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ABSTRACT

Rayleigh–B�enard convection (RBC) is a recurrent phenomenon in a number of industrial and geoscience flows and a well-studied system from
a fundamental fluid-mechanics viewpoint. In the present work, we conduct numerical simulations to apply deep reinforcement learning (DRL)
for controlling two-dimensional RBC using sensor-based feedback control. We show that effective RBC control can be obtained by leveraging
invariant multi-agent reinforcement learning (MARL), which takes advantage of the locality and translational invariance inherent to RBC flows
inside wide channels. MARL applied to RBC allows for an increase in the number of control segments without encountering the curse of
dimensionality that would result from a naive increase in the DRL action-size dimension. This is made possible by the MARL ability for re-
using the knowledge generated in different parts of the RBC domain. MARL is able to discover an advanced control strategy that destabilizes
the spontaneous RBC double-cell pattern, changes the topology of RBC by coalescing adjacent convection cells, and actively controls the result-
ing coalesced cell to bring it to a new stable configuration. This modified flow configuration results in reduced convective heat transfer, which
is beneficial in a number of industrial processes. We additionally draw comparisons with a conventional single-agent reinforcement learning
(SARL) setup and report that in the same number of episodes, SARL is not able to learn an effective policy to control the cells. Thus, our work
both shows the potential of MARL for controlling large RBC systems and demonstrates the possibility for DRL to discover strategies that move
the RBC configuration between different topological configurations, yielding desirable heat-transfer characteristics.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0153181

I. INTRODUCTION

Deep reinforcement learning (DRL) has recently emerged as a
promising methodology for performing active flow control1 (AFC).
DRL is a subclass of the much more general field of RL, where deep
artificial neural networks are used to parameterize the value function
in Q-learning methods2 or serve to parameterize the policy or the
mapping from state to actions in policy gradient methods.3,4 The DRL
“controller,” which includes the control law to be applied on the sys-
tem, and algorithms around it to allow tuning of the control law and
query of the control law, is called the DRL agent. The general principle

of the (D)RL paradigm5 is based on considering the system to control
as a black box (the “plant” in classical control theory or the
“environment” in DRL terms) and to interact with it through just
three channels of communication. At a given time step t, (i) the DRL
agent can query the environment for a (possibly noisy, stochastic) state
estimate st; (ii) the DRL agent can provide to the environment a con-
trol instruction called the action in DRL terms, at; and (iii) the envi-
ronment can provide back a reward rt that indicates the quality of the
current state of the system. Based on these three channels of interac-
tion, the DRL paradigm aims at defining effective algorithms to learn

Phys. Fluids 35, 065146 (2023); doi: 10.1063/5.0153181 35, 065146-1

VC Author(s) 2023

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

 06 February 2024 14:19:51

https://doi.org/10.1063/5.0153181
https://doi.org/10.1063/5.0153181
https://doi.org/10.1063/5.0153181
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0153181
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0153181&domain=pdf&date_stamp=2023-06-30
https://orcid.org/0000-0002-6576-9094
https://orcid.org/0000-0002-7244-6592
https://orcid.org/0000-0003-4373-6520
https://orcid.org/0000-0003-0704-6100
https://orcid.org/0000-0002-3293-7573
https://orcid.org/0000-0001-6570-5499
mailto:rvinuesa@mech.kth.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0153181
pubs.aip.org/aip/phf


control strategies that maximize the combined expected rewards at all
future times from the given state at time t, also known as the expected
return Gt ¼

P1
k¼0 rtþkþ1c

k, where c is the discount factor, typically
c � 0:95� 0:99. In order to make the computation of Rt tractable,
DRL interaction with the environment takes place on an episode basis
during training. An episode is a simulation with a given time extent
(typically covering a few timescales of the slowest dynamics of the sys-
tem) and corresponds to one individual trajectory of the system in its
phase space. The optimization of the control applied by the DRL agent
is performed through trial-and-error learning and direct online inter-
action with the environment, a process that involves stochastic explo-
ration of the environment properties (referred to as the “training
mode” of the DRL agent). This allows to explore andmap the behavior
of the environment and to determine the best trajectory that the envi-
ronment should be actuated to follow in the phase space to optimize
the reward. A number of algorithms have been developed to perform
this optimization, the most famous belonging to either (i) the Q-
learning paradigm6,7 based on the Bellman equation; (ii) the policy-
gradient method,8 which relies on a direct estimate of the sensitivity of
the reward to the policy parameters; and (iii) a combination of both
paradigms, such as the actor-critic proximal-policy optimization
(PPO) method,9 which combines their respective strengths. Once the
trial-and-error learning process has converged and the DRL agent is
fully trained, the trial-and-error exploration component can be turned
off, so that a deterministic controller is obtained (corresponding to the
“deterministic mode” of the DRL agent).

This DRL framework is very attractive for the control of com-
plex, high-dimensional, non-linear systems such as those obtained in
AFC. Indeed, DRL does not make any assumptions on the system to
control; actual DRL algorithms have been increasingly refined in the
course of the last 10 years and are well adapted to solve non-linear,
high-dimensional control problems from games,7,10,11 industrial con-
trol problems,12 or classical physical systems such as those present in
fundamental fluid mechanics.13,14 Compared with traditional
approaches, such as the adjoint method,15 DRL does not need direct
insight into the full state of the system and its governing equations.
Moreover, while DRL training is expensive in terms of the number of
interactions with the environment needed for the trial-and-error learn-
ing to take place, once the DRL agent is trained, predicting the next
action to take given the current state is very cheap computationally.
These aspects make DRL an attractive method for real-world control
applications, including AFC.

Over the last 5 years, DRL for AFC has been applied to increas-
ingly complex cases. Starting from simple 2D cylinder cases16 at low
Reynolds number (Re ¼ UL=�, which measures the relative impor-
tance of inertia and viscosity, where U is the characteristic velocity
scale of the system, L its characteristic length scale, and � the kine-
matic viscosity), DRL has further been used for investigating a number
of different configurations involving 2D cylinders,17–20 looking into
increasingly complex stochastic wake control problems as Re is
increased,21,22 and recently, considering the control of 3D channel
flows.13,14 DRL has also been applied to a number of other AFC cases,
from 2D Rayleigh–B�enard convection in a small-size channel,23 to
instabilities developing in thin fluid films,24 engineering cases related
to wings,25,26 and other practical problems.27–29 DRL has also been
combined with flow-stability analysis to guide the placement of obser-
vation probes20 for effective control. In this case, a stability analysis

was used to reveal the structural sensitivity that determines the loca-
tion of the origin of the instability, i.e., the “wavemaker” region. The
structural sensitivity can also be computed using data-driven techni-
ques.30 Positioning the observation probes in the region of the wave-
maker has shown to achieve the best possible learning curve with the
reward maximization then taking place in the least number of epi-
sodes, compared with other configurations of observation probes.20

While these studies have mostly considered numerical test cases, dem-
onstrations of the applicability of DRL for real-world AFC have been
presented in test experiments.31

Moreover, a number of peripheral challenges associated with dis-
covering efficient flow control strategies have been solved over the last
few years. Rabault and Kuhnle32 demonstrated how the multi-
environment paradigm can be leveraged to obtain speedups in training
speed proportional to the number of environments used. In particular,
they showed that DRL training speed is directly proportional to the
number of (state, action, and reward) triplets generated per wall clock
time unit, and that this is in turn directly proportional to the number
of CFD simulations used in parallel to train the DRL algorithm and
feed it with data streams. Belus et al.24 have demonstrated that the
curse of dimensionality on the control dimension can be effectively
solved by leveraging a multi-agent reinforcement-learning (MARL)
approach (although the authors did not refer to MARL under this
name at the time), in cases where some general properties of the sys-
tem are invariant in space. In particular, MARL was demonstrated to
be an effective way to control systems containing several generally sim-
ilar structures that are far enough to be mostly independent from each
other, by sharing the knowledge acquired among them. This, in turn,
allows to reduce the combinatorial cost and alleviate the curse of
dimensionality associated with the exploration of large action spaces.

Following these advances, DRL can now be used to control differ-
ent physics as the effect of non-linearity increases,22 to perform effec-
tive control over a range of flow conditions in simple AFC test cases,33

or to control complex three-dimensional (3D) turbulent channel
flows.14 DRL has also been demonstrated in a number of test situations
involving chaotic flows, such as the one arising from the one-
dimensional (1D) Kuramoto–Sivashinsky system of equations.34,35

The placement and optimization of the sensor inputs used to drive
DRL algorithms has also been investigated, see Refs. 36 and 37. As the
literature is growing fast, we refer the reader curious of a more detailed
overview of DRL applications to fluid mechanics in general and AFC
in particular to one of the several reviews that have recently been pro-
vided on the topic.38–40 Similarly, DRL is becoming an increasingly
common topic in AFC, and the DRL methodology per se has now
been discussed in a number of AFC studies, so we refer the reader
curious of specific DRL algorithmic details and refinements to the cor-
responding body of literature.41 As a consequence of this increasing
popularity, DRL frameworks are starting to emerge, both in the
DRL42–44 and in the fluid-mechanics communities,45–47 a fact that
now provides frameworks for effectively coupling DRL with well-
established computational-fluid-dynamics (CFD) tools. This makes it
increasingly easier to apply DRL to AFC problems.

At this point, we want to emphasize that, while DRL is a promis-
ing method given that it has provided state-of-the-art results in a vari-
ety of fields as previously discussed, it is not the only method that can
perform AFC by considering the flow to control as a black box to be
optimized. Machine-learning control (MLC48–50) has, indeed, been a
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topic of discussion for quite a long time, and the DRL method is, in
this aspect, a newcomer in this field. Traditionally, methods such as
genetic programing (GP51,52) or Bayesian optimization (BO53) have
also been applied with great success to a variety of practical prob-
lems54–57 and can be competitive with DRL in a number of applica-
tions.58 However, we focus our efforts on DRL in the present study, as
DRL is showing great flexibility in constraining the admissible struc-
ture of the control law (see, e.g., the discussions around invariants and
MARL in Ref. 24). Moreover, the DRL methodology is promising
thanks to its ability to use local (in space, but also in time) information
to perform optimization. Compared to, e.g., a direct application of GP
or BO, which only optimize based on the mean efficiency of a control
law over one simulation containing several typical physical time scales
of the underlying dynamics, and which do not exploit information
about the high-frequency quality of the control law, DRL gets a reward
at each interaction step. Thus, DRL can learn to both reproduce posi-
tive sequences of actions and avoid negative sequences of actions hap-
pening within a single episode. As a consequence, DRL is able to
generate information about the quality of the control law at a higher
time granularity than the episode itself and generates a larger volume
of usable reward information than would be provided by monitoring
for example the averaged reward over an episode.

In the present work, we use DRL techniques to discover effective
strategies to control the instabilities and the heat flux in a two-
dimensional (2D) Rayleigh–B�enard convection (RBC) problem. The
RBC phenomenon is intrinsic to many industrial applications and can
be found in a wide range of natural phenomena.59 The canonical ini-
tial condition in a RBC problem is a fluid at rest that is being heated
from a lower wall and/or cooled from an upper wall (see Fig. 1).
Because of the induced temperature gradients and due to the fluid-
buoyancy effects, natural convection occurs. The dynamical state of
the RBC system can be characterized by a non-dimensional parameter,
the Rayleigh number Ra, which is a ratio of the timescale of heat trans-
port by diffusion or conduction to the timescale of heat transport by
buoyancy-induced convection. Beyond a critical value of Ra¼Rac
when convective effects dominate, RB instability occurs through a
supercritical bifurcation from an initial quiescent state, to time-
dependent cellular motion.60

The convective cells cause a non-spatially uniform heat transfer
along the domain, as well as large-scale fluid motions and structures
containing significant kinetic energy, which can be detrimental in
many industrial applications. Thus, control of RBC is crucial to maxi-
mize the efficiency and quality in industrial processes or systems in

various sectors. The control might involve, for example, modulating
the spatial distribution of the bottom-plate heating in the canonical
RBC configuration. Optimizing such a control is challenging topic for
classical control-theory methods. Indeed, many classical linear-control
techniques such as the adjoint method have only a limited domain of
applicability, owing to their local, linear nature, which limits their abil-
ity to control non-linear phenomena such as RBC.

Passive flow control has been extensively used with minor
improvement in the Rac for which instabilities start.61–65 On the other
hand, AFC has explored more sophisticated control strategies that
manage to keep a stable convective cell at considerably higher
Rayleigh numbers than Rac. The most common way of carrying out
this AFC has been with the use of jet controllers, performing small
perturbations of the velocity and/or temperature, or with a linear con-
trol of the temperature in the heated boundary layer.66–80 In configura-
tions where the RB instability is too strong to be completely
eliminated, a reduction in the strength of the RBC cells and associated
flow motion, as well as kinetic energy, are also key goals.23 Recently,
the use of DRL to control the RBC has been employed for the first
time in Ref. 23. Comparing the results with the linear control
employed in Ref. 80, the Rac beyond which instabilities start to emerge
in the specific configuration considered was increased from 104 to
3� 104, and even in the case where RBC cells were present, their
intensity was strongly reduced.

In the present work, we extend the work in Ref. 23 (which we
will refer to in the rest of this paper as GB for “Gerben Beintema,”
from the name of the lead author), to look further into DRL control of
RBC. In particular, we improve on the following aspects:

• The domain used by GB is bounded by adiabatic walls on the
right and left ends, and the domain itself is relatively narrow.
This in turn constrains the RBC cells obtained. Moreover, the
walls presented in GB’s setup can be used by the DRL agent to
help move around and break the RBC cells, as they provide
strong flow confinement. By contrast, we use a wider domain of
height H¼ 2 and width L ¼ 2p (compared with the H¼ 1 and
L¼ 1 used in GB) with periodic conditions on the right and left
boundaries. In other words, our domain has an aspect ratio of p
compared with the aspect ratio of 1 used in GB. As a conse-
quence, our DRL agent has to control the RBC instabilities with-
out the possibility to help itself with the walls, and the RBC cells
are closer to unconstrained cells obtained in wide domains rele-
vant for industrial use.

FIG. 1. Schematic representation of the
domain. Dimensions are normalized by H.
Temperature is controlled at the bottom
wall, which is at an average temperature
TH. The upper wall is at a uniform con-
stant temperature TC, so that TH > TC,
generating natural convection and the
emergence of the convective cells. Black
dots show the position of the observation
probes, distributed as a uniform probe-
mesh over the domain. Orange and blue
segments in the lower wall correspond to
the control segments.
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• One limitation in GB’s work is how DRL control is applied to the
RBC simulation. In order to control the RBC cells, GB modulates
the temperature at the lower wall, keeping its mean temperature
constant. This, naturally, means that multiple outputs, i.e., tem-
perature perturbations on bottom-wall segments, need to be
applied to the N different control segments at the bottom wall.
GB formulates this control problem by simply asking a single
DRL agent to generate N outputs. As discussed in Ref. 24, this
approach results in the curse of dimensionality on the control
space, which makes learning challenging. By contrast, we apply
the invariant MARL approach suggested by Ref. 24, which allows
to control an arbitrary number of heating segments without
resulting in the curse of dimensionality. This has a considerable
impact on our ability to rapidly learn an effective control of the
RBC system.

• GB uses a lattice Boltzmann method (LBM), parallelized to run
on a specific graphics-processing unit (GPU), to help accelerate
the simulations. In such a way, GB partially alleviated the curse
of dimensionality introduced by controlling a multiple-output
DRL system without using a MARL approach. Indeed, the use of
a GPU-parallelized LBM allows GB to run a very large number of
DRL trial-and-error steps and, therefore, to partially compensate
for the very slow and challenging learning arising due to the
curse of dimensionality. Note, however, that this is only applica-
ble for narrow channels with a limited number of control values,
where the curse of dimensionality remains under control.
Moreover, LBM is effective, especially as they are well adapted to
the parallel nature of GPUs, but understanding their accuracy
can be challenging. Finally, GB’s implementation is not publicly
released and may be hardware dependent. By contrast, we use a
spectral Galerkin solver running on standard central-processing
Units (CPUs). The solver is both open source, massively paralle-
lizable across many CPU cores, has high order and well-
understood accuracy (see Sec. II for more information).
Moreover, we release all our code as open-source materials (see
Appendix A). Our code can, therefore, be used to further evaluate
a wide range of domain sizes and non-dimensional parameters in
future studies.

The structure of our study is as follows. In Sec. II, we describe the
formulation of the RBC problem including the geometry, equations,
and boundary conditions adopted (Sec. II. A.). We then describe the
numerical method used to simulate the CFD (Sec. II B.), followed by
the details of the DRL-based control (Sec. II C.). In Sec. III, we proceed
to present the results. We compare the RBC obtained without control
(baseline) to the case with control following a non-MARL method
similar to GB and also to the case with control following a MARL
approach. We discuss learning speed and robustness. We then show
that the invariant MARL controller is able to effectively coalesce RBC
cells in the case studied. Finally, we discuss this result and its implica-
tion for future works and industrial applications in the conclusions in
Sec. IV.

II. METHODOLOGY
A. Formulation of the RBC problem

The governing equations for this problem are the well-known
Navier–Stokes equations. In order to formulate these equations in a
form adapted to our problem, we use the Boussinesq approximation,

which considers the influence of the density gradients only in the grav-
itational forces term and assumes that density variations are small
compared to velocity gradients. Thus, this formulation neglects density
changes in the continuity equation, which then translates into a zero-
divergence equation. Therefore, under the Boussinesq approximation,
for a non-Newtonian incompressible flow, we obtain the continuity
[Eq. (1a)], momentum [Eq. (1b)], and energy [Eq. (1c)] equations in
dimensionless form81

r � u ¼ 0; (1a)

@u
@t
þ u � rð Þu ¼ �rpþ

ffiffiffiffiffiffi
Pr
Ra

r
r2uþ Tj; (1b)

@T
@t
þ u � rT ¼ 1ffiffiffiffiffiffiffiffiffiffi

RaPr
p r2T; (1c)

where i and j are the Cartesian unit vectors pointing along the coordi-
nate axes x and y, respectively, and the x-axis is parallel to the walls.
The corresponding velocities for each spatial coordinate are uðx; y; tÞ
and vðx; y; tÞ, respectively, uðx; y; tÞ ¼ uiþ vj is the velocity vector, t
is the time, pðx; y; tÞ is the pressure, and Tðx; y; tÞ is the temperature.
Along with Ra, the Prandtl number Pr is another dimensionless num-
ber that governs the dynamics of the flow. These numbers are
expressed as follows:

Ra ¼ a TH � TCð ÞgH3

j�
; (2a)

Pr ¼ �

j
; (2b)

where a is the thermal expansion coefficient of the fluid; H is the
normalized domain half height; g is the gravitational acceleration
with a downward vertical direction, i.e., in our case, perpendicular to
the walls; � is the kinematic viscosity of the fluid; and j is the ther-
mal diffusivity. In our setup, the flow is confined between the bottom
hot wall, at a mean temperature TH¼ 2, and the cooler upper wall,
at a uniform constant temperature TC¼ 1. The former temperature
(TH) is also uniform in what we call the “baseline” case (i.e., when
no control is applied), but it varies with spatial position in what we
call the “controlled” case, as discussed below. Both walls are sepa-
rated by a distance 2H, and the no-slip boundary condition is
applied at both walls. Periodic boundary conditions are applied at
the lateral ends of the domain, which has a normalized width
L ¼ 2pH. Figure 1 provides a schematic representation of the RBC
domain.

During the entire study, the Prandtl number employed is
Pr¼ 0.71, which corresponds to the Prandtl number of air. As
described in the introduction (Sec. I), Ra is the ratio of the timescales
associated with the thermal transport due to diffusion and convection.
This implies that flows with a high Ra are more prone to instabilities
due to buoyancy-driven convection. The Ra used in this work is
Ra ¼ 104, which is above the critical Rac when no control is applied in
the flow.

Another very important non-dimensional number in heat-
transfer problems, which is closely related to Ra and is the Nusselt
number (Nu), defined as the ratio of the fluxes due to convective heat
transfer to conductive heat transfer. For comparison purposes in the
results section of the article, we will adopt the same definition as in
Ref. 23,
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Nu ¼ �q
j TH � TCð Þ=H ; (3)

where qðtÞ is the time-averaged heat flux in the domain given by

�q ¼ hvT ix �
1ffiffiffiffiffiffiffiffiffiffi
RaPr
p @h�T ix

@y
: (4)

Here, the brackets, h�ix , indicate averaging with respect to the indicated
spatial direction and the overbar,��, indicates average in time. A descrip-
tion of the method of derivation of Eq. (4) is given in Appendix B.

B. Numerical method for the CFD

The implementation of the governing equations (1) is based on a
spectral Galerkin version of the method developed by Kim et al.82 for
direct numerical simulations of turbulent flows. In this method, the
pressure is eliminated and the 2D Navier–Stokes equations are basi-
cally reduced to the continuity equation and a fourth-order equation
for the wall-normal velocity component. Adding the energy equation,
the three scalar equations that are solved are Eqs. (1a) and (1c) and

@r2v

@t
¼ @

2Hx

@x@y
�
@2Hy

@x2
þ

ffiffiffiffiffiffi
Pr
Ra

r
r4vþ @

2T
@x2

; (5)

where H ¼ ðu � rÞu is the convection vector. Equation (5) is imple-
mented with the four boundary conditions vðx;61Þ ¼ v0ðx;61Þ ¼ 0,
where the first two are due to no slip, whereas the two latter follow
from the continuity equation. Periodic boundary conditions on the x
direction are applied between the left and right domain boundaries,
and this is implemented through the choice of the numerical elements
and basis functions, as described below.

The three scalar equations (5), (1a), and (1c) are implemented
using a highly accurate spectral Galerkin83 discretization in space and
a third-order implicit/explicit (IMEX) Runge–Kutta method84 for the
temporal integration. The Galerkin method makes use of tensor prod-
uct basis functions constructed from Chebyshev polynomials for the
wall-normal direction and Fourier exponentials for the periodic direc-
tion. The boundary conditions in both directions are built into the
basis functions and as such enforced exactly. For the wall-normal
direction, this requires the use of composite Chebyshev polynomials,83

whereas the Fourier exponentials for the x-direction are already peri-
odic. Since the continuity equation cannot be used to find u for
Fourier wavenumber 0, we solve for this wavenumber the momentum
equation in the x direction. All other unknowns are closed through
Eqs. (5), (1a), and (1c). The convection terms H and u � rT are com-
puted in physical space after expanding the number of collocation
points by a factor of 3/2 in order to avoid aliasing. For H, we use the
rotational form H ¼ �u� ðr� uÞ, with the remaining 1=2ru � u
absorbed by the pressure, and for temperature, we use the divergence
form u � rT ¼ r � uT .

The code is implemented using the open-source spectral
Galerkin framework “shenfun,”85 where equations can be automati-
cally discretized through a high-level scripting language closely resem-
bling the Mathematics. The Navier–Stokes solver has been verified by
reproducing the growth of the most unstable eigenmode of the
Orr–Sommerfeld equations over long time integrations. The
Navier–Stokes and Rayleigh–B�enard solvers are distributed as part of
the shenfun software, and there is a demonstration guide published in

the documentation,86 which also provides a much more detailed
description of the numerical method. Links are provided in Appendix A,
and we refer the reader curious of all the technicalities of the CFD
solver implementation to the resources detailed therein.

The observation probes are distributed over the domain as a uni-
form probe-mesh as can be seen in Fig. 1. There are 32� 8 probe-
mesh points in the x and y directions, respectively. The number of
quadrature points in the solution approximation used by the spectral
Galerkin solver is 64� 96, with Fourier and Chebyshev basis functions
in the x and y directions, respectively. The resulting solution is thus
spatially continuous, and the observations are then evaluated from
these global, continuous spectral Galerkin functions at the uniform-
mesh probe locations. These observations are used in the DRL-based
control methodology which we describe next.

C. Control methodology with DRL

Using the numerical methods described in the previous section,
the flow is solved starting from an initial condition of a constant
adverse temperature gradient in the vertical direction. The simulation
is performed from this state, leading to the RB instability to occur,
which develops into a two-cell configuration that becomes ultimately
stationary. No control is applied up to this point, and this constitutes a
“baseline” starting state upon which control can be applied. The base-
line is saved and then loaded at the start of each episode in the learning
phase. The DRL control is performed using the “Tensorforce”42

framework, from which we use the PPO algorithm.
As mentioned in the Sec. I, the interaction between the agent and

the RBC environment occurs through three fundamental channels of
communication: the state or observation st, reward rt and action at,
where the subscript t is the time step of the CFD. The state st consists
of sets of time-averaged velocity and temperature ð~ut ; ~vt ; ~T tÞ mea-
sured by computational “probes” distributed across the domain in a
uniform mesh as seen in Fig. 1. The averaging is performed over the
previous 4 time steps (where the tilde over the values above represents
this average). The observations are flattened into one single-
dimensional array and then fed to the agent’s neural network input
layer. The way in which the observations are passed to the agent differs
in the single-agent and multi-agent frameworks, and will be described
in the following.

The second channel of communication from the environment to
the agent is the reward, rt, which is the desired parameter to be opti-
mized. The goal of the control is to reduce the convective effects, i.e.,
reduce the intensity of the RBC cells. Since Nu is an indicator of the
magnitude of the convective heat transfer, the reward function is set to
minimize Nu. Specifically, we aim to minimize the instantaneous
Nusselt number Nuinst, which is a function of the instantaneous heat
flux q(t). The expression for q(t) is derived in Appendix B. This results
in

Nuinst ¼
qðtÞ

j TH � TCð Þ=H : (6)

While our goal is to reduce Nu, DRL algorithms are formulated
as an optimization problem that tends to maximize a reward value.
Therefore, reward is taken as the negative value of the Nuinst. This is
then followed by a translation and scaling to obtain reward values
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between 0 and 1 (since Tensorforce’s PPO algorithm works better
within this range), i.e.,

rt ¼ m n� Nuinstð Þ; (7)

where n¼ 2.67 and m¼ 1 are the shifting and scaling, respectively, to
set the reward in the range of ½0; 1� during the training.

The applied control actuation is a perturbation T 0t of the temper-
ature boundary conditions on the lower hot wall. To apply this in
practice, we adopt a distributed actuation framework where the lower
wall is divided into N segments and N actuation values are applied
independently, one for each of the segments. The raw aðjÞt ; j ¼ 1…N
that are generated by the Tensorforce agent are non-dimensional sca-
lar values in the interval ½�1; 1�. These are then transformed into the
temperature values applied on each segment TðjÞt ; j ¼ 1…N using a
shifting and normalization process that ensures that the average tem-
perature at the bottom wall is kept constant: first, we seek to maintain
a constant mean value of temperature, TH, at the lower wall. Changing
TH would modify the regime of the RBC flow characterized by the Ra
[Eq. (2)] and would thus change the driving mechanism of the insta-
bility. Keeping a constant mean TH prevents this. Next, since theN val-
ues of the control temperature are generated independently of each
other, a shifting of the control temperature is performed to preserve
the lower-wall mean temperature to be equal to TH. The shifted values
of temperature, which we denote as T 0tðjÞ, are given as

T 0tðjÞ ¼ atðjÞ �

XN
i¼1

atðiÞ

N
: (8)

Next, in order to prevent nonphysical temperature perturbations, we
enforce a limit on the final values of the actuations TðjÞt < j0:75j 8 j
by performing a normalization,

TtðjÞ ¼
T 0tðjÞ

maxj 1; jT 0t jð Þ=C ; (9)

where C is a scaling constant. Therefore, Eq. (8) implements the mean
subtraction to make sure the temperature change applied by the con-
troller does not change the average temperature at the bottom wall,
while Eq. (9) makes sure that the maximum absolute value of the tem-
perature change applied is within 0.75, even in the case where the
mean subtraction may lead to one of the T 0t values having a magnitude
slightly larger than 1.

Finally, to avoid nonphysical sharp discontinuities in the spatial
variation of actuations across the segments, the left and right 10% of
each segment are smoothed relatively to their immediate neighbors
following a cubic transition function. In such a way, the cubic function
transitions from TtðjÞ to Ttðjþ 1Þ in a continuous and differentiable
way. Figure 2 shows a schematic representation of how the tempera-
ture control is applied as a whole. An illustration of the cubic transi-
tion is shown in the zoomed Fig. 2(b).

While the general DRL setup we just described is perfectly valid
from a DRL point of view, and it is actually implemented and referred
to as the “single-agent-reinforcement-learning” (SARL) setup in the
following, as illustrated in Fig. 3, it does not exploit the intrinsic struc-
ture of the RBC problem. Indeed, the physical mechanism driving
RBC does not depend per se on the position along the wall direction
(i.e., along the x axis). This, combined with the periodic boundary con-
dition we implement in the CFD solver on the left and right ends of
the domain, implies that the DRL-and-RBC setup is globally invariant
along the x direction. This invariance can, therefore, be exploited
through implementing a MARL approach, as detailed in Ref. 24, and
previously discussed.

In the following, we proceed to define the “MARL-DRL” setup
based on modified versions of the states, rewards, and actions
described thus far. We first regard the N segments introduced previ-
ously as separate “pseudo-environments,” each with their own inde-
pendent state, action, and reward channels of communication with the
PPO agent. Since our RBC setting is invariant in the x direction, each
trajectory in the phase space obtained for each pseudo-environment
provides knowledge about the dynamics to control to the DRL agent.
As discussed in Ref. 24, this can drastically speed up and improve the
quality of the training and learning.

We make a note here regarding the number of pseudo-
environments N, which is used is a metaparameter of the MARL setup.
Typically,N needs to be chosen so that the following needs are balanced:

1. The segments should be small enough to ensure sufficient spatial
granularity in the control signal to be able to actually control the
flow. As a consequence, there should be at least a few control seg-
ments per spatial feature of the flow. In our baseline case, given that
there are 2 convection cells of length scale �p, we should have at
least a few control segments per p distance along the x axis.

2. Despite the fact that MARL is efficient at learning even in the
case of many control segments,24 the number of segments should
not be too large to overcome certain practical limitations:

FIG. 2. Schematic representation of how the control Tt is applied to the lower boundary. (a) Global representation and (b) zoom in the transition region between control seg-
ments. Observe that

PN
i¼1 TtðiÞ ¼ 0, i.e., the mean temperature at the bottom wall is not modified by applying the temperature deviations described by Tt to the initially uni-

form bottom wall temperature TH. Note that the temperature profile plotted in the red line is for illustration purposes and does not represent a simulation result.
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A large number of segments will make the control output dis-
continuous as a large number of points, requiring the use of
more aggressive smoothing functions.

3. Each pseudo-environment corresponding to each segment will
require its own stream of data to be passed to and received from
the agent. From a computational viewpoint, this increases the
cost of the DRL deployment.

4. Neural networks tend to learn best when learning from uncorre-
lated data. This means that, ideally, feeding similar data many
times to the DRL agent should be avoided. Therefore, providing
segments large enough so that the view on each of them is signif-
icantly different from the views on the others is beneficial for the
quality of the learning.

5. Segments that are too small in size can produce an overall tem-
perature profile (which is the control output), which is highly
non-uniform. As a consequence, a Fourier decomposition of the
corresponding temperature profile in space will consist of ele-
ments with a high wavenumber energy content. These high
wavenumber energy content elements can make it more chal-
lenging to obtain good stability of the CFD simulation.

Considering the points above, we choose a value of N¼ 10
(Table I) as a reasonable trade-off. We note that this is the analogous
(in space) to the considerations that are presented in Ref. 32 when
choosing the action duration and episode length of the DRL algorithm
(i.e., in time).

In the following, we resume the description of how the states,
actions, and rewards communication channels are modified in the
MARL-DRL setup. The state st of each pseudo-environment is defined
as the global set of observations whose order has been rearranged in
such a way that the observations from the probes directly above its
respective control segment are in the center of the observation list.
This “recentering” is further elaborated in the description of the sche-
matic of Fig. 4.

In a similar way, the reward function, rt, that is provided to each
MARL environment, is slightly modified. Separate rewards are com-
puted from each MARL pseudo-environment, and now two values of
Nu contribute to the computation of each local MARL reward. The
first is the global Nu, which is equal to Nuinst [Eq. (7)]. This part of the
reward accounts for the main goal of the agent to optimize the flow

over the whole channel. This gives incentive to each pseudo-
environment to improve the global flow state (rather than behaving in
an egoistically greedy way). The second contribution to the reward is
from a local Nusselt number, Nuloc, which is calculated for each spe-
cific pseudo-environment in the column of observation probes imme-
diately above its control segment. This local contribution incorporates
information about the local effects of the actions on the flow to the
reward. This, in turn, allows to provide more reward granularity to the
agent during the training, by generating a local indication of the qual-
ity of the control. A constant weighting factor, b ¼ 0:0015, is used to

FIG. 3. Illustration of the single-agent-rein-
forcement-learning (SARL) control setup.
In the SARL setup, the agent controls the
environment as a whole in a single step.
This means that the dimensionality of the
action is equal to the number of control
segments, which results in a high-
dimensional control space and leads to
the curse of dimensionality, as discussed
in Ref. 24. Note that, in the present illus-
tration, we draw a thinner channel with
only 1 RBC cell and 3 control segments;
this is purely for the purpose of illustrating
the SARL method, since the actual chan-
nel used here is wider and has more con-
trol segments, as described above.

TABLE I. Parameters used in the CFD simulation and DRL control. Note that for
MARL cases, we make a distinction between “MARL episodes” (of which we have
N¼ 10 per CFD simulation that lasts for one episode duration) and “CFD episodes”
(of which we have one per CFD simulation that lasts for one episode duration). In
general, episodes are defined by the duration of performing a set number of control
actuations on the environment, before terminating the simulation of the environment.
In a CFD episode, one actuation is a single set of N control actions for the N
pseudo-environments. In a MARL episode, one actuation is one control action per-
formed on one pseudo-environment. Given in the table that the number of actuations
per episode is 200, this means there are 200 sets of actuations for a single CFD epi-
sode, which corresponds to a total of 200� N actuations performed from the MARL
actors as a whole.

Parameter Value

Domain size L�H 2p� 2
Galerkin modes 96� 64
Time step 0.05
Pr 0.7
Ra 104

b 0.0015
Action scaling factor, C 0.75
Number of observation probes 8� 32
Number of CFD episodes 350
Number of action steps per episode 200
Number of control segments, N 10
Baseline duration 400 time units
Action duration 1.5 time units
Episode duration 300 time units

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 065146 (2023); doi: 10.1063/5.0153181 35, 065146-7

VC Author(s) 2023

 06 February 2024 14:19:51

pubs.aip.org/aip/phf


quantify the contribution of Nuloc and Nuinst to the total reward rt for
each pseudo-environment. The value of b appears to be low, but this is
only due to the large difference in magnitudes that exists between
Nuloc and Nuinst. This large difference in magnitude arises from the
difference in the geometric width used to compute Nuloc and Nuinst
(since we use N¼ 10 segments, each segment has a width factor of 1/
10 with respect to the total domain width). We choose b such that
Nuloc has approximately a 10% contribution to the total reward. The
final form of the reward function for each MARL pseudo-
environment reads as follows:

rt ¼ mðn� ð1� bÞNuinst � bNulocÞ; (10)

with values of n andm as defined for Eq. (7).
A schematic representation of the MARL-based control method-

ology is presented in Fig. 4. In order to make the figure easier to read,
only three representative pseudo-environments are shown there
instead of N¼ 10. Each pseudo-environment corresponds to a local-
ized region of the physical domain. Note that for ease of explanation,
in this plot, we deviate from the notation convention used in the rest
of the paper: the subscripts for s, a, and r are now the environment
index j¼ 1, 2, and 3. We define sj as the values of the observation from
the probes directly above each control segment, rj as the total reward
from each pseudo-environment [Eq. (10)] and aj as the control actions
applied by each MARL pseudo-environment. The top diagram

represents the control methodology. At the start of the cycle, the aj are
merged and communicated to the first pseudo-environment (j¼ 1),
which is the sole pseudo-environment that runs the whole CFD simu-
lation, while the others pseudo-environments wait until CFD simula-
tion is finished. The CFD simulation is run for a time equal to the
action duration (Table I). Once the action is finished, the entire set of
observations s ¼ ðs1; s2; s3Þ is retrieved from the observation probes
and communicated to all the pseudo-environments. Then, in the
“Merge results” block, each pseudo-environment executes the
“recenter()” function. In recenter(), a rearranging of the order of sj is
performed in each pseudo-environment, so that the sj corresponding
to pseudo-environment j is moved to the middle of the observation
vector. We denote the recentered observation vectors as s0j. The rj is
obtained from the Nuloc and Nuinst computed using the local sj and the
global s, respectively. This is done using Eq. (10), and it is represented
for brevity as a function of g in Fig. 4. The s0j and rj are then passed to
the respective MARL agents, which output the actions aj and the cycle
is repeated again. The MARL agents are actually implemented as data
streams to a repeated DRL agent, which means that all MARL agents
share the exact same policy and neural networks. This is how the con-
trol invariance across the domain is implemented in the MARL case,
i.e., by re-using the exact same agent multiple times across the domain,
similar to what is described in Ref. 24.

Having described the setup of SARL andMARL, we now proceed
to the training process. The main parameters used for the DRL setup
are summarized in Table I, and the hyperparameters used for the defi-
nition and training of the agent are in Table II. A total of 350 CFD epi-
sodes are performed for the training run in SARL, with 200 actuation
updates per episode. Each actuation consists of a set of N actions or
temperature control values for the N segments. In SARL, the policy
update is performed every “batch size” number of episodes, which in
our case is set to be 20. In MARL, we make a distinction between
“CFD episodes” and “MARL episodes.” The “CFD episode” is when
the CFD simulation is run for 200 actuations, as in the SARL case.
Each actuation comprises N actions applied locally by each MARL
pseudo-environment. Thus, each MARL pseudo-environment, in the
course of one CFD episode, applies 200 control actions, which we
define as a single MARL episode. Given that there are N MARL
pseudo-environments, there are therefore 350�N MARL episodes in
one training run for MARL. The batch size for MARL is 20 MARL
episodes, or 20 =N CFD episodes. In the discussion of the results

FIG. 4. Schematic of the MARL control setup, where the same agent controls local
regions of the domain as if they were separate environments. This allows to (i) re-
use the same policy knowledge across the domain and (ii) get a local reward infor-
mation during training. This, in turn, allows to alleviate the curse of dimensionality
on the action space dimension when controlling systems with invariants, as
described in Ref. 24. A code wrapper is needed to ensure synchronization of the
parallel local environments with the CFD simulation. Note that for illustrative pur-
poses, the bottom right diagram shows only three pseudo-environments instead of
N.

TABLE II. Hyperparameters used in the definition and training of the DRL agent.
The hyperparameters are common to SARL and MARL.

Hyperparameter Value

Batch size for SARL 20 episodes
Batch size for MARL 20 MARL episodes
Learning rate 10�3

Entropy regularization factor 0.01
Number of hidden layers (baseline
network and policy network)

2

Number of units per hidden layer 512
Activation function tanh
Optimizer Adam
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section, in the context of MARL, the word “episode” refers to “CFD
episode.”

Training in both SARL and MARL is performed with a discount
factor of c ¼ 0:99. Wall-clock training time for 350 episodes in SARL
and 350 CFD episodes in MARL is around 34 h using a single core on
a modern workstation (the wall clock duration is approximately the
same in both cases, as CFD is the dominating computational cost).
The duration of each episode in CFD time units is action duration
� number of actions per episode¼ 300 time units (Table I). This time
is enough to capture the dynamics of the flow in the transition from
the baseline state to the optimized controlled flow. Within the dura-
tion of one action (i.e., within a single control step), the control tem-
perature applied to each control segment is established by the DRL
agent through Eqs. (8) and (9). This control step is chosen to be short
enough so that the agent can actuate under fast changes of the state of
the flow, but also long enough so that the flow can develop according
to the actuation performed, similar to what is recommended in
Rabault et al.16

III. RESULTS AND DISCUSSION

In Sec. III, we analyze and discuss the results obtained. In the first
place, at the start of the baseline convergence simulation, three convec-
tive cells appear. However, this is an unstable state that lasts for just a
few time units and the final baseline, which includes a two-cell

configuration, is achieved as visible in Fig. 5 (Multimedia view) (see
also the corresponding multimedia data from Appendix C). A full
video of the baseline simulation can be seen in the link provided in
Appendix C.

Figure 6 shows the evolution of the Nusselt number and the
kinetic energy along the duration of the baseline convergence simula-
tion. The flow reaches a stable state after approximately 400 time units,
where the Nusselt number converges to a value of Nu¼ 2.68.

In the baseline flow, two convective cells are present, with a total
of two counter-rotating vortex pairs. This is different from the baseline
layout obtained in GB, where a single rotating vortex was obtained.
The differences in flow topology with respect to the results by GB
come from the adiabatic lateral walls and the aspect ratio of 1 used in
GB, compared with the periodicity in x and an aspect ratio of p used

FIG. 5. Instantaneous temperature (back-
ground color) and velocity (arrows) fields
from the end of the baseline simulation.
This is the baseline steady state used at
the start of each new episode, displaying
two convective cells (Nu¼ 2.68) (see also
the corresponding multimedia data from
Appendix C). Multimedia available online.

FIG. 6. Evolution of the global Nusselt number and kinetic energy during the base-
line simulation with Ra ¼ 104.

FIG. 7. Learning curves obtained in both the SARL and MARL configurations. Note
that each episode in the horizontal axis corresponds to a single CFD run, which
consists of N¼ 10 individual MARL episodes when the DRL algorithm is applied in
the MARL configuration. The dotted lines in grayscale are the actual mean reward
obtained per episode, and the full lines are moving averages over 25 episodes that
illustrate the learning trends. The horizontal bold dashed lines are drawn for refer-
ence, and they represent Nu at the end of the baseline simulation (in blue) and the
average Nu from an episode where MARL control is executed (in black). A movie
showing control with the trained SARL agent is shown in the link provided in
Appendix C. Multimedia available online.
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in the present work. Therefore, we can expect different control strate-
gies compared to those obtained in GB.

We now present the results obtained from DRL control of the
Rayleigh–B�enard system. To compare the learning in the SARL and
MARL frameworks, we plot both their learning curves in Fig. 7
(Multimedia view) (see also the corresponding multimedia data from
Appendix C). The learning was performed for 350 CFD episodes of
200 actuations each as previously highlighted, starting from the final
state of the baseline (Fig. 5, see also the corresponding multimedia
data from Appendix C). This means that the same CFD duration is
used to train both the SARL and MARL agents. Since CFD simulation
is by far the most time- and resource-intensive part of the training pro-
cess (similar to what was reported in Ref. 16), this means that the wall-
clock time and resources used for performing the SARL and MARL
trainings are about equal. The time-averaged Nu at the end of the
baseline is plotted for reference, corresponding to a value of 2.68 in

Fig. 7 (see also the corresponding multimedia data from Appendix C).
We also show the time-averaged Nu at the final episode of the MARL,
which is equal to 2.07, corresponding to the dashed horizontal black
line.

Figure 7 (see also the corresponding multimedia data from
Appendix C) clearly demonstrates that the MARL approach learns
much faster and effectively than the SARL approach. This figure shows
that, while the SARL approach plateaus after around 150 episodes and
displays only very limited Nu reduction, the MARL method learns ini-
tially much faster than SARL and keeps learning for a much longer
time until it reaches a far better Nu reduction. To be more specific, at
the end of 350 episodes, the MARL approach is achievable a reduction
in Nu of 22.7%, whereas the SARL approach achieves approximately
5.1% reduction. Moreover, a closer look at the last state of the last epi-
sodes in the SARL and MARL cases, respectively, shows that while the
MARL agent has managed to change the topology of the flow and to

FIG. 8. Sequence of temperature (background color) and velocity (arrows) fields showing the dynamics of the control action taken by the trained agent during a single episode
without exploration noise (deterministic, or evaluation, mode). Starting from the baseline double-RBC-cell flow, the agent destabilizes the flow, leading to coalescence into a sin-
gle cell. This cell is then controlled until it reaches a stable configuration. Each frame in the current figure corresponds to the snapshots of the flow field at time instants marked
with red dot symbols in Fig. 9, over the different phases of flow development (see also the corresponding multimedia data from Appendix C). Multimedia available online.
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reach a coalesced RBC convection cell state (more details below), the
SARL approach has only a limited effect on the flow topology (visible
from the videos in Appendix C). This implies that, while the MARL
agent has learned an effective policy and control law, the agent in the
SARL framework has failed to do so. This is very similar to the find-
ings reported in Ref. 24, as previously discussed. The reader curious of
more details about the flow dynamics in each case is referred to the
videos in Appendix C to see the difference in the controlled-flow con-
figurations. Furthermore, insight into the MARL control mechanism
is provided in the next paragraphs.

The price to pay for the DRL ability to discover and optimize
non-linear control laws is the lack of direct interpretability of the DRL
agent policy. Given a trained DRL agent, and in particular, its policy
network weights, it is difficult to derive a detailed, quantitative under-
standing of the control law using a bottom-up approach, and the DRL
policy per se is effectively a black box. This contrasts with, e.g., linear
flow-control methods, where properties such as the eigenmodes and
eigenvectors of the associated operators can be used to extract some
form of explainability.87,88 However, a higher-level, phenomenological
understanding of the DRL agent policy is still obtainable, by applying
expert knowledge to the analysis of the control laws exhibited by the
DRL agent. Such a phenomenological understanding is what we dis-
cuss in the following paragraphs.

More specifically, different phases are clearly visible when the
DRL agent controls RBC, as highlighted in Fig. 8 (Multimedia view)
(see also the corresponding multimedia data from Appendix C).
Starting from the baseline flow, the DRL agent starts by weakening the
RBC cells through modulation of the bottom wall temperature. We
will refer to this destabilization of the baseline regime as the Phase I.
The destabilization is performed by the agent through applying (i)
increased heating on the regions of the bottom plate where a falling
plume of low temperature fluid is observed, and (ii) decreased heating
(or relative cooling) on the regions of the bottom plate where a rising
plume of high temperature fluid is observed. This is visible in Figs.
8(a) and 8(b) (see also the corresponding multimedia data from
Appendix C). This, in practice, weakens the driving mechanism of the
baseline RBC cells, by producing excess buoyancy in the downwelling
part of the RBC plume. As a result, the control on Phase I reduces the
excess of buoyancy in the rising part of the RBC plume, hence, oppos-
ing the buoyancy driven flow motion.

This opposition to and weakening of the baseline flow results in
an unstable situation, where the double RBC cells are broken. We
recognize this transition as the phase II and it can be observed in
Figs. 8(c)–8(f) (see also the corresponding multimedia data from
Appendix C) and in Fig. 9. This Phase II ends with a recombination of
the two initial convective cells into a single coalesced RBC cell, thus
leading to the Phase III. Phase III is distinguished by a single coalesced
bubble regime, which is visible in Figs. 8(g) and 8(h) (see also the cor-
responding multimedia data from Appendix C).

Therefore, it appears that the DRL agent has learnt to “navigate”
in the phase space of the problem. While the phase space configura-
tion corresponding to the baseline configuration is stable, it leads to a
suboptimal reward. In particular, the DRL agent has found a strategy
(applied during the transition phases I and II) that can bring the sys-
tem away from the baseline configuration and into the neighborhood
of a new topological flow configuration, i.e., the coalesced bubble
observed in phase III, which provides higher reward.

Interestingly, the single coalesced bubble obtained in phase III is
naturally stable once it is established and is in fact providing the opti-
mal reward, even without control. This is what we define as phase IV
in Fig. 9, i.e., the flow obtained upon the re-imposition of the lower-
wall constant temperature boundary condition (as in the baseline)
after the end of episode. A snapshot of this final state is observed in
Fig. 10 (Multimedia view) (see also the corresponding multimedia
data from Appendix C).

Figure 11 shows the Nusselt number obtained through three dif-
ferent episodes at different stages of the learning. While at episode 45,
the DRL agent was not able to coalesce the two convective cells into
one, at episodes 275 and 350, it has already learned the strategy to

FIG. 9. Evolution of the Nusselt number showing the control achieved by the DRL
agent in a single deterministic run (i.e., without exploration noise in the DRL agent
policy). The shaded area shows the different phases of the flow evolution. The red
point markers are the time instants at which the frames in Fig. 8 are sampled. The
black horizontal dashed line is the mean Nu of the actively controlled single-cell
configuration from the current episode. The red horizontal dashed line is the Nu
achieved at the end state of the system after the control is removed and the natu-
rally stable single-cell RBC configuration is observed (corresponding to the flow vis-
ible in Fig. 10).

FIG. 10. Illustration of the single-cell config-
uration maintained by the system after the
DRL-control is removed and the uniform
hot-wall boundary condition re-imposed.
Interestingly, once the DRL controller has
moved the flow to this new configuration, it is
intrinsically stable and yields the best
reward, even when left unactuated (see also
the corresponding multimedia data from
Appendix C). Multimedia available online.
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perform the coalescence. This is indicated by the large jumps in the
Nusselt number at time units 115 and 215 for episodes 350 and 275,
respectively. We can also observe that the agent trained for more epi-
sodes (episode 350) is able to reach the Phase III (single-cell configura-
tion) earlier than the agent trained for fewer episodes (episode 275).
However, once the flow configuration is a single cell, no matter when
it is reached, the value of the Nusselt number converges to a minimum
of approximately 2.1. This is related to the fact that the single-cell con-
figuration is a stable state with a higher reward, i.e., lower Nu, than the
two-cell configuration. If once on phase III the control is turned off,
i.e., in phase IV, the Nusselt number achieved gradually converges to
2.05, which is the best Nu we ever observe. Therefore, any small con-
trol applied during Phase III is noise (either exploration noise during
training, or agent “uncertainty” during evaluation). The black dash-
dotted horizontal line in Fig. 11 shows the value of the Nusselt number
for phase IV.

IV. CONCLUSIONS

In the present work, we demonstrate effective Rayleigh–B�enard
Convection (RBC) control by using deep reinforcement learning
(DRL). Compared with previous works, e.g., Ref. 23, we consider a
domain with a higher aspect ratio, i.e., a wider domain. This leads to
the existence of several rolls or RBC cells, and the need for using more
separate actuators at the bottom walls. We show that a naive single-
agent DRL method fails to learn an effective control policy. This is due
to the difficulty presented by having to control several actuators simul-
taneously, which results in the curse of dimensionality in the control
space. By contrast, we demonstrate that leveraging invariant multi-
agent reinforcement learning (MARL), which takes advantage of the
invariant structure of the underlying RBC control problem, allows to
discover an effective control strategy in the case studied. We demon-
strate that, in practice, “multi-agent reinforcement learning is all you
need” to control our multiple-input, multiple-output fluid-dynamics
problem. This finding is similar to previous results,24 and we expect to
keep observing it repeatedly when applying DRL to control physical

systems with strong underlying structures and symmetries. Using a
MARL approach results in a much faster learning than what was
obtained in Ref. 23, and is key to our ability to control wider channels
with more actuators.

Going into more details, our MARL controller finds a complex,
non-trivial control strategy in the RBC configuration under consider-
ation. Through trial and error, the MARL approach discovers that ade-
quate control of the lower wall temperature profile can destabilize the
double RBC cell pattern observed in our baseline flow, and force these
RBC cells to coalesce into a single convection cell. This convection cell
is, in turn, intrinsically stable and yields better heat exchange perfor-
mance, i.e., a lower value of the Nusselt number Nu, following the defi-
nition of our optimization problem.

The present study is a first application of MARL to RBC con-
trol, and we provide a strong framework for further studies
through the release of all the codes and scripts as open material.
Many interesting questions remain open to discussion in future
works, and we expect that more studies of the RBC controllability
using MARL will take place. In particular, this framework is well
adapted to studying problems such as the effect of the Rayleigh
number Ra, the channel aspect ratio, the strength of the control
authority, etc., on controllability and optimal states of the RBC sys-
tem. We believe that this work is also a first step toward demon-
strating RBC MARL control in both 3D configurations, and in
geometries relevant for industrial applications.
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FIG. 11. Evolution of the Nusselt number in three different episodes (episode num-
bers 45, 275, and 350), chosen from the MARL learning curve in Fig. 7. The black
horizontal line (dashed for positive times) represents the value of Nu at the base-
line. The dash-dotted horizontal line is the Nu number at phase IV. The control cor-
responding to episode 45 only leads to a minor change in Nu. By contrast, the
controls corresponding to episodes 275 and 350 lead to much better Nu reduction,
corresponding to the transition to a single coalesced bubble. The difference
between episodes 275 and 350 lies in the ability of the controller obtained at epi-
sode 350 to reach the coalesced state faster than what is the case at episode 275.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX A: CODE RELEASE

All the codes, scripts, and post-processing tools used in this
work are made available on Github, together with readmes and user
instructions, at the following address: https://github.com/KTH-
FlowAI/DeepReinforcementLearning_RayleighBenard2D_Control.

The shenfun CFD case setup is described in great details, includ-
ing all the numerical implementation considerations, elements chosen,
and code walk-through, on the shenfun RBC documentation page:
https://shenfun.readthedocs.io/en/latest/rayleighbenard.html. Note
that the conventions used in the present paper and in this documenta-
tion page are slightly different: while the present paper uses x as the
horizontal (“wall parallel”) description and y as the vertical (“wall nor-
mal”) direction, the documentation page uses the opposite conven-
tions. This has no influence on the CFD results per se. The code uses
the same conventions as the shenfun documentation, and only the
present paper uses separate conventions, for simplicity of the writing
and conformity with the literature.

APPENDIX B: HEAT-FLUX DERIVATION

In this section, we derive the expression for the non-
dimensional time-averaged heat flux q as provided in Eq. (4). We
begin with the non-dimensional energy equation [Eq. (1c)]. To this
end, we add Eq. (1a) to obtain

@T
@t
þr � ðuTÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi

RaPr
p r � rT: (B1)

The above equation is volumetric and can thus be integrated
over the entire volume of the domain. We then apply the Gauss
divergence theorem to obtain

ð
V

@T
@t

dVþ
ð
S
ðuTÞ � n̂ dS ¼ 1ffiffiffiffiffiffiffiffiffiffi

RaPr
p

ð
S
rT � n̂ dS; (B2)

where S and V are the boundaries and volume of the domain, and
dS and dV represent elementary surface and volume units, respec-
tively. Also note that n̂ is the unit vector normal to S. The second
term on the LHS and the term on the RHS represent surface-
integrated “flux terms” corresponding to the convective and con-
ductive heat fluxes qconv and qcond across S, respectively.

Since the domain in the current study is two-dimensional,
integrals in the z direction evaluate to a constant and the surface
integrals reduce to line integrals over the domain boundaries. Given
that the boundary conditions are periodic in x, the component of
the flux terms integrated over the vertical boundaries, i.e., from
y¼ – 1 to 1, at x¼ 0 and x ¼ 2p sum to 0. Hence, we are left with
the terms integrated over the horizontal boundaries or walls of the
domain. The second term on the LHS of Eq. (B2) becomes

ð
x
ðuTÞ � ĵ dx ¼

ð
x
vT dx; (B3)

and the RHS becomes

1ffiffiffiffiffiffiffiffiffiffi
RaPr
p

ð
x
rT � ĵ dx ¼ 1ffiffiffiffiffiffiffiffiffiffi

RaPr
p

ð
x

@T
@y

dx: (B4)

Note that the integrands in Eqs. (B3) and (B4) are evaluated at
y ¼ 61, and the limits of integration in x are from 0 to 2p. The
sum of Eqs. (B3) and (B4) equates to the sum of the convective and
conductive surface-integrated heat fluxes,

qðtÞ ¼ qconvðtÞ þ qcondðtÞ ¼
ð2p
0

vT � 1ffiffiffiffiffiffiffiffiffiffi
RaPr
p @T

@y

� �
dx: (B5)

Multiplying Eq. (B5) with 1=L ¼ 1=2p, the resulting terms are
then averages of the integrands over x at y¼�1 and 1. We repre-
sent averages using the angle bracket notation as

qðtÞ ¼ hvTix �
1ffiffiffiffiffiffiffiffiffiffi
RaPr
p @hTix

@y
; (B6)

where we used the Leibnitz integral rule for the last term to inter-
change the integral and derivative operators. Equation (4) is then
obtained by performing a temporal average of Eq. (B6).

APPENDIX C: EXTRA MATERIALS

Extra materials are provided as a series of videos on YouTube,
which illustrate

• The development and settling of the baseline flow (Fig. 5): see
https://www.youtube.com/watch?v¼aSKZ1qNgMWk

• The RBC undergoing control by the SARL controller, starting
from the baseline flow, which illustrates that SARL fails to learn a
topology-changing control strategy (Fig. 7, SARL episode 350):
see https://www.youtube.com/watch?v¼N9wTi4K2uJY

• The RBC undergoing successful control by the MARL controller,
starting from the baseline flow, which illustrates the bubble coa-
lescence phase and the large bubble phase (Fig. 8): see https://
www.youtube.com/watch?v¼_HYmWee3P0A

• The modified flow configuration corresponding to a single stable
RBC cell, obtained by re-applying a uniform bottom wall temper-
ature at the end of the MARL control sequence (Fig. 10): see
https://www.youtube.com/watch?v¼MEGl2IiybSg
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