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Tracer particle motion driven by
vortex formation in the bottom
boundary layer underneath
internal solitary waves

Thea Josefine Ellevold*, John Grue and Joakim Soløy Sletten

Department of Mathematics, University of Oslo, Oslo, Norway
Internal solitary waves (ISWs) of large amplitude moving in the coastal ocean

induce sizeable horizontal velocities above the sea bed. In turn, these give rise to

instability and vortex formation in the bottom boundary layer (BBL), and sediment

resuspension and concentration maintenance in the water column. We present

two-dimensional laminar simulations in a numerical tank suitable for internal

wave motion, including the processes of the BBL. The combined wave and

vorticity field encounters a cloud of tracer particles near the bottom. The tracer

particles are moved vertically because of the vorticity field during a first

encounter. The reflected wave intercepts a second time with the tracer

particles, which are then moved further vertically. Numerical experiments with

a kinematic viscosity of 1/100 cm2 s−1 or 1/1000 cm2 s-1 are used to manipulate

the scale of the Reynolds number at a moderate and great laboratory scale. The

final vertical position of the tracer particles is found below a vertical level of

approximately 0.23 times the water depth (H) after the second passage. The

result is independent of the scale. This vertical position matches available field

measurements of a summer benthic nepheloid layer reaching a height of 0.19H.

The laminar model predictions compare very well to the ISW-driven vortex

formation measured in a three-dimensional laboratory wave tank. Convergence

of the calculated vortex formation is documented.

KEYWORDS

internal waves, vortex formation, Lagrangian tracer particle trajectories, probability
distribution, upscaling to field dimension
1 Introduction

Internal solitary waves (ISWs) are commonly observed in the coastal ocean and are

generally driven by the wind or the tide (Helfrich andMelville, 2006). The ISWs are driven by

the acceleration of gravity (g = 9:81 m s−2) and may move along the pycnocline of the ocean

located at a middle depth d, which is small compared to the local water depthH, implying the

dimensionless ratio d=H. The density jump across the pycnocline (Dr) relative to the density
of the water below the pycnocline (r3) is typically small, with a dimensionless value of Dr
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=r3 ≪ 1. In practice, Dr=r3 is 1=1000. The wave motion and the

velocity field are functions of the wave amplitude a, obtaining another

dimensionless variable a=H. The wave-driven velocities scale

according to a reference velocity c0. This is proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dgDr=r3

p
times a function of d=H. As regards the bottom

boundary layer effect, it is commonly characterized by the Reynolds

number based on the total water depth, the wave speed c0, and the

kinematic viscosity n , obtaining Rew = c0H=n .
ISWs are often highly nonlinear. The theories, like weakly

nonlinear Korteweg–de Vries (KdV) -type theories, have played a

primary role in explaining the essential features of the observed

wave, even though those theories do not always provide accurate

quantitative details. Grue et al. (1999) conducted laboratory

experiments of solitary waves propagating in a two-layer fluid.

They compared the weakly nonlinear KdV theory and a fully

nonlinear interface model towards the experimental results.

Having a small amplitude, both theory and model compared

excellently. However, above a certain amplitude threshold, the

weakly nonlinear theory exhibits systematic deviation from the

experiments where the fully nonlinear model still compared

excellently for all quantities measured.

Above the pycnocline, the velocities have a dominant horizontal

component, a substantial fraction of the wave propagation velocity.

Below the pycnocline, the horizontal velocity is opposite of the wave

propagation and is also a substantial fraction of the wave propagation

speed. The vertically integrated horizontal velocity is zero and satisfies

the mass balance. There are also vertical velocities. These are

proportional to the horizontal gradient of the displaced pycnocline

along the wave propagation times the wave speed.

The wave-induced boundary layer underneath an ISW of

depression separates in the adverse pressure gradient region behind

the trough. Strong enough instability may give rise to the spontaneous

onset of vortex shedding (e.g., Diamessis and Redekopp, 2006; Carr

et al., 2008; Aghsaee et al., 2012; Sakai et al., 2020). The vortex

structures are formed behind the wave trough, ascend vertically into

the water column, and then propagate downstream in the same

direction as the mother wave but with a much slower speed (Carr

et al., 2008). The instabilities in the bottom boundary layer may

contribute to the resuspension of particles due to, e.g., substantial

variation of the shear stress (e.g., Bogucki and Redekopp, 1999;

Boegman and Stastna, 2019). The ability of nonlinear internal waves

to move sediments on the bottom vertically in the water column has

been observed by Bogucki et al. (1997), and has been further studied

model-wise by, e.g., Bogucki and Redekopp (1999), and in field

observations, e.g., Bourgault et al. (2007); Quaresma et al. (2007);

Zulberti et al. (2020), see also the review by Boegman and

Stastna (2019).

Large eddy simulations (LES) in three dimensions (3D) of the

ISW-driven separated boundary layer and its development were carried

out by Sakai et al. (2020) for a Reynolds number similar to our

(Rew = 1:6 · 105). A strong wave of a=H = 0:35 was moving on a

counter-current of the same magnitude as the wave propagation speed,

implying that the excitation is stronger than in our cases. The LES

computations were compared to two-dimensional direct numerical

simulations finding that the vortex generation was essential two-

dimensional down to a distance of six water depths behind the wave
Frontiers in Marine Science 02
trough. Further downstream, vortex breakup and degeneration into

turbulent clouds, and relaxation to a spatially developing turbulent

boundary layer were found to take place.

In this research, we investigate the ISW-driven vortex formation

and tracer particle displacements in the bottom boundary layer. We

conduct laminar two-dimensional numerical simulations of a set of

laboratory experiments by Carr et al. (2008) where this kind of physical

effect has been measured. Several questions are addressed, including:
1. As regards the two-dimensional laminar method: How well

can the model reproduce the laboratory measurements

conducted in a three-dimensional (3D) wave tank? In

particular, how well can the model calculations reproduce

the measured vortices at the bottom behind the wave?

2. As regards accuracy: How close are prediction and

measurement?

3. As regards flow and motion properties: How can the model

be used to evaluate quantities which have not been

measured in the laboratory?

4. As regards the tracer particle motion: The wave- and

boundary-layer-induced tracer particle motion is of

interest to study and visualize. This motion was not

measured in the laboratory experiments, even though the

experimental visual tracking method is based on neutrally

buoyant tracer particles added to the fluid.

5. As regards the vertical tracer particle displacements: In the

shallow ocean, the particles at the sea bed contain organic

matter that is important to the marine production taking

place in the euphotic zone in the upper part of the water

column. By the present model calculations, we investigate

how high up in the water column the tracer particles may

be transported. The wave may intercept a cloud of tracer

particles once and twice.

6. Finally, we compare the simulated results with available

field observations.
In section 2, we present the numerical wave tank, wave

generation, wave characteristics, and the Stokes boundary layer

thickness. Further, details of the two-dimensional numerical solver

are described. The grid resolution and information regarding the

Lagrangian tracer particles used in this study are provided. Section 3

presents the obtained results, including answers to the research

questions posed. In section 3.1, similarities between the vortex

formation in simulation and experiment at Rew = 5:9 · 104 are

presented. A convergence study of the calculated vortex

separation distance and the vortex strength is performed. In

section 3.2, we present the Lagrangian tracer particle

displacements and paths. The vertical tracer particle distribution

is calculated. The results are briefly compared to available field

measurements in section 3.3, and conclusions are given in section 4.
2 Method

This article presents numerical simulations of non-linear

internal solitary waves (ISWs) of large amplitude, as visualized in
frontiersin.org
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Figure 1B, where the wave travels from left to right with a speed c.

The wave-induced velocity field beneath the wave interacts with the

bottom, initiating instabilities in the viscous bottom boundary layer

(BBL) (e.g., Carr and Davies, 2006; Diamessis and Redekopp, 2006;

Aghsaee et al., 2012; Sakai et al., 2020). Tracer particles are

implemented close to the bottom in order to investigate their

motion in the fluid induced by the wave (Boegman and

Stastna, 2019).
2.1 The numerical wave tank

We are following the same setup of the wave tank and the wave

generation procedure as conducted in the laboratory experiments

by Carr et al. (2008). The numerical wave tank is filled with a

stratified fluid. The upper layer has a depth of h1 and a density of r1.
The pycnocline has a thickness of h2 and density r(z), which varies

as a linear function of z. The lower layer has thickness h3 and

density r3. The density is continuous throughout the vertical. The

total water depth is H = h1 + h2 + h3. Figure 1A is a sketch of the

wave tank. The amplitude a is defined as the maximum excursion of

the isoline separating layers two and three. The middle depth of the

pycnocline is defined by d = h1 + h2=2. In the present investigation,

two different stratifications are studied, where stratification one,

denoted by Strat. 1, has d=H = 0:16, and stratification two,denoted

by Strat. 2, has d=H = 0:21. These two stratifications correspond to

two of the pycnocline depths studied by Carr et al. (2008). In

present calculations, the thickness of the pycnocline is h2 ∼
0:12H − 0:14H, and the wave amplitude a=d ∼ 1:45 − 1:87.

The physical dimensions of the 2D numerical wave tank are the

same as those used in the laboratory setup by Carr et al. (2008). The
Frontiers in Marine Science 03
length L = 6:4 m and depth H = 0:38 m provide a non-dimensional

length of L=H = 16:84.
2.2 Generation and wave characteristics

To generate ISWs in the tank (physical or numerical), the

trapped volume method is applied where a large volume V , given

by (x0 � (d0 − h1)) of density r1, is added behind a gate. The gate is

located at a distance of Dx0 = 0:6 m from the left tank wall. Its

horizontal position defines x = 0, where the horizontal x-axis is

along the bottom. The total volume can be modified by varying the

depth d0, generating ISWs with different amplitudes, by releasing

the volume. In the laboratory, the gate is removed by quickly lifting

it upwards. In the numerical simulations, the gate is imposed

beforetime zero, and after time zero, we assume it is

instantaneously removed. A leading wave of mode 1 is generated

in each experiment (physical or numerical).

The wave frequency is defined by ~w = c0=Lw, where c0 is the

linear long wave speed given by the two-layer approximation

c0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g(h3 + h2=2)(h1 + h2=2)(r3 − r1)
r1(h3 + h2=2) + r3(h1 + h2=2)

s
≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 0d(H − d)

H

r
, (1)

where g 0 = g(r3 − r1)=r3 and Dr=r3 ≪ 1. The wavelength of

the ISW is defined by

Lw =
1
a

Z ∞

−∞
h(x)dx, (2)

where h denotes the vertical displacement of the isoline

separating layers two and three, and the amplitude a is

defined above.
B

A

FIGURE 1

(A) Sketch of the wave tank. (B) Vorticity field w/(c0/H) (color scale, black contour lines of w) due to ISW travelling to the right at tc0/H = 6.4 with
a/H = 0.30 and Rew = 5.9 · 104.
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The Reynolds number based on the water depth, alternatively

denoted the wave Reynolds number, is a helpful quantity used by a

group of researchers studying the combined wave and boundary

layer effects (e.g., Diamessis and Redekopp, 2006; Carr et al., 2008;

Aghsaee et al., 2012; Sakai et al., 2020). The quantity is defined by

Rew = c0H=n where n is the kinematic viscosity of the water. In the

laboratory experiments by Carr et al. (2008), the Rew was

approximately 60 000. In the field scale, Rew is 108 (e.g., Zulberti

et al., 2020). The present calculations are carried out with Rew
between 60 000 and 600 000. The calculations at Rew =  60 000 are

carried out with n = 1=100 cm2 s−1 for fresh water at 20 °C. In the

calculations at Rew =  600 000, the n is manipulated with a value put

to n = 1=1000 cm2 s−1. Alternatively, the water depth may be

increased to ~H = 102=3H, ec0 = 101=3c0, and n = 1=100 cm2 s−1

producing Rew =  600 000. Additionally, we define a boundary

layer Reynolds number, Red = dU∞,0=n, where U∞,0 is the free

stream horizontal velocity underneath the wave trough, right above

the bottom, and d is the boundary layer thickness, defined in section

2.3 below.

The wave travels along the pycnocline from left to right. The

nonlinear celerity is c = Dx=Dt. There is no background current. A

snapshot of an ISW at time tc0=H = 6:4 is visualized by its

nondimensional vorticity field in Figure 1B (corresponding to run

1 in Table 1). The simulation is run with a kinematic viscosity of

n = 1=100 cm2 s−1. The wave drives the instability and vortex

formation in the BBL, in addition to the shear instability in the

pycnocline (e.g., Fructus et al., 2009; Lamb, 2014). As the volume is

released, a local mixing of the fluid taking place across the gate

position is confined to a small volume (physical or numerical). This

is set into horizontal motion along the pycnocline, generating a

short and slower wave of mode 2, observed at approximately nine

water depths behind the main wave. Such a wave is measured by

Sveen et al. (2002), their Figure 17 and more recently studied by

Carr et al. (2019).

The ISW propagating at small speed c, proportional to (Dr=r3)1=2,
implies that the effect on the free surface elevation is small. The vertical

velocity is approximately zero at the free surface. The small free surface

elevation may be calculated a posteriori from the Bernoulli equation

giving h = (1=2g)(c2 − u2), where u is the horizontal speed driven by

the ISW at the free surface (e.g., Fructus and Grue, 2004). On the

laboratory scale, the wave speed is 0:26 m s−1, u=c <≪ 1 for the waves

of large amplitude (and the wavelength is approximately 1 m). This

obtains a surface elevation of 0:3 cm while the internal wave amplitude

is 11 cm. Corresponding estimates of ISWs in the coastal ocean are:

wave speed of 0:5 m s−1, a surface elevation of 1 cm, while the internal
Frontiers in Marine Science 04
wave amplitude is typically 30 m. The internal waves are 500 m to 1000

m long.
2.3 Boundary layer thickness

The Stokes boundary layer thickness at the bottom beneath the

wave phase is characterized by d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2n=~w)

p
, where ~w is defined in

§ 2.2.
2.4 Finite volume solver

We present numerical simulations of ISWs, utilizing the open-

source software Basilisk (Popinet and collaborators, 2013–2023).

The important part of the calculation is to resolve the wave-driven

viscous boundary layer effect at the bottom of the fluid domain.

Basilisk is a second-order finite volume solver, where the two-phase

incompressible Navier-Stokes equations are solved and is the

successor of Gerris (Popinet, 2003; Popinet, 2009). Basilisk

provides ready-to-use finite volume solvers for fluid dynamics

and has been widely used in calculations and simulations of

several problems, i.e., tsunamies (e.g., Popinet, 2015), shallow

water, wave breaking and surface flows (e.g., Popinet, 2011;

Mostert and Deike, 2020; Popinet, 2020), incompressible two-

phase flow (e.g., López-Herrera et al., 2019), and atmospheric

turbulent boundary layer (e.g., van Hooft et al., 2018).

In this two-dimensional (2D) study, the incompressible, non-

hydrostatic equations in a Cartesian reference frame become,

∂ u
∂ t

+ (u ·∇)u = −
1
r
∇ p + n∇2 u + ra, (3)

∂ r
∂ t

+∇ · (ru) = 0, (4)

∇ ·u = 0, (5)

where r, u = (u,w), p and n are the density, velocity vector,

pressure and kinematic viscosity, respectively. The vector a = −gk =

g(0,−1), where g is the acceleration due to gravity. Further, t is time,

and (x, z) are the (horizontal, vertical) coordinates. The Navier-

Stokes equations determine the pressure and the velocity field

driven by the wave where mass conservation is included,

additionally to set the effect of viscosity in the viscous boundary

layer at the bottom.
TABLE 1 Layer depths, stratification (Strat.), calculated amplitude a, numerical values for U∞,0=c0, d , Red , Rew, and xp=H.

Run h3/h2/h1 (m) Strat. a/H U∞,0/c0 d · 10-3 (m) Red Rew xp/H

1 0.293/0.052/0.035 1 0.300 0.863 3.68 490 5.9 104 7.42

3 0.280/0.047/0.055 2 0.300 0.833 4.44 631 6.5 104 7.43

2 0.293/0.052/0.0235 1 0.297 0.858 1.22 1620 5.9 105 7.42

4 0.280/0.047/0.055 2 0.301 0.835 1.46 2080 6.5 105 7.43
frontie
Resolution N = 12,N+ = 14 for Run 1 and 3, and N = 11,N+ = 16 for Run 2 and 4.
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The field equations are solved by means of a multilevel Poisson

solver. The Bell-Colella-Glaz (Bell et al., 1989) advection scheme

integrates the momentum equation. The viscous terms are treated

implicitly. The solver employs a geometric volume of fluid method

(VOF) to reconstruct the interfaces by the continuous change of the

fluid properties; density and viscosity. The cells that include an

interface are treated by introducing the volume fraction of the two

fluids, f (x, z, t). The implementation of the numerical scheme is

briefly described below. The time integration (supplied in Appendix

A.1) adheres to the standard Basilisk setup, with a slight

modification where the dynamic viscosity is harmonically

averaged. For more details, see the Basilisk web page (basilisk.fr),

Popinet (2003); Popinet (2009), and references therein.
2.5 The domain

By default, Basilisk defines a computational domain with sides L.

Our numerical wave tank is defined as a part of this spatial domain,

with horizontal length L and vertical heightH ( < L). At z = H (z = 0

at the tank bottom, see Figure 1A), a rigid lid is placed, implying no

motion in the domain z > H. The effect of viscosity is taken into

accountwithin the fluid and at the bottom.Thismeans that the no-slip

condition is applied at the lower boundary. Free-slip conditions are

used at the upper boundary, vertical end walls, and gate. The depth

provides the physical length scale in the calculations. The time and

velocity scales are
ffiffiffiffiffiffiffiffiffi
H=g

p
and

ffiffiffiffiffiffi
gH

p
, respectively.
2.6 Discretization and grid resolution

The discretization of the computational domain utilizes a quad-tree

scheme (Popinet, 2003; van Hooft et al., 2018) where the user can

choose to run the scheme with either a non-adaptive mesh or an

adaptive mesh, further referred to as “refine” and “adapt”, respectively.

The size of a cell is characterized by its level N where it is

located. The cells are square finite volume cells, providing equal

subdivisions vertically and horizontally, creating DN = Dx = Dz .

Hence, the grid size of the cell at a given level is DN = L=2N .

The grid resolution is discussed relative to the boundary layer

thickness, i.e., DN=d . A fine discretization with DN+
= L=2N+ is

developed near the bottom for 0 < z < 0:015H, where the finest

resolution becomes DN+
= d = 0:022 (run 3, Table 1). Hence, N+ > N

. This is to ensure grid independence of the results.

Adaptive meshing is widely used and is known to significantly

reduce the computation cost. We will utilize adapting meshing

when exploring convergence properties of our numerical scheme.

When the mesh is adapted, the refinement criterion is based on the

discretization error of the velocities u and w, and the criterion for

refinement of the volume fraction f is based upon a wavelet

algorithm. The threshold values are set to ϵthu = ϵthw = 3� 10−4 and

ϵthf = 3� 10−2. Further details are provided in the Appendix A.2.

van Hooft et al. (2018), their Figure 8, have compared the

numerical dissipation in the “refine” and “adapt” versions of

Basilisk, finding that small discrepancies on the order of 5% were

present between the runs with the fixed uniform grid and the
Frontiers in Marine Science 05
adaptive grid, where this discrepancy decreased with increasing

refinement. Numerical tests diagnosed with a lower dissipation rate

were associated with lower kinetic energy, indicating that a small

part of the dissipation was of numerical/non-physical origin.

The advantage of the Basilisk framework is that it includes

OpenMP/MPI parallelism capability. The simulations were run in

parallel using shared memory (OpenMP), and the computations

were performed on the Norwegian Research and Education

Cloud (NREC).
2.7 Lagrangian tracer particles

Tracking of Lagrangian tracer particles is performed using a

two-stage Runge-Kutta (RK2) scheme. The seeded neutrally

buoyant tracer particles are purely Lagrangian tracers, and their

settling velocity, added mass, history effects, etc., are ignored

(Necker et al., 2005; Stastna and Lamb, 2008).

The tracer particles are seeded close to the bottom in a two-

dimensional rectangular grid. More precisely, 160� 160 tracer

particles are equally distributed horizontally between xp −H < x <

xp +H and vertically between z1 < zp < z2 before time zero. Table 1

provides the xp=H values. The tracer particle positions are

presented relative to the total water depth H and the boundary

layer’s height d (§2.3). The vertical extent is zp=H ∼ 0:0037 −

0:0283.

However, the boundary layer thickness, d , is a better vertical

scale of the tracer particle vertical motion, providing vertical

extension between 0:31 < zp=d < 2:93 for Rew = 5:9 · 104 and 6:5 ·

104, and 0:96 < zp=d < 8:82 for Rew = 5:9 · 105 and 6:5 · 105.

The tracer particles displacement rp = (xp, zp) and the path

driven by the wave-induced instabilities are calculated by

integrating:

dxp
dt

= u(xp, zp, t), (6)

dzp
dt

= w(xp, zp, t), (7)

obtaining

xp = xp,0 +
Z t

t0
u(xp, zp, t)dt, (8)

zp = zp,0 +
Z t

t0
w(xp, zp, t)dt : (9)

The RK2 scheme employs

rp,n+1 = rp,n + Dt(b1k1 + b2k2), (10)

k1 = u(rp,n, tn), (11)

k2 = u(rp,n + c2k1, tn + Dta), (12)
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where c2 = a , b1 = 1 − 1
2a and b2 =

1
2a , and b1 + b2 = 1, b2c2 =

1=2, and b2a = 1=2 (Sanderse and Veldman, 2019). The tracer

particles paths are visualized both in a fixed frame of reference and a

frame of reference following the wave.
3 Results

3.1 Vortex formation

3.1.1 Simulation of the laboratory experiments by
Carr et al.

In this section, a numerical simulation of the wave-induced

instability is presented. We simulate one of the laboratory

experiments by Carr et al. (2008), their experiment dated 080207,

and directly compare our results. The parameters of the numerical

simulation corresponding to the experiment are provided in

Table 1, denoted by Run 1. In the table, a=H is the non-

dimensionalized amplitude and is similar in the computation and

experiment (as a=H = 0:30).

The created wave, numerically and physically, is strong enough

to induce instability and vortices. Figure 2A shows the instability

and vortex ejection from the boundary layer due to the wave

illustrated in Figure 1B. The horizontal axis is (x − xtrough)=H,

where xtrough denotes the position of the wave trough. The

instability grows exponentially between (x − xtrough)=H = −1:7 and

− 2:5, whereafter the vortices are formed. The series of vortex rolls

in the instability growth area have a shorter separation length than

the vortices found further downstream. The vortex formation goes

on continuously, producing the vortex wake. Specifically, we

compare to the experiment in which Carr et al. (2008) presented

the vertical velocity corresponding to the vortices, their Figure 13,

reproduced here in Figure 2C.

The separation distance lv between the vortices located in the

vortex wake is set to be the center-to-center distance between the

vortices. The computational result (Figure 2B) shows five vortices,

the same number as in the experiment for the similar horizontal

extension (Figure 2C). In the experiment, the separation distance

between the vortices is between 0:069H and 0:122H, with an

average of lv ∼ 0:103H. The similar average distance in the

computation is lv ∼ 0:103H, which is exactly the same result.

The maximum vertical extent of the vortices was 8:7% of the

water depth in the laboratory and 6:6% in the simulation. The

results in Figure 2 were simulated with N = 12 and N+ = 14, see

section 2.6.

3.1.2 Convergence of the separation distance,
vorticity, amplitude and wave speed

We now discuss research question two of the introduction: how

close are prediction and measurement?

Two different numerical representations are included in

Basilisk, as described in section 3.6. Calculations using both

representations are presented.

The resolution level is in the range of N = 10 − 12. When

running with “refine”, there is no additional refinement close to
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the bottom. The minimum and maximum refinement levels in

“adapt” are set to Nmin = N − 1 and Nmax = N .

Each simulation was performed ten times with the same settings

and executed with and without parallelization. The average values

and standard deviations of the variables: distance, vorticity,

amplitude, and speed were calculated over the ten runs with the

same settings. Hence, a total of 120 simulations were run.

The vortices measured in Carr et al. (2008) (Figure 2C) exhibit

an individual distance that slightly varies. Figure 3 illustrates the

respective computational distance, calculated over the same area,

further referred to as the local area, as a function of the resolution

level N . The distance is further explored over a broader range in the

wave tank where − 13:3 < (x − xtrough)=H < −4:3 (results are not

shown). The simulations converge for increasing resolution level. A

small anomaly forN = 12 “adapt” in the result presented in Figure 3

is observed. However, if we increase the respective local area three

times, its average distance reduces from 0:134H to 0:108H (marked

by a green circle in the figure). When simulating with the lowest

resolution, the vortex formation formed is the main difference

between “refine” and “adapt”. However, this discrepancy

decreases with increasing resolution. For our purposes, the

advantages of utilizing “adapt” instead of “refine” are minor.

An additional convergence check is conducted where the results

are analyzed after a downscaling of the resolution in the post-

processing procedure. Hence, the simulations are executed with

“refine” and N = 11 and 12. In the post-processing procedure, the

simulations conducted with N = 11 are downscaled to level N = 10,

and the simulations performed with N = 12 are downscaled to level

N = 11. The results are plotted in Figures 3, 4C with black ∗ and are
marked with an asterisk in the figure legend.

The measured average amplitude a and wave speed c are

visualized in Figures 4A, B, respectively. The amplitude in the

simulation is ∼ 3:3% higher than the amplitude measured in the

laboratory experiments by Carr et al. (2008). The average wave

speed in the computations converges to 0:262 m s−1, corresponding

to the upper limit of the wave speed measured in the laboratory of

0:242 ± 0:022 m s−1.

The vorticity in the numerical simulations is obtained by

evaluating the circulation integral in each grid cell, divided by the

area A enclosed by the integration contour obtaining w(x, z) =
½∮ (u,w) · dl=A. Here dl is the vector length along the side of the

grid cell. An average of the non-dimensional maximum vorticity

w∗ = �wmax=(c0=H) is calculated over the vortices located in the local

area and in the global area − 13:3 < (x − xtrough)=H < −4:3. The

results of averaging over the broader range are illustrated in

Figure 4C. The respective standard deviation of w∗ is found to be

1% (N = 10, 11), “refine” and “adapt”, 2% (N = 12), “refine”, and

3% (N = 12), “adapt”.
3.1.3 Proximity between prediction
and measurement

The comparison between the computations and the laboratory

experiments by Carr et al. (2008), presented in § 3.1.1, is also

included in Figure 3. The simulation conducted with N = 12,N+ =

14 is marked in the figure by 14+.
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This subsection illustrates that the model very well reproduces

the laboratory experiment in the 3D wave tank by Carr et al. (2008).

The predictions and measurements are very close. Moreover, the 2D

laminar calculations illustrate that the dominant processes in the

laboratory experiments are dominated by 2D processes. The

processes investigated by Carr et al. (2008) are indeed dominated

by two-dimensionality. This correspondence lasts up to a distance

of eight water depths behind the wave trough.
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The computations in this section illustrate the convergence of

the method where the vorticity and the distance between the

vortices are evaluated. The computed and measured averaged

separation distance at 7:8 ± 0:2 water depths behind the trough

correspond. The vorticity strength is computed, where this motion

property was not measured in the laboratory. The calculated

amplitude and wave speed were both converged. These findings

respond to research points 1 − 3 of the introduction.
B

C

A

FIGURE 2

(A) Vorticity field w/(c0/H) (color scale, black contour lines of w) vs. horizontal position. (B) w/(c0/H) with horizontal position x*/H = ct/H + constant
corresponding to the measurement area in c). (C) Image: Reprinted from Carr et al., (2008), with the permission of AIP Publishing. Vortices displayed by
their vertical velocity at time tc0/H = 6.4.
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3.2 Tracer particles

3.2.1 Trajectories
As seen in section 3.1.1, the wave-induced velocity field

interacts with the bottom, and vortices are being ejected from the

bottom boundary layer (BBL). In this section we explore how the

wave-induced velocity field moves a cloud of tracer particles,

initially found in the BBL, upstream of the ISW. The tracer

particles are located approximately between x=H = 6:4 and 8:4

before time zero, and the simulations are conducted with wave

Reynolds number in the range Rew ∼ 5:9 · 104 − 6:5 · 105 (Table 1).

In our numerical simulations, we can only generate one wave

and not a train of waves as may be observed in the coastal ocean

(e.g., Quaresma et al., 2007; Zulberti et al., 2020). We let the wave

intercept the tracer particle cloud twice, first during the propagation

along the undisturbed fluid and second as a reflected wave from the

right end of the tank. When the wave becomes a reflected wave, the

horizontal velocity changes the sign, while the vertical velocity

maintains the sign. During wave passage one, the time runs from

0 to tc0=H ≃ 19:6 and 21:0 for Strat.1 and Strat.2, respectively, and

is defined as the transit until the wave encounters the right end wall.

Then the wave passage two stage starts and endures until tc0=H ≃
40:7 and 44:7 for Strat.1 and Strat.2, respectively.

The wave propagating from left to right induces a velocity of the

lower fluid layer in the opposite direction of the wave propagation,

pushing the fluid backward. The vertical velocity in the forward part of

the wave is also negative, pushing the fluid downward. When the wave

encounters the cloud of tracer particles, the tracer particles are first

driven backward, approximately a horizontal distance of 1H for Strat. 1

(visualized in in Figures 5, 6) and 1:5H for Strat. 2 (results are not

shown). The figures display the traces of 12 random tracer particles out

of the 25 600 tracer particles implemented. The colors are constant

according to the vertical position of tracer particles before time zero.

The trajectory of the tracer particles has the same shape as the

wave displacement before the vortices intercept the tracer particles’

movement. The tracer particles are then displaced vertically. The

vortices intercept the cloud of the leftmost tracer particles when the

wave trough is at approximately xtrough=H ≃ 7:7 when Rew =

5:9 · 104, see Figures 5A, B. The integration illustrates how the

displacements and paths depend on the location of the tracer

particle before time zero.
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Figures 5B, D illustrate the trajectories in a reference frame that

follows the wave. The time period illustrated lies between ct=H = −10

to − 69. In the figures, the black vertical line indicates when the wave

trough is at xtrough=H = 7:6. The solid red line is a time tc0=H = 6:4

later and shows the position xtrough=H at this time. The dashed red line

indicates xtrough=H when the wave begins its encounter with the wall.

The trajectories at the beginning are almost horizontal, with

some small fluctuations. The vortices behind the trough intercept

the tracer particles, where the tracers acquire an oscillatory behavior

of a range of wavelengths. They are in the range from 0:3H (Run 4)

up to 16H (Run 1). The shortest wavelengths are in the same order

of magnitude as the separation distance of the vortices generated

behind the trough when the instability saturates. Run 4 exhibits very

short wavelengths and a wavelength of 10H.

The wave propagates to the end of the tank and returns. The

wave intercepts again with the group of tracer particles, visualized in

Figures 5, 6, plots C and D. During the second passage, the tracer

particles are moved further upward. The vertical position, relative to

the boundary layer d , depends on the Reynolds number. In

Figure 6C, the uppermost position after wave passage one is z=d ≃
13 and z=d ≃ 55 after wave passage two.

Figures 7 and 8 show paths due to 128 tracer particles. Plots A

and C display that the downstream vortices transport the tracer

particles upwards and out of the boundary layer. In plots b and d,

the second wave encounter and its induced instabilities move the

tracer particles even higher.
3.2.2 Displacements
The terminal position of a number of 25 600 particles are then

discussed (Figure 9). The 50th (median) and 90th percentile of the

vertical tracer particle position are evaluated. For the 90th

percentile, the vertical height increases by a factor of three

between passage one and passage two. The vertical displacement

of the 50th percentile is similar, although there are some large

variations at the moderate Rew (Table 2). For the same percentile,

the height relative to d increases by a factor of 2:4, approximately,

when the wave Reynolds number increases by a factor of 10. The

horizontal position of the tracer particle cloud is negative during

the first passage and positive during the second passage due to the

reflected wave. The net horizontal displacement of the tracer
FIGURE 3

Vortex separation distance (dist.) over the local area versus the resolution level N. The result from the simulation with N = 12, N+ = 14 is marked by
N = 14+. The black line corresponds to the experimental average local distance. The grey-shaded area corresponds to the measured individual
separation distance in Figure 2C. Simulations without parallelization: refine ◯, refine∗∗, adapt ♦ and adapt∗∗ ◯.Simulations with parallelization: refine
△ and adapt □.
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particle cloud is approximately zero. The red lines in the figure

indicate the tracer particles’ left and right most horizontal seeded

position before time zero.

The probability density function (PDF) of the tracer particles’

vertical position as a function of time is illustrated in Figure 10. The

black line indicates the initial uppermost vertical position of the

tracer particles. The blue line indicates the tracer particle

distribution after wave passage one. The red line provides the
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tracer particle distribution when the wave has intercepted the

cloud of tracer particles for the second time. After passage one,

tracer particle distribution is below 20d , and after passage two,

below 65d for the large Rew ∼ 5:9 − 6:5 · 105. The similar numbers

for the smaller Rew ∼ 5:9 − 6:5 · 104 are 10d and 25d , respectively.
The results imply that the particles are found below a vertical

level of approximately 0:23H after the second passage for both

Reynolds numbers.
B

C

A

FIGURE 4

(A) Wave amplitude a/H, (B) speed c/c0 and (C) maximum vorticity w∗ = �wmax=(c0=H) versus resolution level N. Simulations without parallelization:
refine ◯, refine∗ ∗, and adapt ♦. Simulations with parallelization: refine △ and adapt □.
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3.3 Comparison to field measurements

Quaresma et al. (2007) conducted a field study of internal waves

propagating over the northern shelf of Portugal over a canyon

head. The local water depth was measured to be ∼ 80 m with a

middle depth of the pycnocline of d=H = 0:19. The wave

amplitudes were in the range a=H = 0:13 − 0:38. The measured

local sediment concentration mainly consists of sandy sediments

( ∼ 93%) of a settling velocity of 2 cm s−1. The remaining

sediments, silt and clay components with diameters in the
Frontiers in Marine Science 10
range ∼ 1 − 20 mm were found to remain suspended. Their

measurements showed that only the strongest waves were

capable of suspending the sediments, contributing to a summer

bottom nepheloid layer (BNL) of 10 − 15 m thickness,

corresponding to 0:13 − 0:19H.

We note that the vertical height of the tracer particles after wave

passage two was found to be approximately 0:23H in our numerical

computations and was insensitive to the Rew. This tracer particle

height is in correspondence with the height of the BNL measured by

Quaresma et al. (2007).
B

C

D

A

FIGURE 5

Tracer particle trajectories for Rew = 5.9 · 104. (A, C) Fixed frame of reference. (B, D) Frame of reference following the wave. In (A, B) wave passage
one, tc0/H = 0 − 19.6. In (C, D) wave passage two, tc0/H = 0 − 40.7.
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Quaresma et al. (2007) also measured a strong local sediment

concentration up to a height of 0:56H below the leading wave. Our

present computation does not exhibit such an effect.

Zulberti et al. (2020) conducted field observations of nonlinear

internal waves over a low-gradient topography on Australia’s

Northwest Shelf. They observed that large-amplitude internal

waves of depression greatly enhanced the sediment transport.
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From sediment grab samples, they deduced that the bed sediment

was of typical silt. The settling velocity of silt particles of density

rs = 1350 kg m−3 and diameter of 30 mm, may be calculated to be

U = 0:014 cm s−1. They measured sediment resuspension to exceed

20 m (0:08H) beneath the leading wave of amplitude a=H = 0:3.

However, they measured a density gradient at this level, limiting the

advancement of bottom sediments. A direct correspondence
B

C

D

A

FIGURE 6

Same as Figure 3 (A–D) but with Rew = 5.9 · 105.
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between the measurements and the present computations are not

realistic because we have not included a weak stratification layer at

the bottom. One of the factors driving the resuspension mechanism

in the measurement of Zulberti et al. (2020), was a vertical pumping

mechanism associated with the compression underneath the wave
Frontiers in Marine Science 12
trough followed by a subsequent expansion of the mixing-layer at

the bottom. This effect is included in our simulations, however.

Finally, the subjects discussed in these result sections 3.2 and 3.3

include the tracer particles, the vertical tracer particle displacement

during the wave encounters, as well as comparison to observations
B

C

D

A

FIGURE 7

Tracer particle trajectories of 128 particles. (A) Rew = 5.9 · 104. Wave passage one, tc0/H = 0 − 19.6. (B) Rew = 5.9 · 104. Wave passage two, tc0/H =
0 − 40.7. (C) Rew = 6.5 · 104. Wave passage one, tc0/H = 0 − 21.0. (D) Rew = 6.5 · 104. Wave passage two, tc0/H = 0 − 44.7.
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in the field, and response to the research subject 4, 5, and 6 as

presented in the introduction.
4 Conclusions

By a 2D laminar method, the vortex formation and the tracer

particle motion in the bottom boundary layer of the water column

of a fluid layer, driven by large internal solitary waves of depression,

are calculated. The motion in a numerical wave tank for internal
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waves is simulated. Comparison is made to a set of available

laboratory observations, and a very good match between the

model and the laboratory measurements is found. Convergence of

the numerical calculation of the vortex formation is documented.

A cloud of tracer particles in the bottom boundary layer obtains

vertical displacements because of the wave-driven vortices. The

paths exhibit the following properties: when the wave approaches

the tracer particle cloud, the tracer particles are first moved

horizontally in the opposite direction of the wave. Behind the

wave trough, the tracer particles are transported vertically in the
B

C

D

A

FIGURE 8

Same as Figure 7 but with (A) and (B) Rew = 5.9 · 105. (C, D) Rew = 6.5 · 105.
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B

C

D

A

FIGURE 9

Snapshots of the Lagrangian tracer particle density field. The black solid line indicates the 50th percentile (median depth) of the tracer particles
vertical height and the black dashed line indicates the layer containing up to 90% of all of the tracer particles. The red lines indicate the tracer
particles’ left and right most horizontal seeded position before time zero. (A) Rew = 5.9 · 105. Wave passage one, tc0/H = 19.6. (B) Rew = 5.9·105.
Wave passage two, tc0/H = 40.7. (C) Rew = 6.5·105. Wave passage one, tc0/H = 21.0. (D) Rew = 6.5 · 105. Wave passage two, tc0/H = 44.7.
TABLE 2 The vertical location z=d corresponding to the 50th and 90th percentiles of the tracer particle density field for wave passage one and two.

Passage one Passage two

Run 50% 90% 50% 90% d·10-3 (m) Red Rew

1 4.5 8.3 7.1 15.6 3.68 490 5.9 104

3 1.4 4.7 9.2 20.4 4.44 631 6.5 104

2 7.4 15.1 23.0 42.0 1.22 1620 5.9 105

4 8.9 16.2 23.5 46.4 1.46 2080 6.5 105
F
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water column. The wave is reflected and returns to the tracer

particle cloud. At the second passage, the tracer particles are

moved in the opposite direction of the wave propagation. The

vortices behind the trough transport the tracer particles further

vertically. The tracer particles are found below a vertical level of

approximately 0:23H after the second passage, for the Reynolds

number in the range Rew ∼ 5:9 · 104 − 6:5 · 105. The net horizontal

transport of the tracer particle cloud is approximately zero.

We have compared the results to available field observations by

Quaresma et al. (2007), obtained at the northern shelf of Portugal,

where the local depth was 80 m. The wave amplitude was in the range

a=H = 0:13 − 0:38, anda summerbottomnepheloid layerwasmeasured

to be 10 − 15 m, corresponding to 0:13 − 0:19H. Our computational

results are ina fairmatchwith thatobservation.Wenote that theprocesses

in the computations at the moderate scale and the processes at the field

scale may not be directly similar, however. In another field measurement

byZulberti et al. (2020), large amplitude internalwaves of depressionwere

found to resuspend the sediments at the sea bed greatly. In their

measurements, a density gradient at 20 m (0:08H) above the sea

bottom was found to limit the vertical advancement of the bottom

sediments. Direct correspondence to the present computations is

not realistic.
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López-Herrera, J. M., Popinet, S., and Castrejón-Pita, A. A. (2019). An adaptive
solver for viscoelastic incompressible two-phase problems applied to the study of the
splashing of weakly viscoelastic droplets. J. Non-Newtonian Fluid Mech. 264, 144–158.
doi: 10.1016/j.jnnfm.2018.10.012

Mostert, W., and Deike, L. (2020). Inertial energy dissipation in shallow-water
breaking waves. J. Fluid Mechanics 890, A12. doi: 10.1017/jfm.2020.83

Necker, F., Härtel, C., Kleiser, L., and Meiburg, E. (2005). Mixing and dissipation in
particle-driven gravity currents. J. Fluid Mechanics 545, 339–372. doi: 10.1017/
S0022112005006932

Popinet, S. (2003). Gerris: a tree-based adaptive solver for the incompressible Euler
equations in complex geometries. J. Comp. Phys. 190, 572–600. doi: 10.1016/S0021-
9991(03)00298-5

Popinet, S. (2009). An accurate adaptive solver for surface-tension-driven interfacial
flows. J. Comp. Phys. 228, 5838–5866. doi: 10.1016/j.jcp.2009.04.042

Popinet, S. (2011). Quadtree-adaptive tsunami modelling. Ocean Dyn. 61, 1261–
1285. doi: 10.1007/s10236-011-0438-z

Popinet, S. (2015). A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi
equations. J. Comp. Phys. 302, 336–358. doi: 10.1016/j.jcp.2015.09.009

Popinet, S. (2020). A vertically-Lagrangian, non-hydrostatic, multilayer model for
multiscale free-surface flows. J. Comp. Phys. 418, 109609. doi: 10.1016/j.jcp.2020.109609

Popinet, S. and collaborators (2013–2023)Basilisk. Available at: http://basilisk.fr
(Accessed 18.10.2021).

Quaresma, L. S., Vitorino, J., Oliveira, A., and da Silva, J. (2007). Evidence of
sediment resuspension by nonlinear internal waves on the western Portuguese mid-
shelf. Mar. Geol. 246, 123–143. doi: 10.1016/j.margeo.2007.04.019

Sakai, T., Diamessis, P. J., and Jacobs, G. B. (2020). Self-sustained instability,
transition, and turbulence induced by a long separation bubble in the footprint of an
internal solitary wave. I. Flow topology. Phys.Rev. Fluids 5, 103801. doi: 10.1103/
PhysRevFluids.5.103801

Sanderse, B., and Veldman, A. (2019). Constraint-consistent Runge–Kutta methods
for one-dimensional incompressible multiphase flow. J. Comput. Phys. 384, 170–199.
doi: 10.1016/j.jcp.2019.02.001

Stastna, M., and Lamb, K. G. (2008). Sediment resuspension mechanisms associated
with internal waves in coastal waters. J. Geophys. Res. 113, C10016–1–19. doi: 10.1029/
2007JC004711

Sveen, J. K., Guo, Y., Davies, P. A., and Grue, J. (2002). On the breaking of internal
solitary waves at a ridge. J. Fluid Mech. 469, 161–188. doi: 10.1017/S0022112002001556

vanHooft, J. A., Popinet, S., vanHeerwaarden, C. C., van der Linden, S. J. A., de Roode, S.
R., andvan deWiel, B. J.H. (2018). Towards adaptive grids for atmospheric boundary-layer
simulations. Boundary-Layer Meteorol. 167, 421–443. doi: 10.1007/s10546-018-0335-9

Zulberti, A., Jones, N. L., and Ivey, G. N. (2020). Observations of enhanced sediment
transport by nonlinear internal waves. Geophys. Res. Lett. 47, 1–11. doi: 10.1029/
2020GL088499
frontiersin.org

https://doi.org/10.1017/jfm.2011.432
https://doi.org/10.1016/0021-9991(89)90151-4
https://doi.org/10.1016/0021-9991(89)90151-4
https://doi.org/10.1146/annurev-fluid-122316-045049
https://doi.org/10.1146/annurev-fluid-122316-045049
https://doi.org/10.1175/1520-0485(1997)027(1181:SRAMBR)2.0.CO;2
https://doi.org/10.1029/1999GL900234
https://doi.org/10.1029/2006GL028462
https://doi.org/10.1029/2006GL028462
https://doi.org/10.1063/1.2162033
https://doi.org/10.1063/1.2931693
https://doi.org/10.1017/jfm.2019.671
https://doi.org/10.1090/S0025-5718-1968-0242392-2
https://doi.org/10.1175/JPO2900.1
https://doi.org/10.1017/S0022112008004898
https://doi.org/10.1017/S0022112008004898
https://doi.org/10.1017/S0022112004008596
https://doi.org/10.1017/S0022112098003528
https://doi.org/10.1146/annurev.fluid.38.050304.092129
https://doi.org/10.1146/annurev-fluid-011212-140701
https://doi.org/10.1146/annurev-fluid-011212-140701
https://doi.org/10.1016/j.jnnfm.2018.10.012
https://doi.org/10.1017/jfm.2020.83
https://doi.org/10.1017/S0022112005006932
https://doi.org/10.1017/S0022112005006932
https://doi.org/10.1016/S0021-9991(03)00298-5
https://doi.org/10.1016/S0021-9991(03)00298-5
https://doi.org/10.1016/j.jcp.2009.04.042
https://doi.org/10.1007/s10236-011-0438-z
https://doi.org/10.1016/j.jcp.2015.09.009
https://doi.org/10.1016/j.jcp.2020.109609
http://basilisk.fr
https://doi.org/10.1016/j.margeo.2007.04.019
https://doi.org/10.1103/PhysRevFluids.5.103801
https://doi.org/10.1103/PhysRevFluids.5.103801
https://doi.org/10.1016/j.jcp.2019.02.001
https://doi.org/10.1029/2007JC004711
https://doi.org/10.1029/2007JC004711
https://doi.org/10.1017/S0022112002001556
https://doi.org/10.1007/s10546-018-0335-9
https://doi.org/10.1029/2020GL088499
https://doi.org/10.1029/2020GL088499
https://doi.org/10.3389/fmars.2023.1155270
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ellevold et al. 10.3389/fmars.2023.1155270
Appendix A: Finite Volume Solver

A.1. Time integration

The discretization in time is staggered and second-order

accurate. The advection term is calculated using the Bell-Colella-

Glaz scheme Bell et al., 1989. The unsplit, upwind scheme reads:

rn+1
2

un+1 − un
Dt

+ un+1
2
·∇un+1

2

h i
= −∇ pn+1

2
+∇ · ½mn+1

2
(Dn + Dn+1)� + rn+1

2
an+1

2
, (13)

fn+1
2
− fn−1

2

Dt
+∇ · (fnun) = 0, (14)

∇ ·un = 0, (15)

where D = (∇u+(∇u)T)/2) is the strain rate tensor, where ()T

denotes transpose. The index n indicates time tn, and likewise for n

+1, n+1/2, n−1, etc.

An equivalent advection equation of the volume fraction

replaces the advection equation of the density. The density and

viscosity are defined using the averages r(~f )=~f (r1−r2)+r2 and m(~f )
=[~f (1/m1−1/m2)+1/m2]−1, where r1, m1, and r2, m2 are the densities
and dynamic viscosities of the upper and lower fluid layers,

respectively. The field ~f is constructed by applying a smoothing

spatial filter to f. This is accomplished by averaging the four corner

values of f obtained from the cell-centered values by bilinear

interpolation. The fluid properties are updated by:

rn+1
2
= ~fn+1

2
(r1 − r2) + r2, (16)

mn+1
2
= ½~fn+1

2
(1=m1 − 1=m2) + 1=m2�−1 : (17)

By using a classical time-splitting projection method Chorin,

1968, the system is further simplified:

rn+1
2

u* − un
Dt

+ un+1
2
·∇un+1

2

� �
= ∇ · ½mn+1

2
(Dn + D*)� + rn+1

2
an+1

2
, (18)

fn+1
2
− fn−1

2

Dt
+∇ · (fnun) = 0: (19)

The velocity at the new time is found by combining equations

13 and 18. Hence,

un+1 = u* −
Dt ∇ pn+1

2

rn+1
2

: (20)

The equation for the pressure is found by requiring

∇ ·un+1 = 0: (21)

This leads to a Poisson equation for the pressure

∇ ·
Dt ∇ pn+1

2

rn+1
2

" #
= ∇ · u* : (22)
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The time step in each iteration is controlled by the Courant-

Friedrich-Levy CFL condition.
A.2. Spatial discretization

The quadtree structure can be seen as a family tree. An

important parameter is the level N of a given cell of the tree. The

root cell is that corresponding to N=0, from which the cells at the

next level hang down. A parent cell at (levelN) can have zero or four

children cells, where the children are at level N+1. If the cell has no

children it is called a leaf cell. The size of a cell is characterized by its

level N, where it is located. Hence, the grid size of the cells at that

level is DN=L/2
N. The cells are square finite volume cells, providing

DN=Dx=Dz, where (x,z) are the horizontal and vertical coordinates.

Further, a few restrictions apply. For example, the maximum

difference of the level between two neighboring leaf cells is one; each

cell has a direct neighbor at the same level; the level increases by one

for each successive generation; the grid can be refined and

coarsened dynamically adapted as the simulation proceeds, where

this occurs at an affordable computational cost. We have used two

central representations of the numerical grid, a non-adaptive static

grid mesh and an adaptive mesh.

1. “Refine”:

Refine static grid refinement is referred to when the simulation

is run with the same level of refinement in the mesh hierarchy.

2. “Adapt”:

The adaptive mesh hierarchy enables increase/decrease of the grid

resolution where necessary. Such an approach can significantly reduce

the memory required to obtain a given level of accuracy. The algorithm

is based on the estimation of the numerical errors in the representation

of the spatially discretized fields. This analysis is used to determine

which grid cells require refinement, and wherein the domain cells can

be coarsened. Following van Hooft et al. (2018) and López-Herrera

et al. (2019), a scalar field gN discretized at grid level N, can be

coarsened one level down utilizing a downsampling operation

denoted by restriction, gN−1=restriction(gN). Next, the upsampled (or

prolongated) operator, which upsamples the coarser field distribution,

gN−1, to the original level, g0N=prolongation(gN−1), is defined. The

prolongation procedure is second-order accurate. Noting that in

general gN≠g
0
N , a comparison provides an estimation of the absolute

discretization error, zN=|gN−g0N |. A particular cell i with level N in

which the error is z i
N , will be,

• refined if z i
N>z,

• coarsened if z i
N<2z/3,

• remain unchanged otherwise,

where z is called the refinement criterion and is the error

threshold set in the numerical scheme. The “refine” and “adapt”

procedures are used in the present study. Further details of the

algorithm can be found in Popinet (2003) and van Hooft

et al. (2018).

Near the resolution boundaries, ghost cells are generated as

virtual cells. This allows for simple Cartesian stencil operations, for

the typically uneven grid at the boundary. The ghost cells have

neighbours with the same refinement level N, whereas their values

are defined by interpolating the original field values.
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