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Abstract
In this paper we aim at generalizing the results of A. K. Zvonkin (That removes the drift,
22, 129, 1974) and A. Y. Veretennikov (Theory Probab. Appl., 24, 354, 1979) on the con-
struction of unique strong solutions of stochastic differential equations with singular drift
vector field and additive noise in the Euclidean space to the case of infinite-dimensional
state spaces. The regularizing driving noise in our equation is chosen to be a locally non-
Hölder continuous Hilbert space valued process of fractal nature, which does not allow for
the use of classical construction techniques for strong solutions from PDE or semimartin-
gale theory. Our approach, which does not resort to the Yamada-Watanabe principle for the
verification of pathwise uniqueness of solutions, is based on Malliavin calculus.
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1 Introduction

The main objective of this paper is the construction of (unique) strong solutions of infinite-
dimensional stochastic differential equations (SDEs) with a singular drift and additive noise.
In fact, we want to derive our results from the perspective of a rather recently established
theory of stochastic regularization (see [19] and the references therein) with respect to a new
general method based on Malliavin calculus and another variational technique which can be
applied to different types of SDEs and stochastic partial differential equations (SPDEs).

In order to explain the concept of stochastic regularization, let us consider the first-order
ordinary differential equation (ODE)

0 0 (1)

for a vector field 0 , where is a separable Hilbert space with norm
.

Using Picard iteration, it is fairly straight forward to see that the ODE Eq. 1 has a
unique (global) solution 0 , if the driving vector field satisfies a linear growth
and Lipschitz condition, that is

1 1

and

2

for all and with constants 1 2 .
However, well-posedness in the sense of existence and uniqueness of solutions may fail,

if the vector field lacks regularity, that is if e.g. is not Lipschitz continuous. In this case,
the ODE Eq. 1 may not even admit the existence of a solution in the case .

On the other hand, the situation changes, if one integrates on both sides of the ODE (1)
and adds a “regularizing” noise to the right hand side of the resulting integral equation.

More precisely, if , well-posedness of the ODE Eq. 1 can be restored via regu-
larization by a Brownian (additive) noise, that is by a perturbation of the ODE Eq. 1 given
by the SDE

0 0 (2)

where 0 is a Brownian motion in and 0.
If the vector field is merely bounded and measurable, it turns out that the SDE Eq. 2

– regardless how small is – possesses a unique (global) strong solution, that is a solution
0 , which as a process is a measurable functional of the driving noise 0 .

This surprising and remarkable result was first obtained by A. K. Zvonkin [41] in the
one-dimensional case, whose proof, using PDE techniques, is based on a transformation
(“Zvonkin-transformation”), that converts the SDE Eq. 2 into a SDE without drift part. Sub-
sequently, this result was generalized by A. Y. Veretennikov [39] to the multi-dimensional
case. Much later, that is 35 years later, Zvonkin’s and Veretennikov’s results were extended
by G. Da Prato, F. Flandoli, E. Priola and M. Röckner [13] to the infinite-dimensional set-
ting by using estimates of solutions of Kolmogorov’s equation on Hilbert spaces. In fact,
the latter authors study mild solutions 0 to the SDE

0 0 ,

where 0 is a cylindrical Brownian motion on , a negative self-
adjoint operator with compact resolvent, a non-negative definite self-adjoint
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bounded operator and . Here, the authors prove for under
certain conditions on and the existence of a unique mild solution, which is adapted to a
completed filtration generated by 0 . So restoration of well-posedness of the ODE
Eq. 1 with a singular vector field is established via regularization by both the cylindrical
Brownian noise 0 and , which cannot be chosen to be the zero operator.

Other works in this direction in the infinite-dimensional setting based on different meth-
ods are e.g. A. S. Sznitman [38], A. Y. Pilipenko, M. V. Tantsyura [36] in connection
with systems of McKean-Vlasov equations and G. Ritter, G. Leha [25] in the case of dis-
continuous drift vector fields of a rather specific form. We also refer to the references
therein.

In this article, we aim at restoring well-posedness of singular ODE’s by using a cer-
tain non-Hölder continuous additive noise of fractal nature. More specifically, we want to
analyze solutions to the following type of SDE:

0
0 (3)

where the valued regularizing noise 0 is a stationary Gaussian process with
locally non-Hölder continuous paths given by

1

.

Here 1 , 1 is an orthonormal basis of and 1 are independent
one-dimensional fractional Brownian motions with Hurst parameters 0 1

2 , 1,
such that

0

for .
Under certain (rather mild) growth conditions on the Fourier components , 1, of

the singular vector field 0 (see Eqs. 22 and 23), which do not necessarily
require that all are equal (compare e.g. to [38]), we show in this paper the existence of
a unique (global) strong solution to the SDE Eq. 3 driven by the non-Markovian process

0 .
Our approach for the construction of strong solutions to Eq. 3 relies on Malliavin calculus

(see e.g. D. Nualart [32]) and another variational technique, which involves the use of spatial
regularity of local time of finite-dimensional approximations of . In contrast to the above
mentioned works (and most of other related works in the literature), the method in this paper
is not based on PDE, Markov or semimartingale techniques. Furthermore, our technique
corresponds to a construction principle, which is diametrically opposed to the commonly
used Yamada-Watanabe principle (see e.g. [40]): Using the Yamada-Watanabe principle,
one combines the existence of a weak solution to a SDE with pathwise uniqueness to obtain
strong uniqueness of solutions. So

Weak existence Pathwise uniqueness Strong uniqueness .

This tool is in fact used by many authors in the literature. See e.g. the above mentioned
authors or I. Gyöngy, T. Martinez [22], I. Gyöngy, N. V. Krylov [21], N. V. Krylov, M.
Röckner [24] or S. Fang, T. S. Zhang [18], just to mention a few.

However, using our approach, verification of the existence of a strong solution, which is
unique in law, provides strong uniqueness:

Strong existence Uniqueness in law Strong uniqueness .
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See also H. J. Engelbert [17] in the finite-dimensional Brownian case regarding the latter
construction principle.

In order to briefly explain our method in the case of time-homogeneous vector fields,
we mention that we apply an infinite-dimensional generalization of a compactness cri-
terion for square integrable Brownian functionals in 2 , which is originally due to
G. Da Prato, P. Malliavin, and D. Nualart [32], to a double-sequence of strong solutions

0 1 0 associated with the following SDE’s

0
0 . (4)

Here 0 is an approximating double-sequence of vector fields of the singular
drift , which are smooth and live on dimensional subspaces of .

The application of the above mentioned compactness criterion (for each fixed ), how-
ever, requires certain (uniform) estimates with respect to the Malliavin derivative of
in the direction of a cylindrical Brownian motion. For this purpose, the Malliavin deriva-
tive 1 2 2 0 ( 1 2 is the space of valued
Malliavin differentiable random variables and is the space of Hilbert-Schmidt
operators from to ) in connection with a chain rule is applied to both sides of (4) and
one obtains the following linear equation:

1

(5)

where is the derivative of , the inner product and a certain kernel
function defined for Hurst parameters 0 1

2 .
We remark here that this type of linearization based on a stochastic derivative actually

corresponds to the Nash-Moser principle, which is used for the construction of solutions of
(non-linear) PDE’s by means of linearization of equations via classical derivatives. See e.g.
J. Moser [31].

In a next step we then can derive a representation of (under a Girsanov change
of measure) in Eq. 5 which is not based on derivatives of by using Picard iteration and
the following variational argument:

1 ...

1

where 1
1 ... 1 ... 1 ... and is a smooth function

with compact support. Here stands for a partial derivative of order with respect a
multi-index . Further, is a spatially differentiable local time of on a simplex
scaled by non-negative integrable function 1 ... .

Then, using the latter we can verify the required estimates for the Malliavin derivative of
the approximating solutions in connection with the above mentioned compactness criterion
and we finally obtain (under some additional arguments) that for each fixed

in 2

for 0 , where 0 is the unique strong solution to Eq. 3.
Finally, let us also mention a series of papers, from which our construction method grad-

ually evolved: We refer to the works [27–30] in the case of finite-dimensional Brownian
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noise. See [20] in the Hilbert space setting in connection with Hölder continuous drift vector
fields. In the case of SDEs driven by Lévy processes we mention [23]. Other results can be
found in [1, 6] with respect to SDEs driven by fractional Brownian motion and related noise.
See also [7] in the case of “skew fractional Brownian motion”, [5] with respect to singular
delay equations and [8] in the case of Brownian motion driven mean-field equations.

We shall also point to the work of R. Catellier and M. Gubinelli [11], who prove exis-
tence and path by path uniqueness (in the sense of A. M. Davie [15]) of strong solutions of
fractional Brownian motion driven SDEs with respect to (distributional) drift vector fields
belonging to the Besov-Hölder space , . The approach of the authors is based
inter alia on the theorem of Arzela-Ascoli and a comparison principle based on an average
translation operator. In the distributional case, that is 0, the drift part of the SDE is
given by a generalized non-linear Young integral defined via the topology of . See
also D. Nualart, Y. Ouknine [33] in the one-dimensional case.

The structure of our article is as follows: In Section 2 we introduce the mathematical
framework of this paper. Further, in Section 3 we discuss some properties of the process

and weak solutions of the SDE Eq. 3. Section 4 is devoted to the construction of unique
strong solutions to the SDE Eq. 3. In Section 5, examples of singular vector fields for which
strong solutions exist are given. Finally, Appendices A, B and C contain, respectively,
a compactness criterion, an integration by parts formula and some technical lemmas and
estimates that will be used throughout the article.

Notation For the sake of readability we assume throughout the paper that 1
is a finite time horizon. We define to be an infinite-dimensional separable real-valued
Hilbert space with scalar product and orthonormal basis 1. Denote by the

induced norm on defined by
1
2 , . For every and 1 we

denote by the projection onto the subspace spanned by , 1. Loosely
speaking we are referring to the subspace spanned by , 1, as the -th dimension. In
line with this notation we denote the projection of the SDE Eq. 3 on the subspace spanned
by , 1, by . Moreover we can write the SDE Eq. 3 as an infinite
dimensional system of real-valued stochastic differential equations, namely

0
0 1

where and are the projections on the subspace spanned by , 1, of and ,
respectively. Note here that the function 0 has still domain 0 .
Furthermore, we define the truncation operator , 1, which maps an element
onto the first dimensions, by

1

. (6)

The truncated space is denoted by . We define the change of basis operator
2 by

1 1

(7)

where 1 is an orthonormal basis of 2. It is easily seen that the operator is a bijection
and we denote its inverse by 1 2 .
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Further frequently used notation:

Let denote a measurable space and a normed space. Then
2 denotes the space of square integrable functions over taking values in
and is endowed with the norm

2
2

2 .

The space 2 denotes the space of square integrable random variables on the
sample space measurable with respect to the -algebra .
We define .
For any vector we denote its transposed by .
We denote by Id the identity operator.
The Jacobian of a differentiable function is denoted by .
For any multi-index of length and any -dimensional vector we define

1 .
For two mathematical expressions 1 2 depending on some parameter we
write 1 2 , if there exists a constant 0 not depending on such that

1 2 .
Let be some countable set. Then we denote by # its cardinality.

2 Preliminaries

2.1 Shuffles

Let and be two integers. We denote by the set of shuffle permutations, i.e. the
set of permutations 1 1 such that 1 and

1 . Equivalently we denote for integers and by the set
of shuffle permutations of sets of size , i.e. the set of permutations 1
1 such that 1 1 for all 0 1.

Furthermore the -dimensional simplex of the interval is defined by

1 0 1 .

Note that the product of two simplices can be written as

1 0 N (8)

where the set N has Lebesgue measure zero and denotes the shuffled vector
1 . For the sake of readability we denote throughout the paper the inte-

gral over the simplex of the product of integrable functions 0 ,
1 , by

1 1 1 1

2 1.

Due to Eq. 8, we get for integrable functions 0 , 1 , that

1 1 1

. (9)
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For a proof of a more general result we refer the reader to [6, Lemma 2.1].

2.2 Fractional Calculus

In the following we give some basic definitions and properties on fractional calculus. For
more insights on the general theory we refer the reader to [34] and [37].

Let with , with 1 and 0. We define the left-
and right-sided Riemann-Liouville fractional integrals by

1 1

and
1 1

for almost all . Here denotes the gamma function.
Furthermore, for any given integer 1, let and denote the images

of by the operator and , respectively. If 0 1 as well as
and , we define the left- and right-sided Riemann-Liouville fractional

derivatives by

1

1
(10)

and

1

1
(11)

respectively. The left- and right-sided derivatives of and defined in Eqs. 10 and 11 admit
moreover the representations

1

1 1

and
1

1 1
.

Last, we get by construction that similar to the fundamental theorem of calculus

(12)

for all , and

(13)

for all . Equivalent results hold for and .

2.3 Fractional BrownianMotion

The one-dimensional fractional Brownian motion, in short fBm, 0 with

Hurst parameter 0 1
2 on a complete probability space is defined as a

centered Gaussian process with covariance function

1

2
2 2 2 .
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Note that
2 2 and hence has stationary increments and almost

surely Hölder continuous paths of order for all 0 . However, the increments
of , 0 1

2 , are not independent and is not a semimartingale, see e.g. [32,
Proposition 5.1.1].

Subsequently we give a brief outline of how a fractional Brownian motion can be
constructed from a standard Brownian motion. For more details we refer the reader to [32].

Recall the following result (see [32, Proposition 5.1.3]) which gives the kernel of a
fractional Brownian motion and an integral representation of in the case of 1

2 .

Proposition 2.1 Let 1
2 . The kernel

1
2 1

2
1

2

1
2

3
2

1
2 (14)

where 2

1 2 1 2 1
2

and is the beta function, satisfies

0
. (15)

Subsequently, we denote by a standard Brownian motion on the complete filtered
probability space , where 0 is the natural filtration of
augmented by all -null sets. Using the kernel given in Eq. 14 it is well known that the
fractional Brownian motion has a representation

0
0

1

2
. (16)

Note that due to representation Eq. 16 the natural filtration generated by is identical to
. Furthermore, equivalent to the case of a standard Brownian motion, it exists a version

of Girsanov’s theorem for fractional Brownian motion which is due to [16, Theorem 4.9].
In the following we state the version given in [33, Theorem 3.1].

But first let us define the isomorphism from 2 0 onto
1
2

0
2 (see [16,

Theorem 2.1]) given by

2
0

1
2

1
2

0

1
2 2 0 . (17)

From Eq. 17 and the properties of the Riemann-Liouville fractional integrals and derivatives
Eqs. 12 and 13, the inverse of is given by

1 1
2

1
2
0

1
2 2

0

1
2

0
2 .

It can be shown (see [33]) that if is absolutely continuous

1 1
2

1
2

0

1
2 (18)

where denotes the weak derivative of .

Theorem 2.2 (Girsanov’s theorem for fBm) Let 0 be a process with

integrable trajectories and set 0 0 . Assume that

(i) 0

1
2

0
2 0 , -a.s., and
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(ii) 1, where

exp
0

1

0

1

2 0

1

0

2

.

Then the shifted process is an – fractional Brownian motion with Hurst parameter

under the new probability measure defined by .

Remark 2.3 Theorem 2.2 can be extended to the multi- and infinite-dimensional cases,
which will be considered in this paper primarily. Indeed, note first that the measure change
in Girsanov’s theorem acts dimension-wise. In particular, consider the two dimensional
shifted process

1 1

0

1

2 2

0

2 0

where 1 and 2 are two fractional Brownian motions with Hurst parameters 1 and
2 generated by the independent standard Brownian motions 1 and 2 , respectively,

and 1 and 2 are two shifts fulfilling the conditions of Theorem 2.2. Then the measure
change with respect to the stochastic exponential

1 exp
0

1
1

0

1 1 1

2 0

1
1

0

1
2

yields the two dimensional process
1 1

2 2

0

2 0 .

Here, 1 is a fractional Brownian motions with respect to the measure defined by
1 . Note that 2 is still a fractional Brownian motion under , since 1 and 2 are

independent. Applying Girsanov’s theorem again with respect to the stochastic exponential

2 exp
0

1
2

0

2 2 1

2 0

1
2

0

2
2

yields the two dimensional process
1 1

2 2 0

where 1 and 2 are independent fractional Brownian motions with respect to the
measure defined by

2 1 .

Repeating iteratively yields the stochastic exponential – if well-defined –

1
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acting on infinite dimensions.

Finally, we give the property of strong local non-determinism of the fractional Brownian
motion with Hurst parameter 0 1

2 which was proven in [35, Lemma 7.1]. This
property will essentially help us to overcome the limitations of not having independent
increments of the underlying noise.

Lemma 2.4 Let be a fractional Brownian motion with Hurst parameter 0 1
2 .

Then there exists a constant K dependent merely on such that for every 0 and
0

Var K 2 .

3 Cylindrical Fractional BrownianMotion andWeak Solutions

We start this section by defining the driving noise 0 in SDE Eq. 3. Let 1 be
a sequence of independent one-dimensional standard Brownian motions on a joint complete
probability space . We define the cylindrical Brownian motion taking values
in by

1

0

and denote by 0 its natural filtration augmented by the -null sets. More-

over, we define a sequence of Hurst parameters 1 0 1
2 with the following

properties:

(i) 1
1
6

(ii) sup 1
1

12

Using we construct the sequence of fractional Brownian motions 1 associated to
1 by

0
0 1

where the kernel is defined as in Eq. 14. Note that the fractional Brownian
motions 1 are independent by construction. Consequently, we define the cylindrical
fractional Brownian motion with associated sequence of Hurst parameters by

1

0 . (19)

Nevertheless, the cylindrical fractional Brownian motion is not in the space 2 .
That is why we consider the operator defined by

1

2
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for a given sequence of non-negative real numbers 1
2 such that

1
1. In particular, is a self-adjoint operator and we have that the weighted

cylindrical fractional Brownian motion

1

(20)

lies in 2 for every 0 . Due to the following lemma the stochastic process
0 is continuous in time.

Lemma 3.1 The stochastic process 0 defined in Eq. 20 has almost surely
continuous sample paths on 0 .

Proof Note first that due to [10][Theorem 1] for any fractional Brownian motion with
Hurst parameter 0 1

2 there exists a constant 0 independent of such that

sup
0

. (21)

Using monotone convergence and Eq. 21 we have that

sup
0

sup
0 1 1

sup
0

1

.

Thus, 0 is almost surely finite and 0 1 is a Cauchy
sequence in 1 0 which converges almost surely to 0 .

Before we come to the next result, let us recall the notion of a weak solution and
uniqueness in law.

Definition 3.2 The sextuple is called a weak solution of stochastic
differential Eq. 3, if

(i) is a complete filtered probability space, where 0 satisfies
the usual conditions of right-continuity and completeness,

(ii) 0 is a weighted cylindrical fractional -Brownian motion as
defined in Eq. 20, and

(iii) 0 is a continuous, -adapted, -valued process satisfying -a.s.

0
0 .

Remark 3.3 For notational simplicity we refer solely to the process as a weak solution (or
later on as a strong solution) in the case of an unambiguous stochastic basis .

Definition 3.4 We say a weak solution 1 with respect to the stochastic basis
1 1 1 1 1 of the SDE Eq. 3 is weakly unique or unique in law, if for any other
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weak solution 2 of Eq. 3 on a potential other stochastic basis 2 2 2 2 2 it holds
that

1
1

2
2

whenever 1
1
0

2
2
0
.

Proposition 3.5 Let 0 be a measurable and bounded function with
for every 1 where 1

1. Then SDE Eq. 3 has a
weak solution 0 such that

sup
0

2 .

Moreover, the solution is unique in law.

Proof Let 1 be a sequence of independent standard Brownian motions on the fil-
tered probability space . Consider the cylindrical fractional Brownian motion

generated by 1 as defined in Eq. 19 with associated sequence of Hurst
parameters . We define the stochastic exponential by

exp
1

0
1

0
1

1
2 0

1
0

1
2

.

In order to show that the stochastic exponential is well-defined we first have to verify that
for every 1

0

1
1
2

0
2 0 a.s..

Due to Eq. 18 this property is fulfilled, if for all 1

0

1
2

which holds since . Furthermore, we can find a constant 0 such that

exp
1

2
1 0

1

0

1
2

exp 2

1

2 .

Hence, by Novikov’s criterion is a martingale, in particular 1 for all
0 . Consequently, under the probability measure , defined by , the process

0
1 , 0 , is a cylindrical fractional Brown-

ian motion due to Theorem 2.2 and Remark 2.3. Therefore, , where
, is a weak solution of SDE Eq. 3. Since the probability measures

are equivalent, the solution is unique in law.
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4 Strong Solutions andMalliavin Derivative

After establishing the existence of a weak solution, we investigate under which conditions
SDE Eq. 3 has a strong solution. Therefore, let us first recall the notion of a strong solution
and moreover the notion of pathwise uniqueness.

Definition 4.1 A weak solution of the stochastic differential Eq. 3 is
called strong solution, if is the filtration generated by the driving noise and augmented
with the -null sets.

Definition 4.2 We say a weak solution 1 of Eq. 3 is pathwise unique, if
for any other weak solution 2 on the same stochastic basis,

1 2 0 1.

The cause of this paper is to establish the existence of strong solutions of stochas-
tic differential Eq. 3 for singular drift coefficients . More precisely, we define the class
B 0 of measurable functions 0 for which there exist
sequences 1 and 1 such that for every 1

sup sup
0

and

sup
1

sup
0

1 (22)

where 1 and is the defined by

1

K (23)

for K 1 being the local non-determinism constant of 1 as given in Lemma 2.4.
In order to prove the existence of a strong solution for drift coefficients of class

B 0 we proceed in the following way:

1) We define an approximating double-sequence 1 0 for drift coefficients of
type Eq. 22 which merely act on dimensions and are sufficiently smooth

2) For every 1 and 0, we prove that the SDE

0
0 (24)

has a unique strong solution which is Malliavin differentiable
3) We show that the double-sequence of strong solutions converges weakly to

, where is the unique weak solution of SDE Eq. 3
4) Applying a compactness criterion based on Malliavin calculus, we prove that the

double-sequence is relatively compact in 2

5) Last, we show that is adapted to the filtration and thus is a strong solution of
SDE Eq. 3
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4.1 Approximating Double-Sequence

Recall the truncation operator , 1, defined in Eq. 6 and the change of basis operator
defined in Eq. 7. We define the operator as . For every 1

let the function 0 be defined by

1 . (25)

Let , 0, be a mollifier on such that for any locally integrable function 0
and for every 0 the convolution is smooth and

0

almost everywhere with respect to the Lebesgue measure. Finally, we define for every 1
and 0 the double-sequence 0 by

1 . (26)

Analogously to Eq. 25, we define for 0 and
1 . (27)

Due to the definition of the mollifier we have that for every 1

1 1

0

1 1 (28)

for almost every 0 with respect to the Lebesgue measure. Thus, due to
Eq. 28 and the canonical properties of the truncation operator we have that

0

pointwise in 0 , where . Due to the assumptions on we further get for
every 2 using dominated convergence that

lim lim
0 0

1

0.

Hence, we can speak of an approximating double-sequence 1 0 of the drift
coefficient . In line with the previously used notation we define

.

Moreover, note that B 0 .

Remark 4.3 Note that we needed to truncate and shift the domain of the function to
merely in order to apply mollification.

4.2 Malliavin Differentiable Strong Solutions for Regular Drifts

In the following proposition we establish the existence of a unique strong solution for a
class of drift coefficients which contains the approximating sequence 1 0. More
specifically, we consider drift coefficients B 0 such that for all 1
and all 0

Lip
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where 2. We denote the space of such functions by L 0 .

Proposition 4.4 Let L 0 . Then SDE Eq. 3 has a pathwise unique strong
solution.

Proof In order to prove the existence of a strong solution we use Picard iteration and pro-
ceed similar to the well-known case of finite dimensional SDEs. More precisely, we define
inductively the sequence 0 and for all 1

0

1 0 . (29)

We show next that 0 is a Cauchy sequence in 2 0 . Indeed, due to
monotone convergence we get for every 1 and 0

1
2

1
2

0

1
2

1
2

(30)

0 1

1
2

1
2

2

0

1
2

1
2

and

1 0
2

1
2

0

2
1
2

2 .

By induction we obtain for every 0 a constant depending on , and such that

1
2

1
2 1

1
1.

Hence, for every 0

2 0

1
1

2 0

1

0

1
2

1
2

1 1

1

3
2 .

Since is bounded by
1
2 , the series converges and

0.

Therefore 0 is a Cauchy sequence in 2 0 . Define

lim



D. Baños et al.

as the 2 0 limit of 0. Then is adapted for all 0 since
this holds for all , 0. We prove that solves SDE Eq. 3:

We have for all 0 and 0 that

1

0
.

Using the Lipschitz continuity of , we get

0

2
1
2

0 1

2

1
2

2

0

2
1
2

0.

Hence, 0 is a strong solution of SDE Eq. 3.
In order to show pathwise uniqueness, let and be two strong solutions on the same

stochastic basis with the same initial condition. Then for all 0 we get
similar to Eq. 30 that

2
1
2

2

0

2
1
2

.

Using Grönwall’s inequality yields that 2 0 for all 0 , and therefore
-a.s. for all 0 . But since and are almost surely continuous we get

1 2 0 1.

Next we investigate under which conditions the unique strong solution is Malliavin dif-
ferentiable. But let us start with a definition of Malliavin differentiability of a random
variable in the space .

Definition 4.5 Let be an -valued square integrable functional of the cylindrical
Brownian motion 0 . We define the operator , 1, such that

1

as the Malliavin derivative in the direction of the -th Brownian motion . Here,
, 1, is the (standard) Malliavin derivative with respect to the Brownian

motion of the square integrable random variable taking values in . We say a
random variable with values in is in the space 1 2 of Malliavin differentiable
functions in 2 if and only if

2
1 2

1 0

2 .

Moreover, a stochastic process 0 with values in is said to be in the space
1 2 0 if and only if for every 0

2
1 2

1 0

2 .
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By means of Definition 4.5 we extend the well-known chain rule in Malliavin Calculus,
cf. [32, Proposition 1.2.4], to Malliavin differentiable random variables taking values in .
But first we define the class 0 of Lipschitz continuous functions on with vanishing
Lipschitz constants.

We say a function is in the space 0 if there exist sequences of constants
2 such that for all 1 and

1

. (31)

Lemma 4.6 Let 0 with associated Lipschitz sequences 2 and
1 2 . Then, 1 2 and there exists a double-sequence 1 of random

variables with -a.s. for all 1 such that for every 1

1 1

. (32)

Moreover,

1 2 2 2 1 2 .

Proof First, consider the case for some 1, where is taking values in
. Using the chain rule, see [32, Proposition 1.2.4], and the notion of Malliavin Differen-

tiability in Definition 4.5, there exists a double-sequence 1 of random variables

with -a.s. for all 1 such that for every 1

1 1 1

. (33)

Recall the change of basis operator 2 defined in Eq. 7. Let now ,
where is taking values in . Define by 1. Then is
Lipschitz continuous in the sense of Eq. 31 with associated Lipschitz sequences 2

and due to equality Eq. 33 we get the identity

1 1

1 1 1 1

1 1

.

Thus, Eq. 32 holds for . Let finally , where is taking values
in . Recall the truncation operator defined in Eq. 6. Since is Lipschitz
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continuous, converges to in 2 . Furthermore, we have for every 1
that

2
1 2

1 0

2 (34)

1 1 0 1

2

2
2

1 0 1

2

2
2

2
2

1 0

2

2
2

2
2

2
1 2 .

Note that the double-sequence 1 1 depends on 1. Nevertheless,
1 2 is uniformly bounded in 1. Thus, due to [32, Lemma 1.2.3] and

dominated convergence we have 1 2 and converges weakly
to for every 1. Moreover, the sequence 1 is bounded by

for every 1. Hence, for every 1 there exists a subsequence 1 which

converges weakly to some random variable which is bounded by . Summarizing
we get that in 2 0

lim lim
1 1

1 1

where the last equality holds due to Eq. 34 and dominated convergence.

Define the class L0 0 by

L0 0

B 0 0 uniformly in 0

and note that 0 uniformly in 0 implies Lip ,
1, uniformly in 0 for some sequence 2. Thus, L0 0

L 0 .

Proposition 4.7 Let L0 0 . Then the unique strong solution 0 of
Eq. 3 is Malliavin differentiable.

Proof Recall the Picard iteration defined in Eq. 29

0

1 0 1 (35)
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and 0 . We denote the -th dimension of the infinite dimensional system Eq. 35
by .

Using the Picard iteration Eq. 35, we show that for every step 0 the process
is Malliavin differentiable. We prove this using induction. For 0 we have that for all

0 using Eq. 15

0
2

1 2
1 0

0
2

1 0 1

2

1 0

2

1 0

2 2

1

2

1

2 2 .

Now suppose that 1 2 for 0. Due to Lemma 4.6 is in 1 2

and we have for every 0 that

1 2 2 2 1 2

for some 2 independent of 0. Moreover, 0 is Malliavin
differentiable admitting for all 0 the representation

0
.

Thus, we get for 1 that

1
1 2

0

0

1 2

0
1 2

0
1 2

2 2

0
1 2

0
1 2

.

Hence, 1 is Malliavin differentiable in the sense of Definition 4.5. Moreover, we can
find a positive constant depending on and such that

1 2

0

1

.

Consequently, 2
1 2 is uniformly bounded in 0 and therefore, since

in 2 0 and the Malliavin derivative is a closable operator, also is Malliavin
differentiable in the sense of Definition 4.5.
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Let us finally put the previous results together and show that SDE Eq. 24 has a unique
Malliavin differentiable strong solution.

Corollary 4.8 Let 0 be defined as in Eq. 26. Then, SDE Eq. 24 has

a unique strong solution
0

which is Malliavin differentiable. Furthermore, the

Malliavin derivative has for 0 a.s. the representation

(36)

1

1

0 1 1 1
1 0

where and 0 is defined as in Eq. 27.

Proof If the drift function is in the class L0 0 , then SDE Eq. 24 has a
unique Malliavin differentiable strong solution by Propositions 4.4 and 4.7. Thus we merely
need to show that 0 uniformly in 0 . Let 0 and .
Then, using the triangular inequality and the mean-value theorem we get for all 1
that

1 1

1

1

1 1 1

1

sup
1

sup .

Note that we can find sequences 1 and 1 such that for all 1
we have sup . Hence, L0 0 .

It is left to show that representation Eq. 36 holds. First note that due to the definition of
the Malliavin derivative of a random variable with values in , see Definition 4.5, we
have that , for all 1. Consequently, we get for 0 using
Lemma 4.6 that the Malliavin derivative can be written as

1 .

Iterating this step yields

1 1

1 .

Further note that

1 1 1

.
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Thus, we get for every 1

1
1 1 1 1 1 1

1

(37)

where 0 and and consequently, representation Eq. 36 holds.

4.3 Weak Convergence

In this step we show that the sequence of unique strong solutions 1 0 of the
approximating SDEs Eq. 24 converge weakly to the weak solution of Eq. 3 where
B 0 .

Lemma 4.9 Let B 0 . Furthermore, let 0 be the weak solution
of Eq. 3. Consider the approximating sequence of strong solutions 0 1 0
of SDEs Eq. 24, where 0 is defined as in Eq. 26. Then, for every

0 and for any bounded continuous function

0

weakly in 2 .
Proof Using the Wiener transform

0

of some random variable 2 in 2 0 , it suffices to show for any
arbitrary 2 0 that

0
.

So, let 2 0 be arbitrary, then by using Girsanov’s theorem we get

0 1

1

0

1

0 1

1

0

1

0 1

1

0

1

0 1

1

0

1 .

Using the inequality
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we get

0 1

1

0

1

0 1

1

0

1

0 1

1

0

1

2

0 1

1

0

1

2

1 0

1

0

1 1

1 0

1

0

1

where

0 1

1

0

1

2

0 1

1

0

1

2

.

For every 1, we get with representation Eq. 18 that

1 1

0

1 1

1
2

1
2

0
1
2 1

1

1
2

0

1
2 1

2

which is bounded by

1 2
1
2

0

1
2 1

2

2
1
2

1
2

3

2

1

2
.
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Consequently, we get for every 1 using the Burkholder-Davis-Gundy inequality that

1 0

1

1 0

1
2

1
2

1

.

Hence, by dominated convergence

lim lim
0

1 0

1 0.

Equivalently, we have

0 1

1

0

1

1

.

Thus, again by dominated convergence

lim lim
0 0 1

1

0

1 0.

Similarly, one can show that vanishes for every 2 0 as 0 and
. Consequently,

0
weakly in 2 .

4.4 Application of the Compactness Criterion

Theorem 4.10 The double-sequence
1 0

of strong solutions of SDE Eq. 24 is

relatively compact in 2 .

Proof We are aiming at applying the compactness criterion given in Theorem A.3. There-
fore, let 0 1

2 and 0 for all 1 and define the sequence
2 , if 2 , 0, 0 2 1 where 0 for

. We have to check that there exists a uniform constant such that for all
1 0

2
(38)

1

2
2

2 2 0

and

1

1

1 2 2 2
0 0

2

2

1 2
. (39)

Note first that Eq. 38 is fulfilled due to the uniform boundedness of 1 0 and the
definition of the process 0 , see Eq. 20.
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Next we show uniform boundedness of Eq. 39. Note first that under the assumption
we have

.

Using iteration we obtain the representation

1 1

1 1

Id
1 1

where by Corollary 4.8

1

1

0 1 1 1
1 0 .

Consequently, we get due to Eq. 37 that

I1 I2 I3

where

I1

I2

1

1 1

0 1 1 1
1 0

I3 Id
1 0 1 1 1

1

1

1

0 1 1 1
1 0 .
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In the following we consider each I , 1 2 3, separately starting with the first. Due to

Lemma B.3 there exists 1 0 1
2 and a constant 1 0 such that

0 0

I1
2

2

1 2 1 0 0
1 2 1

1 .

Consider now I2. Define the density by

exp
1 0

1

0

1

1

2 0

1

0

1
2

.

Then applying Girsanov’s Theorem 2.2, monotone convergence and noting that
sup 1 sup 0 4 yields

I2
2

2

1 0 1 1

1 1

1
1

2

2

1 0 1 1

1 1

1
1

2

4

.

Using Eq. 9 yields that

A2
2

1 1

1
1

2

can be written as

A2
2

2

2

1

1

0

1 1

where for 1

1

Repeating the application of Eq. 9 yields

A2
4

4
4

4

1

3

0

1 1 .
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Defining
1

permits the use of Proposition B.2 with
4

1 4, 1 for all 1 4 and thus 4 . Consequently, we get using
the assumptions on and that

A2
4

1 1

1
1

4

4

# 4
4 12

2
4

1
2

4
1

1
1

4

1 0

1 2
1
4 1 4 2 1

2
4

1 4

8 1 8 4 2 1
2

4
1

1
2

28
4 3

2
4

4

1

4
1

4
1

4
4 1

2 4 1
2 4

where

sup
1 2

1
4

8 1 8 4 8 1
2

1
2

.

For 1 we have due to the assumptions on that

8
1

8 4 8
1

2

8 8 1 16 sup
1

4
16

3
4 0.

Thus, we have for sufficiently large that

16

3
4

16

3
1

16

3

4
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and therefore by the approximations in Remark B.7

1 2
1
4

8 1 8 4 8 1
2

1
2

2 8 2 10
1
4 16

3

2

20
1
8 16

3 1
1
2

2 8 10
1
4

15
8

16
3 1

1
2

where 0 is a constant which may in the following vary from line to line. Using Stirling’s
formula we have moreover that

10

16
3 1

2

1
120 20 10

10

32
3

16
3

32
3 4

3

2
3

2
3

2
3 1

.

Consequently, we have for that

2 8
15
8

1
2
3 1

1
4

.

Furthermore, using Lemma C.4 we have for every 1 that

0 1 1 1

4
1

4
1

1

4 4 .

Moreover, due to the assumptions on there exists a finite constant 0 which is
independent of and such that , cf. Eq. 62. Consequently, there exists a
constant 0 independent of , and such that for sufficiently large

2

0 1 1

28
4 3

2
4

1

4
1

4
1

4

15
2

2
3 1

1
4

and thus due to the comparison test

1

.

Hence, there exists a constant 2 0 independent of and such that

I2
2

2 2
4 2 2 1

2
2 1

2
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and thus we can find a 2 0 1
2 sufficiently small such that

0 0

I2
2

2

1 2 2

4 .

Equivalently, we can show for I3 that there exists a 3 0 1
2 such that

0 0

I3
2

2

1 2 2

4

where due to Lemma B.4. Here, is the constant in Eq. 14. Thus,
we can find a constant 0 independent of such that sup 0 1

6
.

Finally, we get with min 1 2 3 that we can find , 1, such that

1

1

1 2 2 2
0 0

2

2

1 2

1

1

1 2 2 2
0 0

2 3
1 I 2

2

1 2

1

2 4

1 2 2 2

uniformly in 1 and 0. Similarly, we can show that

1

2
2

2 2 0 1
(40)

uniformly in 1 and 0 and consequently the compactness criterion Theorem A.3
yields the result.

4.5 Adaptedness and Strong Solution

Finally, we can state and prove the main statement of this paper

Theorem 4.11 Let B 0 . Then SDE Eq. 3 has a unique Malliavin
differentiable strong solution.

Proof Let 0 be a weak solution of SDE Eq. 3 which is unique in law due to
Proposition 3.5. Due to Lemma 4.9 we know that for every bounded globally Lipschitz
continuous function

0

weakly in 2 . Furthermore, by Theorem 4.10 there exist subsequences 1
and 1 such that
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strongly in 2 . Uniqueness of the limit yields that is –measurable for all
0 . Since , we get that 0 is a unique strong solution of SDE

Eq. 3. Malliavin differentiability follows by Eq. 40 and noting that the estimate holds also
for 1.

5 Example

In this section we give an example of a drift function B 0 to show that
the class does not merely contain the null function.

Let 1 2 0 2 , 1, i.e. for all 1 we have for all 2

sup
0

sup
1

sup
0

(41)

such that 1 and define for every 1 an operator which is
invertible on such that for all 1

det 1 1 1

where 1. Then, we define

1 .

This yields

sup
0

sup
0

1

sup
0

sup
0

1

1
sup

0
det 1 1 1

.

Due to the definition 1 and 1 and thus B 0 .
A possible choice for is

2 1 1

where and , which obviously fulfills the assumptions Eq. 41. The operator
, 1, can for example be chosen such that there exists a finite subset such

that for all 1

1
K

1
.

and we have for every

.

Then is invertible on for every 1 and

det 1 1 1 1
K

1
.
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Appendix A: Compactness Criterion

The following result which is originally due to [14] in the finite dimensional case and which
can be e.g. found in [9], provides a compactness criterion of square integrable cylindrical
Wiener processes on a Hilbert space.

Theorem A.1 Let 0 be a cylindrical Wiener process on a separable Hilbert
space with respect to a complete probability space , where is generated
by 0 . Further, let be the space of Hilbert-Schmidt operators from
to and let 1 2 2 2 0 be the Malliavin derivative
in the direction of 0 , where 1 2 is the space of Malliavin differentiable random
variables in 2 .

Suppose that is a self-adjoint compact operator on 2 0 with
dense image. Then for any 0 the set

1 2
2

1
2 2 0

is relatively compact in 2 .

In this paper we aim at using a special case of the previous theorem, which is
more suitable for explicit estimations. To this end we need the following auxiliary result
from [14].

Lemma A.2 Denote by 0, with 0 1 the Haar basis of 2 0 1 . Define for any
0 1

2 the operator on 2 0 1 by

2 if 2 0 0 2

and
1 1.

Then for 1
2 we have that

2
2 0 1 2 2

2 0 1

1

1 2 2

1

0

1

0

2

1 2
.

Theorem A.3 Let be the Malliavin derivative in the direction of the -th component of
0 . In addition, let 0 1

2 and 0 for all 1. Define the sequence
2 , if 2 , 0, 0 2 1. Assume that 0 for

. Let 0 and the collection of all 1 2 such that

2

1

2
2

2 2 0 1

and

1

1

1 2 2 2

1

0

1

0

2
2

1 2
.

Then is relatively compact in 2 .
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Proof As before denote by 0, with 0 1 the Haar basis of 2 0 1 and by
1, an orthonormal basis of , where 0, is an orthonormal

basis of . Define a self-adjoint compact operator on 2 0 1 with dense
image by

0 1.

Then it follows for 1 2 from Lemma A.2 that

1
2

2 2 0 1

1 0

2 2
2 0 1

1

2
2

2 2 0 1

2
1

2
2

2 2 0 1

2
1

1

1 2 2 2

1

0

1

0

2
2

1 2

for a constant . So using Theorem A.1 we obtain the result.

Appendix B: Integration by Parts Formula

In this section we derive an integration by parts formula similar to [6] which is used in the
proof of Theorem 4.10 to verify the conditions of the compactness criterion Theorem A.3.
Before stating the integration by parts formula, we start by giving some definitions and
notations frequently used during the course of this section.

Let be a given integer. We consider the function 0 of the form

1

1 0 1 (42)

where 0 , 1 , are compactly supported smooth functions.
Further, we deal with the function 0 which is of the form

1

0 (43)

with integrable factors 0 , 1 .
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Let be a multi-index and its corresponding differential operator. For

1 0 we define the norm 1 1 and write

1

.

Let be an arbitrary integer. Given 1 1 0
and a shuffle permutation we define the shuffled functions

1

and

1

where is equal to if 1 1 , 0 1 . For a
multi-index , we define

1

2
2

1 (44)

and

1

2
2

1 (45)

where for any

1
1 2

2

2

1
1

1

.

Theorem B.1 Suppose the functions and defined in
Eqs. 44 and 45, respectively, are finite. Then,

2
1

(46)
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where
1

K 1 K
and K is the constant in Lemma 2.4, is a square

integrable random variable in 2 and

2 6

2
. (47)

Furthermore,

12

2

1
2

1

1 0 (48)

and the integration by parts formula

(49)

holds.

Proof For notational simplicity we consider merely the case 0 and write
0 . For any integrable function we have that

1 ... 1...
2

1 ... 1... 1 ... 2 1... 2

1 ... 1... 1 1 ... 2 1... 2

where the change of variables 1 ... 2 1 ... 2 was applied in the
last equality. Thus,

2
2 2 1

2
0 1

0

2

1

2 2 1
2

1

2
0

2

1

exp
2

1
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where we applied shuffling in the sense of Eq. 9. Taking the expectation on both sides
together with the independence of the fractional Brownian motions , 1 ... , yields
that

2

2 2 1
2

1

2
0

2

1

exp
1

2
Var

2

1

2 2 1
2

1

2
0

2

1

exp
1

2
1

Var
2

1
K

2 2 1
2

1

2
0

2

1 1

exp
1

2K
(50)

where 1 2 and

1 2
.

Moreover, we obtain for every that

2
0

2
1

2

1

1
2K

2
0 1

2

2

1

1
2 K (51)

where 1 2 . For every 1 we have by using substitution that

2

2

1

1
2 K (52)

K

det 1 2 2

2

1

K
1 2 1

2 .
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Considering a standard Gaussian random vector 0 Id2 , we get that

2

2

1

1 2 1
2 (53)

2
2

1

1 2 .

Using a Brascamp-Lieb type inequality which is due to Lemma C.1, we further get that

2

1

1 2 perm

2

2

1

where 1 and perm is the permanent of the covariance matrix

1 2 of the Gaussian random vector

1 2
1 ... 1 2

1

1 times

1 2
2 ... 1 2

2

2 times

and denotes the permutation group of size . Using an upper bound for the permanent
of positive semidefinite matrices which is due to [3], we find that

perm

2

2

1

2

2

1

. (54)

Now let 1
1 1 1 for some fixed 1 ... 2 . Then

1 2 1 2 .

Substitution gives moreover that

1 2 1 2 det 1 2 1

2 2

2 exp
1

2
.

(55)
Applying Lemma C.2 we get

2

2 exp
1

2

2 2 1 2

det 1 2
2 exp

1

2
2 1

2

2

det 1 2

1
2

(56)

where 2 Var 1 ... 2 without .

Subsequently, we aim at the application of the strong local non-determinism property of
the fractional Brownian motions, cf. Lemma 2.4, i.e. for all 0 exists a constant
K depending on and such that

Var K 2 .
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Hence, we get due to Lemmas C.5 and C.6 that

det 1 2 K
2 1

2
1 2 1 ... 2 2 1 (57)

and

2
1 K 2 1

2

2 K min 1
2

1
2 2 2 1

2
2 K 2 2 1

2 .

Thus,

2

1

2
K

2 4 2 . (58)

Concluding from Eqs. 54, 55, 56, and 58 we have that

perm 2

2

1

2
2

1

det 1 2 1

2

2

det 1 2

1
2

2 K
2 4 2 .

Consequently,

2

1

1 2 2 K 2 .

Therefore we get from Eqs. 50, 51, 52, 53, and 57 that

2

2 2
2
0 1

2

1
2K

2
2
0 1

K

det
1
2

2

1

1
2

2
2
0 1

K
1
2

1

2 K 2

2 6

1

K 2
2
0

1 .
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Since sup 1 K 0 1 , inequality Eq. 47 holds.
Next we prove the estimate Eq. 48. With inequality Eq. 47, we get that

2
1
2

12

2

1
2 .

Taking the supremum over 0 with respect to each function , i.e.

sup
0

1 ... 2

yields that

12

2
max

2

1
0

1
2

1

2
2

1

1
2

12

2
max

2

1
0

1
2

1
2

12

2 1
0

1
2

12

2 1

1 0

1
2 .

Finally, we show the integration by parts formula Eq. 49. Note that a priori one cannot
interchange the order of integration in Eq. 46, since e.g. for 1, 1 one gets an
integral of the Donsker-Delta function which is not a random variable in the usual sense.
Therefore, we define for 0,

2
0 1

where 0 . This yields

1

for a sufficient constant . Under the assumption that the above right-hand side is inte-
grable over , similar computations as above show that in
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2 as for all and . By Lebesgue’s dominated convergence theorem and
the fact that the Fourier transform is an automorphism on the Schwarz space, we obtain

lim

lim 2
0 1

lim
0

2
1

lim
0 1

which is exactly the integration by parts formula Eq. 49.

Applying Theorem B.1 we obtain the following crucial estimate (compare [1, 2, 6],
and [7]):

Proposition B.2 Let the functions and be defined as in Eqs. 42 and 43, respectively.
Further, let 0 and for some 1

for every 1 ... with 1 ... 0 1 . Let 0 be a multi-index. Assume
there exists such that

1

1 2
1

2
1 (59)

for all 1 and 1, where 0 is sufficiently small. Then there
exist constants (depending on ) and (depending on and ), such that for any
0 we have

1

12

2

1
2

1

1

1 0

1 2
1
4 1 2 1

2 1

2 1 2 4 2 1
2 1

1
2

.

In order to prove this result we need the following two auxiliary results.
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Lemma B.3 Let 0 1
2 and 0 be fixed. Then, there exists 0 1

2 and a

constant 0 independent of such that

0 0

2

1 2
.

Proof Let 0 be fixed. Write

1

2

where
1
2

1
2 and .

We continue with the estimation of . First, observe that there exists
a constant 0 1 such that

(60)

for every 0 and 1
2 0 1

2 as well as 0 1
2 . Indeed,

rewriting Eq. 60 yields using the substitution , 1 ,

1

1
.

Furthermore, since 1 we get that

lim
1

lim
1

1

1
lim

1

1 1

1 1
0

and

lim 0.

Moreover, for 2 we get the upper bound

0
1

1

1

1
1

and for 1 2 we have that

1

1

1

1 1
1 1 1.

This shows inequality Eq. 60 which then implies for 0 that

1
2

1
2

1
2

2 1
2 .
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Further,

1
2

1
2

1

1
1
2

1
2

1
2

1
2 .

Consequently, we get for 0 , 0 , that

1
2

1
2

where 0 is a constant merely depending on . Thus

0 0

2

1 2

0 0

1 2 2

2
2 1 2 2 1 2

0

2 1 4 2 1 2

0

1 2 2 2

0

2 1 4 2 2 1 2 2 2 2 1

2 1

0

2 1 4 2 2 1 2

2 2 2 4 2

4 6 2
4 6 2 1

for sufficiently small and . On the other hand, we have that

0

2

1 2

0

2 1 4 2 1 2
1 2 2

2

0

2 1 6 2 1 2 1 2 2

0

2 1 6 2 1 2 4 6 2 1.
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Therefore,

0 0

2

1 2
.

Lemma B.4 Let 0 1
2 , 0 and 1 0 1 be fixed. Assume

1
2 1 for all 1 . Then there exists a finite constant

0 depending only on and such that for 0

1

1

1
2

1
1

1
2

where

1 1

1
1
2 1

. (61)

Proof Recall, that for given exponents 1 and some fixed 1 we have
1

1
1 1

2
1

1.

Due to Lemma B.3 we have that for every 0 , 0 ,

1
2

1
2

for , where is the constant in Eq. 14 and 0 is some constant merely
depending on . Consequently, we get that

2

1 1
1

2 1
2

1
1

1

1
1

1

1
2 1

2

2 1
2

1
1

1
2 1

1

1
1

1

1
2 1 1 2

1 2
2

1 2
1
2 1 1

where

1 1
1

2
1 1 2 2 1.

Noting that

1

1

1
1
2 1 1 1

1
1

1
2 1 1

.

and iterative integration yields the desired formula.

Finally, we are able to give the proof of Proposition B.2.



D. Baños et al.

Proof of Proposition B.2 The integration by parts formula Eq. 49 yields that

1

.

Taking the expectation and applying Theorem B.1 we get that

1

12

2

1
2

1

1 0

where

1

2

2
0

1
2

1

.

Under the assumption 1 1 1
1
2 1

for all 1 ... 2 , we can apply Lemma B.4 and thus get

1
2

2
1

2

1

2 1 2 4 1
2

2
1 2

where 2 is defined as in Eq. 61. We define the constant by

2 sup
1 2

1
1

1 1 (62)

and thus an upper bound of 2 is given by

2
2

22
1 2 4 1

2
2

1 2
.

Note that 2
1 2 1 and

#
2 22 1

2

1
22 .
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Hence, it follows that
1
2

1
2

1

1 2
1
4 1 2 1

2 1

2 1 2 4 2 1
2 1

1
2

Proposition B.5 Let the functions and be defined as in Eqs. 42 and 43, respectively.
Let 0 and

for every 1 with 1 0 1 . Let 0 be a multi-index and
suppose that there exists such that

1

1 2
1

2
1

for all 1 and 1. Then there exist constants (depending on ) and
(depending on and ) such that for any 0 we have

1

12

2

1
2

1

1

1 0

1 2
1
4 1 2 1

2 1

2 1 2 4 2 1
2 1

1
2

.

The proof of Proposition B.5 is similar to the one of Proposition B.2 by using the
subsequent lemma instead of Lemma B.4 and thus it is omitted in this manuscript.

Lemma B.6 Let 0 1
2 , 0 and 1 0 1 be fixed. Assume

1
2 1 for all 1 . Then there exists a finite constant 0

depending only on and such that

1

1

1
2

1

0
1

1
2

where 0 is defined in Eq. 61.
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Proof Using similar arguments as in the proof of Lemma B.3 we get the following estimate

1
2

1
2

for every 0 and , where is the constant in Eq. 14 and
0 is some constant merely depending on . Thus,

2

1
1

2 1
2

1
1

1

1
1
2 1

2

2 1
2

1
1

1
2 1

1

1
1
2 1

1
1
2 1 1 2 1

1 2
1
2 1 2

2
1 2

1
2 1 1

.

Proceeding similar to the proof of Lemma B.4 yields the desired estimate.

Remark B.7 Note that

1

2 2 2

5
2 1

5
.

Indeed, since for 1 sufficiently large we have by Stirling’s formula that

2
1

12 2

we get by assuming without loss of generality that 1 for all 1 , that

1

2
1

1
24 4

2
2

24
8

5
1

5

2

2 5
2

2

2
1

5
2

5
2

2

2 2

5
2

5
2

2 2

5
2 1

5
.

Appendix C: Technical Results

The following technical result can be found in [26].

Lemma C.1 Assume that 1 ... are real centered jointly Gaussian random variables,
and 1 is the covariance matrix, then

1 ... perm
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where perm is the permanent of a matrix 1 defined by

perm
1

for the symmetric group .

The next lemma corresponds to [12, Lemma 2]:

Lemma C.2 Let 1 ... be mean zero Gaussian random variables which are linearly
independent. Then for any measurable function we have that

1
1
2Var 1 1... 2

1
2

detCov 1 ...
1
2 1

2
2

where 2
1 Var 1 2 ... .

Remark C.3 Note that here linearly independence is meant in the sense that det Cov 1 ...
0.

Lemma C.4 Let , 1 . Then, for every 1 and 1

1 1 1 1

(63)

and

lim
1 1

. (64)

Proof We proof Eq. 63 by induction. For 1 the result holds. Therefore we assume that
Eq. 63 holds for and we show that it also holds for 1. Thus, we get by the induction
hypothesis that

1 1 1

1

1 1 1
1

1 1 1

1 1
1

1 1

1

.

Equation 64 is an immediate consequence of Eq. 63 and the continuity of the function
for fixed 1.

The subsequent lemmas are due to [4].

Lemma C.5 Let 1 be a mean-zero Gaussian random vector. Then,

det Cov 1 Var 1 Var 2 1 Var 1 1 .

Lemma C.6 For any square integrable random variable and -algebras 1 2

Var 1 Var 2 .
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