
Algebraic Geometry 10 (2) (2023) 148–198

doi:10.14231/AG-2023-005

Cancellation theorems for reciprocity sheaves

Alberto Merici and Shuji Saito

Abstract

We prove cancellation theorems for reciprocity sheaves and cube-invariant modulus
sheaves with transfers of Kahn–Miyazaki–Saito–Yamazaki. This generalizes a cancella-
tion theorem for A1-invariant sheaves with transfers, which was proved by Voevodsky.
As an application, we get some new formulas for internal homs of the sheaves Ωi of
absolute Kähler differentials.

1. Introduction

We fix once and for all a perfect field k. Let Sm be the category of separated smooth schemes of
finite type over k. Let Cor be the category of finite correspondences: Cor has the same objects
as Sm, and morphisms in Cor are finite correspondences. Let PST be the category of additive
presheaves of abelian groups on Cor, called presheaves with transfers. Let NST ⊂ PST be the
full subcategory of Nisnevich sheaves, that is, those objects F ∈ PST whose restrictions FX

to the small étale site Xét over X are Nisnevich sheaves for all X ∈ Sm. By a fundamental
result of Voevodsky, the inclusion NST → PST has an exact left adjoint aVNis such that for
any F ∈ PST and X ∈ Sm, the restriction

(
aVNisF

)
X

is the Nisnevich sheafication of FX as a
presheaf on XNis. In Voevodsky’s theory of motives, a fundamental role is played by A1-invariant
objects F ∈ NST, namely such F that the maps F (X)→ F

(
X×A1

)
induced by the projection

X ×A1 → X are isomorphisms for all X ∈ Sm. The A1-invariant objects form a full abelian
subcategory HINis ⊂ NST that carries a symmetric monoidal structure ⊗Nis

HI such that

F ⊗Nis
HI G = hA

1,Nis
0 aVNis(F ⊗PST G) for F,G ∈ HINis ,

where ⊗PST is the symmetric monoidal structure on PST induced formally from that on Cor

and hA
1,Nis

0 is a left adjoint to the inclusion functorHINis → NST, which sends an object ofNST
to its maximal A1-invariant quotient in NST. For integers n > 0, the twists of F ∈ HINis are
then defined as

F (1) = F ⊗Nis
HI Gm , F (n) := F (n− 1)⊗Nis

HI Gm ,

where Gm ∈ NST is given by X → Γ(X,O×) for X ∈ Sm.

Noting that −⊗Nis
HI Gm is an endofunctor on HINis, we get a natural map

ιF,G : HomPST(F,G)→ HomPST(F (1), G(1)) for F,G ∈ HINis . (1.1)
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Cancellation theorems for reciprocity sheaves

One key ingredient in Voevodsky’s theory is the cancellation theorem [Voe10, Corollary 4.10],
which implies the following theorem.

Theorem 1.1. For F,G ∈ HINis, the map ιF,G is an isomorphism.

The purpose of this paper is to generalize Theorem 1.1 to reciprocity sheaves. The category
RSCNis of reciprocity sheaves was introduced in [KSY16, KSY22] as a full subcategory of NST
that contains HINis as well as interesting non–A1-invariant objects such as the additive group
scheme Ga, the sheaf of absolute Kähler differentials Ωi and the de Rham–Witt sheaves WnΩ

i.
In [RSY22], a lax monoidal structure ( , )RSCNis

on RSCNis is defined in such a way that

(F,G)RSCNis
= F ⊗Nis

HI G for F,G ∈ HINis .

It allows us to define the twists for F ∈ RSCNis recursively as

F ⟨1⟩ := (F,Gm)RSCNis
, F ⟨n⟩ := (F ⟨n− 1⟩,Gm)RSCNis

.

Some examples of twists were computed in [RSY22]: if F ∈ HINis, then F ⟨n⟩ = F (n); in partic-
ular, Z⟨n⟩ ∼= KM

n (the Milnor K-sheaf), and Ga⟨n⟩ ∼= Ωn if ch(k) = 0.

By the fact that (−,Gm)RSCNis
is an endofunctor on RSCNis, we get a natural map

(cf. (6.14))

ιF,G : HomPST(F,G)→ HomPST(F ⟨1⟩, G⟨1⟩) for F,G ∈ RSCNis , (1.2)

which coincides with (1.1) if F,G ∈ HINis. We will also get a natural map in NST:

λF : F → HomPST

(
KM

n , F ⟨n⟩
)

for F ∈ RSCNis , (1.3)

using the functoriality of (−,Gm)RSCNis
, where HomPST denotes the internal hom in PST.

The main result of this paper is the following.

Theorem 1.2 (Theorems 6.4 and 6.2). The maps ιF,G and λF are isomorphisms.

As an application of the above theorem, we prove the following.

Corollary 1.3 (Theorem 7.2). Assume ch(k) = 0. For integers m,n ⩾ 0, there are natural
isomorphisms in NST:

HomPST(Ω
n,Ωm) ∼= Ωm−n ⊕ Ωm−n−1 ,

HomPST

(
KM

n ,Ω
m
) ∼= Ωm−n ,

where Ωi = 0 for i < 0 by convention.

Let PS be the category of additive presheaves of abelian groups on Sm (without trans-
fers). Note that PST is viewed as a subcategory of PS. By a lemma due to Kay Rülling (see
Lemma 2.1), we have a natural isomorphism in PS:

HomPST(G,Ω
m) ∼= HomPS(G,Ω

m) for any G ∈ PST , (1.4)

where HomPS is the internal hom in PS. Thanks to (1.4), the isomorphisms of Corollary 1.3 and
their explicit descriptions (7.1) and (7.3) imply that

HomPS(Ω
n,Ωm) =

{
ω1 ∧ (−) + ω2 ∧ d(−) |ω1 ∈ Ωm−n

k , ω2 ∈ Ωm−n−1
k

}
,

HomPS

(
KM

n ,Ω
m
)
=

{
ω ∧ dlog(−) |ω ∈ Ωm−n

k

}
,
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where dlog : KM
n → Ωm is the map {x1, . . . , xn} → dlog x1∧· · ·∧dlog xn. It would be an interesting

question whether there is a direct proof of these formulas which does not use the machinery of
modulus sheaves with transfers explained below.

Reciprocity sheaves are closely related to modulus sheaves with transfers, introduced in
[KMSY21a, KMSY21b]: Voevodsky’s category Cor of finite correspondences is enlarged to a
new category MCor of modulus pairs: Its objects are pairs X = (X,D), where X is a sep-
arated scheme of finite type over k and D is an effective Cartier divisor on X such that
X ◦ := X − |D| ∈ Sm (here X ◦ is called the interior of X ). The morphisms are finite correspon-
dences on interiors satisfying some admissibility and properness conditions. Let MCor ⊂MCor
be the full subcategory of such objects (X,D) with X proper over k. There is a symmetric
monoidal structure ⊗ on MCor, which also induces one on MCor by restriction (cf. § 2.19).

We then define MPST (respectively, MPST) as the category of additive presheaves of
abelian groups on MCor (respectively, MCor). We have a functor

ω : MCor→ Cor ,
(
X,X∞

)
7→ X − |X∞|

and two adjunctions

MPST
τ∗
←−
τ!−→

MPST , MPST
ω∗
←−
ω!−→

PST ,

where ω∗ is induced by ω and ω! is its left Kan extension, and τ∗ is induced by the inclusion
τ : MCor → MCor and τ! is its left Kan extension, which turns out to be exact and fully
faithful.

For F ∈ MPST and X = (X,D) ∈ MCor, write FX for the presheaf on the small étale
site Xét over X given by U → F (XU ) for U → X étale, where XU = (U,D ×X U) ∈MCor. We
say that F is a Nisnevich sheaf if FX is one for all X ∈MCor. We write MNST ⊂MPST for
the full subcategory of Nisnevich sheaves.

The replacement of the A1-invariance in this new framework is the □-invariance, where
□ :=

(
P1,∞

)
∈MCor: Let CI ⊂MPST be the full subcategory of those objects F such that

the maps F (X ) → F
(
X ⊗ □

)
induced by the projection X ⊗ □ → X are isomorphisms for all

X ∈MCor. Let CIτ ⊂MPST be the essential image of CI under τ! and CIτ,sp ⊂ CIτ be the
full subcategory of semipure objects F , namely such objects that the natural maps F (X,D)→
F (X − D, ∅) are injective for all (X,D) ∈ MCor. We also define CIτ,spNis = CIτ,sp ∩MNST as

a full subcategory of MNST. A symmetric monoidal structure ⊗sp
CI

(
respectively, ⊗Nis,sp

CI

)
on

CIτ,sp
(
respectively, on CIτ,spNis

)
can be defined in the same spirit as ⊗Nis

HI (see § 4).

The relationship between reciprocity (pre)sheaves and □-invariant modulus (pre)sheaves with
transfers is encoded in

RSC = ω!(CIτ,sp) and RSCNis = ω!

(
CIτ,spNis

)
.

There is a pair of adjoint functors

CIτ,sp
ωCI

←−
ω!−→

RSC and CIτ,spNis

ωCI

←−
ω!−→

RSCNis

such that ωCIF = ω∗F for F ∈ HI. Moreover, the lax monoidal structure on RSCNis is induced
by the symmetric monoidal structure on CIτ,spNis via the formula

(F,G)RSCNis
:= ω!

(
ωCIF ⊗Nis,sp

CI ωCIG
)

for F,G ∈ RSCNis .
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Cancellation theorems for reciprocity sheaves

The endofunctor −⊗Nis,sp
CI ω∗Gm on CIτ,spNis induces a natural map for F ∈ CIτ,spNis :

ιF : F → HomMPST(ω
∗Gm, F ⊗Nis,sp

CI ω∗Gm) , (1.5)

where HomMPST denotes the internal hom in MPST. Now Theorem 1.2 will be a consequence
of the following result.

Theorem 1.4 (Corollary 4.6). For F ∈ RSCNis and F̃ = ωCIF ∈ CIτ,spNis , the map ι
F̃

is an
isomorphism.

We give an outline of the content of the paper: In Section 2, we first review basic definitions
and results of the theory of modulus (pre)sheaves with transfers and reciprocity sheaves from
[KMSY21a, KMSY21b] and [Sai20]. We also prove some technical lemmas which will be used in
the later sections.

In Section 3, we define the contraction functors γ on CIτ,sp and CIτ,spNis , which generalize
Voevodsky’s contraction functors on HI and HINis (cf. [MVW06, Lecture 23]) to the setting of
modulus (pre)sheaves with transfers. We prove some technical lemmas which will be used in the
later sections.

In Section 4, we define the symmetric monoidal structure ⊗sp
CI

(
respectively, ⊗Nis,sp

CI

)
on CIτ,sp(

respectively, on CIτ,spNis

)
using results from Section 2. The endofunctor − ⊗sp

CI ω
∗Gm on CIτ,sp

induces a natural map for F ∈ CIτ,sp:

ιF : F → HomMPST

(
ω∗Gm, F ⊗sp

CI ω
∗Gm

)
. (1.6)

We state the main result, Theorem 4.4: ιF is an isomorphism. Theorem 1.4 is deduced from it
by using results from Section 3.

The last half of Section 4 is devoted to the proof of the split-injectivity of the map ιF in (1.6).
In order to construct a section of ιF , we follow the same strategy as in [Voe10] by generalizing
the techniques used therein.

In Section 5, we finish the proof of Theorem 4.4 by showing the surjectivity of ιF . We again
follow the same strategy as in [Voe10] by generalizing the results of [Gra05, § 2.7]: here a technical
problem is that for (X,D) ∈ MCor, the diagonal map X → X × X does not induce a map
(X,D)→ (X,D)⊗ (X,D) in MCor but only induces a map (X, 2D)→ (X,D)⊗ (X,D), where
2D ↪→ X is the thickening of D ↪→ X defined by the square of the ideal sheaf. This is the
main reason why we need to work with CIτ,sp instead of CIτ , employing much more intricate
arguments than those in [Voe10] and [Gra05, § 2.7], for which we need the technical results in
Sections 2 and 3.

In Section 6, we deduce Theorem 1.2 from Theorem 1.4. In Section 7, we deduce Corollary 1.3
from Theorem 1.2.

Conventions 1.5. In the whole paper, we fix a perfect base field k. Let S̃m be the category of
k-schemes X which are essentially smooth over k; that is, X is a limit lim←−i∈I Xi over a filtered

set I, where Xi is smooth over k and all transition maps are étale. Note that SpecK ∈ S̃m for a
function field K over k thanks to the assumption that k is perfect. We frequently allow F ∈ PST
to take values on objects of S̃m by setting F (X) := lim−→i∈I F (Xi) for X as above.

2. Background on modulus sheaves with transfers

In this section, we recall the definitions and basic properties of modulus sheaves with transfers
from [KMSY21a] and [Sai20] (see also [KSY22] for a more detailed summary).
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2.1. Denote by Sch the category of separated schemes of finite type over k and by Sm the full
subcategory of smooth schemes. For X,Y ∈ Sm, an integral closed subscheme of X × Y that is
finite and surjective over a connected component of X is called a prime correspondence from X
to Y . The categoryCor of finite correspondences has the same objects as Sm, and forX,Y ∈ Sm,
the object Cor(X,Y ) is the free abelian group on the set of all prime correspondences from X
to Y (see [MVW06]). We consider Sm as a subcategory of Cor by regarding a morphism in Sm
as its graph in Cor.

Let PST = Fun(Cor,Ab) be the category of additive presheaves of abelian groups on Cor
whose objects are called presheaves with transfers. Let NST ⊆ PST be the category of Nisnevich
sheaves with transfers, and let

aVNis : PST→ NST (2.1)

be Voevodsky’s Nisnevich sheafification functor, which is an exact left adjoint to the inclusion
NST → PST. Let HI ⊆ PST be the category of A1-invariant presheaves, and put HINis =
HI∩NST ⊆ NST. The product × on Sm yields a symmetric monoidal structure on Cor, which
induces a symmetric monoidal structure on PST in the usual way.

2.2. We recall the definition of the category MCor from [KMSY21a, Definition 1.3.1]. A
pair X = (X,DX) of X ∈ Sch and an effective Cartier divisor D on X is called a mod-
ulus pair if X − |DX | ∈ Sm. Let X = (X,DX) and Y = (Y,DY ) be modulus pairs and
Γ ∈ Cor(X −DX , Y −DY ) be a prime correspondence. Let Γ ⊆ X × Y be the closure of Γ,

and let Γ
N → X×Y be the normalization. We say that Γ is admissible (respectively, left proper)

if (DX)
Γ
N ⩾ (DY )ΓN (respectively, if Γ is proper over X). Let MCor(X ,Y) be the subgroup

of Cor(X − DX , Y − DY ) generated by all admissible left proper prime correspondences. The
category MCor has modulus pairs as objects and MCor(X ,Y) as the group of morphisms from
X to Y.

2.3. Let MCorls ⊂MCor be the full subcategory of (X,D) ∈MCor with X ∈ Sm and |D|
a simple normal crossing divisor on X. As observed in [Sai20, Remark 1.14], after assuming
resolution of singularities, we can assume MCor ∼= MCorls, as for every object (X,D) ∈MCor,
there exists a proper birational map p : X ′ → X that is an isomorphism on X − |D| and such
that |p∗D| is a simple normal crossing divisor. Hence the modulus correspondence (X ′, D′) →
(X,D) induced by the graph of p is invertible in MCor.

2.4. There is a canonical pair of adjoint functors λ ⊣ ω:

λ : Cor→MCor , X 7→ (X, ∅) ,
ω : MCor→ Cor , (X,D) 7→ X − |D| .

2.5. There is a full subcategory MCor ⊂ MCor consisting of proper modulus pairs, where
a modulus pair (X,D) is proper if X is proper. Let τ : MCor ↪→MCor be the inclusion functor
and ω = ωτ .

2.6. For all n > 0, there is an endofunctor ( )(n) on MCor preserving MCor, such that
(X,D)(n) = (X,nD), where nD is the nth thickening of D.
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2.7. We have two categories of modulus presheaves with transfers:

MPST = Fun(MCor,Ab) and MPST = Fun(MCor,Ab) .

Let Ztr(X ) = MCor(−,X ) ∈ MPST be the representable presheaf for X ∈ MCor. In this
paper, we frequently write X for Ztr(X ) for simplicity.

2.8. The adjunction λ ⊣ ω induce a string of four adjoint functors (λ! = ω!, λ∗ = ω!, λ∗ = ω∗, ω∗)
(cf. [KMSY21a, Proposition 2.3.1]):

MPST

ω!

←−
ω!−→
ω∗
←−
ω∗−→

PST ,

where ω! and ω∗ are localisations and ω! and ω∗ are fully faithful.

2.9. The functor ω yields a string of three adjoint functors (ω!, ω
∗, ω∗) (cf. [KMSY21a, Propo-

sition 2.2.1]):

MPST

ω!−→
ω∗
←−
ω∗−→

PST ,

where ω! and ω∗ are localisations and ω∗ is fully faithful.

2.10. The functor τ yields a string of 3 adjoint functors (τ!, τ
∗, τ∗):

MPST

τ!−→
τ∗
←−
τ∗−→

MPST ,

where τ! and τ∗ are fully faithful and τ∗ is a localisation; τ! has a pro-left adjoint τ !, hence is
exact (cf. [KMSY21a, Proposition 2.4.1]). We will denote by MPSTτ the essential image of τ!
in MPST. Moreover, we have (cf. [KMSY21a, Lemma 2.4.2])

ω! = ω!τ! , ω∗ = τ∗ω∗ , τ!ω
∗ = ω∗ . (2.2)

2.11. For F ∈ MPST and X = (X,D) ∈ MCor, write FX for the presheaf on the small
étale site Xét over X given by U → F (XU ) for U → X étale, where XU = (U,D|U ) ∈ MCor.
We say that F is a Nisnevich sheaf if FX is for all X ∈MCor (see [KMSY21a, § 3]). We write
MNST ⊂MPST for the full subcategory of Nisnevich sheaves. Let MNST ⊂MPST be the
full subcategory of such objects F that τ!F ∈ MNST. By [KMSY21a, Proposition 3.5.3] and
[KMSY21b, Theorem 2], the inclusion functors

iNis : MNST→MPST and iNis : MNST→MPST

admit exact left adjoints aNis and aNis, respectively, and there are natural isomorphisms

τ!aNis ≃ aNisτ! and aNisτ
∗ ≃ τ∗aNis . (2.3)

Moreover, the adjunction from § 2.10 induces an adjunction

MNST
τ!−→
τ∗
←−

MNST .
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The functor aNis has the following description: For F ∈ MPST and Y ∈ MCor, let FY,Nis be
the usual Nisnevich sheafification of FY . Then, for (X,D) ∈MCor, we have

aNisF (X,D) = lim−→
f : Y→X

F(Y,f∗D),Nis(Y ) , (2.4)

where the colimit is taken over all proper maps f : Y → X that induce isomorphisms
Y − |f∗D| ∼−−→ X − |D|.

2.12. For X ∈ Sch, let Sh(XNis,Ab) be the abelian category of additive sheaves on XNis. By
the definition of MNST, we have an additive functor for X = (X,D) ∈MCor,

MNST→ Sh(XNis,Ab) , F 7→ FX .

The functor is not exact in general, but it is left exact by (2.4).

2.13. By [KMSY21b, Proposition 6.2.1], the functors ω∗ and ω! respect MNST and NST and
induce a pair of adjoint functors

MNST
ω!−→
ω∗
←−

NST ,

which are both exact. Moreover, we have

ω!aNis = aVNisω! and aNisω
∗ = ω∗aVNis .

2.14. We say that F ∈MPST (respectively, MPST) is semipure if the unit map

u : F → ω∗ω!F (respectively, u : F → ω∗ω!F )

is injective. For F ∈MPST (respectively, F ∈MPST), let F sp ∈MPST (respectively, F sp ∈
MPST) be the image of F → ω∗ω!F (respectively, F → ω∗ω!F ) (called the semipurification
of F ). One easily sees that the association F → F sp gives a left adjoint to the inclusion of the
full subcategories of semipure objects into MPST and MPST. For F ∈MPST, we have

τ!(F
sp) ≃ (τ!F )

sp . (2.5)

This follows from the fact that τ! is exact and commutes with ω∗ω! and ω∗ω! since τ!ω
∗ = ω∗

and ω!τ! = τ! (cf. § 2.10). In particular, F ∈MPST is semipure if and only if τ!F ∈MPST is.
For F ∈MPST, we have

aNis(F
sp) ≃ (aNisF )

sp , (2.6)

where the ( )sp on the right is defined for F ∈ MNST in the same way as above. This follows
from the fact that aNis is exact and commutes with ω∗ω! and ω

∗ω! (cf. § 2.13).

2.15. Let □ :=
(
P1,∞

)
∈ MCor. We say that F ∈ MPST is □-invariant if p∗ : F (X ) →

F (X ⊗ □) is an isomorphism for any X ∈ MCor, where p : X ⊗ □ → X is the projection. Let
CI be the full subcategory of MPST consisting of all □-invariant objects.

Recall from [KSY22, Theorem 2.1.8] that CI is a Serre subcategory of MPST and that

the inclusion functor i□ : CI → MPST has a left adjoint h□0 and a right adjoint h0
□
given for

F ∈MPST and X ∈MCor by

h□0 (F )(X ) = Coker
(
i∗0 − i∗1 : F

(
X ⊗□

)
→ F (X )

)
,

h0
□
(F )(X ) = Hom

(
h□0 (X ), F

)
,
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where for a ∈ k, the section ia : X → X ⊗□ is induced by the map k[t]→ k[t]/(t− a) ∼= k.

For X ∈MCor, we write h□0 (X ) = h□0 (Ztr(X )) ∈ CI.

2.16. Let CIτ = τ!CI ⊂ MPST be the essential image of CI under τ!. In this paper, for
F ∈ CI, we also let F denote τ!F ∈ CIτ by abuse of notation. Let CIsp ⊂ CI (respectively,
CIτ,sp ⊂ CIτ ) be the full subcategory of semipure objects. By (2.5), we have

F sp ∈ CIτ for F ∈ CIτ , (2.7)

and τ! and τ
∗ induce an equivalence of categories

τ! : CIsp ≃ CIτ,sp : τ∗ (2.8)

with natural isomorphisms τ∗τ! ≃ id and τ!τ
∗ ≃ id.

We also consider the full subcategories

CIspNis = CIsp ∩MNST ⊂MNST ,

CIτNis = CIτ ∩MNST ⊂MNST ,

CIτ,spNis = CIτ,sp ∩MNST ⊂MNST .

By [Sai20, Theorem 0.4], we have

aNis(CIτ,sp) ⊂ CIτ,spNis . (2.9)

By [KMSY21b, Theorem 2(1)], the maps τ! and τ
∗ induce an equivalence of categories

τ! : CIspNis ≃ CIτ,spNis : τ∗ (2.10)

with natural isomorphisms τ∗τ! ≃ id and τ!τ
∗ ≃ id.

2.17. We write RSC ⊆ PST for the essential image of CI under ω! (which is the same
as the essential image of CIτ,sp under ω! since ω! = ω!τ! and ω!F = ω!F

sp). Put RSCNis =
RSC∩NST. The objects of RSC (respectively, RSCNis) are called reciprocity presheaves (re-
spectively, sheaves). We have HI ⊆ RSC, and RSC also contains smooth commutative group
schemes (which may have non-trivial unipotent part), the sheaf Ωi of Kähler differentials and
the de Rham–Witt sheaves WΩi (see [KSY16, KSY22]).

2.18. By [KSY22, Proposition 2.3.7], we have a pair of adjoint functors

CI
ω!−→
ωCI

←−
RSC , (2.11)

where ωCI = h0
□
ω∗, which is fully faithful. It induces a pair of adjoint functors

CIτ
ω!−→
ωCI

←−
RSC , (2.12)

where ωCI = τ!h
0
□
ω∗, which is fully faithful. Indeed, let F = τ!F̂ for F̂ ∈ CI and G ∈ RSC. In

view of § 2.15 and the exactness and full faithfulness of τ!, we have

HomCIτ
(
F, τ!h

0
□
ω∗G

)
≃ HomCI

(
F̂ , h0

□
ω∗G

)
≃ HomMPST

(
F̂ , ω∗G

)
≃ HomMPST

(
τ!F̂ , ω

∗G
)
≃ HomRSC(ω!F,G) .
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By [KSY22, Theorem 2.4.1(2)], the pair (2.12) induce a pair of adjoint functors

CIτ,spNis

ω!−→
ωCI

←−
RSCNis . (2.13)

If F ∈ CIτ , the adjunction induces a canonical map F → ωCIω!F , which is injective if F ∈ CIτ,sp.

2.19. The category MCor is equipped with a symmetric monoidal structure given by

(X,DX)⊗ (Y,DY ) := (X × Y,DX × Y +X ×DY ) ,

and MCor is clearly a ⊗-subcategory. Notice that the product is not a categorical product since
the diagonal map is not admissible. It is admissible as a correspondence

(X,DX)(n) → (X,DX)⊗ (X,DX) for n ⩾ 2 .

The symmetric monoidal structure ⊗ on MCor (respectively, MCor) induces a symmetric
monoidal structure on MPST (respectively, MPST) in the usual way, and τ!, ω! and ω! from
§§ 2.10, 2.9 and 2.8 are all monoidal (see [RSY22, § 3]).

We end this section with some lemmas that will be needed in the rest of the paper.

The proof of the following lemma is due to Kay Rülling. We thank him for letting us include
it in our paper.

Lemma 2.1. Let p be the exponential characteristic of the base field k. Let F ∈ PST be such
that

(1) for all dominant étale maps U → X in Sm, the pullback F (X)→ F (U) is injective;

(2) F has no p-torsion.

Then, for any G ∈ PST, the natural map

HomPST(G,F )→ HomPS(G,F )

is an isomorphism.

Proof (by Kay Rülling). First, we prove HomPST(G,F ) = HomPS(G,F ); that is, any morphism
φ : G → F of presheaves on Sm is also a morphism in PST. We have to show that φ(f∗a) =
f∗φ(a) in F (X) for a ∈ G(Y ) and f ∈ Cor(X,Y ) a prime correspondence. By condition (1),
we can reduce to the case X = SpecK, with K a function field over k. In this case, we can
write f∗ = h∗g

∗, where h : SpecL → SpecK is induced by a finite field extension L/K and
g : SpecL → Y is a morphism. Since φ is a morphism of presheaves on Sm, we are reduced to
showing that

h∗φ(a) = φ(h∗a) , a ∈ G(L) . (2.14)

It suffices to consider the following two cases:

Case 1: L/K is finite separable. Let E/K be a finite Galois extension containing L/K,
and denote by j : SpecE → SpecK the induced morphism and by σi : SpecE → SpecL the
morphism induced by all K-embeddings of L into E. Since G ∈ PST, we obtain in G(E)

j∗h∗a =
(
ht ◦ j

)∗
a =

∑
i

σ∗i (a) .

Thus

j∗φ(h∗a) = φ(j∗h∗a) = φ

(∑
i

σ∗i (a)

)
=

∑
i

σ∗i φ(a) = j∗h∗φ(a) .
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Since j∗ : F (L)→ F (E) is injective by condition (1), this shows (2.14) in this case.

Case 2: L/K is purely inseparable of degree p. In this case, h∗h∗ = (ht ◦ h) : G(L)→ G(L) is
multiplication by p, as is h∗h

∗ : G(K)→ G(K). Thus

h∗φ(h∗a) = φ(h∗h∗a) = pφ(a) = h∗h∗φ(a) .

Applying h∗ yields pφ(h∗a) = ph∗φ(a); thus (2.14) follows from condition (2).

Next we prove the analogous statement for internal homs. Indeed, note that for X ∈ Sm, the
internal hom HomPST(Ztr(X), F ) ∈ PST also satisfies conditions (1) and (2) above and that we
have

HomPST(Ztr(X), F ) = F (X ×−) = HomPS(hX , F ) in PS , (2.15)

where hX = Z(HomSm(−, X)). Thus for G ∈ PST,

HomPST(G,F )(X) = HomPST(Ztr(X),HomPST(G,F ))

= HomPST

(
G⊗PST Ztr(X), F

)
= HomPST(G,HomPST(Ztr(X), F ))

= HomPS(G,HomPST(Ztr(X), F )), by (2.14)

= HomPS(G,HomPS(hX , F )), by (2.15)

= HomPS

(
G⊗PS hX , F

)
= HomPS(hX ,HomPS(G,F ))

= HomPS(G,F )(X) .

This completes the proof of Lemma 2.1.

Lemma 2.2. For F ∈ PST and X ∈ Sm, we have a natural isomorphism

ω∗HomPST(Ztr(X), F ) ≃ HomMPST(Ztr(X, ∅), ω∗F ) .

Proof. For Y = (Y,E) ∈MCor with V = Y − |E|, we have natural isomorphisms

ω∗HomPST(Ztr(X), F )(Y) ≃ HomPST(Ztr(X), F )(V ) ≃ HomPST(X × V, F )
≃ HomMPST((X, ∅)⊗ Y, ω∗F ) ≃ HomMPST(Ztr(X, ∅), ω∗F )(Y) .

This proves the lemma.

Lemma 2.3. For F ∈MPST and X ∈ Sm, we have a natural isomorphism

ω!HomMPST(Ztr(X, ∅), F ) ≃ HomPST(Ztr(X), ω!F ) .

Proof. For Y ∈ Sm, we have natural isomorphisms

ω!HomMPST(Ztr(X, ∅), F )(Y ) ≃ HomMPST(Ztr(X, ∅), F )(Y, ∅)
≃ HomMPST(Ztr(X × Y, ∅), F ) ≃ HomPST(X × Y, ω!F )

≃ HomPST(Ztr(X), ω!F )(Y ) .

This proves the lemma.

Lemma 2.4. A complex in C• in NST such that Cn ∈ RSC for all n ∈ Z is exact if and only
if C•(K) is exact as a complex of abelian groups for any function field K.

Proof. The cohomology sheaves Hn
Nis(C

•) are in RSCNis by [Sai20, Theorem 0.1]. Hence for all
X ∈ Sm, by [Sai20, Theorem 0.2], there is an injective map (Hn

NisC
•)(X) ↪→ (Hn

NisC
•)(k(X)).
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Hence the lemma follows from the fact that (Hn
NisC

•)(k(X)) ∼= Hn(C•(k(X))) since k(X) is
henselian local.

Lemma 2.5. For G ∈ RSC and F ∈ PST such that F is a quotient of a representable sheaf, we
have HomPST(F,G) ∈ RSC.

Proof. First assume F = Ztr(X) with X ∈ Sm. Put G̃ = ωCIG ∈ CIτ (cf. § 2.18). The adjunc-
tion (2.12) implies ω!G̃ ≃ G. Lemma 2.3 implies a natural isomorphism

HomPST(Ztr(X), G) ≃ ω!HomMPST

(
Ztr(X, ∅), G̃

)
.

Thus it suffices to show

HomMPST

(
Ztr(X, ∅), G̃

)
∈ CIτ .

The □-invariance follows directly from that for G̃. The fact that it is in MPSTτ follows from
[Sai20, Lemma 1.27(2)].

Now assume that there is a surjection Ztr(X) → F in PST, where X ∈ Sm. It induces an
injection

HomPST(F,G) ↪→ HomPST(Ztr(X), G) .

Since HomPST(Ztr(X), G) ∈ RSC as shown above and RSC ⊂ PST is closed under finite
products and subobjects, we get HomPST(F,G) ∈ RSC, as desired. This completes the proof.

Lemma 2.6. Let F ∈ MNST be such that F sp ∈ CIτNis (cf. § 2.16). For any function field K
over k, we have

H i
(
P1

K , F(P1
K ,0+∞)

)
= 0 for i > 0 .

Proof. If F is semipure, the assertion follows from [Sai20, Theorem 9.1]. In general, we use the
exact sequence in MNST

0→ C → F → F sp → 0

to reduce to the above case, observing that H i
(
P1

K , C(P1
K ,0+∞)

)
= 0 for i > 0 since C(P1

K ,0+∞)

is supported on {0,∞}.

Lemma 2.7. For F ∈ CIτ and a function field K over k, we have

aNisF (K) ∼−−→ aNisF
(
□⊗K

)
.

Proof. We consider the exact sequence 0→ C → F → F sp → 0 in MPST with ω!C = 0. Since
aNis is exact, from this we get an exact sequence 0→ aNisC → aNisF → aNisF

sp → 0 in MNST.
Since C(P1

K ,0+∞) is supported on {0K ,∞K}, we have (aNisC)(P1
K ,0+∞) = C(P1

K ,0+∞) by (2.4).
Hence the exact sequence gives rise to a commutative diagram

0 // C(K) //

≃
��

F (K) //

��

F sp(K) //

≃
��

0

0 // C
(
□⊗K

)
// aNisF

(
□⊗K

)
// aNisF

sp
(
□⊗K

)
.

The left (respectively, right) vertical map is an isomorphism since C ∈ CIτ (respectively, thanks
to [Sai20, Theorem 10.1]). This completes the proof.

Let A1
t = Spec k[t] be the affine line with the coordinate t. Consider the map in PST

λGm : Ztr

(
A1

t − {0}
)
→ Gm
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given by t ∈ Gm

(
A1

t − {0}
)
= k

[
t, t−1

]×
and the map in PST

λGa : Ztr

(
A1

t

)
→ Ga

given by t ∈ Ga

(
A1

t

)
= k[t]. Note that λGm and λGa factor through

Coker
(
Z i1−→ Ztr

(
A1

t − {0}
))

and Coker
(
Z i0−→ Ztr

(
A1

t

))
,

with i1 and i0 induced by the points 1 ∈ A1
t − {0} and 0 ∈ A1

t , respectively.

Lemma 2.8. (1) The composite map

ω!Ztr

(
P1, 0 +∞

)
≃ Ztr

(
A1

t − {0}
) λGm−−−→ Gm

induces an isomorphism

aVNisω!h
□
0

(
□Gm

) ∼−−→ Gm , (2.16)

where □Gm = Coker
(
Z i1−→ Ztr

(
P1, 0 +∞

))
∈MPST.

(2) The composite map

ω!Ztr

(
P1, 2∞

)
≃ Ztr

(
A1

t

) λGa−−→ Ga

induces an isomorphism

aVNisω!h
□
0

(
□Ga

) ∼−−→ Ga , (2.17)

where □Ga = Coker
(
Z i0−→ Ztr

(
P1, 2∞

))
∈MPST.

Proof. We prove only part (2). The proof of part (1) is similar. By [Sai20, Lemma 1.36 and

Theorem 0.1], we have aVNisω!h
□
0

(
□Ga

)
∈ RSCNis. Hence, by Lemma 2.4, it suffices to show that

the map λGa : Ztr

(
A1

)
(K)→ Ga(K) = K for a function field K over k induces an isomorphism

ω!h
□
0

(
□Ga

)
(K) ≃ K. We know that Ztr

(
A1

t

)
(K) is identified with the group of 0-cycles on

A1
K = A1⊗kK. Then, by [KSY22, Theorem 3.2.1], the kernel of Ztr

(
A1

)
(K)→ ω!h

□
0

(
□Ga

)
(K)

is generated by the class of 0 ∈ A1
K and divA1

K
(f) for f ∈ K(t)× such that f ∈ 1 +m2

∞OP1
K ,∞,

where m∞ is the maximal ideal of the local ring OP1
K ,∞ of P1

K at ∞. Now part (2) follows by an
elementary computation.

Lemma 2.9. We have

HomMPST(G,F ) ∈MNST for G ∈MPST , F ∈MNST .

Proof. Put H = HomMPST(G,F ). Let X ∈MCor and

W //

��

V

��
U // X

be an MVfin-square as defined in [KMSY21a, Definition 3.2.1]. By [KMSY21a, Definition 4.5.2
and Lemma 4.2.3], it suffices to show the exactness of 0→ H(X )→ H(U)⊕H(V)→ H(W). By
adjunction, we have H(X ) = HomMPST

(
G,FX

)
with FX = HomMPST(Ztr(X ), F )). Hence it

suffices to show the exactness of the sequence 0 → FX → FU ⊕ FV → FW in MPST. Taking
Y ∈MCor, this is reduced to showing the exactness of

0→ F (X ⊗ Y)→ F (U ⊗ Y)⊕ F (V ⊗ Y)→ F (W ⊗Y) .

This follows from the fact that MVfin-squares are preserved by the product ⊗ in MCor.
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Proposition 2.10. (1) For F,G ∈MPST, we have a natural isomorphism

aNis(F ⊗MPST G) ≃ aNis(aNisF ⊗MPST aNisG)

induced by the natural maps F → aNisF and G→ aNisG.

(2) For F,G ∈MPST, we have a natural isomorphism

aNis(F ⊗MPST G) ≃ aNis(aNisF ⊗MPST aNisG)

induced by the natural maps F → aNisF and G→ aNisG.

Proof. For H ∈MNST, we have isomorphisms

HomMNST(aNis(F ⊗MPST G), H) ≃ HomMPST(F ⊗MPST G,H)

≃ HomMPST(F,HomMPST(G,H))

(∗1)
≃ HomMPST(aNisF,HomMPST(G,H))

≃ HomMPST(aNisF ⊗MPST G,H)

≃ HomMPST(G,HomMPST(aNisF,H))

(∗2)
≃ HomMPST(aNisG,HomMPST(aNisF,H))

≃ HomMPST(aNisF ⊗MPST aNisG,H)

≃ HomMNST(aNis(aNisF ⊗MPST aNisG), H) ,

where (∗1) and (∗2) follow from the fact that HomMPST(A,H) ∈ MNST for A ∈ MPST by
Lemma 2.9. This proves part (1).

For F,G ∈MPST, we have isomorphisms

τ!aNis(F ⊗MPST G)
(∗1)
≃ aNisτ!(F ⊗MPST G)

(∗2)
≃ aNis(τ!F ⊗MPST τ!G)

(∗3)
≃ aNis(aNisτ!F ⊗MPST aNisτ!G)

(∗4)
≃ aNis(τ!aNisF ⊗MPST τ!aNisG)

(∗5)
≃ aNisτ!(aNisF ⊗MPST aNisG)

(∗6)
≃ τ!aNis(aNisF ⊗MPST aNisG) ,

where (∗1), (∗4) and (∗6) follow from (2.3), (∗2) and (∗5) follow from the monoidality of τ! (see
[RSY22, § 3.8]), and (∗3) follows from part (1). Since τ! is fully faithful, this implies part (2).
This completes the proof of the lemma.

Lemma 2.11. There are natural isomorphisms for F,G ∈MPST

(F ⊗MPST G)
sp ≃

(
F sp ⊗MPST G

)sp ≃ (
F sp ⊗MPST G

sp
)sp

. (2.18)

Proof. We have an exact sequence 0 → C → F → F sp → 0 in MPST with ω!C = 0. Since
(−)⊗MPST G : MPST→MPST is right exact, we get an exact sequence

C ⊗MPST G→ F ⊗MPST G→ F sp ⊗MPST G→ 0 .

We have ω!(C ⊗MPST G) = 0 since ω! : MPST → PST is monoidal by [RSY22, § 3.6]. Hence
we get an isomorphism (F ⊗MPST G)

sp ≃ (F sp ⊗MPST G)
sp. This implies (2.18).
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Lemma 2.12. There are natural isomorphisms for F,G,H ∈MPST

h□0 (F
sp)sp ≃ h□0 (F )sp , (2.19)

h□0 (F ⊗MPST G) ≃ h□0
(
h□0 (F )⊗MPST h

□
0 (G)

)
. (2.20)

Proof. We have an exact sequence 0 → C → F → F sp → 0 in MPST with ω!C = 0. From
this, we get an exact sequence h□0 (C)→ h□0 (F )→ h□0 (F

sp)→ 0 in MPST since h□0 : MPST→
MPST is right exact. We have ω!h

□
0 (C) = 0 since ω! : MPST→ PST is exact and h□0 (C) is a

quotient of C. Hence we get an isomorphism ω!h
□
0 (F ) ≃ ω!h

□
0 (F

sp). This implies (2.19).

For H ∈ CI, we have isomorphisms

HomCI

(
h□0 (F ⊗MPST G), H

)
≃ HomMPST(F ⊗MPST G,H)

≃ HomMPST(F,HomMPST(G,H))

(∗)
≃ HomMPST

(
h□0 (F ),HomMPST(G,H)

)
≃ HomMPST

(
h□0 (F )⊗MPST G,H

)
≃ HomCI

(
h□0

(
h□0 (F )⊗MPST G

)
, H

)
,

where (∗) follows from the fact that HomMPST(G,H) ∈ CI for H ∈ CI, which follows easily
from the definition. This shows

h□0 (F ⊗MPST G) ≃ h□0
(
h□0 (F )⊗MPST G

)
,

which implies (2.20).

From (2.9), we have aNis(CIτ,sp) ⊂ CIτ,spNis , which implies

aNis(CIsp) ⊂ CIspNis .

Indeed, for F ∈ CIsp, we have τ!aNisF ≃ aNisτ!F ∈ CIτ,spNis by (2.3), which implies aNisF ∈ CIspNis

by definition (cf. § 2.11 and [KMSY21b, Definition 3]). Thus we get an induced functor

aCI
Nis : CIsp → CIspNis . (2.21)

By definition, we have

aCI
Nis(F ) = aNisj(F ) for F ∈ CIsp , (2.22)

where j : CIsp →MPST is the inclusion.

Lemma 2.13. The functor aCI
Nis is left adjoint to the inclusion CIspNis → CIsp.

Proof. This follows easily from the facts that aNis is left adjoint to the inclusion MNST →
MPST and that the inclusions CIsp →MPST and CIspNis →MNST are fully faithful.

Lemma 2.14. Consider the functors

h□,sp
0 : MPST→ CIsp, F 7→ h□0 (F )

sp ,

h□,sp
0,Nis : MPST→ CIspNis, F 7→ aCI

Nish
□,sp
0 (F ) .

(1) The functor h□,sp
0 (respectively, h□,sp

0,Nis) is a left adjoint to the inclusion CIsp → MPST

(respectively, CIspNis →MPST). For F ∈MPST, we have natural isomorphisms

h□,sp
0 (F ) ≃ h□,sp

0 h□,sp
0 (F ) and h□,sp

0,Nis(F ) ≃ h
□,sp
0,Nish

□,sp
0,Nis(F ) .
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(2) For F ∈MPST, the natural map F → aNisF induces an isomorphism

h□,sp
0,Nis(F ) ≃ h

□,sp
0,Nis(aNisF ) .

(3) For F ∈MPST, we have natural isomorphisms

h□,sp
0 (F ⊗MPST G) ≃ h□,sp

0

(
h□,sp
0 (F )⊗MPST h

□,sp
0 (G)

)
,

h□,sp
0,Nis(F ⊗MPST G) ≃ h□,sp

0,Nis

(
h□,sp
0,Nis(F )⊗MPST h

□,sp
0,Nis(G)

)
.

Proof. The first statement of item (1) follows from the left-adjointness of h□0 , (−)sp and aNis.
The second statement of item (1) is a formal consequence of the first since the inclusions are
fully faithful.

To show item (2), consider the commutative diagram

CIspNis

iCI //

jNis

��

CIsp

j

��
MNST

i //MPST ,

where the functors are inclusions. For F ∈MPST and G ∈ CIspNis, we have isomorphisms

HomCIspNis

(
h□,sp
0,NisiaNisF,G

) (∗1)
≃ HomCIsp

(
h□,sp
0 iaNisF, iCIG

)
(∗2)
≃ HomMPST(iaNisF, jiCIG)

≃ HomMPST(iaNisF, ijNisG)

(∗3)
≃ HomMNST(aNisF, jNisG)

≃ HomMPST(F, ijNisG)

≃ HomMPST(F, jiCIG)

(∗4)
≃ HomMPST

(
h□,sp
0 F, iCIG

)
(∗5)
≃ HomMPST

(
aCI
Nish

□,sp
0 F,G

)
,

where (∗1) and (∗5) (respectively, (∗2) and (∗4), (∗3)) follow from Lemma 2.13 (respectively,
item (1), the full faithfulness of i). This proves item (2).

For F,G ∈MPST, we have natural isomorphisms

h□,sp
0 (F ⊗MPST G)

(2.19)
≃ h□0 ((F ⊗MPST G)

sp)sp

(2.18)
≃ h□0

((
F sp ⊗MPST G

sp
)sp)sp

(2.19)
≃ h□0

(
F sp ⊗MPST G

sp
)sp

(2.20)
≃ h□0

(
h□0 (F

sp)⊗MPST h
□
0 (G

sp)
)sp

(2.19)
≃ h□0

((
h□0 (F

sp)⊗MPST h
□
0 (G

sp)
)sp)sp

(2.18)
≃ h□0

((
h□0 (F

sp)sp ⊗MPST h
□
0 (G

sp)sp
)sp)sp

(2.19)
≃ h□0

(
(h□,sp

0 (F )⊗MPST h
□,sp
0 (G))sp

)sp
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(2.19)
≃ h□0

(
h□,sp
0 (F )⊗MPST h

□,sp
0 (G)

)sp
= h□,sp

0

(
h□,sp
0 (F )⊗MPST h

□,sp
0 (G)

)
.

This proves the first isomorphism of item (3). From this, we get natural isomorphisms

h□,sp
0,Nis(F ⊗MPST G) ≃ h□,sp

0,Nis

(
h□,sp
0 (F )⊗MPST h

□,sp
0 (G)

)
(∗1)
≃ h□,sp

0,NisaNis

(
h□,sp
0 (F )⊗MPST h

□,sp
0 (G)

)
(∗2)
≃ h□,sp

0,NisaNis

(
h□,sp
0,Nis(F )⊗MPST h

□,sp
0,Nis(G)

)
(∗3)
≃ h□,sp

0,Nis

(
h□,sp
0,Nis(F )⊗MPST h

□,sp
0,Nis(G)

)
,

where (∗1) and (∗3) follow from item (2) and (∗2) follows from Proposition 2.10 in view of (2.22).
This completes the proof of the lemma.

3. Some lemmas on contractions

For an integer a ⩾ 1, put □
(a)

=
(
P1, a(0 +∞)

)
∈MCor and

□
(a)
red = Ker

(
Ztr

(
□

(a))→ Z = Ztr(Spec k, ∅)
)
.

The inclusion A1 − {0} ↪→ A1 induces a map □
(a) → □ in MCor for all a. Note that the

composite map

□
(1)
red ↪→ □

(1) → □Gm (3.1)

is an isomorphism, where □Gm is from (2.16).

For F ∈MPST, we write

γF = Coker
(
HomMPST

(
□, F

)
→ HomMPST

(
□

(1)
, F

))
∈MPST ,

where the map is induced by □
(1) → □ in MCor. If F ∈ CIτ , the projection □→ Spec k induces

an isomorphism

F = HomMPST(Spec k, F ) ≃ HomMPST

(
□, F

)
.

Thus we get an isomorphism

γF ≃ HomMPST

(
□

(1)
red, F

) (∗)
= HomMPST

(
h□0

(
□

(1)
red

)
, F

)
for F ∈ CIτ , (3.2)

where the equality (∗) follows from the adjunction from § 2.15. Note that γF ∈ CIτ,sp for F ∈
CIτ,sp. We also define

γNisF = aNisγF ∈MNST .

By (3.2) and Lemma 2.9, we have

γNisF = γF for F ∈ CIτNis .

For an integer n ⩾ 1, we write (cf. § 2.19)

γnF ∼= HomMPST

((
□

(1)
red

)⊗MPSTn
, F

) ∼= n times︷ ︸︸ ︷
γγ · · · γ F . (3.3)

The proof of the following lemma is due to Kay Rülling. We thank him for letting us include
it in our paper.

163



A. Merici and S. Saito

Lemma 3.1. The unit map

aNish
□
0

(
□

(1))sp ≃−→ ω∗ω!aNish
□
0

(
□

(1)) ∼= ω∗(Gm ⊕ Z) (3.4)

is an isomorphism, where the second isomorphism in (3.4) holds by Lemma 2.8 and (3.1).

Proof (by Kay Rülling). The unit map is injective by semipurity. It remains to show the sur-
jectivity. By the definition of the sheafification functor, it suffices to show the surjectivity on
(SpecR, (f)), where R is an integral local k-algebra and f ∈ R \ {0} is such that Rf is regular.
Denote by

ψ : Ztr

(
P1, 0 +∞

)
(R, f)→ R×f ⊕ Z

the precomposition of (3.4) evaluated at (R, f) with the quotient map Ztr

(
P1, 0 +∞

)
(R, f) →

aNish
□
0

(
□

(1))sp
.

We show that ψ is surjective. To this end, observe that for a ∈ R×f , we can find an N ⩾ 0
and a b ∈ R such that

ab = fN and afN ∈ R . (3.5)

Set W := V
(
tN − a

)
⊂ SpecRf [t, 1/t] and K := Frac(R).

The map Cor
(
K,A1 − {0}

)
→ Pic

(
P1

K , 0 + ∞
) ∼= K× ⊕ Z, which induces the second

isomorphism of (3.4), sends a prime correspondence V (a0 + a1t+ · · ·+ art
r) to ((−1)ra0/ar, r);

hence we have

ψ(V (a0 + a1t+ · · ·+ art
r)) = ((−1)ra0/ar, r) (3.6)

provided that V (a0 + a1t+ · · ·+ art
r) ∈MCor

(
(R, f),

(
P1, 0 +∞

))
.

For any a ∈ R×f , consider h = tN − a; let h =
∏

i hi be the decomposition into monic
irreducible factors in K[t, 1/t], and denote by Wi ⊂ SpecRf [t, 1/t] the closure of V (hi). (Note
that Wi =Wj for i ̸= j is allowed.)

The Wi correspond to the components of W which are dominant over Rf ; since W is finite
and surjective over Rf , so are the Wi. We claim

Wi ∈MCor
(
(R, f),

(
P1, 0 +∞

))
. (3.7)

Indeed, let Ii (respectively, Ji) be the ideal of the closure ofWi in SpecR[t] (respectively, SpecR[z]
with z = 1/t). By (3.5), we have btN − fN ∈ Ii and fN − fNazN ∈ Ji. Hence (f/t)N ∈ R[t]/Ii
and (f/z)N ∈ R[z]/Ji. It follows that f/t (respectively, f/z) is integral over R[t]/Ii (respectively,
R[z]/Ji); thus (3.7) holds. We claim

ψ

(∑
i

Wi

)
=

(
(−1)N+1a,N

)
.

Indeed, it suffices to show this after restriction to the generic point of R, in which case it follows
directly from the definition of the Wi and (3.6). Since ψ(V (t± 1)) = (−(±1), 1), this implies the
surjectivity of ψ and proves the lemma.

Corollary 3.2. (1) There is a natural isomorphism

aNish
□
0

(
□

(1)
red

)sp ≃ ω∗Gm .

(2) For F ∈ CIτ,spNis , we have a natural isomorphism

γF ≃ HomMPST(ω
∗Gm, F ) . (3.8)
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Proof. Item (1) is a direct consequence of Lemma 3.1. In view of (3.2), item (2) follows from
item (1) and the adjunction of aNis and that from § 2.14.

Lemma 3.3. Consider an exact sequence 0→ A→ B → C → 0 in MNST.

(1) Assume A,B,C ∈ CIτNis. Then the following sequence in NST is exact:

0→ ω!γA→ ω!γB → ω!γC → 0 .

(2) Assume ω!A = 0 and C ∈ CIτ,spNis . Then the sequence

0→ γA(K)→ γB(K)→ γC(K)→ 0

is exact for any function field K over k.

Proof. First assume A,B,C ∈ CIτNis. Then all terms of the sequence in item (1) are in RSCNis.
By Lemma 2.4, it suffices to show the exactness of

0→ γA(K)→ γB(K)→ γC(K)→ 0

for a function field K over k.

By (3.2), we have γF (K) = Hom
(
□

(1)
red,K , F

)
for all F ∈ CIτ , where □

(1)
red,K = □

(1)
red⊗SpecK.

Since □
(1)
red,K is a direct summand of Ztr

(
P1

K , 0 +∞
)
, it is enough to show that

Ext1MNST

(
Ztr

(
P1

K , 0 +∞
)
, A

)
= 0 .

By using [KMSY21a, Theorem 2(2)], we can compute

Ext1MNST

(
Ztr

(
P1

K , 0 +∞
)
, A

)
≃ H1

Nis

(
P1

K , A(P1
K ,0+∞)

)
,

where we use the fact that any proper birational map X → P1
K is an isomorphism. Thus the

vanishing follows from Lemma 2.6. This proves item (1).

Next we assume ω!A = 0 and C ∈ CIτ,spNis . For a function fieldK over k, we have a commutative
diagram

0 // A
(
P1

K ,∞
)

//

��

B
(
P1

K ,∞
)

//

��

C
(
P1

K ,∞
)

//

c

��

0

0 // A
(
P1

K , 0 +∞
)

// B
(
P1

K , 0 +∞
)

// C
(
P1

K , 0 +∞
)

// 0 ,

where the sequences are exact since for every effective Cartier divisor D on P1
K ,

Ext1MNST

(
Ztr

(
P1

K , D
)
, A

)
≃ H1

Nis

(
P1

K , A(P1
K ,D)

)
= 0

by [KMSY21a, Theorem 2(2)] and the fact that A(P1
K ,D) is supported on the zero-dimensional

scheme |D| by the assumption. Finally, Ker(c) = 0 by [Sai20, Theorem 3.1]; hence the snake
lemma gives the exact sequence of item (2).

Proposition 3.4. (1) Take F ∈ CIτ,spNis (cf. § 2.16). For X = (X,DX) ∈ MCorls (cf. § 2.3),
there exists a map functorial in X

γF (X )→ H1
(
P1 ×X,FP1⊗X

)
. (3.9)

Moreover, if X is henselian local, it is an isomorphism.

(2) Let F ∈ MNST be such that F sp ∈ CIτ,spNis . For X ∈ Sm, there exists a map functorial
in X

γF (X)→ H1
(
P1 ×X,FP1×X

)
. (3.10)
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Moreover, it is an isomorphism either if F ∈ CIτNis and X is henselian local, or if X = Spec(K) is
the spectrum of a function field over k and the natural map F (K)→ F

(
□⊗K

)
is an isomorphism.

Proof. Let L =
(
P1, 0

)
. We prove item (1). By (3.2) and [Sai20, Lemma 7.1], there exists an

exact sequence of sheaves on
(
P1 ×X

)
Nis

0→ FP1⊗X → FL⊗X → i∗γFX → 0 , (3.11)

where i : X → P1 ×X is induced by 0 ∈ P1. Taking cohomology, we get the map (3.9). If X is
henselian local, we have

H1
(
P1 ×X,FL⊗X

)
≃ H1(X,FX ) = 0 (3.12)

thanks to [Sai20, Theorem 9.3]. Note that the map F (X )→ F (L⊗X ) induced by the projection
L⊗X → X is an isomorphism by the □-invariance of F . Since the projection factors as L⊗X →
P1⊗X → X , this implies that the map F

(
P1⊗X

)
→ F (L⊗X ) is surjective. This implies that

the map (3.9) is an isomorphism.

We now prove item (2). Consider the exact sequence of sheaves on
(
P1 ×X

)
Nis

0→ FP1×X → FL⊗X → i∗λXF → 0 , (3.13)

where λXF = i∗
(
FL⊗X/FP1×X

)
. The injectivity of the first map follows from [Sai20, The-

orem 3.1], observing that FP1×X = F sp
P1×X (the point is that X has empty modulus) and

F sp ∈ CIτ,spNis by the assumption. Taking cohomology over an étale U → X, we get a natu-
ral map in U

λXF (U)→ H1
(
P1 × U,FP1×U

)
.

To define the map (3.10), it suffices to show the following.

Claim 3.5. There exists a natural map φF,X : (γNisF )X → λXF of sheaves on XNis. It is an
isomorphism if F ∈ CIτNis. If F ∈ MNST and F sp ∈ CIτNis, then φF,K : (γNisF )K = (γF )K →
λKF is an isomorphism for a function field K over k.

Proof of Claim 3.5. By definition, λXF is the sheaf on XNis associated with the presheaf

λ̃XF : U → lim−→
V

F (V, 0V )/F (V, ∅) , (3.14)

where V ranges over étale neighborhoods of 0U = i(U) ⊂ P1 × U . On the other hand, we have

(γF )X(U) = F
(
P1 × U, 0 +∞

)
/F

(
P1 × U,∞

)
.

Since the colimit in (3.14) does not change when taken over étale neighborhood of 0U ⊂ A1×U ,
there is a natural map

(γF )X(U)→ F
(
A1 × U, 0

)
/F

(
A1 × U, ∅

)
→ λ̃XF (U) ,

which induces the desired map φF,X .

Next we show that φF,X is an isomorphism if F ∈ CIτNis, or if F ∈MNST with F sp ∈ CIτ,spNis

and X = K is a function field over k. If F is semipure, the assertion follows from [Sai20,
Lemma 7.1]. In general, we consider the exact sequence in MNST

0→ C → F → F sp → 0 with ω!C = 0 . (3.15)
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It gives rise to a commutative diagram of sheaves on
(
P1 ×X

)
Nis

0 // CP1×X //

��

FP1×X //

��

F sp
P1×X

//

��

0

0 // CL⊗X // FL⊗X // F sp
L⊗X ,

where the upper (respectively, lower) sequence is exact by the exactness of ω! : MNST→ NST
from § 2.13 (respectively, by § 2.12). The right vertical map is injective by [Sai20, Theorem 3.1].
This implies the exactness of the lower sequence of the following commutative diagram on XNis:

0 // (γC)X //

φC,X

��

(γF )X //

φF,X

��

(γF sp)X //

φF sp,X

��

0

0 // λXC // λXF // λXF
sp .

The upper sequence is exact by Lemma 3.3. Since we know that φF sp,X is an isomorphism, it
suffices to show that φC,X is an isomorphism. Indeed, for an étale U → X with U henselian local,
we have

(γC)X(U) = C
(
P1 × U, 0 +∞

)
/C

(
P1 × U,∞

)
≃ lim−→

V

C(V, 0V )/C(V, ∅) = λ̃XC(U) ,

where the V are as in (3.14) and the isomorphism comes from the excision as C(P1×U,0+∞)

(respectively, C(P1×U,∞)) is supported on {0U ,∞U} (respectively, ∞U ). This proves that φC,X

is an isomorphism and completes the proof of the claim.

To show the second assertion of item (2), we look at the cohomology exact sequence arising
from (3.13). Note that F

(
P1 ×X

)
→ F (L⊗X) is surjective since F (X) ∼−−→ F (L⊗X) by the

assumption. Hence it suffices to show H1
(
P1 × X,FL⊗X

)
= 0. If F is semipure, this follows

from (3.12). In general, it is reduced to the above case using (3.15) and noting that H1
(
P1 ×

X,CL⊗X
)
= 0 since CL⊗X is supported on 0×X. This completes the proof of the proposition.

Corollary 3.6. Let G ∈ CIτ , and let K be a function field K over k.

(1) There is a natural isomorphism γaNisG(K) ≃ H1
(
P1

K , aNisG
)
.

(2) The natural map γaNisG(K)→ γaNisG
sp(K) is an isomorphism.

Proof. Letting F = aNisG, we have F sp = aNisG
sp ∈ CIτ,spNis by (2.9). By Lemma 2.7, the sheaf

F satisfies the second assumption of Proposition 3.4(1). Hence item (1) follows from Proposition
3.4(2). Item (2) follows from the isomorphisms

γaNisG(K) ≃ H1
(
P1

K , aNisG
)
≃ H1

(
P1

K , ω!aNisG
)
≃ H1

(
P1

K , a
V
Nisω!G

)
≃ H1

(
P1

K , a
V
Nisω!G

sp
)
≃ H1

(
P1

K , aNisG
sp
)
≃ γaNisG

sp(K) ,

where the third and last isomorphisms follow from, respectively, § 2.13 and Proposition 3.4.

Lemma 3.7. Let F ∈ CIτ .

(1) The natural map γF (K)→ γaNisF (K) is an isomorphism for any function field K over k.

(2) The natural map aNisγF
sp → γaNisF

sp is injective.

(3) The natural map ω!aNisγF
sp → ω!γaNisF

sp is an isomorphism.
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Proof. Consider the exact sequence in MPST

0→ C → F → F sp → 0 with ω!C = 0 . (3.16)

By § 2.7, we have C,F sp ∈ CIτ . It gives rise to an exact sequence 0 → aNisC → aNisF →
aNisF

sp → 0 in MNST and a commutative diagram

0 // γC(K) //

��

γF (K) //

��

γF sp(K) //

��

0

0 // γaNisC(K) // γaNisF (K) // γaNisF
sp(K) // 0 .

The upper sequence is exact thanks to (3.2). The lower sequence is exact by Lemma 3.3(2),
noting that aNisF

sp ∈ CIτ,spNis by [Sai20, Theorem 10.1] and ω!aNisC = aVNisω!C = 0 (cf. § 2.13).
Since C(P1

K ,0+∞) is supported on {0K ,∞K}, we have by § 2.4

(aNisC)(P1
K ,0+∞) = C(P1

K ,0+∞) ,

where we use the fact that any proper birational map between normal schemes of dimension 1
is an isomorphism. Hence the left vertical map is an isomorphism. We may therefore assume
that F is semipure. By § 2.9, we have aNisF ∈ CIτ,spNis . By [Sai20, Lemma 5.9], we have natural
isomorphisms

γF (K) ≃ F
(
A1

K , 0
)
/F

(
A1

K , ∅
)
,

γaNisF (K) ≃ aNisF
(
A1

K , 0
)
/aNisF

(
A1

K , ∅
)
.

Hence item (1) follows from [Sai20, Theorem 4.1].

To show items (2) and (3), first note that F sp ∈ CIτ,sp by the assumption and § 2.7 and hence
γF sp ∈ CIτ,sp. By § 2.9, the sheaves aNisγF

sp and γaNisF
sp are in CIτ,spNis , and hence ω!aNisγF

sp

and ω!γaNisF
sp are in RSCNis. Hence item (2) (respectively, item (3)) follows from item (1) for

F = F sp and [Sai20, Corollary 3.4] (respectively, Lemma 2.4).

Lemma 3.8. Consider a sequence A→ B → C in CIτ such that

ω!aNisA→ ω!aNisB → ω!aNisC → 0

is exact in NST. Then the sequence

γaNisA(K)→ γaNisB(K)→ γaNisC(K)→ 0

is exact for any function field K over k.

Proof. In view of the right exactness of the functor H1(PK ,−) : NST→ Ab, the lemma follows
from Corollary 3.6(1) by applying this functor to the first exact sequence.

Corollary 3.9. Let F ∈ CIτ,spNis . Then for any function field K, we have an isomorphism
γF (K) ∼= γωCIω!F (K).

Proof. Let q : γ(F )(K) → γ
(
ωCIω!F

)
(K) be the map induced by the unit map F ↪→ ωCIω!F

for the adjunction (2.13), which is injective since it factors the map F ↪→ ω∗ω!F . Notice that q

is injective by (3.2) and the fact that HomMPST

(
□

(1)
red,K ,

)
preserves injective maps; hence it

is enough to show that it is surjective. Let Q be the presheaf cokernel of F → ωCIω!F ; then
Q ∈ CIτ and ω!Q = 0. By Lemma 3.8, we have an exact sequence

γF (K)
q−→ γωCIω!F (K)→ γaNisQ(K)→ 0 .

By Corollary 3.6(2), we have γaNisQ(K) ∼= γaNisQ
sp(K) = 0; hence q is surjective.
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Proposition 3.10. For F ∈ CIτ,spNis , there is a natural isomorphism

ω!γF ≃ ω!HomMPST(ω
∗Gm, F ) ≃ HomPST(Gm, ω!F ) .

Proof. The first isomorphism follows from (3.2) and Corollary 3.2. For F ∈MPST andX ∈ Sm,
put FX = HomMPST(Ztr(X, ∅)), F ). Note that F ∈ CIτ,spNis implies FX ∈ CIτ,spNis . We compute

ω!γF (X) = HomMPST

(
□

(1)
red, F

)
(X, ∅)

≃ HomMPST

(
□

(1)
red, F

X
)
= γFX(k) ,

HomPST(Gm, ω!F )(X) = HomPST(Gm,HomPST(X,ω!F ))

≃ HomPST

(
Gm, ω!F

X
)
(k) ,

where the last isomorphism comes from Lemma 2.3. Hence it suffices to show that for any F ∈
CIτ,spNis , there exists a natural isomorphism γF (k) ≃ HomPST(Gm, ω!F ). We have isomorphisms

HomPST(Gm, ω!F )
(∗1)
≃ HomMPST(ω

∗Gm, ω
∗ω!F )

(∗2)
≃ HomMPST(ω

∗Gm, ω
CIω!F )

(∗3)
≃ HomMPST

(
□

(1)
red, ω

CIω!F
)

(∗4)
≃ γωCIω!F (k)

(∗5)
≃ γF (k) ,

where (∗1) follows from the fact that ω∗ is fully faithful (cf. § 2.8), (∗2) follows from the adjunction
from § 2.15 (see also (2.12)) in view of the fact that ω∗Gm ∈ CIτ by Lemma 3.1, (∗3) from Lemma
3.1, (∗4) from (3.2) and (∗5) from Corollary 3.9.

4. Weak cancellation theorem

For F,G ∈MPST, we write (cf. §§ 2.16 and 2.19 and Lemma 2.14)

F ⊗CI G = h□0 (F ⊗MPST G) ∈ CI ,

F ⊗sp
CI G = h□,sp

0 (F ⊗MPST G) ∈ CIsp ,

F ⊗Nis,sp
CI G = h□,sp

0,Nis(F ⊗MPST G) ∈ CIspNis .

Proposition 4.1. The product ⊗CI (respectively, ⊗sp
CI, ⊗

Nis,sp
CI ) defines a symmetric monoidal

structure on CI (respectively, CIsp, CIspNis).

Proof. The assertion except for the associativity follows immediately from the fact that ⊗MPST

defines a symmetric monoidal structure on MPST. We prove the associativity only for ⊗Nis,sp
CI

(the other cases are similar). We need to show a natural isomorphism for F,G,H ∈ CIspNis:(
F ⊗Nis,sp

CI G
)
⊗Nis,sp

CI H ≃ F ⊗Nis,sp
CI

(
G⊗Nis,sp

CI H
)
.

For simplicity, we write λ = h□,sp
0,Nis. For F,G,H ∈ CIspNis, we have isomorphisms

λ(λ(F ⊗MPST G)⊗MPST H)
(∗1)
≃ λ

(
λ2(F ⊗MPST G)⊗MPST λH

)
(∗2)
≃ λ(λ(F ⊗MPST G)⊗MPST λH)

(∗3)
≃ λ((F ⊗MPST G)⊗MPST H) ,
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where (∗1) (respectively, (∗2), (∗3)) follows from item (3) (respectively, item (1), item (3)) of
Lemma 2.14. The lemma follows from this and the associativity of ⊗MPST.

For F,G ∈ CIτ , we write

F ⊗CI G = τ!h
□
0 (τ

∗F ⊗MPST τ
∗G) ∈ CIτ ,

F ⊗sp
CI G = τ!h

□,sp
0 (τ∗F ⊗MPST τ

∗G) ∈ CIτ,sp ,

F ⊗Nis,sp
CI G = τ!h

□,sp
0,Nis(τ

∗F ⊗MPST τ
∗G) ∈ CIτ,spNis .

By § 2.3, we have a natural isomorphism

aNis

(
F ⊗sp

CI G
)
≃ F ⊗Nis,sp

CI G . (4.1)

In view of the equivalences (2.8) and (2.10), Proposition 4.1 implies the following.

Proposition 4.2. The product ⊗CI (respectively, ⊗sp
CI, ⊗

Nis,sp
CI ) defines a symmetric monoidal

structure on CIτ (respectively, CIτ,sp, CIτ,spNis ). For F,G,H ∈ CIτ,spNis , There is a natural isomor-
phism (

F ⊗Nis,sp
CI G

)
⊗Nis,sp

CI H ≃ F ⊗Nis,sp
CI

(
G⊗Nis,sp

CI H
)
. (4.2)

For F ∈ CIτNis and an integer d ⩾ 0, we put

F (d) =
(
□

(1)
red

)⊗Nis,sp
CI d ⊗Nis,sp

CI F . (4.3)

Note that F (d) = F (m)(n) with d = m+ n by (4.2).

For F ∈ CIτ and f ∈ F (X ) with X ∈MCor, consider the composite map

□
(1)
red ⊗MPST Ztr(X )

id
□
(1)
red

⊗f

−−−−−−→ □
(1)
red ⊗MPST F → □

(1)
red ⊗CI F .

By the adjunction
(
□

(1)
red ⊗MPST −

)
⊣ HomMPST

(
□

(1)
red,−

)
, this gives rise to a natural map

ιF : F → γ
(
□

(1)
red ⊗CI F

)
, (4.4)

which induces

ιspF : F sp → γ
(
□

(1)
red ⊗

sp
CI F

)
, (4.5)

noting the adjunction from § 2.14 and the fact that γ : MPST → MPST preserves semipure
objects.

If F ∈ CIτNis, this induces a natural map

ιF : F sp → γ(F (1)) , (4.6)

which generalizes to a natural map for n ∈ Z⩾1 (cf. (4.3) and (3.3))

ιnF : F sp → γn(F (n)) , (4.7)

noting that

γnF = HomMPST

((
□

(1)
red

)⊗CIn, F
)

for F ∈ CIτ

thanks to the adjunction from § 2.15.

Question 4.3. For F ∈ CIτ,spNis , is the map (4.6) an isomorphism?

We will prove the following variant.
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Theorem 4.4. For F ∈ CIτ , the map (4.5) is an isomorphism.

Before going into its proof, we give some consequences.

Corollary 4.5. For F ∈ CIτ , the map (4.5) gives an isomorphism

ω!ιF : ω!aNisF
∼−−→ ω!γaNis

(
□

(1)
red ⊗

sp
CI F

)
.

For F ∈ CIτNis, the map (4.7) induces an isomorphism

ω!ι
n
F : ω!F

∼−−→ ω!γ
nF (n) .

Proof. The functors ω! and aNis are exact, and ω!aNisG
∼= ω!aNisG

sp for all G ∈MPST. Hence
Theorem 4.4 gives a natural isomorphism

ω!aNisιF : ω!aNisF
∼−−→ ω!aNisγ

(
□

(1)
red ⊗

sp
CI F

)
.

This proves the first assertion since Lemma 3.7(3) implies

ω!aNisγ
(
□

(1)
red ⊗

sp
CI F

)
≃ ω!γaNis

(
□

(1)
red ⊗

sp
CI F

)
.

The second assertion for the case n = 1 follows directly from the first. For n > 1, we proceed by
induction on n to assume

ω!ι
n−1
F : ω!F

∼−→ ω!γ
n−1F (n− 1) . (4.8)

Then we have isomorphisms

ω!γ
nF (n)

(∗1)
≃ ω!γγ

n−1F (n)
(∗2)
≃ HomPST

(
Gm, ω!γ

n−1F (n)
)

= HomPST

(
Gm, ω!γ

n−1F (1)(n− 1)
)

(∗3)
≃ HomPST(Gm, ω!F (1))

(∗4)
≃ ω!γF (1)

(∗5)
≃ ω!F ,

where (∗1) follows from (3.3), (∗2) follows from Proposition 3.10 noting that γn−1F (n) ∈ CIτ,spNis ,
(∗3) follows from (4.8), (∗4) follows from Proposition 3.10 and (∗5) follows from the case n = 1.
This completes the proof.

Corollary 4.6. For F ∈ RSCNis and F̃ = ωCIF ∈ CIτNis (cf. (2.13)), the map ιn
F̃
: F̃ → γnF̃ (n)

from (4.7) is an isomorphism.

Proof. We have a commutative diagram

F̃
ιn
F̃ //

∼=
��

γnF̃ (n)

↪→
��

ωCIω!F̃
ωCIω!ιF̃ // ωCIω!γ

nF̃ (n) ,

where the vertical arrows come from the adjunction (2.13). The left (respectively, right) verti-
cal arrow is an isomorphism (respectively, is injective) since ω!ω

CI ≃ id (respectively, by the
semipurity of γnF̃ (n)). Since ωCIω!ι

n
F̃

is an isomorphism by Corollary 4.5, this implies that ιn
F̃

is an isomorphism by the snake lemma.

Corollary 4.7. For F ∈ CIτ,spNis , there is a natural injective map

ρ̃F : γnF (n)→ ωCIω!F

whose composite with the map ιnF : F → γnF (n) from (4.7) coincides with the unit map u : F →
ωCIω!F for the adjunction (2.13). In particular, (4.7) is injective.
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Proof. Define ρ̃F as the composite

γnF (n)
u−→ γnωCIω!F (n)

(ιn
ωCIω!F

)−1

−−−−−−−−→ ωCIω!F ,

where the second map is the inverse of the isomorphism ιn
ωCIω!F

: ωCIω!F ∼= γnωCIω!F (n) from
Corollary 4.6. Clearly, we have ρ̃F ◦ ιnF = u. We easily see that ρ̃F coincides with the composite

γnF (n)
u−→ ωCIω!γ

nF (n)
ωCI(ω!ι

n
F )−1

−−−−−−−−→ ωCIω!F ,

where the first map is injective by the semipurity of γnF (n) and the second map is induced by
the inverse of the isomorphism ω!ι

n
F : ω!F

∼= ω!γ
nF (n) from Corollary 4.5. This completes the

proof.

In the rest of this section, we prove the following.

Proposition 4.8. For F ∈ CIτ , the map ιspF from (4.5) is split injective.

For the proof of Proposition 4.8, we first recall a construction from [Voe10]. Take X,Y ∈ Sm.
For an integer n > 0, consider the rational function gn = (xn+1

1 − 1)/(xn+1
1 − x2) on A1

x1
×A1

x2
.

Let DXY (gn) be the divisor of the pullback of gn to
(
A1

x1
−0

)
×X×

(
A1

x2
−0

)
×Y . Take a prime

correspondence

Z ∈ Cor
((
A1

x1
− 0

)
×X,

(
A1

x2
− 0

)
× Y

)
. (4.9)

Let Z ⊂ P1
x1
×X ×P1

x2
× Y be the closure of Z and Z

N
be its normalization.

Lemma 4.9. (1) Let N > 0 be an integer such that

N(01 +∞1)|ZN ⩾ (02 +∞2)|ZN . (4.10)

Then, for any integer n ⩾ N , the correspondence Z intersects properly with |DXY (gn)|, and any
component of the intersection Z ·DXY (gn) is finite and surjective over X. Thus we get

ρn(Z) ∈ Cor(X,Y )

as the pushforward of Z ·DXY (gn) in X × Y .

(2) If Z = Id(A1−0) ⊗ W for W ∈ Cor(X,Y ), then one can take N = 1 in item (1) and
ρn(Z) =W .

(3) For any Z as in (4.9) such that ρn(Z) is defined and for any f ∈ Cor(X ′, Y ′) with X ′, Y ′ ∈
Sm, for

Z ⊗ f ∈ Cor
((
A1

x1
− 0

)
× (X ×X ′),

(
A1

x2
− 0

)
× (Y × Y ′)

)
,

ρn(Z ⊗ f) is defined, and we have

ρn(Z ⊗ f) = ρn(Z)⊗ f ∈ Cor(X ×X ′, Y × Y ′) .

(4) For an integer N > 0, let

Cor(N)
((
A1

x1
− 0

)
×X,

(
A1

x2
− 0

)
× Y

)
be the subgroup of Cor

((
A1

x1
− 0

)
× X,

(
A1

x2
− 0

)
× Y

)
generated by prime correspondences

satisfying condition (4.10). Then the presheaf on Sm given by

X → Cor(N)
((
A1

x1
− 0

)
×X,

(
A1

x2
− 0

)
× Y

)
is a Nisnevich sheaf.
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Proof. The assertions are proved in [Voe10, Lemmas 4.1, 4.3 and 4.5], except that item (4) follows
from the fact that the condition (4.10) is Nisnevich local on X.

For an integer a ⩾ 1, put□
(a)

=
(
P1, a(0+∞)

)
∈MCor. Take X =

(
X,X∞

)
,Y =

(
Y , Y∞

)
∈

MCor with X = X − |X∞| and Y = Y − |Y∞|. For a ⩾ 1, take a prime correspondence

Z ∈MCor
(
□

(a) ⊗X ,□(1) ⊗ Y
)
.

By definition, Z ∈ Cor(X,Y ), and Z satisfies

(02 +∞2)|ZN + (Y∞)|ZN ⩽ a(01 +∞1)|ZN + (X∞)|ZN , (4.11)

where Z
N

is the normalization of the closure Z of Z in P1
x1
×X ×P1

x2
× Y .

For integers n,m ⩾ a, we consider the rational function on A1
x1
×A1

t ×A1
x2

h = tgn + (1− t)gm .

Let DXA1Y (h) be the divisor of the pullback of h to
(
A1

x1
− 0

)
× X × A1

t ×
(
A1

x2
− 0

)
× Y .

By [Voe10, Remark 4.2], the product Z × A1
t intersects properly with |DXA1Y (h)|, and any

component of the intersection
(
Z ×A1

t

)
·DXA1Y (h) is finite and surjective over X ×A1

t . Thus
we get

ρh
(
Z ×A1

t

)
∈ Cor

(
X ×A1

t , Y
)
.

It is easy to see that

i∗0ρh
(
Z ×A1

t

)
= ρm(Z) and i∗1ρh

(
Z ×A1

t

)
= ρn(Z) . (4.12)

Lemma 4.10. For n,m ⩾ a, we have ρh
(
Z ×A1

t

)
∈MCor

(
X ⊗□,Y

)
.

Proof. Let V be any component of
(
Z ×A1

t

)
· DXA1Y (h) and V be its closure in the product

P1
x1
× X × P1

t × P1
x2
× Y . Let W ⊂ X × A1

t × Y be the image of V and W be its closure in
X ×P1

t × Y . Then we have W = π
(
V
)
, where π : P1

x1
×X ×P1

t ×P1
x2
× Y → X ×P1

t × Y is the
projection. We want to show that

(Y∞)|WN ⩽
(
X ×∞

)
|WN +

(
X∞ ×P1

t

)
|WN .

Since π : V
N →W

N
is proper and surjective, this is reduced to showing that

(Y∞)|V N ⩽
(
X ×∞

)
|V N +

(
X∞ ×P1

t

)
|V N ,

by [KP12, Lemma 2.2]. By (4.11) and the containment lemma [KP12, Proposition 2.4] (see also
[BS19, Lemma 2.1]), we have

(Y∞)|V N + (02 +∞2)|V N ⩽ a(01 +∞1)|V N +
(
X∞ ×P1

t

)
|V N .

Thus it suffices to show that

a(01 +∞1)|V N ⩽ (02 +∞2)|V N +∞|V N .

Using [KP12, Proposition 2.4] again, this follows from

a(01 +∞1)|T ⩽ (02 +∞2)|T +∞|T , (4.13)

where T ⊂ P1
x1
×P1

t ×P1
x2

is any component of the closure of the divisor of h on
(
A1

x1
− 0

)
×

A1
t ×

(
A1

x2
− 0

)
. By an easy computation, T is contained in one of the closures D(H), D(Jn),
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D(Jm) of the divisors of

H = t
(
xn+1
1 − xm+1

1

)
(1− x2) +

(
xm+1
1 − 1

)(
xn+1
1 − x2

)
,

Jn = xn+1
1 − x2 , Jm = xm+1

1 − x2 ,

respectively. Letting P1
xi
− 0 = Spec k[τi] with τi = x−1i for i = 1, 2, the closures D(H), D(Jn),

D(Jm) are defined in
(
P1

x1
− 0

)
×A1

t ×
(
P1

x2
− 0

)
by the ideals generated by, respectively,

H ′ = t
(
τm+1
1 − τn+1

1

)
(τ2 − 1) +

(
1− τm+1

1

)(
τ2 − τn+1

1

)
,

J ′n = τ2 − τn+1
1 , J ′m = τ2 − τm+1

1 .

Hence, D(H), D(Jn), D(Jm) do not intersect with ∞1 ×P1
t ×A1

x2
.

By the assumption n,m ⩾ a, the ideals
(
Jn, x

a
1

)
,
(
Jm, x

a
1

)
⊂ k[x1, x2] contain x2, and the

ideals (J ′n, τ
a
1 ), (J

′
m, τ

a
1 ) ⊂ k[τ1, τ2] contain τ2, which implies (4.13) (without the last term) if T

is contained in D(Jm) or D(Jn).

On the other hand, the ideal
(
H,xa1

)
⊂ k[x1, x2, t] contains x2, and the ideal

(
H ′, τa1

)
⊂

k[τ1, τ2, t] contains τ2. Over P1
t − 0 = Spec k[u] with u = t−1, D(H) ·

(
A1

x1
×
(
P1

t − 0
)
×A1

x2

)
is

the zero divisor of

H̃ =
(
xn+1
1 − xm+1

1

)
(1− x2) + u

(
xm+1
1 − 1

)(
xn+1
1 − x2

)
,

and D(H) ·
((
P1

x1
− 0

)
×
(
P1

t − 0
)
×
(
P1

x2
− 0

))
is the zero divisor of

H̃ ′ =
(
τm+1
1 − τn+1

1

)
(τ2 − 1) + u

(
1− τm+1

1

)(
τ2 − τn+1

1

)
.

The ideal
(
H̃, xa1

)
⊂ k[x1, x2, u] contains ux2, and the ideal

(
H̃ ′, τa1

)
⊂ k[τ1, τ2, u] contains uτ2.

This shows (4.13) if T ⊂ D(H) and completes the proof of the claim.

Lemma 4.11. For n ⩾ a, we have ρn(Z) ∈MCor(X ,Y).

Proof. This follows from Lemma 4.10 and (4.12).

For an integer N ⩾ a, let

MCor(N)
(
□

(a)
red ⊗X ,□

(1)
red ⊗ Y

)
⊂MCor

(
□

(a)
red ⊗X ,□

(1)
red ⊗ Y

)
be the subgroup generated by prime correspondences lying inCor(N)

((
A1−0

)
×X,

(
A1−0

)
×Y

)
.

By Lemma 4.11, for n ⩾ N ⩾ a, we get a map

ρ(a)n : MCor(N)
(
□

(a)
red ⊗X ,□

(1)
red ⊗ Y

)
→MCor(X ,Y) . (4.14)

The map (4.14) induces a map of cubical complexes

ρ(a)•n : MCor(N)
(
□

(a)
red ⊗X ⊗□

•
,□

(1)
red ⊗ Y

)
→MCor

(
X ⊗□

•
,Y

)
. (4.15)

By construction, the following diagram is commutative if n ⩾ N ⩾ b ⩾ a:

MCor(N)
(
□

(a)
red ⊗X ⊗□

•
,□

(1)
red ⊗ Y

) ρ
(a)•
n //

β∗

��

MCor
(
X ⊗□

•
,Y

)

MCor(N)
(
□

(b)
red ⊗X ⊗□

•
,□

(1)
red ⊗ Y

)
,

ρ
(b)•
n

33
(4.16)

where β∗ is induced by the natural map β : □
(b)
red → □

(a)
red.
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Corollary 4.12. For m,n ⩾ N ⩾ a, the maps ρ
(a)•
n and ρ

(a)•
m are homotopic.

Proof. By Lemma 4.10, we get a map

sm,n = ρh
(
−×A1

t

)
: MCor(N)

(
□

(a)
red ⊗X ,□

(1)
red ⊗ Y

)
→MCor

(
X ⊗□,Y

)
(4.17)

such that ∂ ◦ sm,n = ρ
(a)
m − ρ(a)n , where ∂ = i∗0 − i∗1 : MCor

(
X ⊗□,Y

)
→MCor(X ,Y). Let

sim,n : MCor(N)
(
□

(a)
red ⊗X ⊗□

i
,□

(1)
red ⊗ Y

)
→MCor

(
X ⊗□

i+1
,Y

)
be the map (4.17) defined by replacing X by X ⊗□

i
. Then we have that

∂ ◦
(
(−1)isim,n

)
+ (−1)i−1si−1m,n ◦ ∂ = ρ(a),in − ρ(a),im ;

hence {(−1)isim,n}i gives the desired homotopy.

Let Z ∈ MCor(N)
(
□

(a)
red ⊗ X ,□

(1)
red ⊗ Y

)
; then for all W ∈ MCor(X ′,X ), by [Voe10,

Lemma 4.4],

Z ◦
(
IdA1−{0} ⊗W

)
∈ Cor(N)

((
A1 − 0

)
×X,

(
A1 − 0

)
× Y

)
.

Moreover, by [KMSY21a, Proposition 1.2.4(i)], we have

Z ◦
(
IdA1−{0} ⊗W

)
∈MCor

(
□

(a)
red ⊗X ,□

(1)
red ⊗ Y

)
,

which implies that

La(Y)(N) = Hom
(N)
MPST

(
□

(a)
red,□

(1)
red ⊗ Ztr(Y)

)
= MCor(N)

(
□

(a)
red ⊗ (−),□(1)

red ⊗ Y
)

is an object of MPST, which is a subobject of

La(Y) = HomMPST

(
□

(a)
red,□

(1)
red ⊗ Ztr(Y)

)
∈MPST ,

and we have

La(Y) = lim−→
N>0

La(Y)(N) . (4.18)

The above construction gives a map of complexes ρ
(a)•
N : C•La(Y)(N) → C•(Y) in MPST, where

C•(−) is the cubical Suslin complex. Let ρ
(a)
N : Hi

(
C•La(Y)(N)

)
→ Hi(C•(Y)) be the map in

MPST induced on cohomology presheaves. Thanks to Corollary 4.12, the diagram

Hi(C•La(Y)(N))
ρ
(a)
N //

��

h□i (Y)

Hi

(
C•La(Y)(N

′)
)
,

ρ
(a)

N′

77

commutes for integers N ′ ⩾ N . Hence, by (4.18), we get maps ρ(a) : Hi(C•La(Y)) → h□i (Y).
Putting Φ = □

(1)
red ⊗ Y, we have

C•(La(Y)) = HomMPST

(
□

(a)
red,HomMPST

(
□
•
,Φ

))
.

Recall that for F ∈ MPST and X ∈ MCor, we have, by the Hom-tensor adjunction, an
isomorphism

h□0 HomMPST(Ztr(X ), F ) ∼= HomMPST

(
Ztr(X ), h□0 (F )

)
.
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Hence, we get an isomorphism H0(C•La(Y)) ≃ HomMPST

(
□

(a)
red, h

□
0 (Φ)

)
for h□i (Φ) = Hi(C•(Φ)),

and we have an isomorphism h□0 (Φ) = h□0
(
□

(1)
red⊗Y

)
= □

(1)
red⊗CI Y ∈ CI. Hence we get a natural

map

ρ
(a)
Y : γa(□

(1)
red ⊗CI Y)→ h□0 (Y) , (4.19)

where γa(F ) := HomMPST

(
□

(a)
red, F

)
for F ∈MPST, and by abuse of notation, for C ∈ CI, we

let C also denote τ!C ∈ CIτ (cf. § 2.16). In view of (4.16), the following diagram is commutative
(recall that we assume b ⩾ a):

HomMPST

(
□

(a)
red, h

□
0 (Φ)

) ρ
(a)
Y //

β∗

��

h□0 (Y)

HomMPST

(
□

(b)
red, h

□
0 (Φ)

)
.

ρ
(b)
Y

66

Now take any F ∈ CIτ , and consider a presentation A → B → F → 0 in MPST, where A
and B are the direct sums of h□0 (Y) for varying Y ∈MCor. We then get a commutative diagram

γa
(
□

(1)
red ⊗CI A

)
//

ρ
(a)
A

��

γa
(
□

(1)
red ⊗CI B

)
//

ρ
(a)
B

��

γa
(
□

(1)
red ⊗CI F

)
// 0

A // B // F // 0 ,

where the vertical maps are induced by (4.19). The upper sequence is exact by the right exactness

of ⊗CI and the fact that □
(a)
red is a projective object of MPST. Thus we get the induced map in

MPST

ρ
(a)
F : γa

(
□

(1)
red ⊗CI F

)
→ F . (4.20)

Write ρF = ρ
(1)
F .

Claim 4.13. The map ρF splits ιF .

Proof. By the construction of ρF , the proof is reduced to the case F = h□0 (Y) for Y ∈ MCor,
which follows from Lemma 4.9(2).

The following result concludes the proof of Proposition 4.8.

Lemma 4.14. For F ∈ CIτ , the map ρF factors through

ρspF : γ
(
□

(1)
red ⊗

sp
CI F

)
→ F sp .

Moreover, it splits the map ιspF from (4.5).

Proof. Take X ∈MCor, and let φ be in the kernel of

HomMPST

(
□

(1)
red ⊗X ,□

(1)
red ⊗CI F

)
→ HomMPST

(
□

(1)
red ⊗X ,□

(1)
red ⊗

sp
CI F

)
.

Note that the map is surjective since □
(a)
red ⊗ X is a projective object of MPST by Yoneda’s

lemma. By the definition of semipurification (cf. § 2.14), there exists an integer m > 0 such that

β∗mφ = 0 in HomMPST

(
□

(m)
red ⊗ X (m),□

(1)
red ⊗CI F

)
, where βm : □

(m)
red ⊗ X (m) → □

(1)
red ⊗ X (cf.
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§ 2.6). Then the maps from (4.20) induce a commutative diagram

HomMPST

(
□

(1)
red ⊗X ,□

(1)
red ⊗CI F

)

β∗
m

**

��

ρF // F (X )

θ∗m
��

HomMPST

(
□

(1)
red ⊗X (m),□

(1)
red ⊗CI F

) ρF //

��

F
(
X (m)

)

HomMPST

(
□

(m)
red ⊗X (m),□

(1)
red ⊗CI F

)
,

ρ
(m)
F

44

where θ∗m is induced by θm : X (m) → X and the triangle commutes by (4.16). We have θ∗mρF (φ) =

ρ
(m)
F β∗m(φ) = 0. Hence ρF (φ) lies in the kernel of θ∗m, which is contained in the kernel of the map

spX : F (X )→ F sp(X ) by the definition of semipurification. Hence the composite map

spX ◦ ρF : HomMPST

(
□

(1)
red ⊗X ,□

(1)
red ⊗CI F

)
→ F sp(X )

factors through HomMPST

(
□

(1)
red ⊗ X ,□

(1)
red ⊗

sp
CI F

)
, inducing the desired map ρspF . Finally, to

show the last assertion, consider the commutative diagram

F
ιF //

��

γ
(
□

(1)
red ⊗CI F

)
��

ρF //

��

F

��
F sp

ιspF // γ
(
□

(1)
red ⊗

sp
CI F

) ρspF // F sp ,

where ρF ιF = idF by Claim 4.13. This implies ρspF ι
sp
F = idF sp since F → F sp is surjective. This

completes the proof of Lemma 4.14.

5. Completion of the proof of the main theorem

In this section, we prove the following result.

Proposition 5.1. For φ ∈ HomMPST

(
□

(1)
red ⊗ X ,□

(1)
red ⊗ Y

)
with X ,Y ∈ MCor, there exists

an f ∈MCor(X ,Y) such that φ and id
□

(1)
red

⊗ f have the same image in HomMPST

(
□

(1)
red ⊗ X ,

□
(1)
red ⊗

sp
CI Y

)
.

First, we deduce Theorem 4.4 from Proposition 5.1. By Proposition 4.8, it suffices to show
the surjectivity of the map ιspF from (4.5). Proposition 5.1 implies that the composition

h□0 (Y)→ γ
(
□

(1)
red ⊗CI Y

)
→ γ

(
□

(1)
red ⊗

sp
CI Y

)
≃ γ

(
□

(1)
red ⊗

sp
CI h

□
0 (Y)

)
is surjective. Since the last object is semipure, it factors through h□0 (Y)sp, proving the desired

surjectivity for F = h□0 (Y).

For a general F ∈ CIτ , consider a surjection q :
⊕
Y→F h

□
0 (Y)→ F , which gives a commuta-
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tive diagram ⊕
h□0 (Y)sp

⊕ιspY //

qsp

��

⊕
γ
(
□

(1)
red ⊗

sp
CI Y

)
��

F sp
ιspF // γ

(
□

(1)
red ⊗

sp
CI F

)
,

where the top arrow is surjective and the vertical arrows are surjective since representable
presheaves are projective objects of MPST by Yoneda’s lemma and the functors ( )sp and

□
(1)
red ⊗CI commute with direct sums and preserves surjective maps. This proves the desired

surjectivity of ιF .

The proof of Proposition 5.1 requires a construction analogous to the one in [Gra05]. For
a variable T over k and for i ⩾ 1, we put

□
(i)
T =

(
P1

T , i(0 +∞)
)
,

where P1
T is the compactification of Gm,T = Spec k

[
T, T−1

]
. We also put (cf. (3.1))

□
(i)
T,red = Ker

(
Ztr

(
□

(i)
T

) pr−→ Z = Ztr(Spec k, ∅)
)
∈MPST ,

where pr : P1
T → Spec k is the projection. Let e be the composite of pr and i1 : Z → Ztr

(
□

(1)
T

)
induced by 1 ∈ P1

T . Then e is an idempotent of EndMPST

(
□

(1)
T

)
, and id− e ∈ EndMPST

(
□

(1)
T

)
,

with id denoting the identity on □
(i)
T , is a splitting of □

(i)
T,red → □

(i)
T . Thus, we get a direct sum

decomposition in MPST (cf. (3.1))

□
(i)
T = □

(i)
T,red ⊕ Z with □

(i)
T,red = (id− e)□(i)

T .

For F ∈MPST and integers i1, . . . , in ⩾ 1, let

π : HomMPST

(
□

(i1)
T ⊗ · · · ⊗□

(in)
T , F

)
→ HomMPST

(
□

(i1)
T,red ⊗ · · · ⊗□

(in)
T,red, F

)
be the projection induced by the above decomposition.

For X ∈ Sm and a ∈ Γ(X,O×), let [a] ∈ Cor
(
X,A1 − {0}

)
be the map given by z 7→ a,

where A1 = Spec k[z].

Lemma 5.2. (1) The correspondences

[T ], [U ], [TU ], [1] ∈ Cor
((
A1

T − {0}
)
×
(
A1

U − {0}
)
,
(
A1 − {0}

))
lie in MCor

(
□

(1)
T ⊗□

(1)
U ,□

(1))
. Moreover, we have

[T ] + [U ]− [TU ]− [1] = 0 ∈ HomMPST

(
□

(1)
T ⊗□

(1)
U , h□0

(
□

(1)))
.

(2) The correspondences

[−T ], [−U ], [−TU ], [−1] ∈ Cor
((
A1

T − {0}
)
×
(
A1

U − {0}
)
,
(
A1 − {0}

))
lie in MCor

(
□

(1)
T ⊗□

(1)
U ,□

(1))
. Moreover, we have

[−T ] + [−U ]− [−TU ]− [−1] = 0 ∈ HomMPST

(
□

(1)
T ⊗□

(1)
U , h□0

(
□

(1)))
.

Proof. The first assertion of item (1) follows from the equalities

[T ] = µ(id⊗ [1]) , [U ] = µ(id⊗ [1]) , [TU ] = µ ,
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where µ :
(
A1

T − {0}
)
×
(
A1

U − {0}
)
→

(
A1

W − {0}
)
is the multiplication W = TU , which lies in

MCor
(
□

(1)
T ⊗□

(1)
U ,□

(1)
W

)
by [Sai20, Claim 1.21].

To show the second assertion of item (1), consider as in [SV00, Proposition 3.4.3] the finite
correspondence Z given by the following algebraic subset:{

V 2 −
(
W (T + U) + (1−W )(TU + 1)

)
V + TU = 0

}
∈ Cor

((
A1

T − {0}
)
×
(
A1

U − {0}
)
×A1

W ,A
1
V − {0}

)
.

(5.1)

Let

i0, i1 :
(
A1

T − 0
)
×
(
A1

U − 0
)
×
(
A1

V − 0
)
→

(
A1

T − 0
)
×
(
A1

U − 0
)
×A1

W ×
(
A1

V − 0
)

be the maps induced by the inclusion of 0W and 1W in A1
W . It is clear that (i∗0 − i∗1)(Z) =

([TU ] + [1])− ([T ] + [U ]) since

V 2 − (TU + 1)V + TU = (V − TU)(V − 1) ,

V 2 − (T + U)V + TU = (V − T )(V − U) .

We need to check that Z lies in MCor
(
□

(1)
T ⊗□

(1)
U ⊗□W ,□

(1)
V

)
. Consider the compactification(

P1
)×4

of A1
T ×A1

U ×A1
W ×A1

V given coordinates with the usual convention [0 : 1] = ∞ and
[1 : 0] = 0:

([T0 : T∞], [U0 : U∞], [W0 :W∞], [V0 : V∞]) .

Then the closure of Z is the hypersurface given by the polyhomogeneous polynomial

T0U0W0V
2
∞ −

(
W∞(T0U∞ + T∞U0) + (W0 −W∞)(T∞U∞ + T0U0)

)
V∞V0 + T∞U∞W0V

2
0 .

We have to check that it satisfies the modulus condition: letting φ : Z →
(
P1

)×4
be the inclusion,

and letting

D1 = ({0}+ {∞})×P1
U ×P1

W ×P1
V +P1

T × ({0}+ {∞})×P1
W ×P1

V

+P1
T ×P1

U × {∞} ×P1
V ,

D2 = P1
T ×P1

U ×P1
W × ({0}+ {∞}) ,

we have to check the inequality

φ∗(D1) ⩾ φ∗(D2) . (5.2)

Consider the Zariski cover of
(
P1

)×4
given by{

Uα,β,γ,δ =
(
P1 − α

)
×
(
P1 − β

)
×
(
P1 − γ

)
×
(
P1 − δ

)
, α, β, γ, δ ∈ {0,∞}

}
.

Define tα = T∞/T0 if α =∞ and tα = T0/T∞ if α = 0 and uβ, wγ , vδ similarly. Then

Uα,β,γ,δ = Spec(k[tα, uβ, wγ , vδ]) .

On this cover, the Cartier divisors D1 and D2 are given by the systems of local equations

D1 =
{
(Uα,β,0,δ, tαuβw0), (Uα,β,∞,δ, tαuβ)

}
, D2 =

{
(Uα,β,γ,δ, vδ)

}
.

The equation of Z on
(
P1

)×4−{0} is of the form T0U0W0− v0F for some F ∈ k[v0][U0, U∞, . . .].
Hence (5.2) is satisfied on Uα,β,γ,0 if α = 0 or β = 0 or γ = 0. Furthermore, Z · U∞,∞,∞,0 ·D2 = ∅.
Similarly, the equation of Z on

(
P1

)×4 − {∞} is of the form T∞U∞W0 − v∞G for some G ∈
k[v∞][U0, U∞, . . .]. Hence (5.2) is satisfied on Uα,β,γ,∞ if α =∞ or β =∞ or γ = 0. Furthermore,
Z · U0,0,∞,∞ ·D2 = ∅.
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Item (2) is proved by the same argument using the following correspondence instead of (5.1):{
V 2 +

(
W (T + U) + (1−W )(TU + 1)

)
V + TU = 0

}
∈ Cor

((
A1

T − {0}
)
×
(
A1

U − {0}
)
×A1

W ,A
1
V − {0}

)
.

Corollary 5.3. We have π([TU ]) = 0 ∈ HomMPST

(
□

(1)
T,red ⊗□

(1)
U,red, h

□
0

(
□

(1)))
.

Proof. This follows from Lemma 5.2 since

[TU ] ◦
(
(id− e)⊗ (id− e)

)
= [TU ]− [TU ] ◦ (1⊗ e)− [TU ] ◦ (e⊗ 1) + [TU ] ◦ (e⊗ e)

= [TU ]− [T ]− [U ] + [1] in HomMPST

(
□

(1)
T ⊗□

(1)
U ,□

(1))
.

For X ∈ Sm and a, b ∈ Γ(X,O×), let

[a, b] ∈ Cor
(
X,

(
A1 − {0}

)
⊗
(
A1 − {0}

))
be the map given by z 7→ a, w 7→ b, where z (respectively, w) is the standard coordinate of the
first (respectively, second) A1.

Corollary 5.4. In HomMPST

(
□

(1)
T ⊗□

(1)
U ⊗□

(1)
V , h□0

(
□

(1) ⊗□
(1)))

, we have

[T, V ] + [U, V ]− [TU, V ]− [1, V ] = [−T, V ] + [−U, V ]− [−TU, V ]− [−1, V ] = 0 .

Proof. This follows from Lemma 5.2, noting that the endofunctor ⊗□
(1)

on MPST is additive

and h□0
(
□

(1) ⊗□
(1))

is a quotient of h□0
(
□

(1))⊗□
(1)

.

Proposition 5.5. The correspondences

[U, T ],
[
T−1, U

]
∈ Cor

((
A1

T − {0}
)
×
(
A1

U − {0}
)
,
(
A1 − {0}

)
×
(
A1 − {0}

))
lie in MCor

(
□

(1)
T ⊗□

(1)
U ,□

(1) ⊗□
(1))

. Moreover, the element

π([U, T ])− π
([
T−1, U

])
∈ HomMPST

(
□

(1)
T,red ⊗□

(1)
U,red, h

□
0

(
□

(1) ⊗□
(1)))

lies in the kernel of the map

HomMPST

(
□

(1)
T,red ⊗□

(1)
U,red, h

□
0

(
□

(1) ⊗□
(1)))→ HomMPST

(
□

(2)
T,red ⊗□

(2)
U,red, h

□
0

(
□

(1) ⊗□
(1)))

.

Proof. (See [Gra05, Corollary 9].) The first assertion is easily checked. To show the second,
consider the map in MCor

□
(2)
S → □

(1)
T ⊗□

(1)
U , T 7→ S , U 7→ S−1 .

Composing this with the correspondences of Lemma 5.2(1), we get [S] +
[
S−1

]
− 2[1] = 0 ∈

HomMPST

(
□

(2)
S,red, h

□
0

(
□

(1)))
. Noting that π([1]) = (id − e) ◦ [1] = 0, we get π

(
[S] +

[
S−1

])
=

0 ∈ HomMPST

(
□

(2)
S,red, h

□
0

(
□

(1)))
.

This implies

π
(
[S, V ] +

[
S−1, V

])
= 0 ∈ HomMPST

(
□

(2)
S,red ⊗□

(1)
V,red, h

□
0

(
□

(1) ⊗□
(1)))

, (5.3)

again noting that the endofunctor ⊗□
(1)
V on MCor is additive and h□0

(
□

(1)⊗□
(1))

is a quotient

of h□0
(
□

(1))⊗□
(1)

.

On the other hand, by tensoring the correspondence of Corollary 5.3 with another copy of
itself, we get

π([TU, V W ]) = 0 in HomMPST

(
□

(1)
T,red ⊗□

(1)
U,red ⊗□

(1)
V,red ⊗□

(1)
W,red, h

□
0

(
□

(1) ⊗□
(1)))

. (5.4)
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There is a map in MCor

□
(2)
S1
⊗□

(2)
S2
→ □

(1)
T ⊗□

(1)
U ⊗□

(1)
V ⊗□

(1)
W , T 7→ S1 , U 7→ S2, V 7→ −S1 W 7→ S2 ,

which induces an element of

HomMPST

(
□

(2)
S1,red

⊗□
(2)
S2,red

,□
(1)
T,red ⊗□

(1)
U,red ⊗□

(1)
V,red ⊗□

(1)
W,red

)
.

Composing this with (5.4) and changing the variables (S1, S2) to (T,U), we get

π([TU,−TU ]) = 0 ∈ HomMPST

(
□

(2)
T,red ⊗□

(2)
U,red, h

□
0

(
□

(1) ⊗□
(1)))

. (5.5)

We make the following claim.

Claim 5.6. In HomMPST

(
□

(1)
T,red ⊗□

(1)
U,red, h

□
0

(
□

(1) ⊗□
(1)))

, we have

π([TU,−TU ]) = π([T,−TU ]) + π([U,−TU ]) , (5.6)

π([T,−TU ]) = π([T,U ]) , (5.7)

π([U,−TU ]) = π([U, T ]) . (5.8)

Proof of Claim 5.6. Indeed, composing the first correspondence of Corollary 5.4 with the map
in MCor

□
(1)
T ⊗□

(1)
U → □

(1)
T ⊗□

(1)
U ⊗□

(1)
V (5.9)

given by V → −TU which is admissible by [Sai20, Claim 1.21], we get

[TU,−TU ] + [1,−TU ]− [T,−TU ]− [U,−TU ] = 0

in HomMPST

(
□

(1)
T ⊗□

(1)
U , h□0

(
□

(1) ⊗□
(1)))

. Then (5.6) follows from the equality

π([1,−TU ]) = 0 ∈ HomMPST

(
□

(1)
T,red ⊗□

(1)
U,red, h

□
0

(
□

(1) ⊗□
(1)))

.

Indeed, we have

[1,−TU ] ◦ ((id− e)⊗ (id− e))
= [1,−TU ]− [1,−TU ] ◦ (id⊗ e)− [1,−TU ] ◦ (e⊗ id) + [1,−TU ] ◦ (e⊗ e)

= [1,−TU ]− [1,−T ]− [1,−U ] + [1,−1] (∗)= 0

in HomMPST

(
□

(1)
T ⊗ □

(1)
U ,□

(1) ⊗ □
(1))

, where the equality (∗) follows from Corollary 5.4.
Then (5.7) and (5.8) follow from Corollary 5.4 by an analogous argument considering the
maps (5.9) given by V 7→ T , T 7→ −T and V 7→ U , U 7→ −U , respectively, and noticing
that

[T,−T ] ◦ ((id− e)⊗ (id− e))
= [T,−T ]− [T,−T ] ◦ (id⊗ e)− [T,−T ] ◦ (e⊗ id) + [T,−T ] ◦ (e⊗ e)
= [T,−T ]− [T,−T ]− [1,−1] + [1,−1] = 0 ,

and similarly for [U,−U ]. This completes the proof of the claim.

By Claim 5.6, equation (5.5) implies

π[T,U ] + π[U, T ] = 0 in HomMPST

(
□

(2)
T,red ⊗□

(2)
U,red, h

□
0

(
□

(1) ⊗□
(1)))

. (5.10)

Putting (5.3) and (5.10) together, we conclude that

π[T,U ]− π
[
U−1, T

]
= 0 in HomMPST

(
□

(2)
T,red ⊗□

(2)
U,red, h

□
0

(
□

(1) ⊗□
(1)))

.
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This completes the proof of Proposition 5.5.

Take X ,Y ∈MCor and φ ∈ HomMPST

(
□

(1)
red ⊗X ,□

(1)
red ⊗ Y

)
. It induces

φ□ ∈ HomMPST

(
□

(1)
red ⊗X ,□

(1)
red ⊗CI Y

)
.

Let φ∗ ∈ HomMPST

(
X ⊗ □

(1)
red,Y ⊗ □

(1)
red

)
be obtained from φ by the obvious permutation. It

induces φ∗
□
∈ HomMPST

(
X ⊗□

(1)
red,Y ⊗CI □

(1)
red

)
. We then put

φ⊗ Id
□

(1)
red

∈ HomMPST

(
□

(1)
red ⊗X ⊗□

(1)
red,□

(1)
red ⊗ Y ⊗□

(1)
red

)
,

Id
□

(1)
red

⊗ φ∗ ∈ HomMPST

(
□

(1)
red ⊗X ⊗□

(1)
red,□

(1)
red ⊗ Y ⊗□

(1)
red

)
,

which induce

φ□ ⊗ Id
□

(1)
red

∈ HomMPST

(
□

(1)
red ⊗X ⊗□

(1)
red,□

(1)
red ⊗CI Y ⊗CI □

(1)
red

)
,

Id
□

(1)
red

⊗ φ∗
□
∈ HomMPST

(
□

(1)
red ⊗X ⊗□

(1)
red,□

(1)
red ⊗CI Y ⊗CI □

(1)
red

)
.

ForM ∈MCor, let σM : □
(1)
red ⊗M⊗□

(1)
red → □

(1)
red ⊗M⊗□

(1)
red be the permutation of the two

copies of □
(1)
red. We have

φ⊗ Id
□

(1)
red

= (σY) ◦
(
Id

□
(1)
red

⊗ φ∗
)
◦ (σX ) .

Let T be the standard coordinate on A1, and let

ι : □
(1)
red → □

(1)
red (5.11)

be the map given by T → T−1. For allM∈MCor, let

σ′M = σM − Id
□

(1)
red⊗M

⊗ ι : □(1)
red ⊗M⊗□

(1)
red → □

(1)
red ⊗M⊗□

(1)
red .

We can write

φ⊗ Id
□

(1)
red

= Id
□

(1)
red

⊗ φ∗ + (σ′Y) ◦ p+ q ◦ (σ′X )

for some p, q ∈ HomMPST

(
□

(1)
red ⊗ X ⊗ □

(1)
red,□

(1)
red ⊗ Y ⊗ □

(1)
red

)
. Put ΓX = □

(1)
red ⊗CI X ⊗CI □

(1)
red

and ΓY = □
(1)
red ⊗CI Y ⊗CI □

(1)
red. Hence we can write

φ□ ⊗ Id
□

(1)
red

= Id
□

(1)
red

⊗ φ∗
□
+ σ′

□,Y ◦ p+ q□ ◦ σ
′
□,X

, (5.12)

where

σ′
□,Y : □

(1)
red ⊗ Y ⊗□

(1)
red → ΓY , σ′

□,X : □
(1)
red ⊗X ⊗□

(1)
red → ΓX , q□ : ΓX → ΓY

are induced by σ′Y , σ
′
X and q, respectively. For an integer n > 0, let X (n) := (X,nD) if X =

(X,D). Then we consider the map

HomMPST

(
□

(1)
red ⊗X ⊗□

(1)
red,ΓY

) β∗
n−→ HomMPST

(
□

(n)
red ⊗X (n) ⊗□

(n)
red,ΓY

)
induced by the natural map βn : □

(n)
red ⊗X (n) ⊗□

(n)
red → □

(1)
red ⊗X ⊗□

(1)
red.

Claim 5.7. There is an N ⩾ 2 such that for all n ⩾ N , the maps σ′
□,Y ◦ p and q□ ◦ σ′□,X lie in

the kernel of

HomMPST

(
□

(1)
red ⊗X ⊗□

(1)
red,ΓY

) β∗
n−→ HomMPST

(
□

(n)
red ⊗X (n) ⊗□

(n)
red,ΓY

)
.
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Proof. By Proposition 5.5, the composite map

□
(2)
red ⊗□

(2)
red

β2−→ □
(1)
red ⊗□

(1)
red

σ′
−→ □

(1)
red ⊗□

(1)
red → h□0

(
□

(1)
red

)
⊗CI h

□
0

(
□

(1)
red

)
is zero, where σ′ = σ−Id

□
(1)
red

⊗ι with σ the permutation of the two copies of□
(1)
red and ι from (5.11).

This immediately implies the claim for q□ ◦ σ′□,X . We now show the claim for σ′
□,Y ◦ p. Choose

an integer N such that for all n ⩾ N , there is map

p(n) ∈ HomMPST

(
□

(n)
red ⊗X (n) ⊗□

(n)
red,□

(2)
red ⊗ Y(2) ⊗□

(2)
red

)
induced by p. ForM,N ∈MCor, write

ΛM,N = HomMPST

(
□

(1)
red ⊗M⊗□

(1)
red,□

(1)
red ⊗CI N ⊗CI □

(1)
red

)
,

Λ
(n)
M,N = HomMPST

(
□

(n)
red ⊗M(n) ⊗□

(n)
red,□

(1)
red ⊗CI N ⊗CI □

(1)
red

)
.

Then for n ⩾ N , we have a commutative diagram

ΛY,Y
p∗ //

β∗
2
��

ΛX ,Y

β∗
n
��

Λ
(2)
Y,Y

(p(n))∗// Λ
(n)
X ,Y .

(5.13)

The claim for σ′
□,Y ◦ p follows from this.

We now complete the proof of Proposition 5.1. We consider the commutative diagram

HomMPST

(
□

(1)
red ⊗X ⊗□

(1)
red,□

(1)
red ⊗ Y ⊗□

(1)
red

) ρ1 //

β∗
n
��

HomMPST

(
X ⊗□

(1)
red,Y ⊗CI □

(1)
red

)
β∗
n
��

HomMPST

(
□

(n)
red ⊗X (n) ⊗□

(n)
red,□

(1)
red ⊗ Y ⊗□

(1)
red

) ρn // HomMPST

(
X (n) ⊗□

(n)
red,Y ⊗CI □

(1)
red

)
,

where the horizontal maps come from (4.19), replacing Y by Y⊗□
(1)
red. By Lemma 4.9(3) and (2),

we have ρ1
(
φ⊗ id

□
(1)
red

)
= ρ(φ)⊗ Id

□
(1)
red

and ρ1
(
Id

□
(1)
red

⊗ φ∗
)
= φ∗

□
, where

ρ : HomMPST

(
□

(1)
red ⊗X ,□

(1)
red ⊗ Y

)
→ HomMPST

(
X , h□0 (Y)

)
(5.14)

is the map from (4.19). In view of the diagram, (5.12) and Claim 5.7 imply that there is an n≫ 0
such that β∗n

(
φ∗
□
− ρ(φ□)⊗ Id

□
(1)
red

)
= 0, so that

β∗n
(
φ□ − Id

□
(1)
red

⊗ ρ(φ□)
)
= 0 ∈ HomMPST

(
□

(n)
red ⊗X (n),□

(1)
red ⊗CI Y

)
. (5.15)

Consider the commutative diagram

HomMPST

(
□

(1)
red ⊗X ,□

(1)
red ⊗CI Y

)
//

β∗
n
��

HomMPST

(
□

(1)
red ⊗X ,□

(1)
red ⊗

sp
CI Y

)
β∗
n
��

HomMPST

(
□

(n)
red ⊗X (n),□

(1)
red ⊗CI Y

)
// HomMPST

(
□

(n)
red ⊗X (n),□

(1)
red ⊗

sp
CI Y

)
.

The two horizontal maps are surjective since representable presheaves are projective objects of

MPST and □
(1)
red⊗CIY → □

(1)
red⊗

sp
CIY is surjective. The map β∗n on the right-hand side is injective
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since □
(1)
red ⊗

sp
CI Y is semipure. Hence Proposition 5.1 follows from (5.15).

6. Implications on reciprocity sheaves

Let RSCNis be the category of reciprocity sheaves (see § 2.17). Recall that for simplicity, for all
F ∈ RSCNis, we write (cf. § 2.18)

F̃ := ωCIF ∈ CIτ,spNis .

By [RSY22], there is a lax monoidal structure on RSCNis given by (cf. Proposition 4.1)(
F,G

)
RSCNis

:= ω!

(
F̃ ⊗Nis,sp

CI G̃
)
.

Following [RSY22, § 5.21], we define

F ⟨0⟩ := F , F ⟨n⟩ :=
(
F ⟨n− 1⟩,Gm

)
RSCNis

for n ⩾ 1 . (6.1)

By Corollary 3.2(1), we have (cf. (4.3))

F ⟨n⟩ ∼= ω!

( ˜F ⟨n− 1⟩(1)
)
. (6.2)

By the recursiveness of the definition, we have

(F ⟨n⟩)⟨m⟩ ∼= F ⟨n+m⟩ . (6.3)

By [RSY22, Proposition 5.6 and Corollary 5.22], we have isomorphisms

ω!

(
(ω∗Gm)⊗

Nis,sp
CI n

) ∼= Z⟨n⟩ ∼= KM
n , Ga⟨n⟩ ∼= Ωn if ch(k) = 0 , (6.4)

where the second isomorphism is defined as follows: for an affineX = SpecA ∈ Sm, the composite
map

Ga(A)⊗Z Gm(A)⊗Zn →
(
Ga ⊗NST G⊗NSTn

m

)
(A)→ Ga⟨n⟩(A)

(6.4)−−−→ Ωn
A (6.5)

sends a⊗ f1 ⊗ · · · ⊗ fn with a ∈ A and fi ∈ A× to adlog f1 ∧ · · · ∧ dlog fn.

By [RSY22, § 5.21(4)], there is a natural surjective map for F ∈ RSCNis

F ⊗NST KM
n → F ⟨n⟩ . (6.6)

Lemma 6.1. The map (6.6) factors through a natural surjective map

ω!

(
F̃ ⊗Nis,sp

CI (ω∗Gm)⊗
Nis,sp
CI n

)
→ F ⟨n⟩ . (6.7)

Proof. By [RSY22, 5.21(1)], there is a natural surjective map

ω!aNish
□
0

(
F̃ ⊗MPST (ω∗Gm)⊗MPSTn

)
→ F ⟨n⟩ . (6.8)

By Lemma 2.14(2) and (3), we have a natural isomorphism

ω!aNish
□
0

(
F̃ ⊗MPST (ω∗Gm)⊗MPSTn

)
≃ ω!

(
F̃ ⊗Nis,sp

CI (ω∗Gm)⊗
Nis,sp
CI n

)
.

Hence (6.8) induces (6.7). We have a surjective map

F ⊗PST KM
n

(6.4)
≃ ω!F̃ ⊗PST ω!

(
(ω∗Gm)⊗

Nis,sp
CI n

)
≃ ω!

(
F̃ ⊗MPST

(
(ω∗Gm)⊗

Nis,sp
CI n

))
→ ω!

(
F̃ ⊗Nis,sp

CI (ω∗Gm)⊗
Nis,sp
CI n

)
,

where the second isomorphism comes from the monoidality of ω! (cf. § 2.19). By the adjunction
from (2.1), this induces a surjective map

F ⊗NST KM
n = aVNis

(
F ⊗PST KM

n

)
→ ω!

(
F̃ ⊗Nis,sp

CI (ω∗Gm)⊗
Nis,sp
CI n

)
. (6.9)
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By the construction of (6.8), it is straightforward to check that (6.6) is the composite (6.7)
and (6.9). This completes the proof of the lemma.

We have a natural map in X ∈ Sm:

F (X) = HomPST(Ztr(X), F )
⊗idKM

n−−−−−→ HomPST

(
Ztr(X)⊗NST KM

n , F ⊗NST KM
n

)
−→ HomPST

(
Ztr(X)⊗NST KM

n , F ⟨n⟩
)
, (6.10)

where the last map is induced by (6.6). Thus we get a map

λnF : F → HomPST

(
KM

n , F ⟨n⟩
)
. (6.11)

Theorem 6.2. For F ∈ RSCNis, the map λnF is an isomorphism.

The proof will be given later. First, we prove the following.

Proposition 6.3. The map λnF is an isomorphism for n = 1.

Proof. Note that KM
1 = Gm and that for F1, G1, F2, G2 ∈ MPST and maps f : F1 → F2 and

g : G1 → G2, the diagram

ω!F1 ⊗PST ω!G1
ω!f⊗ω!g //

≃
��

ω!F2 ⊗PST ω!G2

≃
��

ω!(F1 ⊗MPST G1)
ω!(f⊗g) // ω!(F2 ⊗MPST G2)

commutes, where the vertical isomorphisms follow from the monoidality of ω!. Thus, by Lem-
ma 6.1, (6.10) with n = 1 coincides with the composite map

F (X) = ω!F̃ (X)
ω!( ⊗idω∗Gm )(X)
−−−−−−−−−−−→ ω!HomMPST

(
ω∗Gm, F̃ ⊗Nis,sp

CI ω∗Gm

)
(X)

≃ HomMPST

(
ω∗Gm,HomMPST

(
Ztr(X, ∅), F̃ ⊗Nis,sp

CI ω∗Gm

))
(∗1)
≃ HomMPST

(
ω∗Gm, ω

CIω!HomMPST

(
Ztr(X, ∅), F̃ ⊗Nis,sp

CI ω∗Gm

))
(∗2)
≃ HomPST

(
Gm, ω!HomMPST

(
Ztr(X, ∅), F̃ ⊗Nis,sp

CI ω∗Gm

))
(∗3)
≃ HomPST

(
Gm,Hom

(
Ztr(X), ω!

(
F̃ ⊗Nis,sp

CI ω∗Gm

)))
(∗4)
≃ HomPST(Gm, F ⟨1⟩)(X) . (6.12)

Here (∗1) is induced by the injective unit map G → ωCIω!G
(
G ∈ CIτ,spNis

)
for the adjunc-

tion (2.13) and is an isomorphism by Corollary 3.9 and the fact that HomMPST

(
Ztr(X, ∅),

F̃ ⊗Nis,sp
CI ω∗Gm

)
∈ CIτ,spNis ; (∗2) is given by the fully faithfulness of ωCI and the equality

ωCIGm = ω∗Gm by [KSY22, Lemma 2.3.1]; (∗3) follows from Lemma 2.3; and (∗4) holds by the
definition (6.1).

This gives a commutative diagram

F
λ1
F //

≃
��

HomPST(Gm, F ⟨1⟩)

ω!F̃
ω!ι

1
F̃ // ω!HomMPST

(
ω∗Gm, F̃ ⊗Nis,sp

CI □
(1)
red

)
,

≃

OO
(6.13)
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where ι1
F̃
= ( ⊗ idω∗Gm) is an isomorphism from Corollary 4.6 (using Corollary 3.2). This proves

the proposition.

For F,G ∈ RSCNis, let

ιF,G : HomPST(F,G)→ HomPST(F ⟨1⟩, G⟨1⟩) (6.14)

be the composite map

HomPST(F,G)
ωCI

−−→ HomMPST

(
F̃ , G̃

)
−⊗Nis

CI ω
∗Gm−−−−−−−−→ HomMPST

(
F̃ ⊗Nis

CI ω
∗Gm, G̃⊗Nis

CI ω
∗Gm

) ω!−→ HomPST(F ⟨1⟩, G⟨1⟩) .

Theorem 6.4. For F,G ∈ RSCNis, the map ιF,G is an isomorphism.

Proof. We have isomorphisms (cf. § 2.18)

HomPST(F ⟨1⟩, G⟨1⟩) = HomPST

(
ω!

(
F̃ ⊗Nis,sp

CI ω∗Gm

)
, ω!

(
G̃⊗Nis,sp

CI □
(1)
red

))
∼= HomMPST

(
F̃ ⊗Nis,sp

CI ω∗Gm, ω
CIω!

(
G̃⊗Nis,sp

CI □
(1)
red

))
∼= HomMPST

(
F̃ ⊗MPST ω

∗Gm, ω
CIω!

(
G̃⊗Nis,sp

CI □
(1)
red

))
∼= HomMPST

(
F̃ ,HomMPST

(
ω∗Gm, ω

CIω!

(
G̃⊗Nis,sp

CI □
(1)
red

)))
, (6.15)

where the first (respectively, second) isomorphism follows from (2.12)
(
respectively, the fact that

ωCIω!τ!
(
G̃ ⊗Nis,sp

CI □
(1)
red

)
∈ CIτ,spNis

)
. Note that for H ∈ CIτ,sp, the natural map H → ωCIω!H is

injective.

Hence we get injective maps

HomMPST

(
F̃ ,HomMPST

(
ω∗Gm, G̃⊗Nis,sp

CI □
(1)
red

))
↪→ HomMPST

(
F̃ ,HomMPST

(
ω∗Gm, ω

CIω!

(
G̃⊗Nis,sp

CI □
(1)
red

)))
↪→ HomMPST

(
F̃ , ωCIω!HomMPST

(
ω∗Gm, ω

CIω!

(
G̃⊗Nis,sp

CI □
(1)
red

)))
(∗1)
≃ HomMPST

(
F̃ , ωCIHomPST

(
Gm, ω!

(
G̃⊗Nis,sp

CI □
(1)
red

)))
(∗2)
≃ HomMPST

(
F̃ , ωCIHomPST

(
Gm, G⟨1⟩

))
, (6.16)

where the isomorphism (∗1) comes from Proposition 3.10 and ω!ω
CI ≃ id (cf. § 2.18) and (∗2)

follows from (6.2). These maps fit into a commutative diagram

HomMPST

(
F̃ , G̃

)
≃
α

rr

HomMPST

(
F̃ ,HomMPST

(
ω∗Gm, G̃⊗Nis,sp

CI □
(1)
red

))
↪→
��

HomPST(F,G)

ιF,G

��

≃ ωCI

OO

ωCI≃

vv

HomMPST

(
F̃ ,HomMPST

(
ω∗Gm, ω

CIω!

(
G̃⊗Nis,sp

CI □
(1)
red

)))
↪→
��

HomPST(F ⟨1⟩, G⟨1⟩)≃
(6.15)
oo

HomMPST

(
F̃ , ωCIHomPST(Gm, G⟨1⟩)

)
HomMPST

(
F̃ , G̃

)
.≃

βoo
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The two right vertical isomorphisms follow from the full faithfulness of ωCI. The isomorphism α
(respectively, β) comes from ι1

G̃
from Corollaries 4.6 and 3.2 (respectively, λ1G from Proposi-

tion 6.3). The squares are commutative by (6.13), noting that the left vertical maps are viewed
as inclusions under the identifications

ω!HomMPST

(
ω∗Gm, G̃⊗Nis,sp

CI □
(1)
red

)
≃ HomPST(Gm, G⟨1⟩)

≃ ω!HomMPST

(
ω∗Gm, ω

CIω!

(
G̃⊗Nis,sp

CI □
(1)
red

))
coming from Proposition 3.10. This proves that the map ιF,G is an isomorphism, as desired.

Corollary 6.5. For F,G ∈ RSCNis, there exists a natural injective map in NST for internal
hom

HomPST(F ⟨1⟩, G⟨1⟩) ↪→ HomPST(F,G) , (6.17)

which coincides with the inverse of (6.14) on the k-valued points.

Proof. The surjective map F ⊗NST Gm → F ⟨1⟩ in NST from (6.6) induces an injective map

HomPST(F ⟨1⟩, G⟨1⟩) ↪→ HomPST(F ⊗NST Gm, G⟨1⟩)
≃ HomPST(F,HomPST(Gm, G⟨1⟩) ,

and the latter is isomorphic to HomPST(F,G) by Proposition 6.3. This completes the proof.

Proof of Theorem 6.2. Consider the map induced by (6.6):

q : HomPST

(
KM

n , F ⊗NST KM
n

)
→ HomPST

(
KM

n , F ⟨n⟩
)
.

The map (6.11) is then the composition of q and the map

F → HomPST

(
KM

n , F ⊗NST KM
n

)
, s 7→ s⊗ idKM

n
. (6.18)

On the other hand, we have isomorphisms KM
i−1⟨1⟩ ∼= KM

i for all i ⩾ 1 by (6.4). Hence the
map (6.17) for F = KM

i−1 gives an injective map

HomPST

(
KM

i , F ⟨i⟩
)
→ HomPST

(
KM

i−1, F ⟨i− 1⟩
)
. (6.19)

Composing (6.19) for all i ⩽ n, we get an injective map

HomPST

(
KM

n , F ⟨n⟩
)
↪→ F , (6.20)

which by definition sends q(s⊗ idKM
n
) to s for a section s of F . Hence the composition

F
(6.11)−−−→ HomPST

(
KM

n , F ⟨n⟩
) (6.20)
↪−−→ F

is the identity, so (6.11) is an isomorphism. This completes the proof of Theorem 6.2.

Let G ∈ RSCNis and X ∈ Sm. By Lemma 2.3, we have a natural isomorphism

ω!HomMPST

(
(X, ∅), ωCIG

)
≃ HomPST(X,G) .

Hence the unit map id→ ωCIω! from (2.13) induces a natural map

HomMPST

(
(X, ∅), ωCIG

)
→ ωCIHomPST(X,G) . (6.21)

It is injective by the semipurity of HomMPST

(
Ztr(X, ∅), ωCIG

)
and becomes an isomorphism
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after taking ω!. Moreover, the following diagram is commutative:

HomMPST

(
(X, ∅), ωCIG

) (6.21) //

↪→
��

ωCIHomPST(X,G)

↪→
��

HomMPST((X, ∅), ω∗G)
≃ // ω∗HomPST(X,G) ,

(6.22)

where the isomorphism comes from Lemma 2.2.

For G ∈ RSCNis and X ∈ Sm, we define the following condition:

(♣)X The map (6.21) is an isomorphism.

Theorem 6.6. Let F,G ∈ RSCNis. Assume one of the following:

(1) The reciprocity sheaf G satisfies (♣)X for any X ∈ Sm.

(2) The reciprocity sheaf G satisfies (♣)Spec(K) for any function field K over k, and F is the
quotient of a direct sum of representable objects.

Then (6.17) is an isomorphism.

Proof. Assume condition (1). Letting G̃ = ωCIG, we have isomorphisms for X ∈ Sm

HomPST(F,G)(X) = HomPST(F,HomPST(X,G))

∼=
(∗1)

HomMPST

(
F̃ , ωCIHomPST(X,G)

) ∼=
(∗2)

HomMPST

(
F̃ ,HomMPST

(
(X, ∅), G̃

))
, (6.23)

where the isomorphism (∗1) (respectively, (∗2)) comes from the full faithfulness of ωCI (respec-
tively, (♣)X). Moreover, we have isomorphisms

HomMPST

(
(X, ∅), G̃

) ∼=
(∗3)

HomMPST

(
(X, ∅),HomMPST

(
ω∗Gm, G̃(1)

))
∼= HomMPST

(
ω∗Gm,HomMPST

(
(X, ∅), G̃(1)

))
, (6.24)

where the isomorphism (∗3) comes from Corollaries 4.6 and 3.2. We also have isomorphisms

HomPST(F ⟨1⟩, G⟨1⟩)(X) = HomPST

(
F ⟨1⟩,HomPST(X,G⟨1⟩)

)
∼=
(∗4)

HomPST

(
ω!

(
F̃ ⊗Nis

CI ω
∗Gm

)
, ω!HomMPST

(
(X, ∅), G̃(1)

))
(6.25)

∼=
(∗5)

HomMPST

(
F̃ ⊗MPST ω

∗Gm, ω
CIω!HomMPST

(
(X, ∅), G̃(1)

))
∼= HomMPST

(
F̃ ,HomMPST

(
ω∗Gm, ω

CIω!HomMPST

(
(X, ∅), G̃(1)

)))
,

where (∗4) (respectively, (∗5)) comes from Lemma 2.3 (respectively, the adjunction (2.12)). These
maps fit into a commutative diagram

HomMPST

(
F̃ ,HomMPST

(
(X, ∅), G̃

))
≃(6.24)
��

HomMPST

(
F̃ ,HomMPST

(
ω∗Gm,HomMPST

(
(X, ∅), G̃(1)

)))
↪→(†)
��

HomPST(F,G)(X)

≃
(6.23)

ll

HomMPST

(
F̃ ,HomMPST

(
ω∗Gm,ω

CIω!HomMPST((X, ∅),G̃(1))
))

HomPST(F ⟨1⟩,G⟨1⟩)(X) ,
≃

(6.25)
oo

↪→ (6.17)

OO
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where the injective map (†) comes from the counit map id→ ωCIω! from the adjunction (2.12).
We see that the diagram commutes as follows: The map (6.24) is induced by the map

HomMPST

(
(X, ∅), G̃

)
→ HomMPST

(
ω∗Gm,HomMPST((X, ∅), G̃(1))

)
≃ HomMPST

(
(X, ∅)⊗ ω∗Gm, G̃⊗Nis,sp

CI ω∗Gm

)
given by f 7→ f ⊗ idω∗Gm . The map (6.17) is induced by the surjection F ⊗NST Gm → F ⟨1⟩
from (6.6) and the isomorphism HomPST(F ⊗Gm, G⟨1⟩) ∼−−→ HomPST(F,G) inverse to (6.11)
given by f ⊗ idGm 7→ f . The maps (6.23) and (†) are inclusions under the identifications

ω!HomMPST

(
ω∗Gm,HomMPST(X, ∅), G̃(1)

)
≃ HomPST(Gm ⊗X,G⟨1⟩))

≃ ω!HomMPST

(
ω∗Gm, ω

CIω!HomMPST

(
(X, ∅), G̃⊗Nis,sp

CI □
(1)
red

))
coming from Lemma 2.3 and Proposition 3.10. This proves that (6.17) is an isomorphism.

Next assume condition (2). In view of Lemma 2.5, we have that HomPST(F,G) and
HomPST(F ⟨1⟩, G⟨1⟩) are in RSCNis. Hence, by Lemma 2.4, it is enough to prove that (6.17)
induces an isomorphism HomPST(F ⟨1⟩, G⟨1⟩)(K) ∼= HomPST(F,G)(K) for any function field K
over k. This follows from the same computations as above.

Lemma 6.7. Any F ∈ HINis satisfies (♣)X for all X ∈ Sm.

Proof. We have

HomMPST

(
(X, ∅), ωCIF

)
= HomMPST((X, ∅), ω∗F )
∼=
(∗1)

ω∗HomPST(X,F )
∼=
(∗2)

ωCIHomPST(X,F ) ,

where the isomorphism (∗1) follows from Lemma 2.2 and (∗2) from the fact that HomPST(X,F ) ∈
HI, so that ω∗HomPST(X,F )) ∈ CIτ by [KSY22, Lemma 2.3.1]. This completes the proof.

Lemma 6.8. If ch(k) = 0, then Ωi satisfies (♣)X for all X ∈ Sm.

Proof. Put Γ = HomPST

(
Ztr(X),Ωi

)
and

G = HomMPST

(
Ztr(X, ∅), ωCIΩi

)
, G∗ = ωCIHomPST

(
Ztr(X),Ωi

)
.

Note that Γ ∈ RSCNis by Lemma 2.5. By [RS22, Corollary 6.8], for Y = (Y,D) ∈MCor, where
Y ∈ Sm and Dred is a simple normal crossing divisor, we have

G(Y) = Γ
(
Y ×X,Ωi(logDred ×X)((D −Dred)×X)

)
. (6.26)

Hence the conductor cG associated with G in the sense of [RS22, Definition 4.14] is given as
follows (note that Lemma 2.3 implies G ∈ CI(Γ) under the notation of loc. cit.): Let Φ be
as in [RS22, Definition 4.1]. For a ∈ G(L) = H0

(
X ⊗k L,Ω

i
)
with L ∈ Φ, put cGL (a) = 0 if

a ∈ H0
(
X ⊗k OL,Ω

i
)
. Otherwise, put

cGL (a) = min

{
n ⩾ 1 | a ∈ H0

(
X ⊗k OL,

1

tn−1
· Ωi

X⊗kOL
(log)

)}
,

where t is a local parameter of OL and Ω•X⊗kOL
(log) is the differential graded subalgebra of

Ω•X⊗kL
generated by Ω•X⊗kOL

and dlog t (cf. [RS22, §§ 6.1 and 6.3]). Moreover, one easily sees
that for Y = (Y,D) ∈MCor as (6.26),

G(Y) =
{
a ∈ G(Y −D) | cGL (a) ⩽ vL(D) for any L ∈ Φ

}
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(see [RS22, Notation 4.2] for vL(D)). Hence by [RS22, Theorem 4.15(4)], it suffices to show
cG

∗
= cG. We know cG

∗
⩽ cG by loc. cit., so that it suffices to show the following: Let L ∈ Φ and

a ∈ G(L). For r ∈ Z⩾0, we have

cG
∗

L (a) ⩽ r ⇒ cGL (a) ⩽ r .

We prove this implication by descending induction on r. By [RS22, Corollary 4.44], this is reduced
to showing the following: Choose a ring homomorphism K ↪→ OL such that K → OL → OL/(t)
is the identity, and extend it in the canonical way to σ : K(x) ↪→ OLx , where x is a variable and
Lx = Frac

(
OL[x]

h
(t)

)
. Assume cGL (a) ⩽ r + 1. Then the following implication holds:

(a, 1− xtr)Lx,σ = 0 ∈ G(K(x)) ⇒ cGL (a) ⩽ r , (6.27)

where (−,−)Lx,σ is the local symbol for Γi = HomPST(Ztr(X),Ωi) from [RS22, § 4.37]. Since the
local symbol is uniquely determined by the properties (LS1)–(LS4) from [RS22, Lemma 4.38],
we see that it is given by (a, 1− xtr)Lx,σ = Rest(adlog(1− xtr)), where

Rest : Γ
i+1(Lx) = H0

(
X ⊗k Lx,Ω

i+1
)
→ Γi(K(x)) = H0

(
X ⊗k K(x),Ωi

)
is induced by the residue map Ωi+1

Lx
→ Ωi

K(x), which is defined using the isomorphism Lx ≃
K(x)((t)) induced by σ : K(x) ↪→ OLx . To prove the implication (6.27), we may assume after
replacing a with a− b for some b ∈ Γ(L) with cGL (b) ⩽ r,

a =
1

tr
α+ β

dt

tr+1
for α ∈ H0

(
X ⊗k K,Ω

i
)
, β ∈ H0

(
X ⊗k K,Ω

i−1) .
Then we compute in H0

(
X⊗kK(x),Ωi

)
: Rest(a dlog(1−xtr)) = −rxα+βdx. This shows (6.27)

and completes the proof.

7. Internal homs for Ωn

In this section, we assume ch(k) = 0. Note that a section of HomPST(Ω
n,Ωm) over X ∈ Sm is

given by a collection of maps φY : H0(Y,Ωn)→ H0(X × Y,Ωm) for Y ∈ Sm, which are natural
in Y ∈ Cor. For (α, β) ∈ H0(X,Ωm−n)⊕H0

(
X,Ωm−n−1), we define

φn,m
Y,α,β : H

0(Y,Ωn)→ H0(X × Y,Ωm) , ω 7→ p∗Xα ∧ p∗Y ω + p∗Xβ ∧ p∗Y dω ,

where pX : X × Y → X and pY : X × Y → Y are the projections. The naturalness of φn,m
Y,α,β in

Y ∈ Cor follows from [CR11]. Thus we get a natural map in NST:

Ωm−n ⊕ Ωm−n−1 → HomPST(Ω
n,Ωm) , (α, β) 7→ {φn,m

Y,α,β}Y ∈Sm , (7.1)

where Ωi = 0 for i < 0 by convention. Taking the sections over Spec k, we get a natural map

Φn,m : Ωm−n
k ⊕ Ωm−n−1

k → HomPST(Ω
n,Ωm) . (7.2)

We also consider the composite map in NST

Ωm−n (7.1)−−−→ HomPST(Ω
n,Ωm)

dlog∗−−−→ HomPST

(
KM

n ,Ω
m
)
, (7.3)

where the second map is induced by the map dlog : KM
n → Ωn. Taking the sections over Spec k,

we get a natural map

Ψn,m : Ωm−n
k → HomPST

(
KM

n ,Ω
m
)
. (7.4)

The main result of this subsection is the following.
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Theorem 7.1. The maps (7.1) and (7.3) are isomorphisms.

First, we prove the following.

Proposition 7.2. The maps (7.2) and (7.4) are isomorphisms.

This follows from Lemmas 7.3, 7.4 and 7.5 below, in light of Theorem 6.4. For i ⩾ 0, let us
fix the isomorphisms

σi : Ωi−1⟨1⟩ ∼−−→ Ωi , ς i : KM
i−1⟨1⟩ ∼−−→ KM

i (7.5)

coming from (6.3) and (6.4)

Lemma 7.3. (1) The following diagram is commutative:

Ωm−n
k ⊕ Ωm−n−1

k
Φn,m

//

Φn−1,m−1

��

HomPST(Ω
n,Ωm)

HomPST

(
Ωn−1,Ωm−1) (6.14) // HomPST

(
Ωn−1⟨1⟩,Ωm−1⟨1⟩

)
,

OO

where the right vertical map is induced by the isomorphisms σm and (σn)−1 from (7.5).

(2) The following diagram is commutative:

Ωm−n
k

Ψn,m
//

Ψn−1,m−1

��

HomPST

(
KM

n ,Ω
m
)

HomPST

(
KM

n−1,Ω
m−1) (6.14) // HomPST

(
KM

n−1⟨1⟩,Ωm−1⟨1⟩
)
,

OO

where the right vertical map is induced by the isomorphisms σm and (ςn)−1 from (7.5).

Proof. By [RSY22, Corollary 5.22], for an affine X = SpecA ∈ Sm and i ⩾ 0, the composite
map

θi : Ωi−1
A ⊗Z A

× →
(
Ωi−1 ⊗NST Gm

)
(A)

(6.6)−−−→ Ωi−1⟨1⟩(A) σi

−→ Ωi
A

sends ω ⊗ f with ω ∈ Ωi−1
A and f ∈ A× to ω ∧ dlog f . Moreover, for φ ∈ HomPST

(
Ωn−1,Ωm−1)

and φ′ = σm ◦ φ⟨1⟩ ◦ (σn)−1, the diagram

Ωn−1
A ⊗Z A

× θn //

φ⊗idA×
��

Ωn
A

φ′

��
Ωm−1
A ⊗Z A

× θm // Ωm
A

is commutative. Hence item (1) follows from the equation

α ∧ (ω ∧ dlog f) + β ∧ d(ω ∧ dlog f) = (α ∧ ω + β ∧ dω) ∧ dlog f ,

where α ∈ Ωm−n
k and β ∈ Ωm−n−1

k .

Item (2) follows from item (1) and the commutativity of the diagram

KM
n−1⟨1⟩

dlog⟨1⟩//

ςn

��

Ωn−1⟨1⟩

σn

��
KM

n
dlog // Ωn ,

191



A. Merici and S. Saito

which can be verified using (6.5).

Lemma 7.4. For an integer n ⩾ 1, we have

HomPST

(
Ωn,Ga

)
= HomPST

(
KM

n ,Ga

)
= 0 . (7.6)

Proof. We have isomorphisms

HomPST

(
Ωn,Ga

)
≃ HomPST

(
ω!

(
Ω̃n−1 ⊗CI ω

∗Gm

)
,Ga

)
≃ HomMPST

(
Ω̃n−1 ⊗CI ω

∗Gm, ω
CIGa

)
≃ HomMPST

(
Ω̃n−1 ⊗MPST ω

∗Gm, ω
CIGa

)
≃ HomMPST

(
Ω̃n−1,HomMPST

(
ω∗Gm, ω

CIGa

))
,

where the first isomorphism is induced by (σn)−1, the inverse of the isomorphism σn from (7.5)
and the second follows from (2.12). Similarly, we have an isomorphism using (ςn)−1 instead of
(σn)−1:

HomPST

(
KM

n ,Ga

)
≃ HomMPST

(
ω∗KM

n−1,HomMPST

(
ω∗Gm, ω

CIGa

))
.

We compute

HomMPST

(
ω∗Gm, ω

CIGa

)
(X) ↪→ HomMPST

(
ω∗Gm, ω

CIGa

)
(K(X))

≃ Coker
(
ωCIGa(K(X))→ ωCIGa

(
P1

K(X), 0 +∞
))

≃ Coker
(
K(X)→ H0

(
P1

K(X),O
))

= 0 ,

where the first map is injective by [Sai20, Corollary 0.3], and the first (respectively, last) iso-
morphism follows from Corollary 3.2(1) (respectively, [RS22, Corollary 6.8]). This completes the
proof of Lemma 7.4.

Lemma 7.5. The maps (7.2) and (7.4) are isomorphisms for n = 0.

Proof. The assertion for (7.4) is obvious since KM
n = Z for n = 0. We prove it for (7.2). We have

isomorphisms

HomPST

(
Ga,Ω

i
)
≃ HomPST

(
aVNisω!h

□
0

(
□Ga

)
,Ωi

)
≃ HomMPST

(
h□0

(
□Ga

)
, ωCIΩi

)
≃ HomMPST

(
□Ga , ω

CIΩi
)

≃ Ker
(
H0

(
P1,Ωi

P1(log∞)(∞)
) i∗0−→ Ωi

k

)
, (7.7)

where the first (respectively, last) isomorphism follows from (2.17) (respectively, [RS22, Corol-
lary 6.8]). Since Ωi

P1/k(log∞) = 0 for i > 1, OP1(log∞) = OP1 and Ω1
P1/k(log∞) = Ω1

P1/k(∞),
the standard exact sequence

0→ OP1 ⊗k Ω
1
k → Ω1

P1(log∞)→ Ω1
P1/k(log∞)→ 0

induces an exact sequence

0→ OP1(∞)⊗k Ω
i
k → Ωi

P1(log∞)(∞)→ Ω1
P1/k(2∞)⊗k Ω

i−1
k → 0 ,

where Ωi−1
k = 0 if i = 0 by convention. Letting t be the standard coordinate of A1 ⊂ P1, we

have

H0
(
P1,OP1(∞)

)
= k · 1⊕ k · t , H0

(
P1,Ω1

P1/k(2∞)
)
= k · dt ,
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and dt lifts canonically to a section dt ∈ H0
(
P1,Ω1

P1(log∞)(∞)
)
. Hence we get an isomorphism

H0
(
P1,Ωi

P1(log∞)(∞)
)
≃ (k · 1⊕ k · t)⊗k Ω

i
k ⊕ (k · dt)⊗k Ω

i−1
k . (7.8)

Thus the last group of (7.7) is isomorphic to k · t ⊗k Ωi
k ⊕ k · dt ⊗k Ωi−1

k ≃ Ωi
k ⊕ Ωi−1

k . Hence,
from (7.7), we get a natural isomorphism

Ωi−1
k ⊕ Ωi

k
∼−−→ HomPST

(
Ga,Ω

i
)
. (7.9)

Next we claim that the map (7.9) coincides with (7.2) for n = 0. By Lemma 2.8(2), we have
a commutative diagram

Ztr

(
A1

t

) λGa //

≃
��

Ga

ω!Ztr

(
P1, 2∞

)
// ω!h

□
0

(
□Ga

)
,

(2.17)

OO

(7.10)

where λGa is given by t ∈ Ga

(
A1

t

)
= k[t]. The standard isomorphism

Ωi
(
A1

t

)
≃

(
Ωi
k ⊗k k[t]

)
⊕
(
Ωi−1
k ⊗k k[t]dt

)
induces a natural isomorphism

HomPST

(
Ztr

(
A1

t

)
,Ωi

)
= Ωi

(
A1

t

)
≃ Ωi

k[t]⊕ Ωi−1
k [t] ∧ dt , (7.11)

where Ωi
k[t] =

⊕
m∈Z⩾0

Ωi
k · tm and Ωi−1

k [t]∧ dt =
⊕

m∈Z⩾0
Ωi−1
k ∧ tmdt. The map λGa induces the

inclusion

λ∗Ga
: HomPST

(
Ga,Ω

i
)
↪→ HomPST

(
Ztr

(
A1

t

)
,Ωi

)
= Ωi

(
A1

t

)
such that

λ∗Ga
(φ) = φA1

t
(t) for φ ∈ HomPST

(
Ga,Ω

i
)
, (7.12)

where φA1
t
: Ga

(
A1

t

)
= k[t] → Ωi

(
A1

t

)
is induced by φ. The following claim follows from (7.7),

(7.8) and (7.10).

Claim 7.6. The image of λ∗Ga
is identified under (7.11) with

Ωi
k · t⊕ Ωi−1

k ∧ dt ⊂ Ωi
k[t]⊕ Ωi−1

k [t] ∧ dt ,

and the composite map

Ωi
k ⊕ Ωi−1

k

(7.9)−−−→ HomPST

(
Ga,Ω

i
) λ∗

Ga−−→ Ωi
k · t⊕ Ωi−1

k ∧ dt

is given by the obvious identifications Ωi
k = Ωi

k · t and Ωi−1
k = Ωi−1

k ∧ dt.

Let

HomGa

(
Ga,Ω

i
)
⊂ HomPST

(
Ga,Ω

i
)

(7.13)

be the subgroup of Ga-linear morphisms. There is a natural isomorphism

ξ : Ωi
k
∼= HomGa

(
Ga,Ω

i
)
, ω 7→ {λ 7→ λω} (λ ∈ Ga) .

The group (7.13) is a direct summand since we have a splitting given by

HomPST

(
Ga,Ω

i
)
→ HomGa

(
Ga,Ω

i
)
, φ 7→ {λ 7→ λφ(1)} .
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The other summand is HomPST

(
Ga,Ω

i
)0

:= {φ |φ(1) = 0}. There is a natural map

ξ′ : Ωi−1
k → HomPST

(
Ga,Ω

i
)0
, ω 7→ {α 7→ ω ∧ dα} .

By (7.12), under the identification (7.11), we have

λ∗Ga
(ξ(ω)) = ω · t , λ∗Ga

(ξ′(η)) = η ∧ dt
(
ω ∈ Ωi, η ∈ Ωi−1) .

Hence the composite map

Ωi
k ⊕ Ωi−1

k

ξ⊕ξ′−−−→ HomPST

(
Ga,Ω

i
) λ∗

Ga−−→ Ωi
k · t⊕ Ωi−1

k ∧ dt

is given by the obvious identifications Ωi
k = Ωi

k · t and Ωi−1
k = Ωi−1

k ∧dt. By Claim 7.6, this proves
the desired claim and completes the proof of Lemma 7.5.

To deduce Theorem 7.1 from Proposition 7.2, we need some preliminaries.

Let K be the function field of S ∈ Sm, and define CorK , PSTK , MCorK , MPSTK , etc. as
Cor, PST, MCor, MPST, etc., where the base field k is replaced by K. We then have a map

rK : HomPSTK
(Ωn,Ωm)→ HomPST(Ω

n,Ωm)(K) , φ 7→ {ψY }Y ∈Sm , (7.14)

where ψY for Y ∈ Sm is the composite map

H0(Y,Ωn)→ H0(Y ×k K,Ω
n)→ H0(Y ×k K,Ω

m) ,

where the second map is φY×kK (note that Y ×kK ∈ SmK) and the first is the pullback by the
projection pY : Y ×k K → Y . Similarly, we can define a map

rK : HomPSTK

(
KM

n ,Ω
m
)
→ HomPST

(
KM

n ,Ω
m
)
(K) . (7.15)

By the definitions, the following diagrams are commutative:

Ωm−n
K ⊕ Ωm−n−1

K

(7.2) //

(7.1) ))

HomPSTK
(Ωn,Ωm)

rK

��
HomPST(Ω

n,Ωm)(K) ,

Ωm−n
K

(7.4) //

(7.3) ((

HomPSTK

(
KM

n ,Ω
m
)

rK
��

HomPST

(
KM

n ,Ω
m
)
(K) .

In view of Lemma 2.4, Theorem 7.1 follows from Proposition 7.2 and the following.

Lemma 7.7. The maps (7.14) and (7.15) are isomorphisms.

For the proof, we need the following. Recall from Conventions 1.5 that for U = lim←−i
Ui ∈ S̃m

and F ∈ PST, we let F (U) := lim−→i
F (Ui). In general, for (Y,DY ) ∈MCor and F ∈MPST, we

let

HomMPST(U,F )(Y,DY ) := lim−→
i

F (Ui ×k Y,Ui ×k DY ) ,

and for G ∈MPST, we have

Hom(G,Hom(U,F )) = lim−→
i

Hom(G,Hom(Ui, F )) .

Lemma 7.8. For X = (X,D) ∈MCor and XK = (XK , DK) ∈MCor(K) with XK = X ×k K
and DK = D ×k K, we have a natural isomorphism

HomMPSTK

(
Ztr(XK), ωCIKΩn

) ∼= HomMPST

(
Ztr(X ),HomMPST

(
K,ωCIΩn

))
.
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Proof. By [KMSY21a, Proposition 1.9.2(c)] and resolutions of singularities (recall that we are
assuming ch(k) = 0), we may assume X ∈ Sm and that Dred is a simple normal crossing divisor.
From the explicit computation of ωCIΩn in [RS22, Corollary 6.8], we have(

ωCIKΩn
)
(XK , DK) = H0(XK ,Ω

n
XK

(log(DK))(DK −DK,red))

=
(
ωCIΩn

)
(XK , DK) := lim−→

U⊂S

(
ωCIΩn

)
(X ×k U,D ×k U) ,

where U ranges over the open subsets of S. This proves the lemma.

Proof of Lemma 7.7. We only prove the assertion for (7.14). The proof for (7.15) is similar. Put

□Ωn = □Ga ⊗MPST □
⊗n
Gm

,

where □Ga and □Gm are from Lemma 2.8. By (2.16) and (2.17) and [RSY22, Theorem 5.20], we
have an isomorphism in PST:

aVNisω!h
□
0

(
□Ωn

) ∼−−→ Ωn . (7.16)

Let □K =
(
P1

K ,∞
)
∈MCorK and □Ωn,K ∈MPSTK be defined as □Ωn . We have isomorphisms

HomPSTK
(Ωn,Ωm) ≃ HomPSTK

(
ω!h

□K
0

(
□Ωn,K

)
,Ωm

)
≃ HomMPSTK

(
□Ωn,K , ω

CIKΩm
)

≃ HomMPST

(
□Ωn ,HomMPST

(
K,ωCIΩm

))
, (7.17)

where the last isomorphism comes from Lemma 7.8. On the other hand, by (7.16) and Lemma 2.5,
we have Hom(Ztr(U),Ωm) ∈ RSCNis for U ∈ Sm. Hence, writing Spec(K) = lim←−i

Ui with
Ui ∈ Sm, we have isomorphisms (see Conventions 1.5)

HomPST(Ω
n,Ωm)(K) = lim−→

i

HomPST

(
Ui,HomPST(Ω

n,Ωm)
)

≃ lim−→
i

HomPST

(
Ωn,HomPST(Ui,Ω

m)
)

≃ lim−→
i

HomPST

(
ω!h

□
0 (□Ωn),HomPST(Ui,Ω

m)
)

≃ HomMPST

(
□Ωn , ωCIHomPST(K,Ω

m)
)
. (7.18)

Hence Lemma 7.7 follows from Lemma 6.8 and the following claim.

Claim 7.9. The following diagram is commutative:

HomPSTK
(Ωn,Ωm)

(7.17) //

rK

��

HomMPST

(
□Ωn ,HomMPST(K,ω

CIΩm)
)

��
HomPST(Ω

n,Ωm)(K)
(7.18) // HomMPST

(
□Ωn , ωCIHomPST(K,Ω

m)
)
,

(7.19)

where the right vertical map is induced by the map (6.21).

Proof. To show the above claim, write AΩn = A1×
(
A1−{0}

)n
and AΩn,K = AΩn ⊗kK. Take

the standard coordinates y on A1 and (x1, . . . , xn) on
(
A1 − {0}

)n
so that

AΩn = Spec k[y, x1, . . . , xn]
[
x−11 , . . . , x−1n

]
.

By the definition of □Ωn , we have natural maps in MPST

Ztr(AΩn , ∅)→
(
P1, 2∞

)
⊗
(
P1, 0 +∞

)⊗n → □Ωn (7.20)
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which induces a map in PST

λΩn : Ztr(AΩn)→ ω!□Ωn → Ωn , (7.21)

where the last map is induced by (7.16). Let

λΩn,K : Ztr(AΩn,K)→ Ωn (7.22)

be defined as (7.21) in which k is replaced by K. By the definitions of λGm and λGa (cf.
Lemma 2.8) and (6.5), the map λΩn corresponds to

ω0 := y
dx1
x1
∧ · · · ∧ dxn

xn
∈ Ωn(AΩn) . (7.23)

The map (7.20) induces injective maps

HomMPST

(
□Ωn ,HomMPST

(
K,ωCIΩm

))
↪→ H0(AΩn,K ,Ω

m) , (7.24)

HomMPST

(
□Ωn , ωCIHomPST(K,Ω

m)
)
↪→ H0(AΩn,K ,Ω

m) (7.25)

which are compatible with the right vertical map in (7.19) since applying ω!, the map (6.21) is
identified with the identity on HomPST(K,Ω

m) via the isomorphism in Lemma 2.3. Hence it
suffices to show the commutativity of the diagram

HomPSTK
(Ωn,Ωm)

α //

rK
��

H0(AΩn,K ,Ω
m) ,

HomPST(Ω
n,Ωm)(K)

β
55

(7.26)

where α (respectively, β) is the composite of (7.17) and (7.24) (respectively, (7.18) and (7.25)).
By definition, α is induced by the map λΩn,K from (7.22). As λΩn,K is given by the image ω0,K

of ω0 from (7.23) under the pullback map

p∗ : Ωn(AΩn)→ Ωn(AΩn,K) ,

we have

α(φ) = φAΩn,K
(ω0,K) for φ ∈ HomPSTK

(Ωn,Ωm) ,

where

φAΩn,K
: Ωn(AΩn,K)→ Ωm(AΩn,K)

is induced by φ. On the other hand, by the definition of β, we have a commutative diagram

H0(AΩn,K ,Ω
m)

≃ // HomPST(AΩn ,HomPST(K,Ω
m))

HomPST(Ω
n,Ωm)(K)

β

OO

≃ // HomPST(Ω
n,HomPST(K,Ω

m)) ,

λ∗
Ωn

OO

where λ∗Ωn is induced by λΩn from (7.21). Hence we have

β(ψ) = ψAΩn (ω0) for ψ ∈ HomPST(Ω
n,Ωm)(K) ,

where

ψAΩn : Ω
n(AΩn)→ HomPST(K,Ω

m)(AΩn) = Ωm(AΩn,K)

is induced by ψ. Then, for φ ∈ HomPSTK
(Ωn,Ωm), we get

β(rK(φ)) = rK(φ)AΩn (ω0) = φAΩn,K
(p∗ω0) = φAΩn,K

(ω0,K) = α(φ) ,
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which proves the commutativity of (7.26). This concludes the proof of Claim 7.9, and hence of
Lemma 7.7 and therefore also that of Theorem 7.1.
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to the university of Zürich where his collaboration with the first author started.

References

BS19 F. Binda and S. Saito, Relative cycles with moduli and regulator maps, J. Inst. Math. Jussieu
18 (2019), no. 6, 1233–1293; doi:10.1017/s1474748017000391.
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