCDI), which advocates the 99th threshold as an index to identify extremely wet days. 194 

Compared with other commonly used thresholds, such as 90% and 95% (Kalisa et al. 2021, Xu et al. 2021. 195 

Garg and Mishra et al. 2019), the threshold is expected to provide a more precise analysis of the upper 196 

extreme parts of the precipitation series. Moreover, it is important to ensure a sufficiently high number of 197 

EWs and associated CWDEs for robust statistical analysis (Poschlod et al. 2020, Zscheischler and 198 

Seneviratne et al. 2017). Higher percentiles beyond 99% are not further considered. By limiting the threshold 199 

to 99%, the study pursues a reasonable balance between adequately representing extreme events and avoiding 200 

a scarcity of event samples. Furthermore, the extraction of EWs prescribes a minimum time lag of 10 days 201 

between two events to ensure the independence of each event (Brunner et al. 2021).  202 

(2) Dry extremes 203 

SPI is adopted for extracting EDs; it is a globally used index and has been recommended as a key drought 204 

indicator by the World Meteorological Organization (Wilhite 2006). The index converts the precipitation 205 

distribution to the standard normal distribution based on the equivalent accumulative probability of a given 206 

value (McKee et al. 1993). The value of SPI is interpreted as the number of standard deviations from the 207 



long-term mean, it provides an intuitive way to compare the dry severity of periods across different regions. 208 

Besides, various calculating scales of SPI, from 1 to 36 months, show great flexibility in evaluating different 209 

types of dry events (Ali et al. 2019).   210 

The monthly detection is executed for EDs based on multiple considerations. First, the identifying scale can 211 

avoid a jumbled dataset and overestimation of EWs caused by an identification based on a shorter time 212 

window. Second, monthly identification guarantees CWDEs of sufficient quantity and quality as it is not too 213 

long to match daily-scale EWs. Lastly, the identification will not ignore the extremity of EDs, since it is an 214 

accountable window to find flash droughts indicating relatively short-term dryness but devastating 215 

phenomena (Salvador et al. 2020, Tyagi et al. 2022). Furthermore, the threshold value of EDs is set to -1.3, 216 

it is ranked as the D2 level (severe dry condition) according to the National Drought Monitor Center (North 217 

American Drought Monitor, 2018), and it is considered extreme enough for a temperate region. A lower 218 

value denotes a drier condition, which represents that the specific month deviates from the mean value of the 219 

same months in the long series by at least 1.3 standard deviations. 220 

(3) CWDEs 221 

The occurrence of CWDEs is characterized as a binary variable when exceptional EWs are found during the 222 

period of synchronous EDs, which is quantified as an extremely dry condition on a monthly scale 223 

accompanied by heavy rainfall lasting one to ten days. The severity of CWDEs is computed by normalized 224 

characteristics both of EWs and EDs, including number (NUM), magnitude (MAG), and intensity (INT).  225 

Specifically, we transform SPI values to their reciprocals due to lower values with higher intensity. All values 226 

are rescaled to the interval (0,1) in WRs and DRs, and a compound extreme index is calculated by the sum 227 

of the normalized values of the EWs and EDs. The NUM, MAG, and INT are calculated by the following 228 

equations: 229 

 NUM = 
TN

TY
(4) 230 

MAG = 
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i=1  
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(5) 231 
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(6) 232 



Where TN represents the total number of events, TY means the total year, 𝑥𝑖 is the corresponding value of 233 

the i th event. We mention that a lumped study is performed for CWDEs by taking whole WRs and DRs as 234 

units, since a very limited number of CWDEs is found in each grid. As a compromise, a distributed analysis 235 

is conducted for all grid cells regarding individual extremes, an accurate and comprehensive analysis of EWs 236 

and EDs is expected to help us understand the behaviors and changes of compound events.  237 

3.3 Investigating temporal trends  238 

The Ordinary Least Squares (OLS) method is adopted to analyze linear trends. It is a common technique for 239 

building linear models between one or more quantitative variables (Franzke 2021, Pal et al. 2011). The model 240 

quality is controlled by the F-test and the T-test, and the significance level is set as 5%. Meanwhile, the 241 

Manner-Kendall test (Kendall 1948, Mann 1945) and the Theil-Sen Median method (Sen 1968) are used to 242 

detect non-linear tendencies. Once trends are determined by the Manner-Kendall test (MK test), the Theil-243 

Sen Median method can correspondingly produce Sen’s slope to measure the rate of changes in variables’ 244 

time series. The final slope is the median of all slopes obtained from all data pairs and can be calculated by 245 

following formulas (Thomas and Prasannakumar 2016):  246 
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In the equation, 𝑥𝑗 and 𝑥𝑘 are the values at times j and k (j > k), and N represents the number of pairs of 249 

time series elements. Q is the median of all values of slopes. A positive value Q indicates an increasing trend, 250 

whereas a negative represents a decreasing trend. More calculating processes regarding the MK test are 251 

included in the Supplementary and Appendix Data. As effective tools, the combination of the MK test and 252 

Sen’s slope can assess if there is a monotonic positive or negative trend of the hydrometeorological variables 253 

over time (Gocic and Trajkovic 2013, Wang et al. 2020). The test process is fully non-parametric in that the 254 

data assessed do not conform to any distributions. 255 

Additionally, the sub-interval trend assessment is conducted when no statistically significant trends exist for 256 

the whole period. Specifically, the study designs a sliding window: the starting point is the beginning of the 257 

https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/parametric-and-non-parametric-data/


year 1950 and the initial length of the time window is fixed to 10 years; the repetitive testing process is 258 

performed by extending the window length year by year, the round will not be ceased to enter the next round 259 

until a significant trend is detected. For example, the first significant trend is located in the interval [1950, I] 260 

(I is 1960 or larger), then a repeating process begins from the interval of [I, I+J] (J is from 10) to find the 261 

next interval depending on the appearance of significant trends. If no trend exists, the work will be terminated 262 

when the terminus (the sum of I and J) is over 2021. This frame is repeated with a dynamic starting point 263 

from 1950 to 2011. 264 

3.4 Analyzing spatial clusters 265 

To explore the spatial clustering patterns of CWDEs, the Global Moran’s Index (GMI) and Anselin Local 266 

Moran Index (LMI) are used. The global and local autocorrelation will be discovered regarding the variables 267 

between a certain spatial region and neighboring regions (Agarwal et al. 2022, Liu et al. 2022, Treppiedi et 268 

al. 2021). Before the clustering processes, we define a new index, the comprehensive severity index (CSI), 269 

to measure the overall performance of CWDEs. Considering the equal importance of all three dimensions of 270 

events, a linear model is constructed based on equal weights of NUM, MAG, and INT.  271 

GMI measures global auto-correlation based on both the feature locations and feature values. The index 272 

derived summarizes the overall clustering information. A positive index will be found when the dataset tends 273 

to cluster spatially, which means high values cluster near other high values and low values cluster near other 274 

low values spatially. Otherwise, there is a dispersed pattern or no random distribution for given variables. 275 

From -1 to +1, the -1 represents the perfect negative spatial autocorrelation, such as a regular pattern or 276 

dispersion, whereas the +1 describes a perfect clustering distribution (CSI in our case). The statistical 277 

reliability of the results is estimated by the z-score and p-value as well, and the significant level is determined 278 

as 5%.  279 

Beyond the general clustering pattern provided by GMI, more directive and inner information is needed to 280 

detect which regions are similar to or different from their neighborhood. By doing that, highly risky clusters 281 

will be discovered with higher severity of CWDEs in the study area. In this case, LMI is capable of exploring 282 

significant inner clusters (significance level of 5%) among each grid cell, which could produce five categories 283 

(Table 1) including the none-significant group, high-to-high cluster (HH), low-to-low cluster (LL), high-to-284 

low outlier (HL), and low-to-high outlier (LH).   285 



In summary, the clustering analysis begins with the calculation of GMI to determine if an overall clustering 286 

pattern exists for the whole space of WRs and DRs. If so, inner cluster information will be further given by 287 

computing LMI. The results will specify the geographical locations of CWDEs at a high resolution, such as 288 

county-level administrations, thereby optimizing resource allocation for those vulnerable areas.  289 

Table 1 Different implications of clusters in the Anselin Local Moran’s Index 290 

Clusters Implications 

No-significant No significant clustering effect statistically 

High-high  A high value of CSI near other neighbors with high values as well 

High-low A high value of CSI near other neighbors with low values 

Low-high  A low value of CSI near other neighbors with low values 

Low-low  A low value of CSI near other neighbors with low values as well 

4 Results 291 

4.1 Dry and wet regions 292 

The 10th and 90th percentiles are finally determined as thresholds to denote overall conditions of dryness and 293 

wetness for each grid over the period investigated. The corresponding distribution maps are displayed in 294 

Figure B.1 in the Supplementary and Appendix Data. As relatively higher/lower thresholds in long-term 295 

series, the two values can be used to capture the abnormal wet and dry conditions (Tan et al. 2023). 296 

Meanwhile, the classification of climatic regimes produced by the combination of the two thresholds (Figure 297 

2) is well validated by the annual average precipitation distribution in the Hydrological Atlas of Germany 298 

(Figure B.4 (b) in Supplementary and Appendix Data). The atlas, developed based on ground observations, 299 

is publicly published by the Federal Institute of Hydrology (Bundesanstalt für Gewässerkunde, 300 

https://geoportal.bafg.de).  301 

As shown in Figure 2, out of 7142 cells (another 1039 grid pixels lack the data), 30% of Germany is identified 302 

as the more vulnerable WRs and DRs, with 70% of them being DRs. Only 9% of the national land is 303 

dominated by wetter regimes. Wet cells are mainly concentrated in the southern parts of Germany, and a few 304 

are found in the central parts of the Rhine and eastern regions in the Danube basin. In particular, more than 305 

half of the wet spots are found in the Danube basin, as validated by evidence from historical records of 306 

https://geoportal.bafg.de/


destructive EWs there (Becker and Grünewald 2003, Blöschl et al. 2013, Blöschl et al. 2016). On the contrary, 307 

DRs are more discretely distributed in almost all basins with various proportions (Table A.1 in the 308 

Supplementary and Appendix Data). Notably, a bulk of DRs are found in the northeastern lowlands and some 309 

southwestern regions of Germany. These areas have been characterized as vulnerable dry regions due to the 310 

significant impact caused by phenomenal EDs (Scharnweber et al. 2011, Erfurt et al. 2019, Süßel and 311 

Brüggemann, 2021, Ihinegbu and Ogunwumi, 2022). 312 

 313 

Figure 2.  Agents of different climate regimes. The wetter regions are labeled by values 2 and 3, indicating 314 

a significant level of 5% and 1%. Conversely, regions are marked with -2, and -3 representing drier areas, 315 

highlighting a similar level of significance. 316 

4.2 Individual extremes  317 

Spatial variations of individual extremes are shown in Figure 3, including spatial distributions of the number, 318 

magnitude, and intensity of EWs and EDs. Figure 4 represents all significant trends found in WRs and DRs. 319 

As a supplement, the overall number of grids with a significant trend and the specific locations with the 320 

greatest slopes are provided in Table A.2 and Table A.3 in the Supplementary and Appendix Data, 321 



respectively. The thorough discussions of EDs and EWs will lay a solid foundation for comprehending the 322 

behaviors of CWDEs. 323 

4.2.1 Spatial distribution  324 

In general, the distribution patterns of the number and magnitude of EDs demonstrate spatial homogeneity. 325 

Specifically, these two variables exhibit comparable levels across different regions. In both DRs and WRs, 326 

the median of ED’s number is around 1.2 (per year), and the magnitude of these events is nearly equal to -327 

2.2 of SPI (per event). These findings are illustrated in Figures B.3 (a) and (b) in the Supplementary and 328 

Appendix Data. Nevertheless, a few higher values of EDs’ number and magnitude are observed within DRs, 329 

primarily concentrated in the central Elbe basin and central-western Rhine basin (Figure 3 (a) and (b)). 330 

Furthermore, distinct clusters of EDs with high risk implications become apparent when examining the 331 

distribution of ED’s intensity. The vulnerable regions, characterized by higher EDs’ intensity, are situated in 332 

the Rhine basin at the west end and eastern tips of the Elbe and Odra basin in Germany. Simultaneously, 333 

some regions marked by severe EDs are also identifiable in the southwest corners of the Rhine in WRs.  334 

Conversely, a great heterogeneity is detected in the distribution of EWs’ number and magnitude. The striking 335 

gap points to the yearly magnitude where the WRs triple the events in DRs (Figures B.3 (c) and (d) in the 336 

Supplementary and Appendix Data). The southern tips of the Danube and Rhine basin in WRs are the most 337 

susceptible areas which almost hold the highest number, magnitude, and intensity of EWs. As to DRs, some 338 

regions in the Weser and Rhine basins present a scattered distribution of higher numbers and magnitude of 339 

EWs. Plus, the western parts of the Elbe basin and most of the Schlei basin in Germany from the DRs show 340 

a greater intensity of EWs. 341 



 342 

Figure 3. Spatial distributions of extreme events. Figures (a)-(c) and Figures (d)-(f) are the distributions of 343 

extreme dry (EDs) and wet events (EWs) in both dry (DRs) and wet regions (WRs), respectively. From left 344 

to right, the figures display the spatial representation of the number (NUM), magnitude (MAG), and intensity 345 

(INT) of the extreme events. For each figure, the titles adhere to a consistent naming convention, utilizing 346 

corresponding abbreviations. For example, “EDs (EWs)_DRs (WRs)_NUM” refers to the number of EDs 347 

(EWs) in DRs (WRs). In the figures, the color red is used to depict the distribution of extreme events in DRs, 348 

and blue represents WRs. Additionally, a darker shade indicates a higher level of NUM, MAG, or INT.  349 

4.2.2 Temporal trends 350 

(1) Extreme wet events 351 

In general, there is an increasing trend in all significant trends of EWs, regardless of the number, magnitude, 352 

or intensity, as illustrated in Figure 4. The most prominent trends are observed when measuring EWs by 353 

magnitude, subsequently followed by slower increases in the number and intensity of EWs. In detail, the 354 

median slope values of EWs’ magnitude are 0.70 and 0.45 in WRs and DRs, respectively. WRs with 355 



substantial uptrends are located in the eastern parts of Bavaria, the southeast corners of the state Nordrhein 356 

Rhine-Westphalia, and the southern state of Baden-Württemberg State in the Rhine basin. For DRs, bigger 357 

median slopes are located in the central part of Bavaria in the Danube basin and the northern part of Bavaria 358 

in the Rhine basin. Although the uptrends are evident both in magnitude and number of EWs, the average 359 

intensity of EWs remains steady both in WRs (0.03) and DRs (0.06). The generally larger uptrends suggest 360 

a larger scale of EWs in WRs, however, the study also finds some DRs have unexpectedly faster wetting 361 

steps than WRs, indicated by a more significant increasing ratio of the intensity of EWs in DRs than WRs 362 

(Figure 4 (c) and (f)).  363 

(2) Extreme dry events 364 

Compared to EWs, there is no drastic change in EDs, all regions remain at a steady level generally, especially 365 

for most DRs. However, subtle fluctuations are observed in some WRs, where the number of EDs shows a 366 

downward trend but the magnitude of EDs demonstrates an upward trend. About 7% of WRs show an 367 

apparent decrease in the EDs’ number with slopes ranging from 0.01 to 0.02. They are distributed widely in 368 

eastern parts of Bavaria and a few are scattered in the Baden-Württemberg. Conversely, around 5% of areas 369 

of WRs witness greater uptrends in the magnitude of EDs. These pieces of evidence indicate that fewer 370 

higher-magnitude EDs have happened over the past seven decades. In DRs, the intensity of EDs sees a clear 371 

clustering pattern where 6% of DRs showing downtrends gather in the adjacent parts of the Elbe basin and 372 

Oder basin in the northern part of Brandenburg State. More visible slopes are found in the magnitude and 373 

intensity of EDs in the DRs and are located in the southeastern state of Hessen and eastern Brandenburg State, 374 

although they account for only 1% of DRs.  375 



 376 

Figure 4.  Significant trends of extreme events (p≤0.05). Subfigures (a)-(c) show trends of EDs and EWs 377 

in D (dry regions), and subplots (d)-(f) present the yearly changes of extreme events in W (wet areas). The 378 

column from left to right represents the temporal tendencies regarding NUM (number), MAG (magnitude), 379 

and INT (intensity) of extreme events. The units of figures are: (a) and (d): number of events/year, (b) and 380 

(e): magnitude of events/year (EDs: SPI/year, EWs: mm/year), (c) and (f): intensity of events/year (EDs: 381 

(SPI/event)/year, EWs: (mm/event)/year). The points on the red spectrum show the trends of EDs (extreme 382 

dry events) and the blue squares display the information on EWs (extreme wet events). The titles of each 383 

figure follow a consistent naming rule, utilizing corresponding abbreviations. For example, “DEDs_NUM” 384 

denotes the slopes of EDs in the number in D.  385 

4.3 Compound extremes 386 

4.3.1 Seasonal characteristic 387 

The lumped analysis focuses on the seasonal behaviors of CWDEs, the result is shown in Figure 5. In total 388 

11689 events are detected across WRs and DRs, and 80% of them are from WRs. In principle, the CWDEs’ 389 



levels in WRs are far higher than the extremes in DRs, no matter in terms of number, magnitude, or intensity. 390 

The biggest difference is detected in the magnitude of CWDEs where the events in WRs exceed 14 times 391 

that of DRs, and even the smallest gap triples DRs shown in the intensity of CWDEs. Seasonal performance 392 

differentiates WRs and DRs most in autumn, and slighter differences are observed in other seasons with a 393 

declining ratio from the winter to the spring and summer.  394 

On the other hand, the intra-year analysis indicates that around 70% of events with a higher magnitude and 395 

intensity occur in the summer. Overall, the extreme degree of CWDEs behave similarly in spring and autumn, 396 

but both of them are stronger than events found in the winter. Such rules are well confirmed by the events 397 

found in WRs. However, the events in the spring measured by all indices are more dramatic than extremes 398 

detected in the autumn when we look at DRs solely. On the monthly scale, a great consistent distribution 399 

between DRs and WRs is observed, which shows that the more severe compounds concentrate in the months 400 

from May to September, especially in June and July. However, it is noted that CWDEs could happen in all 401 

remaining months at a lower intensity.  402 



 403 

Figure 5. Intra-year changes of compounding wet and dry extremes (CWDEs) on monthly and seasonal 404 

scales. (1) Figures (a)-(c) show monthly variations of the comprehensive severity index (CSI) of events in 405 

number (NUM), magnitude (MAG), and intensity (INT). From the left to the right, the sub-plot shows 406 

features of events found in both wet and dry regions, single dry regions, and single wet regions sequentially. 407 

The shade of blue depends on the values, with a darker one showing a larger value. (2) Figures (d)-(f) 408 

represent seasonal distributions of CWDEs. From top to bottom, the sub-plot presents features of whole 409 

regions, dry regions, and wet regions respectively, and the accumulative number (NUM) and magnitude 410 

(MAG) of extremes are shown by blue and red bars, and measured by the left axis; and the black dashed line 411 

describes the average intensity (INT) changes throughout the four seasons. 412 



4.3.2 Temporal trends 413 

Within inter-year changes, temporal trends of yearly CWDEs are analyzed in two different climatic regimes, 414 

the results are shown in Figure 6 and Table 2. Uptrends of CWDEs are dominant both in WRs and DRs over 415 

the past seven decades. For DRs, an increasing trend of CWDEs in magnitude and intensity is confirmed by 416 

the M-K test analysis, especially a greater slope regarding the magnitude of CWDEs. There is no persistent 417 

and robust tendency in the number of CWDEs. However, two sub-intervals are located since the strikingly 418 

increasing trends are examined, as indicated by the considerable increments with a slope value of 3 from 419 

1950 to 1973 and a slope value of 4 from 1978 to 1988.  420 

In contrast to DRs, the number of CWDEs exhibits a continued uptrend spanning from 1953 to 2021, with a 421 

steep slope of 1.448. Alongside this notable rise in CWDEs frequency, there is a substantial increase observed 422 

in the magnitude of CWDEs during the same period, characterized by a lower growth rate compared to the 423 

number of CWDEs. Notably, the intensity of CWDEs in WRs witnesses a complex pattern of fluctuation. A 424 

pronounced increase occurs from 1962 to 1974, followed by a marked decline over the subsequent decade. 425 

However, such alternations do not recur in recent years.  426 

 427 

Figure 6. Long-term trends of compounding wet and dry extremes (CWDEs). Figures (a) and (b) depict the 428 

trends of CWDEs in magnitude (MAG) and intensity (INT) in dry regions (DRs) spanning the whole period. 429 

Figures (c) and (d) show the trends of CWDEs in NUM (number) and MAG in wet regions (WRs) from 1953 430 



to 2021. All trends are determined by the M-K test, and the corresponding Sen’s slopes are labeled at the 431 

right corner in each sub-figure. The value of the slope with one/two asterisk(s) indicate(s) that the trend 432 

passes the significant test p ≤ 0.1/p ≤ 0.05.   433 

Table 2  Trends of compounding wet and dry extremes (CWDEs) in wet and dry regions 434 

Regions Variable Period Trend Slope Tau 

DRs 

NUM 

1950-1973 Increasing* 3 0.281 

1978-1988 Increasing** 4 0.5411 

MAG 1950-2021 Increasing* 0.062 0.201 

INT 1950-2021 Increasing** 0.002 0.212 

WRs 

NUM 1953-2021 Increasing* 1.448 0.184 

MAG 1953-2021 Increasing** 0.541 0.181 

INT 

1962-1974 Increasing** 0.024 0.455 

1973-1984 Decreasing** 0.383 0.491 

Note: the variables NUM, MAG, and INT indicate the number, magnitude, and intensity of CWDEs. One 435 

and two asterisks (*) indicate that the trend passes the significant test p ≤ 0.1 and p ≤ 0.05, respectively. 436 

4.3.3 Spatial clusters 437 

Figures 7 (a) and (b) illustrate the raw distribution and clustering results of CSI. CWDEs exhibit a highly 438 

clustered pattern both in WRs and DRs, indicated by a GMI of 0.86. Additionally, the z score of the result 439 

(159) confirms that the clustered spatial pattern is not random with more than a 99% confidence level. The 440 

spatial distribution of CWDEs is delineated into five groups, from the highest to the lowest percentage, LL, 441 

NS, HH, HL, and LH take up 45%, 35%, 19%, 1%, and nearly zero (only three grid pixels) of WRs and DRs, 442 

respectively. Specifically, the LL cluster suggests the regions are less susceptible to CHMEs. Almost all 443 

regions labeled as LL are located in DRs and cover all northeastern parts of Germany, including most of the 444 

Elbe, Oder, and Warnow basins. The H-L cluster is distributed sparsely in northeastern Germany, these areas 445 

are slightly vulnerable to CWDEs. Normally, such a category implies a few regions affected by severe 446 

CWDEs distribute among massive neighborhoods which are insensitive to CWDEs. 447 

More attention should be paid to two risky groups, including HH and LH clusters, as these groups are highly 448 

sensitive to CWDEs. The group of HH shows an intensive collection. Major regions (87%) are from WRs 449 

and are located in the southern tip of Germany. The rest of the regions mainly lie in the central parts of the 450 



Elbe basin and a few areas (1%) are found in the northeastern Rhine basin. On the other hand, there are three 451 

LH grid cells found in the northwestern part of the Rhine basin. These are in the margin of the HH block and 452 

are exposed to a hidden danger when CWDEs occur on a large scale. Last but not least, some uncertainties 453 

exist about the NS group, there is still no obvious evidence to determine whether they will be impacted by 454 

CWDEs. 455 

 456 

Figure 7.  Risky pattern of compounding wet and dry extremes (CWDEs) across wet regions (WRs) and dry 457 

regions (DRs), Figure (a) is the original distribution, while Figure (b) shows the clustering result of CWDEs. 458 

Five clusters are identified and labeled with different colors and point sizes shown by the legend.  459 

5 Discussions  460 

5.1 The identification of CHMEs 461 

Identifying CHMEs has been a challenge. Unlike individual extremes, the detection of the compound of 462 

multiple hazards not only involves overlapping features but also distinguishing threats from every constituent. 463 

The improved approach uses an independent identification method and scale to detect CWDEs within a 464 

limited window, which may yield more reliable results of CWDEs by considering individual components 465 

from evolving-based and impact-oriented perspectives. Compared to the copula theories (Sadegh et al. 2017) 466 

and complex networks (Boers et al. 2019), the study proposes an explicit definition and effective framework 467 



to identify CWDEs from analyzing concurrent events perspective. The method offers good flexibility and 468 

generalization since it avoids massive data to make fitting and/or intense computation and deep system 469 

knowledge (Raymond et al. 2020).   470 

Moreover, our study stresses that a separate system is needed concerning distinct components of CWDEs. 471 

The indiscriminate use of a unified method extracting various hazards may deliver inaccurate information 472 

about compound extremes, one reason for this is the same identification window used for all hazards, which 473 

could ignore the different time effects of particular types of extremes. Additionally, SIM assumes a known 474 

distribution to find well-fitted parameters for most normal samples in the population (Laimighofer and Laaha 475 

2022), inevitably abandoning the information of outliers from datasets. The loss of information may exclude 476 

extremely high and low values and further lead to greater uncertainties regarding CWDEs’ identification. It 477 

is argued that the drawback of SIM caused by the generalizing process could be weakened when using a long 478 

accumulative process for detecting durable events. Still, the procedure can not be effective in exploring 479 

rapidly developing events, such as EWs. Hence, our study suggests a cautious application of SIM especially 480 

when adopting unified windows for detecting compound events involving short-lasting but devastating 481 

extremes.  482 

5.2 The behaviors of CWDEs 483 

On a monthly scale, the co-existence of EDs and EWs indicates the short and severe flash droughts before or 484 

after days with heavy rainfall. Such a drastic and fast transition between contrasting events within a single 485 

month could pose a great challenge to the resilience of ecosystems (Zhang et al. 2023, Bi et al. 2023, Shi et 486 

al. 2022). In addition, the summer season is characterized as the most vulnerable period to CWDEs. The 487 

severity of CWDEs could be exacerbated by summer heat waves (HWs) which have been observed with an 488 

increasing frequency and a spatial evolution from the northern to southern parts of Germany (Matzarakis et 489 

al. 2020). The combinations of HWs and CWDEs could give rise to high-impact wet-hot, dry-hot events, or 490 

both types, leading to massive devastation to urban infrastructure and ecological community (Gu et al. 2022, 491 

Obladen et al. 2021, Zscheischler et al. 2020). Even worse, the substantial uptrends in the magnitude and 492 

intensity of CWDEs have been determined both in DRs and WRs of Germany. It indicates that the occurrence 493 

of severer events could continuously increase under the changing climate, alarming the need for more 494 

attention and preparation to cope with the potential threats.  495 



Furthermore, Morans’ clustering analysis reveals the location and density of different groups that represent 496 

the five risk levels prone to CWDEs. It is observed that most of the events (80%) and hazardous areas (87%) 497 

related to CWDEs are concentrated in WRs in low-altitude regions. This finding suggests that a chronic moist 498 

environment could be conducive to severer CWDEs compared to a drier climate. Besides, a clear negative 499 

correlation is discovered between the performance of CWDEs and their geographical position, shown by the 500 

-0.6 Pearson coefficient (PC) and the -0.5 Spearman coefficient (SC). The fiercer CWDEs tend to strike 501 

mountainous terrain, where higher elevation exerts a great influence on local air temperature dynamics and 502 

further impacts convective movement (Arnoux et al. 2021). These variations directly contribute to 503 

complicated and volatile hydrometeorological processes and the occurrence of associated compounding 504 

anomalies. In light of the direct exposure to CWDEs, it is crucial to emphasize vegetation impact, as plants 505 

are expected to be more fragile during the period of CWDEs, such as several forests in the southern Rhine-506 

Main and Danube Basin (Florian Süßel and Brüggemann 2021). In the Alps area, a region known as highly 507 

sensitive to climate change (Arnoux et al. 2021), the CWDEs may disturb the ecological stability of 508 

grasslands and water balance.  509 

5.3 The attributions of CWDEs  510 

As a bivariate hazard, changes in CWDEs are attributed to variations in EDs and EWs. Therefore, we further 511 

conduct a correlation analysis between EDs/EWs and CWDEs, the results are shown in Figure B.2 in the 512 

Supplementary and Appendix Data. The severity of CHMEs in WRs is more associated with EDs (0.84 in 513 

PC and 0.87 SC) than EWs (0.56 in PC and 0.46 SC), which indicates that variations of EDs are more 514 

influential in developing visible changes in CWDEs. It is generally verified by a homogeneous distribution 515 

of EWs with a comparable level but a heterogeneous pattern of EDs among all CWDEs in WRs, as shown in 516 

Figures B.3 (a) and (c) in the Supplementary and Appendix Data. Based on the dominance of EDs to CWDEs, 517 

the southeast regions in the Danube basin in WRs are stressed additionally. These areas could encounter high-518 

impact EDs and CWDEs in the future as the decreasing number but the increasing magnitude of EDs has 519 

been examined (Figure 4 (d)-(e)).  520 

In contrast, the emergence of CWDEs in DRs is more easily facilitated by EWs, as demonstrated by PC of 521 

0.93 and SC of 0.81. Therefore, the study places extra emphasis on northern parts of Germany considering 522 

possible CWDEs caused by increasing EWs in (Figure 4 (a)-(c)). Particularly, a few regions located in the 523 



state of Brandenburg should raise major concerns due to the uptrend founded in INT of EWs. The more 524 

dispersed distribution of INT of EWs implies a more powerful control on CWDEs in DRs, shown by Figure 525 

B.3 (c) in the Supplementary and Appendix Data. It is reported that economic damage in the state of 526 

Brandenburg inflicted by EDs solely has reached around 72 million euros, and 77.54% of the total agricultural 527 

land fell within the high drought zones during the event in 2018 (Ihinegbu et al. 2022). Extra threats coming 528 

from the increasing occurrence of CWDEs could aggravate soil erosion and land degradation (Chen et al. 529 

2020, Handwerger et al. 2019). Therefore, as a big crop-exporting country, the study calls attention to food 530 

security as the identified areas of CWDEs are mainly responsible for planting main crops (e.g., wheat, and 531 

potatoes). 532 

5.4 Limitations and Outlook 533 

There are still some limitations in the current work that require further exploration. First of all, uncertainties 534 

could exist in the input. Reanalysis data present potential errors compared with ground observations obtained 535 

from the Federal Institute of Hydrology (Figure B.4 in the Supplementary and Appendix Data). For example, 536 

they overestimate some low values in the northeastern part of Germany. However, the general distribution 537 

compares well to the observational data at point gauges (Rivoire et al. 2021, Gomis-Cebolla et al. 2023, Wu 538 

et al. 2023). As a result, they could effectively capture the climatic division and identify events.  539 

Second, the study focuses on a single key driving force (precipitation) for characterizing CWDEs. The 540 

ignorance of other climatic and anthropogenic factors could compromise the accuracy of identified extremes 541 

(Brunner et al. 2022, Stuart-Smith et al. 2021). For example, snow and temperature are other crucial indices 542 

influencing the behaviors of HMEs referencing snow-melting floods and hot-dry events in Germany (Krug 543 

et al. 2020, Merz et al. 2020, Steidinger et al. 2022, Zscheischler and Fischer 2020). At the same time, the 544 

formation and impact of HMEs can be either alleviated or aggravated by human activities (Jehanzaib et al. 545 

2020, Pirnia et al. 2019a, 2019b, Shao and Kam 2020, Zhang et al. 2022), typically reservoir regulation, 546 

agricultural irrigation, and land surface changes caused by urbanization processes. Therefore, a 547 

comprehensive system involving more crucial drivers could be a focal issue in detecting CWDEs in future 548 

studies.  549 

Lastly, more future investigations should prioritize the examination of the successive changes within the 550 

inner dynamics of CWDEs and their teleconnections with climate variations. Previous studies have revealed 551 



that stable and robust teleconnections exist between climate variations and dry/wet oscillations on a large 552 

scale, particularly the strong influence of the North Atlantic Oscillation on short-term fluctuations of extreme 553 

events in Europe (De Luca et al. 2020, Sun et al. 2016). However, the linkage between climate change and 554 

CWDEs at a local scale remains unclear.  555 

6 Conclusions 556 

Due to climate change, more frequent and severe CHMEs are expected to occur in the future. To deepen the 557 

understanding of CHMEs, the study proposes a separate system to explore a new category of compounding 558 

hazards based on SIM and POT in two different time scales. Long-term spatiotemporal variations and risky 559 

patterns of CWDEs are fully investigated in Germany by using OLS, M-K test, GMI, and RMI respectively.  560 

Our findings reveal a strong seasonal effect of CWDEs where the summer season undergoes the most serious 561 

events while winter is the most resilient period. Long-term robust increases in different aspects of CWDEs 562 

are observed both in DRs and WRs. Furthermore, the highly clustered pattern of the spatial distribution of 563 

CWDEs is determined, which indicates more hazardous areas are mainly located in the south of Baden-564 

Württemberg State in the Rhine basin and Bavaria in the Danube basin, as well as in some parts next to Berlin. 565 

In addition, we uncover that chronic wet conditions and complex mountainous geography could induce severe 566 

CWDEs. Based on strong links between EWs (EDs) and CWDEs in DRs (WRs), we further highlight that 567 

several areas could frequently experience disastrous CWDEs in the future, including the state of Brandenburg 568 

and southeast regions in the Danube basin. Therefore, there is a pressing need for applicable approaches and 569 

management frameworks within these areas to enhance ecological resilience and effectively mitigate the 570 

impacts of CWDEs. 571 

Moreover, the study calls for more attention to compounding HMEs with distinct features and highlights the 572 

different time effects of wet and dry events in the study. The proposed framework can also be applied to other 573 

regions due to explicit methods and open data sources and can be extended to other CHMEs by employing 574 

EWs with other types of drought phenomena (e.g., agricultural, soil moisture, and socio-economic droughts). 575 

For future studies, we appeal to the comprehensive identification of CWDEs by incorporating additional 576 

information on local hydrological and water management factors (e.g., catchment characteristics, 577 

groundwater level, reservoir operation, etc.). Last but not least, studies on driving forces and impacting 578 



mechanisms of CWDEs will greatly benefit hazard preparations and adaptation planning during the climate-579 

changing process. 580 
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