
Journal of Theoretical Probability
https://doi.org/10.1007/s10959-023-01269-2

On the Analysis of Ait-Sahalia-Type Model for Rough
Volatility Modelling

Emmanuel Coffie1 · Xuerong Mao2 · Frank Proske3

Received: 29 September 2022 / Revised: 23 April 2023 / Accepted: 28 May 2023
© The Author(s) 2023

Abstract
Fractional Brownian motion with Hurst parameter H < 1

2 is used widely, for instance,
to describe ‘rough’ volatility data in finance. In this paper, we examine a generalised
Ait-Sahalia-typemodel driven by a fractional Brownianmotionwith H < 1

2 and estab-
lish theoretical properties such as an existence-and-uniqueness theorem, regularity in
the sense of Malliavin differentiability and higher moments of the strong solutions.
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1 Introduction

Over the years, SDEs driven by noise with α−-Hölder continuous random paths for
α ∈ [ 12 , 1) have been applied to model the dynamical behaviour of volatility of asset
prices in finance. See, for example, [1–3] and the references therein. However, in
recent years, empirical evidence (see e.g. [4]) has shown that volatility paths of asset
prices are more irregular in the sense of α−-Hölder continuity for α ∈ (0, 1

2 ) in
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many instances. This inadequacy actually showed the need for models based on SDEs
driven by a noise of low α−-Hölder regularity with α ∈ (0, 1

2 ) which has been used
by researchers and practitioners to describe the volatility dynamics of asset prices.
These models are driven by rough signals that can capture well the ‘roughness’ in
the volatility process of asset prices. Such rough signals arise, for example, from
paths of the fractional Brownian motion (fBm). The fractional Brownian motion is a
generalisation of the ordinary Brownian motion. It is a centred self-similar Gaussian
processwith stationary incrementswhich depends on theHurst parameterH. TheHurst
parameter lies in (0, 1) and controls the regularity of the sample paths in the sense of a.e.
(local) H−-Hölder continuity. The smaller theHurst parameter, the rougher the sample
paths and vice versa. For instance, the authors in [5] employ the fractional Brownian
motion with H < 1

2 to model the ‘rough’ volatility process of asset prices and derive
a representation of the sensitivity parameter delta for option prices. Similarly, the
authors in [6] also consider an asset price model in connection with the sensitivity
analysis of option prices whose correlated ‘rough’ volatility dynamics is described by
means of an SDE driven by a fractional Brownianmotionwith H < 1

2 . The readermay
consult [7, 8] for the coverage of properties and financial applications of the fractional
Brownian motion with H < 1

2 (see also Appendix).
In the context of interest rate modelling, Ait-Sahalia proposed a new class of highly

nonlinear stochastic models in [9] for the evolution of interest rates through time after
rejecting existing univariate linear-drift stochastic models based on empirical studies.
In this model, (short-term) interest rates xt have the SDE dynamics

dxt =
(
α−1x−1

t − α0 + α1xt − α2x2t
)
dt + σ xθ

t dBt (1)

on t ≥ 0 with initial value x0, where α−1,α0,α1,α2 > 0, σ > 0, θ > 1 and Bt is
a scalar Brownian motion. SDE (1) has been studied by many authors (see e.g. [10,
11]). Besides interest rate modelling, SDE (1) has also been used extensively among
academic researchers and market practitioners to describe stochastic volatility and
asset price dynamics. For example, in stochastic volatility modelling, the stock price
process St , t ≥ 0, may be modelled by the Black–Scholes SDE

dSt = µStdt + σt StdBt , t ≥ 0, (2)

whereµ ∈ R is themean return andσt > 0, t ≥ 0, is the volatility process described by
the SDE (1). Generally, there are several classes of SDE (1)with parametric restriction.
For example, Black–Scholes, Vasicek, Dothan, CIR and CEV models fall under SDE
(1).

In the context of ‘rough’ stochastic volatility modelling, we note that SDE (1) may
not provide a good fit since the driving noise is a Brownian motion B•. In this case, we
recognise the need to replace the driving noise B• with a fractional Brownian motion
BH

• and consider a ‘rough’ volatility model based on the SDE

dxt =
(
α−1x−1

t − α0 + α1xt − α2x
ρ
t

)
dt + σ xθ

t d
◦BH

t (3)
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for t ≥ 0 and H ∈ (0, 1
2 ), where σ xθ

t d
◦BH

t stands for a stochastic integral in the sense
of Russo and Vallois (see Sect. 5). However, since the expected value of σ xθ

t d
◦BH

t
(if it exists) is not zero, in general, we observe that the SDE (3) does not necessarily
yield the Ornstein–Uhlenbeck dynamics as a special case. In other words, SDE (3)
may not be used to capture the mean reversion property, which plays an important role
in finance. In order to account for the mean reversion property of SDE (3), we may
consider instead the following SDE

dxt =
(
α−1x−1

t − α0 + α1xt − α2t2H−1xρ
t

)
dt + σ xθ

t dB
H
t (4)

for t ≥ 0 with initial value x0, t ∈ (0, 1], H ∈ (0, 1
2 ) and ρ > 1. The stochastic

integral for the fractional Brownian motion in (4) is defined via an integral concept in
[7] and related to aWick–Itô–Skorohod type of integral (see also Sect. 5). Wemention
that the mean of the stochastic integral in (4) is zero (provided that the mean exists).
Therefore, one obtains from SDE (4) the Ornstein–Uhlenbeck dynamics as a special
case if one formally chooses α−1, α2 and θ to be zero.

As mentioned before, the original Ait-Sahalia model has been applied to interest
rate modelling. However, the Ait-Sahalia model in our setting, (3) and (4) cannot be
employed in interest rate modelling since empirical evidence shows that interest rate
paths rather exhibit Hölder continuity with an index bigger than 1

2 (see [12]). This is
also the reason why we in this paper apply the extended Ait-Sahalia model to ‘rough’
volatility modelling.

Although we also prove an existence and uniqueness result for solutions to SDE
(3) (see Theorem 5.5), we mainly focus in this paper on the study of SDE (4). We
emphasise that our mathematical methods employed in this paper differ significantly
from those used in [13]. For example, in the case of H < 1

2 , we cannot apply the Itô
Lemma as in [13] for H > 1

2 , to prove the existence of higher moments of solutions
to SDE (3) or (4) (see Sect. 4) but have to resort to other techniques based on, for
example, the Clark–Ocone formula and the concept of rough path integrals in the sense
of Russo–Vallois.

Finally, we mention some other works related to our article: Let us point out here
that SDEs with explosive drifts driven by Hölder continuous noises in the case of fBm
with H > 1

2 were initially analysed in Hu et al. [3], where the authors address the
properties of positivity, existence of moments and the Malliavin differentiability of
strong solutions. Other interesting and more recent results related to the SDE (8) can
be found in Di Nunno et al. [14], who establish for a large class of unbounded and
explosive drift vector fields existence and uniqueness of local and global solutions
to SDEs with additive noise, which is merely Hölder continuous and not necessarily
Gaussian. Further, the work of Di Nunno et al. [15], which appeared after the com-
pletion of our article, also deals with the Malliavin differentiability of solutions with
general Gaussian Volterra drivers. In addition, we refer to Kubilius [16] and Kubilius
and Medziunas [17], where the Ait-Sahalia model for a parameter θ is less than 1 and
greater than 1 is investigated as an example, when H > 1

2 . We remark here that SDEs
of the type (3) or (4), which involve ‘rough path’ integrals in the sense of Russo and
Vallois, were not studied in the above-mentioned works.
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The remainder of the paper is organised as follows: In Sect. 2, we introduce the frac-
tionalAit-Sahalia-typemodel for rough volatilitymodelling.We establish an existence
and uniqueness result for solutions to SDE (4) in Sect. 5 by studying the properties
of solutions to an associated SDE driven by an additive fractional noise (see Sects. 3
and 4). In addition, we also discuss the alternative model (3) in Sect. 5.

2 The Fractional Ait-Sahalia Model

Throughout this paper unless specified otherwise, we employ the following notation.
Let (%,F ,P) be a complete probability space with filtration {Ft }t≥0 satisfying the
usual conditions (i.e. it is increasing and right continuous while F0 contains all P null
sets). Denote E as the expectation corresponding to P. Suppose that BH

t , 0 ≤ t ≤ 1,
is a scalar fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1

2 ) and
Bt , 0 ≤ t ≤ 1, is a scalar Brownian motion defined on this probability space.
In what follows, we are interested to study the SDE

xt = x0 +
∫ t

0

(
α−1x−1

s − α0 + α1xs − α2s2H−1xρ
s
)
ds +

∫ t

0
σ xθ

s dB
H
s , (5)

x0 ∈ (0,∞), 0 ≤ t ≤ 1, where H ∈ ( 13 ,
1
2 ), θ̃ > 0, ρ > 1 + 1

H θ̃
, θ := θ̃+1

θ̃
, σ > 0

and αi > 0, i = −1, . . . , 2. Here, the stochastic integral term with respect to BH
• in

(5) is defined by means of an integral concept introduced by Russo and Vallois [18].
See Sect. 5.

As already mentioned in introduction, solutions to the SDE (5) can be used as a
model (fractional Ait-Sahalia model) for the description of the dynamics of (rough)
volatility in finance. In fact, in this paper, we aim at establishing the existence and
uniqueness of strong solutions xt > 0 to SDE (5). In doing so, we show that such
solutions can be obtained as transformations of solutions to the SDE

yt = x +
∫ t

0
f̃ (s, ys)ds − σ̃ BH

t , 0 ≤ t ≤ 1, H ∈
(
0,

1
2

)
, (6)

where

f̃ (s, y) = α−1

(
−θ̃ y2θ̃+1

)
+ α0y θ̃+1 − α1

y

θ̃

+ α2s2H−1 1

θ̃ ρ
y−θ̃ρ+θ̃+1 − σ̃Hs2H−1y−1(θ̃ + 1), (7)

where σ̃ > 0, 0 < s ≤ 1, 0 < y < ∞. However, after having applied the transfor-
mation, we have to restrict H ∈ (1/3, 1/2) to make sense of the stochastic integral in
SDE (5). See Sect. 5 for further details.

In the sequel, we want to prove the following new properties for solutions to SDE
(6):

• Existence and uniqueness of positive strong solutions (Corollary 3.1),
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• Regularity of solutions in the sense of Malliavin differentiability (Theorem 4.2),
• Existence of higher moments (Theorem 4.1).

3 Existence and Uniqueness of Solutions to Singular SDEs with
Additive Fractional Noise for H < 1

2

In this section, we wish to analyse the following generalisation of the SDE (6) given
by

xt = x0 +
∫ t

0
b(s, xs)ds + σ BH

t , 0 ≤ t ≤ 1, H ∈
(
0,

1
2

)
, σ > 0. (8)

We require the following conditions

(A1) b ∈ C
(
(0, 1) × (0,∞)

)
and has a continuous spatial derivative b′ := ∂

∂x b such
that

b′(t, x) ≤ Kt , 0 < t < 1, x ∈ (0,∞),

where Kt := t2H−1K for some K ≥ 0.
(A2) There exist κ1 > 0, α > 1

H − 1 and h1 > 0 such that b(t, x) ≥ h1t2H−1x−α ,
t ∈ (0, 1], x ≤ κ1.

(A3) There are κ2 > 0 and h2 > 0 such that b(t, x) ≤ h2t2H−1(x + 1), t ∈ (0, 1],
x ≥ κ2.

Theorem 3.1 Suppose that (A1–A3) hold. Then, for all x0 > 0 the SDE (8) has a
unique strong positive solution xt , 0 ≤ t ≤ 1.

Proof Without loss of generality, let σ = 1. We are required to establish the following
analytical properties.

(i) Uniqueness: Suppose x• and y• are two solutions to (8). Then,

xt − yt =
∫ t

0

(
b(s, xs) − b(s, ys)

)
ds.

So, using the product rule, the mean value theorem and (A1), we get

(xt − yt )2 = 2
∫ t

0

(
b(s, xs) − b(s, ys)

)
(xs − ys)ds

≤ 2
∫ t

0
Ks(xs − ys)2ds.

Hence, Gronwall’s lemma implies that

xt − yt = 0, 0 ≤ t ≤ 1.
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(ii) Existence: Let x0 > 0. Because of the regularity assumptions imposed on b, we
know that Eq. (8) has (path-by-path) local solutions. Define the stopping times

τ0 := inf{t ∈ [0, 1] : xt = 0} and τn := inf{t ∈ [0, 1] : xt ≥ n},

where inf ∅ := 1+. Just as in [13],wewant to prove that τ0 = 1+ and limn→∞ τn =
1+. Here, 1+ stands for an artificially added element larger than 1. Suppose that
τ0 ≤ 1. Then, there is a τ̂0 ∈ (0, τ0] such that xt ≤ κ1 for all (τ̂0, τ0]. By (A2), we
know that b(t, x) > 0 for x ∈ (0, κ1) and t > 0. Hence,

0 = xτ0 = xt +
∫ τ0

t
b(s, xs)ds + BH

τ0
− BH

t , t ∈ (τ̂0, τ0]. (9)

This implies

xt ≤
∣∣∣BH

τ0
− BH

t

∣∣∣ ≤ ||BH
• ||β(τ0 − t)β , t ∈ (τ̂0, τ0] for β ∈ (0, H). (10)

Here, || · ||β denotes the Hölder-seminorm given by

|| f ||β = sup
0≤s<t≤1

| f (s) − f (t)|
(t − s)β

for β-Hölder continuous functions f . So, we also obtain that

||BH
• ||β(τ0 − t)β ≥

∣∣∣BH
τ0

− BH
t

∣∣∣ ≥
∫ τ0

t
b(s, xs)ds

≥ h1

∫ τ0

t
s2H−1x−α

s ds ≥ h1
||BH

• ||αβ

∫ τ0

t
s2H−1 1

(τ0 − s)αβ
ds

≥ h1
||BH

• ||αβ
τ 2H−1
0

∫ τ0

t

1
(τ0 − s)αβ

ds.

If αβ ≥ 1, we get a contradiction. For αβ < 1, we find that

||BH
• ||β(τ0 − t)β ≥ h1

||BH
• ||αβ

τ 2H−1
0

(τ0 − t)1−αβ

1 − αβ
, t ∈ (τ̂0, τ0].

Hence,

0 = lim
t→τ0

||BH
• ||β(τ0 − t)β+αβ−1 ≥ h1τ 2H−1

0

||BH
• ||αβ(1 − αβ)

> 0.

So, τ0 = 1+. Assume now that

τ∞ := lim
n→∞ τn ≤ 1.
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Then (compare [13]), we can distinguish between the following two cases:

1. Case: There is τ̂1 such that xτ̂1 = κ2 + x0 and xt ≥ κ2 + x0 for all t ∈ (̂τ1, τ∞).
2. Case: For all n ∈ N with n > κ2 + x0 and ε > 0, one can find an interval

(̂τ1, τ̂2) ⊂ (τ∞ − ε, τ∞) such that xτ̂1 = κ2 + x0 and

κ2 + x0 ≤ inf
t∈(̂τ1 ,̂τ2)

xt ≤ n ≤ sup
t∈(̂τ1 ,̂τ2)

xt .

Thus, by using (A3), we obtain that

xt ≤ κ2 + x0 + ||BH
• ||βτ

β
∞ + h2τ 2H∞ (2H)−1 + h2

∫ t

τ̂1

s2H−1xsds.

So, by letting

α = κ2 + x0 + ||BH
• ||βτ

β
∞ + h2τ 2H∞ (2H)−1,

it follows from Gronwall’s lemma that

xt ≤ α +
∫ t

τ̂1

αh2s2H−1 exp
(∫ t

s
h2u2H−1du

)
ds

≤ γ +
∫ 1

0
γ h2s2H−1 exp

(∫ 1

s
h2u2H−1du

)
ds,

where γ := κ2 + x0 + ||BH
• ||β + h2

2H . The latter estimate leads to a contradiction.
,-

As a consequence of Theorem 3.1, we obtain the following result:

Corollary 3.2 Suppose that x ∈ (0,∞) andρ > 1
H θ̃

+1, whereρ and θ̃ are parameters

of f̃ in (7). Then, there exists a unique strong solution yt > 0 to SDE (6).

Proof Let ε = H
2 . Then,

f̃ (s, y) = g̃1(s, y)+ g̃2(s, y),

where

g̃1(s, y) := α−1

(
−θ̃ y2θ̃+1

)
+ α0y θ̃+1 − α1

y

θ̃
+ εσ̃ s2H−1y−1(θ̃ + 1),

and

g̃2(s, y) := α2s2H−1 1

θ̃ ρ
y−θ̃ρ+θ̃+1 − (H + ε)σ̃ s2H−1y−1(θ̃ + 1).

We see that

g̃1(s, y) ≥ α−1(−θ̃ y2θ̃+1)+ α0y θ̃+1 − α1
y

θ̃
+ εσ̃ y−1(θ̃ + 1)
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≥ 0

for all s ∈ (0, 1] and y ∈ (0, y0) for some y0 > 0. Since

−θ̃ρ + θ̃ + 1 < − 1
H

+ 1 < −1,

we also find some y1 > 0 such that

g̃2(s, y) = s2H−1y−θ̃ρ+θ̃+1
(

α2
1

θ̃ ρ
− (H + ε)σ̃ (θ̃ + 1)y θ̃ρ−θ̃−2

)

≥ h1s2H−1y−α

for all s ∈ (0, 1] and y ∈ (0, y1], where h1 > 0 and α := θ̃ρ − θ̃ − 1. So,

f̃ (s, y) ≥ h1s2H−1y−α

for all s ∈ (0, 1], y ∈ (0, y1) for some y1 > 0, which shows that f̃ satisfies (A2). As
for (A3), we see that there exists some y2 ≥ 1 such that

f̃ (s, y) ≤ s2H−1
(

α2
1

θ̃ ρ
y−θ̃ρ+θ̃+1 − H σ̃ y−1(θ̃ + 1)

)
≤ h2s2H−1(1+ y)

for all s ∈ (0, 1], y ∈ (y2,∞) and some h2 > 0. We have that

f̃ ′(s, y) = f1(s, y)+ f2(s, y),

where

f1(s, y) := −α−1θ̃(2θ̃ + 1)y2θ̃ + α0(θ̃ + 1)y θ̃ − α1

θ̃

and

f2(s, y) := s2H−1
(

α2
1

θ̃ ρ
(−θ̃ρ + θ̃ + 1)y−θ̃ρ+θ̃ + H σ̃ (θ̃ + 1)y−2

)
.

So, there exist y1, y2 > 0 such that

f̃ ′(s, y) ≤ f1(s, y) ≤ K ≤ s2H−1K = Ks

for all s ∈ (0, 1], y ∈ (0, y1) as well as

f̃ ′(s, y) ≤ f2(s, y) ≤ s2H−1K = Ks

123



Journal of Theoretical Probability

for all s ∈ (0, 1], y ∈ (y2,∞) and some K > 0. On the other hand, we see that

f̃ ′(s, y) ≤ K1 + s2H−1K2 ≤ s2H−1K = Ks

for all s ∈ (0, 1], y0 ∈ [y1, y2] for some K1, K2, K > 0. Altogether, we see that f̃
also satisfies (A1). Since −BH

• is a fractional Brownian motion, the proof follows. ,-

4 Malliavin Differentiability and Existence of Higher Moments of
Solutions

In this section, we want to show that the solution x to the SDE

xt = x +
∫ t

0
f̃ (s, xs)ds − σ̃ BH

t , 0 ≤ t ≤ 1, x > 0, (11)

is Malliavin differentiable in the direction of BH
• for H ∈ (0, 1

2 ) and where σ̃ > 0 is
an arbitrary constant. Furthermore, we verify that solutions xt to (11) belong to Lq for
all q ≥ 1. For this purpose, let f̃n : (0, 1]×R → R, n ≥ 1 be a sequence of bounded,
globally Lipschitz continuous (and smooth) functions such that

(i) f̃ |[ 1n ,n]= f̃ |(0,1]×[ 1n ,n] for all n ≥ 1,

(ii) f̃ ′
n(s, x) ≤ Ks for all (s, x) ∈ (0, 1] × R, n ≥ 1, where Ks is defined in (A1).

So, we see that

f̃ ′
n(s, x) −→

n→∞ f̃ (s, x)

for all (s, x) ∈ (0, 1]× (0,∞). Denote by DH
• and D•, the Malliavin derivative in the

direction of BH
• and W•, respectively. Here, W• is the Wiener process with respect to

the representation

BH
t =

∫ t

0
KH (t, s)dWs, t ≥ 0. (12)

See Appendix. Since −BH
• is a fractional Brownian motion, let us without loss of

generality assume in (11) that σ̃ = −1. Because of the regularity of the functions f̃n ,
n ≥ 1, we find that the solutions xn• to

xnt = x +
∫ t

0
f̃n(s, xs)ds + BH

t , x > 0, 0 ≤ t ≤ 1

are Malliavin differentiable with Malliavin derivative DH
u xt satisfying the equation

DH
u xnt =

∫ t

u
f̃ ′
n(s, x

n
s )D

H
u xns ds + χ[0,t](u).
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Hence,

DH
u xnt = χ[0,t](u) exp

(∫ t

u
f̃ ′
n(s, x

n
s )ds

)
λ × P-a.e.

for all 0 ≤ t ≤ 1 ( λ Lebesgue measure). Further, using the transfer principle between
DH

• and D• (see [5, Proposition 5.2.1]), we have that

K ∗
H DH

• xt = D•xt (13)

where K ∗
H : H → L2([0, T ]) is given by

(K ∗
H y)(s) = KH (T , s)y(s)+

∫ T

s
(y(t) − y(s))

∂

∂t
KH (t, s)dt (14)

for

∂

∂t
KH (t, s) = cH

(
H − 1

2

)(
1
2

)H− 1
2

(t − s)H− 3
2 . (15)

HereH = I
1
2−H
T− (L2). See Appendix. On the other hand, using (13), we also see that

Duxnt =
∫ t

u
f̃ ′
n
(
s, xns

)
Duxns ds + KH (t, u) (16)

in L2([0, t] × %) for all 0 ≤ t ≤ 1. Set

Yn
t (u) = Duxnt − KH (t, u).

Then,

Yn
t (u) =

∫ t

u

{
f̃ ′
n
(
s, xns

)
Yn
s (u)+ f̃n

(
s, xns

)
KH (s, u)

}
ds.

Using the fundamental solution of the equation

.̇(t) = f̃ ′
n(t, x

n
t ) · .(t), .(u) = 1.

We then obtain that

Yn
t (u) =

∫ t

u
exp

(∫ t

s
f̃ ′ (r , xnr

)
dr
)

f̃ ′
n(s, x

n
s )KH (s, u)ds.

Hence,

Duxnt =
∫ t

u
exp

(∫ t

s
f̃ ′ (r , xnr

)
dr
)

f̃ ′
n(s, x

n
s )KH (s, u)ds + KH (t, u)
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= Jn1 (t, u)+ Jn2 (t, u)+ KH (t, u), u < t, λ × P-a.e.,

where

Jn1 (t, u) :=
∫ t

u
exp

(∫ t

s
f̃ ′(r , xr )dr

)(
f̃ ′
n(s, x

n
s ) − Ks

)
KH (s, u)ds

and

Jn2 (t, u) :=
∫ t

u
exp

(∫ t

s
f̃ ′(r , xr )dr

)
Ks · KH (s, u)ds.

Without loss of generality, let T = t = 1. Then,

∫ 1

0
(Duxn1 )

2du ≤ C
{∫ 1

0
(Jn1 (1, u))

2du +
∫ 1

0
(Jn2 (1, u))

2du

+
∫ 1

0
(KH (1, u))2du

}
. (17)

Using Fubini’s theorem, we get that

∫ 1

0
(Jn1 (1, u))

2du

=
∫ 1

0

(∫ 1

0
χ[u,1] (s) exp

(∫ t

s
f̃ ′(r , xr )dr

)(
f̃ ′
n(s, x

n
s ) − Ks

)
KH (s, u)ds

)2

du

=
∫ 1

0

∫ 1

0

{
exp

(∫ 1

s1
f̃ ′(r , xr )dr

)(
f̃ ′
n(s1, x

n
s1 ) − Ks1

)

× exp
(∫ 1

s2
f̃ ′(r , xr )dr

)(
f̃ ′
n(s2, x

n
s2 ) − Ks2

) ∫ s1∧s2

0
KH (s1, u)KH (s2, u)du

}
ds1ds2.

From (12), we see for the covariance function

RH (s1, s2) = E
[
BH
s1 · BH

s2

]

that

RH (s1, s2) =
∫ s1∧s2

0
KH (s1, u)KH (s2, u)du.

Since

0 ≤ RH (s1, s2) =
1
2

(
s2H1 + s2H2 − |s1 − s2|2H

)
≤ 1, H <

1
2

and
(
f̃ ′
n(s1, x

n
s1) − Ks1

)
·
(
f̃ ′
n(s2, x

n
s2) − Ks2

)
≥ 0
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for 0 < s1, s2 ≤ 1, we find that

∫ 1

0
(Jn1 (1, u))

2du ≤
(∫ 1

0

(
exp

(∫ t

s
f̃ ′(r , xr )dr

)(
f̃ ′
n(s, x

n
s ) − Ks

)
ds
)2

=
{

− exp
(∫ 1

s
f̃ ′(r , xr )dr

)∣∣∣∣
1

s=0
−
∫ 1

0
Ks exp

(∫ 1

s
f̃ ′(r , xr )dr

)
ds

}2

≤
(
exp

(∫ 1

0
Krdr

)
+
∫ 1

0
Ksds · exp

(∫ 1

0
Krdr

))2

.

Similarly, we also obtain that

∫ 1

0

(
Jn2 (1, u)

)2 du ≤ C(K , H)

for a constant C(K , H) < ∞. We also have that

∫ 1

0
(KH (1, u))2du = E

[(
BH
1

)2]
= 1.

Altogether, we get that

E
[∫ 1

0

(
Duxn1

)2 du
]

≤ C(K , H) (18)

for all n ≥ 1 for a constant C(K , H) < ∞. Define now the stopping times τn by

τn = inf
{
0 ≤ t ≤ 1; xt /∈

[
1
n
, n
]}

(inf ∅ = ∞)

Then, we know from the proof of the existence of solutions in the previous section
that τn ↗ ∞ for n → ∞. So,

xnt∧τn
− xt∧τn =

∫ t∧τn

0

{
f̃n
(
s, xns

)
− f̃ (s, xs)

}
ds

=
∫ t

0
χ[0,τn ) (s)

{
f̃n
(
s, xns∧τn

)
− f̃n(s, xs∧τn )

}
ds.

Hence,

∣∣xnt∧τn
− xt∧τn

∣∣ ≤ Kn

∫ t

0

∣∣xns∧τn
− xs∧τn

∣∣ ds

for a Lipschitz constant Kn . Then, Gronwall’s lemma implies that

xnt∧τn
= xt∧τn
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for all t, n P-a.e. Since τn ↗ ∞ for n → ∞ a.e., we have that

xnt →
n→∞ xt (19)

for all t P-a.e. Using the Clark–Ocone formula (see [7]), we get that

xn1 = E
[
xn1
]
+
∫ 1

0
E
[
Dsxn1 |Fs

]
dWs,

where {F}0≤t≤1 is the filtration generated by W•. It follows that

E[(xn1 − E[xn1 ])2] = E
[∫ 1

0

(
E[Dsxn1 |Fs]

)2 ds
]

≤ E
[∫ 1

0
E[(Dsxn1 )

2|Fs]ds
]
=
∫ 1

0
E
[(
Dsxn1

)2] ds.

So, we see from (18) that

E
[(
xn1 − E

[
xn1
])2] ≤ C(K , H) < ∞.

for all n ≥ 1. We also have that

∣∣∣∣xn1 − E[xn1 ]
∣∣−

∣∣x1 − E[xn1 ]
∣∣∣∣ ≤

∣∣xn1 − x1
∣∣ −→
n→∞ 0

because of (19). So,

lim
n→∞

∣∣xn1 − E
[
xn1
]∣∣ = lim

n→∞

∣∣x1 − E
[
xn1
]∣∣ .

Suppose that E[xn1 ], n ≥ 1 is unbounded. Then, there exists a subsequence nk , k ≥ 1
such that

∣∣E
[
xnk1
]∣∣ −→

n→∞ ∞.

It follows from the lemma of Fatou and the positivity of xt that

∞ = E
[
lim
k→∞

(∣∣x1 − |E[xnk1 ]|
∣∣)2
]

≤ E
[
lim
k→∞

(∣∣x1 − E[xnk1 ]
∣∣)2
]

= E
[
lim
k→∞

(∣∣xnk1 − E[xnk1 ]
∣∣)2
]

≤ lim
k→∞

E
[∣∣xnk1 − E[xnk1 ]

∣∣2
]

≤ C < ∞,

123



Journal of Theoretical Probability

which is a contradiction. Hence,

sup
n≥1

|E[xn1 ]| < ∞.

Further, we also obtain from the Burkholder–Davis–Gundy inequality and (18) that

E[|xn1 |2p] < Cp

(

|E[xn1 ]|2p + E
[(∫ 1

0
E[Dsxn1 |Fs]dWs

)2p])

≤ Cp



|E[xn1 ]|2p + E




(

sup
0≤u≤1

∣∣
∫ u

0
E[Dsxn1 |Fs]dWs

∣∣
)2p









≤ Cp

(

|E[xn1 ]|2p + mpE
[(∫ 1

0
E[Dsxn1 |Fs]2ds

)p])

≤ C(p, K , H) (20)

for n ≥ 1. So, it follows from (19) and the lemma of Fatou that

E[|x1|2p] ≤ lim
n→∞

E[|xn1 |]2p ≤ C(p, K , H) < ∞

for all p ≥ 1. So, we obtain the following result:

Theorem 4.1 Let xt , 0 ≤ t ≤ 1 be the solution to (11). Then, xt ∈ Lq(%) for all q ≥ 1
and 0 ≤ t ≤ 1.

In addition, we obtain from Lemma 1.2.3 in [7] in connection with estimate (20) that
x1 is Malliavin differentiable in the direction of W•. The latter, in combination with
(13), also entails the Malliavin differentiability of x1 with respect to BH

• . Thus, we
have also shown the following result:

Theorem 4.2 The positive unique strong solution xt to (11) is Malliavin differentiable
in the direction of BH

• and W• for all 0 ≤ t ≤ 1.

5 Application

In this section, we aim at applying the results of the previous section to obtain a unique
strong solution xt to the SDE

xt = x0 +
∫ t

0

(
α−1x−1

s − α0 + α1xs − α2s2H−1xρ
s
)
ds +

∫ t

0
σ xθ

s dB
H
s , (21)
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0 ≤ t ≤ 1, for H ∈ ( 13 ,
1
2 ), θ̃ > 0, ρ > 1 + 1

H θ̃
, σ > 0 and θ := θ̃+1

θ̃
. Here, the

stochastic integral with respect to BH
• is defined by

∫ t

0
g(xs)dBH

s =
∫ t

0
−Hs2H−1g′(xs)ds +

∫ t

0
g(xs)d◦BH

s (22)

for functions g ∈ C3((0,∞);R). See also the second Remark 5.3. The stochastic
integral on the right-hand side of (22) is the symmetric integral with respect to BH

•

introduced by Russo and Vallois. See, for example, [18] and the references therein.
Such an integral denoted by

∫ t

0
Ysd◦Xs, t ∈ [0, 1] (23)

for continuous process X •, Y• is defined as

lim
ε↘0

1
2ε

∫ t

0
Ys(Xs+ε − Xs)ds,

provided this limit exists in the ucp-topology. In order to construct a solution to (21),we
need a version of the Itô formula for processes Y•, which have a finite cubic variation.
A continuous process is said to have a finite strong cubic variation (or 3-variation),
denoted by [Y , Y ,Y ], if

[Y , Y ,Y ] := lim
ε↘0

1
ε

∫ t

0
(Ys+ε − Ys)3ds

exists in ucp as well as

sup
0<ε≤1

1
ε

∫ 1

0
|Ys+ε − Ys |3ds < ∞ a.e.

See [18]. Using the concept of finite strong cubic variation, one can show the following
Itô formula (see [18]).

Theorem 5.1 Assume that Y• is a real valued process with finite strong cubic variation
and g ∈ C3((0,∞);R). Then,

g(Yt ) = g(Y0)+
∫ t

0
g′(Ys)d◦Ys − 1

12

∫ t

0
g′′′(Ys)d[Y ,Y , Y ]s, 0 ≤ t ≤ 1.

Remark 5.2 The last term on the right-hand side of the equation is a Lebesgue–Stieltjes
integral with respect to the bounded variation process [Y , Y ,Y ].

Remark 5.3 • We mention that for Y• = BH
• , H ∈ ( 13 ,

1
2 ), [BH

• , BH
• , BH

• ] is zero
a.e.
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• If X • = BH
• in (22), then it follows from Theorem 6.3.1 in [8] that our stochastic

integral in (22) equals the Wick–Itô–Skorohod integral. The latter also gives a
justification for the definition of the stochastic integral in (22) in the general case.

Theorem 5.4 Suppose that H ∈ ( 13 ,
1
2 ), θ̃ > 0, σ > 0 and ρ > 1+ 1

H θ̃
. Let θ = θ̃+1

θ̃
.

Then, there exists a unique strong and positive solution to the SDE (21).

Proof Let y• be the unique strong and positive solution to

yt = x +
∫ t

0
f̃ (s, ys)ds − σ̃ BH

t , 0 ≤ t ≤ 1, x > 0,

where f̃ is defined as in Sect. 2. Define g ∈ C3((0,∞);R) by g(y) = y−θ̃

θ̃
. Then, a

modification of Theorem 5.1 (see Lemma 6.1) entails that

xt := g(yt ) =
x−θ̃

θ̃
+
∫ t

0
(−1)y−(θ̃+1)

s d◦ys − 1
12

∫ t

0
g′′′(ys)d[y, y, y]s .

Since [BH
• , BH

• , BH
• ] is zero a.e. (see Remark 5.3), we observe that [y, y, y] is zero

a.e. So,

xt =
x−θ̃

θ̃
+
∫ t

0
(−1)y−(θ̃+1)

s d◦ys

= x−θ̃

θ̃
+
∫ t

0
(−1)y−(θ̃+1)

s f̃ (s, ys)ds +
∫ t

0
σ̃ y−(θ̃+1)

s d◦BH
s

= x−θ̃

θ̃
−
∫ t

0

{
(−1)y−(θ̃+1)

s f̃ (s, ys) − H σ̃ s2H−1y−(θ̃+2)
s (θ̃ + 1)

}
ds

+
∫ t

0
σ̃ y−(θ̃+1)

s dBH
s .

Since we can write (ys)−(θ̃+1) = θ̃ θ

(
y−θ̃
s
θ̃

)θ

, we now have

xt =
x−θ̃

θ̃
+
∫ t

0
f

(

s,
y−θ̃
s

θ̃

)

ds +
∫ t

0
σ̃ y−(θ̃+1)

s dBH
s

= x−θ̃

θ̃
+
∫ t

0
f

(

s,
y−θ̃
s

θ̃

)

ds +
∫ t

0
σ̃ θ̃ θ (xs)θdBH

s ,

where f (s, y) := α−1y−1 − α0 + α1y − α2s2H−1yρ , s ∈ (0, 1], y ∈ (0,∞). So
x• satisfies the SDE (21) if we choose σ̃ = θ̃−θσ for σ > 0. In order to show the
uniqueness of solutions to SDE (21), one can apply the Itô formula in Theorem 5.1
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to the inverse function g−1 given by g−1(y) =
(
θ̃
)− 1

θ̃ y− 1
θ̃ by using the fact that

[BH
• , BH

• , BH
• ] = 0 a.e. for H ∈ ( 13 ,

1
2 ). ,-

Finally, using the same arguments as in the proof of Theorem 5.4, we also get the
following result for the alternative Ait-Sahalia model (3):

Theorem 5.5 Retain the conditions of Theorem 5.4 with respect to H , θ̃ , θ and ρ.
Then, there exists a unique strong solution xt > 0 to SDE (3).

Proof Just as in the proof of Theorem 5.4, we can consider the SDE (6), where the
vector field f̃ now is given by

f̃ (s, y) = α−1(−θ̃ y2θ̃+1)+ α0y θ̃+1 − α1
y

θ̃
+ α2

1

θ̃ ρ
y−θ̃ρ+θ̃+1 (24)

for 0 < y < ∞. Then, as in the proof of Corollary (3.2) one immediately verifies
that f̃ satisfies the assumptions of Theorem 3.1, which yields a unique strong solution
yt > 0 to (6) in this case. In exactly the same way, we also obtain the results of
Theorem 4.1 and Theorem 4.2 with respect to f̃ in (24). Finally, we can apply the Itô
formula as in the proof of Theorem 5.4 and construct a unique strong solution xt > 0
to (3) based on y•. ,-
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Appendix

Lemma 6.1 Let yt , 0 ≤ t ≤ 1, be the positive strong solution of the SDE in the proof
of Theorem 5.4 and let f : (0,∞) → (0,∞); x → x−α , where α > 0. Then,

f (yt ) = f (y0)+
∫ t

0
f ′(ys)d◦ys, 0 ≤ t ≤ 1, a.e.

Proof The proof is based on the same arguments for the proof of the Itô formula as in
[18] and the fact that min

t∈[0,2]
yt > 0 a.e. (see the proof of Theorem 3.1) for a solution y•

on [0, 2] ⊃ [0, 1]. Consider the following type of Taylor formula

f (b) = f (a)+ f ′(a)(b − a)+ 1
2
f ′′(a)(b − a)2

+ 1
6
f (3)(a)(b − a)3 + R(a, b)(b − a)3

for a, b ∈ (0,∞), where

R(a, b) :=
∫ 1

0

φ2

2
( f (3)(φa + (1 − φ)b) − f (3)(a))dφ.

So for ε ∈ (0, 1) and s ∈ [0, 1], we obtain

f (ys+ε) = f (ys)+ f ′(ys)(ys+ε − ys)+
1
2
f ′′(ys)(ys+ε − ys)2

− 1
6
f (3)(ys)(ys+ε − ys)3 + R(ys, ys+ε)(ys+ε − ys)3

and

f (ys) = f (ys+ε) − f ′(ys+ε)(ys+ε − ys)+
1
2
f ′′(ys+ε)(ys+ε − ys)2

− 1
6
f (3)(ys+ε)(ys+ε − ys)3 − R(ys+ε, ys)(ys+ε − ys)3.

The latter entails that

1
ε

∫ t

0
( f (ys+ε) − f (ys))ds =

4∑

i=1

Ji,ε(t),

where

J1,ε(t) :=
1
2ε

∫ t

0
( f ′(ys+ε)+ f ′(ys))(ys+ε − ys)ds,

J2,ε(t) := − 1
4ε

∫ t

0
( f ′′(ys+ε) − f ′′(ys))(ys+ε − ys)2ds,
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J3,ε(t) :=
1
12ε

∫ t

0
( f (3)(ys+ε)+ f (3)(ys))(ys+ε − ys)3ds,

and

J4,ε(t) := − 1
2ε

∫ t

0
(R(ys, ys+ε)+ R(ys+ε, ys))(ys+ε − ys)3ds.

Since the process f (yt ), 0 ≤ t ≤ 1, is continuous, we see that

1
ε

∫ •

0
( f (ys+ε) − f (ys))ds

ucp−→
ε↘0

f (y•) − f (y0).

On the other hand, using the mean value theorem, we find that

J2,ε(t) = − 1
4ε

∫ t

0
ψε(s)(ys+ε − ys)3ds

= − 1
4ε

∫ t

0
(ψε(s) − ψ0(s))(ys+ε − ys)3ds +

1
4ε

∫ t

0
ψ0(s)(ys+ε − ys)3ds,

where

ψε(s) :=
∫ 1

0
f (3)(φys + (1 − φ)ys+ε)dφ

and

ψ0(s) := f (3)(ys).

We have for s ∈ [0, 1] that

|ψε(s) − ψ0(s)| =
∣∣
∫ 1

0
( f (3)(φys + (1 − φ)ys+ε) − f (3)(ys))dφ

∣∣

≤ α(α + 1)(α + 3)
∫ 1

0

|(ys)α+3 − (φys + (1 − φ)ys+ε)
α+3|

(φys + (1 − φ)ys+ε)α+3(ys)α+3 dφ

≤ α(α + 1)(α + 3)
∫ 1

0

|(ys)α+3 − (φys + (1 − φ)ys+ε)
α+3|

(
φ min
s∈[0,2]

ys + (1 − φ) min
s∈[0,2]

ys
)α+3

( min
s∈[0,2]

ys)α+3
dφ

≤ α(α + 1)(α + 2)
1

( min
s∈[0,2]

ys)
2(α + 3) sup

φ∈[0,1]
sup

s∈[0,1]
|(ys)α+3 − (φys + (1 − φ)ys+ε)

α+3|

−→
ε↘0

0 a.e.,

because of

sup
φ∈[0,1]

sup
s∈[0,1]

|ys − φys − (1 − φ)ys+ε | ≤ sup
s∈[0,1]

|ys − ys+ε | −→
ε↘0

0 a.e.
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and uniform continuity. So,

sup
s∈[0,1]

|ψε(s) − ψ0(s)| −→
ε↘0

0 a.e.

Hence,

∣∣∣∣
1
4ε

∫ t

0
(ψε(s) − ψ0(s))(ys+ε − ys)3ds

∣∣∣∣

≤ sup
s∈[0,1]

|ψε(s) − ψ0(s)| · sup
ε>0

1
4ε

∫ t

0
|ys+ε − ys |3ds −→

ε↘0
0 a.e.,

since y• is of strong 3-variation.
Further, since ψ0(t), 0 ≤ t ≤ 1, is a continuous process, it follows from Remark

2.6, (6) in [18] that

1
4ε

∫ •

0
ψ0(s)(ys+ε − ys)3ds

ucp−→
ε↘0

1
4

∫ •

0
ψ0(s)d[y, y, y]s = 0,

due to [y, y, y]s = 0. So,

J2,ε(·) =
ucp−→
ε↘0

0.

We also see that

J3,ε(t) =
1
12ε

∫ t

0
f (3)(ys)(ys+ε − ys)3ds +

1
12ε

∫ t

0
f (3)(ys+ε)(ys+ε − ys)3ds

= J (1)3,ε (t)+ J (2)3,ε (t).

Because of Remark 2.6, (6) in [18], we have again

J (1)3,ε (·)
ucp−→
ε↘0

0.

Further, Remark 2.6, (5) in [18] implies that

J (2)3,ε (·)
ucp−→
ε↘0

0.

As for the process J4,ε(·), we can use the same arguments as in the case of J2,ε(·)
based on uniform continuity and the strong 3-variation of y• and obtain that

J4,ε(·)
ucp−→
ε↘0

0.

123



Journal of Theoretical Probability

Altogether, we get in connection with Remark 3.2, (1) in [18] that

lim
ε↘0

J1,ε(·)

exists in the ucp-topology and must be equal to

∫ •

0
f ′(ys)d◦ys .

,-

For some of the proofs in this article, we need to recall some basic concepts from
fractional calculus (see [19, 20]).

Let a, b ∈ R with a < b. Let f ∈ L p([a, b]) with p ≥ 1 and α > 0. Then, the
left- and right-sided Riemann–Liouville fractional integrals are defined as

I α
a+ f (x) = 1

1(α)

∫ x

a
(x − y)α−1 f (y)dy

and

I α
b− f (x) = 1

1(α)

∫ b

x
(y − x)α−1 f (y)dy

for almost all x ∈ [a, b]. Here, 1 is the gamma function.
Let p ≥ 1 and let I α

a+(L
p) (resp. I α

b−(L p)) be the image of L p([a, b]) of the
operator I α

a+ (resp. I α
b−). If f ∈ I α

a+(L
p) (resp. f ∈ I α

b−(L p)) and 0 < α < 1, then
we can define the left- and right-sided Riemann–Liouville fractional derivatives by

Dα
a+ f (x) = 1

1(1 − α)

d
dx

∫ x

a

f (y)
(x − y)α

dy

and

Dα
b− f (x) = 1

1(1 − α)

d
dx

∫ b

x

f (y)
(y − x)α

dy.

The left- and right-sided derivatives of f can be represented as

Dα
a+ f (x) = 1

1(1 − α)

(
f (x)

(x − a)α
+ α

∫ x

a

f (x) − f (y)
(x − y)α+1 dy

)

and

Dα
b− f (x) = 1

1(1 − α)

(
f (x)

(b − x)α
+ α

∫ b

x

f (x) − f (y)
(y − x)α+1 dy

)
.
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The above definitions imply that

I α
a+
(
Dα
a+ f

)
= f

for all f ∈ I α
a+(L

p) and

Dα
a+
(
I α
a+ f

)
= f

for all f ∈ L p([a, b]) and similarly for I α
b− and Dα

b− .
Denote by BH = {BH

t , t ∈ [0, T ]} a d-dimensional fractional Brownian motion
with Hurst parameter H ∈ (0, 1

2 ). The latter means that BH
· is a centred Gaussian

process with a covariance function given by

(RH (t, s))i, j := E
[
BH ,(i)
t BH ,( j)

s

]

= δi j
1
2

(
t2H + s2H − |t − s|2H

)
, i, j = 1, . . . , d,

where δi j is one, if i = j , or zero else.
In the sequel, we also shortly recall the construction of the fractional Brownian

motion, which can be found in [7]. For convenience, we restrict ourselves to the case
d = 1.

Denote by E the class of step functions on [0, T ], and let H be the Hilbert space
which one gets through the completion of E with respect to the inner product

〈1[0,t], 1[0,s]〉H = RH (t, s).

The latter provides an extension of the mapping 1[0,t] 5→ Bt to an isometry between
H and a Gaussian subspace of L2(%) with respect to BH . Let ϕ 5→ BH (ϕ) be this
isometry.

If H < 1
2 , one finds that the covariance function RH (t, s) can be represented as

RH (t, s) =
∫ t∧s

0
KH (t, u)KH (s, u)du, (25)

where

KH (t, s) = cH

[(
t
s

)H− 1
2

(t − s)H− 1
2 +

(
1
2

− H
)
s
1
2−H

∫ t

s
uH− 3

2 (u − s)H− 1
2 du

]
. (26)

Here, cH =
√

2H
(1−2H)β(1−2H ,H+ 1

2 )
and β is the beta function. See [7, Proposi-

tion 5.1.3].
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Using the kernel KH , one can obtain via (25) an isometry K ∗
H between E and

L2([0, T ]) such that (K ∗
H1[0,t])(s) = KH (t, s)1[0,t](s). This isometry allows for an

extension to the Hilbert spaceH, which has the following representations in terms of
fractional derivatives

(K ∗
Hϕ)(s) = cH1

(
H + 1

2

)
s
1
2−H

(
D

1
2−H
T− uH− 1

2 ϕ(u)
)
(s)

and

(K ∗
Hϕ)(s) = cH1

(
H + 1

2

)(
D

1
2−H
T− ϕ(s)

)
(s)

+ cH

(
1
2

− H
)∫ T

s
ϕ(t)(t − s)H− 3

2

(

1 −
(
t
s

)H− 1
2
)

dt .

for ϕ ∈ H. One can also prove thatH = I
1
2−H
T− (L2). See [21] and [22, Proposition 6].

We know that K ∗
H is an isometry fromH into L2([0, T ]). Thus, the d-dimensional

process W = {Wt , t ∈ [0, T ]} defined by

Wt := BH ((K ∗
H )

−1(1[0,t])) (27)

is a Wiener process and the process BH has the representation

BH
t =

∫ t

0
KH (t, s)dWs . (28)
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