
NIG-Lévy approximations and

copula based bivariate option pricing

by

TORGEIR W. B. HOFFMANN

MASTERTHESIS

for the degree

Master of Science in Modelling and Data

Analysis

(Master of Science)

Det matematisk- naturvitenskapelige fakultet

Universitetet i Oslo

March 2009

Faculty of Mathematics and Natural Sciences

University of Oslo

Acknowledgements

Let me start by thanking my supervisor Fred Espen Benth for providing me
with an interesting project. His patience and quick response have been critical
to the development of the ideas presented herein.

Varm thanks to Paul C. Kettler. Without his good advice and frequent discus-
sions, this thesis may have been very different. I am very grateful for all that
he has done.

Last, but not least, I would like to thank my family and friends, who provided
me with support when things looked darkest.

March, 2009

Torgeir W. B. Hoffmann

i

Abstract

We aim to study how copula based dependence modelling of jump sizes in the
NIG-Lévy model affect the option price. This leads to the definition of a rejec-
tion based approximation algorithm for the NIG-Lévy.

Using small jumps approximation provided by theory from Asmussen and Rosinki,
an automatic algorithm is developed. Furthermore, the empirical copula of two
dependent processes is extracted and analysed. In general, it can be observed
that the small jumps dominate the dependence structure, as well as the behavior
of the process. An observation with regards to thin tails is made: The depen-
dent jumps produced by the conditional copula distribution vary a lot even in
the 4th or 5th significant digit. Therefore, one can see indications that, for
certain parameter sets, copulas with sufficient spread in the tails may produce
very large jumps in one marginal process, while the other experience very small
jumps.

Finally, a discussion on the effect of the copula on option prices is presented,
and compared to the option price of independent processes. An approach to
finding the Esscher parameters is presented, and the issues using an Esscher
transform on dependent processes are presented.

The findings indicate that copulas on large jumps can have a bigger effect on
the option prices if dependency is low, as variation in large jumps can be bigger
for the dependent process than the original process. For high dependency, the
option prices are generally lower than in the independent case, as dependence
restrict the movement of the second process.

All simulations were done using R (http://www.r-project.org). Plotting was
done using R and gnuplot (http://www.gnuplot.info).

iii

Contents

1 Lévy processes, approximation and simulation 1

1.1 Leaving the Black-Scholes world behind 1

1.2 Lévy processes . 3

1.3 Approximation of the Lévy processes 6

1.4 Simulation of Lévy processes . 8

2 Dependence between Lévy Processes 23

2.1 Conventional measures of dependence 23

2.2 Copulas . 24

2.3 Lévy-copulas . 29

2.4 Bivariate distributions with NIG marginals 30

2.5 The model . 32

2.6 Simulation of dependent NIG-Lévy approximations 33

3 Option pricing with Dependent Lévy processes 39

3.1 Asset price model . 39

3.2 Risk Neutral Measures . 39

3.3 Option pricing . 44

3.4 Concluding remarks . 45

4 Conclusion 49

A 51

A.1 Esscher transform for the NIG-Lévy approximation 51

B 53

B.1 Source code: approximation . 53

v

vi CONTENTS

B.2 Source code: copula simulations 63

B.3 Source code: option pricing . 66

Chapter 1

Lévy processes,

approximation and simulation

1.1 Leaving the Black-Scholes world behind

The Black-Scholes theory was no doubt one of the most important break-
throughs in modern mathematical finance. It builds on the assumption that
the log-returns for a given risky security follow a Gaussian distribution. While
it is easy to model and implement, it lacks flexibility and has tails that are far
too light to describe the distributions of observed daily log-returns.

The framework is rather inflexible in view of the restrictions such as constant
risk-free interest rate, drift and volatility, the absence of transaction costs, and
the assumption that one can buy any quantity of a share, no matter how small.
However, these are restrictions that one can argue to be necessary if the math-
ematical model is to have some level of simplicity. On the other hand, the
model can be fitted with a heavier tailed distribution. This improves the fit to
empirically observed data and risk evaluation.

1.1.1 The fat-tails problem

One of the primary concerns of risk management is heavy tails. Clearly, a model
that describes more accurately the tails of a distribution of returns will have
big impact on the portfolio of an investor or company. If the tails are too light
the risk of big losses is underestimated; the losses will occur more frequently
and can lead to very grave results indeed. On the other hand, overestimating
the risk will lead to funds not being allocated as efficiently as possible, and the
investor can miss opportunities of increased returns on his portfolio.

This calls for a more flexible model, which can more accurately capture the
behavior observed. Many heavy tailed distributions exist, among them the
Cauchy distribution and Pareto. One should remember that the distribution
should be flexible enough to capture skrewness as well. The normal inverse

1

2 Chapter 1. Lévy processes, approximation and simulation

Gaussian is such a distribution.

1.1.2 Normal inverse Gaussian distribution

The NIG distribution is much more flexible than the commonly used Gaussian
distribution, and is able to reflect both semi-heavy tails and skewness in the dis-
tribution. Semi-heavy tails are in general classified as being heavier than those
of the Gaussian distribution, but lighter than those of α-stable distributions
such as the Cauchy.

However, this comes at a cost of more parameters. This is not desireable from a
modelling point of view. Even if a model fits very well to the observed returns,
the cost of modelling and fitting more parameters might be too high compared
to the gain. However, the NIG distribution strikes a good balance with four
parameters, and a good fit to empirically observed data. While the NIG was in-
troduced by Barndorff-Nielsen to model the size of gains of sand, it has proven to
have very good fit in several other applications, among them financial markets.
See Barndorff-Nielsen [5] and the references therein to Shephard [21].

The distribution function is defined as:

nig(x;α, β, δ, µ) = c · exp{β(x− µ)}K1(α · g(x− µ))

g(x− µ)
(1.1)

where g(x) =
√
δ2 + x2 and K1 is the modified Bessel function of 2nd kind order

11:

K1(x) =
1

2

∫ ∞

0

exp{−1

2
x(z + z−1)} dz (1.2)

and the constant c is given as:

c =
δα

π
exp{δ

√
α2 − β2}

Here the parameters of the NIG distribution have the following effect:

• α: tail-heaviness/shape

• β: skewness. β > 0 means skew to the right, β < 0 left, β = 0 symmetric.

• δ: scale parameter, similar to variance, controls pointiness of distribution.

• µ: location

For the distribution to have the desired qualities we need to put some additional
restrictions on the parameters [3, 1.3.32]: α ≥ |β| ≥ 0 and δ > 0.

1Referred to as the modified Bessel function of 3rd kind order 1 by some authors, but this

is now less common.

1.2. Lévy processes 3

The moment generating function of the NIG is easily derived by simple algebra
as:

M(u) = eµu+δ(
√
α2−β2−

√
α2−(β+u)2)

This is interesting and will be returned to in Chapter 3, but it should be noted
that it has a very simple form. This is useful from a modelling perspective and
especially with respect to option pricing since it is easy to work with.

1.2 Lévy processes

Definition 1.2.1 (Lévy process). Lévy processes are a special class of stochastic
processes with the following properties:

• Stochastically continuous

• Stationary with independent increments

1.2.1 Tail integrals and Lévy measures

From Cont and Tankov [9, 5.7] we have:

Definition 1.2.2 (Tail integral). A d-dimensional tail integral is a function
U : [0,∞] → [0,∞] such that

1. (−1)dU is d-increasing, i.e. ∆x2

x1
∆y2
y1 U(x, y) ≥ 0

2. U = 0 if one of its arguments is equal to ∞

3. U is finite almost everywhere, U(0, . . . , 0) = ∞

In other words the tail integral has many similarities to the survival probability
function, but the former is more generalized. A survival probability is the tail
integral of a probability distribution, and the tail integral plays a very specific
role with the Lévy measure. From Cont and Tankov [9, 3.4]:

Definition 1.2.3 (Lévy measure). Let (Xt)t≥0 be a Lévy process on R
d. Define

the Lévy measure ν on R by:

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}], A ∈ B(R)

Here we can find an interesting connection. The tail integral of the Lévy measure
from a point x is the intensity, or the expected number of jumps with size greater
than or equal to x in a unit interval of time. If the Lévy measure is finite, then
the intensity is naturally finite everywhere.

4 Chapter 1. Lévy processes, approximation and simulation

1.2.2 Lévy-Itô decomposition

This celebrated result is fundamental when working with Lévy processes, and
gives us great insights into the building blocks of the process. Before the theo-
rem, a definition is in order:

Definition 1.2.4 (Poisson random measure). Let B0 be all Borel sets not
containing 0. Let the increment of a Lévy process be ∆l(t) = l(t)− l(t−). Then
the Poisson random measure of l(t) is defined as:

N(t, U) =
∑

s:0≤s≤t

χU (∆l(t))

From Applebaum [3, 2.4.16] the results can now be stated:

Theorem 1.2.5 (The Lévy-Itô decomposition). If X is a Lévy process, then
there exists a ∈ R

d, a Brownian motion Bσ with covariance matrix σ and an
independent Poisson random measure N on R

+ × (Rd \ {0}) such that for each
t ≥ 0:

Xt = bt+BA(t) +

∫

|x|<R

x Ñ(t, dx) +

∫

|x|≥R

xN(t, dx)

R can be arbitrary, but it is common to let R = 1.

Here Ñ(t, dx) = N(t, dx) − tν(x). This compensation is necessary where the

intensity of the small jumps is infinite and for Ñ(t, dx) to be a martingale (See
Øksendal and Sulem, 2004).

The triplet (a, σ, ν) is commonly referred to as the Lévy triplet, and consists as
above of a drift a, covariance matrix σ and a Lévy measure ν.

This means that the basic building blocks of a Lévy process is a drift term and
a Brownian motion for the continuous part. Furthermore, we have a term for
the small jumps and a term for the big jumps.

1.2.3 Lévy-Khinchin

This theorem is a very important since it tells us that the small jumps in the
Lévy-Itô decomposition are actually independent of the big jumps.

Theorem 1.2.6 (Lévy-Khinchin). Let Xt be a Lévy process with Lévy triplet
(a, σ, ν). Then

∫

R\{0}

min{x2, 1} ν(dx) <∞

Furthermore,

1.2. Lévy processes 5

E{eiuXt} = etψ (1.3)

ψ = aiu+
1

2
σ2u2

+

∫

R\{0}

(
eiux − 1 − iuxχ|x|<1

)
ν(dx) (1.4)

This is important from a modelling perspective. It gives an explicit shape for
the characteristic function and determines an important relationship between
the small and big jumps: independence. This property will be actively used in
modelling. It makes it possible for us to model the dependency between the
big jumps of two processes without regard to the connection between the small
jumps and vise-versa. This relationship can be confirmed using Kac’s theo-
rem [3, 1.1.15].

From this we also get useful notation that can be applied to all Lévy processes:
the Lévy triplet2 (a, σ, ν), where a is a constant, σ is a square matrix and ν is
the Lévy measure. This triplet uniquely determines the Lévy process.

1.2.4 NIG-Lévy process

The NIG-Lévy process has its increments distributed as: Xt−s ∼ nig(α, β, δ(t−
s), µ(t− s)).

From Barndorff-Nielsen [4, 4.11-4.13] we have that the NIG-Lévy process can
be represented by a triplet (a, 0, ν), where

a = µt+
2δtα

π

∫ 1

0

sinh(βx)K1(αx) dx

ν(x) =
δtα

π|x|e
−βxK1(α|x|) (1.5)

Note that the Lévy measure is independent of µ. Important to note is that
from the Lévy triplet we have that our NIG-Lévy process is in fact a pure jump
process. In other words it has no continuous part represented by a Brownian
motion as indicated by the Lévy-Itô decomposition (1.2.5). This will have con-
sequences for our modelling, and in particular for option pricing since a market
driven by such processes give rise to an incomplete market. We are dependent
on finding a risk neutral probability measure to prevent arbitrage from existing.
We will show how to work with this in Chapter 3.

1.2.5 Properties

We will derive some interesting properties of the NIG-Lévy process. For this we
will employ several propositions found in Papapantoleon [14]:

2Some authors refer to it as the characteristic triplet

6 Chapter 1. Lévy processes, approximation and simulation

Let Xt represent our Lévy process with Lévy measure ν(x) given as in (1.5).
If ν(R) = ∞, then almost all paths of Xt have an infinite number of jumps
on every compact interval [14, Prop. 7.1]. In that case, the Lévy process has
infinite activity. This is easily seen from the form of the Lévy measure.

Furthermore, we have that if

∫

|x|≤1

|x| ν(dx) = ∞,

then almost all paths have infinite variation [14, Prop. 7.2]. This tells us
something about how the small jumps impact on the behaviour of the process,
and in particularly that it is dominated by the small jumps. We can also verify
this with relative ease as the asymptotic behavior of K1(x) is K1(x) ∼ x−1 when
x→ 0. We will look closer at this in our approximation section (1.3), but refer
to either Abramowitz and Stegun [1] or Barndorff-Nielsen [4, 4.14] for details.

The final property that we will look at is that of moments. If

∫

|x|≥1

|x|p ν(dx) <∞

then Xt has finite p-th moment [14, Prop. 7.3]. In our case, this means that
since the Lévy measure has no other atoms, and limx→∞ ν(x) = 0 then the
NIG-Lévy process has all moments finite. This is very useful, as it means that
one can find expectation and variance. Variance and infinite variation need to
be distinguished. While the former is commonly known as the second moment,
the property of infinite variation means that at every time interval there is a
probability of making large enough moves such that one cannot find an upper
or lower bound for the increments on any compact interval.

1.3 Approximation of the Lévy processes

Looking at the possiblities of approximating the NIG-Lévy is of interest, as an
opproximation on the form of the Itô-Lévy decomposition will enable modelling
of the drift, brownian diffusion, small jumps and large jump independently.
This allows for great flexibility, in particular in dependence modelling as will be
covered in Chapter 2

From the Barndorff-Nielsen representation of the NIG-Lévy process, and that
the integral in the Itô-Lévy decomposition can be approximated by a compound
Poisson process where the intensity of the jumps are given by the integral of the
Lévy measure over its entire support.

This leads to the following expression for the NIG-Lévy using the notation from
(1.5):

L(t) = at+

N∑

i=1

(t)γ(t)

1.3. Approximation of the Lévy processes 7

However, it should be noticed that the NIG-Lévy as mentioned has infinite
activity in the origin, and hence the theoretical intensity of the Possion process,
N(t), is infinite. For the small jumps, it is therefore necessary to take some
extra precautions.

1.3.1 Approximation of the jump size distribution

One approach is to approximate the jump size distribution. The idea is simple:

In many cases the Lévy measure is finite, and hence:

K =

∫

R

ν(dx) <∞

Therefore, we can define the probability measure of a jump, J , as:

P (J ∈ U) =
ν(U)

K
, U ⊂ R

From this, one can in theory simulate the jumps of a Lévy process. Combined
with the power of the Lévy-Itô decomposition, the process has a complete rep-
resentation.

In general, however, a direct simulation in this way contains several pitfalls.
As outlined in 1.2.5 our NIG-Lévy process has infinite activity, so that a direct
normalization is not possible.

Define small jumps as increments which lie in the interval (−ε, ε). Jumps outside
this interval are considered large jumps. One possibility is simply to remove the
small jumps, but in our case Barndorff-Nielsen shows that the small jumps
are actually dominating the movement of the process. The result is due to a
series representation of the process, and the rate at which it goes to infinity
near the origin. Since the process has sufficient mass near the origin, it can be
approximated.

Approximation of jumps smaller then ε

Instead of removing the small jumps of size ε or less, Asmussen and Rosinski[20]
propose to incorporate their contribution by a Brownian motion with the fol-
lowing mean and variance:

µε := −
∫

ε≤|x|≤1

x ν(dx), σ2(ε) :=

∫

|x|<ε

x2 ν(dx) (1.6)

The Brownian approximation of small jumps exploits the result that expected
value of the small jumps divided by σ2(ε) converges in distribution to a standard
Brownian motion. For details, see the original article referenced above.

One interesting part to note is that even if the process is a pure jump process,
the approximation still gives a Brownian part. The result is valid for the NIG-
Lévy process [20, Prop. 2.2]. For all practical purposes we will not be able to

8 Chapter 1. Lévy processes, approximation and simulation

distinguish between the small movements of such a Brownian motion and that
of a NIG-Lévy process. The error of this approximation will be dealt with in
Section 1.4.1.

Dealing with jumps larger than ε

Since the small jumps are now dealt with, we truncate the Lévy measure in a
small neighbourhood of the origin (−ε, ε), and since the Lévy measure of the
NIG-Lévy has no other atoms, the normalization constant is finite, even if it’s
still not known. Hence it would be possible to simulate the jumps directly
from the the normalized truncated Lévy measure, νε(x), if we can find the
normalizing constant. The constant is not hard to find numerically, but can be
quite a challenge analytically. The normalizing constant, from here on referred
to as Kε, is given as:

Kε =

∫

ε<|x|<∞

ν(dx) =

∫

ε<|x|<∞

δα

π|x|e
−βxK1(α|x|) d(x)

Using a Lévy measure truncated around the origin one can avoid discretizing
the measure, and hence keep the advantage of the heavy tails. In other words,
theoretically one can have draws from the entire support of the jump probability
measure, and the only limitation would be that of the computer hardware used
for simulation.

Intensity of jumps larger than ε

In the general case, the itensity of the jumps are equal to the normalization term
in the NIG-Lévy jump measure. This is also the case here where the intensity
λ is such that: λ = νε((−∞,−ε] ∪ [ε,∞)).

The number of jumps in the compound Poisson process are distributed by a
Poisson random variable with the intensity λ given above. The waiting time be-
tween each jump is exponentially distributed [9, Def. 2.17]. The increasing sum
of exponentially distributed random variables follows a Dirichlet distributed.
This can be simulated using a sorted set of uniform draws on [0, T]. For more
information on this, see Cont and Tankov [9, Prop. 2.10]

Note that the larger jumps are not intended to be approximated. Since the
intensity is finite direct or indirect simulation is preferred.

1.4 Simulation of Lévy processes

The expressions for the mean and variance of the Brownian part given in (1.6)
are finite integrals that we can easily estimate numerically by employing Rie-
mann integration with a sufficient discretization, or any other optimized inte-
gration method in our software.

1.4. Simulation of Lévy processes 9

To draw the large jumps directly using a pseudo-inverse method is not desirable
since one cannot easily invert the modified Bessel function K1 analytically, even
if K1 is strictly decreasing and C1. A search algorithm (e.g., bisection) on a
spline would be inaccurate unless one chooses a large number of knots. In ad-
dition, a spline on an unbounded domain will be difficult to implement without
imposing artificial boundaries. For high intensity, this method can become very
inefficient.

From the definition of the tail integral of the truncated Lévy measure, νε

lim
x→∞

νε(x) = 0

Therefore, it is at least bounded as there are no other atoms save the one in the
origin. A function that dominates it on this interval can be found. We can find
the asymptotes for our Lévy measure by studying the asymptotes of the Bessel
function given in Abramowitz & Stegun[1, 9.6.9] and Barndorff-Nielsen[4, 5.1]
repectively:

ν(x) ∼ δ

πx2
, x→ 0+ or x→ 0−

ν(x) ∼ δ

√
α

2π|x|3 · exp{βx− α|x|}, x→ ±∞

We will employ a rejection based sampling methods to draw from our distribu-
tion. Using conventional rejection sampling one would need to know either the
normalizing constant or at least an upper bound for it3. Metropolis-Hastings
algorithm, on the other hand, does not require the normalizing constant to be
known. Another very appealing feature of the rejection based algorithms is that
one can avoid the inversion method described above completely. Two algorithms
are presented.

The Accept-Reject algorithm

The first algorithm presented is the conventional Accept-Reject method. It is
based on the idea that the height of the proposal distribution, q(x), and that
of the target distribution, π(x), is compared for each draw proposed. If the
proposal distribution has a lot more mass than the target for a a jump, then
there is only a low chance that the jump is accepted as a draw. However, if
the distributions resembles one another for some areas in the support chance of
acceptance in those regions is higher.

Define α as

α =
π(y)

cq(y)

3Hogstad and Omre, A comparison of Rejection Sampling and Metropolis-Hastings Algo-

rithm.

10 Chapter 1. Lévy processes, approximation and simulation

where y is the proposal drawn and c is a majorizing constant such that

π(y) ≤ cq(y), ∀y ∈ suppπ

Since α ∈ [0, 1], the algorithm rejects with probability 1 − α. If rejected, the
previous jump is kept. Clearly, the chain of accepted draws determines a random
walk with a move probability of α. The question that springs to mind is the
rate of convergence to target distribution. As can be seen, the algorithm does
not take into consideration anything else, save the height of the distributions.
Potentially, this could make the rate of convergence slow.

It is critical that one can find a constant c such that the proposal distribu-
tion dominates the target over the entire support. Otherwise, areas may be
undersampled and one can end up with automatic acceptance in others since
α = 1. This can lead to extreme undersampling in parts of or the whole target
distribution. Still, this may not be enough as some distributions are simply to
light tailed to be used efficiently as proposal distributions in some cases. For
example, it is very difficult to sample a Cauchy distribution using a Gaussian
distribution as proposal because of the light tails in the latter. The converse,
on the other hand, works very well.

In addition, it is necessary to know the target distributions normalization factor,
or at least an upper bound for it. If not, one cannot guarantee that a c can be
found that will allow for optimal convergence of draws to target distribution.

However, there are algorithms that can get around these restrictions, and this
is particularly useful for high-dimension problems where the normalization con-
stant is very computationally demanding.

Provided under results, Table 1.2 compares draws generated through the Accept-
Reject algorithm with those of a real NIG-Lévy simulation. The results also
cover different proposal distributions.

Metropolis-Hastings algorithm

The second rejection based algorithm presented is the Metropolis-Hastings al-
gorithm, which by the construction of a Markov chain can be used to draw
realizations of our target distribution , π(x), which is the normalized truncated
Lévy measure of our NIG process. Let q(x) denote the proposal distribution.
We here employ the same notation as in the excellent paper by Chib and Green-
berg [8], but we only consider proposal distributions which are independent of
the previous jump. Hence, if two draws are made from q(x): x1 and x2 then
the probability mass of x2 would be q(x2). This is slightly different from the
original algorithm by Hastings, where the law of the second jump depended on
that of the first, hence the Markov chain description. The algorithm is given in
Algorithm 1.4.1.

The algorithm is rather simple and evolves around the relative mass (or height of
probability distribution) of two draws. The acceptance probability, α, is defined
as the fraction of the relative mass in the proposal distribution, q(x), and π(x):

1.4. Simulation of Lévy processes 11

α(x1, x2) = min

(
1,
π(x2)q(x1)

π(x1)q(x2)

)

As can be seen, a higher acceptance probability is given if the shape of q(x) is
close to that of π(x). Furthermore, if the target distribution is continuous and
differentiable then one would benefit slightly from using a proposal distribution
with these properties compared to a discontinuous one.

On the other hand, if no proposal distribution with good shape is available , one
can instead choose a mixture of continuous functions which fit well on mutually
disjoint sets in the support of π(x) as long as the support of the mixture contains
that of the target distribution.

This will of course only help on accept probabilities of jumps between these ar-
eas, and α might still be small for jumps from the same continuous area. How-
ever, since Metropolis-Hastings is much more dependent on the overall shape of
the distribution, one can be severely punished for choosing a proposal distribu-
tion with poor fit. This can in general lead to very slow convergence due to low
rates of acceptance.

Algorithm 1.4.1 (Metropolis-Hastings).

1: procedure Metropolis-Hastings(π,F, N)
2: Draw y from F
3: for n ≤ N do
4: Draw x from F and u from U(0,1)
5: Define:

α =

{
min

(
π(x)F(y)
π(y)F(x) , 1

)
, π(y)F (x) > 0

1 , otherwise

6: if u < α then
7: Set y = x
8: end if
9: end for

10: end procedure

In general, one can refer to a Markov Chain generated by the Metropolis-
Hastings as running too cold or too hot depending on whether the proposal
distribution is too heavy or too light in the tails respectively. If the chain runs
too cold then the fraction q(x2)/q(x1) will be close to one. If the tails are much
heavier in the target distribution, this will result in a high number of rejections
in the tails, and undersampling of high probability areas. An illustration of the
under and oversampling for two Gaussian distributions are given in Figure 1.1.

Vise versa, if the proposal distribution runs too hot it will too often propose
draws from high probability areas. It can therefore take a long time for the
chain to traverse the support of π(x).

Either of these situations can lead to chain converging slowly to a draw from
the target distribution. Furthermore, in both these cases high autocorrelation
is likely over the values sampled at the end of each chain[8].

12 Chapter 1. Lévy processes, approximation and simulation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

−6 −4 −2 0 2 4 6

Sampling via Metropolis−Hastings

Target Distribution
Proposal Distribution
Undersampled points

Oversampled points
Draws always accepted

Figure 1.1: Illustration of sampling via Metropolis-Hastings

It is important that the support of the proposal is such that:

supp(π) ⊆ supp(q)

If the support of the target distribution is not connected one must ensure that
the proposal distribution can at least simulate from the the whole support such
that the chain can make the transition from one state to another state in an
unconnected part of the support. If this is not possible one may experience
mixing problems in the accepted draws.

Clearly, the Metropolis-Hastings algorithm comes at a tradeoff. When using
proposal functions with imperfect fit it is highly likely that some areas will
be undersampled to some degree or oversampled. Rejection-based algorithms
compensate for this run running an increased number of iterations to ensure a
good convergence. This is by many still considered an open question although
some work has been done in the area, in particular by Raftery and Lewis [15, 16].
A small analysis on this is presented in Section 1.4.3.

In general the chain of accepted draws will be dependent, and therefore we can
in principle only use one realization from each chain as an i.i.d. sample [19, p.
234]. This does only in minor degree affect the computational efficiency of our
algorithm since few things need to be reinitialized on each run.

Implementation of rejection schemes

The implementation that is quite close to that proposed by Asmussen, Rasmus
and Wiktorsson[6]. To analyse the efficiency of the algorithms, two proposal

1.4. Simulation of Lévy processes 13

distributions J(x), J1(x) are chosen. They are probability mixtures as follows:

J(x) ∼
{
wq · fq , x ∈ [−ω,−ε] ∪ [ω, ε]

we · fe , x ∈ (−∞,−ω) ∪ (ω,∞)
(1.7)

J1(x) ∼
{
wq · fl , x ∈ [−ω,−ε] ∪ [ω, ε]

we · fe , x ∈ (−∞,−ω) ∪ (ω,∞)
(1.8)

We will onwards refer to J(x) as the inverse quadratic case, and J1(x) as the
inverse linear case. The distribution functions are given as:

fe ∼ (α− |β|) exp(−(α− |β|)|x− ω|)

fq ∼
(

1

ε
− 1

ω

)−1
1

x2

fl ∼ log
(ω
ε

) 1

x

These can very easily be inverted for simulation. Figure 1.2 illustrates two
possible setups with the proposal functions given above. The inverse quadratic
distribution and Laplace distribution4 have weights wq, we respectively. The
weight for the inverse linear, fl, is the same as the former. These can be chosen
to be the intensity of the Lévy measure over respective intervals:

we =

(∫ −ω

−∞

ν(x) dx +

∫ ∞

ω

ν(x) dx

)
·K−1

ε

wq =

(∫

|x|∈[ε,ω]

ν(x) dx

)
·K−1

ε

Note that manual tuning of the weights is not necessary. In particular, if J(x)
is used as a proposal function, these weights are almost natural due to the very
small spread. However, with a looser fit in the proposal function as is the case
with J1(x) proposal function, manual tuning might be necessary due to poor fit
in the tails. However, such manual tuning will only result in less draws from
the high probability areas of the proposal, and may in many cases then lead to
undersampling. Therefore, the same weight is used in both cases.

As for choosing the truncation levels ε and ω we will deal with this in (1.4.1).

Furthermore, one is free to use a set of scaling constants c1, . . . , c4 to increase
the acceptance rate. We choose the constants to be such that the proposal
distribution is at least continuous:

4Commonly known as Double Exponential Distribution

14 Chapter 1. Lévy processes, approximation and simulation

 0

 0.2

 0.4

 0.6

 0.8

 1

−1.5 ω 0 ω 1.5

y

x

Lévy measure and inverse quadratic proposal function

Proposal function
NIG Lévy measure

 0

 0.2

 0.4

 0.6

 0.8

 1

−1.5 ω 0 ω 1.5

y

x

Lévy measure and inverse linear proposal function

Proposal function
NIG Lévy measure

Figure 1.2: The NIG Lévy measure with proposal functions

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.1 0.12 0.14 0.16 0.18 0.2

y

x

Lévy measure and inverse quadratic proposal function

Proposal function
NIG Lévy measure

Figure 1.3: A close up look at the NIG Lévy measure with inverse quadratic
proposal

1.4. Simulation of Lévy processes 15

c3 = δ · α

c4 =
c3 · fq(ω)

fe(ω)

The constants for the negative half-line can be chosen in similar manner using
the negative truncation point −ω. This can have some effect on the accep-
tance rate for jumps drawn from the Laplace area of the proposal. This can
benefit both rejection algorithms. Note that c3 has as the main purpose to en-
sure domination of the Lévy measure in the Accept-Reject case, and hence the
Metropolis-Hastings will not benefit from this.

On optimal acceptance rates in Accept-Reject

While acceptance rates are not expected to be high when using J1(x), they can
be extremely high due to very small spread between the Lévy measure and J(x).
As long as J(x) can adequately sample the entire support of the Lévy measure,
there should not be much of an issue.

One should keep in mind that high accept rates in other cases may not be
optimal. Roberts, Gelman and Gilks (1994) showed theoretically that if both
proposal and target densities are Gaussian, the scale of the former should be
tuned such that the rate of acceptance is 0.45 in the one-dimensional case and
0.23 for dimensions over one. However, for the scope of this thesis, and keeping
in mind the very nice shape of J(x) there is little to indicate that maximum
acceptance rate is bad.

1.4.1 Accuracy of Approximation

There are two quantities that are of particular interest when we use this ap-
proximation of the NIG-Lévy process. First, how good the approximation is.
Second, how computationally intensive the approximation is. If Xε is the trun-
cated process, define the measure of accuracy for t = 1 as:

D(ε) = sup
x∈R

|P(Xε(1) ≤ x) − P(X(1) ≤ x)|

While the details are in Asmussen and Rosinski[20], it can then be showed that
this has an upper bound has follows

D(ε) ≤ (0.7975)σ−3(ε)

∫

|x|<ε

|x|3 Q(dx)

With this upper bound for the error, the truncation level can be chosen based
on maximum acceptable error. Given the shape of the Lévy measure of the
NIG, it can be very computationally intensive if we choose a truncation level
too small. Or vise versa it will not be very accurate if the Brownian motion is

16 Chapter 1. Lévy processes, approximation and simulation

ε 2e-05 2e-04 2e-03
Error 2.8e-03 8.8e-03 2.8e-02

Intensity 31830 3182 317

Table 1.1: Maximum Error Levels of Brownian approximation

left to do most of the jumps. Let δ(ε) = D(ε)/(0.7975). Then for the NIG case
we have [20, Theorem 3.1]:

δ(ε) ∼
√

π

8δ
· ε

Using this we can see the maximum error level for some selected values of ε,
given δ = 1 is as in Table 1.1. One should also notice that the intensity of the
jumps for the chosen values are proportional to the value of ε, the error level
is not. The choice of truncation level also needs to take into consideration the
computational effort required.

Clearly from the formula, with high δ we can choose a bigger ε and thus lower the
computational effort required as the intensity decreases. The errors calculated
are the maximum, and hence we can expect the approximation to perform better
than this much of the time.

From this we can simply invert the above formula for the error of the Brownian
approximation and thus ε can automatically be set using the formula:

ε =
8δ2(ε) · δ

π
(1.9)

For the second truncation there is a slightly different approach. The first thing
that should be observed is that fq is lighter in the tails than the target Lévy
measure for some values of α and β. Hence it will at some point cross the graph
of the Lévy measure. There is a possibility of undersampling if ω is chosen
too large. On the other hand, choosing ω too small will result in inefficient
sampling, as the second term in the proposal, fe has very poor resemblence to
the normalized Lévy near the origin. This in turn leads to poor acceptance
rates, and slow convergence.

However, the following equation uniquely determines ω, and furthermore this
solution for ω maximizes the acceptance rate. It is based on the method of S.
Rasmus [18, Theorem 3.2], but differ due to using a simpler proposal function
since fe in this case is symmetric around the origin. This will simplify the
solution by quite a bit compared to the one referred.

Proposition 1.4.2. The value of ω that maximizes the accept probability in the
Accept-Reject algorithm solves the equation:

βS(ω) − 2

ω
C(ω) − α

ω

|ω|
K0(α|ω|)
K1(α|ω|)

C(ω) = −(α+ |β|)
(
ε

ω

)2

C(ε) (1.10)

1.4. Simulation of Lévy processes 17

where

S(ω) =
sinh(βω)K1(αω)

ω
, C(ω) =

cosh(βω)K1(αω)

ω

Proof. Define the majorizing contant c such that π(x) ≤ cq(x). Write c in term
of ω as:

c(ω) =
νε(−ω)

fe(ω)
+
νε(−ε)
fq(ε)

+
νε(ε)

fq(ε)
+
νε(ω)

fe(ω)

=
νε(−ω) + νε(ω)

α+ |β| +
νε(−ε) + νε(ε)

fq(ε)

The aim is to find c(ω) such that the sum of fractions is as big as possible with
the above restriction. Differenciate w.r.t to ω:

c′(ω) =
∂ων

ε(ω)

α+ |β| +
∂ων

ε(−ω)

α+ |β| − (νε(ε) + νε(−ε))∂ωfq(ε)
fq(ε)2

where

∂ων
ε(ω) =

[
β − 2

ω
− α

ω

|ω|
K0(α|ω|)
K1(α|x|)

]
νε(ω)

∂ωfq(ε) = −
(ε
ω

)2

fq(ε)
2

Exploiting the following relationship between S(ω), C(ω) and νε(ω) [18, A.5,
A.6]:

νε(ω) − νε(−ω) =
2δα

πKε

sinh(βω)K1(αω

ω

νε(ω) + νε(ω) =
2δα

πKε

cosh(βω)K1(αω

ω

Substitution for the above expressions:

4δα

πKε
c′(ω)(α + |β|) =

[
β − 2

ω
− α

ω

|ω|
K0(α|ω|)
K1(α|x|)

]
(S(ω) + C(ω))

+

[
β +

2

ω
+ α

ω

|ω|
K0(α|ω|)
K1(α|x|)

]
(S(ω) − C(ω))

+ 2C(ε)
(ε
ω

)2

(α+ |β|)

Simplifying the above expression and setting c′(ω) = 0 gives the desired equa-
tion.

18 Chapter 1. Lévy processes, approximation and simulation

A similar calculation can be done in the inverse linear case, but the equation
is somewhat more complex since fl has a different partial derivative w.r.t. ω:
∂ωfl 6= −C · f2

l . Furhtermore, this choice for ω is valid for both the Metropolis-
Hastings as well as for the Accept-Reject algorithm, as the majorizing constant
will simply be eliminated in the former due to the fraction. However, the choice
for ω may be bigger in the case of J1(x) owing to a lower derivative.

As can be noticed, the α and β are the ones that influences the second truncation
ω the most of the NIG-parameters. This is expected, as δ and µ have little effect
on the tails themselves.

1.4.2 Implementation issues

Some issues did come up during implementation. In particular, when imple-
menting programmatically it is difficult to determine exactly in which interval
a solution to Equation 1.10 exists. This is necessary for solving the equation
numerically. Some initial tests showed that the solution was approximately in-
versely proportional to the value of α times a constant. The choice was therefore
made to search in the interval between ε and 15 · α−1. For extreme values of
α, manual tuning may be necessary, but this is a programmatic concern, and
therefore it has not been analysed further.

There were no other implementation issues worth mentioning, but it should be
noted that the algorithm is rather heavy computationally for large numbers
of jumps. Large quanta of high speed memory are therefore recommended for
efficient simulation.

1.4.3 Simulation of the normal inverse Gaussian

The first issue to deal with in Markov Chain Monte Carlo is the number of
iterations required for convergence. As suggested by Raftery and Lewis [15], a
small analysis on sample variance is performed.

A method of determining how many iterations the chain must take to produce
a valid draw is to study the variance of the draws as the number of iterations
is increased. This can be a time-consuming job, but it can give an indication
on the minimum of iterations required. Results from 3 independent runs are
available in Figure 1.4.

In all of them, the algorithm shows very good rates of convergence, and simu-
lation indicates that one can get away with as few as 500–1000 iterations. This
can greatly decrease computation time when generating huge number of draws.

The following plot shows a sample simulation of the approximation via Metropolis-
Hastings compared with that of a NIG-Lévy process with the same parameters.
As can be observed in Figure 1.5, the simulations have similar range and from
a first look seems similar.

Table 1.2 shows that a sample run from the approximation yields quite good

1.4. Simulation of Lévy processes 19

Convergence of draws in Metropolis−Hastings

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

va
ria

nc
e

iterations

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

va
ria

nc
e

iterations

 0
 0.0005

 0.001
 0.0015

 0.002
 0.0025

 0.003
 0.0035

 0.004

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

va
ria

nc
e

iterations

Figure 1.4: Variance from 3 random starting points simulations via Metropolis-
Hastings.

Simulation of NIG−Levy vs approximation

−0.3

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

Approximation of NiG−Levy via M−H

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

 0
 0.1

 0 0.2 0.4 0.6 0.8 1

Simulation of NiG−Levy

Figure 1.5: Simulation of NIG-Levy and its approximation

20 Chapter 1. Lévy processes, approximation and simulation

M-H A-R NIG-Levy
x−1 x−2 x−1 x−2

#(J>ε) 2445 2235 2368 2273 2388
Accept % 0.5001 0.9997 0.05818 0.9997 -
mean(J) -3.99e-02 8.09e-06 6.31e-04 6.74e-05 3.92e-05
var(J) 2.76e-02 6.27e-05 2.09e-04 4.56e-05 1.67e-05
mean(|J |>ε) -1.63e-01 2.89e-05 2.65e-03 2.96e-04 2.19e-04
var(|J |>ε) 9.28e-02 2.8e-04 8.8e-04 2e-04 1.72e-04

Table 1.2: Statistics for approximations and NIG-Lévy simulation

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Approximation (α =1, β =0, δ =1 µ =0)

N
IG

−
Lé

vy

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Approximation (α =1, β =.1, δ =1 µ =0)

N
IG

−
Lé

vy

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Approximation (α =1, β =0, δ =1 µ =1)

N
IG

−
Lé

vy

Figure 1.6: Quantile-Quantile plots of approximation and NIG-Lévy

1.4. Simulation of Lévy processes 21

results compared to a simulation directly from NIG-Lévy. However, one should
notice that these simulations were done under specific conditions. First, ω
was fixed to 1.38, but this is mainly to see how the different proposals perform
under similar conditions. Furthermore, for simulations in Table 1.2 the following
parameters were chosen for one time step, where each time step has 10000
points in the simulation grid: α = 1, β = 0, µ = 0, δ = 1. The accept rates
and other statistics using both proposal functions were compared against each
other, and all simulations where done with 1500 iterations in the rejection based
algorithms. It can be confirmed that the approximation works well by looking at
the quantile-quantile plots for different parameters. From the results in Figure
1.6 one can observe that the approximation does quite well. For some outliers it
may merely depend on the specific run, as the heavy tails can cause some results
to be off, and there is also a small contribution in the error by the Brownian
approximation of the small jumps.

Both methods performed very well with the fq as part of the proposal, yielding
over 99% acceptance rate on average. While this in general situations could be a
reason for concern, it is natural in this setting as the spread between the proposal
and the target density is very small. Using fl as a part of the proposal on the
other hand did not produce very convincing results. As can be expected from
Figure 1.2, using this proposal would lead to very slow convergence, and there
are some signs of this in the results when comparing to the results produced by
the NIG-Lévy process and the theoretical values.

All in all, the approximation seem to work very well, and there is some indica-
tions that Metropolis-Hastings with a proposal including fq will produce very
satisfying results with fast convergence. This is therefore the preferred method
of choice in the chapters that follow. Although it will be stated explicitly which
parameters are used, we can already here say that one can run Metropolis-
Hastings for less than 500 iterations and still get good approximations.

Chapter 2

Dependence between Lévy

Processes

The study of dependence between stochastic processes has a long history in
statistics, from the use of simple bivariate distributions which share some com-
mon parameters, to non-linear measures of dependence and measures of concor-
dance.

This chapter extends the previous chapter by introducing dependence between
the jumps in NIG-Lévy approximations. Restricting the model to two dimen-
sions, the effect of dependence between the small jumps and dependence between
large jumps is studied.

2.1 Conventional measures of dependence

The most known and commonly used tool employed in modelling dependence
is the correlation, relating to Pearson’s product-moment correlation coefficient,
ρ. This is defined as

corr(X,Y) =
covar(X,Y)√
var(X)var(Y)

In this thesis, the term correlation is reserved for this particular linear depen-
dence measure. In general the term dependence will be used, while some mea-
sures are referred to as measures of concordance. The latter do not in the same
way measure the dependence, but focus on the probability of joint movements
up or down. Two famous examples are Kendall’s τ and Spearman’s ρs. In this
thesis, however, the connection between these and the dependency structure,
copulas, is not in focus. More information on this connection can be found in
Frees and Valdez [10, Table 3], or for an introduction, see Nelsen [13, 5.1.1,5.1.2].

23

24 Chapter 2. Dependence between Lévy Processes

2.2 Copulas

Copulas are not a new concept; they were first introduced by Sklar (1959).
However, there has been significant progress in the field, especially from a prac-
titioner’s point of view. With the ultimate goal to make as good a model as
possible fitted to market data, the concept of dependence is even more central
than before, especially when looking at structured products (e.g. derivatives)
that cover more than one underlying.

Definition 2.2.1 (Copula). A 2-dimensional copula is a function C : [0, 1]2 →
[0, 1] such that:

• C is grounded, i.e. C(x, y) = 0 if x · y = 0

• C is 2-increasing

• ∀(x, y) ∈ dom(C) we have C(u, 1) = u and C(1, v) = v

Furthermore, if the copula satisfies certain smoothness conditions, the copula
density is given as:

C(U = u, V = v) =
∂C(u, v)

∂u∂v

The existence of the copula density can in some cases become vital for simu-
lation. To understand the flexibility and power that can be gained by using
copulas for dependence structure, Sklar’s famous result must be introduced.

2.2.1 Sklar’s Theorem

Theorem 2.2.2 (Sklar’s Theorem). Let C be a copula, and F and G margins.
Let H be a multivariate density. Then

H(x, y) = C(F (x), G(y)) (2.1)

If F and G are continuous, then C is unique. Conversely, given a multivariate
distribution H and margins F and G, there exists a copula such that (2.1) holds.
Again, if F and G are continuous, then C is unique.

The result is a very elegant, and shows that copulas can be used to model the
dependence independently from the margins. This gives a whole different kind
of flexibility compared to the linear correlation. For example, one can keep the
dependence structure constant, while changing all or a few of the margins of the
underlyings.

Furthermore, it follows that there is an equally interesting relationship that will
be very useful in studying how the overall copula changes when the processes are
a mixture of several multivariate distributions each with their own dependence
structure.

C(u, v) = H(F−1(u), G−1(v))

2.2. Copulas 25

2.2.2 Archimedean copulas

This particular class of copulas is worth special attention. They have a structure
that make them easy to work with and extend over several dimensions. In
common they have that they can be written in terms of a generator function.

Definition 2.2.3 (Generator function of a copula). The (additive) generator
function of a copula, φ(x), is a strictly decreasing function such that:

C(u1, . . . , un) = φ−1(

n∑

i=1

φ(ui))

All copulas of the Archimedean class have the property that they can be written
in terms of their generator function and its inverse [13, theorem 4.1.4]. This will
be a very useful fact in simulation with copulas. It should also be noted that a
copula of Archimedean class is symmetric with repect to its arguments.

In this thesis the copulas Clayton, Frank and Gumbel are studied, and sample
pairs generated from these copulas are presented in Figure 2.2.

Clayton copula

Definition 2.2.4 (Clayton family). A one parameter family of copulas given
as:

C(u, v; θ) =
(
u−θ + v−θ − 1

)−1/θ
, θ > −1

The copula is asymmetric with higher dependence in the lower tail than in the
upper. The parameter of this family controls the dependence in the lower tail,
and the higher the θ is, the higher the dependence. For the limiting case of
θ → 0 the copula is the indepence copula.

An example with different parameters is given in Figure 2.1.

Frank copula

Definition 2.2.5 (Frank family). A symmetric one-parameter copula given as:

C(u, v; θ) = −1

θ
log

[
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

]

The copula is symmetric around the point (1/2, 1/2), and hence any change in
the parameter θ will influence dependence in the tails equally.

Gumbel copula

Definition 2.2.6 (Gumbel family). An asymmetric one-parameter copula given
as:

C(u, v; θ) = exp
(
−
[
(− log u)θ + (− log v)θ

]1/θ)

26 Chapter 2. Dependence between Lévy Processes

The Gumbel has more dependence in the upper tail than in the lower, but it
does not have the same spread as the Clayton. This makes it very suitable for
problems where the dependence relationship is asymmetric, but still has high
dependence in both tails.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

θ=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

θ = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

θ = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1

θ = 16

Figure 2.1: Simulation of the Clayton copula with different θ

2.2.3 Simulation via copulas

The presented methods are more concisely described by other authors, for ex-
ample Frees and Valdez [10]. The two methods which will be employed in the
simulations are the following:

First, the conditional law of a copula is given by the following expression as long
as the copula is smooth enough to be differentiable:

dC(u, v)

du
= P (V ≤ v|U = u)

This conditional law is one of the very basic tools that can be employed in order
to simulate a pair of dependent processes. A basic algorithm will look like the
following:

Algorithm 2.2.7 (Simulation of dependent pair using conditional law).

1: Let u a be value of the first process’ CDF.
2: Draw V1 from U(0, 1)
3: Define v as:

v =
dC(u, v)

du

−1(
V1

)

return (u, v)

2.2. Copulas 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Clayton copula θ=10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Frank copula θ = 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Gumbel copula θ = 10

Figure 2.2: Simulation of Clayton, Frank and Gumbel copula

A second approach to simulating from a copula is through its generator. This
method generates a pair of dependent variables, but it can be modified to gen-
erate a second dependent variable given the first. Exploiting the relationship
between the inverse of the generator and Laplace transform for common dis-
tributions gives rise to the following algorithm first mentioned in Marshall and
Olkin (1988), and employed by Frees and Valdez [10] among others:

Algorithm 2.2.8 (Simulation through inverse generators).

1: Simulate a variate X where the Laplace transform of the distribution func-
tion is equal to the inverse of the generator, φ−1.

2: Simulate two independent variate V1, V2 ∼ U(0, 1).
3: Define:

u = φ−1(− log(V1)/X), v = φ−1(− log(V1)/X)

return (u,v)

Clayton copula

The Clayton copula has a simple structure and is easy to simulate through
Algorithm 2.2.7 since it is easy to differentiate and invert:

dC(u, v)

du
= −θ−1(u−θ + v−θ − 1)−(1/θ)−1(−θ)u−θ−1

Inverting around V1 ∼ U(0, 1) through simple algebra, the resulting conditional
density is:

28 Chapter 2. Dependence between Lévy Processes

v = (uθy−θ/(θ+1) + uθ − 1)1/θ

It should be noted that since Clayton is an Archimedean copula, it could equally
well be simulated via Algorithm 2.2.8. On the other hand, there is no reason
to apply a more sophisticated method when it can easily be differentiated and
inverted.

Gumbel copula

The Gumbel copula on the other hand can be simulated from using the second
method. Let the single parameter of the Gumbel be θ. The inverse of its
generator function is the Laplace transform of positive stable variate [10, Table
2] with the following parameters:

α = 1/θ, β = 1, γ = (cos(π/(2θ)))θ , δ = 0

Hence, if y ∼ St(α, β, γ, δ), and u ∼ U(0, 1) then calculate:

v = exp

(
− log(V2)

X

)

The pair (u, v) is then a realization from the Gumbel copula. However, in
applications where one dependent draw is generated from another draw, one
already have one realization from the jumps. Therefore, one can choose which
variable one is interested in simulating, and which one that should be calculated
based on the first draw. Choosing V1 to be the drawn variable in Algorithm
2.2.8, X can be calculated as:

X =
− log(V1)

(− log(u))θ

A dependent v is found by substitution in the expression given above.

Frank copula

Similarly to the Gumbel, the Frank copula can be simulated using the second
method. Here the inverse of the generator function is the Laplace transform of
a logarithmic series distribution on the positive integers [10, Table 2]. However,
the distribution is not implemented in software directly, nor did Frees and Valdez
give the required argument.

Fortunately, using the same methods as with the Gumbel copula one can avoid
the simulating from the logarithmic series distribution, and simply draw a ran-
dom standard uniform number. If u is the first random number drawn, and V1 is
as in Algorithm 2.2.8, then the following gives the second dependent realization:

v = −θ−1 log(1 + exp(log(V2)X
−1)(e−θ − 1))

2.3. Lévy-copulas 29

where

X =
log(V1)

log(e−θu − 1) − log(e−θ − 1)
, V1, V2 ∼ U(0, 1)

2.3 Lévy-copulas

While the concept of conventional copulas is well-explored and documented,
they do not guarantee that structure is preserved. In other words, it is not clear
in general if the resulting measure of a Lévy process passed through a copula
will produce another Lévy process. However, there are examples of this. Most
known is the Gaussian copula joining two Brownian motions, which produces
a 2-dimensional Brownian motion. However, this is not the case for any other
copula joining two Brownian motions. This issue calls for somewhat similar,
but different concept.

Tankov defines an equivalent concept for Lévy processes named not surprisingly
Lévy copulas [9, Def. 5.12]. They share many properties with conventional
copulas.

Definition 2.3.1 (Lévy copula). A function F (x, y) : [−∞,∞]2 → [−∞,∞] is
a 2-dimensional Lévy copula if:

• F is 2-increasing

• F (0, x) = F (x, 0) = 0, ∀x

• F (x,∞) − F (x,−∞) = F (∞, x) − F (−∞, x) = x

As can be seen, they do not share the domain or range with conventional copulas
since they act on the tail integral of the Lévy measure and not the CDF of the
probability measure. Since the Lévy measure contains all the information of the
stochastic jump behavior of the Lévy process, one is guaranteed that a Lévy
process is the result when joining two Lévy processes with a Lévy copula.

2.3.1 Sklar’s Theorem for Lévy copulas

From Cont and Tankov [9, theorem 5.6] there exist a similar result to Sklar’s
Theorem for Lévy copulas:

Theorem 2.3.2 (Sklar’s Theorem for Lévy copulas). Let U be an d-dimensional
tail integral for a d-dimensional Lévy process with positive jumps. Furthermore,
U1, . . . , Ud be tail integrals for one-dimensional Lévy processes. Then there exist
a Lévy copula F such that

U(x1, . . . , xd) = F (U1(x1), . . . , Ud(xd))

If U1, . . . , Ud are continuous then F is unique, otherwise it is unique on Ran U1×
Ran Ud.

30 Chapter 2. Dependence between Lévy Processes

Conversely, if F is a d-dimensional Lévy copula and U1, . . . , Ud are tail integrals
with Lévy measures on [0,∞), then the function U above is the tail integral of
a d-dimensional Lévy process with positive jumps having marginal tail integrals
U1, . . . , Ud.

Notice that the theorem is specified for Lévy processes with positive jumps. The
general case can be achieved by treating each quadrant or orthant seperately.

2.3.2 Some examples

Example 2.3.3. Independence Lévy copula

F⊥(x1, . . . , xd) :=
∑

i=1

xi
∏

j 6=i

1{xj=∞}

Example 2.3.4. Complete Dependence Lévy copula

F‖(x1, . . . , xd) := min(|x1|, . . . , |xd|)1K(x1, . . . , xd)

d∏

i=1

sgn(xi)

K := {x ∈ R
d : sgn(x1) = · · · = sgn(xd)}

Example 2.3.5. Clayton-like Lévy copula (2-dim)

F (u, v) := (|u|−ϑ + |v|−ϑ)−1/ϑ(η1{uv≥0} − (1 − η)1{uv<0})

2.4 Bivariate distributions with NIG marginals

The copulas provide high flexibility in modelling and here several samples from
bivariate distributions are generated. The marginals are the processes approxi-
mating the NIG-Lévy developed in Chapter 1. Some of the copulas introduced
will be used, and the results analysed. The copulas mentioned will be applied
to jumps larger than ε. Only correlation (Gaussian copula) will be employed on
the Brownian part of each process to ensure that the resulting 2-dimensional
process is indeed a Lévy process. However, in view of the dependence concepts
introduced earlier, three possible approaches are discussed: one using Lévy cop-
ulas, one using conventional copulas and one hybrid concept. After analysing
strengths and weaknesses, a method will be chosen.

Direct Lévy-copula method

The simplest method for simulation purposes is without doubt simply applying
a Lévy copula directly to our two processes. The NIG-distributions that they
follow will of course have the possibility of using different parameters, and a
model based on this will still retain the parameters, making it easier to calibrate
these to market data.

Since the NIG-Lévy process is a pure jump process with infinite activity, its Lévy
measure will be infinite at the origin. However, this produces a 2-dimensional

2.4. Bivariate distributions with NIG marginals 31

tail integral and not a CDF as with conventional copulas. Working with a tail
integral is in the simulation case not very different from working on the result
of a conventional copula, however there is a catch. Since the Lévy copulas
are defined on [−∞,∞]2, one actually need a total of four tail integrals given
as U++, U−−, U+−, U−+ where the superscript indicate a negative or positive
increment for for each of the two processes in two dimensions. [9, theorem 5.7].
This does give flexibility as one can define a different Lévy copula on each set,
but it can easily become challenging to implement.

Passing that hinderance, some conditions on the smoothness must be intro-
duced for the Lévy-copula and the margins. The Lévy density is then found by
differentiation [9, p. 148]:

ν(x1, x2) =
d2F (y1, y2)

dy1 dy2

∣∣∣∣
y1=U1(x1),y2=U2(x2)

ν1(x1)ν2(x2) (2.2)

Inverting the law numerically around a uniform variable, simulation can in some
cases be straight forward. However, since we are left with a tail integral with
an atom in the origin, problems can occur when we want to price a basket of
two NIG-Lévy processes joined with a Lévy copula. The tail integral is formally
infinite in the origin, and from that respect there may be problems evaluating
the expectation near the origin directly. Another argument against the use of
Lévy copulas are their limited number of structures. There are more than over
20 known Archimedean conventional copulas [13, Tabel 4.1], while there is a lot
fewer established Lévy copulas.

This leads to the idea of a potential hybrid solution where the Lévy measure is
truncated and finite.

Combined copula and Lévy-copula approach

Using approximation of the Lévy process we can also try a joint approach: A
two-dimensional Brownian motion to the small jumps after the Lévy measures
have been joined with a Lévy copula.

While one could argue that this falls between two chairs, it gives the modeller
a chance to employ the power of Lévy copulas while shying away from the
issues discussed above. It should be possible to simulate dependent pairs from
this, as long as the smoothness condition mentioned in the previous section
holds. For option pricing one can avoid values that are infinite, since the two-
dimnesional Lévy measure is truncated, but one must still find a Lévy copula
for each quadrant.

This all builds on the assumption that the normal approximation is valid, in two
dimensions, and especially that it is unique. Asmussen and Rosinski only dealt
with the one-dimensional case, and to this author it is unclear how one would
choose, e.g., the correlation parameter once two Lévy processes are joined with
a Lévy copula. Future research may prove this to be a viable solution, but at
this time it is too uncertain to use this in the thesis.

32 Chapter 2. Dependence between Lévy Processes

Conventional copula approach

Using an approximation we can simply use a copula on both the Brownian
motions and the compound Poisson. This approach requires many of different

quantities for the price processes L
(n)
k :

• The distributions γ
(k)
i for all k processes

• A copula for each pair of γ1
i , γ

2
i (2-dimensional case)

• Intensity for N(t),M(t) and copulas for the Brownian motions

The gain is that one is now in the realms of conventional copulas as opposed to
Lévy copulas. The power of the Sklar’s theorem for conventional copulas can
now be unleashed to produce multivariate distributions for each jump. This
takes it a step further by not simply employing a copula on the Brownian parts
letting the large jumps be completely independent. Although this is a common
method among the practitioners, there is empirical evidence of common shifts
within similar market segments and the market as a whole.

This model will quickly become complicated, and empirically it is difficult to
even observe, e.g., dependence in jump intensity. It is also a challenge as to
how one should decide the final law of the multivariate process if the intensities
are anything else than completely dependent or independent. Therefore, in this
thesis, only the latter two are assumed. In addition, there is no dependence
between the jumps in the same process, i.e., no stochastic volatility or volatility
clustering as this would possibly break the attribute of stationary increments.

2.5 The model

The underlying model from Chapter 1 is unchanged.:

Definition 2.5.1 (Our model).

L
(1)
t = µ(1)

ε t+ σ1(ε)Wt +

N(t)∑

i=0

γ
(1)
i (2.3)

L
(1)
t = µ(2)

ε t+ σ2(ε)Wt +

N(t)∑

i=0

γ
(2)
i (2.4)

(2.5)

where

µε, σ(ε) as in (1.6)

N(t) ∼ Poisson(λ)

γ
(1)
t (u) ∼ νε(u)K−1

ε

γ
(2)
t (v) ∼ G−1

2 (C(V = v|u = G1(γ
(1)
t)))

2.6. Simulation of dependent NIG-Lévy approximations 33

Where G1 is the density function of νε(α1, β1, δ1)K
−1
ε and G−1

2 is its inverse
with parameters (α2, β2, δ2)

The model itself is rather flexible with regard to calibration of either parameters.
However, it should be noted that the model does not allow mass on the axis of
the joint Lévy measure, i.e. all jumps occur at the same time. The choice of this
implementation is based on that there is not a clear way to choose how much of
the intensity will be independent jumps, unless one were to say that jumps of
a certain size are independent. Similarily, dependence between jump intensities
is not introduced, as it is very difficult to determine this type of relationships
empirically. Therefore, a simplified model such as the one above is chosen.

2.6 Simulation of dependent NIG-Lévy approxi-

mations

Simulation is done by first simulating a path for the approximation. For each
jump in the compound Poisson, a dependent jump is generated from the condi-
tional law of the copula. The second process is then constructed as in Equation
(2.5). In Figures 2.3, 2.4 and 2.5 the former process is marked as ”NIG-Lévy
approx”, while latter process is marked as ”Dependent approx”.

see the effect of copulas on high dependency. Clearly, with such high tail depen-
dency in the lower (upper) tail there will also be reasonable high dependence in
the upper (lower) tail as well using the Clayton copula.

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0

 0.1

 0 0.2 0.4 0.6 0.8 1

NIG−Lévy approx.
Dependent approx.

Figure 2.3: Gumbel with θ = 20, notice higher dependency in upper than lower
tail.

34 Chapter 2. Dependence between Lévy Processes

−0.2

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

NIG−Lévy approx.
Dependent approx.

Figure 2.4: Gumbel with θ = 10, notice higher dependency in upper than lower
tail.

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 0 0.2 0.4 0.6 0.8 1

NIG−Lévy approx.
Dependent approx.

Figure 2.5: Clayton simulation with θ = 2, higher dependency in lower tail.

2.6. Simulation of dependent NIG-Lévy approximations 35

2.6.1 Implementation issues

There are some issues that should be assessed. First, using the same truncation
on each of our dependent processes may not result in both marginal processes
approximating the NIG-Lévy equally well. This stems from the direct effect
that different values of δ have on the error of the Brownian approximation.
Furthermore, choice has to be taken with regards to dependency in the large
jumps. Since the dependence in the general case is not perfect, the copula may
produce jumps that would lie inside (−ε, ε), if one use the quantiles of the NIG-
Lévy increments. Since the jumps are drawn from the truncated Lévy jump
measure,νε, a jump in this inteval can be translated to either a negative jump
or a positive jump if the first jump is close to ε or −ε. This can change the
intensities somewhat, but not in a degree that will let the process be vastly
different from a NIG-Lévy. This may not the behavior one expect the when
introducing dependency in the jump sizes, but this is a direct consequence of the
approximation. Approximation error of the dependent process may be slightly
higher than the first due to the reasons mentioned above.

One alternative is to round this jump to the minimum size ε. This on the other
hand breaks the dependency structure, while maintaining the Lévy measure
of the processes. A second alternative is to fit e.g. a NIG-distribution to the
random variates drawn from a jump measure and use the builtin quantile mech-
anisms. However, this will as mentioned allow for values which are less than
ε. In either case, these implementation issues must be conquered on the cost
of flexibility. Working with νε directly may give unexpected effects, but it does
not break the dependency structure.

Another issue that should be noted is that of round-off errors in the algorithm.
This can give very strange results, especially with the Frank copula, where one
can have large variations due to round-off errors in the tails as the tails of the
Lévy jump probability measure are rather light.1 Therefore, it is necessary to
implement a sanity check since the algorithm seems sometimes to experience
numerical instability. In certain cases, the quantile produced by the copula has
been rounded to 1 or 0 for extreme events in the tails. This gives jumps that
seem unreasonable. The numerical implementation is therefore critical. Small
variation in the quantile numbers may in the tail produce large differences in
actual jump size. This is often observed far out in the tail where the jump sizes
are often determined in 4th or 5th significant digit.

2.6.2 Copula choice for financial applications

In simulation, large spread in some parts of the copula can give unexpected
results. For example, for the Clayton with θ = 2 Figure 2.1 shows that it
has low dependence in the upper tail, while still quite a bit in the lower tail.
Because of the high spread in the upper tail, one can sometimes observe that the
dependent processes that are generated experience some negative drift. This is
due to the way νε is defined, as with sufficient spread, a jump close to ε may
generate dependent jump of size −ε or less, or visa versa. One can have large

1An initial jump of 0.38 corresponds to 0.9998 quantile ,while the returned result from the

copula may be as low as 0.9991, which gives a dependent jump of 0.15.

36 Chapter 2. Dependence between Lévy Processes

overreactions in the dependent process such as in Figure 2.5. This is sometimes
so strong that the small jumps of the process are unable to make it recover.
Due to the relationship in the upper tail, big jumps generated by a process are
not necessarily implying big positive jumps in the dependent process. However,
as θ is increased, this effect will fade. This leads to the question of whether,
e.g., Clayton is an optimal copula in financial applications in low dependence
settings.

The other copulas presented do not have such a large asymmetry, and it is
therefore possible that these are better choices in many cases. In particular
Gumbel has higher dependency in both tails.

2.6.3 The empirical copula

This chapter aims not only to implement copula-based dependency structures,
but also to study how much dependency between the larger jumps affect the
overall dependency structure of the NIG-Lévy process.

The dependency via approximation of two NIG-Lévy processes can be viewed as
a mixture of copulas, since the Browian parts have their dependency specified via
a Gaussian copula (correlation matrix), while the jumps are dependent through
a copula such as the Clayton or Gumbel copula.

From Chapter 1 it is argued that the behavior of the process is dominated by
the behavior of the small jumps, and it is therefore natural to assume that the
overall dependency structure is not affect to a great degree. From Nelson [13,
5.6.1] we have the definition:

Definition 2.6.1 (Empirical Copula). The empirical copula is the dependency
structure extracted a sample of points from two processes. Let S = {(xk, yk)}nk=1

denote a sample of size n from a bivariate distribution. The empirical copula is
the function defined by:

Cn

(
i

n
,
j

n

)
=

#(x, y) ∈ S : (x, y) ≤ (x(i), y(j))

n

where x(i), y(j) are the order statistics from the sample.

Using simulations with the methods in Chapter 1 with the Clayton copula with
θ = 2, 8, 16 and ρ = 0, 0.5, 0.9, 1, the results are found in Figures 2.6, 2.7 and
2.8 for θ = 2, 8, 16 respectively.

However, the reader should keep in mind that the shape of the empirical copula
will be very dependent on the error level chosen, as this directly influences the
intensity of the jumps above ε. Also, it is important to have a very high number
of data points for an efficient study of the empirical copula since the NIG has
very high mass in the small jumps. For this reason, only plots for one copula
is included in this thesis, since on the current ε-level chosen by the algorithm,
there will be only minor differences to the plots of different copulas.

It is rather difficult to observe much difference with different values of θ. The
reason is not surprising, there is simply too much noise from the small jumps,

2.6. Simulation of dependent NIG-Lévy approximations 37

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 2, ρ = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 2, ρ = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 2, ρ = 0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 2, ρ = 1

Figure 2.6: Empirical copulas from simulations with Clayton θ = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 8, ρ = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 8, ρ = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 8, ρ = 0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 8, ρ = 1

Figure 2.7: Empirical copulas from simulations with Clayton θ = 8

38 Chapter 2. Dependence between Lévy Processes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 16, ρ = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 16, ρ = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 16, ρ = 0.9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
θ = 16, ρ = 1

Figure 2.8: Empirical copulas from simulations with Clayton θ = 16

which have substantial mass near the origin However, as ε becomes smaller one
can expect that the empirical will look more and more like the copula used to
join jumps greater than ε.

For the big jumps, some change can be observed as θ is increased. In particular,
note that the shape towards the lower tail is more pointed if θ is increased.

One possible reason for this shape is that the Clayton copula allows for consid-
erably less dependency in the upper tail than in the lower, and visa versa, if
rotated. Hence, for many jumps they are free to lie between very generous up-
per and lower bounds of the copula when θ is low. This can create unexpected
effects in simulations and option pricing. However, since there are very few
really large jumps to analyse from in these cases, this might indicate that the
big jumps do not occur frequently enough to explain the need for dependency
in large jumps.

In conclusion, one can say that a slight misuse of copulas to join distributions
with light tails can have disasterous effects on simulation. As demonstrated
in Figure 2.5, the process had little chance to recover even with independent
Brownian parts, however the dependency pattern is clearly visible elsewhere in
the path. This is an indication that one can expect, in low dependency settings,
that the large jumps of the dependent processes are more volatile, owing to the
structure of the copulas. As mentioned, the copulas can alter the itensity of the
jumps, so there is a possibility that the dependent process is not exactly NIG-
distributed, but in most cases it will be very close. In addition, the rounding
errors on numbers of more than 6 significant digits can change the size of the
dependent jumps. Hence, big accuracy is required for good simulations.

Chapter 3

Option pricing with

Dependent Lévy processes

Option pricing in the Lévy process framework is very much centered through
the existence of an equivalent martingale measure for arbitrage free pricing. In
this chaper a possible method of obtaining this for two dependent exponential
NIG-Lévy processes is sketched. Furthermore, option prices for a two-asset
basket with dependent underlyings are obtained and contrasted with baskets on
independent underlyings.

3.1 Asset price model

It is assumed that the log-returns are NIG-Lévy distributed. This has the
advantage that asset prices cannot be negative. The model is defined as:

{
S0(t) = S0(0)ert, r > 0(constant)

S0(0) = 1

{
Sn(t) = Sn(0)eLn(t)

Sn(0) = sn, sn > 0, n = 1, 2

where r is the interest rate, and Ln(t) is a Lévy process for all t > 0. The
exponential Lévy model is arbitrage free as long as it is not almost surely in-
creasing or almost surely decreasing. In addition it guarantees that we can find
an equivalent martingale measure [9, Prop. 9.9].

3.2 Risk Neutral Measures

Owing to the fact that the NIG-Lévy process is a pure jump process as indicated
in Chapter 1, this does in general give rise to an incomplete market [7, Thm

39

40 Chapter 3. Option pricing with Dependent Lévy processes

3.4]. Therefore there is a whole continuum of risk neutral measures. Depending
on the choice of risk neutral measure, the option price can be any value in the
range between the lower hedging price (buyer’s price) and the upper hedging
price (seller’s price), as long as it satisfies the no-arbitrage requirement.

Finding a risk-neutral measure or equivalent martingale measure is imperative to
option pricing as it allows the modeller to transform the underlying probability
measure of the process to an equivalent measure under which the process is a
martingale. In the classic Black-Scholes framework an equivalent martingale
measure was found using the Girsanov theorem. Lacking a diffusion part in the
Lévy triplet for the NIG-Lévy process imposes certain restrictions, in particular
one cannot alter the drift freely to create a martingale [9, Prop. 9.8].

Choosing a class of risk-neutral measures which are easy to work with is pri-
oritized. Two alternatives string to mind: Merton’s approach and the Ess-
cher transform. Merton’s approach assumes that there is no risk-premium on
the jumps and that jumps in assets are independent of jumps in other assets.
Therefore, it concerns itself with altering the drift so that the process becomes a
martingale. However, in the setting of this thesis and in the markets in general,
assets do not have independent jumps. This can be observed in downward mar-
kets where whole indexes can experience negative shocks[9, 10.1]. The next class
of equivalent martingale measures generated by the Esscher transform, which
should in particular be noted for its structure preserving property. That is, if
the process is a Lévy process under the objective measure P , it will also be a
Lévy process under the risk-neutral measure Q. This is a good property to have
when implementing, simulating, and pricing options under Q in markets driven
by Lévy processes. It does not suffer from the same prerequisites as Merton’s
approach. In the following, the Esscher transform for independent processes is
treated for the NIG-case, and not the approximation. This is because the ap-
proximation is only necessary when one want to introduce dependency between
the jump sizes. The Esscher transform for the approximation is explored in
Section 3.2.3.

3.2.1 The Esscher transform

The Esscher transform was introduced by the Swedish actuary Fredrik Ess-
cher, and has quickly become a very popular way of finding an equivalent mar-
tingale measure. It’s use in finance was, by name, first introduced by Ger-
ber and Shui[11] in 1994.

The idea is simply to multiply the underlying probability measure by an expo-
nential function of the variable scaled by a constant, h. Then the measure is
normalized to form a probability measure:

dQh =
ehx∫∞

−∞
ehx dP

dP =
ehx

mgft(h)
dP

Where mgft(h) is the moment generating function of L1(t). Since the moment
generating function of the NIG was established in 1.1.2, this is rather easy to
derive by algebra:

3.2. Risk Neutral Measures 41

dQh = nig(x;α, β + h, δt, µt)mgft(h)
−1

Since the exponential function is non-negative and smooth results from basic
measure theory give that the measures are absolutely continuous with respect to
each other. Hence, the measures P and Q are equivalent probability measures.

The last requirement is that the process is a martingale under the modified
measure. To show this, it is sufficient that EQ[eL1(t)] = 1:

EQh [eLt] = E[eL1(t)ehL1(t) mgf−1
t (h)]

= E[e(h+1)L1(t)] mgf−1
t (h)

=
mgft(h+ 1)

mgft(h)
(3.1)

Clearly, for it to be a martingale the parameter h must satisfy the equation:

mgft(h+ 1) = mgft(h) (3.2)

Since there is an explicit form for the moment generating function of the NIG,
the equation can be solve to find the parameter. However, one should take some
care with respect to parameters in the NIG-case. In particular, from (1.1.2) the
mgf can at most exist in an interval [−α− β, α− β].

Furthermore, certain precaution has to be made to ensure that there actually
is a solution to the equation (3.2). This is due to the fact that such a solution
can only exist if a function is at least locally convex or concave. Furthermore,
due to convexity of the moment generating function, it can be established that
there can only be at most one solution to this equation [17]. In particular, if
α < 1/2 or if |µ| ≥ δ

√
α2 − 1, then no solution exists. This is further explored

in [12, 4.1.1].

For the NIG-Lévy case, we then have the following equation if the price process
is discounted by the continuously compounded interest rate:

exp(−rt) exp
(
µt+ δt

√
α2 − (β + h)2 − δt

√
α2 − (β + h+ 1)2

)
= 1

This equation can have at most one solution given that the prerequisites above
are satisfied[17, Lemma 1.9]. Through some rather long algebra one can solve
this equation analytically with the following result:

h = −β − 1

2
−
√

(µ− r)2α2

δ2 + (µ− r)2
− (µ− r)2

4δ2
(3.3)

From the definition of the Esscher measure dQh the exponential process under
the new measure will then have the β-parameter replaced.

42 Chapter 3. Option pricing with Dependent Lévy processes

3.2.2 Esscher transform in two dimensions

In the previous section the Esscher transform for a single risky asset was estab-
lished. The natural extension is then to markets driven by independent Lévy
processes and in particular independent NIG-Lévy processes. Let the L1, L2 be
such that:

L1(t) ∼ nig(α1, β1, δ1t, µ1t)

L2(t) ∼ nig(α2, β2, δ2t, µ2t)

Due to independence, the underlying probability measure is defined as:

dP = dP1 · dP2 = nig1(x1)nig2(x2) dx1 dx2

where dP1, dP2 are the underlying probability measures of L1, L2 respectively.
The corresponding moment generating function with parameter h = (h1, h2) ∈
R

2 in the NIG-case for T = 1 is then:

mgf(h) = E[exp{(h1, h2)
′(L1, L2)}]

= exp{µ1h1 + δ1

√
α2

1 − β2
1 − δ1

√
α2

1 − (β1 − h1)2}

· exp{µ2h2 + δ2

√
α2

2 − β2
2 − δ2

√
α2

2 − (β2 − h2)2} (3.4)

For ease of notation the indication of time has been omitted. Since the process
have independent margins, it is sufficient that each margin is a martingale by
solving the equation:

EQ[eL1+L2] = E[eL1+L2eh1L1+h2L2 · mgf−1(h)]

=
mgf(h+ (1, 1))

mgf(h)

=

(
1
1

)

Clearly, this is not much different from the one-dimensional case.

3.2.3 Esscher transform of Dependent Lévy processes in

two dimensions

As outlined in Chapter 2, applying copulas to the Brownian diffusion parts
and the compound Poisson parts will ensure that the structure is preserved, so
that both dependent processes are still Lévy processes. However, the underly-
ing probability law of the process obtained through the conditional probability

3.2. Risk Neutral Measures 43

distribution via the copula is not necessarily NIG-distributed anymore, as in-
tensities may change slightly and the law does not have the simple structure of
the NIG.

Clearly, if two processes are dependent, one will have impact on the Esscher
transform of the other. This is not surprising, since arbitrage opportunities
might still exist via the second asset even if the probability measure of the first
is transformed to an equivalent martingale measure via an Esscher transform.

The law of the second process can be obtained directly given a copula which
satisfies the smoothness requirement. Let the first simulation be a NIG-Lévy
approximating process with the law:

L1 ∼ ζ1t+ σ1(ε)Wt +

N(t)∑

i=1

γ
(1)
i

The conditional probability measure for the increment in the second process is
then:

L2 ∼ ζ2t

+ σ2(ε)Φ
−1

(
CGa

(
v|u = Φ(σ(ε)Wt)

))

+

N(t)∑

i=1

G−1
2

(
C

(
v|u = G1(γ

(1)
i)

))
(3.5)

where CGa is a Gaussian copula and C is a copula. The law of γ
(k)
i , k =

1, 2 is the NIG-Lévy jump measure truncated at ε with the respective NIG-
parameters of L1, L2. ζ1, ζ2 are in similar manner drifts given in the Barndorff-
Nielsen representations in addition to the Asmussen-Rosinski drift (µk(ε)). The
σk(ε), k = 1, 2 is as defined in (1.6). If l1 ∼ L1, l1 < ε, the third term (CPP)
will not contribute, and hence neither will the third term in L2. G1 and G−1

2

refer to the density function of νε and its inverse with parameters of L1 and L2

respectively. This is necessary since the copula is defined on the unit square.

For the approximation, one can find a new measure dPh1

1 (x) via the Esscher
transform on the law of the approximation as:

dPh1

1 (x) =
exp{ ξ

2−(ζ1t)
2

2σ2
ε t

} · N(x; ξ, σ2
ε t)

A
+

∑N(t)
i=1 νε(x;α1, β1 + h1, δ)K

−1
ε

A
(3.6)

where

ξ = ζ1t+ σ2
1(ε)h1t

A = exp

{
ξ2 − (ζ1t)

2

2σ2(ε)t

}
(ζ1t+ σ2(ε)h1t) +Kε,β1+h1

44 Chapter 3. Option pricing with Dependent Lévy processes

The entire algebra can be found in A.1.

For the second tilted probability measure in (3.5), one runs into trouble. The
law of the dependent process is conditioned on the value of each jump of the
other. Hence, one h2 must be determined for each jump size, since the law
will be slightly different. One Esscher parameter for each distribution can give
rise to many different Esscher transforms, this makes it very difficult to find
one unique pair of Esscher parameters in the dependent 2-dimensional case.
While there has been some work in the field done by Albrecher and Predota[2],
this was done on Asian option pricing. This is a multi-asset option, but these
assets are comonotonic and hence the Esscher parameter is the same for each
process. In the paper, the law of each process under the tilted measure is easily
derived due to the simple structure of the normal inverse Gaussian moment
generating function. The law of the approximation, on the other hand, has a
moment generating function which is not that simple. One can observe that, not
surprisingly, the Esscher transform has an effect on the normalized Lévy jump
measure similar to that of the NIG. The Brownian term in the approximation
yields a more complex result given in (3.6). Therefore, one can at best with
conventional Esscher transforms write the second Esscher parameter in terms
of the first: h2(h1). To the best of knowledge, no paper has yet been published
in this area.

This is the reason why an Esscher parameter is not found for the dependent pro-
cesses in this thesis. Instead, the option pricing assumes a priori that one oper-
ates under risk-neutral conditions. Using the Esscher parameters from the two-
dimensional independent processes will no doubt introduce arbitrage. Hence,
leaving the Esscher transform out is a better choice.

The simulations are based on dependency specified via a Gumbel copula with
parameters θ = 10, 20, and the prices are contrasted with the independent price
for a basket of exponential NIG-Lévy processes. Prices for several strikes are
considered. The reasons for this restrictive approach is the high computation
time required, and that the Gumbel is a flexible copula as it has dependency in
both tails. The algorithm is also more numerically stable using Gumble copula
than the others - where the instability can be accounted for due to reasons
mentioned in Section 2.6.1.

3.3 Option pricing

We use the Monte Carlo method for pricing a basket option with two dependent
underlyings. This is not a very efficient method, with expected runtime for
several hours for each price. In this respect the result should be viewed more
as a concept for the study of copulas’ effect pricing of basket options with
dependent underlyings under the exponential NIG-Lévy model.

There is a specific reason to the choice of the Monte Carlo method, since ag-
gregating the exponential NIG-Lévy processes will not result in a Lévy process
itself, and therefore more efficient methods such as Fourier transform cannot be
used directly [9, 11.5].

A natural comparison is the price of a basket option in a market driven by

3.4. Concluding remarks 45

K\θ 0 (independent) 10 20

1 2.41 1.86 1.90
3.8 1.08 0.89 0.79
5.40 0.885 0.756 0.57
7.06 0.691 0.629 0.44
10 0.5399 0.5407 0.31

Table 3.1: Option prices under the Gumbel copula and different strikes, ρ = 0

independent exponential NIG-Lévy processes. The expression that will need to
be evaluated for the t = 0 price is the following:

p(0) = EQ[e−rT (eL1(t) + eL2(t) −K)+]

Assume P = Q. In the Monte Carlo framework this means:

pn(0) =
e−rT

n

n∑

i=1

max(eL1(T) + eL2(T) −K, 0)

and hence pn(0) → p(0) as n→ ∞.

The setup is T = 1 where T is weeks and r = 1.05 annually with a total trading
days of 252 per year. The underlyings are sampled per minute, which gives
a total of about n = 10000 steps in each path simulation. The number of
path simulations is 4500. The convergence seems good at this number, but it
has limited the number of pricings possible. Due to long computation times,
pricing is only done on the independent basket and on baskets with the Gumbel
dependency structure with θ = 10, 20. One can see that the price converges in
Figure 3.1. The resulting option prices can be found in Table 3.1.

3.4 Concluding remarks

As can be seen, the dependency structure can have an effect on the option
price. The spread between the option prices decreases for far out-of-the-money
options. This makes sense under the Gumbel copula since the dependence is
strong in the upper tail. However, it’s important to note that one need to be
very far out in the tails to see that the price of the dependent basket is higher
than that of the independent basket. The simulations θ = 20 may come as a
surprise, but one explanation is that with such high dependence the first process
has to produce a large jumps for the second process to have a large jump. This
will certainly limit the paths for the pairs produced by simulation, and in this
particularly case 4500 simulations may not be enough to ensure that the price is
close to the theoretical option price. When looking at the required computation
time, one may ask whether the use copulas joining large jumps have enough
impact on the option price. While more computations with different copulas
would certainly be necessary to establish a pattern, there are some indications

46 Chapter 3. Option pricing with Dependent Lévy processes

0 100 200 300 400

0.
0

0.
5

1.
0

1.
5

Path simulations

P
ric

e

0 100 200 300 400

0.
0

0.
2

0.
4

Path simulations

V
ar

ia
nc

e

Figure 3.1: Convergence of option price as number of path-simulations (multiple
of 10) increase.

3.4. Concluding remarks 47

that copulas have most effect in the tails where they can in some cases produce
higher option prices than in the independent case. However, with the round-
off errors present in this implementation, copulas are a concept that should be
applied with care.

Chapter 4

Conclusion

The NIG-Lévy process can be approximated well by a rejection based sampler,
but it is computationally demanding. The algorithm using the Metropolis-
Hastings and Accept-Reject algorithms both give very good results as long as
the proposal distribution has a good fit to the target. However, the Metropolis-
Hastings has better acceptance rate for proposals which have worse fit, and
hence this is the preferred algorithm. The implementation largely due to results
published by Sebastian Rasmus seem to gone mostly unnoticed. From the results
presented in this thesis, it provides a very elegant solution with fast convergence.

The application of copulas to large jumps of the NIG-Lévy has certain interesting
properties. In particular, care needs to be taken when applying copulas to
quantiles very close to 0 or 1. There are some round-errors that can introduce
big variation in the dependent jumps, and the size of the jumps can change much
based on the 4th significant digit in the quantile returned by the copula. This is
an indication that copulas must be applied with care when joining distributions
with thin tails. Likewise, an implementation in software care must be taken to
produce numerically stable results. Finding the quantiles for each jump in the
jump measure in particularly demanding and this is the main bottleneck in the
algorithm.

Applying copulas to the large jumps over ε has indicated that the copulas in
some cases have direct effect on the option prices.The jumps generated by the
dependent process do in general have more variance than the jump in the original
process, and one may take this as an indication that option pricing by Monte
Carlo simulations will be very demanding. Due to restrictions on hardware,
simulations were done with 4500 samples for each option price, but this may
not be enough to ensure a sufficiently small Monte Carlo error. Correlation in
the small jumps less than ε seems to have less effect on the overall location of
the process at T , and hence on the option price. The large jumps will in many
cases determine the end value of the process at T .

In summary, copulas to join two approximated NIG-Lévy processes cannot be
recommened for option pricing as one will have difficulty determining an equiva-
lent martingale measure. In addition, the numerical instability that can occur in
standard implementations may prove to be another issue. While Lévy copulas

49

50 Chapter 4. Conclusion

were found problematic in this thesis, they can possibly lead to less complicated
expressions, and maybe in the future, these will prove to be an efficient solution
to the above problems.

Appendix A

A.1 Esscher transform for the NIG-Lévy approx-

imation

Define:

dP1(x) ∼ ζ1t+ σ1(ε)N(0, t) +

N(t)∑

i=1

νε(x)K−1
ε

∼ N(ζ1t, σ
2(ε)t) +

N(t)∑

i=1

νε(x)K−1
ε

The tilted measure is then defined as dQh(x) = ehx dP(x) for the Esscher
parameter h.

The Brownian part

ehxN(ζ1t, σ
2(ε)t) =

1√
2πtσ(ε)

exp

{−(x− ζ1t)
2 − 2σ2(ε)thx

2σ2(ε)t

}

=
1√

2πtσ(ε)
exp

{−(x2 − 2xζ1t+ (ζ1t)
2 − 2σ2(ε)thx)

2σ2(ε)t

}

=
1√

2πtσ(ε)
exp

{−(x2 − 2x(ζ1t+ σ2(ε)th) + (ζ1t)
2)

2σ2(ε)t

}

=
1√

2πtσ(ε)
exp

{−(x− (ζ1t+ σ2(ε)))2 − (ζ1t)
2 + ((ζ1t+ σ2(ε))2

2σ2(ε)t

}

= exp

{−(ζ1t)
2 + (ζ1tσ

2(ε)th)2

2σ2(ε)t

}
N(ζ1t+ σ2(ε)th, σ2(ε)t)

51

52 Chapter A.

The compound Poisson part

This can simply be written as:

ehxνε(x;α, β, δ)K−1
ε = νε(x;α, β + h, δ)K−1

ε

The normalization constant

EP [ehx] = exp

{−(ζ1t)
2 + (ζ1t+ σ2(ε)ht)2

2σ2(ε)t

}
(ζ1t+ σ2(ε)ht) +Kε,β+h

where Kε,β+h stems from the expectation of the compound Poisson, which is the
intensity Kε times the expected jump size. This results in the tilted measure:

dQh(x) =
exp{ ξ

2−(ζ1t)
2

2σ2
ε t

} · N(x; ξ, σ2
ε t)

A
+

∑N(t)
i=1 νε(x;α1, β1 + h, δ)K−1

ε

A

where

ξ = ζ1t+ σ2
1(ε)ht

A = exp

{
ξ2 − (ζ1t)

2

2σ2(ε)t

}
(ζ1t+ σ2(ε)ht) +Kε,β1+h

Appendix B

B.1 Source code: approximation

B.1.1 NIG-Levy2.R

#Simulation o f NIG−Levy processes vs approximation
l ibrary (fBa s i c s) ;
l ibrary ("Hyperbo l i cD i s t ") ;
l ibrary (" fCopulae") ;

source ("Copula−f unc t ion s .R") ;
source ("MonteCarlo−f unc t i on s .R") ;
source ("NIG−f unc t i on s .R") ;

getAsmussenRosinskiMu <− function (eps i l on , alpha , beta , de l ta , mu) {
muFn <− function (x) {return (param_mu(x , alpha , beta ,mu, de l ta)) }

muEpsilon <− i n t eg ra t e (muFn, −1, −e p s i l on)$value ;
muEpsilon <− −1∗(muEpsilon+in t e g r a t e (muFn, eps i l on , 1)$value) ;

return (muEpsilon) ;
}

getAsmussenRosinskiSigma <− function (ep s i l on , alpha , beta , de l ta , mu) {
sigmaFn <− function (x) {return (param_sigma (x , alpha , beta ,mu, de l ta)) }

s igmaEpsi lon <− i n t e g r a t e (sigmaFn , −eps i l on , 1)$value − i n t e g r a t e (sigmaFn ,
ep s i l on , 1)$value ;

return (s igmaEpsi lon) ;
}

ge tBarndo r f fD r i f t <− function (alpha , beta , de l ta , mu) {
gamma <− function (x) {

return (sinh (beta∗x)∗besselK (alpha∗x , 1)) ;
}

d r i f t <− 2∗de l ta∗alpha/pi∗ i n t e g r a t e (gamma, 0 , 1)$value + mu;

return (d r i f t) ;
}

nigLevy <− function (p) {
#nigLevy <− func t ion (n , alpha , beta ,mu, de l ta , eps i lon , omega){

#Here we ’ l l have the NIG−LEVY simula t ion .

alpha <− p$alpha ;
beta <− p$beta
mu <− p$mu
de l ta <− p$de l ta
ep s i l o n <− p$ e p s i l on
omega <− p$omega ;
n <− p$n ;

i f (p$verbose) {
show("−−NIG␣parameters ␣ are :−−") ;
show(c ("Alpha : " , alpha)) ;
show(c ("Beta : " , beta)) ;
show(c ("Mu: " , mu)) ;
show(c ("Delta : " , de l t a)) ;
show(c (" Eps i l on : " , ep s i l o n)) ;
show(c ("n : " , n)) ;

}

theta <− c (−0.5 , alpha , beta , de l ta , mu) ;
nig <− rghyp (n−1, theta) ;
#nig <− rnig (n−1, a lpha = alpha , be ta = beta , d e l t a = de l ta , mu = mu) ;

i f (p$verbose) {
show(c ("Length ␣ nig : " , length (nig))) ;

53

54 Chapter B.

}

numGeqEpsilon <− 0 ;

geqEJumps <− nig [abs (nig) >= eps i l o n] ;
numEGeqEpsilon <− length (geqEJumps) ;
geqWJumps <− nig [abs (nig) >= omega] ;
numWGeqEpsilon <− length (geqWJumps) ;

i f (p$verbose) {
show(c ("NIG␣abs␣ i n c r . ␣max : " , max(abs (nig)))) ;
show(c ("NIG␣abs␣ i n c r . ␣min : " , min(abs (nig)))) ;
show(c ("NIG␣ inc r . ␣ var : " , var (nig))) ;
show(c ("NIG␣ inc r . ␣mean : " , mean(nig))) ;
show(c ("Estimated ␣ i n t e n s i t y ␣ o f ␣ big ␣ ep s i l on ␣jumps : " , numEGeqEpsilon))

;
show(c ("Estimated ␣ i n t e n s i t y ␣ o f ␣ big ␣omega␣jumps : " , numWGeqEpsilon)) ;
show(c ("Max␣ of ␣abs ␣ big ␣jumps : " , max(abs (geqEJumps)))) ;
show(c ("Var␣ of ␣ big ␣ jumps : " , var (geqEJumps))) ;
show(c ("Mean␣ of ␣abs ␣ big ␣jumps␣abs : " , mean(abs (geqEJumps)))) ;

}

X <− cumsum(c (0 , nig))

r e s u l t <− l i s t (X=X, i n c r=nig) ;

return (r e s u l t) ;
}

approxNuNiG <− function (params) {
#alpha , beta , mu, d e l t a : NiG parameters
#lambda : Jump i n t en s i t y
#The jump d i s t r i b u t i on i s the normalized NIG Levy measure
#−−−

#These can be taken d i r e c t l y from the parameters :
alpha <− params$alpha ;
beta <− params$beta ;
mu <− params$mu;
de l ta <− params$de l ta ;
maxErr <− params$maxErr ;
T <− params$T;
t <− params$t ;
n <− params$n ;

rho <− params$rho ;

#Defining the l e vy measure func t ion :
nu <− function (x) {

va l <− nu_nig (x , alpha , beta , mu, de l ta) ;

return (va l) ;
}

#Determining trunca t ion l e v e l s : (eps i lon , omega) :
e p s i l on <− 8∗maxErr^2∗de l ta/pi ;

params$ e p s i l on <− e p s i l on ;

#Determining i n t e n s i t y : (lambda)
lambda <− i n t e g r a t e (nu , −Inf , −ep s i l o n)$value ;
lambda <− lambda + in te g r a t e (nu , ep s i l on , I n f)$value

#We determine omega (I t i s determined based on the change in d e r i v a t i v e) :
i f (params$omegaOverride) {

omega <− params$omegaOverride ;
} e lse {

S <− function (w) {
v <− sinh (beta∗w)∗besselK(alpha∗w, 1) /w;

return (v) ;
}

C <− function (w) {
v <− cosh (beta∗w)∗besselK(alpha∗w, 1) /w;

return (v) ;
}

eqn <− function (w) {
v <− beta∗S(w) − 2/w∗C(w)−alpha∗w/abs (w)∗besselK (alpha∗w,0) /

besselK(alpha∗w, 1)∗C(w) + (alpha+abs (beta))∗ ep s i l on ^2/
w^2∗C(ep s i l o n) ;

return (v) ;
}

omega <− uniroot (eqn , c (ep s i l on , 15∗alpha^−1))$ root ;

}

#The lambda i s fo r one time unit , so mul t i p l y with time un i t s :
lambda <− lambda∗T;

params$lambda <− lambda ;

#Determining Brownian approximation parameters : (mu, sigma)
muEpsilon <− getAsmussenRosinskiMu(eps i l on , alpha , beta , de l ta , mu)

B.1. Source code: approximation 55

s igmaEpsi lon <− getAsmussenRosinskiSigma (eps i l on , alpha , beta , de l ta , mu) ;

#This i s the d r i f t according to Barndorff−Nie l sens re pre sen tat i on :
d r i f t <− ge tBarndo r f fD r i f t (alpha , beta , de l ta , mu) ;

##
#NOW WE HAVE FOUND THE NECESSARY PARAMETERS#
##

i f (params$verbose) {
show("−−Approx␣parameters ␣are−−") ;
show(c ("Alpha" , alpha)) ;
show(c ("Beta" , beta)) ;
show(c ("Mu" , mu)) ;
show(c ("Delta" , de l ta)) ;
show(c (" Eps i l on" , ep s i l o n)) ;
show(c ("Omega" , omega)) ;
show(c ("Lambda" , lambda)) ;
show(c ("muEpsilon " , muEpsilon)) ;
show(c (" s igmaEpsi lon " , s igmaEpsi lon)) ;
show(c (" d r i f t " , d r i f t)) ;

}

X <− matrix(NA, n) ;

#We l e t both the brownian and compound possion s t a r t in 0 .
Bm <− 0 ;
Cpp <− 0 ;

#Number o f jumps
N <− rpois (1 , lambda) ;

show(c ("Number␣ of ␣jumps" , N)) ;

#When does the jumps occur?
U <− runif (N, 0 , T) ;

#Sort them increas ing l y , t h i s makes them exponen t ia l .
jTimes <− sort (U) ;

#The jump s i z e s :
j S i z e s <− c () ;

rCand <− function (n) {
va l <− rCGF2(n , alpha , beta , mu, de l ta , ep s i l on , omega , params$

rProposa l) ;
return (va l) ;

}

pCand <− function (x) {
va l <− pCGF2(x , alpha , beta , de l ta , eps i l on , omega , params$dProposal

) ;

return (va l) ;
}

dCand <− function (x) {
c <− nu(e p s i l o n)/pCand (e p s i l on) ;

va l <− pCand (x)∗c ;

return (va l) ;
}

MHn <− params$MHn
x_0 <− rCand(N) ;

args <− l i s t (N=N, t a rge t=nu , candidate=pCand , rcandidate=rCand , x_0=x_0 , max
_n=MHn, debug=FALSE, verbose=FALSE) ;

i f (params$ARmethod == "AcceptReject ") {
args$candidate <− dCand ;

}

mh <− do . ca l l (params$ARmethod , args) ;

j S i z e s <− mh$value s ;

#Some s t a t i s t i c s :
i f (params$verbose) {

show(c ("Mean␣ acceptance ␣ ra t e : " , mean(mh$ar))) ;
show(c ("Rate␣ o f ␣ alpha=0:" ,mean(mh$a0))) ;
show(c (" j S i z e s ␣max: " , max(abs (j S i z e s)))) ;
show(c (" j S i z e s ␣min : " , min(abs (j S i z e s)))) ;
show(c (" j S i z e s ␣var : " , var (j S i z e s))) ;
show(c (" j S i z e s ␣mean : " , mean(abs (j S i z e s)))) ;
show(c ("Number␣ o f ␣jumps␣ over ␣Omega : " , length (j S i z e s [abs (j S i z e s) >=

omega]))) ;
}

#Draw the increments o f the Brownian Motion . I t ’ s s imply eas i e r to draw a l l
at once , even i f no dependent

#se r i e s i s to be generated .
brownians <− rnorm2d(n , rho) ;

56 Chapter B.

BmIncr <− sqrt (s igmaEpsi lon∗step)∗brownians [, 1] ;

#vector o f jump times
#vector o f a l l t imes teps
#sum up a l l jumps be low each time

times <− array (t) ;

cpps <− apply (times , 1 , function (x) return (sum(j S i z e s [jTimes <= x]))) ;

bms <− cumsum(c (0 , BmIncr [1 : n−1])) ;

X <− (d r i f t+muEpsilon)∗t + bms + cpps ;

mar <− mean(mh$ar) ;

##
#GENERATING THE DEPENDENT PROCESS #
##

#I f param says to genera te two dependent r e a l i z a t i on s , j u s t do i t !
i f (params$dep) {

#Retr ieve parameters :
alphaDep <− params$alphaDep ;
betaDep <− params$betaDep ;
muDep <− params$muDep;
deltaDep <− params$deltaDep ;

#Get the f i r s t param of t r i p l e t from Barndorff−Nie l sen
represen ta t i on :

dri f tDep <− ge tBarndo r f fDr i f t (alphaDep , betaDep , deltaDep , muDep) ;

#Get Asmussen−Rosinski mu and sigma :
muEpsilonDep <− getAsmussenRosinskiMu(eps i l on , alphaDep , betaDep ,

deltaDep , muDep) ;
sigmaEpsilonDep <− getAsmussenRosinskiSigma (ep s i l on , alphaDep ,

betaDep , deltaDep , muDep) ;

i f (params$verbose) {
show("−−Approx␣DEP␣parameters ␣are−−") ;
show(c ("Alpha" , alphaDep)) ;
show(c ("Beta" , betaDep)) ;
show(c ("Mu" , muDep)) ;
show(c ("Delta " , deltaDep)) ;
show(c ("muEpsilonDep" , muEpsilonDep)) ;
show(c (" sigmaEpsilonDep " , sigmaEpsilonDep)) ;
show(c (" dr i f tDep " , dr i f tDep)) ;

}

#Get the Normal approximation increments :
BmIncrDep <− sqrt (sigmaEpsilonDep∗step)∗brownians [, 2] ;

#Get l a rg e jumps from Copula :
i f (params$ theta == 0) {

show("Theta␣==␣0") ;

rCandDep <− function (n) {
va l <− rCGF2(n , alphaDep , betaDep , muDep , deltaDep ,

ep s i l on , omega , params$ rProposa l) ;
return (va l) ;

}

pCandDep <− function (x) {
va l <− pCGF2(x , alphaDep , betaDep , deltaDep , ep s i l on

, omega , params$dProposal) ;

return (va l) ;
}

dCandDep <− function (x) {
c <− nu(ep s i l o n)/pCandDep (ep s i l o n) ;

va l <− pCandDep (x)∗c ;

return (va l) ;
}

MHn <− params$MHn
x_0 <− rCandDep (N) ;

argsDep <− l i s t (N=N, ta rge t=nu , candidate=pCandDep ,
r candidate=rCandDep , x_0=x_0 , max_n=MHn, debug=FALSE,

verbose=FALSE) ;

i f (params$ARmethod == "AcceptReject ") {
args$candidate <− dCandDep ;

}

mh <− do . c a l l (params$ARmethod , argsDep) ;

jS i zesDep <− l i s t () ;

B.1. Source code: approximation 57

jS i zesDep$Y <− mh$values ;
} else {

jS i zesDep <− depNIGLevyCopula (jS i z e s , params) ;
}

#Generate the path :
bmsDep <− cumsum(c (0 , BmIncrDep [1 : n−1])) ;
cppsDep <− apply (times , 1 , function (x) return (sum(jS i zesDep$Y[jTimes

<= x]))) ;

Y <− (dr i f tDep+muEpsilonDep)∗t + bmsDep + cppsDep ;

nigLevy <− l i s t (X=X, Y=Y, jumpTimes = jTimes , jumpSizes = j S i z e s , Fv
=jS i zesDep$Fv , u=jS i zesDep$u , ep s i l o n=eps i l on , omega=omega , ar
= mar) ;

} e lse {
nigLevy <− l i s t (X=X, jumpTimes = jTimes , jumpSizes = jS i z e s , e p s i l on

=eps i l on , omega=omega , ar = mar) ;
}

return (nigLevy) ;
}

#Common va r i a b l e s
T <− 1 ;
n <− T∗10000;
step <− T/(n−1) ;
t <− seq (0 ,T, step) ;

#TODO: Approximation arguments by l i s t :
approxArgs <− l i s t (alpha = 1 ,

beta = 0 ,
de l ta = 1 ,
mu = 0 ,
T = T,
t = t ,
n = n ,
theta = 2 ,
rho = 0 ,
dep = TRUE,
alphaDep = 1 ,
betaDep = 0 ,
deltaDep = 1 ,
muDep = 0 ,
step = step ,
MHn = 1000 ,
maxErr = 0.01 ,
#omegaOverride = 1 ,
omegaOverride = FALSE,
verbose=TRUE,
#ARmethod="AcceptReject" ,
ARmethod="Metropol i sHast ingsVI" ,
#rProposal="rInvX2" ,
#dProposal="dInvX" ,
rProposa l="rQuadFn2" ,
dProposal="pQuadFn" ,
copulaMtd=" clayton . gen") ;

nigArgs <− l i s t (alpha = 1 ,
beta = 0 ,
de l ta = 1∗step ,
mu = 0∗step ,
n = n ,
verbose=TRUE) ;

run <− function (withNIG = TRUE){

#The approximation o f the NiG using M−H on jump measure :
system . time (appr <− approxNuNiG (approxArgs) , g cF i r s t=TRUE) ;

write . table (matrix(c (t [1 : n] , appr$X) , nc=2) , f i l e="NIG−Levy−approx−hyp . data "
, row .names=FALSE, col .names=FALSE) ;

appr$ i n c r <− appr$X[2 : length (appr$X)]−appr$X[1 : (length (appr$X)−1)] ;
appr$q <− quantile (appr$ i ncr , seq (0 ,1 ,0 . 001)) ;

i f (approxArgs$dep) {
fname <− paste (c ("NIG−Levy−dependent−" , approxArgs$copulaMtd , "−" ,

approxArgs$theta , " . data ") , c o l l a p s e="") ;
fdata <− matrix(c (t [1 : n] , appr$X, appr$Y) , nc=3) ;
write . table (fdata , fname , row .names=FALSE, col .names=FALSE) ;
appr$ incrY <− appr$Y[2 : length (appr$Y)]−appr$Y[1 : (length (appr$Y)−1)] ;

}

value <− l i s t (appr=appr)

e <− appr$ ep s i l o n ;
w <− appr$omega ;

nigArgs$ ep s i l o n <− e ;
nigArgs$omega <− w;

i f (withNIG){
#Doing a s imula t ion with the b u i l t i n NIG func t ion :
realNIG <− nigLevy (nigArgs) ;
write . table (matrix (c (t [1 : n] , realNIG$X) , nc=2) , "NIG−Levy−nig−hyp . data

58 Chapter B.

" , row .names=FALSE, col .names=FALSE) ;
realNIG$q <− quantile (realNIG$ i ncr , seq (0 ,1 ,0 . 001)) ;

value$real <− realNIG ;
}

return (value) ;
}

B.1.2 NIG-functions.R

###This f i l e conta ins a l l f unc t ions a ssoc i a t ed with l e vy measure , ###
###l im i t f unc t ions o f l e vy measure , riemann in te gr a t i on and ###
###ca l cu l a t i on o f mu/sigma parameters f or sma l l jump approximation###

nu_nig <− function (x , alpha , beta , mu, de l ta) {

y = de l ta∗alpha/(p i∗abs (x))∗exp (beta∗x)∗besselK (alpha∗abs (x) ,1) ;

y [i s . i n f i n i t e (y)] <− 0 ;
y [i s .nan(y)] <− 0 ;

return (y) ;
}

#exp_fn <− func t ion (x , alpha , beta , eps i lon , omega){

y = (alpha−be ta)∗exp(−(alpha−be ta)∗(abs (x)−omega)) ;
return (y) ;
#}
#
#quad_fn <− func t ion (x , eps i lon , omega , d e l t a=pi){

y = de l ta /(p i∗x^2) ;
return (y) ;
#}
#
#intRiemannNIG <− funct ion (lower , upper , N, fn , alpha , beta , mu, d e l t a){
step = (upper−lower)/N;
#
steps = seq (lower , upper , s t ep) ;
#
vo l = 0 ;
#
pr in t (gr id) ;
#
for (x in s t e ps){
vo l = vo l + s tep∗ fn (x , alpha , beta , mu, d e l t a) ;
}
return (vo l) ;
#}

param_mu <− function (x , alpha , beta ,mu, de l t a) {

return (x∗nu_nig (x , alpha , beta ,mu, de l ta)) ;

}

param_sigma <− function (x , alpha , beta ,mu, de l ta) {

return (x^2∗nu_nig (x , alpha , beta ,mu, de l ta)) ;

}

B.1.3 MonteCarlo-functions.R

source ("NIG−f unc t ion s .R") ;

Metropol i sHast ingsVI <− function (N, target , candidate , rcandidate , x_0 , max_n , debug

=FALSE, verbose=FALSE){
x_t e s t <− c (x_0) ;

#Draw the f u l l vec tor o f random numbers :
uni <− runif (max_n ∗ N) ;

rcands <− rcandidate (max_n ∗ N) ;

#This i s the complete vec tor s o f draws :
draws <− c (x_0 , rcands) ;

#Look up the dens i t y h e i gh t o f a l l draws , i n c l . s t a r t va lue .
probCand <− candidate (draws) ;
probTarget <− ta r g e t (draws) ;

#We need some indexes to keep track o f which va lu es we are using :
i dxS tar t <− 1 ;
idxCurrent <− 1 ;
idxProposa l <− length (x_0) + 1 ;

#This i s debug s t u f f :
n_accept <− 0 ;

n_r e j e c t <− 0 ;

n_alpha <− 0 ;

B.1. Source code: approximation 59

n_x2yIs0 <− 0 ;

n <− 0 ;

#This i s the vec tor o f draws :
z <− c () ;

while (TRUE){
n <− n +1;

#Get the uniform and proposa l draws by index .
#Reca l l t ha t draws has x_0 at the beg inning .

u <− uni [idxProposa l − N] ;
y <− draws [idxProposa l] ;

y2x <− probTarget [idxProposa l] ∗ probCand [idxCurrent] ;
x2y <− probTarget [idxCurrent] ∗ probCand [idxProposa l] ;

i f (x2y > 0) {
alpha <− min(1 , y2x/x2y) ;

} else {
alpha <− 1 ;
n_x2yIs0 <− n_x2yIs0 + 1 ;

}

i f (alpha == 1) n_alpha <− n_alpha + 1 ;

i f (u < alpha) {
#We se t the index o f the current draw to the accepted

proposa l
idxCurrent <− i dxProposa l ;

n_accept <− n_accept + 1 ;

y_0 <− draws [idxProposa l] ;

} else {
#I f not accepted , the index o f the current draw s tay s the

same ,
#so we do nothing excep t some s t a t i s t i c s

n_r e j e c t <− n_r e j e c t + 1 ;

y_0 <− draws [idxCurrent] ;

}

#x <− append(x , y_0) ;

i f (n %% max_n == 0) {

#This i s the f i n a l draw , so append to draw vec tor :
z <− append(z , y_0) ;

#update which i n i t i a l va lue i s to be used :
i dxS tar t <− i dxSta r t + 1 ;

#Change current index to next s t a r t i n g va lue .
idxCurrent <− i dxSta r t ;

}

i f (n < max_n ∗ N){

idxProposa l <− i dxProposa l + 1 ;
} else {

break ;
}

}

r e s u l t <− l i s t (va lue s=z , ar=n_accept /(n_accept + n_r e j e c t) , a0=n_alpha/ (n_
accept + n_r e j e c t) , x2y0=n_x2yIs0/ (n_accept + n_r e j e c t)) ;

return (r e s u l t) ;
}

AcceptReject <− function (N, target , candidate , rcandidate , x_0 , max_n , debug=FALSE,

verbose=FALSE){
x_t e s t <− c (x_0) ;

#Draw the f u l l vector o f random numbers :
uni <− runif (max_n ∗ N) ;

rcands <− r candida te (max_n ∗ N) ;

#This i s the complete vec tor s o f draws :
draws <− c (x_0 , rcands) ;

#Look up the dens i t y he i gh t o f a l l draws , i n c l . s t a r t va lue .
probCand <− candidate (draws) ;
probTarget <− ta rg e t (draws) ;

#We need some indexes to keep t rack o f which va lues we are using :
i dxSta r t <− 1 ;
idxCurrent <− 1 ;
idxProposa l <− length (x_0) + 1 ;

#This i s debug s t u f f :
n_accept <− 0 ;

n_r e j e c t <− 0 ;

n_alpha <− 0 ;

n_x2yIs0 <− 0 ;

60 Chapter B.

n <− 0 ;

#This i s the vec tor o f draws :
z <− c () ;

while (TRUE){
n <− n +1;

#Get the uniform and proposa l draws by index .
#Recal l t ha t draws has x_0 at the beg inning .

u <− uni [idxProposa l − N] ;
y <− draws [idxProposa l] ;

alpha <− probTarget [idxProposa l] /probCand [idxProposa l] ;

i f (alpha >= 1) n_alpha <− n_alpha + 1 ;

i f (u < alpha) {
#We se t the index o f the current draw to the accepted

proposa l
idxCurrent <− i dxProposa l ;

n_accept <− n_accept + 1 ;

y_0 <− draws [idxProposa l] ;

} e lse {
#I f not accepted , the index o f the current draw s tays the

same ,
#so we do nothing excep t some s t a t i s t i c s

n_r e j e c t <− n_r e j e c t + 1 ;

y_0 <− draws [idxCurrent] ;

}

i f (n %% max_n == 0) {

#This i s the f i n a l draw , so append to draw vec tor :
z <− append(z , y_0) ;

#update which i n i t i a l va lue i s to be used :
i dxSta r t <− i dxS tar t + 1 ;

#Change current index to next s t a r t i n g va lue .
idxCurrent <− i dxS ta r t ;

}

i f (n < max_n ∗ N){

idxProposa l <− i dxProposa l + 1 ;
} e lse {

break ;
}

}

r e s u l t <− l i s t (va lu es=z , ar=n_accept / (n_accept + n_r e j e c t) , a0=n_alpha/(n_

accept + n_r e j e c t) , x2y0=n_x2yIs0/(n_accept + n_r e j e c t)) ;

return (r e s u l t) ;
}

#Candidate Generating Density Functions

#alpha , be ta : NiG parameters . omega : trunca t ion/ s h i f t .
#u : uniform varia te , pos : 1 i s p o s i t i v e jump , −1 nega t ive
rExpFn <− function (n , alpha , beta , omega) {

#Notice tha t our implementation i s symmetric

#We use abso lu t e va lue o f be ta to be sure we are dominating
#the b i g g e s t t a i l , hence a l so the lowes t .

uMax <− (alpha−abs (beta)) ;

u <− runif (n , max=uMax) ;

x <− −1∗(log (u) − log (uMax))/uMax + omega ;

i f (prod (abs (x) > omega) == 0) {
show(c ("Value␣ l e s s ␣ than␣omega␣drawn␣ in ␣Exp ! ! " ,x)) ;
show(c ("Are␣you␣ sure ␣your␣ parameters ␣ are ␣ r ight , ␣ e p s i l on ␣<␣omega?")) ;

}

return (x) ;
}

rQuadFn2 <− function (n , ep s i l on , omega) {

u <− runif (n) ;

x <− (ep s i l on∗omega)/(omega − u∗(omega−ep s i l o n)) ;

return (x)
}

pExpFn <− function (x , alpha , beta , omega) {
#Since the dens i t y i s symmetric we eva l x in the pos . dens i t y
#There i s no need to normalize the r e s u l t s ince we only care fo r the he ig h t
#of the dens i ty , unnormalized or not .

p <− rep (NA, length (x)) ;

B.1. Source code: approximation 61

idxLeqOmega <− (abs (x) < omega) ;
p [idxLeqOmega] <− 0 ;

p [! idxLeqOmega] <− (alpha−beta)∗exp(−(alpha−abs (beta))∗(abs (x [! idxLeqOmega])
− omega)) ;

return (p) ;
}

pQuadFn <− function (x , eps i l on , omega) {
#Since the dens i t y i s symmetric :
absX <− abs (x) ;

p <− rep (NA, length=length (x)) ;
idx Intv <− (absX > abs (omega) | absX < abs (e p s i l on)) ;
p [idx Intv] <− 0 ;
p [! i dx Intv] <− omega∗ e p s i l on /(abs (omega−e p s i l on)∗x [! i dx Intv]^2) ;

#This i s our value , s ince we only want the he i gh t o f the dens i t y :
return (p) ;

}

rCGF2 <− function (n , alpha , beta , mu, de l ta , ep s i l on , omega , rDi s t) {
#An optimized ver sion for any n !
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#Draw n uniform va r i a b l e s :
u <− runif (n) ;

#Pseudo−func t ion :
new_nu <− function (x) nu_nig (x , alpha , beta , mu, de l ta) ;

#Find the draw−weigh ts :
mExp1 <− i n t e g r a t e (new_nu , omega , In f)$value ;

mExp2 <− i n t e g r a t e (new_nu , −Inf , −omega)$value ;

mQuad1 <− i n t eg r a t e (new_nu , −omega , −ep s i l o n)$value ;
mQuad2 <− i n t eg r a t e (new_nu , ep s i l on , omega)$value ;

pExp1 <− mExp1/ (mExp1+mExp2+mQuad1+mQuad2) ;
pExp2 <− mExp2/ (mExp1+mExp2+mQuad1+mQuad2) ;
pQuad1 <− mQuad1/(mExp1+mExp2+mQuad1+mQuad2) ;
pQuad2 <− mQuad2/(mExp1+mExp2+mQuad1+mQuad2) ;

#This i s our vec tor o f draws :
x <− rep (0 , length=n) ;

#Which indexes w i l l take draws from which area :
idxLowerExp <− (u < pExp1) ;
idxLowerQuad <− (u >= pExp1 & u < pExp1 + pQuad1) ;
idxUpperQuad <− (u >= pExp1 + pQuad1 & u < pExp1 + pQuad1 + pQuad2) ;
idxUpperExp <− (u >= pExp1 + pQuad1 + pQuad2) ;

#Find the number o f r e a l i z a t i on s to make from each area :
n_lower_exp <− length (u [idxLowerExp]) ;

n_lower_quad <− length (u [idxLowerQuad]) ;

n_upper_quad <− length (u [idxUpperQuad]) ;

n_upper_exp <− length (u [idxUpperExp]) ;

#Draw the re s p e c t i v e number o f r e a l i z a t i o n s :
#(While one can fu r t he r op t imize i t to draw only once from each ,
the author f i nd s i t c l e are r to leave 4 invoca t i ons in case one ’
l a t e r wants the CGF to be asymmetric) .

#Draws from the exponen t i a l area .
drawsLowerExp <− −1∗rExpFn (n_lower_exp , alpha , beta , omega) ;

drawsUpperExp <− rExpFn (n_upper_exp , alpha , beta , omega) ;

randArgsLower <− l i s t (n=n_lower_quad , ep s i l on=eps i l on , omega=omega) ;

randArgsUpper <− l i s t (n=n_upper_quad , ep s i l on=eps i l on , omega=omega) ;

drawsLowerQuad <− −1∗do . ca l l (rDist , randArgsLower) ;
drawsUpperQuad <− do . c a l l (rDist , randArgsUpper) ;

#Assign the draws in the r i g h t order to the draws vec tor :
x [idxLowerExp] <− drawsLowerExp ;
x [idxLowerQuad] <− drawsLowerQuad ;
x [idxUpperQuad] <− drawsUpperQuad ;
x [idxUpperExp] <− drawsUpperExp ;

#Check tha t a l l the draws are sane :
i f (prod (abs (x) >= ep s i l o n) == 0) {

show("Value␣ l e s s ␣than␣ ep s i l on ␣drawn␣ in␣ optimized ␣ ve r s i on ! ! ") ;
}

#Return the draws :
return (x) ;

}

pCGF2 <− function (x , alpha , beta , de l ta , eps i l on , omega , dDist) {
#A vec tor capab le vers ion o f pCGF.

p <− rep (0 , length (x)) ;

#We sca l e the exponen t i a l p r o b a b i l i t y to make our proposa l

62 Chapter B.

#continuous , but not d i f f e r e n t i a b l e :
c_quad <− alpha∗de l ta ;

d i s tArgs <− l i s t (x=omega , e p s i l on=eps i l on , omega=omega) ;
c_exp <− c_quad∗do . ca l l (dDist , d i s tArgs)/pExpFn(omega , alpha , beta , omega) ;

idxExpNeg <− (x < −omega) ;
idxQuadNeg <− (x <= −ep s i l o n & x >= −omega) ;
idxQuadPos <− (x >= eps i l o n & x <= omega) ;
idxExpPos <− (x > omega) ;

#Exponentia l func t ion i s a lwasy used in t a i l s :
p [idxExpNeg] <− pExpFn(x [idxExpNeg] , alpha , beta , omega)∗c_exp ;

p [idxExpPos] <− pExpFn(x [idxExpPos] , alpha , beta , omega)∗c_exp ;

distArgsNeg <− l i s t (x=x [idxQuadNeg] , e p s i l on=eps i l on , omega=omega) ;
distArgsPos <− l i s t (x=x [idxQuadPos] , e p s i l on=eps i l on , omega=omega) ;

p [idxQuadNeg] <− do . ca l l (dDist , distArgsNeg) ;
p [idxQuadPos] <− do . ca l l (dDist , distArgsPos) ;

return (p) ;
}

dInvX <− function (x , ep s i l on , omega) {
absX <− abs (x) ;

p <− rep (NA, length=length (x)) ;
idxIntv <− (absX > abs (omega) | absX < abs (ep s i l on)) ;
p [idxIntv] <− 0 ;
p [! idxIntv] <− 1/(log (omega/ e p s i l on)∗x) ;

return (p) ;
}

rInvX2 <− function (n , ep s i l on , omega) {
u <− runif (n) ;

x <− exp (u∗ log (omega/ ep s i l o n))∗ ep s i l o n ;

return (x) ;
}

B.1.4 Metropolis-Hastings.R

source ("MonteCarlo−f unc t ion s .R") ;
source ("NIG−f unc t ion s .R") ;

nu <− function (x) {
va l = nu_nig (x , alpha , beta , mu, de l ta) ;

return (va l) ;
}

rCand <− function (n) {
va l = rCGF2(n , alpha , beta , de l ta , eps i l on , omega) ;

return (va l) ;
}

pCand <− function (x) {
va l = pCGF2(x , alpha , beta , de l ta , eps i l on , omega) ;

return (va l) ;
}

alpha <− 1 ;
beta <− 0 ;
mu <− 0 ;
d e l t a <− 1 ;
omega <− 1 . 38 ;
e p s i l o n <− 0 .0002 ;
expScale <− 1 ;

MHn <− seq (100 , 5000 , by=25) ;
N = 1000;
draws = c () ;

dTarget <− function (x) {return (dexp(x , 30)) }
dProp <− function (x) {return (dexp(x , 25)) }
rProp <− function (n) {return (rexp (n , 25)) }

nu <− function (x) {
va l <− nu_nig (x , alpha , beta , mu, de l ta) ;

return (va l) ;
}

rCand <− function (n) {
va l <− rCGF2(n , alpha , beta , mu, de l ta , eps i l on , omega , expScale) ;
return (va l) ;

}

pCand <− function (x) {
va l <− pCGF2(x , alpha , beta , de l ta , eps i l on , omega , expScale) ;
return (va l) ;

B.2. Source code: copula simulations 63

}

x_0 <− rep (rCand (1) , N) ;

#dTarget <− func t ion (x) return (nu(x)∗(abs (x)>=eps i l on)) ;
#dProp <− f unc t ion (x) return (pcauchy(x , s ca l e=1/7)) ;
#rCand <− f unc t ion (n) return (rcauchy (n , s ca l e=1/7)) ;

vars <− c () ;
varvars <− c () ;

for (i in MHn){
show(i) ;
#mh = MetropolisHastingsVI (N, dTarget , dProp , rProp , x_0 , i) ;

show(system . time (mh <− Metropol i sHast ingsVI (N, nu , pCand , rCand , x_0 , i ,

debug=FALSE) , g cF i r s t=TRUE)) ;
vars <− append(vars , var (mh$va lues)) ;
varvars <− append(varvars , var (vars)) ;

}

#wri t e . t a b l e (matrix (c (MHn, vars) ,nc=2) , "Metropolis−Hastings−variance−exp30−vs−exp25
. data " , row . names=FALSE, co l . names=FALSE) ;

write . table (matrix(c (MHn, vars , varvars) , nc=3) , "Metropol is−Hastings−variance−nu−vs−
proposal −3.data " , row .names=FALSE, col .names=FALSE) ;

B.2 Source code: copula simulations

B.2.1 Copula-functions.R

###This f i l e conta ins a l l copula−s p e c i f i c methods , inc l ud ing ###
###d i r e c t implementations , inver se func t i ons to es t imate empir ica l###
###copulas , and any o ther func t i ons necessary to as s oc i a t e ###
###dependence in our marginals . ###

l ibrary (fBa s i c s) ;
options (d i g i t s = 22) ;

#Independence copula
copula .P <− function (u , v) {

return (u∗v) ;
}

#Complete c o p s i t i v e dependence , only the f i r s t one can be a vector
copula .M <− function (u , v) {

return (min(u , v)) ;
}

#Complete nega t i ve dependence
copula .W <− function (u , v) {

return (max(u+v−1 ,0)) ;
}

#Clayton copula
copula . c l ayton <− function (u , v , theta) {

v <− u^(− theta)+v^(− theta)−1;
va lues <− apply (array (v) ,1 , function (x) max(x , 0)) ;

return (va lues^(−1/ theta)) ;

#return (max((u^(− t he ta)+v^(− t he ta)−1) ,0)^(−1/ t he ta)) ;
}

c layton . gen <− function (u , d) {
#u i s the f i r s t va lue ,
#y i s the uniform va lue .

y <− runif (length (u)) ;

v <− (u^d/(y^(−d/(d+1)) + u^d −1)) ^(1/d)

return (v) ;
}

f rank . gen <− function (u1 , d) {
n <− length (u1) ;

V1 <− runif (n) ;

X <− log (V1)/log ((exp(−d∗u1)−1)/(exp(−d)−1))

V2 <− runif (n)

u2 <− (−1/d)∗log (1 + exp (log (V2)/X)∗(exp(−d) −1))

return (u2) ;
}

gumbel . gen <− function (u1 , d) {
n <− length (u1) ;

64 Chapter B.

V1 <− runif (n) ;

X <− (−log (V1))/(− log (u1))^d

V2 <− runif (n)

u2 <− exp(−(− log (V2)/X) ^(1/d)) ;

return (u2) ;
}

depNIGLevyCopula <− function (j S i z e s , p) {
show("−−Copula␣Parameters ␣−−") ;
show(c ("Alpha" ,p$alpha)) ;
show(c ("Beta " ,p$beta)) ;
show(c ("Delta" ,p$de l ta)) ;
show(c ("Mu" ,p$mu)) ;
show(c ("AlphaDep" ,p$alphaDep)) ;
show(c ("BetaDep" ,p$betaDep)) ;
show(c ("DeltaDep " ,p$deltaDep)) ;
show(c ("MuDep" ,p$muDep)) ;
show(c (" stepDep" , p$step)) ;
show(c ("Copula␣method" , p$copulaMtd)) ;
show(c ("Theta" , p$ theta))

lowEpsi lon <− −1∗p$ e p s i l on ;

nuNIG <− function (y) {
return (nu_nig (y , p$alpha , p$beta , pmu, pde l ta)) ;

}

totNegMass <− i n t eg r a t e (nuNIG , lower=−Inf , upper=lowEpsi lon , r e l . t o l
=2.220446e−12)$value ;

pNu <− function (x) {

i f (x <= 0) {
limLow <− x ;

i f (x > lowEpsi lon) x <− lowEpsi lon ;

i f (x == lowEpsi lon) {
v <− totNegMass ;

} e lse {
v <− i n t e g r a t e (nuNIG , lower=−Inf , upper=limLow , r e l .

t o l =2.220446e−12)$value ;
}

} e lse {
#limLow <− −1∗p$ eps i l on ;
limUp <− x ;

i f (x < p$ e p s i l on) x <− p$ ep s i l o n ;

v <− totNegMass ;

i f (x > p$ e p s i l on) {
v <− v + in t eg r a t e (nuNIG , lower=p$ eps i l on , upper=Inf

, r e l . t o l =2.220446e−12)$value ;
v <− v − i n t eg r a t e (nuNIG , lower=limUp , upper=Inf ,

r e l . t o l =2.220446e−12)$value ;

}

}

v <− v/p$lambda ;

return (v) ;
}

hypArgs <− c (−0.5 , p$alpha , p$beta , p$ de l t a∗p$step , p$mu∗p$step) ;
hypArgsDep <− c (−0.5 , p$alphaDep , p$betaDep , p$deltaDep ∗p$step , p$muDep∗p$

step) ;

theo r e t i ca lMin <− qghyp (0 , hypArgs) ;
theoret i ca lMax <− qghyp (1 , hypArgs) ;
theoretica lMinDep <− qghyp (0 , hypArgsDep) ;
theoreticalMaxDep <− qghyp (1 , hypArgsDep) ;

qNu <− function (prob , alpha , beta , de l ta , mu) {
maxNeg <− pNu(−1∗p$ e p s i l on) ;

i f (prob <= maxNeg) {
limLow <− theo re t i ca lMin ;
limUp <− −1∗p$ ep s i l o n ;

} e lse {
limLow <− p$ e p s i l on
limUp <− theoret i ca lMax ;

}

#show(c (" prob :" , prob)) ;

i f (prob > pNu(10^3)) prob <− round (pNu(10^3) , d i g i t s =6) ;
i f (prob < 10^−10) prob <− 10^−10;

B.2. Source code: copula simulations 65

x <− uniroot (function (y) return (pNu(y) − prob) , c (limLow , limUp) , t o l
=2.220446e−8)$ root ;

return (x) ;
}

Fu <− apply (as . array (j S i z e s) , 1 , pNu) ;

Fv <− do . ca l l (p$copulaMtd , l i s t (u=Fu , d=p$ theta)) ;

j S i z e s 2 <− apply (as . array (Fv) , 1 , qNu) ;

#Sanity check , not very mathematical , but necessary :
idxInsanePos <− (j S i z e s 2 > 3∗ j S i z e s & j S i z e s >0) ;
idxInsaneNeg <− (j S i z e s 2 < 3∗ j S i z e s & j S i z e s <0)

j S i z e s 2 [idxInsanePos] <− 3∗ j S i z e s [idxInsanePos] ;
j S i z e s 2 [idxInsaneNeg] <− 3∗ j S i z e s [idxInsaneNeg] ;
#End o f san i t y check .

jDepSizes <− l i s t (X=j S i z e s , Y=jS i z e s 2 , Fu=Fu , Fv=Fv) ;

return (jDepSizes) ;
}

copula . empir <− function (X, Y) {
sortedX <− sort (X) ;
sortedY <− sort (Y) ;

nX <− length (X) ;
nY <− length (Y) ;

i f (nX != nY){
show("Error ! ␣Length ␣ of ␣X␣and␣Y␣not ␣ the␣same ! ") ;

}

#Samples :
s <− matrix(c (X,Y) , nc=2) ;

#But i t ac tual y needs to be square :
C <− matrix(NA, ncol=nY, nrow=nX) ;

for (i in 1 : length (X)) {
for (j in 1 : length (Y)) {

C[i , j] <− length (s [(s [, 1] <= sortedX [i])∗(s [, 2] <= sortedY [j
])]) /nX;

}
}

v <− l i s t (X=X, Y=Y, C=C, nX=nX, nY=nY) ;

return (v) ;
}

B.2.2 Empirical-copula.R

#Emirical−Copula .R

source ("NIG−Levy2 .R") ;
source ("Copula−f unc t ion s .R") ;
l ibrary (" fCopulae") ;

#Common va r i a b l e s
T <− 1 ;
n <− T∗10000;
step <− T/(n−1) ;
t <− seq (0 ,T, step) ;

#TODO: Approximation arguments by l i s t :
approxArgs <− l i s t (alpha = 1 ,

beta = 0 ,
de l ta = 1 ,
mu = 0 ,
T = T,
t = t ,
n = n ,
theta = 16 ,
rho = 0 . 8 ,
dep = TRUE,
alphaDep = 1 ,
betaDep = 0 ,
deltaDep = 1 ,
muDep = 0 ,
step = step ,
MHn = 500 ,
maxErr = 0.01 ,
omegaOverride = FALSE,
verbose=TRUE,
ARmethod="Metropol i sHast ingsVI" ,
rProposa l="rQuadFn2" ,
dProposal="pQuadFn" ,
copulaMtd=" clayton . gen") ;

rhos = c (0 , 0 .5 , 1) ;

66 Chapter B.

the tas = c (2 , 8 , 16 , 100) ;

appr <− rep (NA, length (rhos)) ;
empirC <− rep (NA, length (rhos)∗length (the tas)) ;

for (j in 1 : length (the tas)) {
for (i in 1 : length (rhos)) {

approxArgs$rho <− rhos [i] ;
approxArgs$ theta <− the tas [j] ;

appr <− approxNuNiG (approxArgs) ;

Xincr <− appr$X[2 : length (appr$X)]−appr$X[1 : (length (appr$X)−1)] ;
Yincr <− appr$Y[2 : length (appr$Y)]−appr$Y[1 : (length (appr$Y)−1)] ;

pX <− pnig (Xincr , alpha=approxArgs$alpha , beta=approxArgs$beta ,
d e l t a=approxArgs$de l ta∗approxArgs$step , mu=approxArgs$mu∗

approxArgs$step) ;
pY <− pnig (Yincr , alpha=approxArgs$alphaDep , beta=approxArgs$betaDep

, de l ta=approxArgs$deltaDep∗approxArgs$step , mu=approxArgs$
muDep∗approxArgs$step) ;

empirC <− pempiricalCopula (pX, pY) ;
data <− matrix(c (Xincr , Yincr , pX, pY) , nc=4) ;

f i l eC <− paste (c ("Empirical−copula−empirC−theta " , approxArgs$theta , "−
rho " , approxArgs$rho , "−x2 . data ") , c o l l a p s e="") ;

f i l e <− paste (c ("Empirical−copula−theta " , approxArgs$theta , "−rho" ,
approxArgs$rho , "x2 . data ") , c o l l a p s e="") ;

write . table (data , f i l e , row .names=FALSE, col .names=FALSE)
write . table (empirC$z , f i l eC , row .names=FALSE, col .names=FALSE)

show(c (" Bigges t ␣ increment : " , max(Xincr))) ;
}

}

B.3 Source code: option pricing

B.3.1 Option-pricing-basket.R

rm(XY) ;

XY <− read . table (" c lus terSampler−XY−copula−gumbel . gen−theta20−rho0−T1−123. data ") ;

XY <− read . table (" c lus terSampler−XY−gumbel . gen−theta10−rho0−T1−ALL. data ") ;
XY <− read . table (" c lus terSampler−XY−gumbel . gen−theta20−rho0−T1−ALL. data ") ;

XY <− read . table ("XY20. data ") ;

Xal l <− XY[, 1]
Yal l <− XY[, 2]

XallNIG <− read . table (" c lus terSampler−X−realNIG . 1 . data ") ;
YallNIG <− read . table (" c lus terSampler−Y−realNIG . 1 . data ") ;

n <− length (X) ;

X <− c (Xal l [1 : 2 0 0 0] , Xal l [2 5 01 : 50 0 0])
Y <− c (Yal l [1 : 2 0 0 0] , Yal l [2 5 01 : 50 0 0])

#X <− Xal l ;
#Y <− Yal l ;

expX <− exp (Xal l) ;
expY <− exp (Yal l) ;

expXNIG <− exp (XallNIG) ;
expYNIG <− exp (YallNIG) ;

expX <− exp (Xal l) ;
expY <− exp (Yal l) ;

va l <− c () ;
valVar <− c () ;

K <− 10 ;

basketApprox <− apply (as .matrix(exp (Xal l) + exp (Yal l) −K) , 1 , function (x) max(x , 0)) ;
sum(basketApprox)/length (basketApprox)∗exp(−1.05∗1/36)

sum(basketNIG)/length (basketNIG)∗exp(−1.05∗1/36)
basketNIG <− apply (t (as .matrix(exp (XallNIG) + exp (YallNIG) −K)) , 1 , function (x) max(

x , 0)) ;

B.3. Source code: option pricing 67

for (i in seq (10 , length (expX) , 10)) {
n <− i ;
basket <− apply (t (as .matrix(expX [1 : n] + expY [1 : n] −K)) , 1 , function (x) max(x

, 0)) ;
va l <− append(val , sum(basket)/n) ;
valVar <− append(valVar , var (va l)) ;

}

basket <− apply (t (as .matrix(expX [1 : n] + expY [1 : n] −K)) , 1 , function (x) max(x
, 0)) ;

par (mfrow=c (2 ,1))

plot (1 : length (va l) , val , ’ l ’ , x lab="Path␣ s imu la t ion s " , ylab="Pr i ce ")
plot (1 : length (valVar) , valVar , ’ l ’ , x lab="Path␣ s imula t i on s " , ylab="Variance ")

B.3.2 clusterSampler.R

#The c l u s t e r sampler ! !
source ("NIG−Levy2 .R") ;
l ibrary ("snow") ;

#Common va r i a b l e s
T <− 1 ;
n <− T∗10000;
step <− T/(n−1) ;
t <− seq (0 ,T, step) ;

#TODO: Approximation arguments by l i s t :
approxArgs <− l i s t (alpha = 1 ,

beta = 0 ,
de l ta = 1 ,
mu = 0 ,
T = T,
t = t ,
n = n ,
theta = 20 ,
rho = 0 ,
dep = TRUE,
alphaDep = 1 ,
betaDep = −0.1 ,
deltaDep = 1 ,
muDep = 0 ,
step = step ,
MHn = 1000 ,
maxErr = 0.01 ,
omegaOverride = FALSE,
verbose=FALSE,
ARmethod="Metropol i sHast ingsVI" ,
rProposa l="rQuadFn2" ,
dProposal="pQuadFn" ,
#copulaMtd="c layton . gen") ;
copulaMtd="gumbel . gen") ;
#copulaMtd="frank . gen") ;

nigArgs <− l i s t (alpha = 1 ,
beta = 0 ,
de l ta = 1∗step ,
mu = 0∗step ,
n = n ,
verbose=FALSE) ;

nigArgs2 <− l i s t (alpha = 1 ,
beta = −0.1 ,
d e l t a = 1∗step ,
mu = 0∗step ,
n = n ,
verbose=FALSE) ;

numNodes <− 15 ;
numSamples <− 450 ;

runClus ter <− function (r) {
#Star t a c l u s t e r with ’numNodes ’ nodes :
c <− makeCluster (numNodes , type="SOCK") ;

#Load a l l l i b r a r i e s at a l l nodes :
c lus terEvalQ (c , l ibrary (" fBas i c s ")) ;
c lus terEvalQ (c , l ibrary (" fCopulae")) ;
c lus terEvalQ (c , l ibrary ("Hyperbo l i cD i s t")) ;
c lus terEvalQ (c , source ("NIG−Levy2 .R")) ;

#Run the ba tches d i s t r i b u t e d over the nodes :

#Since each c l u s t e r g i v es one r ea l i s a t i on o f a path , run a mu l t i p l e o f
numNodes .

max <− (numSamples/numNodes) ;
dataX <− array (dim=c (numSamples , n)) ;
dataY <− array (dim=c (numSamples , n)) ;

show("Running ␣ c l u s t e r ␣ sampl ing␣with ␣arguments : ") ;
show(c ("T" ,T)) ;
show(c ("Rho" , approxArgs$rho)) ;

68 Chapter B.

show(c ("Theta" , approxArgs$ theta)) ;

begin <− timestamp ()
for (i in 1 :max) {

show(paste (c ("Batch␣no . ␣" , i , "/" , max) , c o l l ap s e="")) ;

r e s u l t s <− c l u s t e rC a l l (c , approxNuNiG , approxArgs) ;

#r e su l t s <− c l u s t e rCa l l (c , nigLevy , nigArgs) ;
#r e su l t s 2 <− c l u s t e rCa l l (c , nigLevy , nigArgs2) ;

for (j in 1 : length (r e s u l t s)) {
idx <− j + (i −1)∗numNodes ;
dataX [idx ,] <− as . array (r e s u l t s [[j]] $X) ;
dataY [idx ,] <− as . array (r e s u l t s [[j]] $Y) ;

#dataX [idx ,] <− as . array(r e s u l t s [[j]] $X) ;
#dataY [idx ,] <− as . array(r e su l t s 2 [[j]] $X) ;

}
}

f i l eX <− paste (c (" c lus terSampler−X−copula−" , approxArgs$copulaMtd , "−theta " ,
approxArgs$ theta , "−rho " , approxArgs$rho , "−T" ,T, " . " , r , " . data ") , c o l l a p s e
="") ;

f i l eY <− paste (c (" c lus terSampler−Y−copula−" , approxArgs$copulaMtd , "−theta " ,
approxArgs$ theta , "−rho " , approxArgs$rho , "−T" ,T, " . " , r , " . data ") , c o l l a p s e
="") ;

write . table (t (dataX [, 10 00 0]) , f i l eX , col .names=FALSE, row .names=FALSE) ;
write . table (t (dataY [, 10 00 0]) , f i l eY , col .names=FALSE, row .names=FALSE) ;

#Comment in f or r ea l NIG−Levy .
#f i l eX <− pas te (c (" c lusterSampler −X−realNIG ." , r , " . data ") , c o l l a p s e="") ;
#f i l eY <− pas te (c (" c lusterSampler −Y−realNIG ." , r , " . data ") , c o l l a p s e="") ;

#wr i t e . t a b l e (t (dataX [,10000]) , f i l eX , co l . names=FALSE, row . names=FALSE) ;
#wr i t e . t a b l e (t (dataY [,10000]) , f i l eY , co l . names=FALSE, row . names=FALSE) ;

s topClu s te r (c) ;

show(begin)
timestamp ()

}

s e v e r a l <− function () {
ext <− c (1 ,2 ,3 ,4 ,5 , 6 ,7 , 8 ,9 ,10) ;

for (r in ext) {
show(c ("batch : " , r)) ;
runClus ter (r) ;

}
}

List of Figures

1.1 Illustration of sampling via Metropolis-Hastings 12

1.2 The NIG Lévy measure with proposal functions 14

1.3 A close up look at the NIG Lévy measure with inverse quadratic
proposal . 14

1.4 Variance from 3 random starting points simulations via Metropolis-
Hastings. 19

1.5 Simulation of NIG-Levy and its approximation 19

1.6 Quantile-Quantile plots of approximation and NIG-Lévy 20

2.1 Simulation of the Clayton copula with different θ 26

2.2 Simulation of Clayton, Frank and Gumbel copula 27

2.3 Gumbel with θ = 20, notice higher dependency in upper than
lower tail. 33

2.4 Gumbel with θ = 10, notice higher dependency in upper than
lower tail. 34

2.5 Clayton simulation with θ = 2, higher dependency in lower tail. . 34

2.6 Empirical copulas from simulations with Clayton θ = 2 37

2.7 Empirical copulas from simulations with Clayton θ = 8 37

2.8 Empirical copulas from simulations with Clayton θ = 16 38

3.1 Convergence of option price as number of path-simulations (mul-
tiple of 10) increase. 46

69

Bibliography

[1] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical func-
tions with formulas, graphs, and mathematical tables, 10th printing, with
corrections ed., Dover, Washington, D.C. : U.S. Dept. of Commerce U.S.
G.P.O., 1972.

[2] Albrecher and Predota, On asian option pricing for nig lévy processes,
Journal of Computational and Applied Mathematics 172 (2004), 153–168.

[3] David Applebaum, Lévy processes and stochastic calculus, The Press Syn-
dicate of the University of Cambridge, The Pitt Building, Trumpington
Street, Cambridge, United Kingdom, 2004.

[4] Ole E. Barndorff-Nielsen, Normal inverse gaussian processes and the mod-
elling of stock returns, Research Reports (1995), no. 300.

[5] , Processess of the normal inverse gaussian type, Finance and
Stochastics (1998), no. 2, 41–68.

[6] Marian Bubak, Geert D. van Albada, Peter M.A. Sloot, and Jack J. Don-
garra, Computational science - iccs 2004: 4th international conference,
kraków, poland, june 6-9, 2004, proceedings, part ii (lecture notes in com-
puter science), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2004.

[7] Cherny, No-arbitrage and completeness for the linear and exponential mod-
els based on lévy processes, Tech. report, Moscow State University, 2001.

[8] Siddhartha Chib and Edward Greenberg, Understanding the metropolis-
hastings algorithm, The American Statistician 49 (1995), no. 4, 327–335.

[9] Rama Cont and Peter Tankov, Financial modelling with jump processes,
CRC Press LCC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431,
United States, 2004.

[10] Frees and Valdez, Understanding relationships using copulas, North Amer-
ican Actuarial Journal 1(2) (1997), 1–25.

[11] Elias S.W. Shui Hans U. Gerber, Option pricing by esscher transforms,
Transactions of Society of Actuaries 46 (1994), 99–135.

[12] Hubalek and Sgarra, Esscher transforms and the minimal entropy martin-
gale measure for exponential lévy models, Quantitative finance 6 (2006),
125–145.

71

72 BIBLIOGRAPHY

[13] Roger B. Nelsen, An introduction to copulas, 2nd edition, Springer Sci-
ence+Business Media, New York, Inc., Springer Street, NY, USA, 2006.

[14] Antonis Papapantoleon, An introduction to levy processes with applications
in finance, 2008.

[15] Raftery and Lewis, Comment: One long run with diagnostics: Implemen-
tation strategies for markov chain monte carlo, Statistical Science 7 (1992),
no. 4, 493–497.

[16] , How many iterations in the gibbs sampler?, Bayesian Statistics 4
(1992), 763–773.

[17] S. Raible, Lévy processes in finance: Theory, numerics, and empirical facts,
Ph.D. thesis, Albert-Ludwigs-Universität Freiburg i, Br., Germany, 2000.

[18] S. Rasmus, Derivative prices for models using lévy processes and markov
switching, Ph.D. thesis, Lund University, 2006.

[19] C. P. Robert and G. Casella, Monte carlo statistical methods, Springer
Verlag New York, Inc, 1999.

[20] J. Rosinkski S. Asmussen, Approximations of small jumps of levy processes
with view towards simulation, Journal of Applied Probability 38 (2001),
no. 2, 482–493.

[21] Neil Shephard, Estimation of an asymmetric model of asset prices, Journal
of Business and Economic Statistics (1996), no. 14, 429–434.

