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Cancellation theorems for reciprocity sheaves

Alberto Merici and Shuji Saito

ABSTRACT

We prove cancellation theorems for reciprocity sheaves and cube-invariant modulus
sheaves with transfers of Kahn—Miyazaki—Saito—Yamazaki. This generalizes a cancella-
tion theorem for Al-invariant sheaves with transfers, which was proved by Voevodsky.
As an application, we get some new formulas for internal homs of the sheaves 2 of
absolute Kahler differentials.

1. Introduction

We fix once and for all a perfect field k. Let Sm be the category of separated smooth schemes of
finite type over k. Let Cor be the category of finite correspondences: Cor has the same objects
as Sm, and morphisms in Cor are finite correspondences. Let PST be the category of additive
presheaves of abelian groups on Cor, called presheaves with transfers. Let NST C PST be the
full subcategory of Nisnevich sheaves, that is, those objects F' € PST whose restrictions Fx
to the small étale site Xg over X are Nisnevich sheaves for all X € Sm. By a fundamental
result of Voevodsky, the inclusion NST — PST has an exact left adjoint aKis such that for
any F' € PST and X € Sm, the restriction (aKiSF ) + is the Nisnevich sheafication of Fix as a
presheaf on Xyis. In Voevodsky’s theory of motives, a fundamental role is played by A l-invariant
objects F' € NST, namely such F' that the maps F(X) — F (X x A') induced by the projection
X x A' — X are isomorphisms for all X € Sm. The A'-invariant objects form a full abelian
subcategory Hlnis C NST that carries a symmetric monoidal structure ®§ﬁs such that

F el G =hA Nl (FepsrG) for F,G € Hy,

where ®pgt is the symmetric monoidal structure on PST induced formally from that on Cor
and hOAI’NiS is a left adjoint to the inclusion functor HIy;s — INST, which sends an object of NST
to its maximal A'-invariant quotient in NST. For integers n > 0, the twists of F' € Hlyjs are
then defined as

F(1) = FORE Gy, F(n):=F(n—1) 0 G,
where G,,, € NST is given by X — I'(X, 0*) for X € Sm.

Noting that — ®ﬁils G, is an endofunctor on Hly;s, we get a natural map

LFG: HOIHPST(F, G) — HOInPST(F(l),G(l)) for F,G € Hlyj . (1.1)

Received 31 October 2020, accepted in final form 21 July 2022.
2020 Mathematics Subject Classification 19E15, 14F42, 19D45, 19F15.
Keywords: motives, algebraic cycles, cohomology theories.
This journal is (€) Foundation Compositio Mathematica 2023. This article is distributed with Open Access under
the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial reuse,
distribution, and reproduction in any medium, provided that the original work is properly cited. For commercial
re-use, please contact the Foundation Compositio Mathematica.

The first author is supported by the Swiss National Science Foundation (SNF), project 200020-178729. The
second author is supported by JSPS KAKENHI Grant (15H03606).


http://algebraicgeometry.nl
http://www.ams.org/msc/
http://algebraicgeometry.nl
http://creativecommons.org/licenses/by-nc/3.0/
http://algebraicgeometry.nl

CANCELLATION THEOREMS FOR RECIPROCITY SHEAVES

One key ingredient in Voevodsky’s theory is the cancellation theorem [VoelO, Corollary 4.10],
which implies the following theorem.

THEOREM 1.1. For F,G € Hlyis, the map tr g is an isomorphism.

The purpose of this paper is to generalize Theorem 1.1 to reciprocity sheaves. The category
RSChis of reciprocity sheaves was introduced in [KSY16, KSY22] as a full subcategory of NST
that contains HlIyis as well as interesting non—A!-invariant objects such as the additive group
scheme G, the sheaf of absolute Kihler differentials O and the de Rham-Witt sheaves W,,2°.
In [RSY22], a lax monoidal structure (-, _)rscy,, on RSChis is defined in such a way that

(F, G)RSCNis =F ®Il\_IIiIS G for F,G € Hlyjs -
It allows us to define the twists for F' € RSCyjs recursively as
F(1) :== (F,Gm)rscy, »  F(n) == (F(n—1),Gn)rscy, -

Some examples of twists were computed in [RSY22]: if F' € HIyjs, then F'(n) = F(n); in partic-
ular, Z{n) = KM (the Milnor K-sheaf), and G,(n) = Q" if ch(k) = 0.

By the fact that (—,G.)Rscy, 1S an endofunctor on RSCyis, we get a natural map
(cf. (6.14))

LFG: HompST(F, G) — HOHlPST(F<1>, G(l)) for F, G € RSCqjs , (1.2)
which coincides with (1.1) if F, G € Hly;s. We will also get a natural map in NST:
Ap: F — Hompgy (KA, F(n)) for F € RSChis, (1.3)

using the functoriality of (—, Gy, )RsCyy., Where Hompgp denotes the internal hom in PST.

The main result of this paper is the following.

THEOREM 1.2 (Theorems 6.4 and 6.2). The maps tp,q and Ap are isomorphisms.

As an application of the above theorem, we prove the following.

COROLLARY 1.3 (Theorem 7.2). Assume ch(k) = 0. For integers m,n > 0, there are natural
isomorphisms in NST:

Hompgp (2", Q™) = Q" " ¢ Q™ "1,
Hompgy (KM, Q™) = Q™
where Q' = 0 for i < 0 by convention.
Let PS be the category of additive presheaves of abelian groups on Sm (without trans-

fers). Note that PST is viewed as a subcategory of PS. By a lemma due to Kay Riilling (see
Lemma 2.1), we have a natural isomorphism in PS:

Hompgr(G,0Q™) = Hompg(G,Q™) for any G € PST, (1.4)

where Hompg is the internal hom in PS. Thanks to (1.4), the isomorphisms of Corollary 1.3 and
their explicit descriptions (7.1) and (7.3) imply that

Hompg (2", Q™) = {wi A (=) + wa Ad(—) w1 € Q7" wp € Q71
Hompg (K, Q™) = {w A dlog(—) |w € Q" "},
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A. MERICI AND S. SAITO

where dlog: KM — Q™ is the map {x1,...,7,} — dlogz1A- - -Adlog z,. It would be an interesting
question whether there is a direct proof of these formulas which does not use the machinery of
modulus sheaves with transfers explained below.

Reciprocity sheaves are closely related to modulus sheaves with transfers, introduced in
[KMSY21la, KMSY21b]: Voevodsky’s category Cor of finite correspondences is enlarged to a
new category MCor of modulus pairs: Its objects are pairs X = (X, D), where X is a sep-
arated scheme of finite type over k and D is an effective Cartier divisor on X such that
X°:=X —|D| € Sm (here X° is called the interior of X’). The morphisms are finite correspon-
dences on interiors satisfying some admissibility and properness conditions. Let M Cor C MCor
be the full subcategory of such objects (X, D) with X proper over k. There is a symmetric
monoidal structure ® on MCor, which also induces one on MCor by restriction (cf. §2.19).

We then define MPST (respectively, MPST) as the category of additive presheaves of
abelian groups on MCor (respectively, MCor). We have a functor

w: MCor — Cor, (X,Xs) — X — | X
and two adjunctions

MPST <~ MPST, MPST . PST,

— —

where w* is induced by w and w is its left Kan extension, and 7* is induced by the inclusion
7: MCor — MCor and 7 is its left Kan extension, which turns out to be exact and fully
faithful.

For FF € MPST and X = (X,D) € MCor, write Fy for the presheaf on the small étale
site Xg; over X given by U — F(Xy) for U — X étale, where Ay = (U, D xx U) € MCor. We
say that F'is a Nisnevich sheaf if Fly is one for all X € MCor. We write MNST C MPST for
the full subcategory of Nisnevich sheaves.

The replacement of the Al-invariance in this new framework is the D-invariance, where
O0:= (Pl, oo) € MCor: Let CI € MPST be the full subcategory of those objects F' such that
the maps F(X) — F(X ® ﬁ) induced by the projection X ® O — X are isomorphisms for all
X € MCor. Let CI" € MPST be the essential image of CI under 1 and CI™* C CI” be the
full subcategory of semipure objects F', namely such objects that the natural maps F(X, D) —
F(X — D,0) are injective for all (X, D) € MCor. We also define CI{;” = CI™*P "MNST as

a full subcategory of MINST. A symmetric monoidal structure ®g; (respectively, ®2115’Sp) on
CI™*P (respectively, on CIQiSSp ) can be defined in the same spirit as ®¥I‘IS (see §4).

The relationship between reciprocity (pre)sheaves and C-invariant modulus (pre)sheaves with
transfers is encoded in

RSC = w,(CI"™) and RSCyjs = Q!(CIIT\f?sp) :

There is a pair of adjoint functors
wCI CI

CI"® < RSC and CILP < RSCy

Wy
— —

such that wCF = Ww*F for F € HI. Moreover, the lax monoidal structure on RSCyjs is induced
by the symmetric monoidal structure on CI{:? via the formula

(F, G)Rscy, = wi (WCIF @5y wC€IG)  for F,G € RSCys -
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CANCELLATION THEOREMS FOR RECIPROCITY SHEAVES

The endofunctor — ®IgIS’Sp w*Gy, on CILP induces a natural map for F € CI{’:

tp: B — Hompypgr (W' G, ®léiIS’Sp w'Gp), (1.5)

where Hompyjpgy denotes the internal hom in MPST. Now Theorem 1.2 will be a consequence
of the following result.

THEOREM 1.4 (Corollary 4.6). For F € RSCyjs and F = wOlF ¢ CI{;), the map 5 is an
isomorphism.

We give an outline of the content of the paper: In Section 2, we first review basic definitions
and results of the theory of modulus (pre)sheaves with transfers and reciprocity sheaves from
[KMSY21la, KMSY21b] and [Sai20]. We also prove some technical lemmas which will be used in
the later sections.

In Section 3, we define the contraction functors v on CI™ and CI{:P, which generalize
Voevodsky’s contraction functors on HI and Hlyis (cf. [MVWO06, Lecture 23]) to the setting of
modulus (pre)sheaves with transfers. We prove some technical lemmas which will be used in the
later sections.

In Section 4, we define the symmetric monoidal structure ®g; (respectively, ®léiIS’Sp) on CI™*P
(respectively, on CI{P ) using results from Section 2. The endofunctor — ®&; w* Gy, on CI™*P
induces a natural map for F' € CI™*P:

vp: F = Homypgr (WG, F @ w Gy - (1.6)

We state the main result, Theorem 4.4: ¢ is an isomorphism. Theorem 1.4 is deduced from it
by using results from Section 3.

The last half of Section 4 is devoted to the proof of the split-injectivity of the map ¢y in (1.6).
In order to construct a section of ¢p, we follow the same strategy as in [Voel0O] by generalizing
the techniques used therein.

In Section 5, we finish the proof of Theorem 4.4 by showing the surjectivity of tr. We again
follow the same strategy as in [Voel0] by generalizing the results of [Gra05, § 2.7]: here a technical
problem is that for (X, D) € MCor, the diagonal map X — X x X does not induce a map
(X,D) — (X,D)® (X, D) in MCor but only induces a map (X,2D) — (X, D) ® (X, D), where
2D < X is the thickening of D — X defined by the square of the ideal sheaf. This is the
main reason why we need to work with CI™*P instead of CI”, employing much more intricate
arguments than those in [Voel0O] and [Gra05, §2.7], for which we need the technical results in
Sections 2 and 3.

In Section 6, we deduce Theorem 1.2 from Theorem 1.4. In Section 7, we deduce Corollary 1.3
from Theorem 1.2.

Conventions 1.5. In the whole paper, we fix a perfect base field k. Let Sm be the category of
k-schemes X which are essentially smooth over k; that is, X is a limit T&lie I X, over a filtered

set I, where X; is smooth over k and all transition maps are étale. Note that Spec K € Sm for a
function field K over k thanks to the assumption that k is perfect. We frequently allow F' € PST
to take values on objects of Sm by setting F'(X) := lim, F(X;) for X as above.

2. Background on modulus sheaves with transfers

In this section, we recall the definitions and basic properties of modulus sheaves with transfers
from [KMSY21la] and [Sai20] (see also [KSY22] for a more detailed summary).
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A. MERICI AND S. SAITO

2.1. Denote by Sch the category of separated schemes of finite type over k£ and by Sm the full
subcategory of smooth schemes. For X, Y € Sm, an integral closed subscheme of X x Y that is
finite and surjective over a connected component of X is called a prime correspondence from X
to Y. The category Cor of finite correspondences has the same objects as Sm, and for X,Y € Sm,
the object Cor(X,Y) is the free abelian group on the set of all prime correspondences from X
to Y (see [MVWO06]). We consider Sm as a subcategory of Cor by regarding a morphism in Sm
as its graph in Cor.

Let PST = Fun(Cor, Ab) be the category of additive presheaves of abelian groups on Cor
whose objects are called presheaves with transfers. Let NST C PST be the category of Nisnevich
sheaves with transfers, and let

ays: PST — NST (2.1)

be Voevodsky’s Nisnevich sheafification functor, which is an exact left adjoint to the inclusion
NST — PST. Let HI C PST be the category of Al-invariant presheaves, and put Hlyis =
HINNST C NST. The product x on Sm yields a symmetric monoidal structure on Cor, which
induces a symmetric monoidal structure on PST in the usual way.

2.2. We recall the definition of the category MCor from [KMSY2la, Definition 1.3.1]. A
pair X = (X,Dx) of X € Sch and an effective Cartier divisor D on X is called a mod-
ulus pair if X — |Dx| € Sm. Let X = (X,Dx) and Y = (Y, Dy) be modulus pairs and
I' € Cor(X — Dx,Y — Dy) be a prime correspondence. Let ' C X x Y be the closure of T,
and let T — X x Y be the normalization. We say that I" is admissible (respectively, left proper)
if (Dx)gn 2 (Dy)gn (respectively, if T is proper over X). Let MCor(X,)) be the subgroup
of Cor(X — Dx,Y — Dy) generated by all admissible left proper prime correspondences. The
category M Cor has modulus pairs as objects and MCor(X,)) as the group of morphisms from
X to V.

2.3. Let MCor;; C MCor be the full subcategory of (X, D) € MCor with X € Sm and |D|
a simple normal crossing divisor on X. As observed in [Sai20, Remark 1.14], after assuming
resolution of singularities, we can assume MCor = MCor,, as for every object (X, D) € MCor,
there exists a proper birational map p: X’ — X that is an isomorphism on X — |D| and such
that [p*D] is a simple normal crossing divisor. Hence the modulus correspondence (X', D’) —
(X, D) induced by the graph of p is invertible in M Cor.

2.4. There is a canonical pair of adjoint functors A 4 w:

A: Cor - MCor, X +— (X,0),
w: MCor — Cor, (X,D)— X —|D].

2.5. There is a full subcategory MCor C MCor consisting of proper modulus pairs, where
a modulus pair (X, D) is proper if X is proper. Let 7: MCor < MCor be the inclusion functor
and w = wr.

2.6. For all n > 0, there is an endofunctor (,)(”) on MCor preserving MCor, such that
(X, D)™ = (X,nD), where nD is the nth thickening of D.
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CANCELLATION THEOREMS FOR RECIPROCITY SHEAVES

2.7. We have two categories of modulus presheaves with transfers:
MPST = Fun(MCor, Ab) and MPST = Fun(MCor, Ab).

Let Z(X) = MCor(—,X) € MPST be the representable presheaf for X € MCor. In this
paper, we frequently write X’ for Z,(X') for simplicity.

2.8. The adjunction A 4 w induce a string of four adjoint functors (\; = w', \* = w;, \x = w*, w,)
(cf. [KMSY21a, Proposition 2.3.1]):

T

@
MPST _PST,

I

W

—

where w, and w, are localisations and w' and w* are fully faithful.

2.9. The functor w yields a string of three adjoint functors (wr,w*,wy) (cf. [KMSY21a, Propo-
sition 2.2.1]):

wy
—

MPST & PST,

Wi
—

where wy and w, are localisations and w* is fully faithful.

2.10. The functor 7 yields a string of 3 adjoint functors (m, 7, 74):
u
gy
MPST .~ MPST,

Tx
—

where 7 and 7, are fully faithful and 7* is a localisation; 7 has a pro-left adjoint 7', hence is
exact (cf. [KMSY21a, Proposition 2.4.1]). We will denote by MPST” the essential image of 7
in MPST. Moreover, we have (cf. [KMSY2la, Lemma 2.4.2])

w=wmn, w'=1Ww, nw'=w". (2.2)
2.11. For F € MPST and X = (X,D) € MCor, write Fy for the presheaf on the small
étale site Xy over X given by U — F(Ay) for U — X étale, where Ay = (U, D|y) € MCor.
We say that F' is a Nisnevich sheaf if Fiy is for all X € MCor (see [KMSY21a, §3]). We write
MNST c MPST for the full subcategory of Nisnevich sheaves. Let MNST C MPST be the

full subcategory of such objects F' that nF € MNST. By [KMSY21la, Proposition 3.5.3] and
[KMSY21b, Theorem 2], the inclusion functors

iNis: MNST — MPST and inj: MNST — MPST
admit exact left adjoints ay;, and anis, respectively, and there are natural isomorphisms
TiaNis = anisT! and  aNisT T ™~ T Ay - (2.3)

Moreover, the adjunction from §2.10 induces an adjunction

Tl
MNST - MNST .

«—
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The functor ay;, has the following description: For F' € MPST and Y € MCor, let Fy njs be
the usual Nisnevich sheafification of Fy. Then, for (X, D) € MCor, we have

anisF'(X, D) = lim Fiy pp)nis(Y) (2.4)
f:Y=>X

where the colimit is taken over all proper maps f: Y — X that induce isomorphisms
Y —|f*D| = X — |D|.

2.12. For X € Sch, let Sh(Xnjs, Ab) be the abelian category of additive sheaves on Xyjs. By
the definition of MINST, we have an additive functor for X = (X, D) € MCor,

MNST — Sh(Xnis, Ab), F s Fy.

The functor is not exact in general, but it is left exact by (2.4).

2.13. By [KMSY21b, Proposition 6.2.1], the functors w* and w, respect MINST and NST and
induce a pair of adjoint functors

> NST,

MNST

T\e l\s

which are both exact. Moreover, we have

_ Vv * _ x V
wianis = agswy  and - anw” = whags -

2.14. We say that F' € MPST (respectively, MPST) is semipure if the unit map
u: F— w*w F  (respectively, u: F' — w*w F)

is injective. For ' € MPST (respectively, ' € MPST), let [P €¢ MPST (respectively, F*P €
MPST) be the image of FF — w*w,F' (respectively, F' — w*w F') (called the semipurification
of F). One easily sees that the association F' — F®P gives a left adjoint to the inclusion of the
full subcategories of semipure objects into MPST and MPST. For F' €¢ MPST, we have

n(EFP) & (nF)P . (2.5)

.5
This follows from the fact that 7 is exact and commutes with w*w; and w*w, since nw* = w*

and wyn = 7y (cf. §2.10). In particular, F € MPST is semipure if and only if nF € MPST is.
For FF € MPST, we have

ayis(FP) ~ (anis )™, (2.6)
where the (_)*P on the right is defined for F € MINST in the same way as above. This follows
from the fact that ay;, is exact and commutes with w*w and w*w, (cf. §2.13).

2.15. Let O := (P',00) € MCor. We say that F € MPST is O-invariant if p*: F(X) —
F(X ®0) is an isomorphism for any X € MCor, where p: X ® 0 — X is the projection. Let
CI be the full subcategory of MPST consisting of all O-invariant objects.

Recall from [KSY22, Theorem 2.1.8] that CI is a Serre subcategory of MPST and that

the inclusion functor i”: CI — MPST has a left adjoint hoﬁ and a right adjoint h% given for
F € MPST and X € MCor by

g (F)(X) = Coker (i — it: F(X © 0) = F(X)),

h(F)(X) = Hom (hg(X), F)
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where for a € k, the section i,: X — X ® O is induced by the map k[t] — k[t]/(t —a) = k.
For X € MCor, we write hi (X) = h§ (Zy(X)) € CL

2.16. Let CI" = n CI € MPST be the essential image of CI under 7. In this paper, for
F € CI, we also let F' denote nF' € CI” by abuse of notation. Let CI*? C CI (respectively,
CI™P C CI") be the full subcategory of semipure objects. By (2.5), we have

F*® € CI" for F € CI", (2.7)
and 7 and 7* induce an equivalence of categories
71 : CI?? ~ CI"™™P . 7% (2.8)
with natural isomorphisms 771 ~ id and 77" ~ id.
We also consider the full subcategories
CIY, = CI’’ N"MNST C MNST,
CI{;; = CI' "MNST C MNST,
CIY = CI"*" "MNST C MNST .
By [Sai20, Theorem 0.4], we have
anis(CT™*P) € CIY. (2.9)
By [KMSY21b, Theorem 2(1)], the maps 7 and 7* induce an equivalence of categories
7 : CIY, ~ CI{ : 77 (2.10)

with natural isomorphisms 7" ~ id and 77" ~ id.

2.17. We write RSC C PST for the essential image of CI under w; (which is the same
as the essential image of CI™P under w, since wy = wyn and w F' = w F*P). Put RSCyis =
RSCNNST. The objects of RSC (respectively, RSCxis) are called reciprocity presheaves (re-
spectively, sheaves). We have HI C RSC, and RSC also contains smooth commutative group
schemes (which may have non-trivial unipotent part), the sheaf Q¢ of Kihler differentials and
the de Rham-Witt sheaves W (see [KSY16, KSY22]).

2.18. By [KSY22, Proposition 2.3.7], we have a pair of adjoint functors

wy

CI _ai RSC, (2.11)
—
where wCT = h%w*, which is fully faithful. It induces a pair of adjoint functors
A
CI" _ci RSC, (2.12)
(—

where w© = Tgh%w*, which is fully faithful. Indeed, let F = nF for F € CI and G € RSC. In
view of §2.15 and the exactness and full faithfulness of 7, we have

Homcg~ (F, T!h%w*G) ~ Homcg (F, h%w*G) ~ HompmpsT (F,OJ*G)

~ HomMPST (T!F,Q*G) >~ HOHIRSC (Q!F, G) .
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y [KSY22, Theorem 2.4.1(2)], the pair (2.12) induce a pair of adjoint functors
Wy

CIZ® ot RSChys - (2.13)
<_

Nis w©€

If ' € CI", the adjunction induces a canonical map F' — w®lw, F', which is injective if F € CI™*P,

2.19. The category MCor is equipped with a symmetric monoidal structure given by
(XaDX) ® (KDY) = (X X Y7DX XY + X X DY)7

and MCor is clearly a ®-subcategory. Notice that the product is not a categorical product since
the diagonal map is not admissible. It is admissible as a correspondence

(X,Dx)™ — (X,Dx) ® (X,Dx) forn>2.

The symmetric monoidal structure ® on MCor (respectively, MCor) induces a symmetric
monoidal structure on MPST (respectively, MPST) in the usual way, and 7, wy and w, from
§§2.10, 2.9 and 2.8 are all monoidal (see [RSY22, §3]).

We end this section with some lemmas that will be needed in the rest of the paper.

The proof of the following lemma is due to Kay Riilling. We thank him for letting us include
it in our paper.

LEMMA 2.1. Let p be the exponential characteristic of the base field k. Let F' € PST be such
that

(1) for all dominant étale maps U — X in Sm, the pullback F(X) — F(U) is injective;

(2) F has no p-torsion.

Then, for any G € PST, the natural map

Hompgy (G, F) — Hompg(G, F)

is an isomorphism.

Proof (by Kay Rilling). First, we prove Hompgt (G, F') = Hompg(G, F); that is, any morphism
¢: G — F of presheaves on Sm is also a morphism in PST. We have to show that ¢(f*a) =
f*p(a) in F(X) for a € G(Y) and f € Cor(X,Y) a prime correspondence. By condition (1),
we can reduce to the case X = Spec K, with K a function field over k. In this case, we can
write f* = h,g*, where h: Spec L — Spec K is induced by a finite field extension L/K and

g: Spec L — Y is a morphism. Since ¢ is a morphism of presheaves on Sm, we are reduced to
showing that

hso(a) = p(hsa), a€ G(L). (2.14)
It suffices to consider the following two cases:

Case 1: L/K is finite separable. Let E/K be a finite Galois extension containing L/K,
and denote by j: Spec E — Spec K the induced morphism and by o;: Spec F — Spec L the
morphism induced by all K-embeddings of L into E. Since G € PST, we obtain in G(F)

j*hea = (ht oj)*a = Zaf(a)
Thus

Jo(haa) = (" hea) = (Zo )zgoz‘@w):j*h*s@(a).
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Since j*: F(L) — F(FE) is injective by condition (1), this shows (2.14) in this case.
Case 2: L/K is purely inseparable of degree p. In this case, h*h, = (htoh): G(L) — G(L) is
multiplication by p, as is hyh*: G(K) — G(K). Thus
h*o(hsa) = p(h*hwa) = pp(a) = h*hip(a) .
Applying h, yields pp(h.a) = phip(a); thus (2.14) follows from condition (2).
Next we prove the analogous statement for internal homs. Indeed, note that for X € Sm, the

internal hom Hompgr(Z¢:(X), F) € PST also satisfies conditions (1) and (2) above and that we
have

Hompgr(Zi(X), F) = F(X x —) = Hompg(hx,F) inPS, (2.15)
where hx = Z(Homgm (—, X)). Thus for G € PST,
Hompgr (G, F)(X) = Hompsr(Zi:(X), Hompgy (G, F))
= Hompgr (G @75T Zi(X), F)
= Hompgr(G, Hompgr(Zi(X), F))
= Homps(G, Hompgr (Zi:(X), F)), by (2.14)
= Hompg (G, Hompg(hyx, F)), by (2.15)
= Homps (G &% hx, F)
= Hompg(hx, Hompg(G, F))
= Hompg (G, F)(X).

This completes the proof of Lemma 2.1. O
LEMMA 2.2. For F' € PST and X € Sm, we have a natural isomorphism

w" Hompgr (Zi (X), F) =~ @MPST(ZH(X> 0),w"F).
Proof. For Y = (Y, FE) € MCor with V =Y — |E|, we have natural isomorphisms

w* Hompg (Zer(X), F)(Y) = Hompgr (Zu:(X), F)(V) ~ Homps(X x V, F)
~ Hompmpst((X,0) ® Y, w"F) ~ Homypgr (Ze: (X, 0), w* F)(Y) -

This proves the lemma. O
LEMMA 2.3. For F € MPST and X € Sm, we have a natural isomorphism

wy Homyrpgr (Zer (X, 0), F) ~ Hompgp (Zex (X), w F) -

Proof. For Y € Sm, we have natural isomorphisms
W @MPST(Ztr(Xv 0), F)(Y) =~ MMPST(ZW(X’ 0), F)(Y,0)
~ Hompmpst (Zi (X x Y,0), F) ~ Hompst(X X Y, w F)
~ Hompgr (Ze:(X), w F)(Y).
This proves the lemma. ]

LEMMA 2.4. A complex in C* in NST such that C™ € RSC for all n € Z is exact if and only
if C*(K) is exact as a complex of abelian groups for any function field K.

Proof. The cohomology sheaves H{, (C*®) are in RSCxyjs by [Sai20, Theorem 0.1]. Hence for all
X € Sm, by [Sai20, Theorem 0.2], there is an injective map (H{,,C*)(X) — (HE,C®)(k(X)).
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Hence the lemma follows from the fact that (H{;,C®)(k(X)) = H"(C*(k(X))) since k(X) is
henselian local. O

LeEMMA 2.5. For G € RSC and F € PST such that F is a quotient of a representable sheaf, we
have Hompgp(F,G) € RSC.

Proof. First assume F = Z,(X) with X € Sm. Put G = wCIG € CI” (cf. §2.18). The adjunc-
tion (2.12) implies w,G ~ G. Lemma 2.3 implies a natural isomorphism

Hompgr(Zi(X), G) ~ w Homyps (Zur(X,0), G) .
Thus it suffices to show
Homypgr (Zu(X,0),G) € CI™ .

The C-invariance follows directly from that for G. The fact that it is in MPST" follows from
[Sai20, Lemma 1.27(2)].

Now assume that there is a surjection Z(X) — F in PST, where X € Sm. It induces an
injection

Hompgr(F,G) = Hompgr(Zu(X),G).

Since Hompgr(Zy:(X),G) € RSC as shown above and RSC C PST is closed under finite
products and subobjects, we get Hompgr(F, G) € RSC, as desired. This completes the proof. [

LEMMA 2.6. Let F € MNST be such that FP € CIy;, (cf. §2.16). For any function field K
over k, we have

H'(Pk, Fip1_gi00)) =0 fori>0.
Proof. If F is semipure, the assertion follows from [Sai20, Theorem 9.1]. In general, we use the
exact sequence in MINST
0—->C—>F—FP?—=0

to reduce to the above case, observing that H*(Pj, C(P}{70+OO)) = 0 for ¢ > 0 since C’(P}OOJFOO)
is supported on {0, c0}. O
LEMMA 2.7. For F € CI" and a function field K over k, we have

QNisF(K) - QNisF‘(i ® K) .

Proof. We consider the exact sequence 0 - C — F — F*? — 0 in MPST with w,C = 0. Since
a;s 1s exact, from this we get an exact sequence 0 — ayn;C — aniF — ani P — 0 in MINST.
Since C(p1_o100) is supported on {0k, 00k}, we have (anisC)p1 0400) = C(PL 0100) DY (2:4).
Hence the exact sequence gives rise to a commutative diagram

0 C(K) F(K) F*P(K)

L -

0—=CH®K) —=anF(O® K) —ay; PP (0@ K).

The left (respectively, right) vertical map is an isomorphism since C' € CI" (respectively, thanks
to [Sai20, Theorem 10.1]). This completes the proof. O

Let A} = Speck[t] be the affine line with the coordinate t. Consider the map in PST
MGt Zie (A} — {0}) = Gy,
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given by t € Gy, (A} — {0}) = k[t,t7!] * and the map in PST
Aot Zi(A}) = Gq
given by t € Go(A}) = k[t]. Note that Ag,, and Ag, factor through

Coker (Z LN Loty (A% — {0})) and Coker (Z LN Loty (A%)) ,
with i and ip induced by the points 1 € A} — {0} and 0 € A}, respectively.

LEMMA 2.8. (1) The composite map

wZ (P10 + 00) ~ Z (A} — {0}) 260 Gy
induces an isomorphism
akiswihg (Oc,,) = Gon | (2.16)
where Og,, = Coker (Z 2 Z, (P!,0 4 0)) € MPST.
(2) The composite map

Ac,

wZiy (P, 200) =~ Zi (A}) =% G
induces an isomorphism
aXswhg (a,) = Ga, (2.17)
where Og, = Coker (Z % Z, (P!, 200)) € MPST.
Proof. We prove only part (2). The proof of part (1) is similar. By [Sai20, Lemma 1.36 and

Theorem 0.1], we have aKiSwg hoi(ﬁ(;a) € RSCyis. Hence, by Lemma 2.4, it suffices to show that
the map A, : Zu (A')(K) = G4(K) = K for a function field K over k induces an isomorphism

wghoi(ﬁga)(K ) ~ K. We know that Z (A})(K) is identified with the group of O-cycles on
Al = A'®; K. Then, by [KSY22, Theorem 3.2.1], the kernel of Z, (A!)(K) — wih§ (Og, ) (K)
is generated by the class of 0 € AL and diVA}((f) for f € K(t)* such that f € 1+ mgo(’)P}(,oo,
where mq is the maximal ideal of the local ring Op1 ., of Pl at co. Now part (2) follows by an
elementary computation. O
LEMMA 2.9. We have

Homypgr (G, F) € MNST  for G € MPST, F € MNST .

Proof. Put H = Homppgr(G, F). Let X € MCor and
W——YV

-

be an MVi"-square as defined in [KMSY21a, Definition 3.2.1]. By [KMSY21a, Definition 4.5.2
and Lemma 4.2.3], it suffices to show the exactness of 0 - H(X) — H(U)® H(V) — H(W). By
adjunction, we have H(X) = Hommpst (G, FY) with F* = Homypgr(Zi:(X), F)). Hence it
suffices to show the exactness of the sequence 0 — F* — FU @ FV — "V in MPST. Taking
Y € MCor, this is reduced to showing the exactness of

05 FXeY) 5 FURY)SFIVeY) = FIVe ).

This follows from the fact that MVi"-squares are preserved by the product ® in MCor. O
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PROPOSITION 2.10. (1) For F,G € MPST, we have a natural isomorphism
anis(F @mpst G) ~ anis(anisF @MmpsT anisG)

induced by the natural maps F' — ay; F' and G — ayn; G-
(2) For F,G € MPST, we have a natural isomorphism

anis(F @mpsT G) ~ anis(anisF @mpsT anisG)
induced by the natural maps F — anisF and G — anisG.
Proof. For H € MINST, we have isomorphisms

Hommnst(anis(F @mpst G), H) ~ Hommpst (F @mpst G, H)
~ Hompmpst (F, Homypst (G, H))

(x1)
~ HommpsT(anisF, Hompyps (G, H))

~ Hommpst (anis I @mpsT G, H)
~ Hommpst(G, Hompgpgr (anis s H))

(x2)
~ HommpsT (anisGs MMPST(QNisF ,H))

~ HommpsT(anisF @MPsT anisG, H)
~ Hommnst (anis(anisF @mpsT anisG), H)
where (1) and (x2) follow from the fact that Homypgr (A, H) € MNST for A € MPST by
Lemma 2.9. This proves part (1).
For F,G € MPST, we have isomorphisms

*1)

(
nanis(F @mpst G) =~ anis (F @mpst G)

(x2)
~ anis(MF @mpst 1G)

(x3)
>~ anis(anis T F @MPST anisTI ()

(x4)
~ anis(manisF' @mpsT TanisG)

(x5)
~" anisT (anis F' @mpsT anisG)

(x6)
~" nanis(anisF @mpsT anisG) ,

where (x1), (%4) and (x6) follow from (2.3), (*2) and (*5) follow from the monoidality of 7 (see
[RSY22, §3.8]), and (*3) follows from part (1). Since 7 is fully faithful, this implies part (2).
This completes the proof of the lemma. O

LEMMA 2.11. There are natural isomorphisms for F,G € MPST
(F @mpst G)® ~ (F* @mpst G)" ~ (F® @mpsT G*P)™ (2.18)

Proof. We have an exact sequence 0 — C — F — F*? — 0 in MPST with wC = 0. Since
(=) @mpsT G: MPST — MPST is right exact, we get an exact sequence

C @mpst G = F @Mmpst G — F*? @MmpsT G — 0.

We have w(C @mpsT G) = 0 since wy: MPST — PST is monoidal by [RSY22, §3.6]. Hence
we get an isomorphism (F @mpst G)*P ~ (F @npsT G)P. This implies (2.18). O
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LEMMA 2.12. There are natural isomorphisms for F,G,H € MPST
hS(FP)® ~ R(F)™ (2.19)
hg(F @mpst G) =~ hy (5 (F) @mpst by (G)) - (2.20)
Proof. We have an exact sequence 0 — C — F' — F*" — 0 in MPST with w,C = 0. From
this, we get an exact sequence hi(C) — h§ (F) — h§ (F) — 0 in MPST since hy: MPST —

MPST is right exact. We have whg(C) = 0 since wi: MPST — PST is exact and hoi(C) is a
quotient of C. Hence we get an isomorphism wih5 (F) =~ whg (F*P). This implies (2.19).
For H € CI, we have isomorphisms

Homcr (hoi(F @mpst G), H) ~ Homypst(F @mpst G, H)
~ HommpsT (F, MMPST(Ga H))

(%) =]
~ HOIHMPST (holj(F)a MMPST<G7 H))

~ HommpsT (hoi(F) ®@wmpst G, H)
~ Homcg (h%] (hE(F) @MPST G)uH) )

where (x) follows from the fact that Homy;pgt (G, H) € CI for H € CI, which follows easily
from the definition. This shows

hoi(F @mpst G) ~ hoi(hoi(F) ®mpst G)
which implies (2.20). O
From (2.9), we have ay;(CI™*P) C CI?, which implies
aNiS(CISp) C CI;%S .

Indeed, for F' € CI*?, we have nanisF' ~ ayimF € CIGY by (2.3), which implies anisF € CI{
by definition (cf. §2.11 and [KMSY21b, Definition 3]). Thus we get an induced functor

ag: CIP — CIL. . (2.21)
By definition, we have
aSL(F) = anisj(F) for F € CI?P, (2.22)
where j: CI®? — MPST is the inclusion.

LEMMA 2.13. The functor aSYL, is left adjoint to the inclusion CI3, — CI®P.

Proof. This follows easily from the facts that anis is left adjoint to the inclusion MINST —
MPST and that the inclusions CI** — MPST and CIJ, - MNST are fully faithful. O

LEMMA 2.14. Consider the functors
hgsP: MPST — CI®, F s hg(F)*®,
i : MPST — CLY,,  F — afLlhg“P(F).
(1) The functor hoi’Sp (respectively, h(?f]?s) is a left adjoint to the inclusion CI** — MPST
(respectively, CIT\%S — MPST). For F' € MPST, we have natural isomorphisms
hGP(F) = hgPhg P (F)  and  hRh (F) =~ hi R hid (F).

= 9 Nis %0, Nis
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(2) For F € MPST, the natural map F' — anisF' induces an isomorphism

O,s O.s
hO er)s( ) —= ho N?s(aNisF) .

(3) For F € MPST, we have natural isomorphisms
WP (F @mpsT G) ~ hP (WP (F) @pmpst h5™P(G))
ho b (F @mps G) 2 o {2 ()30, (F) @nps o 30,(G))

Proof. The first statement of item (1) follows from the left-adjointness of hoi, (=) and anjs.
The second statement of item (1) is a formal consequence of the first since the inclusions are
fully faithful.

To show item (2), consider the commutative diagram

CIT\Ipis L CTP

=T

MNST —-~ MPST ,

where the functors are inclusions. For F € MPST and G € CI{, we have isomorphisms

*1)

O,s (x i,s . .
HOmCIiﬁS (hO NIS’LCLNISF G) HOmCISp (h() pZCLNiSF,’LCIG)

(x2)
~" Hommpst (ianisF, jiciG)

~ HOHIMPST (Z(ZNisFa Z]NiSG>

(x3)
~ HOmMNST(aleF lesG)

~ Hommpst (F, ijnisG)
~ HomMPST(F JiciG)

*4
(N) HommpsT (h s F iCIG)

(x5)
~ HOHIMPST (aNlShE SpF G)

where (x1) and (x5) (respectively, (x2) and (x4), (x3)) follow from Lemma 2.13 (respectively,
item (1), the full faithfulness of 7). This proves item (2).

For F,G € MPST, we have natural isomorphisms

3‘

( S S
h *P(F @mpsT G) (F @mpsT G)*P)*P

(F*® ®mpsT GP)™)™

D‘

>

F*® @yppsT GP)™

(
(
(
(h6(F*) ®mps hg (G*F))™
(
(
(

> >
SO oO o0 o0 °O o0 <O

(h5 (F*?) @mpsT hg (G*P))™P)™
(HG (F™P)
(

hoi P(F) @MmpsT hE’Sp(G))Sp)Sp

>

@
(2
@
& F*)® @npst hy (GP)P) )P
(

2
20
29
L )

[\
—
=}

>
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(219) =, T O s
~" b5 (hg™*(F) @mpsT hg ™ (@)™

= hOD’Sp (hE’SP(F) ®@MPST hD (@)

This proves the first isomorphism of item (3). From this, we get natural isomorphisms
HoRh(F @npst G) == ho b, (hg P (F) @mpst g *P(G))

(*1) 7S 7S 7S
~ hoxpanis (hg P (F) @mpst hy ™(G))

(%2) s O.s
= hENIl)sale (h(E’NIl)s(F) ®OMPST hO NIS(G))

(+3) .53 g, ]

~ hy g?s(ho,li?s(F) QmPST Iy ISIIIJS(G>) )
where (x1) and (*3) follow from item (2) and (*2) follows from Proposition 2.10 in view of (2.22).
This completes the proof of the lemma. O

3. Some lemmas on contractions

For an integer a > 1, put D( 9 _ (Pl, a(0 + oo)) € MCor and
Ofea = Ker (2r(0")  Z = Zu(Speck, )

The inclusion A! — {0} < A! induces a map 0 — O in MCor for all a. Note that the
composite map
Oy — 8% - Oa, (3.1)
is an isomorphism, where i@,m is from (2.16).
For FF € MPST, we write

vF = Coker (Hompypgy (0, F) = Hompypgr (ﬁ(l), F)) € MPST,

where the map is induced by g® — Oin MCor. If F' € CI", the projection 00 — Spec k induces
an isomorphism

F = HomMPST(SpeC k, F) ~ HomMPST (ﬁ, F) .

Thus we get an isomorphism

VF ~ Homypsr (O F) & Homypgr (hF (W), F) for F e CI, (3.2)

red’

where the equality () follows from the adjunction from §2.15. Note that vF' € CI™P for F' €
CI™P. We also define

isF = anis7F € MNST .
By (3.2) and Lemma 2.9, we have

wisF =~F for F € CI{ .
For an integer n > 1, we write (cf. §2.19)

n times

"F 2 Homygpgr ([ay) M5, F) 257 "3 F. (3.3)

The proof of the following lemma is due to Kay Riilling. We thank him for letting us include
it in our paper.
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LEMMA 3.1. The unit map
QNishoi(ﬁ(l))sp = Q*Q!QNishOi(i(l)) 2w (Gm B Z) (3.4)
is an isomorphism, where the second isomorphism in (3.4) holds by Lemma 2.8 and (3.1).

Proof (by Kay Riilling). The unit map is injective by semipurity. It remains to show the sur-
jectivity. By the definition of the sheafification functor, it suffices to show the surjectivity on
(Spec R, (f)), where R is an integral local k-algebra and f € R\ {0} is such that Ry is regular.
Denote by

V1 Zir (P10 + 00) (R, f) — R} ®Z
the precomposition of (3.4) evaluated at (R, f) with the quotient map Zi, (Pl, 0+ oo)(R, f)—
O=ys

anishg (0.

We show that v is surjective. To this end, observe that for a € R}, we can find an N > 0
and a b € R such that

ab=fN and af €R. (3.5)

Set W :=V (¢t — a) C Spec Ry[t,1/t] and K := Frac(R).

The map Cor (K, Al — {O}) — Pic (P}(,O + oo) =~ K* @ 7Z, which induces the second
isomorphism of (3.4), sends a prime correspondence V (ag + ait + --- + a,t") to ((—1)"ap/ar,r);
hence we have

Y(V(ag +art+---+art")) = ((-1)"ao/ar,r) (3.6)
provided that V(ag + a1t + - - - + a,t") € MCor ((R, f), (P!,0 + 0)).

For any a € RY, consider h = tV —a; let h = [L; ks be the decomposition into monic
irreducible factors in Kt,1/t], and denote by W; C Spec R[t,1/t] the closure of V' (h;). (Note
that W; = W; for i # j is allowed.)

The W; correspond to the components of W which are dominant over Ry; since W is finite
and surjective over Ry, so are the W;. We claim

W; € MCor ((R, f), (P',0+ )). (3.7)

Indeed, let I; (respectively, J;) be the ideal of the closure of W in Spec R[t] (respectively, Spec R|z]
with z = 1/t). By (3.5), we have bt — f¥ € I, and f — fNazV € J;. Hence (f/t)N € R[t]/I;
and (f/2)N € R[2]/J;. It follows that f/t (respectively, f/z) is integral over R[t]/I; (respectively,
R[z]/J;); thus (3.7) holds. We claim

" ( Z Wz-) = ((-1)N*a,N).

Indeed, it suffices to show this after restriction to the generic point of R, in which case it follows
directly from the definition of the W; and (3.6). Since ¢(V(t£1)) = (—(£1), 1), this implies the
surjectivity of ¥ and proves the lemma. O

COROLLARY 3.2. (1) There is a natural isomorphism
= .
QNishE (Diot)i)sp =Zw Gm .
(2) For F € CI;”, we have a natural isomorphism

vF ~ Homppg(w G, F) . (3.8)
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Proof. Ttem (1) is a direct consequence of Lemma 3.1. In view of (3.2), item (2) follows from
item (1) and the adjunction of ay;s and that from §2.14. O
LEMMA 3.3. Consider an exact sequence 0 - A — B — C' — 0 in MNST.

(1) Assume A, B,C € CI{;,. Then the following sequence in NST is exact:

0— wyA = wyB — wyC — 0.
(2) Assume w,A =0 and C € CI{;”. Then the sequence
0—vyA(K) - vB(K) - yC(K) =0
is exact for any function field K over k.

Proof. First assume A, B,C € CI{;,. Then all terms of the sequence in item (1) are in RSChys.
By Lemma 2.4, it suffices to show the exactness of

0 — ~vA(K) - yB(K) - vC(K) — 0
for a function field K over k.
By (3.2), we have vF(K) = Hom (ﬁgé’K, F) for all £ € CI", where ﬁgzl,K = ﬁfi&@Spec K.
Since iﬁigu( is a direct summand of Z, (P}, 0+ 00), it is enough to show that
Extynst (Zie (P, 0+ 00), A) = 0.
By using [KMSY21a, Theorem 2(2)], we can compute
Extynst (Zo (P, 0+ 00), A) = Hyg(Ple, Ap1 0400)) -

where we use the fact that any proper birational map X — P}( is an isomorphism. Thus the
vanishing follows from Lemma 2.6. This proves item (1).

Next we assume wyA = 0 and C' € CI:?. For a function field K over k, we have a commutative
diagram

0 A(PL, ) B(Pl, ) C(P,00) — =0

| | lc

OHA(P}{,O—FOO) *>B(P}<,0+oo) HC(P}(,O-FOO) —0,
where the sequences are exact since for every effective Cartier divisor D on PL.,
Extynst (Zie (P, D), A) ~ Hiy (P, Apr p)) =0

by [KMSY2la, Theorem 2(2)] and the fact that A(p1_ p) is supported on the zero-dimensional
scheme |D| by the assumption. Finally, Ker(c¢) = 0 by [Sai20, Theorem 3.1]; hence the snake
lemma gives the exact sequence of item (2). O

PROPOSITION 3.4. (1) Take F € CI> (cf. §2.16). For X = (X,Dx) € MCory (cf. §2.3),
there exists a map functorial in X

YE(X) = H' (P! x X, Fpigy) - (3.9)
Moreover, if X is henselian local, it is an isomorphism.

(2) Let F € MNST be such that F*? € CI{;". For X € Sm, there exists a map functorial
in X
YF(X) = H' (P! x X, Fpi,x) - (3.10)
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Moreover, it is an isomorphism either if F' € CI{j;, and X is henselian local, or if X = Spec(K) is
the spectrum of a function field over k and the natural map F(K) — F (ﬁ@K ) is an isomorphism.

Proof. Let L = (P',0). We prove item (1). By (3.2) and [Sai20, Lemma 7.1], there exists an
exact sequence of sheaves on (P1 x X )Nis

0—)FP1®X—>FL®X—>i*’ny—>0, (3.11)
where i: X — P! x X is induced by 0 € P!. Taking cohomology, we get the map (3.9). If X is
henselian local, we have

H'(P' x X, Frox) ~ H(X,Fx) =0 (3.12)
thanks to [Sai20, Theorem 9.3]. Note that the map F'(X) — F(L ® X) induced by the projection
L®X — X is an isomorphism by the O-invariance of F. Since the projection factors as L® X —
P! ® X — X, this implies that the map F(P1 ® X) — F(L ® X) is surjective. This implies that
the map (3.9) is an isomorphism.

We now prove item (2). Consider the exact sequence of sheaves on (P! x X) Nis

O%FP1XX*>FL®X*>i*AxF*>O, (3.13)
where AxF = i* (FL®X/FP1X)(). The injectivity of the first map follows from [Sai20, The-

orem 3.1], observing that Fpi,y = FPSEX « (the point is that X has empty modulus) and

FP ¢ CI{? by the assumption. Taking cohomology over an étale U — X, we get a natu-
ral map in U

AxF(U) = H' (P! x U, Fpi,y) -
To define the map (3.10), it suffices to show the following.
CLAIM 3.5. There exists a natural map ¢rx: (YNisE')x — AxF of sheaves on Xyis. It is an

isomorphism if F' € CI{;,. If F € MNST and F*P € CI{,, then vrk: (WisF)x = (VF)x —
Ar F' is an isomorphism for a function field K over k.

Proof of Claim 3.5. By definition, Ax F is the sheaf on Xpyjs associated with the presheaf

AxF: U = lim F(V,00)/F(V,0), (3.14)
\%4

where V ranges over étale neighborhoods of 0y = i(U) C P! x U. On the other hand, we have
(YF)x(U) = F(P' x U,0 + ) /F (P! x U, ).

Since the colimit in (3.14) does not change when taken over étale neighborhood of 0yy C Al x U,
there is a natural map

(vF)x (U) = F(A! x U,0)/F (A x U,0) = A\xF(U),

which induces the desired map ¢F x.

Next we show that ¢r x is an isomorphism if F' € CIj,, or if F' € MINST with F*®P € CI&SSP
and X = K is a function field over k. If F' is semipure, the assertion follows from [Sai20,
Lemma 7.1]. In general, we consider the exact sequence in MINST

0—-C—F—FP—-0 withw(C=0. (3.15)
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It gives rise to a commutative diagram of sheaves on (Pl x X )Nis

—=0

sp
0——=Cpiyx —= Fpiux —Fpi,,

o

S
0 —— Crox —— Frox ——= Flox

X

where the upper (respectively, lower) sequence is exact by the exactness of w;: MNST — NST
from §2.13 (respectively, by §2.12). The right vertical map is injective by [Sai20, Theorem 3.1].
This implies the exactness of the lower sequence of the following commutative diagram on Xpyis:

00— (O)x — (VF)x —= (vF*P)x —=0

i%c,x \LSDF,X \L@FSP,X

0 AxC AxF Ax F®P.

The upper sequence is exact by Lemma 3.3. Since we know that ¢pse y is an isomorphism, it
suffices to show that ¢ x is an isomorphism. Indeed, for an étale U — X with U henselian local,
we have

(vC)x(U) = C(P' x U,0+ c0)/C(P' x U,0)
~ lim C(V.0v)/C(V.0) = AxC(U),
Vv

where the V' are as in (3.14) and the isomorphism comes from the excision as Cp1y17,0400)
(respectively, C(p1yp,)) is supported on {0, 00r} (respectively, oorr). This proves that ¢ x
is an isomorphism and completes the proof of the claim. ]

To show the second assertion of item (2), we look at the cohomology exact sequence arising
from (3.13). Note that F(P! x X) — F(L ® X) is surjective since F(X) = F(L ® X) by the
assumption. Hence it suffices to show H' (P1 x X, FL®X) = 0. If F' is semipure, this follows
from (3.12). In general, it is reduced to the above case using (3.15) and noting that H' (Pl X
X, Crs X) = 0 since C'rgx is supported on 0x X . This completes the proof of the proposition. [
COROLLARY 3.6. Let G € CI", and let K be a function field K over k.

(1) There is a natural isomorphism vay;G(K) ~ H! (P}(,gNiSG).

(2) The natural map van;sG(K) — van;G*P(K) is an isomorphism.

Proof. Letting F = ay; G, we have FP = ay; G € CI{P by (2.9). By Lemma 2.7, the sheaf
F satisfies the second assumption of Proposition 3.4(1). Hence item (1) follows from Proposition
3.4(2). Item (2) follows from the isomorphisms

YanisG(K) =~ H' (P}o QNisG) ~ H' (P}oH!QNisG) ~ H' (P}o agisQ!G)
~ H' (P}o GKiSQ!GSp) ~ H' (P}o QNisGSP) ~ yan;s G (K),
where the third and last isomorphisms follow from, respectively, §2.13 and Proposition 3.4. [
LEMMA 3.7. Let F € CI".

(1) The natural map vF(K) — yay;F'(K) is an isomorphism for any function field K over k.
(2) The natural map ay;YF? — van; F*®P is injective.

(3) The natural map wan;YFP — wyyan; F°P is an isomorphism.
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Proof. Consider the exact sequence in MPST
0—->C—F—FP?—0 withwC=0. (3.16)

By §2.7, we have C,F*f € CI". It gives rise to an exact sequence 0 — an;sC' — aniF —
anisF™P — 0 in MINST and a commutative diagram

0 1C(K) VF(K) VFP(K) —0

| | |

0 —— yan;sC(K) — yanis F'(K) — yay;s P (K) —0.

The upper sequence is exact thanks to (3.2). The lower sequence is exact by Lemma 3.3(2),
noting that ay; F*P € CI{:F by [Sai20, Theorem 10.1] and wyay;C = afw,C = 0 (cf. §2.13).
Since C(P}wOJroo) is supported on {Ox, 0ok }, we have by §2.4

(QNisC)(P}(,O—&—oo) - C(P}(,O-i—oo) )
where we use the fact that any proper birational map between normal schemes of dimension 1

is an isomorphism. Hence the left vertical map is an isomorphism. We may therefore assume
T7sp

that F' is semipure. By §2.9, we have ay; /' € CIy;.. By [Sai20, Lemma 5.9], we have natural
isomorphisms

VF(K) ~ F(Aj,0)/F(Af.0),
’VQNisF(K) = QNisF(A}(v 0) /QNisF(A}O 0) .
Hence item (1) follows from [Sai20, Theorem 4.1].

To show items (2) and (3), first note that F*P € CI™*P by the assumption and § 2.7 and hence
YFsP € CI™P. By §2.9, the sheaves ay;vF™ and yay; F*P are in CI{;", and hence wjay;yyF*™P
and w,yay; F*P are in RSChuis. Hence item (2) (respectively, item (3)) follows from item (1) for
F = F*P and [Sai20, Corollary 3.4] (respectively, Lemma 2.4). O

LEMMA 3.8. Consider a sequence A — B — C' in CI” such that
wianisA = wianisB = wia;sC — 0
is exact in NST. Then the sequence
YanisA(K) = yanisB(K) = van;C(K) — 0
is exact for any function field K over k.

Proof. In view of the right exactness of the functor H' (P, —): NST — Ab, the lemma follows
from Corollary 3.6(1) by applying this functor to the first exact sequence. O
COROLLARY 3.9. Let F € CIgY. Then for any function field K, we have an isomorphism
VF(K) 2 qww F(K).

Proof. Let q: v(F)(K) — v(w®'w F)(K) be the map induced by the unit map F — wClw,F
for the adjunction (2.13), which is injective since it factors the map F' < w*w,F. Notice that ¢

( =(1
)

is injective by (3.2) and the fact that HommpsT (Dge()i K ,) preserves injective maps; hence it

is enough to show that it is surjective. Let @ be the presheaf cokernel of F' — w®lw F; then
Q € CI" and w,@Q = 0. By Lemma 3.8, we have an exact sequence

VE(K) % qw o F(K) = yay,Q(K) — 0.
By Corollary 3.6(2), we have vyay;sQ(K) = yan;@*P (K) = 0; hence ¢ is surjective. O
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PROPOSITION 3.10. For F' € CI{?, there is a natural isomorphism
w v ~ w, MMPST(Q*Gm, F) = MPST(Gm,g!F) .

Proof. The first isomorphism follows from (3.2) and Corollary 3.2. For F' € MPST and X € Sm,
put F~¥ = Homyrpgr(Zi:(X,0)), F). Note that F' € CI{Y implies FX € CI{’. We compute

—(1
wyF(X) = Homypgr (Dl(“e()i’ F)(X,0)
~ Homumpst (T, FX) = 7FX (k).
HOimPST(va Q!F) (X) = HomPST(Grm HOiIHPST(Xv Q!F))
~ Hompgy (Gm,w F¥)(k),

where the last isomorphism comes from Lemma 2.3. Hence it suffices to show that for any F' €
CIIT\fiSSp , there exists a natural isomorphism vF (k) ~ Hompgt (G, w  F). We have isomorphisms

x )HomMPST(w G, ww F)

*2
(N) Hommpst(w* G, w® w,F)

© Hompmpst (Dg()i, Tw, F)

W wCly (k) =y F (R,

where (1) follows from the fact that w* is fully faithful (cf. § 2.8), (x¥2) follows from the adjunction
from §2.15 (see also (2.12)) in view of the fact that w*G,,, € CI” by Lemma 3.1, (x3) from Lemma
3.1, (4) from (3.2) and (x5) from Corollary 3.9. O

HomPST(Gm,w.F)

4. Weak cancellation theorem
For F,G € MPST, we write (cf. §§2.16 and 2.19 and Lemma 2.14)
F ®c1 G = hy(F @mpst G) € CI,
Fed G= hD *P(F ®mpst G) € CIP,
F @2 G = hi'® (F ompst @) € CLY, .

PROPOSITION 4.1. The product ®cy (respectively, ®CI, ®NIS *P) defines a symmetric monoidal
structure on CI (respectively, CI**, CI{.)).

Proof. The assertion except for the associativity follows immediately from the fact that @npsT
defines a symmetric monoidal structure on MPST. We prove the associativity only for ®Nlb P
(the other cases are similar). We need to show a natural isomorphism for F, G, H € CI{.:

(F ®N1s ,Sp G) le,sp H~F ®le ,Sp (G ®N1s ,Sp H)

For simplicity, we write A = h ’I\Sfi)s. For F,G,H € CI;%S, we have isomorphisms

(1)
AA(F @mpsT G) @mpst H) ~ A(N(F @mpst G) @mpsT AH)

(*2)
AAF @mpsT G) @MmpsT AH)

(x3)
~ M(F ®@mpst G) @mpst H),
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where (x1) (respectively, (%2), (x3)) follows from item (3) (respectively, item (1), item (3)) of
Lemma 2.14. The lemma follows from this and the associativity of @mpsT. ]

For F,G € CI", we write
F®ciG= Tghoi(T*F @mpsT 7 G) € CI™ |
F &% G = nhS™®(r*F @ppst 7°G) € CITP |
F ®le PG = Tnholjlf}lfs( *F @mpsT 7°G) € CIGY .
By §2.3, we have a natural isomorphism
anis (F &4 G) ~ Fagr™ G. (4.1)
In view of the equivalences (2.8) and (2.10), Proposition 4.1 implies the following.

PROPOSITION 4.2. The product ®cy (respectively, @y, ®le °P) defines a symmetric monoidal

structure on CI” (respectively, CI™?, CI(;Y). For F,G, H € CI{;Y, There is a natural isomor-
phism
(F ®le Sp G) le Sp H~F ®le ,Sp (G ®Cls ,Sp H) (42)

For F' € CIf;, and an integer d > 0, we put
F(d) = @) 7™
Note that F'(d) = F(m)(n) with d = m + n by (4.2).
For FF € CI" and f € F(X) with X € MCor, consider the composite map
s —(1)
—— Ueq ®MmpsT 7 — Ueg @c1 £

By the adjunction (ﬁfi& @mpst —) 1 Homypst (ﬁ£e217 —), this gives rise to a natural map

®le ,Sp . (4.3)

—(1
Dfeé OMPST Ztr(X)

=(1
i F o~y ([0 0cr F), (4.4)
which induces
5P B (O 0 F) (4.5)
noting the adjunction from §2.14 and the fact that v: MPST — MPST preserves semipure
objects.

If F € CIg, this induces a natural map
tp: P — ~y(F (1)), (4.6)
which generalizes to a natural map for n € Z>1 (cf. (4.3) and (3.3))
i F 5 4" (F(n), (4.7)
noting that

V'F = Hompyipgr ((iie()i)@an F) for F' € CI”
thanks to the adjunction from §2.15.

Question 4.3. For F € CI{;’, is the map (4.6) an isomorphism?

We will prove the following variant.
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THEOREM 4.4. For F' € CI", the map (4.5) is an isomorphism.

Before going into its proof, we give some consequences.

COROLLARY 4.5. For F' € CI", the map (4.5) gives an isomorphism

~ =(1) sp
WILE: g!gNiSF — WYONis (Dred ®CI ) ’

For F € CI{,,, the map (4.7) induces an isomorphism
Wi wF <5 wy"F(n).

Proof. The functors w, and ay;s are exact, and wyay;G = wyay;G*P for all G € MPST. Hence
Theorem 4.4 gives a natural isomorphism

. ~ =(1) _sp
wianistr: wianisF = wianisY (Dreq 8 F) -

This proves the first assertion since Lemma 3.7(3) implies

W) aNisY (il(“i()i Q& F) ~ wiyay;s (ﬁ% Q& F) -

The second assertion for the case n = 1 follows directly from the first. For n > 1, we proceed by
induction on n to assume

Wi wF S wy" T F(n - 1). (4.8)
Then we have isomorphisms

*1 *2
wy"F(n) D wyy" " F(n) ) Hompgy (G, wy" ' F(n))

= Hompgr (Gm7g!’yn_1F(1)(n B 1>)

*3) (%4) (*5)
2 Hompsr (G, w,F(1) = wyF (1) Z wF

where (x1) follows from (3.3), (x2) follows from Proposition 3.10 noting that v~ F(n) € CIg;’,
(x3) follows from (4.8), (x4) follows from Proposition 3.10 and (*5) follows from the case n = 1.
This completes the proof. ]

COROLLARY 4.6. For F € RSChjs and F = wCIF € CIL,, (cf. (2.13)), the map v F — 4"F(n)
from (4.7) is an isomorphism.

Proof. We have a commutative diagram

L
~ 7 ~

Y F(n)

- =
CI1

~ WLz ~
WOl F wClwy"F(n),

where the vertical arrows come from the adjunction (2.13). The left (respectively, right) verti-
cal arrow is an isomorphism (respectively, is injective) since Q!QCI ~ id (respectively, by the
semipurity of 7”1?’ (n)). Since wClw, L% is an isomorphism by Corollary 4.5, this implies that L%
is an isomorphism by the snake lemma. U

COROLLARY 4.7. For F € CI{;?, there is a natural injective map
pr: Y F(n) = wClw F

whose composite with the map (}.: F' — " F(n) from (4.7) coincides with the unit map uw: F' —
WOl F for the adjunction (2.13). In particular, (4.7) is injective.
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Proof. Define pr as the composite

n -1
(LWCI(.UlF)

YUE(n) & A"wClw F(n) ——— wClu F,
where the second map is the inverse of the isomorphism ¢/ c; | B Wl F =2 4"wCl F(n) from

Corollary 4.6. Clearly, we have pr o (% = u. We easily see that pr coincides with the composite

npn) Y wClu~m w (W) ™!
Y'E(n) = wwyy F()———>w w,F

where the first map is injective by the semipurity of 4" F(n) and the second map is induced by
the inverse of the isomorphism wt}: w F' = wy"F(n) from Corollary 4.5. This completes the
proof. O

In the rest of this section, we prove the following.

PROPOSITION 4.8. For F € CI”, the map }¥ from (4.5) is split injective.

For the proof of Proposition 4.8, we first recall a construction from [Voel0]. Take X,Y € Sm.
For an integer n > 0, consider the rational function g, = (2} —1)/(27"" — 22) on AL x AL
Let Dxy (gn) be the divisor of the pullback of g, to (AL, —0) x X x (AL, —0) x Y. Take a prime

correspondence
Z € Cor ((Ay, —0) x X, (A}, —0) xY). (4.9)
Let Z C P}tl x X % P}CQ % Y be the closure of Z and Z" be its normalization.

LeMMA 4.9. (1) Let N > 0 be an integer such that

N(01 -+ 001) =N

Z > (02 + 002)

v (4.10)

Then, for any integer n > N, the correspondence Z intersects properly with |Dxy (g,)|, and any
component of the intersection Z - Dxy (gy,) is finite and surjective over X. Thus we get

pn(Z) € Cor(X,Y)
as the pushforward of Z - Dxy(g,) in X x Y.
(2) If Z = Ida1_gy ® W for W € Cor(X,Y), then one can take N = 1 in item (1) and
pn(Z) =W.
(3) For any Z as in (4.9) such that p,(Z) is defined and for any f € Cor(X',Y') with X' Y’ €
Sm, for

Z® f€Cor((AL —0) x (X x X'), (AL, —0) x (Y x Y")),
pn(Z ® f) is defined, and we have
pn(Z @ f)=pn(Z)® f € Cor(X x X' Y x Y').
(4) For an integer N > 0, let
Cor™ ((AL —0) x X, (AL, —0) xY)

be the subgroup of Cor ((A‘,}c1 — 0) x X, (A}EQ — 0) X Y) generated by prime correspondences
satisfying condition (4.10). Then the presheaf on Sm given by

X — Cor™ ((AL —0) x X, (AL, —0) x Y)

is a Nisnevich sheaf.
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Proof. The assertions are proved in [Voel0, Lemmas 4.1, 4.3 and 4.5], except that item (4) follows
from the fact that the condition (4.10) is Nisnevich local on X. O

For an integer a > 1, put o@ — (Pi a(0+00)) € MCor. Take X = (X, Xo), YV = (Y, Yx) €
MCor with X = X — |[X»| and Y =Y — |Y|. For a > 1, take a prime correspondence

Z € MCor (i(a) ® X,ﬁ(l) ® y) .
By definition, Z € Cor(X,Y), and Z satisfies

_~N + (Yoo)|7N < a(01 + 001) v + (Xoo) =N (4.11)

(02 + 002)\2 |Z |z

where Z" is the normalization of the closure Z of Z in PL x X xPL xY.

For integers n, m > a, we consider the rational function on Al | X Al x Aglcz
h=tgn+ (1 —t)gm -
Let Dx a1y (h) be the divisor of the pullback of i to (AL —0) x X x A} x (AL, —0) x Y.
By [Voel0, Remark 4.2], the product Z x A} intersects properly with |Dxa1y(h)|, and any
component of the intersection (Z x A}) - Dx a1y (h) is finite and surjective over X x A{. Thus
we get
pn(Z x A}) € Cor (X x A})Y).

It is easy to see that

iopn(Z x A}) = pm(Z) and  iipn(Z x A}) = pn(2). (4.12)
LEMMA 4.10. For n,m > a, we have py(Z x A}) € MCor (¥ ® 0, ).

Proof. Let V be any component of (Z X Atl) - Dxa1y(h) and V be its closure in the product
PL x X xP; xPL, xY.Let W C X x Af xY be the image of V and W be its closure in
X x P} xY. Then we have W = 7(V), where 7: P, x X x P{ x P, xY — X x P} xY is the
projection. We want to show that

(Yoo)|WN < (Y X OO) —~N + (Xoo X P%)

|W |WN .

. —N N . . . .. .
Since m: V'© — W' is proper and surjective, this is reduced to showing that

(Yoo) g < (X % 00) v + (Xoo x Py)

v
by [KP12, Lemma 2.2]. By (4.11) and the containment lemma [KP12, Proposition 2.4] (see also
[BS19, Lemma 2.1]), we have

N+ (Xoo X P%)

(Yoo) v + (02 + OOQ)lVN < a(0g + ool)\V

1%
Thus it suffices to show that

|7N .

a(01 4 001) =~ < (02 + 002)

1% VN"‘OO—N.

| v
Using [KP12, Proposition 2.4] again, this follows from
a(01 + 0o1)r < (02 4 002)1 + ooy7, (4.13)

where T C Pglc1 x P} x Pglﬁ2 is any component of the closure of the divisor of h on (A‘,}:1 — 0)

X

A} x (AL, —0). By an easy computation, T is contained in one of the closures D(H), D(J,),
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D(Jy,) of the divisors of

H _ t( n+l Tln+1)(1 o .IQ) + (xm+1 o 1) (CC?+1 . ZUQ) ’

_ n+l m—+1
Jp=x"" =2, Jp=2]" —x2,

respectively. Letting P} — 0 = Spec k[r;] with 7; = ~! for i = 1,2, the closures D(H), D(J,),
D(J,,) are defined in (P1 — ()) x A} x (P1 - O) by the ideals generated by, respectively,

H = t( m+1 _ n+1) 7_2 _ 1 ( T{TL+1)( Ty — 7_1n+1) ’
T

! n+1 !/ m+1
Jpy=m—17"", Jy,=T2—T7 .

Hence, D(H), D(J,), D(J;) do not intersect with co; x P} x AL .

By the assumption n,m > a, the ideals (Jn,x‘f), (Jm,a;‘f) C k[x1, 9] contain zg, and the
ideals (J),, "), (J),, ) C k[r1,72] contain 7, which implies (4.13) (without the last term) if T'
is contained in D(J,,) or D(J,).

On the other hand, the ideal (H, :z:‘f) C k[z1,x2,t] contains x5, and the ideal (H/,Tf’) C
k[71,72,t] contains 5. Over P} — 0 = Speck[u] with u =t~!, D(H) - (AL x (P} —0) x AL)) is
the zero divisor of

f[ — ($?+1 m+1)(1 _ 1'2) + u( m+1 1) (CL’?+1 _ 1'2) ’
and D(H) - ((PL, —0) x (P} —0) x (PL, —0)) is the zero divisor of

H = (7'1m+1 n+1)(7‘2 -1+ u(l — T{7L+1) (7'2 — 7'1”"'1) .

The ideal (ﬁ,x‘f) C klz1, 2, u] contains uxy, and the ideal (fI’,Tf) C k|ri, 72, u] contains urs.
This shows (4.13) if ' C D(H) and completes the proof of the claim. O

LEMMA 4.11. For n > a, we have p,(Z) € MCor(X,)).
Proof. This follows from Lemma 4.10 and (4.12). O
For an integer N > a, let
MCor™ (T @ x, 0 © ¥) ¢ MCor (0% & x,0 )

be the subgroup generated by prime correspondences lying in Cor™) ((A1 —O) XX, (A1 —0) X Y).
By Lemma 4.11, for n > N > a, we get a map

p@: MCor™ (O @ x,0%) © ¥) - MCor(¥,Y). (4.14)
The map (4.14) induces a map of cubical complexes
p@*: MCor™ ([0 @ ¥  T°, 0% ® V) - MCor (¥ 0", ). (4.15)
By construction, the following diagram is commutative if n > N > b > a:

(a)e
MCor™ (O @ ¥ o T, 0% ® ¥) 2~ MCor (X © 0", )

l 5 % (4.16)

MCor®™ (@Y e ¥ o T, O ® V) .

where 8* is induced by the natural map £: ﬁggé — ﬁﬁg}i.
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(a)e (a)e

COROLLARY 4.12. For m,n > N > a, the maps py,’ and py,’ are homotopic.
Proof. By Lemma 4.10, we get a map
n=pn(= x AD): MCor™ (0 & x,0) @ ¥) - MCor (X ® T, ) (4.17)

such that d o sy, , = p,(ﬂ) - p( a) where 0 = ij; — i7: MCor (X ®0 y) — MCor(X,)). Let

stn: MCor™ (@) © ¥ T, By ® ¥) — MCor (X T, )
be the map (4.17) defined by replacing X by X ® . Then we have that
Do ((=1)'sh, ) + (—1)"tsi L 00 = pleht — ple)t
hence {(—1)"st, ,}i gives the desired homotopy. O

Let Z € MCor®™ (0% ® &, 0 ® V); then for all W € MCor(X’, X), by [Voel0,
Lemma 4.4],

Zo (Idp1 g0y ® W) € Cor™ ((A' —0) x X, (A' —0) x Y).
Moreover, by [KMSY21a, Proposition 1.2.4(i)], we have
Zo (Idai_gqp ® W) € MCor (0% @ X, 0% @ V),
which implies that
Lo(¥)™) = Hom{iher (Thek. Oted © Za () = MCor™ (T2} @ (), Ty © V)
is an object of MPST, which is a subobject of
La(Y) = Homppgr (Dieh, Ot  Zin(V)) € MPST,

and we have

Lao(Y) = lim Lo(V)™). (4.18)
N>0
The above construction gives a map of complexes pg\?)': CoLa(YV)M) — Co(Y) in MPST, where

Ce(—) is the cubical Suslin complex. Let p(a). Hi(CaLo(Y)™)) — H;(Ce(Y)) be the map in
MPST induced on cohomology presheaves. Thanks to Corollary 4.12, the diagram

commutes for integers N’ > N. Hence, by (4.18), we get maps p(®: H;(CoLa(Y)) — RZ (D).
Putting ® = D(ed ® Y, we have
=(a) =
Ce(La(Y)) = Homyrpgr (Dyeq. Hompypgy (O°, @) .

Recall that for FF € MPST and X € MCor, we have, by the Hom-tensor adjunction, an
isomorphism

hg Homypgr (Zi: (X), F) = Hompygpgr (Ze(X), hOD(F)) -
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Hence, we get an isomorphism Hy(Ce L (JJ)) HomMPST (a £ec)1, hD( )) for hii(q)) = H;(Ce(P)),

and we have an isomorphism hoi( Q) = hD( red ®Y) = rezl ®ctY € CI. Hence we get a natural
map

pg;) Y@L ®c1 V) — B (), (4.19)

where 7, (F) := Homyrpgt (ﬁgeé, F) for F € MPST, and by abuse of notation, for C € CI, we
let C also denote nC' € CI” (cf. §2.16). In view of (4.16), the following diagram is commutative
(recall that we assume b > a):

(a)
a Inl P Iml
Homppgr (Dl(re()iv hom(q))) - hg(y)

iﬁ* o
Homypst (Dfeﬁv hg (@ ))

Now take any F' € CI", and consider a presentation A — B — F' — 0 in MPST, where A
and B are the direct sums of hE (V) for varying Y € MCor. We then get a commutative diagram

Ya (5521 @cr A) =7 (ﬁﬁié ®ct B) = 7a (iﬁizi ®ct F) =0

| |

A B F 0,

where the vertical maps are induced by (4.19). The upper sequence is exact by the right exactness

of ®cr and the fact that iﬁg}i is a projective object of MPST. Thus we get the induced map in
MPST

A 1 (O @ F) > F. (4.20)
Write pp = pg).
CrAM 4.13. The map pp splits vp.

Proof. By the construction of pg, the proof is reduced to the case F' = hoi(y) for Y € MCor,
which follows from Lemma 4.9(2). O

The following result concludes the proof of Proposition 4.8.
LEMMA 4.14. For F' € CI7, the map pp factors through
Pr: ’Y(igelx)i Ve F) = F*.
Moreover, it splits the map Li,? from (4.5).
Proof. Take X € MCor, and let ¢ be in the kernel of
Homumps (Tl @ &, Doy @cr F) — Hommpst (Treg @ X, 010 8 F).
(a)

Note that the map is surjective since O3 ® X is a projective object of MPST by Yoneda’s
lemma. By the definition of semipurification (cf. §2.14), there exists an integer m > 0 such that

»@ = 0 in HommpsT (D( d) ® x(m) 7159()1 ®cr F), where f,: O Eed) ® xm — Die()i ® X (cf.
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§2.6). Then the maps from (4.20) induce a commutative diagram

HommpsT (ﬁiié QX ,ﬁ(i()l ®c1 F) —2—~ F(X)

T

| [

5 ( Homypst (Ohy @ X0, 0L @1 F) —7= F(x0m)

l )

(m)

Hommpst (Dioq ® X WLE&Q ®ct F) ,

where 67, is induced by 6,,: X" — X and the triangle commutes by (4.16). We have 6% pp (@) =

pgﬂn) B, (p) = 0. Hence pr(yp) lies in the kernel of 7, , which is contained in the kernel of the map
spy: F(X) — F*P(X) by the definition of semipurification. Hence the composite map
. *(1) *(1) Sp
spy © pr: Hommpst (Hoq ® X, Uyq ®c1 F) — FP(X)

T

factors through HommpsT (iiizl ® X ,ﬁfi()i ®gp F), inducing the desired map p3¥. Finally, to
show the last assertion, consider the commutative diagram

F— oy (O @1 F) 22~ F

sp l Sp
L Pr

PP (O 0% F) == F,

where ppip = idp by Claim 4.13. This implies p}¥t} = idpse since F — F®P is surjective. This
completes the proof of Lemma 4.14. O

5. Completion of the proof of the main theorem
In this section, we prove the following result.

PROPOSITION 5.1. For ¢ € HommpsT (ﬁgé ® X,ﬁg()i ® Y) with X,V € MCor, there exists
an f € MCor(X,)) such that ¢ and idi(l) ® f have the same image in HomypsT (ﬁg}i R X,
red
=
Dred ®SCpI y) :
First, we deduce Theorem 4.4 from Proposition 5.1. By Proposition 4.8, it suffices to show
the surjectivity of the map ¢} from (4.5). Proposition 5.1 implies that the composition

W) = ([T ©cr V) = +(Olen @5 V) =~ (@48 @ k5 ())

is surjective. Since the last object is semipure, it factors through hoﬁ(y)sp, proving the desired
surjectivity for F = h5()).

For a general I € CI", consider a surjection q: Py _,p hoﬁ(y) — F', which gives a commuta-
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tive diagram

1)

_ ®P - 5
DY) - BT 22 V)

q°P i

e oW g
7( red ®CI )’

where the top arrow is surjective and the vertical arrows are surjective since representable
presheaves are projective objects of MPST by Yoneda’s lemma and the functors (_)*P and

iﬁi()i ®cr1 - commute with direct sums and preserves surjective maps. This proves the desired
surjectivity of ¢p.

The proof of Proposition 5.1 requires a construction analogous to the one in [Gra05]. For
a variable T over k and for ¢ > 1, we put

0% = (PL,i(0 + ),
where P}, is the compactification of G, = Spec k[T, T~1]. We also put (cf. (3.1))
O eq = Ker (Z (37) 25 Z = Ziu(Speck, ) € MPST,
where pr: P%ﬂ — Speck is the projection. Let e be the composite of pr and i1: Z — Zy; (7(Tl))

induced by 1 € P%,,. Then e is an idempotent of EndypsT (i§3 )), and id — e € EndpmpsT (ﬁg} )),
with id denoting the identity on i&f), is a splitting of i%)red — i&f). Thus, we get a direct sum
decomposition in MPST (cf. (3.1))
O =T0ea ®Z  with Oy = (id — e)T% .
For FF € MPST and integers 1,...,i, > 1, let
T HomMpST (ﬁ%l) - Q& ﬁ¥n)7 F) — HOmMPST (ﬁg}r)ed @@ ﬁ’%ﬁldv F)

be the projection induced by the above decomposition.

For X € Sm and a € I'(X,0%), let [a] € Cor (X, A’ — {0}) be the map given by z — q,
where Al = Spec k[2].

LEMMA 5.2. (1) The correspondences
(7], [U].[TU],[1] € Cor (A7 — {0}) x (A —{0}), (A" —{0}))
lie in MCor (E(Tl) ® ﬁ(Ul) ﬁ(l)). Moreover, we have
(] + [U] - [TU] — [1] = 0 € Hommps (T @ T, v (@)
(2) The correspondences
(=T, [=U), [-TU],[-1] € Cor (A7 — {0}) x (A — {0}). (A" —{0}))
lie in MCor (E(Tl) ® E(Ul) ﬁ(l)). Moreover, we have
[~7]+ [-U] = [-TU] - [-1] = 0 € Hommesr (07 @ O, 15 (@)
Proof. The first assertion of item (1) follows from the equalities

[T =pide 1)), [Ul=pidel]), [TU]=pu,
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where p: (AL —{0}) x (A} —{0}) — (A}, — {0}) is the multiplication W = TU, which lies in
MCor (O3 Oy, G4) by [Sai20, Claim 1.21].
To show the second assertion of item (1), consider as in [SV00, Proposition 3.4.3] the finite

correspondence Z given by the following algebraic subset:
{(V?— (W(T+U)+ (1 -W)(TU +1))V+TU =0} 5.1)
€ Cor((A} — {0}) x (A —{0}) x Ay, Ay, — {0}). ‘

Let
io,i1: (A7 —0) x (A —0) x (A}, —0) = (A7 —0) x (A —0) x Ajy x (Ay, —0)
be the maps induced by the inclusion of Oy and ly in A},. It is clear that (iff — i})(Z2) =
([TU] + [1]) = ([T] + [U]) since
VP (TU+ 1)V +TU = (V-TU)(V - 1),
VE(TH+U)W+TU =(V-T)V -U).

We need to check that Z lies in M Cor (ﬁg} ) ® ﬁg) ® iw,ig/l)). Consider the compactification
(Pl)X4 of AL x A}, x Al, x A}, given coordinates with the usual convention [0 : 1] = oo and
[1:0]=0:

([To : Two), [Uo : Uso), [Wo = Woo, [Vo & Vo)) -
Then the closure of Z is the hypersurface given by the polyhomogeneous polynomial

T()U()W()Vfo - (WOO(TOUOO + TOOUO) + (WO - Woo)(TooUoo + TOUO))VOO‘/O + TOOUOOWO%2 .

We have to check that it satisfies the modulus condition: letting ¢: Z — (Pl) “! be the inclusion,
and letting

Dy = ({0} + {o0}) x Pyy x Py x Py + Ph x ({0} + {o0}) x Py x Py,
+ PL x P} x {00} x P{,,

Dy = P x Pl x Py x ({0} + {o0}),
we have to check the inequality
©*(D1) = ¢"(D2). (5.2)
Consider the Zariski cover of (Pl) x4 given by
{Uspro = (P! —a) x (P' = B) x (P —7) x (P! =0), a,8,7,6 € {0,00} } .
Define to, = T /Ty if o = 00 and t, = Tp/T if @ = 0 and ug, w,, vs similarly. Then
U g5 = Spec(kta, ug, wy, vs)) -

On this cover, the Cartier divisors Dy and Dy are given by the systems of local equations
Dy = {(Ua,p,06: tauswo), Ua,pcos:tas)} Do ={(Uapq6:v6)} -

The equation of Z on (Pl) “a_ {0} is of the form TyUyWy — v F for some F' € k[vy][Up, Uso, - - .-
Hence (5.2) is satisfied on Uy g0 if o =0 or B =0 or v = 0. Furthermore, Z - Usg 00,00,0 - D2 = 0.
Similarly, the equation of Z on (Pl)X4 — {oo} is of the form TooUso Wy — v5G for some G €
E[vso][Un, Uso, - . .|. Hence (5.2) is satisfied on Uy g, if @ = 00 or § = oo or v = 0. Furthermore,

Z - Z/{0,0,00,00 Dy = @
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Item (2) is proved by the same argument using the following correspondence instead of (5.1):
{(V2+ (W(T +U)+ (1 -W)(TU + 1))V +TU =0}
€ Cor((A} — {0}) x (A, — {0}) x Ajy, Ay — {0}). O
COROLLARY 5.3. We have 7([TU]) = 0 € Hommpst (T 1eq @ Tt reqs i @1)).
Proof. This follows from Lemma 5.2 since
[TU]o ((id—e) ® (id —€)) = [TU] = [TU]o (1®e) — [TU] o (e®1) + [TU] o (e ®¢)
= [TU] ~ [T] - [U] + 1] in Hommpsr (Oy @0y, 0Y). O
For X € Sm and a,b € T'(X,0%), let
a.b] € Cor (X, (A' — {0}) @ (A" - {0}))

be the map given by z — a, w — b, where z (respectively, w) is the standard coordinate of the
first (respectively, second) Al

COROLLARY 5.4. In HommpsT (ﬁg}) ® ES) ® ES), hoi(i(l) ® i(l))), we have
[T, V]+[UV]-[TUV]-[1,V]=[-T,V]+ [-U,V]| - [-TU,V] - [-1,V] =0.
Proof. This follows from Lemma 5.2, noting that the endofunctor ,®i(1) on MPST is additive
and hoi(ﬁ(l) ®ﬁ(1)) is a quotient of hoﬁ(ﬁ(l)) oo, O
PROPOSITION 5.5. The correspondences
(U, T), [T, U] € Cor (A —{0}) x (A —{0}), (A" — {0}) x (A" = {0}))
lie in M Cor (igpl) ® ES),E(I) ® ﬁ(l)). Moreover, the element

7([U,T) = 7([T1,U]) € Hommpst (T 1eq © Tt heq, 15 (T 0 TY))
lies in the kernel of the map
Hompyrpst (D(T 1ed ® Dgflled? hoi(ﬁ(l) ® ﬁ(l))) — HommpsT (Dgl)red ® ig)red, hoi(i(l) ® i(l))) :

Proof. (See [Gra05, Corollary 9].) The first assertion is easily checked. To show the second,
consider the map in M Cor

oY oV o0y, Tes, U~St.

Composing this with the correspondences of Lemma 5.2(1), we get [S] + [S™!] —2[1] = 0 €
HompypsT (E(S%Zed, hoi(i(l))). Noting that 7([1]) = (id — ) o [1] = 0, we get «([S]+ [S7!]) =
0e HOmMpST (ﬁ.(szg)"ed’ hoi(ﬁ(l)))
This implies
m([S,V]+ [S7',V]) = 0 € Hom g2 m% % o
, ; = MPST (g red © O reds ho OV eO%7)), (5.3)

again noting that the endofunctor _.® Dg/) on MCor is additive and hOD (ﬁ( )®ﬁ( )) is a quotient

of WP@Y) @ TW.
On the other hand, by tensoring the correspondence of Corollary 5.3 with another copy of
itself, we get

*([TU,VW]) =0 in Hommpst (T7seq © Tt req © Dyfreq @ Tiphea, 17 ([T @ TV)) . (5.4)
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There is a map in MCor
02 o0y -0V o0y o0 T4, TS, U S, Vs =S Wis Sy,
which induces an element of
HommpsT (DE%) red @ D(SQQ) red> D’EF )red ® D%]ied ® Dgzed ® i%/?red) .
Composing this with (5.4) and changing the variables (S1,.S2) to (T,U), we get
#([TU,=TU]) = 0 € Hommpst (Drreq @ Tireq, k5 (O 0 TM)) . (5.5)
We make the following claim.
Cram 5.6. In Homupst (T5 g © 04 e, 5 (@Y @ TY)), we have
©([TU, -TU]) = n([T, -TU]) + n([U,-TU]), (5.6)
m([T, =TU)) = =([T,U]),
m([U, =TU]) = =([U, T]) -

Proof of Claim 5.6. Indeed, composing the first correspondence of Corollary 5.4 with the map
in MCor

Oy o0y - 0Y o T o OV (5.9)
given by V' — —TU which is admissible by [Sai20, Claim 1.21], we get
[TU, —TU] + (1, ~TU] — [T, ~TU] — [U, ~TU] = 0
in HomppsT (D%) ® D(l) hoi(i(l) ® ﬁ(l))). Then (5.6) follows from the equality
7([1,=TU]) = 0 € Hommps (T 1eq @ Tt req, g (@ 0 TM)) .
Indeed, we have
[1,-TU]o((id —e) ® (id — €))
=[1,-TU]—-[1,-TUlo (id®e) — [1,-TU] o (e ®id) + [1,-TU] o (e ® €e)

(*)

= [1,-TU] - [1,-T] - [1,-U] +[1,—-1] =2 0

in HommpsT (D(T) ® D(l) o ® E(l)), where the equality (x) follows from Corollary 5.4.
Then (5.7) and (5.8) follow from Corollary 5.4 by an analogous argument considering the
maps (5.9) given by V +— T, T +— —T and V — U, U — —U, respectively, and noticing
that

[T, =T]o ((id —e) ® (id —¢))

= [T, ~T) — [T, ~T]o (id®e) — [T, ~T] o (e ®id) + [T, ~T] o (e @ ¢)

=|[T,-T)-[T,-T)-[1,-1]+[1,-1] =0,
and similarly for [U, —U]. This completes the proof of the claim. O

By Claim 5.6, equation (5.5) implies
[T, U]+ x[U,T) =0 in Hommpst (Tyreq @ Tprgea, 15 (T @ TH)). (5.10)
Putting (5.3) and (5.10) together, we conclude that
A[T,U) = 7[U",T] =0 in Hommpst (T5req ® Tirreqs hp (O @ TM)).
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This completes the proof of Proposition 5.5. O

Take &,V € MCor and ¢ € HommpsT (ﬁgzj ®X ﬁg()i ® V). It induces

¢5 € HommpsT (Dﬁei © X, 04 ®cr ).

Let ¢* € HommpsT (X ® iﬁiﬁl,y ® ﬁg()i) be obtained from ¢ by the obvious permutation. It

induces ¢= € Hommpst (X ® ig()i, Y ®cr ig()i) We then put

p®1d_) € Homyps (O © ¥ @ O, O 0 Yy o OL) |

red

=) = =1
Id_ oo o2y 90 € HomMPST (Dl(rezl RXQ D]Eec)b I:'red RY® Drezl) ’

red

which induce
=(1 =(1) =01 =
g ®ldgo) € Homupst (O ® X T, T ®cr Y ®ct D) ,
. 1) =0 =
Idﬁg()i ® 5 € HommpsT (D( loXxe® Dfegi, D]Ee()i ®cr Y Qcr D1(re()i) :
For M € MCor, let oq: ﬁg}i QM® Eﬁi()l — ﬁg}i QM ® Eﬁi()l be the permutation of the two
copies of iﬁiﬁ- We have

YR IdD(l) = (Uy) (Idﬁﬁié ® (,0*) o (0’)() .

red

Let T be the standard coordinate on A', and let

O T (5.11)

be the map given by T'— T~!. For all M € MCor, let

1) =

S =om—ldgo @O eoMeOl —»O0eoMeOy.

OiheM
We can write
p ®Tdgn =ldom © ¢" + (0%) op+ g0 (o)

for some p,q € HOIHMPST (Eg()i RAX® ﬁgé,igé RY® Eg()i) PutT'y = Egzl Rct X Xcit iﬁic)i

and I'y = ﬁﬁi& ®c1 Y ®c1 iﬁié. Hence we can write
g ® IdD(l) = IdDEi& ® o+ O'D yor+age 0' (5.12)

where
O-EQ) red ®y® red - 0-57)(' red ® ® red 7 LA aF- tx —1ly
are induced by 03,, o’y and g, respectively. For an integer n > 0, let X (n) .— (X,nD) if X =
(X, D). Then we consider the map
1 B = =
HOII]MPST (Dgec)i & X & Dieg, Fy) — HOHlMPST (DEZ& & X(n) ® Dieng, Fy)
induced by the natural map (,: U r:ﬁ QXM @ ﬁ(gg — D(if)i RX® Dfe()i
CLAIM 5.7. There is an N > 2 such that for all n > N, the maps a yop and g5 o O'EX lie in
the kernel of

Homupst (Ol ® & ® 00, Ty) 2 Homyppsr (O © XY™ @ O, Ty) .
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Proof. By Proposition 5.5, the composite map

Ot @O 2 D000 © D 0O - 15 ([Th) e b5 (02)
=0

is zero, where 0’ = o —Id 0 ®¢ with o the permutation of the two copies of [, .4 and ¢ from (5.11).

This immediately 1mphes the claim for g5 o Ui »- We now show the claim for Ui yop Choose

an integer N such that for all n > N, there is map
p") € Homyes (G © X @ 00, Ol © V@ 0 02)
induced by p. For M, N € MCor, write

AM N = HomMPST ( red ® M ® Dre()bﬁl(red Xcr N ®cr |:lred)

A\ = Homypst (Tl © M™ T2, 5L @cr N @ct D) -

Then for n > N, we have a commutative diagram

Ayy——>Axy

iﬁé‘ lﬁ; (5.13)
@) ™) ()
Ayy —>A Xy-
The claim for o~ _, o p follows from this. O

0y
We now complete the proof of Proposition 5.1. We consider the commutative diagram

1 1
HomMPST (Dlgec)l QX ® DI(‘QC)17 red RYQ® D1red) 4> HomMPST (X & Dred? Y ®crU Eec)l)

J{B: iﬁi‘b

Hommpst (O ® X™ @ 00, T © ¥ @ OL)) % Hommest (XY™ @ T, Y @c1 Tn) ,

where the horizontal maps come from (4.19), replacing ) by Y ®i§i()i. By Lemma 4.9(3) and (2),
we have p1 (¢ ® idﬁgﬂ) =plp)® Idﬁgi and p; (Idiﬁifi ® ¢*) = ©%, where
=(1 =(1 ]
p: Homypst (O'eh © X, 0 @ V) — Homumpst (X, h5())) (5.14)

is the map from (4.19). In view of the diagram, (5.12) and Claim 5.7 imply that there is ann > 0
such that 3} (cp"‘i — pleg) ® IdD(l)) =0, so that

* - =(1
Falen —ldgy © plvg) =0 < Hommest (O e x™. 00 ocry). (5.15)
Consider the commutative diagram

—(1 —(1
HommpsT (Dﬁe?i ® X, Die()i ®c1 V) Homppst (DEezl ®Xx,0 red ®arY)

B P

—(n —(1 s
Homypst (Ol © XY™, Bl ®cr V) — Homups (O © XM, 04 08 V).

The two horizontal maps are surjective since representable presheaves are projective objects of
MPST and ﬁgi()i ®cry — iﬁiﬁi @& Y is surjective. The map 3;; on the right-hand side is injective
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since ﬁgi& @& Y is semipure. Hence Proposition 5.1 follows from (5.15).

6. Implications on reciprocity sheaves

Let RSChyis be the category of reciprocity sheaves (see §2.17). Recall that for simplicity, for all
F € RSChyis, we write (cf. §2.18)

F:=wCFeCIg?.
By [RSY22], there is a laz monoidal structure on RSChyis given by (cf. Proposition 4.1)
(F.G)ner =i (F o )

RSCyis
Following [RSY22, §5.21], we define
F(0):=F, F(n):=(F(n—1),Gn)ggc,,. forn=>1. (6.1)
By Corollary 3.2(1), we have (cf. (4.3))
Fn) = w (Fn— 1)(1)). (6.2)
By the recursiveness of the definition, we have
(F(n)){m) = F(n+m). (6.3)
By [RSY22, Proposition 5.6 and Corollary 5.22], we have isomorphisms
W (WGP ™M) 2 Z(n) 2 KM | Ga(n) 2 Q" if ch(k) =0, (6.4)

where the second isomorphism is defined as follows: for an affine X = Spec A € Sm, the composite
map

Ga(4) ©2 G (A" — (Gy OnsT GENT)(A) = Guln)(4) "D (6.5)
sends a® f1 ®---® fp, with a € A and f; € A* to adlog f1 A --- Adlog fn.
By [RSY22, §5.21(4)], there is a natural surjective map for F' € RSCxyjs

Fenst KM — F(n). (6.6)
LEMMA 6.1. The map (6.6) factors through a natural surjective map
wi (F NP (" Gy )0 ™) 5 F(n). (6.7)
Proof. By [RSY22, 5.21(1)], there is a natural surjective map
wianishh (F @mpsT (W Gy ) MPST?) 5 F(n) | (6.8)

By Lemma 2.14(2) and (3), we have a natural isomorphism

— ~ . Nis,s
wianish (F OmpsT (" G ) *MPST) o 0y (F @¢p ™ (@' G)®er ).

Hence (6.8) induces (6.7). We have a surjective map

(()4) ~ Nis,sp
Fepst KA =" wF @pst w ((w'Gpp) e ™)
Nis,sp Nis,sp

~ w (F @mpst (@ Gn)®et ")) = w (F oer™ (@' Gm) e ™),

where the second isomorphism comes from the monoidality of w, (cf. §2.19). By the adjunction
from (2.1), this induces a surjective map

~ . Nis,s:
Fonst KM = aly (F @pst KM = w,(F 0™ (W' Gpp)@er ). (6.9)
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By the construction of (6.8), it is straightforward to check that (6.6) is the composite (6.7)
and (6.9). This completes the proof of the lemma. O

We have a natural map in X € Sm:

-®id M
F(X) = Hompst(Z(X), F) — Hompst (Zi(X) @nst KM, F @nst KM)

— Hompsr (Z(X) ®nst KA, F(n)),  (6.10)
where the last map is induced by (6.6). Thus we get a map
Ap: F — Hompgy (K2, F(n)). (6.11)

THEOREM 6.2. For F' € RSCyjs, the map A% is an isomorphism.

The proof will be given later. First, we prove the following.
PROPOSITION 6.3. The map A% is an isomorphism for n = 1.

Proof. Note that IC{V[ = G,, and that for F},Gy, F»,Go € MPST and maps f: I} — F» and
g: G1 — (G, the diagram

w fRw, g

w F1 @psT w Gt w Fy @psT w G2

\L w, (f®g) l

w(F1 ®mpsT G1) w(F> @mpst G2)

commutes, where the vertical isomorphisms follow from the monoidality of w,. Thus, by Lem-
ma 6.1, (6.10) with n = 1 coincides with the composite map

~ w (-®id,,* m X 1Ss

~ HomppsT (Q*Gm,fmimMPST (Ztr<X, ®>, F @%}S Py Gm))

*1
(N) HommpsT (w Gm,w w.HomMPST (Ztr(X 0), F®le P ¥ Gm))

('\2’) HOIHPST (G’m, %%} HomMPST (Ztr(X (D) F ®N1S P w G’m))

(g) HOIHPST (Gm, Hom (Ztr (X) y Wy (F ®Ig)1187sp Q* Gm) ))

) Hompgp(Gom, F(1))(X). (6.12)

T,Sp

Here (*1) is induced by the injective unit map G — w®w,G (G € CIN’iS) for the adjunc-
tion (2.13) and is an isomorphism by Corollary 3.9 and the fact that Homypgy (Ze:(X,0),
F ®le P w*Gy,) € CIGY; (x2) is given by the fully faithfulness of w®! and the equality
7CIG = w*Gy, by [KSY22, Lemma 2.3.1]; (3) follows from Lemma 2.3; and (x4) holds by the
definition (6.1).

This gives a commutative diagram

Ak

F Hompgy(Gm, F(1)) (6.13)

L

~ wpk
w F —5 W) HOHlMPST (w G, F ®le P Dge()i)
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where L}; = (_®idy+@q,,) is an isomorphism from Corollary 4.6 (using Corollary 3.2). This proves
the proposition. ]

For F,G € RSCyjs, let
LF.G: HomPST(F, G) — HOHIPST(F<1>, G<1>> (6.14)
be the composite map
CI ~ o~
HOHIPST (F, G) g_) HomMPST (F, G)
7®1(\T}ilsg*G N1s * N1s * @
HomMPST (F ® Gm, G ® Gm) — HOmPST(F<1>, G<1>) .
THEOREM 6.4. For F,G € RSCxjs, the map tr g is an isomorphism.
Proof. We have isomorphisms (cf. §2.18)
Hompsr(F(1), G(1)) = Hompgr (@ (F 9F™ & Gn) @ (G 087 i)
= HomMPST (F ®le,sp w G, w g (G ®le P Dgec)i))
= HommpsT (F @mPpsT W G, wlw, (G ®NIS P Df«i?i))

~ Hommpst (F, Homypgr (@ G, ww, (G &P T))),  (6.15)

where the first (respectively, second) isomorphism follows from (2.12) (respectively, the fact that
wClwn (G ®le P Die()i) € CI{;P). Note that for H € CI™P, the natural map H — w%w H is
injective.

Hence we get injective maps

HommpsT (F Homppgr (w G, G ®le SP Diezl))
— HomppsT (F Hompypgt (W' Gm,w wClw, (G ®NIS P Dfezl)))

— HommpsT (F W, Homyipgr (W' Gy w wClw, (G ®le oP Dieé)))

(Ll) HommpsT (F w® HOHlpST (Gm, W (G ®le - Dfié)))

(x2)
~" HompmpsT (F wC Hompgr (G, G(1))) , (6.16)
where the isomorphism (1) comes from Proposition 3.10 and ww®? ~ id (cf. §2.18) and (*2)

follows from (6.2). These maps fit into a commutative diagram

HommpsT (ﬁ, é)

«
/ = HCI

Hommpst (F, Homygpgt (w* G, G @5 O =y )) Hompgr(F, G)

ic_) LF,G

Homppst (F, Hompyrps (&G, wClw, (G @NesP T1))) <= =55 Hompsr(F(1),G(1) - =)ot

-

HommpsT (ﬁ, wC Hompgr(Gm, G(1)))

] ™

HomMPST (FV, é) .
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The two right vertical isomorphisms follow from the full faithfulness of w®t. The isomorphism a

(respectively, ) comes from Llé from Corollaries 4.6 and 3.2 (respectively, )\é from Proposi-

tion 6.3). The squares are commutative by (6.13), noting that the left vertical maps are viewed
as inclusions under the identifications

X ~ _ Nis,sp =(1
w) Homyrpsr (& Gon, G @87 ™ Died) = Hompg (G, G(1))
¥ ~ _ Nis,sp =(1
~ w, Hompppg (' G, ', (G @8 Tle) )
coming from Proposition 3.10. This proves that the map ¢ is an isomorphism, as desired. []

COROLLARY 6.5. For F,G € RSCyjs, there exists a natural injective map in NST for internal
hom

Hompgy(£(1), G(1)) — Hompgy(F,G), (6.17)
which coincides with the inverse of (6.14) on the k-valued points.
Proof. The surjective map F @nst Gy, — F(1) in NST from (6.6) induces an injective map

Hompgr(F (1), G(1)) < Hompgy(F @NsT Gm, G(1))
~ Hompgr(F, Hompgr(Gm, G(1)),

and the latter is isomorphic to Hompgp(F, G) by Proposition 6.3. This completes the proof. [

Proof of Theorem 6.2. Consider the map induced by (6.6):
q: Hompgr (K, F ®©nst K,)) — Hompgr (Ky', F(n)) -
The map (6.11) is then the composition of ¢ and the map
F — Hompgy (K3, F @nsT KY) ) 5= s®@idgn . (6.18)

On the other hand, we have isomorphisms KM (1) = KM for all i > 1 by (6.4). Hence the
map (6.17) for F = KM, gives an injective map

Hompgr (K7, F(i)) — Hompgy (K1, F(i — 1)) . (6.19)
Composing (6.19) for all i < n, we get an injective map
Hompgy (KM, F(n)) < F, (6.20)
which by definition sends g(s ® idw) to s for a section s of F. Hence the composition

(6.11) (6.20)

F —_— HomPST (ICTJ‘Ld, F<TL>) —>

is the identity, so (6.11) is an isomorphism. This completes the proof of Theorem 6.2. O
Let G € RSCyjs and X € Sm. By Lemma 2.3, we have a natural isomorphism
w Homypsr ((X, 0),w'G) ~ Hompgy(X,G).
Hence the unit map id — w®w, from (2.13) induces a natural map
Homppsr ((X, 0),w°'G) = w Hompgr(X,G). (6.21)

It is injective by the semipurity of Homp;pgr (Ztr(X , @),QCIG) and becomes an isomorphism
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after taking w,. Moreover, the following diagram is commutative:

Hompypgr (X, 0),wCG) C2L 4O Hompgr(X, G)

i% i;) (6.22)

~

Homypgt((X,0), w*G) —— w* Hompgr (X, G),

where the isomorphism comes from Lemma 2.2.
For G € RSCyjs and X € Sm, we define the following condition:

(d)x The map (6.21) is an isomorphism.

THEOREM 6.6. Let F,G € RSCxjs. Assume one of the following:

(1) The reciprocity sheaf G satisfies (&%)x for any X € Sm.

(2) The reciprocity sheaf G satisfies (&)spec(x) for any function field K over k, and F' is the
quotient of a direct sum of representable objects.

Then (6.17) is an isomorphism.

Proof. Assume condition (1). Letting G = wClG, we have isomorphisms for X € Sm
Hompgy (F, G)(X) = Hompgr(F, Hompgy (X, &)

(%1) Homypst (F,wC! Hompgr(X, G)) (%2) Hommpst (F, Homygpsy ((X.0),G)), (6.23)

where the isomorphism (1) (respectively, (¥2)) comes from the full faithfulness of wC? (respec-
tively, (d)x). Moreover, we have isomorphisms

Homypsr ((X,0), é) (i) Homypgr ((X,0), Homyrpgy (w* Gm, é(D))

=~ Homypst (G, Homypsy ((X,0), G(1))) (6.24)
where the isomorphism (*3) comes from Corollaries 4.6 and 3.2. We also have isomorphisms
Hompgy (F(1), G(1))(X) = Hompgr (F(1), Hompgy (X, G(1)))

z Hompst (@ (F O w*Gy),w Homypsr ((X,0),G(1)))  (6.25)

(%;) HommpsT (ﬁ @mpsT W G, wlw, Homypsr (X, 0), @(1)))

~ Hommpst (F, Homypgr (W' G, wCw, Homypgr (X, 0), G(1))))

where (*4) (respectively, (x5)) comes from Lemma 2.3 (respectively, the adjunction (2.12)). These
maps fit into a commutative diagram

HommpsT (ﬁ,@MPST ((Xa 0), é))

(6.24)l: ‘x

HomMPST (f,mMPST (Q*Gn“HOimMPST ((X7 @)7 é(l)))) mPST(F, G) (X)
(T)l‘—> c—>T(6.17)
Hommpst (ﬁ,@MPST (w* G wy Homyrpgr (X, 0) 76(1))) )Tﬁ%@HomPST(F<1> G())(X),
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where the injective map (1) comes from the counit map id — w®w, from the adjunction (2.12).
We see that the diagram commutes as follows: The map (6.24) is induced by the map

Homypst ((X,0), G) - Hompypgt (W' G, Homypgr (X, 0), G(1)))
~ Homypgr ((X,0) ® w* G, G @5y w* G

given by f — f ® idy+q,,.- The map (6.17) is induced by the surjection F' @nsT G — F(1)
from (6.6) and the isomorphism Hompgyp(F ® Gy, G(1)) = Hompgy(F, G) inverse to (6.11)
given by f ®idg,, — f. The maps (6.23) and (}) are inclusions under the identifications

wy Hompypgr (w* G, Homypgr (X, 0), é(l))
~ Hompgr(Gm ® X, G(1)))
~ w Homyypg (@ G, &' Homygper (X, 0), G @F5P OL,)))

coming from Lemma 2.3 and Proposition 3.10. This proves that (6.17) is an isomorphism.

Next assume condition (2). In view of Lemma 2.5, we have that Hompgyt(F,G) and
Hompgr(F(1),G(1)) are in RSCyis. Hence, by Lemma 2.4, it is enough to prove that (6.17)
induces an isomorphism Hompgr(F(1), G(1))(K) = Hompgy(F, G)(K) for any function field K
over k. This follows from the same computations as above. O

LEMMA 6.7. Any F € Hlyjs satisfies (&) x for all X € Sm.
Proof. We have
Homyrpgr (X, 0),wF) = Homprpsr((X,0),w*F)

= w*Hompgy (X, F) = QCIHO7H1PST(X7 F),
(1) (%2)

where the isomorphism (x1) follows from Lemma 2.2 and (%2) from the fact that Hompgp (X, F') €
HI, so that w* Hompgr(X, F')) € CI" by [KSY22, Lemma 2.3.1]. This completes the proof. [J

LEMMA 6.8. If ch(k) = 0, then Q¢ satisfies (&)x for all X € Sm.
Proof. Put I' = Hompgr (Z:(X), Q") and
G = Hompypgr (Ze(X,0), w0, G* = w® Hompgy (Zi(X), Q7).

Note that I' € RSCyjs by Lemma 2.5. By [RS22, Corollary 6.8], for Y = (Y, D) € MCor, where
Y € Sm and D,¢q is a simple normal crossing divisor, we have

G(Y) =T (Y x X, Q' (log Dyeq x X)((D — Dyed) x X)) (6.26)

Hence the conductor ¢“ associated with G in the sense of [RS22, Definition 4.14] is given as

follows (note that Lemma 2.3 implies G € CI(I') under the notation of loc. cit.): Let ® be
as in [RS22, Definition 4.1]. For a € G(L) = H%(X ®; L, Q%) with L € @, put ¢f(a) = 0 if
ac HO (X R Or, Q’) Otherwise, put

. 1 ;
¢%(a) = min {n >1|acH° (X ® OL, pros o Q’X@)kOL(log))} ,

where ¢ is a local parameter of O and Q% o, (log) is the differential graded subalgebra of
0%, generated by Q% o and dlog ¢ (cf. [RS22, §§6.1 and 6.3]). Moreover, one easily sees
that for ) = (Y, D) € MCor as (6.26),

G(Y)={ae G -D)| % (a) < wvr(D) for any L € P}
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(see [RS22, Notation 4.2] for vr(D)). Hence by [RS22, Theorem 4.15(4)], it suffices to show
& = ¢ We know @ < % by loc. cit., so that it suffices to show the following: Let L € ® and
a € G(L). For r € Z>q, we have

& (a) <r=cFa) <r.

We prove this implication by descending induction on r. By [RS22, Corollary 4.44], this is reduced
to showing the following: Choose a ring homomorphism K < Op, such that K — Op — Op/(t)
is the identity, and extend it in the canonical way to o: K(z) < Or,, where z is a variable and
L, = Frac(Op [z ]( )) Assume c¥(a) < r + 1. Then the following implication holds:

(a,1 —2t")p, o =0 € G(K(z)) = §(a) <7, (6.27)

where (—, =), » is the local symbol for I'" = Hompgr(Zt:(X), Q) from [RS22, §4.37]. Since the
local symbol is uniquely determined by the properties (LS1)—-(LS4) from [RS22, Lemma 4.38],
we see that it is given by (a,1 — 2t")r, » = Res;(adlog(1l — «t")), where

Resy: T'"(L,) = HY(X @y Ly, Q') = TV (K (2)) = H(X @ K(z),Q")
is induced by the residue map Qj-jcl — sz(x), which is defined using the isomorphism L, ~

K(z)((t)) induced by o: K(z) < Op,. To prove the implication (6.27), we may assume after
replacing a with a — b for some b € T'(L) with c§(b) < r,

1

0 i 0 i—1

a= a+6tr+1 fora € H'(X @ K,Q"), B € H (X @ K, Q7).
Then we compute in H(X @5 K (z),Q"): Resy(a dlog(1—t")) = —raza+ Bdz. This shows (6.27)
and completes the proof. ]

7. Internal homs for Q"

In this section, we assume ch(k) = 0. Note that a section of Hompgy (2", 2™) over X € Sm is
given by a collection of maps ¢y : HO(Y, Q") — HO(X x Y,Q™) for Y € Sm, which are natural
in Y € Cor. For (o, ) € H(X, Q™ ™) & H°(X, Q™" !), we define

QOYaﬁ HOY, Q") - HY (X xY,Q™), w—piaApiw+pifApidw,

where py: X xY — X and py: X x Y — Y are the projections. The naturalness of ©y) ;5 in
Y € Cor follows from [CR11]|. Thus we get a natural map in NST:

Q" Q" = Hompgp(Q7, Q™) (. 8) = {0y g}vesm., (7.1)
where Q! = 0 for i < 0 by convention. Taking the sections over Spec k, we get a natural map
o (T @ Q};”’”’l — Hompgr (2", Q™). (7.2)
We also consider the composite map in NST

gm-n L, Hompgr (2", Q™) dog’, Hompgr (IC%, am), (7.3)

where the second map is induced by the map dlog: KM — Q™. Taking the sections over Speck,
we get a natural map

g Q" — Hompgr (K5, Q7). (7.4)

The main result of this subsection is the following.
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THEOREM 7.1. The maps (7.1) and (7.3) are isomorphisms.

First, we prove the following.

PROPOSITION 7.2. The maps (7.2) and (7.4) are isomorphisms.

This follows from Lemmas 7.3, 7.4 and 7.5 below, in light of Theorem 6.4. For i > 0, let us
fix the isomorphisms

ol ) = Qf ) kM ) = kM (7.5)
coming from (6.3) and (6.4)
LEMMA 7.3. (1) The following diagram is commutative:

Hnm

Qr et Hompgt (027, Q™)

i@nl,ml T

Hompgy ("1, Q1) €4 Hompgt (2"71(1), Q" 1(1)),

where the right vertical map is induced by the isomorphisms o™ and (o™)~! from (7.5).

(2) The following diagram is commutative:

Qpn e Hompsr (KM, Q™)

ilpn—l,m—l T

Hompsr (KM, 2 1) U Hompgy (KM, (1), 07 1(1)) ,

where the right vertical map is induced by the isomorphisms ™ and (s")~! from (7.5).

Proof. By [RSY22, Corollary 5.22], for an affine X = Spec A € Sm and 7 > 0, the composite
map

0 Qi @y AX = (27 @nst Gi) (4) D Qi1 (4) D 0
sends w ® f with w € Qf{l and f € A* to w A dlog f. Moreover, for ¢ € HompgT (Q”_l, Qm_l)
and ¢’ = 0™ o (1) o (¢")7L, the diagram
O ey AX T an
@@idAX lg@l
m— om m
Q7 @y A T QY
is commutative. Hence item (1) follows from the equation
aN(wAdlogf)+BAdwAdlog f) =(aAw+ BAdw) Adlog f,

m—n m—n—1
where oo € Q""" and B € .

Item (2) follows from item (1) and the commutativity of the diagram

dlog(1)
Kpli(1) —= (1)

191



A. MERICI AND S. SAITO

which can be verified using (6.5). O
LEMMA 7.4. For an integer n > 1, we have
Hompgr (", G,) = Hompst (K),G,) =0. (7.6)
Proof. We have isomorphisms
Hompgt (Q", Ga) ~ HompgT (W (6”\—/1 Rcr w ) )
Qn— 1®CIW G, w©G,)

~ HOIIlMP ST

(@

~ HompmpsT (Q" L @MpsT W Gy w Gy

~ HomMPST (Q HomMPST (w Gm, w IG ))
")

where the first isomorphism is induced by (0™)~!, the inverse of the isomorphism o™ from (7.5)
and the second follows from (2.12). Similarly, we have an isomorphism using (¢")~! instead of

(™)L
HOIHPST (]C%, Ga) HomMPST (w ICn 15 HomMPST (Q*Gm,gCIGa)) .
We compute
Hompypgr (w* G, w“'G,) (X) — Hompypgy (w* G, w'Go) (K (X))
~ Coker (w CIG, (K (X)) — QCIGQ(P}((X),O + 00))
~ Coker (K (X) — H° (P}K(X), 0)) =0,

where the first map is injective by [Sai20, Corollary 0.3], and the first (respectively, last) iso-
morphism follows from Corollary 3.2(1) (respectively, [RS22, Corollary 6.8]). This completes the
proof of Lemma, 7.4. ]

LEMMA 7.5. The maps (7.2) and (7.4) are isomorphisms for n = 0.

Proof. The assertion for (7.4) is obvious since KM = Z for n = 0. We prove it for (7.2). We have
isomorphisms

Hompgt (Ga, QZ) ~ HompsgT (aKisw!hoi(ﬁGa), QZ)
~ HommpmpsT (hoi(ﬁ(;a) , wCIQi)
~ HomppsT (ﬁga,wCIQi)
~ Ker (H* (P, 2, (log 00) (00)) % Q) , (7.7)

where the first (respectively, last) isomorphism follows from (2.17) (respectively, [RS22, Corol-
lary 6.8]). Since Q;l/k(log 00) =0 for i > 1, Opi(logoo) = Op1 and Q%,l/k(log 00) = Q%,l/k(oo),
the standard exact sequence

0 — Op1 @ U — Qb (log o) — Qi;l/k(log o0) — 0
induces an exact sequence
0 = Op1(00) @, 2, = D1 (log 50)(00) = Dp1 4 (200) @ ' =0,

where Qz_l = 0 if i = 0 by convention. Letting ¢ be the standard coordinate of Al ¢ P!, we
have

HY(P',Opi(00)) =k-1@k-t, H°(P'Qp,(200)) = k-dt,
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and dt lifts canonically to a section dt € H?(P!, Qg (log 00)(c0)). Hence we get an isomorphism

H (P, Q%1 (log 00)(00)) =~ (k- 1@ k- t) @ QU @ (k - dt) @ QL. (7.8)

Thus the last group of (7.7) is isomorphic to k - t ®y, QZ P k- dt Ry Q};l ~ QZ &) QZ_l. Hence,
from (7.7), we get a natural isomorphism

Qi @ Qi = Hompst (Gg, ) . (7.9)

Next we claim that the map (7.9) coincides with (7.2) for n = 0. By Lemma 2.8(2), we have
a commutative diagram

Zio(A}) — 20 G,
E ler) (7.10)
W Lty (Pl, 200) nghoi(ﬁga) ,

where Ag, is given by ¢ € G4(A}) = kl[t]. The standard isomorphism
Q' (A}) =~ (% @k klt]) @ Q" @y k[t]dt)
induces a natural isomorphism
Hompgr (Zir (Af), Q) = Q1 (A}) ~ Qp[t] & Q) [t] A dt, (7.11)

where Qi [t] = B Q- t™and Qi Adt = D

inclusion

Q}:l At"dt. The map Ag, induces the

m€Z>0 m€Z>0

Ag,: Hompgt (Gg, Q') — Hompgr (Zi (A}), Q") = Q'(A})
such that
G. () = a1(t) for ¢ € Hompsr (Ga, '), (7.12)
where @1: Gq(A}) = k[t] — Q'(A}) is induced by ¢. The following claim follows from (7.7),

t

(7.8) and (7.10).
CrAM 7.6. The image of A\ is identified under (7.11) with

Lt QT Adt C Q] @ QM Adt,
and the composite map

. . 7.9 AL . .
Lo 0 ) Hompgr (G, ) 252 Q1 -t QL A dt

is given by the obvious identifications Qi = Q}g -t and Qifl = Q}:l A dt.
Let
HOIHGQ (Gaa Qz) C HompsgsT (Ga> Qz) (7.13)

be the subgroup of Gg-linear morphisms. There is a natural isomorphism
€: Q) 2 Homg, (Gq, ), w—{A— X} (AEG,).
The group (7.13) is a direct summand since we have a splitting given by

Hompgt (Ga, Qz) — Homg, (Ga, Q’) , e {A= (1)}
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The other summand is Hompgr (Ga, Qi)o :={¢|¢(1) = 0}. There is a natural map
& Q?l — Hompst (Ga, Qi)o, wr {a—wAdal.
By (7.12), under the identification (7.11), we have
Aa,EW) =w-t, A\ () =nAdt (we, neQ™).
Hence the composite map

. . / AE . .
i@ 2 Hompgr (Ga, Q) 25% QF -t @ QL Adt

is given by the obvious identifications Qf = Q};‘t and Qz_l = Q;:l Adt. By Claim 7.6, this proves

the desired claim and completes the proof of Lemma 7.5. O

To deduce Theorem 7.1 from Proposition 7.2, we need some preliminaries.

Let K be the function field of S € Sm, and define Corg, PSTg, MCor;, MPST ., etc. as
Cor, PST, MCor, MPST, etc., where the base field k is replaced by K. We then have a map

ri: Hompgr, (2", Q") — Hompgp (2", Q") (K), ¢~ {¢Yy}vesm, (7.14)
where ¢y for Y € Sm is the composite map
HO(Y, Q") — HYUY x; K, Q") — HY(Y x; K,Q™),

where the second map is gy, xk (note that Y x; K € Smy) and the first is the pullback by the
projection py : Y x; K — Y. Similarly, we can define a map

ri: Hompst, (IC%, Q™) — Hompgy (ICQ/[, Q™) (K). (7.15)
By the definitions, the following diagrams are commutative:

(7.2) (7.4)

QR @ Q" — > Hompsr, (", Q™)  Qp " —— Hompgr, (KM,Q™)
MA i”{ (7.3) J/TK
@PST(QH7 Qm)(K) ’ MPST (K"%v Qm) (K) .

In view of Lemma 2.4, Theorem 7.1 follows from Proposition 7.2 and the following.

LEMMA 7.7. The maps (7.14) and (7.15) are isomorphisms.

For the proof, we need the following. Recall from Conventions 1.5 that for U = im, U; € Sm
and F' € PST, we let F(U) := lim, F(U;). In general, for (Y, Dy) € MCor and F € MPST, we
let

Hompspgt (U, F)(Y, Dy) := th(UZ xr Y,U; X Dy),
and for G € MPST, we have

Hom(G,Hom(U, F)) = liﬂHom(G,Hoim(Ui,F)) .

LEMMA 7.8. For X = (X,D) € MCor and Xx = (Xk,Dg) € MCor(K) with X = X x; K
and Dg = D X, K, we have a natural isomorphism

Hommpst,, (Zu(Xi), w Q") = Hommpst (Zi(X), Homypgy (K,w'0")) .
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Proof. By [KMSY21a, Proposition 1.9.2(c)] and resolutions of singularities (recall that we are
assuming ch(k) = 0), we may assume X € Sm and that D,.q is a simple normal crossing divisor.
From the explicit computation of wCTQ™ in [RS22, Corollary 6.8], we have

(QCIKQTL)(XK’DK) = H(Xg, %, (10g(Dk))(Dg — Dk red))

= (w'Q") (Xk, Di) := lim (W) (X x5 U, D x1, U),
Ucs

where U ranges over the open subsets of S. This proves the lemma. ]
Proof of Lemma 7.7. We only prove the assertion for (7.14). The proof for (7.15) is similar. Put

Oor = Og, ®MPST ig’; )
where Og, and Og,, are from Lemma 2.8. By (2.16) and (2.17) and [RSY22, Theorem 5.20], we
have an isomorphism in PST:

aliswihg (Tan) = Q™. (7.16)
Let Ok = (P}(, oo) € MCork and Ogn i € MPST gk be defined as Ogn. We have isomorphisms
HomPSTK (Qn, Qm) >~ HomPSTK (W[hoik (EQTLJ{) N Qm)

~ Hommpst,, (Oor,x, WSl am)

~ Hompmpst (Oon, Homypsr (K, QCIQm)) , (7.17)
where the last isomorphism comes from Lemma 7.8. On the other hand, by (7.16) and Lemma 2.5,
we have Hom(Z,(U),Q2™) € RSCyjs for U € Sm. Hence, writing Spec(K) = m, U; with
U; € Sm, we have isomorphisms (see Conventions 1.5)

Hompgr (2", Q™) (K) = lim Hompst (Ui, Hompgrp (92", Q™))
~ lim Hompgt (Q", Hompgr (Us, Q™))
~ lim Hompgr (W[hoﬁ(ﬁgn), Hompgr(U;, ™))

~ Hommpst (Jon, w Hompgr (K, Q™)) . (7.18)
Hence Lemma 7.7 follows from Lemma 6.8 and the following claim. 0

CrAmM 7.9. The following diagram is commutative:

(7.17) _
Hompgr, (2", Q™) ——> Hompmpst (Oor, Homypgp (K, wCIQ™))

HK l (7.19)

(7.18) —
Hompg (92", ")(K) —— Hommpst (on, w© Hompgyr (K, Q™)) ,

where the right vertical map is induced by the map (6.21).

Proof. To show the above claim, write Agn = Al x (A1 — {0})” and Agn g = Agn ® K. Take
the standard coordinates y on A’ and (z1,...,2z,) on (A! — {0})" so that
Aon = Speckly,z1,...,xy) [xfl, e 1:;1] .

By the definition of Cgn, we have natural maps in MPST
Zix(Agn,0) — (P,200) @ (P1,0 + 00)®" — Ogn (7.20)
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which induces a map in PST

Aan: Zir(Agn) — wgn — Q" (7.21)
where the last map is induced by (7.16). Let
Xan it L (Agn i) — Q" (7.22)
be defined as (7.21) in which k is replaced by K. By the definitions of A\g,, and Ag, (cf.
Lemma 2.8) and (6.5), the map Aqn corresponds to
wp 1= ycfll ARERWAN CZ? € Q"(Aqn). (7.23)
The map (7.20) induces injective maps
Homypst (Jor, Homypgy (K,w'Q™)) < HY(Agn 1, Q™) (7.24)
Homympst (Jon, w Hompgr (K, Q™)) — H(Agn x, 0™) (7.25)

which are compatible with the right vertical map in (7.19) since applying w;, the map (6.21) is
identified with the identity on Hompgp (K, Q™) via the isomorphism in Lemma 2.3. Hence it
suffices to show the commutativity of the diagram

HomPSTK (Qn, Qm) Oé*> HO(AQnJ(, Qm) y

iw / (7.26)

Hompgr (2", Q2™)(K)

where « (respectively, 3) is the composite of (7.17) and (7.24) (respectively, (7.18) and (7.25)).
By definition, « is induced by the map Agn g from (7.22). As Agn ¢ is given by the image wp
of wy from (7.23) under the pullback map
p: Q" (Agn) = Q"(Aqn k),
we have
a(p) = PAgn i (Wox) for ¢ € Hompsr, (2", Q")
where
PAgn i+ V' (Agn k) = Q" (Agn k)
is induced by ¢. On the other hand, by the definition of 5, we have a commutative diagram

~

HO(Agn i, Q™) Hompgt(Aqgn, Hompgp (K, Q™))

! E

Hompgp (92", 2™)(K) —— Hompgt (", Hompgy (K, Q™))

where A, is induced by Ag» from (7.21). Hence we have

B(¥) = tagn(wo) for ¢ € Hompgp(Q2*, Q) (K),
where
YAgn : V" (Agr) = Hompgp (K, Q7)(Aqn) = Q" (A k)
is induced by 1. Then, for ¢ € Hompgr, (2", Q™), we get

B(ri(#)) = 1K(P)Agn (W0) = PAgn ; (P*W0) = PAgn x (Wo,.i) = alp),
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which proves the commutativity of (7.26). This concludes the proof of Claim 7.9, and hence of
Lemma 7.7 and therefore also that of Theorem 7.1. O
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