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Abstract

This paper examines the utility indifference price of interest rate products
and the risk associated with these. Such products can be compared with
put options and are here considered to be written on a non-tradeable asset
which can be hedged with a correlated asset. Initially, we look at the case
where both the tradeable and non-tradeable assets can be modeled by two
geometric Brownian motions. This model is later extended to the case
where it is assumed that the tradeable asset follows a Lévy process.

The paper is based on the article ’Utility indifference pricing of interest-
rate guarantees’ by Fred Espen Benth and Frank Proske, but is meant to
be an independent paper. The definitions of the utility indifference price
and the residual risk remaining after hedging are the same as in their paper.

The residual risk is measured with several different risk measures such as
Value at Risk, Conditional Value at Risk and Expected Shortfall. These
measures, with others, are closely examined and evaluated.

Numerical examples are included showing that the utility indifference price
is lower for negative correlation than for positive and that the price can
be even lower if the tradeable asset follows a Lévy process. Thus, if e.g.
life companies can hedge in assets allowing jumps, and that are negatively
correlated with their pension fund, they may offer lower prices with prac-
tically unaltered measures of risk.

Analysis of the pricing and hedging of interest rate guarantees are not only
relevant for life companies, but also for other financial institutions offering
investment products where there is a guaranteed least rate of return.
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Introduction

I will in this paper look at the risk associated with interest rate products when
priced with the indifference utility pricing method. This method is a tool to
be used if it is dubious to assume that a perfect hedge can be achieved and we
need to utilize sub-optimal replication strategies. In other words, this price can
be viewed as a substitute for the standard Black & Scholes framework. Reasons
for why the Black & Scholes framework can be inadequate is e.g. illiquidity or
that contracts simply are not long enough compared to the time perspective of
a pension fund.

Life insurance companies often offer pension saving deals with a guaranteed
least rate of return to their clients. Of course, the companies aim for a higher
rate of return, while the customers are protected against low returns. This offer
is equivalent to issuing a put option with strike dependent on the guaranteed
rate of return and the time perspective. By issuing such a put option, the com-
panies undertake a risk of having to cover the loss should their investments fail
to achieve the guaranteed rate of return.

To take this risk, the the issuer needs to be compensated. This compensation
is here decided by the utility indifference price. The utility indifference price is
defined at the level where the issuer of an option is indifferent between entering
the market by its own or issuing the option and entering the market with the
collected premium. These two optimal investment problems are solved using
stochastic control theory and the difference between them gives the utility based
hedging strategy. The construction and notation will be recognizable with the
one in Benth and Proske[6].

Choosing the ’best’ model is always a difficult choice. The optimal model is
a model describing the reality close to perfect and, at the same time, has few
and easy-to-get parameters. This being said, we will in the earlier chapters use
a model with as few parameters as possible in this context, and then try to
expand it to better fit the reality in the later chapters. In detail the paper will
progress as follows.

The first chapter will introduce a model for the financial market of which we
are operating in and then use it to define the utility indifference price of a put
option and the risk of issuing these. It is all dependent on the risk aversion
of the issuer. The lowest price of which a life company is willing to issue such
guarantees is obtained when the issuer is indifferent to risk.

In the second chapter, I will look at different risk measures, including Value
at Risk, Conditional Value at Risk and Expected Shortfall. I find it difficult
discussing the topic of risk without mentioning the highly interesting changes
being made in the Basel (worldwide) and Solvency (EU) frameworks, namely
the newly implemented Basel II and the soon-to-be implemented Solvency II
directives. These will be mentioned briefly.
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Chapter three will be a continuation of both chapter one and chapter two and
will contain a risk analysis of the option defined in chapter one.

In chapter four the model in chapter one will extended to include the possibility
of investing in a stock behaving like a Lévy process. The implied changes in
price and risk will be studied.

The fifth chapter will contain a conclusion of the findings in the paper together
with a survey of some of the limitations of the model and some possible im-
provements and extensions.

Assumptions

We are assuming an incomplete market, meaning that we cannot hedge any
claims perfectly. In other words, there exist no explicit arbitrage-free price, but
rather a continuum of such. With the indifference utility pricing method we
will find the price within this continuum that is most profitable for a certain
agent, i.e. has the highest utility for a given company or investor.

Further, this is a situation where the life company can only use a part of the
fund for hedging. Therefor, the fund is interpreted as a non-tradeable asset,
whereas the part that can be traded is modeled as a separate correlated asset.

2



1 The Model

1.1 Defining the model

In this paper, as in Benth and Proske[6], we are assuming a complete probability
space (

Ω,F , {Ft}t∈[0,T ] , P
)

supporting two independent Brownian motions B and W . Our algebra of in-
formation Ft is assumed to fulfill ’the usual conditions’, namely that Ft is right
continuous and that F0 contains all the null sets1.

We consider a market model consisting of a bank account with deterministic
return (a risk free asset), a stock driven by B (a risky asset) and a fund driven
by the stock and W (an untradeable asset). The extent of which the fund is
driven by both the stock and the Brownian motion W is determined by the
correlation parameter, ρ ∈ (−1, 1). Note that in order to use the utility in-
difference pricing method, we have to assume that our market is incomplete,
meaning that all claims can not be perfectly hedged, i.e. |ρ| 6= 1. Why this
has to hold will be revealed shortly, when we define the utility indifference price.

We assume that the value of the bank account at time t, S0
t , the value of the

stock at time t, St, and the value of the fund at time t, Yt2, have the following
dynamics.

dS0
t

S0
t

= rdt

dSt
St

= µdt+ σdBt

dYt
Yt

= νdt+ η
(
ρdBt +

√
1− ρ2dWt

)
The parameters, r, µ, ν, σ and η are real constants and the two last ones are
positive, by definition since they are volatilities. The three first ones will also
be positive in any normal market, but there are situations in which at least µ
and ν could be negative; for instance the financial crisis we just witnessed. It is
also possible for r to become negative, but this is highly unlikely and belongs
only in the field of crisis modeling. This paper will at all times use a positive
set of parameters to fit a healthy market.

On the upside, this choice of model assures us that both the stock and the fund
is positive at all times. The downside, of course, is that not only will the stock
and the fund be positive at all times, they will also be strictly positive at all
times. While the former is a property corresponding to the real world, the latter
is not; Companies go bankrupt all the time, causing their stocks to loose all

1That is if B ⊂ A ∈ F0 with P (A) = 0, then B ∈ F0
2It is shown in Benth and Proske that Yt is a Markov process

3



value and never recover. This could be modeled by introducing a low threshold
b saying that if St < b, then St = 0 and the company would be bankrupt. The
threshold should be chosen such that the probability of St assuming a value
below b, P (St < b), corresponds to the real market. However, this is not within
the topic of this paper, and will not be treated further.

As mentioned in the introduction, the pricing of the fund will be equivalent
with the pricing of an European put option with exercise time T and strike
K = Y0e

gT , where g is the guaranteed rate of return of the portfolio. We
consider the case when an investor is short λ such put options and we let θt be
the cash amount invested in St while the remaining cash or wealth is invested
in the risk free asset, S0

t . This gives us the wealth portfolio dynamic:

dXλ,θt
t = θt

dSt
St

+ r(Xλ,θt
t − θt)dt (1)

where the trading strategy θt is admissible when the equation above has a
unique strong solution3, Xλ,θt

t , for t ∈ [0, T ] and

E[−U(Xλ,θt
T )] <∞ (2)

Here U is the utility function our indifference pricing is based on, and is of the
form U(x) = − 1

γ e
−γx, where γ > 0 is the risk aversion of the company. Small

γ implies low risk aversion, meaning that the company is willing to take on
more risk than if they had a higher γ. At first, one might think that this risk
aversion parameter is hard to determine, but, as found in Benth and Proske[6],
this parameter can easily be determined from past investments of the company.
This is also mentioned in Benth et al.[7]

As shown in Benth and Proske[6] and the references therein, we can express the
utility indifference price as

Definition 1.1.

pγλ(t, y) = e−r(T−t)
lnw(t, y)
γ(1− ρ2)

(3)

Here the function w is of the form

w(t, y) = EQ0

[
exp

{
λγ(1− ρ2)(K − YT )+

}
|Yt = y

]
(4)

By using that Yt is a Markov process under Q0, we can redefine equation (4) to
the following equation

w(t, y) = E0
[
exp

{
λγ(1− ρ2)(K − Y t,y

T ))+
}]

(5)

3As defined in page 72 of Øksendal[2]
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where

Y t,y
T = y · exp

{
(δ − 1

2
η2)(T − t) + η

(
ρ(B0

T −B0
t ) +

√
1− ρ2(WT −Wt)

)}
This expectation is under the minimal martingale measure Q0, under which
(B0,W ) are two independent Brownian motions, with dB0

t = dBt + µ−r
σ dt.

The fact that B0 is a Brownian motion under Q0 follows from the Girsanov
Theorem. Further, the Q0 dynamics of St and Yt becomes

dSt
St

= rdt+ σdW 0
t

dYt
Yt

= δdt+ η
(
ρdW 0

t +
√

1− ρ2dWt

)
for δ = ν − ηρµ−rσ .
One should note that since the fund, Yt, is not tradeable, our market is not
complete. Hence the utility indifference price, when ρ is tending to ±1, will in
general not be equal to the Black and Scholes price.

1.1.1 The utility indifference price under a general martingale mea-
sure

Since companies often have a risk aversion not tending to zero, we have to
consider the price under some Equivalent Martingale Measure (EMM) Qγλ. We
note that this measure is dependent both on the number of put options issued,
λ, and the risk aversion factor γ, as it should since the indifference price is
nonlinear in both. It is shown in Theorem 3.2 in Benth and Proske[6] that
such an EMM exists, making the utility indifference price pγλ arbitrage free and
stating the explicit form of the EMM yielding the utility indifference price. The
theorem states the following:

Theorem 1.2. There exists an equivalent martingale measure Qγλ such that

pγλ(t, y) = e−r(T−t)EQγλ

[
λ(K − Y (T ))+|Y (t) = y

]
(6)

Moreover, the Qγλ-dynamics of Yt and St are given by

dSt
St

= rdt+ σdB0 (7)

dYt
Yt

= δγ(t, Y (t))dt+ η
(
ρdB0 +

√
1− ρ2dW γ

λ

)
(8)

where (B0,W γ
λ ) are two independent Brownian motions under Qγλ, with

dW γ
λ (t) = dW (t)− 1

2
ηγ
√

1− ρ2er(T−t)Y (t)∂yp
γ
λ(t, Y (t))dt (9)

Finally,

δγ(t, y) = δ +
1
2
η2γ(1− ρ2)er(T−t)y∂yp

γ
λ(t, y) (10)
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Proof. The proof is carried out in full by Benth and Proske showing that Qγλ is a
probability measure and then showing that this implies that the representation
of the price as a conditional expectation holds.

The indifference pricing measure defined above can be said to be risk neutral
in some sense, since the discounted stock price process e−rtSt is a martingale
under it. It is also important to note that even if the utility indifference price is
arbitrage free, the market need not be. This is because the price is dependent
on the risk aversion, thus making a price that is fair for one trader with risk
aversion γ1 and that is an arbitrage opportunity for another with risk aversion
γ2.

Benth and Proske[6] also notes that Qγλ → Q0 when γ → 0 and that

lim
γ→0

pγλ = p0
λ

which are important points saying that the lowest indifference price is obtained
when the trader has zero risk aversion. This is perfectly intuitive and easy to
verify.

1.1.2 The residual risk

The residual risk is the risk the company is left with after hedging. When we,
as in Benth and Proske[6], define the hedge, Hγ

λ , as

Hγ
λ = Xθλ

λ −Xθ0

0 (11)

the residual risk, Rγλ, becomes

Rγλ = Xθλ

λ (T )−Xθ0

0 (T )− λ(K − YT )+

that is the payoff of the put option(s) subtracted from the hedge at terminal
time. Since Xθλ

λ and Xθ0
0 is the wealth portfolio when issuing λ and 0 put

options, respectively, the risk can be construed as the difference between the
wealth portfolio when issuing λ put options subtracted the value of λ put options
and the value of the wealth portfolio if we did not issue any options. It is shown
in section four of Benth and Proske that the residual risk can also be interpreted
as the cumulative value of the perfect hedge4 with respect to a residual risk
process. In other words, it can be represented by

Rγλ =
∫ T

0
er(T−t)Yt∂yp

γ
λ(t, Yt)dRt (12)

Here, dRt is a residual risk process given by

dRt =
ηρ

σ

(
dSt
St
− rdt

)
−
(
dYt
Yt
− δγ(t, Yt)dt

)
(13)

4A perfect hedge, a hedge that would eliminate all risk, is only possible in our risk neutral
world Qγλ of a complete market
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where dSt and dYt is the Qγλ-dynamics given by equations (7) and (8).

Further, we note that the integrand in equation (12) is the value of the cash
amount invested in the fund at time T for a perfect hedge in the risk neutral
world Qγλ. That is, if the risk free rate of return was given by δγ and the fund
was tradeable, the perfect hedging strategy of λ put options would be given by
the integrand in (12). Thus we have a quantification of the residual risk as the
accumulated value of the perfect hedge with respect to the risk process Rt.

1.2 Simulating the model

I have used Matlab to describe the model to my computer. To do this in an as
effective way as possible, some rewritings, simplifications and assumptions are
needed.

First off, we need to descretify the model presented above. For instance, we
have that ∫ T

0
φtdBt = lim

n→∞

n∑
i=1

φti∆Bti

≈
n∑
i=1

φti∆Bti

where 0 ≤ t1 < . . . < tn ≤ T and the approximation is better for larger n.
The new and discrete model is updated daily in stead of continuously, which
means that n = T and ∆Bti ∼ N(0, 1). This gives an error with respect to the
continuous model, but it can be argued that this error is insignificant compared
to other errors such as parameter insecurity. Also, a portfolio can not be con-
tinuously rebalanced since that would cause transaction costs to be enormous.
One could also say that the market is not continuous, and therefore our model
must be descretified to better fit the way that the market is behaving. Even
daily updating may be a bit too often, but that is what I have decided to use.
One could find an estimate of the error implied by descretifying the model in
such a way by adjusting the time steps. This will not be included in this paper.

Secondly, we need to compute ∂yp
γ
λ(t, Y (t)) for pγλ(t, Y (t)) as defined in equa-

tion (3) on page 4. Here ∂y is a shorthand notation for ∂
∂y and will be used

consequently.

∂yp
γ
λ(t, Y (t)) = ∂y

(
e−r(T−t)

ln(w(t, y))
γ(1− ρ2)

)
= e−r(T−t)

∂yln(w(t, y))
γ(1− ρ2)

= e−r(T−t)
∂yw(t, y)

w(t, y)γ(1− ρ2)

Using the above rewritings, one can find a direct derivation with respect to y

7



of w(t, y) as

∂yw(t, y) = ∂yEQ

[
exp

{
λγ(1− ρ2)(K − Y t,y

T )+
}]

= EQ

[
∂y exp

{
λγ(1− ρ2)(K − Y t,y

T )+
}]

= EQ

[
exp

{
λγ(1− ρ2)(K − Y t,y

T )+
}
λγ(1− ρ2)∂y

(
K − Y t,y

T

)+
]

where

∂y

(
K − Y t,y

T

)+
=
{
−Y t,1

t ,K > Y t,y
T

0 , else

Although this method gives seemingly nice results, the above derivation of w
might be a bit dodgy. This is because a function needs to be smooth in all
points to be differentiated, which w is not. Actually, w will have a breakpoint
almost surely since Y t,y

T = K with probability 1 for some t. Hence, the deriva-
tion should rather be done using Malliavin calculus5.

Do also note that for modeling purposes our process Y t,y
T as defined in equation

(6) on page 5 may be replaced by

Xt,x
T = x · exp

{
(δ − η2

2
)(T − t) + η(WT −Wt)

}
(14)

= x · exp
{

(δ − η2

2
)(T − t) + η

√
(T − t)ε

}
for ε ∼ N(0, 1)

without any loss of generality. This is because ρW 1
t +

√
1− ρ2W 2

t ∼ N(0, t)
which we recognize as the distribution of a single Brownian motion.

With this in mind, it can be shown that ∂xw(t, x) can be expressed as

∂

∂x
w(t, x) = E

[
exp

{
λγ(1− ρ2)(K −Xt,x

T )+
} BT
xηT

]
(15)

using the techniques presented in page 57 in di Nunno et al.[8] and the simpli-
fication Xt,x

T of Y t,y
T as stated in equation (14) above.

1.3 Example

Now, we can look at some examples on how the price behaves for different in-
puts. Especially, we will look at how the risk aversion affect the price in time,
t ∈ [0, 252], and correlation, ρ ∈ [−0.99, 0.99].

The figures showing the price for each set of parameters will contain a total of
6 subplots each. Subplot 1 is a surface plot of the price over both time and
correlation while the others are borders of the plot, except subplot 5 which is

5I thank Frank Proske for pointing this out for me
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a cross section of the price over time with correlation fixed at zero. Hence, the
five smaller plots are just to help read the surface better. The dots above and
below the price lines in the last five plots of each figure indicates the standard
deviation of the price when it is calculated 20 times. As we can see from all
the figures below, the simulation error is insignificant for small values of γ. If,
on the other hand, γ is as high as 0.5, uncertainty is larger, and hence our
simulation error is bigger, as seen in figure 3.

Lets start with the market given in table 1 and suppose the rest of the param-
eters are as given in the same table.

r = 0.02 g = 0.035 Y0 = 100
µ = 0.06 ν = 0.05 λ = 1
σ = 0.10 η = 0.07 γ = 10−11

Table 1: Parameters for the first example

Figure 1: The price with γ ≈ 0

As we can see from figure 1, the minimum price when risk aversion is close to
zero is obtained if it is possible to invest in an asset having the opposite behav-
ior compared to fund, in the meaning of correlation being equal to −1. It seems
as if correlation plays no role at maturity as we can see from subplot 3. Further,
the price is approximately constant over time if the risky asset is independent
of the fund, i.e. ρ = 0, as seen from subplot 5. Since the price is approximately
linear in time, one can easily calculate the approximate daily change in price

9



p(t+∆t)−p(t)
∆t

, which is seen to be an increase by 0.33% for ρ ≈ −1 and a decrease
of 0.56% for ρ ≈ 1. It is very close to zero for ρ = 0. The correlation giving
the highest price is ρ ≈ 1 at initial time, and ρ = 0.91 at maturity. While the
observation for the initial time is ’spot on’, the observation at maturity is not.
The top point at maturity is decided by chance, and the ’real’ price at this time
is a flat line.

To conclude one can say that for a low risk aversion, the correlation parameter
is of great impact at the initial time. This impact, however, decays as time
tends to maturity, as seen in subplots 4 and 6 of figure 1, and is of no relevance
at maturity as seen in subplot 5 of the same figure. The dots, representing the
standard deviation of the price, are very close to the line, representing the mean
of the price, indicating that the price is accurate at 10,000 simulations.

If we increase the risk aversion to γ = 0.1, we can first note that the ρ giving
the largest price has changed from close to 1 to about 0.75 for the initial time,
while it has stabilized around zero for maturity time, as seen in figure 2.

Figure 2: The price with γ = 0.1

Subplots 4 and 6 are quite alike their corresponding subplots in figure 1, while
subplot 5 has noticeable higher values. This means that in order to maintain a
low price with higher risk aversion, it is crucial to procure a negative correlated
asset to hedge in. At least at initial time. When one get closer to maturity, it
is also possible to hedge in a positively correlated asset. The main point is that
it is not independent. The form of subplot 5 is still approximately the same as
it was in figure 1, allthough it is decreasing slightly more here. Accuracy is still
high in all subplots agreed by the low standard deviation. Subplots 2 and 3 are
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the ones that have changed the most, Subplot 3 has become more concave than
it was when γ was close to zero and subplot 2 has gone from being convex to
being mostly6 concave.

Further increasing the risk aversion to γ = 0.5, imply a new shape of the price
as seen in figure 3. The price is now much more symmetric in the sense that the
top point of the price has moved further against zero. The maximum price is
also much larger and continues to be over time, as we can see from subplot 5 of
figure 3. By increasing the risk aversion from 0.1 to 0.5, the maximum price is
increased from about 3.5 to about 10. The price in the extreme cases of ρ being
near -1 or 1, have not changed all that much from when γ was close to zero. It
is also important to notice that the uncertainty of the price is starting to show
in the interval where ρ is small, that is for ρ ∈ [−0.25, 0.25] approximately. The
uncertainty is largest for ρ = 0, where the standard deviation is about 0.8.

Figure 3: The price with γ = 0.5

If one were to raise risk aversion even further, say to γ = 1, one would see ex-
actly the same changes as from raising it from 0.1 to 0.5, except one. It seems
as if the ρ giving the maximum price stabilizes at about 0.20-0.30. It makes
perfect sense that the correlation giving the largest price is positive because one
should benefit from diversification, which is done by hedging in a stock with
negative correlation. Hence the price should always be larger when hedging
in positively correlated stocks. This might be interesting for someone worry-
ing that the correlation might change over time, which it easily could. If, for

6It seems as if it turns convex for values of ρ close to -1.
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instance, they knew that they had the ρ giving the highest price, they would
know that any change in that correlation, would give a lower price. This could
be worth knowing. First I wanted to find this ρ analytical, but I found it to be,
well, rather troublesome, so instead I ’solved’ it using Monte Carlo.

r = 0.035 g = 0.00 Y0 = 100
µ = 0.07 ν = 0.08 λ = 1
σ = 0.12 η = 0.15 γ ∈ (0, 0.5]

Table 2: Parameters for the second example

In figure 4, the program has been run 150 times, each time simulating the price
with 10,000 paths. The risk aversion γ ranges from close to zero to zero point
five with increments of 0.01. This gave me 150 simulations of the ρ giving the
largest price for each point in γ, of which I calculated the mean and standard de-
viation as plotted for both initial time and capital time. Capital time is 1 year,
or 252 days, from initial time, while the other parameters are as given in table 2.

Figure 4: The ρ giving the maximum price against risk aversion γ ∈ (0, 0.5]

As we can see from figure 4, the ρ giving the largest price is close to 1 for small
γ’s and decrease as γ increase. The decrease, however, does seem to stagger
at about ρ = 0.1. The function has decreased to ρ = 0.1 at γ = 0.22, and at
γ = 0.5 it is still not significantly lower than 0.1 if one take uncertainty into
account. The uncertainty, here represented by the standard deviation of 150
results, on the other hand seem to increase as γ increase. As we can see from
the second plot on figure 4, the ρ giving the largest price at maturity, is ρ = 0.
The standard deviation is at this time quite large for small γ’s and decreases
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up to γ = 0.14 or so, where it starts to increase to about the same level as for
initial time. The reason for the large uncertainty for smaller γ’s at capital time
was seen in subplot 3 of figure 1, where the price for a small γ at maturity is
flat, implying that a maximum price could occur over the whole scale due to
randomness.

One may further be interested in how this plot looks like for larger risk aver-
sions. The market in figure 5 is the same as the one behind figure 4 and is
given in table 2 except that here we let γ range from close to zero to 5. As we
saw in figure 4, ρ̂, the ρ giving the maximum price, decreased as γ increased
from zero to zero point five. It might look as if ρ̂ stabilized at some positive
level, or one could think that ρ̂ converged to zero. As we can see from figure
5, neither of those is what is really happening. In this figure we can clearly see
that ρ̂ actually start to increase at γ ≈ 0.6. It is important to note that the
uncertainty in this region is quite massive, meaning that the point of where ρ̂
starts to increase may well be a bit higher or lower in reality.

Figure 5: The ρ giving the maximum price against risk aversion γ ∈ (0, 5]

To put some numbers with this, I denoted the mean and standard deviation of
ρ̂. These numbers are noted in table 3. As we can see in this table as well as in
figure 5, the standard deviation has a steady increase with respect to γ, while
the mean has a large decrease at first and then starts to increase again.
It is also worth noticing that the distribution of this ρ̂ is quite skew. We can
see this by looking at the standard deviation and the 95% confidence interval
of ρ̂ also plotted in figure 5. Here we can see that the upper 95% quantile is
quite close to the standard deviation added to the mean while the 5% quantile
is a good deal lower than the standard deviation subtracted from the mean.
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γ 0 0.2 0.4 0.6 0.8 1
E[ρ̂], std(ρ̂) 0.99, 0 0.14, 0.04 0.08, 0.09 0.08, 0.13 0.09, 0.18 0.10, 0.21

Table 3: The values of figure 5 denoted (γ ∈ (0, 1])

In other words, ρ̂ can vary from -0.5 to 0.5, but it is more common that it is
on the positive side, hence the mean is positive. Theoretically, it could also
be of interest to look at the limit of ρ̂ when γ tends to infinity. However, one
could argue that no company will have a risk aversion that large, so it would
be of limited practical interest. It might also be interesting to note that ρ̂’s
distribution is more heavytailed than a normal distribution since its confidence
interval is larger than its standard deviation.

Another property worth noticing and which is visualized in figures 1, 2 and 3
is that for all times, all correlations and all risk aversions, the price is growing
with respect to ρ ∈ (−1, 0). In fact, it can be proved7 that pγλ(t, y) is increasing
with respect to ρ ∈ (−1, 0) if µ−r

δ > 0 and that it is decreasing with respect to
ρ ∈ (0, 1) if µ−r

δ < 0. This is proved in appendix A.1, and it tells us that if the
expected growth of the stock is larger than a banks interest rate, which is fairly
common, one can obtain a lower price by investing in a lower correlated stock.
If the bank rate should exceed the expected return of the stock, the lowest price
would be obtained by having a correlation as close to one as possible.

As we can see from some of the plots in this section, pγλ(t, y) is increasing when
µ ≥ r for ρ ∈ (−1, 1) for low γ’s and decreasing when µ ≥ r for ρ ∈ [0, 1) for
higher γ’s. This is somewhat harder to prove analytically and has not been
emphasized.

1.4 Summary of the model

In this chapter, the model of which we will work with in the rest of this paper
has been defined and tested. The main definitions would be the formulation
of the utility indifference price of a interest rate guarantee, or put option, and
the residual risk of issuing such a guarantee or option. Further, this model was
descretified in order to be simulated and lastly, we looked at some examples of
the price, showing how the minimum price was obtained for minimal γ’s and
how the price increased with γ.

In particular we looked at which ρ gave the maximum price as γ was increased
and we found that this ρ was positive in expectation, had its maximum at
γ close to zero and its local, and probably also global, expected minimum at
γ ≈ 0.6.

7I thank Frank Proske for his help here.
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2 Financial Risk and how to Measure it

Risk is a term most people are familiar with. However, there are several types
of risk including market risk, model risk, credit risk and operational risk. The
latter is the most recent notion.

2.1 Financial risk

Operational risk is defined by the Basel Committee as the risk of loss result-
ing from inadequate or failed internal processes, people and systems, or from
external events, as stated in Embrechts et al.[10]. Examples of this risk are
technological failure, errors in data processing, fraud, environmental risks, etc.

Market risk is the risk that the value of an investment will change due to changes
in the market risk factors, such as interest rates, exchange rates, volatility, cor-
relation, etc.

Credit risk is the risk of financial losses due to the counter party defaulting
on a contract, typically a bond-holder being concerned that the bond-issuer
will default. The horror example here is the LTCM scandal in 1998. LTCM, or
Long Term Capital Management, was founded in 1994 and had amazing returns
the first years, but folded in 2000 due to Russia defaulting on a rather large
contract in 19988. A good paper for modeling credit risk is Duffie[5].

Model risk can be defined as the risk that a financial institution incurs losses
because its risk-management models are misspecified or because some of the
assumptions required are not met. For instance, we might work with a normal
distribution to model losses, whereas the real distribution is heavy-tailed, or we
might fail to recognize the presence of volatility clustering or tail dependences.
Since any financial model is a simplification and therefore an imperfect repre-
sentation of the economic world, it is fair to say that every risk-management
model is subject to model risk of some extent.

Until recent years, the banking and insurance industry only focused on market
and credit risk, not spending too much thought on operational risk and the
potential losses it could cause. Before, operational risk was included in credit
risk, making credit risk more difficult to model than it really was. Now, we
want to divide credit and operational risk by implementing the Basel II and
Solvency II frameworks. Basel II and Solvency II also requires formal risk mod-
eling for banks and insurance companies, respectively. Model risk has always
been a problem and might have increased due to several new and sophisticated
but not necessarily consistent models

8I am not saying that Russia is the one to blame for the collapse of LTCM, it would
probably have happened sooner or later despite what happened with Russia.
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Basel II9 requires that banks are to set aside at least 8% of the total capital
invested in risky assets. The aim for Basel II is to ensure that capital alloca-
tions are more risk sensitive than they have been in the recent past, separating
operational risk from credit risk, quantifying both and preventing regulatory
arbitrage10 by aligning economic and regulatory capital.

It is believed that Basel II, by being an international standard, can help pro-
tect the international financial system from the types of problems that might
arise should a major bank or even a series of banks collapse, as happened this
last autumn. In practice, Basel II attempts to accomplish this by setting up
rigorous risk and capital management requirements designed to ensure that a
bank holds capital reserves appropriate to the risk the bank exposes itself to
through its lending and investment practices.

As mentioned above, the insurance business have a similar framework under
development, namely Solvency II which is expected to be implemented within
2012. The aim of Solvency II is to implement more deliberated solvency require-
ments with respect to the risks that companies face, and to deliver a consistent
supervisory system that will be implemented all over the European Union.

Solvency II will reduce the probability that insurance companies get into trou-
ble by introducing a far more comprehensive framework for risk management
for defining required capital levels and to implement procedures to identify,
measure, and manage risk levels than Solvency I could offer. As a side effect,
Solvency II will most likely improve the confidence among policyholders (both
current and potential) that the financial part of the insurance companies are
steady by reducing the chances of policyholders losing if insurance companies
get into difficulties. Longevity will also be considered in a greater extent then
under Solvency I.

It is in my opinion that neither the Basel II nor the Solvency II framework
would have prevented the current financial crisis from evolving even if it had
been implemented many years ago. However, I do believe that it could have
greatly reduced some of the severe negative effects we have seen lately and
probably will see more of in 2009.

The field of risk analysis is a rather large one, and I will not attempt to cover
it all. Instead, I will from now on focus on market and model risk and how to
measure and control it. The primary aim, when modeling risk, is to quantify
likely losses of a portfolio. To do this quantification, we need to know what a
risk measure is.

9Recommendations on banking laws and regulations issued by the Basel Committee on
Banking Supervision

10Arbitrage that can arise from regulated institutions taking advantage of the difference
between its economic risk and the regulatory position it has
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2.2 Risk measures

Risk can be thought of as a random variable, say Xt, which is defined on the
same filtered probability space as in chapter 1, namely

(
Ω,F , {Ft}t∈[0,T ] , P

)
.

A risk measure ϑ is then a relation between the set of random variables, Xt,
and the real line, that is ϑ(Xt) ∈ R. If, for instance, Xt is the expected loss
of a portfolio given some security level, ϑ(Xt) can be the additional amount of
money the company need to set aside to survive with that security level. The
definition of risk measures is quite general, meaning that not all risk measures
necessarily are good risk measures. Therefor, one might want risk measures to
fulfill some additional conditions. For instance, one would probably want a risk
measure to not exceed the largest possible loss.

For this reason, one has divided risk measures into several sets and subsets. The
largest set is the set of monotary risk measures. This is the set of risk measures
that satisfy monotonicity and translational invariance. A subset of these are
the convex risk measures, recognized by the above set of economically desirable
properties, as well as convexity. In 1999, Artzner et al.[13] performed the first
systematic study of risk measures properties within finance and defined the
class of coherent risk measures. This set is a subset of the convex risk measures
satisfy the following axiom:

Axiom

A coherent risk measure ϑ is a risk measure, which for all risks Xt and Yt and
all constants c ≥ 0 satisfy

(a) Translational invariance: ϑ(Xt + c) = c+ ϑ(Xt)

(b) Positive homogeneity: ϑ(c ·Xt) = c · ϑ(Xt)

(c) Monotonicity: if Xt ≤ Yt, then ϑ(Xt) ≤ ϑ(Yt)

(d) Subadditivity: ϑ(Xt + Yt) ≤ ϑ(Xt) + ϑ(Yt)

In words, one could explain these axioms in the following way: Translational
invariance: Adding an amount of cash to the portfolio decreases its risk by
the same amount. Positive homogeneity: If we increase the size of all risky
positions in a portfolio, the risk of the portfolio will be increased by the same
size. Monotonicity: If losses in one portfolio are larger than losses in another
portfolio for all possible risk scenarios, then the risk of the first portfolio is
higher than the risk of the second. Subadditivity: The risk of a portfolio is
smaller than or equal to the sum of risks of its sub portfolios, or in other words;
Risk in general should be reduced by diversification.

There exists numerous versions of this axiom depending on whether, for in-
stance, one define losses as negative or positive values. In our case, X is the
value of a risky position at the end of the holding period, hence it is a random
variable at one point in time, namely the terminal time. The risk in this paper
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is denoted by Rγλ and is defined on page 6.

Now that we have defined what the risk is, lets have a look at some of the ways
to measure it.

2.2.1 Standard deviation

In 1952, Harry Markowitz wrote a paper about modern portfolio theory where
he defined the standard deviation of the value of a portfolio as a risk measure.
This was the very first widely used risk measure. While standard deviation is
quite easy to calculate, it penalizes losses as well as profits, and is therefor, in
general, not a very good risk measure. It is subadditive, but still not coherent
since it violates the monotonicity property.

2.2.2 Value at Risk

Value at Risk (VaR) has been the most used risk measure since J. P. Morgan
released their RiskMetrics system in 1994. VaR gives us the answer to how
much the value of a portfolio can drop given some probability level α. We say
that VaR is a downside risk measure, since it typically describes the probability
boundary of potential losses. One can define Value at Risk formally in the
following way:

Definition 2.1. Given a risk X with cumulative distribution function FX and
a probability level of α ∈ (0, 1), then

V aRα(X) = F−1
X (α) = inf {x ∈ R : FX(x) ≥ α}

is the Value at Risk of X at α level.

α is often chosen to be among 0.95, 0.99 or 0.999. From a statisticians point
of view, VaR is nothing but the α quantile of some sorted distribution, and
says that with a confidence of α · 100%, you will not loose more than VaRα. In
Jorion[14] page 27, VaR is represented as V aRα(X) = E[F (X)] − Qα[F (X)]
where Qα[F (X)] is the quantile of the qumulative distribution of X, matching
the confidence level α. This representation is nothing but VaR viewed from a
different angle and is consistent with the definition above.

Even though VaR has become the benchmark risk measure in the financial
world, it is not perfect. As almost everything else in this world it has some
flaws that one should know before using it. Being a one-period risk measure,
VaR does not care what happens with the portfolio value in the holding period,
it only cares about the level at capital time. It also assumes that the market
position is the same at all times, which is highly unlikely in practice. However,
one can argue that these flaws are minor and will drown in comparison to other
uncertainties.

More serious is the fact that VaR does not measure the potential size of a loss,
given that it exceeds VaR. The most serious of VaR’s flaws, is the fact that it
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Bonds Initial Defaults Risk measure
No Soft A Hard A Soft B Hard B VaR0.95 ES0.95

A 104.6 108 100 0 108 108 4.6 64.6
B 104.6 108 108 108 100 0 4.6 64.6

A+B 209.2 216 208 108 208 108 101.2 101.2
Probabilities: 0.9 0.02 0.03 0.02 0.03

Table 4: Table showing how Value at Risk is not subadditive, while Expected
Shortfall is.

is, in general, not subadditive, and hence not a coherent risk measure. For the
normal distribution and other light-tailed distributions, VaR might well be sub-
additive. It is when one is dealing with either extremely skewed distributions
(e.g. exponential), heavy tailed distributions (e.g. Pareto) or distributions with
a special dependence structure (e.g. copulas) that one has to pay attention. The
implications of not having a subadditive risk measure are severe when model-
ing financial or economic values, as such a risk measure dissuade diversification.
One can then create severe aggregation problems when adding risk.
VaR has been popularized as the risk measure of choice among investment
banks wishing to measure their portfolio risk for the benefit of banking regu-
lators. However, due to the lack of subadditivity, VaR appears to be unfit for
such calculations.

We can now take a look at a some examples of using VaR, beginning with a
practical example of how subadditivity may fail to work.

Example 2.2. Suppose we have a bond A and that, at maturity, there are
three possible outcomes, i.e. Ω = {ω1, ω2, ω3}

ω1 No default: The bond redeems both its face value of 100 Euro and the
coupon of 8 Euro with probability P (ω1) = 0.95

ω1 Soft default: The bond redeems only its face value of 100 Euro with
probability P (ω2) = 0.02

ω1 Hard default: The bond redeems nothing with probability P (ω3) = 0.03

Note: If we ignore the second possible outcome, and say that P (ω1) = 0.97
and P (ω3) = 0.03, we get that VaR0.95(A) = 0, even though the risk of such a
bond is greater than zero.

Further, suppose there is another bond B that is identical to A, but issued by
another agent. The risks of these two bonds are each others opposites, in the
meaning that if bond A defaults, bond B will not, and vice versa.
As we can clearly see from the second last line of table 4, VaR is not subadditive
since 4.6 + 4.6 < 101.2, hence VaR clearly disfavors diversification.

To end my discussion of VaR, I would like to take a look at an example found in
Embrechts et al.[10] showing that VaR is subadditive for Gaussian distributed
risks.
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Example 2.3. Suppose X1 and X2 are jointly Gaussian distributed with mean
µ and covariance matrix Σ

µ =
[
µ1

µ2

]
and Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
where ρ ∈ [−1, 1] and σi > 0, i ∈ {1, 2}. If α ∈ [0.5, 1), then

VaRα(X1 +X2) ≤ VaRα(X1) + VaRα(X2) (16)

Since (X1, X2) is bivariate Gaussian distributed, X1, X2 and X1 + X2 are all
univariate Gaussian distributed. It follows that

VaRα(Xi) = µi + σiqα(ε), i ∈ {1, 2}

VaRα(X1 +X2) = µ1 + µ2 +
√
σ2

1 + 2ρσ1σ2 + σ2
2qα(ε)

where qα(ε) is the α-quantile of a standard Gaussian distributed random vari-
able, ε. Inserting this into (16) gives us that σ2

1 + 2ρσ1σ2 + σ2
2 ≤ (σ1 + σ2)2

since ρ ≤ 1. Hence the subadditivity property is kept.

It is shown in McNeil et al.[1], Theorem 6.8, that VaR is subadditive for the set
of linear combinations of components of a multivariate elliptical distribution.

2.2.3 Expected Shortfall

Since VaR does not tell us anything about the size of our potential loss, Artzner
et al.[13] considered the notion of Expected Shortfall (ES) also known as condi-
tional tail expectation. In words, one can define Expected Shortfall at α-level
as the expected risk in the worst α · 100% of the cases. The meaning of this
level is that ES ignores the most profitable but unlikely possibilities for high
α’s while it focuses on the worst losses for low α’s. In more formal terms, one
can define ES as follows:

Definition 2.4. Let X be a risk and α ∈ (0, 1). Expected Shortfall is then
defined as the conditional expected risk given that the risk exceeds VaRα(X):

ESα(X) = E[X|X > VaRα(X)]

Note: The direction of the inequality sign in the definition above is decided by
how you define VaR. The point is that the expectation is to be taken over the
variables that exceed VaR in the tail. A more precise representation is made by
McNeil et al. in [1] page 44 by observing that for a continuous random variable
X, one has that ∀ α ∈ (0, 1)

ESα(X) =
1

1− α

∫ 1

α
VaRu(X)du (17)

For such continuous X, Expected Shortfall is subadditive and therefor a co-
herent risk measure, see Artzner et al.[13]. For discrete random variables X,
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equation (17) needs to be slightly modified to achieve the same properties as in
the continuous case. For a discrete random variable X, one has ∀ α ∈ (0, 1)

ESα(X) =
1

1− α
(E[X|X ≥ VaRα(X)]

+ VaRα(1− α− P (X ≥ VaRα(X)))) (18)

= lim
n→∞

∑[n(1−α)]
i=1 Xi,n

n(1− α)
a.s. (19)

Here, in equation (19), X1,n ≥ . . . ≥ Xn,n is the ordered statistics of the se-
quence (Xi)i∈N of independent identical distributed (i.i.d.) random variables
and [n(1 − α)] denotes the largest integer not exceeding n(1 − α). A proof of
this latter equation is found in Proposition 4.1 of Acerbi and Tasche [4].

Among ES’s properties we find that ESα increases as α increases and that ESα
is worse than, or equal to, the Value at Risk (VaRα) at α level, i.e. ES is more
conservative. See example 2.3 for a case where ES is subadditive while VaR is
not.

2.2.4 Conditional Value at Risk

A third highly popular risk measure is Conditional Value at Risk (CVaR) also
known as ’Mean Excess Loss’, ’Mean Shortfall’ or ’Tail VaR’. CVaR is meant to
be an extension of VaR in the sense that it coincides with VaR for elliptical dis-
tributed risks, but remains coherent for general distributed risks. Conditional
Value at Risk is computed by assessing the likelihood (at a given confidence
level) that a specific loss will exceed the Value at Risk. Mathematically speak-
ing, CVaR is derived by taking a weighted average between the Value at Risk
and losses exceeding the Value at Risk, as we shall see soon. The following
definition of CVaR for continuous X is found in Rockafellar and Uryasev[15]:

Definition 2.5. Conditional Value at Risk at level α ∈ (0, 1] of a continuous
random variable X is:

CVaRα(X) = E [Ψα(X, ζ)]

where Ψα(X, ·) is the α-tail distribution of X defined as,

Ψα(X, ζ) =
{

(Ψ(X, ζ)− α) /(1− α) , ζ ≥ VaRα(X)
0 , else

and Ψ(X, ζ) = P (X|X ≤ ζ).

Note that both Ψ and Ψα are non-decreasing and right-continuous, and that
Ψα(X, ζ)→ 1 as ζ →∞. Hence, the α-tail distribution referred to above is well
defined. As a side-note, ζ can be interpreted as VaR and in fact, for continuous
distributed risks, CVaR and ES coincide.

However, since I am interested in evaluating simulated distributions, i.e. not
continuous ones, I will need a representation of CVaR that is more appropriate.
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Luckily, Rockafellar and Uryasev[15], in their Proposition 6, has proved the
following.

Proposition 2.6. Let λα(X) be the probability assigned to the loss amount
VaRα(X) by the α-tail distribution, that is

λα(X) =
Ψ(X,V aRα(X))− α

1− α
∈ [0, 1]

whenΨ(X,V aRα(X)) < 1,

CV aRα(X) = λα(X) · V aRα(X) + (1− λα(X)) · ESα(X)

while Ψ(X,V aRα(X)) = 1 gives

CV aRα(X) = V aRα(X)

The proof of this and the reason behind the choice of λα is included in Rock-
afellar and Uryasev[15].

While the former proposition is best for understanding, the next one is probably
better for computations.

Proposition 2.7. Suppose the probability measure P is concentrated in finitely
many points yk of Y such that for each x ∈ X, the distribution of loss z = f(x, y)
is likewise concentrated in finitely many points, and Ψ(x, ·) is a step function
with jumps at those points. Fixing x, let those corresponding loss points be
ordered as z1 < z2 < . . . < zN , with P (zk) = pk > 0. Further let kα be the
unique index such that

kα∑
k=1

pk ≥ α >
kα−1∑
k=1

pk

The VaRα of the loss is then given by

VaRα(x) = zkα

while the CVaRα is given by

CVaRα =
1

1− α

( kα∑
k=1

pk − α

)
zkα +

N∑
k=kα+1

pkzk


The proof of this is also carried out in Rockafellar and Uryasev[15] under their
Proposition 8. I suggest taking a look at this paper for further reading about
this risk measure.

It is this last proposition I have used to calculate CVaR in my programs.
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2.2.5 Entropic risk measure

The scientific meaning of an entropy is a measure of the disorder, or uncertainty,
in a given system. An entropy is a measure on how great the unexpected changes
in a system is. The entropic risk measure is said to be the most famous example
of a convex risk measure, introduced by Föllmer and Schied[9]. The definition
is quite straight-forward and is given by the following

Definition 2.8. The entropic risk measure, ENT, of a non-negative random
variable X is given by

ENT(X) =
1
γ

logE[e−γX ]

where γ is the risk aversion introduced in the first chapter of this paper.

The entropic risk measure is in general not coherent but it is convex. By
conditioning the expectation on a filtration, Ft generated by the Brownian
motion, the entropic risk measure can be extended to a dynamic risk measure
as defined in section 3 of Barrieu and Karoui[11]. I am confident that the field of
dynamic risk measures is a very interesting and useful one, but far to extensive
to be treated in this short paper. I refer to Barrieu and Karoui[11] for a more
comprehensive talk about the subject. As it turns out, the risks in this paper
are not non-negative, so this measure should not be used here. It is still an
interesting measure having several areas of use and for this, I will include it in
my calculations.

2.2.6 Other risk measures

There are of course many other risk measures than the ones I have looked at here
including the Incremental risk measures (s.a. Incremental VaR (IVaR), Incre-
mental Expected Shortfall (IES), and Incremental Standard Deviation (ISD)),
Marginal Value at Risk and Conditional Drawdown at Risk. This paper, how-
ever, is not meant to be a total run-through over all existing risk measures.
It is rather meant to be an examination of how some risk measures behaves
when used on utility based pricing of interest guarantees and the risk of such.
I will for these reasons not go into close examination of rare and elusive risk
measures, albeit I would say it is needed.

2.2.7 Important purposes of risk measures

As I mentioned earlier in this chapter, the primary aim of a risk measure is to
quantify likely losses or the likeliness of a given loss. This is a quite general
statement, and I would like to mention some of the most important purposes
of a risk measure.

Determination of risk capital and capital adequacy. The principal function of
risk management within finance, included insurance, is to determine the amount
of capital a financial institution needs to hold as a buffer against unexpected
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losses in its portfolio in order to satisfy a regulator concerned with the solvency
of the institution.
Insurance premiums compensate an insurance company for bearing the risk of
the insured claims. The size of this compensation can be viewed as a measure
of the size of these risks.
Management tool. Risk measures are often used as a tool for limiting the amount
of risk a unit within a firm may take. For instance, traders in a bank are often
constrained by the rule that the daily 95% Value at Risk of their position should
not exceed a given bound.

2.3 Summary of risk measures

In this chapter we have looked at several different risk measures and their pros
and cons. After working with them all, I would like to emphasize Expected
Shortfall for its properties and its easy-to-understand calculations and mean-
ing. In the end of the day, what we really want from such a measure, is for it
to be easy to use and easy to explain for others.

I would also like to note that even though the entropic risk measure need posi-
tive inputs by definition, and the residual risk defined in chapter 1 might well be
negative, this risk measure will still be evaluated and used later in this paper.
Strictly out of curiosity.

The difference of CVaR and ES. When doing research for this part of my pa-
per, I found that there exist some inconsistent opinions on CVaR and ES. This
inconsistency consist mainly of some people considering ES and CVaR to co-
incide, while others do not. After careful reading of selected opinions on the
subject, I decided to agree with the ones saying there is a difference even if it
is rather small. In this paper, the difference of ES and CVaR is that CVaR
is a weighted average of VaR and ES, as defined earlier in this chapter. The
difference in value might not be significant, but the two ideas are quite inequal.

As a rule of thumb, one can say that risk measures represented by an expectation
are in general coherent. The entropic risk measure is not included in this rule.
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3 The Relationship of Price and Risk

In this chapter, I will give a close examination of the relationship between the
utility indifference price, pγλ, and the residual risk, Rγλ, as defined in chapter
1. We remember Rγλ to be the risk a company is left with after hedging. This
examination will be done by looking at the price and risk of different sets of
parameters given in tables below. I will also check for which sets of parameters
the coherence property of the different risk measures is retained. The funds
initial value, Y0, will be equal to 100 in all the examples below.
All calculations in this chapter are done by double Monte Carlo with 10,000
simulations repeated 20 times.

3.1 A ’money back’ guarantee

This example is fetched from Benth and Proske[6]. Consider a contract agreed
at time t ∈ [0, T ] which guarantees that an investor gets his money back at
a predefined time, T . In other words, the guaranteed rate of return is zero
percent. This is a relevant situation for Norwegian pension funds, where the
investor may have buffers to cover possible deficits in the fund. This buffer
is built up in years with surplus returns over the guaranteed, which is usually
around 3.5%. However, new legislations enforce the manager to cover a possi-
ble negative return on the fund irrespective to the amount of buffer capital at
hand. Since most investors have large buffers, the manager is basically issuing
an at-the-money put option, i.e. a guarantee against a negative return.

Suppose that the risk free rate of return, r is equal to 3.5%, the expected return
of the pension fund, ν = 8% and its volatility, η = 15%. The hedging asset
S has a slightly lower expected return, µ = 7% and its volatility, σ = 0.12
indicates less risk. These are all yearly values, and are summarized in table 5
with the number of options issued, λ and the risk aversion γ.

r = 0.035 g = 0.0 pB&S = 4.32
µ = 0.07 ν = 0.08 λ = 1
σ = 0.12 η = 0.15 γ = 10−11

Table 5: Money back guarantee with quite high drift and volatility

Lets first look at the minimum price obtained whenever the insurance company
is tolerant to risk, i.e. they have a low risk aversion. As we can see in figure
6, the lowest price for this market is given at (t, ρ) = (0,−1) and is 1.87.
This is significantly lower than the price found at (t, ρ) = (0, 1), which is 4.27.
Note that both are lower than the B&S price. As time goes by, the price will
increase or decrease depending on whether ρ is negative or positive, respectively.
For ρ = 0, the price seems to remain roughly the same for all times and is
approximately equal to the price at time T for all ρ. This is a little deceptive
since if one were to zoom in on it, one would see that this is not the case. It
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starts at 3.2 at initial time and then fluctuates around that value for about 100
days before it starts to rapidly decrease to reach its final value of 3.0 at time
T . From the figure, the price at maturity seems quite flat over ρ. In both these
cases, the uncertainty of the price, here in form of the standard deviation, is
0.08, which is not so high compared to the error occurring from a prospective
parameter estimation and model error. Taking such errors into account, makes
a detailed discussion of no direct practical value and will be omitted hereafter.

Figure 6: The minimum price

Now, lets take a look at the residual risk process for this zero percent interest
rate guarantee. To get an overview of how it behaves, I have included various
plots of it in figure 7. Subplot 1 is an overview of the sorted realizations of
10,000 simulations done 20 times. As we can see, it takes both positive and
negative values, and its value is most volatile at |ρ| close to ±1. The first thing
we should notice, is the scale of the y-axis, which has a value of 1011, or 100
billions. This very high number is a direct consequence of the very low value
of the chosen risk aversion, γ. It is interesting to note that γ = 10−11 = 1

1011 .

Further, the second subplot is the mean of the residual risk over correlation.
Allthough it is significantly lower than its highest value, it is still quite high
with values up to 20 billions. Its minimum point is at ρ = 0 and has the value
of approximately 0.5 billions or 500 millions. Subplot three shows the propor-
tion of positive residual risks, which is just above 50% for all ρ’s and a bit
larger for |ρ| = ±1, and has the same form as the mean. The fourth and final
subplot shows histograms of the residual risk when ρ is chosen to be -1, 0 and
1. As we can see, the distribution of the risk is roughly the same for ρ = ±1,
while it has significantly lower volatility for ρ = 0. This is also seen in subplot 1.
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What we have learned here is that the minimum price comes with a very high
risk. The company, of course, is not bothered by this, since their risk aversion
is practically zero.

Figure 7: The residual risk

Now lets take a look at the different measures of this residual risk. The measure
giving the lowest risk is the Entropical risk measure. This is probably because it
is dependent on the risk aversion parameter, γ, scaling it down. The standard
deviation is almost as low, while VaR, CVaR and ES agree that the risk is
higher. They all agree that the largest risk is when ρ = ±1 and that the least
risk is obtained for lower values of |ρ|. This is shown in figure 8.

Figure 8: The residual risk measured
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3.1.1 Raising γ

Lets now look at what happens when we increase the company’s risk aversion.
As we saw in the example in chapter 1, this made the price increase, and it
should make the risk decrease. As we can see from figure 9, the prices for

Figure 9: The price with γ ∈ {0.10, 0.25}

γ = 0.1 and γ = 0.25 does not differ much from the minimum price in the
extreme points of ρ ≈ ±1. The difference is significantly larger for smaller |ρ|
where p0.10

1 is up to twice as high as the minimum price while p0.25
1 is up to

5 times higher than the minimum price. It is obvious that the price does not
depend on γ for values of ρ close to one since we then have an almost complete
market where the utility price would be the same as the Black&Scholes price,
i.e. unique for all γ’s.

Whilst the price behaves as expected when we adjust the risk aversion, the
risk measures do not. As far as I was concerned, the risk should go down
as gamma was increasing, but this is not always true. As we can see from
figure 10, the risk when γ is 0.1 and 0.25 has decreased considerably compared
to the case where γ were approximately zero. However, the interesting point
here is that the highest risk among these two is achieved with the highest risk
aversion, given that the correlation is not too high. In other words we have
that ϑ(R0.1) ≤ ϑ(R0.25) ≤ ϑ(R0) for ρ ∈ [−0.8, 0.8] approximately. This means
that there must exist some γ̂ for which the residual risk is at its minimum.
Suppose we have a risk measure ϑ and a risk Rγ representing the residual risk
process defined in chapter 1. My proposition is then that there exist some γ̂ > 0
such that

ϑ(Rγ̂) ≤ ϑ(Rγ) ∀ γ ∈ R+

The proof of this is not included since it is not done as of yet, hence the above
statement is merely an idea or thought of how it needs to be.
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If the above turns out to be true, it would be possible for traders in the market to
issue the interest rate guarantees discussed here priced as a result of minimizing
the traders risk independent of his risk measure.

Figure 10: The different risk measures with γ ∈ {0.10, 0.25}

3.1.2 Raising λ

As a final investigation of the relationship between price and risk in this market,
lets see what will happen if we raise λ. This also gives us an opportunity to
check the coherence property, i.e. subadditivity, of Var, CVaR and ES. We
remember from chapter 2 that a risk measure ϑ is said to be subadditive if

ϑ(X + Y ) ≤ ϑ(X) + ϑ(Y )

holds for two risks X and Y . This represents that merging two portfolios should
not cause more risk, and that diversification in general should be favored. In
this paper, the above inequality translates into the following:

ϑ(Rλ) ≤ λ · ϑ(R1)⇒ ϑ(Rλ)
λ

≤ ϑ(R1)

Introducing λ1 and λ2 where λ1 ≥ λ2, we get the more general inequality

ϑ(Rλ1)
λ1

≤ ϑ(Rλ2)
λ2

Figure 11 shows that the above equation is intact with λ = {1, 3, 10} even for
standard deviation and Value at Risk which in general are not subadditive when
γ = 10−11.

In figure 12, λ is as above but γ has been raised to 0.1. As we can see, the
subadditivity property has now been destroyed when ρ ∈ [−0.95, 0.95]. This
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Figure 11: The different risk measures with λ ∈ {1, 3, 10}1 for γ = 10−11

can be explained by the risk aversion factor in the meaning that an issuer with
a given risk aversion might not want to take on more risk than he already has
due to his aversion to risk. Since the subadditivity property holds for low γ’s
but not for higher ones, there must exist some γ̃ such that

ϑ(Rγ̃λ) = λ · ϑ(Rγ̃1)

This γ̃ would most likely be dependent on λ, but might not be dependent on
the other market parameters such as drift or volatility.

Figure 12: The different risk measures with λ ∈ {1, 3, 10}1 for γ = 0.1
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3.2 A minimum interest rate guarantee

Let us now consider a market where the issuer have to repay the money with an
interest rate of 3.5% while the riskfree interest rate is only 2%. Both the stock
and the fund have lower expected returns than in the market considered above.
However, the uncertainties are also significantly lower as they usually are for
lower returns. This is a market situation experienced in Norway in 2004/2005
and is given in detail in table 6.

r = 0.02 g = 0.035 pB&S = 3.60
µ = 0.06 ν = 0.05 λ = 1
σ = 0.10 η = 0.07 γ = 10−11

Table 6: Minimum interest rate guarantee with lower returns and volatility

The fact that all returns are lowered compared to the market in section 3.1
and that the issuer needs to repay the invested money with a guarantee should
imply the price to be high. As we can see from the B&S prices in table 6 and
5, this is not the case. By comparing these two B&S prices, we can see that
the one in this example is 20% lower than the one in the former example. This
can be explained by the fact that the volatilities are significantly lowered. In
particular the volatility of the fund, which is only about half here than what it
was in the former section.

Figure 13: The utility indifference price of investments in the market described
by table 6

The form of the price curve in figure 13 is remarkably similar to the one in
figure 6. The only real difference is the level of which it lies on. While the

31



Figure 14: The residual risk of investments in the market described by table 6

highest and lowest price in figure 6 was approximate 4.3 and 1.9, respectively,
the same numbers here are 3.45 and 1.2. Hence, the minimum price for this
market is found on a significantly lower level than for the former market. As
we saw above, the B&S price was 20% lower here than what it was under the
first market. The differences between the largest and the lowest indifference
prices in the two markeds are 25% and 58%, respectively. Hence the decrease
is rather skew with a larger increase for positive correlation than for negative.
This may well be a result of diversification.

In figure 14 I have plotted some measures of the risk of issuing the given guar-
antee in the given marked. As we can see, the risk is still high, but compared to
the risk in the former section, its VaR, CVaR and ES values has decreased by
about 60% while its standard deviation has decreased by nearly 50%. So despite
the fact that the guaranteed return has increased from zero to 3.5 percent, and
the expected returns of all asstes has been lowered, the minimum price and its
risk have decreased quite drastically.

3.2.1 Raising γ again

As we did for the first market we examined, let us now try to raise the risk
aversion of the life company wanting to issue an interest rate guarantee. We
just looked at the case where the life company had close to no risk aversion.

Even when we raise the risk aversion, the price in the current market is lower
than in the former. In fact, the difference has increased dramatically. This is
seen when figure 15 is compared to figure 9 on page 28. Here we can see that

32



Figure 15: The indifference price of an interest rate guarantee in the market
described by table 6 with γ ∈ {0.10, 0.25}

the highest price in this market is about one third of the equivalent price in the
first market for γ = 0.25 and a little less than two thirds when γ = 0.10.

Compared to the minimum price, as seen in figure 13 and the thick line of figure
15, we have the same changes as in the former market. That is for instance
that the ρ giving the maximum price is decreased while the price is increased
for all ρ when γ is increased. Also for this market, we see that the price for
ρ ≈ ±1 is unaltered and thereby constant over γ. The uncertainty of the price
does not differ by much between the markets.

As for the risk, the first thing to notice is the scale. By increasing the risk
aversion parameter from close to zero to perhaps a more common level, the risk
declines rapidly as displayed in figure 16. Here we can see that the measures of
the residual risk have decreased to a two digit number at the most.

Compared to the other market we looked at, the measures of the residual risk
has approximately the same form, but as with the price, at a much lower level.
For instance, if ρ = 0, the 95% ES of the former market had a value of about 66
while the 95% ES of the current market has a value of about 16. The values for
greater values of |ρ|, has a slight smaller difference, but it is still highly notable.
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Figure 16: The residual risk of an interest rate guarantee in the market de-
scribed by table 6 with γ ∈ {0.10, 0.25}

3.3 Summary of risk and price compared

What we have seen in this chapter is that the price and residual risk of an
interest rate guarantee depends heavily on the risk aversion parameter γ. For
low γ’s, the price can be quite low, but at the cost of bearing a severe risk. For
higher γ’s the price is increased, but the risk is decreased.

We also saw that both the price and the residual risk depended on the the
market with particularly emphasize on the volatility of the fund. For lower
volatilities, the price was greatly reduced even when the other market parame-
ters suggested the market to be harder to invest in, as we saw in section 3.2.1.
Roughly speaking, only λ and γ changed the form of the price curve while the
other parameters just changed the level of the price.

In section 3.1.1 we found that there must exist some γ̂ such that ϑ(Rγ̂) ≤ ϑ(Rγ)
∀ γ ∈ R+ and that this γ is quite low, that is around 0.1 or so.
Lastly, in section 3.1.2 we saw how the coherence property was present for all
the risk measures used when γ was low and how it was destroyed for larger γ’s,
hence there must exist some γ̃ such that ϑ(Rγ̃λ) = λ · ϑ(Rγ̃1). This point might
be a bit confusing, since one would think that even if a trader had high risk
risk aversion, he should like to lower it. However, the only way to lower the risk
by diversification, is in our case to issue more options. A trader with high risk
aversion would not want to do this since it means taking on more total risk,
hence the coherence property should be destroyed.
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4 Implementing a Lévy process

In this chapter I will investigate how the price would behave if the stock we
were to invest in allowed jumps, i.e. were not continuous. A stock behaving like
this is more intuitive since the economic market operates in discrete time, which
could cause a stock to increase drastically, or ’jump’, in no time. Investing in
a stock behaving like this, would cause the fund Yt to become discontinuous
as well. This discontinuous new stock will be denoted by Zt. I will both try
a direct approach and an adjusted approach, where St and Zt will have some
common properties. The direct approach will be carried out by simply replac-
ing St with Zt, or in other words, just adding a compound Poisson process to
St. But first, we will need some notion of such a jump or Lévy process.

4.1 Defining and fitting the Lévy process

Definition 4.1. Let
(

Ω,F , {Ft}t≥0 , P
)

be a filtered probability space. An Ft-
adapted process {Lt}t≥0 ⊂ R with L0 = 0 a.s. is called a Lévy process if Lt is
continuous in probability and has stationary and independent increments.

Theorem 4.2. Let {Lt} be a Lévy process. Then Lt has a càdlàg11 version
which is also a Lévy process.

Proof. The proof is carried out in Protter[12] Theorem 30.

Protter also proves that a Lévy process is a strong Markov process and that it is
a semi martingale. While the latter is interesting but not directly necessary to
know in this case, the former tells us that implementing a Lévy process into our
fund, Yt, will not destroy the funds Markov-property. Without this information
we might have had to find another way to calculate the conditional expectation
in w(t, y) given in equation (4) on page 4 in chapter 1.

Because of the result of Thorem 4.2, we can assume Lt to be càdlàg. The jump
of Lt at time t is then defined by ∆Lt = Lt − Lt− while the number of jumps
of size ∆Ls ∈ U can be denoted by

Nt =
∑
s∈(0,t]

XU (∆Ls)

for a fixed domain U .

Now, the most natural way to create a jump, would be by using a Poisson
distributed variable for each point in time, to decide if the process should jump
at that time or not. By specializing Theorem 1.35 of Protter[12] to our simplistic
case, we can deduce the following theorem.

Theorem 4.3. Let ∆Lt ∈ N. Then the process Nt is a Poisson process.
11Right continuous with left limits
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For a more rigorous and general treatment of the creation of a Lévy process, I
refer to e.g. chapter 1 in Øksendal and Sulem[3] or Protter[12].
As we recall from chapter 1 of this paper, our stock, St, is a stochastic process
driven by a Brownian Motion, Wt. From time s to time t, the stock has an
expected profit of µ(t−s) and a volatility of σ

√
t− s, i.e. the value of the stock

at time t is given by
St = S0e

(µ− 1
2
σ2)t+σWt

To extend this stock to a stock allowing jumps, one ’simply’ need to add a
compound Poisson process

Ct =
Nt∑
i=1

Dt,i

where Nt ∼ poiss(IT ), t ∈ [O, T ] and Dt,i is some random variable. An incre-
ment of this process from time s to time t, i.e. s > t, is given by

Cs − Ct =
Ns∑

i=Nt+1

Ds−t,i

This is independent of Dt,1, . . . , Dt,Nt and depends only on the difference s− t.
Thus Ct is a Lévy process.

To decide the size of the jumps, one will need to choose an appropriate prob-
ability distribution for the Dt,i’s. In this paper, Dt,i is chosen to be standard
normal. It would also be interesting to look at other distributions, but the nor-
mal distributions is very well known and easy to work with. Further, I = IT
is the jump intensity, usually a quite low number defined by the number of ex-
pected jumps in a given time interval [0, T ]. The dynamics of the stock allowing
jumps, denoted Zt, will then be the following

dZt = Zt (µzdt+ σzdBt + ξdCt) (20)

To model this Lévy process, Euler’s method method was used. The idea in this
method is to simply discretify the diffusion as it is, to create a recursive formula
to simulate from. In appendix A.2, I have proved that such a formula will be
of the form

Zt = Zt−1

(
1 + µz + σzεt + ξ

πt∑
i=1

Dt,i

)
(21)

when time increments are equal to one. Here µz and σz is the drift and
volatility of the process, respectively, while ξ decides the size of the jumps
and πt ∼ poiss(I).

To be able to compare these two models in a sensible way, one should make
sure they have some equal properties, i.e. equal expectation and variance. In
other words, one would like to calibrate the Lévy process to make it match the
geometric Brownian motion driven process.
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Brief discussion: Is this calibration natural to perform? One might argue that
if one were to add the possibility of jumps in a process, that should imply that
the process should become more volatile. I believe that argument is well ad-
dressed, but that is not the point here. The point here is to investigate the
robustness of the utility indifference price if one were to allow jumps in the
stock market, and to compare that price to the price in a continuous12 market.
In doing this, one is basically comparing two prices of derivatives having two
quite significantly different behaviors. Therefore, at least their properties such
as expectation and variance should be the same.

The most natural way of achieving this calibration would be to find and fix a
suiting value for our two new parameters I and ξ and then to adjust µz and σz.
Since I have chosen Dt,i to be standard normal for all i ∈ [1, Nt], t ∈ [0, T ], my
hypothesis is that µz = µ will give E[Zt] = E[St]. The reason for this is that
since the Gaussian distribution is symmetric, I do not add or subtract anything
to the drift of the stock by adding the compound Poisson process Ct.

On the other hand, the drift of a process is indirectly affected by its volatility, so
since we have to adjust the volatility of Zt, σz, we might also have to adjust its
drift µz in a more or less significant way. Note that if we let any of the parame-
ters controlling the compound Poisson process, I or ξ, tend to zero, Zt → St ∀ t.

In appendix A.3, I have proved that my hypothesis concerning µz was correct
and that

σz =
√
σ2 − ξ2I (22)

Note that this means that σ2 > ξ2I or σ > ξ
√
I since the volatility parameter

is assumed to be positive. If there is equality here, Zt will be a pure jump-
process with no dependency of the Brownian motion. We know for sure that
this is not how stocks fluctuates in general. Also note that since the above
boundary is present, Zt can either have few, but large, jumps, or it can have
small, but many, jumps. The extreme case of the latter, that is letting ξ → 0,
would be the same as just adding another Brownian motion with ξ as volatility
since my Dt,i’s are standard normal. Since ξ tends to zero in this case, this
would be like adding nothing.

In figure 17, I have compared the expectation, standard deviation, 95% and
99% confidence intervals of the continuous stock

St = St−1 · (1 + µ+ σεt)

and the calibrated stock allowing jumps

Zt = Zt−1 ·

(
1 + µ+ σzεt + ξ

πt∑
i=1

Dt,i

)
12Continuous in the sense that no jumps are allowed, but we still consider a discrete market
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Starting from the top of the plots figure 17 we have the 99% and 95% confidence
interval, the standard deviation and then the mean. As we can see from the left
subplot, St and Zt behave quite alike both in expectation and standard devia-
tion already at 500 simulations. The tail behavior is more uncertain, but we can
clearly see signs of resemblance. In the right subplot, St and Zt seem to have
identical distributions. For t ∈ [0, 50], there is a slight difference in the 99%
confidence interval, but I would say it is insignificant. Figure 18 shows us five

Figure 17: Comparison of St and Zt

independent runs of St and Zt. Parameters are (µ, σ, ξ, I) = (0.05, 0.1, 10, 5),
that is per year 5% expected growth, 10% standard deviation and 5 expected
jumps which are normally distributed with expectation 0 and standard devia-
tion equal to 10. σz is given by equation (22) above.

Figure 18: Five independent runs of St and Zt

Further, as we can see from figure 19, the distribution of ST and ZT are prac-
tically identical when we have a high number of simulations, here 50,000.

38



Figure 19: The distribution of 50,000 simulations of St and Zt

4.2 The utility indifference price with an underlying allowing
jumps

To simplify notation, let me first define p(St) and p(Zt) as the utility indifference
prices of issuing such interest rate guarantees where the fund of the issuer
depends on a continuous stock and a stock allowing jumps, respectively. As
introduced in the first chapter of this paper, the value dynamics of the fund, Y
correlated by a tradeable asset S, is

dYt
Yt

= νdt+ η
(
ρdBt +

√
1− ρ2dWt

)
where S has the dynamics

dSt
St

= µdt+ σdBt

Now, we will replace S by our jump process Z, and the dynamics of the fund
will then be

dYt
Yt

= νdt+ η
(
ρ(dBt + ξdCt) +

√
1− ρ2dWt

)
The latter is the Y I am referring to in rest of this chapter.

Basically, what one is doing when adding a compound Poisson process to the
value of the fund, is adding more volatility, more risk. Therefore, and since our
price is a compensation for the risk the company is taking by issuing such a
product, one would think that the price would increase. For correlation ρ > 0
our expectation is met, but it appears that this is not the case if the correlation
is negative. This is seen in figure 20 where the parameters used are as described
in table 7.

As we can see from subplots 4 and 6, the difference is greatest at initial time,
and then decrease as time goes by until it is about zero at capital time, as seen
in subplot 3. Subplot 5 shows us that p(St) and p(Zt) are about the same for
all times if ρ = 0. The main point here, is displayed best in subplot 2, where
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Figure 20: The prices p(St) and p(Zt) compared

r = 0.035 g = 0.0 Y0 = 100
µ = 0.07 ν = 0.08 λ = 1
σ = 0.10 η = 0.12 γ = 10−11

I = 5 ξ = 0.04 σz =
√
σ2 − ξ2I

Table 7: Parameters used to produce figure 20

the difference of p(S0) and p(Z0) is seen in detail. Here we can clearly see the
intersection of p(S0) and p(Z0) at ρ = 0 and how p(Z0) is lower than p(S0) for
negative ρ’s and greater for positive ρ’s. As time goes by, the intersection of
p(S0) and p(Z0) fluctuates around zero with growing volatility and ends up a
little below zero at capital time. This intersection is interesting since it tells us
whether we are to invest in a stock allowing jumps or not at a given time if we,
for instance, want a low price.

Even though this is a constructed scenario, one might think that it would be
possible to find two stocks having the same (total) volatility, but only one of
them are allowing jumps. The optimal investment to attain low prices, would
then be to invest in the continuous one if it were positively correlated to the
fund and to invest in the one allowing jumps if it were negatively correlated
with the fund. Remember that we are still assuming a risk aversion, γ, close to
zero.

While the price changed pretty much by introducing Lévy processes to the fund,
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the residual risk process did not change at all. Or at least so it seems when one
compare them to each other as done in figure 21.

Figure 21: Residual risk with and without jumps measured and plotted

However, what we must take into account here, is the magnitude of the numbers.
Therefore, one should rather look at the difference of the measures in stead of
comparing them. This is done in figure 22 where we can see that there is a
remarkable difference. Allthough the difference is of magnitude 109, one could
argue that the difference is insignificant and may as well be a product of model
uncertainty. However, the difference is consistent and supports the theory that
adding risk should give higher risk measures. Still, the increase is quite small,
roughly 2%, so I will conclude that it is insignificant.

It is interesting to note that the prices p(St) and p(Zt) intersected and shifted
at ρ ≈ 0, but the measures of the residual risk is symmetric around zero.

Since it is possible to lower the price by investing in a stock that can allow
jumps, but has the same volatility as before, one may ask; How low is it pos-
sible to get the price under such assumptions or circumstances? The answer is
zero. Theoretically, at least. However, to achieve this, one have to choose the
parameters σ, ξ and I in such a way that σz is close to zero. By doing this, Zt
will become approximately a pure jump diffusion. This case is highly unlikely
to be experienced, but it is nevertheless interesting to examine to get a better
view of what can happen in strange circumstances.

The results of such a scenario is shown in figure 23. Here, σ = 0.1 and I = 5 as
before, but ξ has been increased to 0.0445 which yields that σz = 6.2599 · 10−4

by equation (22). At first glance, the price looked as if it were zero for quite
a few values of t and ρ. But a closer examination, revealed that the price was
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Figure 22: The difference of the measures of residual risks with and without
jumps

equal to zero at only one point, namely (t, ρ) = (0,−1). Therefore, I added a
constant surface equal to 10−3 to better show us where the price has a notable
value.

Figure 23: p(Zt) = 0 when σz is close to zero

As we can see, still from figure 23, the price pγλ(t, y) ≤ 10−3 for values t ∈ [0, 150]
and ρ ∈ (−1,−0.5) approximate which form a triangle-looking shape. One
should also notice that the price for ρ close to one is very high compared to the
other figures we have looked at, for example figure 20. This effect decays over
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time and at maturity the prices are the same.

Even though the price is almost equal to zero, that does not mean that the
company charging it has almost no risk, which one could think. It is rather
that the company does not care about whether they take risk or not since their
risk parameter is low. If one were able to hedge in such an asset that also is
negatively correlated with our fund, one would be able to practically give the
guarantee away. This does require that it is possible to find something to hedge
in which behaves like a pure Lévy process. The residual risk process did not
change much in this case either, but remained at a very high level, namely in a
magnitude of 1011. The same as we saw in chapter 3.

4.2.1 No calibration

Now, what would happen to the price if we kept all parameters as above, but
did not calibrate, that is σz = σ? The answer is ’nothing’. Hence it may
seem as if the price is independent of the choices of ξ and I and even Lévy or
Brownian motion. In my opinion, the price should increase for all ρ ∈ [−1, 1],
t ∈ [0, T ] since we add more risk to the portfolio, and the price should reflect
the risk the company takes on. As we can see in figure 24, this is not the case.
In this figure, the price over time and correlation is plotted for a price where the
fund is correlated with a continuous stock (black), and a stock allowing jumps
(colored). We can see that there are very few differences, and the differences
present is probably from simulation error.

Figure 24: Figure of the price without calibrating. Parameters are as in table
7
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At first, one might think that the risk aversion parameter, γ, is to blame since
it is still held at a very low level. However, it turns out that even if we increase
γ, the prices still do not differ significantly from each other. No difference is
present in the residual risk process or the measure of it either.

4.2.2 Rising risk aversion

Now, lets go back to the case where we calibrate the Lévy process, as it is still
my opinion that this is the ’correct’ way to do it. But this time, lets see what
happens if we raise the risk aversion. The price should be higher in both cases,
and it should also change its form as we saw in chapter 3. In figure 25, we can
see that the price curves here are both higher, at least in some cases, and have
a different form compared with the ones in figure 20 on page 40. But, they are
also similar to the ones in figure 20 in the way that their difference get their
sign reversed at approximately ρ = 0 at time zero. This effect is only present
if one choose ξ and I such that σz is quite small. In the figure discussed here,
σz = 0.02. The larger σz, i.e. the lower ξ and/or I is, the more p(St) and p(Zt)

Figure 25: The price when risk aversion γ = 0.5

are alike which it should be as discussed before.

The most important subplot of figure 25 is subplot 2. Here the line to the left,
with its peak at ρ = 0.47, is representing p(Zt) and the other is representing
p(St). In subplot 1, p(Zt) is the one with white stripes. Subplot 3 and 5 shows
us that the two prices are almost equal at terminal time and for ρ = 0, respec-
tively. The fourth and sixth subplot shows us that p(Zt) is lowest for ρ = −0.99
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while p(St) is lowest for ρ = 1. We also note that the insecurity is quite large
for ρ ∈ (−0.5, 0.5), approximately. The parameters here are as in table 8.

r = 0.035 g = 0.0 Y0 = 100
µ = 0.07 ν = 0.08 λ = 1
σ = 0.10 η = 0.12 γ = 0.5
I = 6 ξ = 0.04 σz =

√
σ2 − ξ2I = 0.02

Table 8: Parameters used to produce figure 25

So what we have found here, is that there exist a set of (ξ, I) such that the
utility indifference price is significantly lower if it depends on a Lévy process
and ρ < 0, than it would be if it depended on a Brownian motion. If ρ > 0, the
opposite holds. We also note that for ρ ≈ 0, this effect fades away quite fast as
time goes by. In the opposite case, when ρ ≈ ±1, we can see from subplots 4
and 6 that the effect lasts almost until maturity, where it is lost for all ρ. This
effect remains the same if one were to raise λ as well. It does also seem as if
the result of the examination I did on ρ̂13 in chapter 1 would have held even
stronger for p(Zt).

Now, what would be really interesting were if we were looking at parameters
estimated from the market. Then we could see which sets of (ξ, I) are common
and which are not. However, jump intensity parameters can be hard to esti-
mate, and it is not within the scope of this paper to do so.

4.3 Summary of the Implementation of Lévy processes

In this chapter I have developed a way to compare a Brownian motion driven
fund to a fund that is driven by a Lévy process. What we found was that the
price did not depend on the choice of model (Lévy or Brownian motion), unless
the Lévy process was calibrated to have the same properties as the Brownian
motion. I find this to be a bit odd, but I rely on my calculations.

Further, the price when the fund was driven by the Lévy process was lowest
for negative correlation and highest for positive correlation compared to the
price when the fund was driven by the Brownian motion. We also found that
the price p(Zt) could be very close to zero for some appropriate parameters.
Even though the price in the continuous case and the Lévy case had quite a few
differences, the measures of the risk remained roughly the same independent of
parameter choice.

13The correlation giving the largest price at initial time
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5 Conclusions and Extensions

5.1 Conclusions

In this paper, we have looked at the price and risk of interest rate guarantees
for different input parameters with special emphasize on the correlation coef-
ficient, ρ, the risk aversion parameter, γ and the number of options issued, λ.
Since I have not used estimated parameters, the inspection has been more of a
stress-testing nature and it is not necessary to evaluate parameter insecurities.
Had the parameters been estimated, it would have been natural and important
to discuss the insecurity of these.

My calculations support the conclusion of Benth and Proske[6] where they find
that the minimum price is obtained if one can hedge in negative correlated as-
sets. This also follows from the diversification argument. By implementing the
Lévy framework, I find that this minimum price can be further reduces without
increasing risk substantially. In order to obtain this, it must be possible to hedge
in an asset that is negatively correlated and that allows jumps. This effect is
only observed when St and Zt are adapted to each other, i.e. they have the same
drift and total volatility. We also saw that the price when hedging in a stock
allowing jumps could be almost zero for certain parameters in the Lévy process.

As I mentioned in the introduction, a good model should be as close to the
real world as possible, but should also have as few parameters as possible. One
could therefore argue that an extension to include Lévy processes is not neces-
sary and does not give as much information as it adds uncertainty. Uncertainty
around estimated Lévy parameters is quite high, however, some points could
still be of interest to have in mind, such as the point mentioned above.

Further, we saw that for risk aversion close to zero, the residual risk was high
with values in the region of 1011. This number decreased as the risk aversion
increased until a certain point. It seemed as if the residual risk had a minimum
for γ ≈ 0.1 for ρ ∈ [−0.8, 0.8] approximately. Increasing γ further actually
seemed to increase the residual risk. In other words, there exist an optimal γ to
obtain the lowest risk measures as we saw in section 3.1.1. This means that it is
possible to optimize the price-risk problem in two ways; Either one can ’choose’
γ such that one obtain the lowest price, or one can ’choose’ γ such that the
residual risk is minimized. While the first choice means that the residual risk
will be very high, the second choice does not imply that the price necessarily
will increase drastically. A natural extension of this paper would, in addition to
the other extensions below, be to prove this claim and perhaps find a formula
for the price when the residual risk has been minimized.

By implementing, and working with, the different risk measures, I also found
another property that needs to be satisfied if a risk measure is to be called
a good risk measure. In conjunction to the properties listed in chapter two, a
good risk measure also needs to be easy to work with and easy to understand for
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a third party. For these reasons, I would like to emphasize Expected Shortfall
as the risk measure of choice. This is because it has the ’right’ properties,
read subadditivity and thereby coherence, it is easy to calculate and easy to
understand. That being said, it turned out that all the risk measures I looked
at were equally coherent in this context. In chapter 3 we saw that the coherence
property held for small risk aversions, but was destroyed for all the measures
when γ increased.

5.2 Possible extensions and known weaknesses

Both the field of option pricing and risk analysis are quite large and there are
therefore numerous ways of extending this paper. I will in this section try to
list and discuss which ones I think are the most obvious or interesting ones.

The most obvious extension in my opinion, would be to look at how the price
behaves if some of the inputs were stochastic variables. Stochastic volatility,
interest rate and correlation would most likely have been interesting to take a
look at. The correlation between a pair of stocks, for instance, is not a constant
relationship. It can change through several unexpected circumstances. There-
fore, adding a noise part to the correlation would make sense. This would make
the price more volatile, and companies wanting to sell a put option may then
need to charge an even higher price if they want to be sure of not incurring a loss.

It is also reasonable to believe that the volatility of a given stock can change
over time. Research has shown that even in the most liquid markets, volatil-
ity displays dynamics and it is normal to observe clustering effects, where it
is observed that large changes tend to be followed by large changes, of either
sign, and small changes tend to be followed by small changes. By modeling
the volatility, one would catch these clustering phenomena, and see how they
affect the price. The effect of this might not be as large as making the correla-
tion stochastic, but would indeed have been noticeable. Both these parameters
could have been modeled using GARCH or ARMA models.

Another adjustment in this case would have been to model the interest rate, for
instance with Black-Karasinski, but it is my opinion that this extension would
have been far less noticeable than the ones above.

How the price and risk would have changed under such circumstances would
have been interesting to examine. But again, introducing these models would
have required more estimated parameters and would have led to even larger
uncertainty of the entire model, as I mentioned briefly in the introduction.

It could also be interesting to look at another utility function. Allthough the
utility function presented here, is an intuitive one, it could be interesting to
look at others. This would, however, change the form of the utility indifference
price quite dramatically depending on which function is chosen.
Further, I would also have added rigorous proofs of more of the things I have
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’discovered’. I would especially like to prove that E[ρ̂]14 is positive and perhaps
derive a closed formula for it.

Also, as previously discussed, it would be interesting to fit the Lévy process to
marked data, allthough it is my impression that the parameters needed are hard
to estimate. I have basically stress tested the model, but it would be interesting
to see how it behaves when fitted to a dataset. It could also be interesting to
let the fund be dependent on, say, two Lévy processes.

Limitations of the model

The most serious limitation is that if one choose λ or γ too high, the values
needed to calculate w gets too high for the computer to handle. I do not know if
this is problem persists when solving w(t, y) as a parabolic differential equation
as done in Benth and Proske[6], but from looking at the formulas, I think it
would. This is a serious problem since it in practice is interesting to look at
arbitrary high values of the number of options issued, λ. Especially when ana-
lyzing the residual risk. As we saw, the risk measures were coherent for low risk
aversions. In such cases the quantity of options issued would be of importance.

In hindsight, it would probably have been better to solve w(t, y) by the parabolic
differential equation (pde) in stead of using Monte Carlo on the Feynman-Kac
representation, but since the pde was used in Benth and Proske [6], I thought
it would be interesting to use Monte Carlo

14As introduced in section 1.3
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Appendix

A Technical calculations and proofs

A.1 The increase and decrease of the utility indifference price

This is a proof of why pγλ increases with respect to ρ ∈ (−1, 0) if µ ≥ r and
decreases with respect to ρ ∈ (0, 1) if µ ≤ r.

We have from the definitions in chapter one that

pγλ(t, y) = e−r(T−t)
lnw(t, y)
γ(1− ρ2)

where

w(t, y) = E
[
exp

{
λγ(1− ρ2)(K − ST )+

}]
for ST = y · exp

{
(δ − 1

2η
2)(T − t) + η(BT −Bt)

}
and δ = ν − ηρµ−rσ .

To simplify calculations, lets split w(t, y) into two parts, say A1 and A2:

w(t, y) = P (K ≤ ST ) + E
[
exp

{
λγ(1− ρ2)

}
1{K≥ST }

]
= A1 +A2

One can then differentiate this part by part, starting with A1:

A1 = P

((
ln
K

y
+ (

1
2
η2 − δ)(T − t)

)
η−1 ≤ BT−t

)
= 1− P

(
BT−t <

(
ln
K

y
+ (

1
2
η2 − δ)(T − t)

)
η−1

)
= 1− 1√

2π(T − t)

∫ u

−∞
exp

{
−y2

2(T − t)

}
dy

for u =
(

ln K
y + (1

2η
2 − δ)(T − t)

)
η−1 which gives that

∂

∂ρ
A1 = −µ− r

σ
(T − t) 1√

2π(T − t)
exp

{
−u2

2(T − t)

}
And then A2:

A2 =
∫ u

−∞
C1(x)dx

for

C1(x) =
1√

2π(T − t)
exp

{
λγ(1− ρ2)

(
K − y · exp

{
ηx+ (δ − 1

2
η2)(T − t)

})
− x2

2(T − t)

}
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This gives that

∂

∂ρ
A2 =

µ− r
σ

(T − t) · C1(u)

−2λγρ
∫ u

−∞

(
K − y · exp

{
ηx+ (δ − 1

2
η2)(T − t)

})
· C1(x)dx

+
µ− r
σ

λγ(1− ρ2)
∫ u

−∞
y · exp

{
ηx+ (δ − 1

2
η2)(T − t)

}
· C1(x)dx

Let us now rejoin our two parts and note that C1(u) =
exp

{
− u2

2(T−t)

}
√

2π(T−t)
.

We then get

∂

∂ρ
w(t, y) =

∂

∂ρ
A1 +

∂

∂ρ
A2 (23)

= −µ− r
σ

(T − t)C1(u) +
µ− r
σ

(T − t)C1(u)

−2λγρ
∫ u

−∞

(
K − y · exp

{
ηx+ (δ − 1

2
η2)(T − t)

})
· C1(x)dx

+
µ− r
σ

λγ(1− ρ2)
∫ u

−∞
y · exp

{
ηx+ (δ − 1

2
η2)(T − t)

}
· C1(x)dx

To get a better overview, we introduce the positive variables C2 and C3:

C2 =
∫ u

−∞

(
K − y · exp

{
ηx+ (δ − 1

2
η2)(T − t)

})
· C1(x)dx > 0

C3 =
∫ u

−∞
y · exp

{
ηx+ (δ − 1

2
η2)(T − t)

}
· C1(x)dx > 0

Using this abbreviation, we get that

∂

∂ρ
w(t, y) =

µ− r
σ

λγη(1− ρ2)C3 − 2λγρC2

We can then easily see that

∂
∂ρw(t, y) ≥ 0 when µ ≥ r and ρ ∈ (−1, 0] and

∂
∂ρw(t, y) ≤ 0 when µ ≤ r and ρ ∈ [0, 1).

Now, since we know that w(t, y) and even lnw(t, y) are positive for all input
values and that

∂

∂ρ
pγλ(t, y) =

e−r(T−t)

γ(1− ρ2)

(
∂
∂ρw(t, y)

w(t, y)
− −2ρ

(1− ρ2)
lnw(t, y)

)
we get that
pγλ is increasing for µ ≥ r and ρ ∈ (−1, 0] while
pγλ is decreasing for µ ≤ r and ρ ∈ [0, 1)
as was what we wished to show.
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A.2 Euler’s method used on a jump diffusion

The diffusion is given by dZt = Zt (µzdt+ σzdBt + ξdCt). Here Bt is a Brown-
ian motion and Ct is given by

Ct =
Nt∑
i=1

Dt,i

where Nt is a Poisson process with intensity I and Dt,i is i.i.d N(0, 1) ∀ i ∈
[1, Nt]. Discretifying Zt with time increments ∆t = 1 gives

Zt − Zt−1 = Zt−1 · (µz + σz(Bt −Bt−1) + ξ∆Ct)

= Zt−1 ·

µz + σzεt + ξ

Nt∑
i=Nt−1

Dt,i


Zt = Zt−1 ·

1 + µz + σzεt + ξ

Nt−Nt−1∑
i=1

Dt,i


= Zt−1 ·

(
1 + µz + σzεt + ξ

πt∑
i=1

Dt,i

)

Here, I have used that εt = Bt −Bt−1 ∼ N(0, 1) ∀ t ∈ [0, T ], that

∆Ct = Ct − Ct−1 =
Nt∑
i=1

Dt,i −
Nt−1∑
i=1

Dt,i =
Nt∑

i=Nt−1

Dt,i =
Nt−Nt−1∑

i=1

Dt,i

and that πt = Nt −Nt−1 ∼ poiss(I).

A.3 Calibrating Zt to fit St

Using the assumptions and results from A.2 it is easy to show that Zt and St
has the same drift, and to calculate σz if I and ξ are given. First off I will show
that µz = µ gives E[Zt] = E[St].

E

[
Zt
Zt−1

]
= 1 + µ+ σE[εt] + ξE[πt] · E[D]

= 1 + µ = E

[
St
St−1

]
And now for the volatility

var
(

Zt
Zt−1

)
= var

(
1 + µ+ σεt + ξ

πt∑
i=1

Dt,i

)

= σ2var (εt) + ξ2var

(
πt∑
i=1

Dt,i

)
= σ2 + ξ2I
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since by the law of conditional variance we have that

var

(
πt∑
i=1

Dt,i

)
= E

[
var

(
πt∑
i=1

Dt,i|πt

)]
+ var

(
E

[
πt∑
i=1

Dt,i|πt

])
= E[πtvar(D)] + var(πtE[D])
= var(D)E[πt] + E[D]2var(πt)
= E[πt]
= I

which gives that for

var
(

Zt
Zt−1

)
= var

(
St
St−1

)
σ2
z + ξ2I = σ2

σz =
√
σ2 − ξ2I

Hence, the volatility of Zt, σz, must have the above form if Zt and St are to
have the same total volatility.
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B Source code for Matlab

B.1 Input file

This file is a main file controlling and calling the other functions such that they
are run with the same parameters. Basically makes it easier to switch between
parameter sets while being confident that the different files uses the same set.

1 priceON = 1 ; %1 − The pr i c e i s c a l c u l a t e d
2 riskON = 0 ; %1 − The r i s k i s c a l c u l a t e d
3 price jumpON = 0 ; %1 − The pr i c e wi th jumps i s c a l c u l a t e d
4 risk jumpON = 0 ; %1 − The r i s k wi th jumps i s c a l c u l a t e d
5 model = 1 ; %Chooses between the d i f f e r e n t models
6

7 %Timeperspec t ive
8 years = 1 ; %Not n e c e s s a r i l y an i n t e g e r
9 days = 252 ; %Number o f f i n a n c i a l days pr year

10 T = round( years ∗days )+1; %Timeperspec t ive
11 L = 19 ; %pa r t i t i o n o f the v ec t o r \ rho
12

13 sim = 10000 ; %Simula t ions
14 m = 100 ; %Number o f t imes the program i s run
15

16 %The d i f f e r e n t market models :
17 i f model == 1 %5.1
18 ry = 0 . 0 3 5 ; %Annual i n t e r e s t r a t e ( r i s k l e s s a s s e t )
19 muy = 0 . 0 7 ; %Annual expec ted p r o f i t ( r i s k y a s s e t )
20 nuy = 0 . 0 8 ; %Annual expec ted p r o f i t ( fund )
21 sigmay = 0 . 1 2 ; %Annual v o l a t i l i t y ( a s s e t )
22 etay = 0 . 1 5 ; %Annual v o l a t i l i t y ( fund )
23 gamma = 0 . 1 ; %Risk aver s ion
24 g = 0 . 0 0 ; %Annual guaranteed p r o f i t o f the fund
25 j i y = 6 ; %Annual JumpIntensi ty
26 x i = 0 . 0 4 ; %The s td o f the jumps i zes
27 lambda = 1 ; %Number o f pu top t i ons the i n v e s t o r i s
28 %shor t
29

30 e l s e i f model == 2 %5.2
31 ry = 0 . 0 2 ; %Annual i n t e r e s t r a t e ( r i s k l e s s a s s e t )
32 muy = 0 . 0 7 ; %Annual expec ted p r o f i t ( r i s k y a s s e t )
33 nuy = 0 . 0 8 ; %Annual expec ted p r o f i t ( fund )
34 sigmay = 0 . 1 2 ; %Annual v o l a t i l i t y ( r i s k y a s s e t )
35 etay = 0 . 1 5 ; %Annual v o l a t i l i t y ( fund )
36 gamma = 0 . 5 ; %Risk aver s ion
37 g = 0 . 0 0 ; %Annual guaranteed p r o f i t o f the fund
38 j i y = 5 ; %Annual JumpIntensi ty
39 x i = 0 . 0 4 ; %The s td o f the jumps i zes
40 lambda = 1 ; %Number o f pu top t i ons the i n v e s t o r i s
41 %shor t
42

43 e l s e i f model == 3 %5.3
44 ry = 0 . 0 2 ; %Annual i n t e r e s t r a t e ( r i s k l e s s a s s e t )
45 muy = 0 . 0 6 ; %Annual expec ted p r o f i t ( r i s k y a s s e t )
46 nuy = 0 . 0 5 ; %Annual expec ted p r o f i t ( fund )
47 sigmay = 0 . 1 0 ; %Annual v o l a t i l i t y ( r i s k y a s s e t )
48 etay = 0 . 0 7 ; %Annual v o l a t i l i t y ( fund )
49 gamma = 0 . 5 ; %Risk aver s ion
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50 g = 0 . 0 3 5 ; %Annual guaranteed p r o f i t o f the fund
51 j i y = 4 ; %Annual JumpIntensi ty
52 x i = 0 . 0 6 ; %The s td o f the jumps i zes
53 lambda = 1 ; %Number o f pu top t i ons the i n v e s t o r i s
54 end %shor t
55

56 %Constant c a l c u l a t i o n s :
57 Y0 = 100 ; %I n i t i a l va lue o f the fund
58 g = log(1+g ) ;
59 r = log(1+ry )/ days ; %Dai ly i n t e r e s t ra t e ( r i s k l e s s a s s e t )
60 mu = log(1+muy)/ days ; %Dai ly expec ted p r o f i t ( a s s e t )
61 nu = log(1+nuy )/ days ; %Dai ly expec ted p r o f i t ( fond )
62 sigma = sigmay/sqrt ( days ) ; %Dai ly v o l a t i l i t y ( a s s e t )
63 eta = etay /sqrt ( days ) ; %Dai ly v o l a t i l i t y ( fun )
64 K = Y0∗exp( g∗T/days ) ; %St r i k e at time T
65 j i = j i y /(T−1); %Dai ly JumpIntensi ty
66

67 i f priceON
68 disp ( ’ Ca l cu l a t ing the p r i c e ’ )
69 p r i c e (T, sim ,m, r ,mu, nu , sigma , eta , Y0 , lambda ,gamma, L ,K)
70 end
71 i f riskON
72 disp ( ’ Ca l cu l a t ing the r i s k ’ )
73 r i s k (T, sim ,m, r ,mu, nu , sigma , eta , Y0 , lambda ,gamma, L ,K)
74 end
75 i f price jumpON
76 disp ( ’ Ca l cu l a t ing the p r i c e p( Z t ) ’ )
77 pr ice jump (T, sim ,m, r ,mu, nu , sigma , eta , Y0 , lambda ,gamma, L ,K, xi , j i )
78 end
79 i f risk jumpON
80 disp ( ’ Ca l cu l a t ing the r i s k R( Z t ) ’ )
81 r i sk jump (T, sim ,m, r ,mu, nu , sigma , eta , Y0 , lambda ,gamma, L ,K, xi , j i )
82 end

B.2 Utility indifference price

This function calculates the price using the Feynman-Kac representation and
Monte Carlo technique. The price is normalized with respect to λ, i.e. output
is the price pr option issued, not the total price of the investment. Input is the
market variables along with technical variables such as the number of times the
program should be run. Output is a (time X correlation) matrix containing the
price for all times t ∈ [0, T ] and all ρ ∈ (−1, 1).

1 function [ ] = p r i c e (T, sim ,m, r ,mu, nu , sigma , eta , Y0 , lambda ,gamma, L ,K)
2

3 rho = linspace ( −0 .99 ,0 .99 ,L ) ; %Corre l a t i on Co e f f i c i e n t
4 t i d = zeros (1 ,m−1); %For t iming purposes
5 P = NaN(m,T, L ) ; %The pr i c e pr op t ion
6 for l = 1 :m
7 t ic ; %For t iming purposes
8

9 %################### − The Model − ###################
10 %Independent normal ly d i s t r i b u t e d v a r i a b l e s
11 epsW1 = random ( ’ normal ’ , 0 , 1 ,T, sim ) ;
12 epsW2 = random ( ’ normal ’ , 0 , 1 ,T, sim ) ;
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13

14 Y = zeros (T, sim , L ) ; %The fund under Qo
15 epsW1o = epsW1 + (mu−r )/ sigma ; %Qo Brownian motion
16 d e l t a = nu − eta ∗ rho ∗(mu−r )/ sigma ;
17

18 Y( 1 , : , : ) = Y0 ;
19 for t = 2 :T
20 for j = 1 :L
21 Y( t , : , j ) = Y( t −1 , : , j ) . ∗ ( 1 + de l t a ( j )
22 + eta ∗( rho ( j )∗epsW1o( t , : )
23 + sqrt(1−rho ( j )ˆ2)∗epsW2( t , : ) ) ) ;
24 end
25 end
26

27 %############ − U t i l i t y I n d i f f e r e n c e Pr ic ing − ############
28 tempw = zeros (T, sim , L ) ; %To es t imate E[w( t , y ) ]
29 for t = 1 :T
30 for j = 1 :L
31 a = Y( t , : , j )∗exp ( ( d e l t a ( j )−0.5∗ eta ˆ2)∗ (T−(t −1) ) ) ;
32 b = exp( eta ∗sqrt (T−(t −1))∗( rho ( j )∗epsW1( t , : )
33 + sqrt(1−rho ( j )ˆ2)∗epsW2( t , : ) ) ) ;
34 tempw( t , : , j ) = exp( lambda∗gamma∗(1− rho ( j )ˆ2)
35 ∗(K−a .∗b ) . ∗ (K>a .∗b ) ) ;
36 end
37 end
38

39 clear epsW1 epsW2 a b y ; %Saving the memory by
40 w = mean(tempw , 2 ) ; %de l e t i n g used matr ices
41 clear tempw ;
42

43 pp = zeros (T, L ) ; %The pr i c e pr op t ion
44 for t = 1 :T
45 for j = 1 :L
46 pp( t , j ) = exp(−r ∗(T−t ) )∗ log (w( t , 1 , j ) )
47 /( lambda∗gamma∗(1− rho ( j ) ˆ 2 ) ) ;
48 end
49 end
50

51 clear i n t dpdy dwdy epsW1o w
52 P( l , : , : ) = pp ;
53 clear pp ;
54 t i d ( l ) = toc ; %For t iming purposes
55 i f m > 1 && l < m
56 disp ( [ char ( ’Done : ’ ) num2str( l /m∗100) ’ %’ ] )
57 ETL( t id , l ) %For t iming purposes
58 end
59 end
60

61 p = zeros (T, L ) ;
62 error = zeros (T, L ) ;
63 for t = 1 :T
64 for l = 1 :L
65 error ( t , l ) = std (P( : , t , l ) ) ;
66 p( t , l ) = mean(P( : , t , l ) ) ;
67 end
68 end
69 clear P;
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70 %######################## − Output − ########################
71 disp ( ’− − − − − − − − − − − − − − − − − − − − − − ’ )
72 disp ( [ char ( ’TIME ELAPSED: ’ ) num2str(cputime−sum( t i d ) ) ’ seconds ’ ] )
73

74 disp ( ’ min (p) max(p) p (1 , 1 ) p (1 ,L) ’ )
75 disp ( [min(min(p ) ) max(max(p ) ) p (1 , 1 ) p (1 ,L ) ] )
76

77 minplt = f loor (max(min(min(p−error ) ) , 0 ) ) ;
78 maxplt = ce i l (max(max(p+error ) ) ) ;
79

80 L2 = 100 ;
81 rho2 = linspace ( −0 .99 ,0 .99 , L2 ) ;
82

83 f igure ;
84 hold on ;
85 subplot ( 3 , 5 , 1 : 1 0 ) , surf (p ( : , : ) ’ ) , shading i n t e r p
86 set (gca , ’ YTickLabel ’ ,{ ’−1 ’ , ’−0.5 ’ , ’ 0 ’ , ’ 0 . 5 ’ , ’ 1 ’ })
87 axis ( [ 0 T 0 L+1 f loor (min(min(p ) ) ) max(max(p ) ) ] )
88 t i t l e ( ’The p r i c e (p( t ,\ rho ) , t \ in (1 ,T) ,\ rho\ in ( −0 .99 ,0 .99) ) ’ )
89

90 p1 = 0∗p ;
91 e r r o r 1 = 0∗error ;
92 for l = 1 :L %Revers ing to b e t t e r f i t the o ther p l o t s
93 p1 ( : , l ) = p ( : , L−l +1);
94 e r r o r 1 ( : , l ) = error ( : , L−l +1);
95 end
96

97 hold on ;
98 subplot ( 3 , 5 , 1 1 ) ; plot ( p1 ( 1 , : ) , ’ k ’ )
99 set (gca , ’ XTickLabel ’ ,{ ’ 1 ’ , ’ 0 . 5 ’ , ’ 0 ’ , ’−0.5 ’ , ’−1 ’ })

100 axis ( [ 0 L+1 minplt maxplt ] )
101 xlabel ( ’ \ rho ’ )
102 t i t l e ( ’p (1 , \ rho ) ’ )
103 hold on ;
104 text ( 1 . 1∗maxIndex ( p1 ( 1 , : ) ) , minplt +0.1 ,
105 num2str( rho2 (round( maxIndex (p ( 1 , : ) ) / L∗L2 ) ) ) )
106 stem( maxIndex ( p1 ( 1 , : ) ) ,max( p1 ( 1 , : ) ) , ’−− ’ ) ;
107 plot ( p1 (1 , : )+ e r r o r 1 ( 1 , : ) , ’ : r ’ )
108 plot ( p1 (1 , : )− e r r o r 1 ( 1 , : ) , ’ : r ’ )
109 hold o f f ;
110

111 hold on ;
112 subplot ( 3 , 5 , 1 2 ) ; plot ( p1 (T, : ) , ’ k ’ )
113 set (gca , ’ XTickLabel ’ ,{ ’ 1 ’ , ’ 0 . 5 ’ , ’ 0 ’ , ’−0.5 ’ , ’−1 ’ })
114 axis ( [ 0 L+1 minplt maxplt ] )
115 xlabel ( ’ \ rho ’ )
116 t i t l e ( ’p (T, \ rho ) ’ )
117 hold on ;
118 text ( 1 . 1∗maxIndex ( p1 (T, : ) ) , minplt +0.1 ,
119 num2str( rho2 (round( maxIndex (p(T, : ) ) / L∗L2 ) ) ) )
120 stem( maxIndex ( p1 (T, : ) ) ,max( p1 (T, : ) ) , ’−− ’ ) ;
121 plot ( p1 (T, : )+ e r r o r 1 (T, : ) , ’ : r ’ )
122 plot ( p1 (T, : )− e r r o r 1 (T, : ) , ’ : r ’ )
123 hold o f f ;
124 clear p1 ;
125 clear e r r o r 1 ;
126
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127 hold on ;
128 subplot ( 3 , 5 , 1 3 ) ; plot (p ( : , 1 ) , ’ k ’ )
129 hold on ;
130 plot (p ( : , 1 )+ error ( : , 1 ) , ’ : r ’ )
131 plot (p ( : ,1)− error ( : , 1 ) , ’ : r ’ )
132 hold o f f ;
133 axis ( [ 0 T minplt maxplt ] )
134 xlabel ( ’Time ’ )
135 t i t l e ( ’p ( t , −0.99) ’ )
136

137 hold on ;
138 subplot ( 3 , 5 , 1 4 ) ; plot (p ( : , round(L/2 ) ) , ’ k ’ )
139 hold on ;
140 plot (p ( : , round(L/2))+error ( : , round(L/2 ) ) , ’ : r ’ )
141 plot (p ( : , round(L/2))−error ( : , round(L/2 ) ) , ’ : r ’ )
142 hold o f f ;
143 axis ( [ 0 T minplt maxplt ] )
144 xlabel ( ’Time ’ )
145 t i t l e ( ’p ( t , 0) ’ )
146

147 hold on ;
148 subplot ( 3 , 5 , 1 5 ) ; plot (p ( : , L) , ’ k ’ )
149 hold on ;
150 plot (p ( : , L)+error ( : , L) , ’ : r ’ )
151 plot (p ( : , L)−error ( : , L) , ’ : r ’ )
152 hold o f f ;
153 axis ( [ 0 T minplt maxplt ] )
154 xlabel ( ’Time ’ )
155 t i t l e ( ’p ( t , 0 . 9 9 ) ’ )

B.3 Residual risk

This program models the residual risk a company takes on by issuing such
guaranties as modeled in the first program. The input is market data while the
output is a (number of simulations X correlation) matrix containing the residual
risk at terminal time T . At the end of the program, the measure function (B.5)
is called with the risk matrix as input.

1 function [ ] = r i s k (T, sim ,m, r ,mu, nu , sigma , eta , Y0 , lambda ,gamma, L ,K)
2

3 rho = linspace ( −0 .99 ,0 .99 ,L ) ; %Corre l a t i on Co e f f i c i e n t
4 d e l t a = nu − eta ∗ rho ∗(mu−r )/ sigma ;
5 RRF = zeros (L , sim ) ; %Residua l Risk
6 t i d = zeros (1 ,m−1);
7 for l = 1 :m
8 t ic ;
9

10 %################### − The Model − ###################
11 epsW = random ( ’ normal ’ , 0 , 1 ,T, sim ) ; %i . i . d normal d i s t r i b u t e d
12 X = zeros (T, sim , L ) ; %Suppor tprocess f o r the fund
13 X( 1 , : , : ) = Y0 ;
14 WT = 0 ; %Brownain motion
15 for t = 2 :T
16 WT = WT + epsW( t , : ) ;
17 for j = 1 :L
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18 X( t , : , j ) = X( t −1 , : , j ) . ∗ exp( d e l t a ( j )−0.5∗ eta ˆ2
19 + eta ∗epsW( t , : ) ) ;
20 end
21 end
22

23 %################### − The Hedge − ###################
24 tempw = zeros (T, sim , L ) ;
25 tempdw = zeros (T, sim , L ) ;
26

27 for t = 1 :T
28 for j = 1 :L
29 e = X( t , : , j ) . ∗ exp ( ( d e l t a ( j )−0.5∗ eta ˆ2)∗ (T−t )
30 + eta ∗sqrt (T−t )∗epsW( t , : ) ) ;
31 tempw( t , : , j ) = exp( lambda∗gamma∗(1− rho ( j )ˆ2)
32 ∗(K−e ) . ∗ (K>e ) ) ;
33 tempdw( t , : , j ) = tempw( t , : , j ) . ∗WT. / (X( t , : , j )∗ eta ∗T) ;
34 end
35 end
36 clear e WT;
37 w = mean(tempw , 2 ) ;
38 clear tempw ;
39 dw = mean( tempdw , 2 ) ;
40 clear tempdw ;
41

42 i n t = zeros (1 , sim ) ;
43 R = zeros (T, sim , L ) ;
44 RR = zeros (L , sim ) ; %Residua l r i s k at t e rmina l time
45

46 for j = 1 :L
47 for t = 1 :T
48 dp = dw( t , 1 , j ) / (exp( r ∗(T−t ) )
49 ∗w( t , 1 , j )∗gamma∗(1− rho ( j ) ˆ 2 ) ) ;
50 i n t = i n t + exp( r ∗(T−t ) )∗X( t , : , j ) . ∗ dp ;
51 R( t , : , j ) = 0 .5∗ eta ˆ2∗gamma∗(1− rho ( j )ˆ2)∗ i n t
52 − eta ∗sqrt(1−rho ( j )ˆ2)∗epsW( t , : ) ∗ sqrt ( t ) ;
53 i f t == 1
54 RR( j , : ) = RR( j , : ) + exp( r ∗(T−t ) )
55 ∗X( t , : , j ) . ∗ dp . ∗ (R( t , : , j ) − 0 ) ;
56 else
57 RR( j , : ) = RR( j , : ) + exp( r ∗(T−t ) )
58 ∗X( t , : , j ) . ∗ dp . ∗ (R( t , : , j ) − R( t −1 , : , j ) ) ;
59 end
60 end
61 end
62

63 clear epsW X R;
64 RRF = RRF + sort (RR, 2 ) /m;
65 clear RR;
66

67 i f m > 1 && m > l
68 disp ( [ char ( ’Done : ’ ) num2str( l /m∗100) ’ %’ ] )
69 t i d ( l ) = toc ;
70 ETL( t id , l ) %Prin t s es t imated remaining runtime .
71 end
72 end
73

74 meanF1 = mean(RRF, 2 ) ;

60



75 meanPosF1 = mean(RRF > 0 , 2 ) ;
76 meanF = 0∗meanF1 ;
77 meanPosF = 0∗meanPosF1 ;
78 for l = 1 :L
79 meanF( l ) = meanF1(L−l +1);
80 meanPosF( l ) = meanPosF1 (L−l +1);
81 end
82

83 %####################### − Output − #######################
84 d i s p l ay ( ’− − − − − − − − − − − − − − − − − − − − − − − − − ’ )
85 d i s p l ay ( [ char ( ’TIME ELAPSED: ’ ) num2str(cputime−sum( t i d ) ) ’ seconds ’ ] )
86

87 measure (RRF, lambda ,gamma)
88

89 f igure ; subplot ( 2 , 2 , 1 ) , surf (RRF) , shading i n t e r p
90 set (gca , ’ YTick ’ , [ 0 (L+1)/4 (L+1)/2 3∗(L+1)/4 L+1])
91 set (gca , ’ YTickLabel ’ ,{ ’−1 ’ , ’−0.5 ’ , ’ 0 ’ , ’ 0 . 5 ’ , ’ 1 ’ })
92 t i t l e ( ’ Res idua l r i s k at time T over c o r r e l a t i o n and s imu la t i on ’ )
93

94 subplot ( 2 , 2 , 2 ) , plot (meanF ’ )
95 set (gca , ’ XTick ’ , [ 0 (L+1)/4 (L+1)/2 3∗(L+1)/4 L+1])
96 set (gca , ’ XTickLabel ’ ,{ ’ 1 ’ , ’ 0 . 5 ’ , ’ 0 ’ , ’−0.5 ’ , ’−1 ’ })
97 t i t l e ( ’Mean RR over c o r r e l a t i o n ’ )
98 hold on ;
99 text ( 1 . 1∗maxIndex (meanF ) , 0 ,num2str( rho (round( maxIndex (meanF ) ) ) ) )

100 stem( maxIndex (meanF) ,max(meanF) , ’−− ’ ) ;
101 hold o f f ;
102

103 subplot ( 2 , 2 , 3 ) , plot (meanPosF ’ )
104 ylim ( [min ( [min(meanPosF) max(meanPosF ) ∗ 0 . 9 9 ] ) max(meanPosF ) ∗ 1 . 0 1 ] )
105 set (gca , ’ XTick ’ , [ 0 (L+1)/4 (L+1)/2 3∗(L+1)/4 L+1])
106 set (gca , ’ XTickLabel ’ ,{ ’ 1 ’ , ’ 0 . 5 ’ , ’ 0 ’ , ’−0.5 ’ , ’−1 ’ })
107 t i t l e ( ’ Andel av p o s i t i v e RR over co r r ’ )
108 hold on ;
109 stem( maxIndex (meanPosF ) ,max(meanPosF ) , ’−− ’ ) ;
110 hold o f f ;
111

112 subplot ( 2 , 2 , 4 ) , hist (RRF( 1 , : ) , 1 0 0 )
113 t i t l e ( ’ Histogram over the Res idua l Risk ( f o r \ rho =0?) ’ )
114 hold on ;
115 hist (RRF(L , : ) , 1 0 0 , ’ FaceColor ’ , ’ r ’ )
116 hist (RRF(round(L/ 2 ) , : ) , 1 0 0 , ’ FaceColor ’ , ’ k ’ )
117 hold o f f ;

B.4 Lévy process

Substitute these lines with the ones in the lines 18-25 of the price file and lines
13-22 of the risk file to implement a Lévy process. Also, the functions should
be extended such that they can receive the two additional parameters needed
for the Lévy process.

1 %############ − Sub s t i t u e in t o the p r i c e func t i on − ############
2 sigmaZ = sqrt ( sigmaˆ2−x i ˆ2∗ j i ) ; %Ca l i b r a t i on
3 sigma = sigmaZ ;
4

5 N = cumsum( random ( ’ p o i s s ’ , j i ,T, sim ) ) ; %Poisson Process
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6 Y( 1 , : , : ) = Y0 ;
7 for t = 2 :T
8 dC = zeros (1 , sim ) ; %Compound Poisson dynamics
9 for i = 1 : sim

10 i f N( t , i ) > N( t−1, i )
11 dC( i ) = sum( random ( ’ normal ’ , 0 , 1 ,N( t , i ) − N( t−1, i ) , 1 ) ) ;
12 end
13 end
14 for j = 1 :L
15 a1 = eta ∗( rho ( j )∗ ( epsW1o( t , : ) + x i ∗dC ) ) ;
16 b1 = eta ∗( sqrt(1−rho ( j )ˆ2)∗epsW2( t , : ) ) ;
17 Y( t , : , j ) = Y( t −1 , : , j ) . ∗ ( 1 + d e l t a ( j ) + a1 + b1 ) ;
18 end
19 end
20

21 %############ − Sub s t i t u e in t o the r i s k f unc t i on − ############
22 sigmaZ = sqrt ( sigmaˆ2−x i ˆ2∗ j i ) ; %Ca l i b r a t i on
23 sigma = sigmaZ ;
24

25 N = cumsum( random ( ’ p o i s s ’ , j i ,T, sim ) ) ;
26 X = zeros (T, sim , L ) ; %Support p ro se s s f o r the fund Y
27 X( 1 , : , : ) = Y0 ;
28 WT = 0 ;
29 for t = 2 :T
30 WT = WT + epsW( t , : ) ;
31 dC = zeros (1 , sim ) ;
32 for i = 1 : sim
33 i f N( t , i ) > N( t−1, i )
34 dC( i ) = sum( random ( ’ normal ’ , 0 ,1 ,N( t , i ) − N( t−1, i ) , 1 ) ) ;
35 end
36 end
37 for j = 1 :L
38 a = eta ∗(epsW( t , : )+ x i ∗dC ) ;
39 X( t , : , j ) = X( t −1 , : , j ) . ∗ ( 1 + d e l t a ( j ) + a ) ;
40 end
41 end

B.5 Measure function

Function that measures the residual risk with sd, VaR, CVaR, ES and ENT.
The function receives a matrix and prints the measures discussed in this paper.
Measures are normalized with respect to λ, in the meaning that output is risk
pr option issued.

1 function [ ] = measure ( r i s k , lam , gam)
2

3 r i s k = sort ( r i s k , 2 , ’ descend ’ ) ;
4 %(ASCEND OR DECEND) = ( a lpha or 1−a lpha )
5 [ L , sim ] = s ize ( r i s k 1 ) ; %Assume sim>500
6

7 sd = zeros (L , 1 ) ;
8 VaR = zeros (L , 2 ) ; %( : , 1 ) = 95 , ( : , 2 ) = 99
9 ES = zeros (L , 2 ) ; %( : , 1 ) = 95 , ( : , 2 ) = 99

10 CVaR = zeros (L , 2 ) ; %( : , 1 ) = 95 , ( : , 2 ) = 99
11 ENT = zeros (L , 1 ) ;
12
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13 s imhi = 15 ; %I n i t i a l p a r t i t i o n o f p
14 i f sim >= 2000
15 s imhi = 20 ;
16 end
17 i f sim >= 10000
18 s imhi = 25 ;
19 end
20 p = zeros (L , s imhi ) ;
21 check = 0 ;
22 for b = 1 :L
23 sd (b) = std ( r i s k (b , : ) ) ;
24

25 VaR(b , 1 ) = r i s k (b , round (0 . 05∗ sim ) ) ;
26 VaR(b , 2 ) = r i s k (b , round (0 . 01∗ sim ) ) ;
27

28 ES(b , 1 ) = mean( r i s k (b , 1 : ( round (0 . 05∗ sim ) −1))) ;
29 ES(b , 2 ) = mean( r i s k (b , 1 : ( round (0 . 01∗ sim ) −1))) ;
30

31 ENT(b , 1 ) = 1/gam∗ log (mean(exp(−gam∗ r i s k 1 (b , : ) ) ) ) ;
32

33 p(b , : ) = sort ( hist ( r i s k (b , : ) , s imhi ) )/ sim ;
34 i f min(p(b , : ) ) <= 0 %Checking i f p i s va l i d , t h a t i s p>0
35 i f check == 0
36 f igure ;
37 t i t l e ( ’ Decrease ” s imhi ” in measure .m ( min (p)=0) ’ )
38 check = 1 ;
39 end
40 hold on
41 plot (p(b , : ) )
42 end
43

44 % 95% CVaR:
45 sumA = 0 ;
46 kalphaA = 0 ;
47 while sumA < 0 .05
48 kalphaA = kalphaA + 1 ;
49 sumA = sumA + p(b , kalphaA ) ;
50 end
51 A1 = sum(p(b , 1 : kalphaA ) − 0 .05 )∗VaR(b , 1 ) ;
52 A2 = sum(p(b , kalphaA+1: s imhi ) . ∗ r i s k (b , kalphaA+1: s imhi ) ) ;
53 CVaR(b , 1 ) = 1/(1−0.05)∗(A1 + A2 ) ;
54

55 % 99% CVaR:
56 sumB = 0 ;
57 kalphaB = 0 ;
58 while sumB < 0 .01
59 kalphaB = kalphaB + 1 ;
60 sumB = sumB + p(b , kalphaB ) ;
61 end
62 B1 = sum(p(b , 1 : kalphaB ) − 0 .01 )∗VaR(b , 2 ) ;
63 B2 = sum(p(b , kalphaB+1: s imhi ) . ∗ r i s k (b , kalphaB+1: s imhi ) ) ;
64 CVaR(b , 2 ) = 1/(1−0.01)∗(B1 + B2 ) ;
65 end
66 clear r i s k r i s k e n t p a1 a2 b1 b2
67

68 sd = sd/lam ;
69 VaR = VaR/lam ;
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70 ES = ES/lam ;
71 CVaR = CVaR/lam ;
72 ENT = ENT/lam ;
73

74 %Revers ing the v e c t o r s to b e t t e r f i t the o ther p l o t s :
75 sdtmp = sd ;
76 VaRtmp = VaR;
77 EStmp = ES ;
78 CVaRtmp = CVaR;
79 ENTtmp = ENT;
80 for l = 1 :L
81 sd ( l ) = sdtmp (L−l +1 , : ) ;
82 VaR( l , : ) = VaRtmp(L−l +1 , : ) ;
83 ES( l , : ) = EStmp(L−l +1 , : ) ;
84 CVaR( l , : ) = CVaRtmp(L−l +1 , : ) ;
85 ENT( l , : ) = ENTtmp(L−l +1 , : ) ;
86 end
87

88 i f L == 1
89 disp ( ’ Standard dev i a t i on : ’ )
90 disp ( sd )
91 disp ( ’ Value−at−Risk ’ )
92 disp (VaR)
93 disp ( ’ Expected s h o r t f a l l ’ )
94 disp (ES)
95 disp ( ’ Cond i t iona l Value−at−Risk ’ )
96 disp (CVaR)
97 disp ( ’ Entropic r i s k ’ )
98 disp (ENT)
99 else

100 f igure ;
101 subplot ( 2 , 3 , 1 ) , hold on ; plot ( sd ) ;
102 t i t l e ( ’ Standard Deviat ion ’ ) ; xlabel ( ’ \ rho ’ )
103 set (gca , ’ XTick ’ , [ 0 (L+1)/4 (L+1)/2 3∗(L+1)/4 L+1])
104 set (gca , ’ XTickLabel ’ ,{ ’ 1 ’ , ’ 0 . 5 ’ , ’ 0 ’ , ’−0.5 ’ , ’−1 ’ })
105 stem( maxIndex ( sd ) ,max( sd ) , ’−− ’ ) ;
106 hold o f f ;
107

108 subplot ( 2 , 3 , 3 ) , hold on ; plot (VaR) ;
109 t i t l e ( ’ Value at Risk ’ ) ; xlabel ( ’ \ rho ’ )
110 set (gca , ’ XTick ’ , [ 0 (L+1)/4 (L+1)/2 3∗(L+1)/4 L+1])
111 set (gca , ’ XTickLabel ’ ,{ ’ 1 ’ , ’ 0 . 5 ’ , ’ 0 ’ , ’−0.5 ’ , ’−1 ’ })
112 stem( maxIndex (VaR( : , 1 ) ) ,max(VaR( : , 1 ) ) , ’−− ’ ) ;
113 stem( maxIndex (VaR( : , 2 ) ) ,max(VaR( : , 2 ) ) , ’−− ’ ) ;
114 hold o f f ;
115

116 subplot ( 2 , 3 , 4 ) , hold on ; plot (ES ) ;
117 t i t l e ( ’ Expected S h o r t f a l l ’ ) ; xlabel ( ’ \ rho ’ )
118 set (gca , ’ XTick ’ , [ 0 (L+1)/4 (L+1)/2 3∗(L+1)/4 L+1])
119 set (gca , ’ XTickLabel ’ ,{ ’ 1 ’ , ’ 0 . 5 ’ , ’ 0 ’ , ’−0.5 ’ , ’−1 ’ })
120 stem( maxIndex (ES ( : , 1 ) ) ,max(ES ( : , 1 ) ) , ’−− ’ ) ;
121 stem( maxIndex (ES ( : , 2 ) ) ,max(ES ( : , 2 ) ) , ’−− ’ ) ;
122 hold o f f ;
123

124 subplot ( 2 , 3 , 5 ) , hold on ; plot (CVaR) ;
125 t i t l e ( ’ Cond i t iona l Value at Risk ’ ) ; xlabel ( ’ \ rho ’ )
126 set (gca , ’ XTick ’ , [ 0 (L+1)/4 (L+1)/2 3∗(L+1)/4 L+1])
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127 set (gca , ’ XTickLabel ’ ,{ ’ 1 ’ , ’ 0 . 5 ’ , ’ 0 ’ , ’−0.5 ’ , ’−1 ’ })
128 stem( maxIndex (CVaR( : , 1 ) ) ,max(CVaR( : , 1 ) ) , ’−− ’ ) ;
129 stem( maxIndex (CVaR( : , 2 ) ) ,max(CVaR( : , 2 ) ) , ’−− ’ ) ;
130 hold o f f ;
131

132 subplot ( 2 , 3 , 2 ) , hold on ; plot (ENT) ;
133 t i t l e ( ’ Ent rop i ca l ’ ) ; xlabel ( ’ \ rho ’ )
134 set (gca , ’ XTick ’ , [ 0 (L+1)/4 (L+1)/2 3∗(L+1)/4 L+1])
135 set (gca , ’ XTickLabel ’ ,{ ’ 1 ’ , ’ 0 . 5 ’ , ’ 0 ’ , ’−0.5 ’ , ’−1 ’ })
136 stem( maxIndex (ENT) ,max(ENT) , ’−− ’ ) ;
137 hold o f f ;
138

139 disp ( ’Max Standard dev i a t i on : ’ )
140 disp (max( sd ) )
141 disp ( ’Max Value−at−Risk ’ )
142 disp (max(VaR) )
143 disp ( ’Max Expected s h o r t f a l l ’ )
144 disp (max(ES) )
145 disp ( ’Max Condi t iona l Value−at−Risk ’ ) ;
146 disp (max(CVaR) )
147 end

B.6 Maximum index

Receives a vector and gives the index where the maximum value of the vector is
found. Assuming the vector to be concave, which I know they are in this case.

1 function [ mI ] = maxIndex ( vec to r )
2 m = max( vec to r ) ;
3 mI = 0 ;
4 while mI == 0
5 i f vec to r ( i ) == m
6 mI = i ;
7 end
8 end
9 %The index o f a vec t o r maximizing the vec t o r .
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