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1. Introduction

Ultimately, finance evolves around the interplay between the expected return and risk.
The established benchmark for the latter is volatility: loosely defined, this term refers to the
degree of variability of an asset S in time which is traditionally quantified as

1< S(t) \?
Tz<log5(tl)> . 1)

t=1

The rationale behind using the log-returns in Equation (1) is simple and can be traced
back to P. Samuelson: the prices are strictly positive and, hence, it is reasonable to represent
them as an exponential of some random variable. For example, if one models the returns as

5(t) Gt
—t = =1,...,T

where & ~ N(0, 0'2), t =1,...,T, are centered independent and identically distributed
random variables, the value of Equation (1) becomes a strongly consistent estimator of the
standard deviation parameter 0.

However, it turns out that the metric Equation (1) is not as innocuous as it may seem
at first sight. For example, if one computes Equation (1) using samples from distinct time
periods, the results can be drastically different. In some sense, this is not a big surprise: there
are periods on the market when prices exhibit minimal variation and other times when they

Mathematics 2023, 11, 4201. https:/ /doi.org/10.3390/math11194201

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math11194201
https://doi.org/10.3390/math11194201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4412-5588
https://orcid.org/0000-0002-1195-4243
https://orcid.org/0000-0002-6877-1800
https://doi.org/10.3390/math11194201
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11194201?type=check_update&version=2

Mathematics 2023, 11, 4201

2 of 35

fluctuate with extreme intensity (especially during crises). Moreover, as noted in, e.g., [1,2],
the variability in asset prices cannot be fully explained only by changes in “fundamental”
economic factors. The important conclusion from this observation is as follows: volatility
changes over time in an unpredictable manner.

In this survey, we offer an overview of one approach aimed at addressing this phe-
nomenon: stochastic volatility modeling. This methodology, which can be traced back to the
early discrete-time model of Clark (1973) [3], has evolved into an enormous, deep, and
highly engaging area of research. Contrary to the older surveys of Skiadopoulous (2001) [4],
Shepard and Andersen (2009) [5], and Duong and Swanson (2011) [6], we put a significant
emphasis on fairly recent topics of fractional and rough volatility. We tried to make the
presentation as friendly as possible, with the hope that readers familiar with stochastic
analysis will find most parts of the material accessible.

Before proceeding to the main part of the paper, let us make two important disclaimers.

e  First of all, apart from more straightforward applications in, e.g., mean-variance
portfolio theory originating from [7] by H. Markowitz, the concept of volatility has a
crucial role in another significant area within finance, i.e., non-arbitrage pricing theory,
conceptualized by F. Black, M. Scholes, and R. Merton in [8,9]. This theory has a
unique and intricate perspective on volatility and has been the major driving force in
volatility modeling for the past four decades. Therefore, in this survey, we consider
the volatility predominantly from the option pricing viewpoint.

*  Our focus primarily centers on continuous stochastic volatility models in continuous time.
This means that we will not discuss various discrete-time models such as ARCH,
GARCH, or EARCH of Engle [10], Bollerslev [11], and Nelson [12], or multiple jump-
diffusion models including the approaches of Duffie et al. [13] or Barndorff-Nielsen
and Shephard [14]. The omission of jumps seems to be the most notable gap in light of
the realism this approach provides. However, given our desire to highlight fractional
and rough volatility in more detail, the inclusion of discrete-time and jump-diffusion
models with the level of detail they deserve would substantially inflate the size of
this survey and result in a notable change in emphasis. Therefore, we leave these two
topics for a separate work. Readers with a specific interest in discrete-time models are
referred to [15,16]; for jump models, see the specialized books by Barndorff-Nielsen
and Shepard [17], Gatheral [18], Rachev et al. [19], or Tankov and Cont [20]. For other
modeling viewpoints that are different from stochastic volatility, see the overviews
given by Shiryaev [21] and Mariani and Florescu [22].

The paper is structured as follows. In Section 2, we present a historical context for
stochastic volatility modeling as well as listing several relevant stylized facts that are aimed
to be reproduced. We devote separate attention to the notion of implied volatility, since the
latter serves as the focal point of the field. Section 3 gives a detailed survey of continuous
stochastic volatility models from the constant elasticity of variance (CEV) model proposed
by J. C. Cox in 1975 to the modern fractional and rough volatility approaches. For each class
of models, we provide the context of their applicability and characterize their advantages
and shortcomings. In Section 4, we touch on selected aspects of a special topic in volatility
modeling: VIX. After a brief detour in its computation, we describe two problems within
VIX modeling: reproducing positive VIX skew and the SPX-VIXjoint calibration problem.
In addition, we analyze advances in continuous stochastic volatility modeling for solving
these problems. Section 5 concludes our presentation.

2. Market Volatility: Empirical Challenges and Stylized Facts
2.1. From Random Walk to Geometric Brownian Motion

Probability theory and stochastic analysis have evolved into irreplaceable tools for
economics and finance. The first attempts to model financial markets using probabilistic
methods can be traced back to the French economist Jules Regnault (for more details about
this lesser known and somewhat underestimated person and his contributions to finance,
the reader is referred to [23]): as early as 1863 [24], he proposed modeling stock prices with,



Mathematics 2023, 11, 4201

3 0f 35

what we call nowadays, symmetric random walks. However, the foundation for employing
probability in finance is commonly attributed to another French mathematician, Louis
Bachelier, and his 1900 dissertation titled “Théorie de la spéculation” [25], where he considered
market modeling and even derivative pricing in a very comprehensive manner. Naturally,
the tools of stochastic calculus had not yet been formulated at that time, which means
that the dissertation might lack some modern aspects of mathematical rigor. Nonetheless,
if one translates Bachelier’s reasoning into today’s mathematical language (an excellent
job in contextualizing Bachelier’s work from the perspective of modern mathematics was
achieved by M. Davis and A. Etheridge in [26]), it turns out that Bachelier essentially
modeled stock price dynamics with a prototype of a standard Brownian motion 5 years
before A. Einstein and his famous paper [27].

Unfortunately, Bachelier’s ideas did not gain immediate recognition and went rela-
tively unnoticed. Only more than 50 years after the publication of the original dissertation,
statistician Jimmy Savage inexplicably stumbled upon this work and brought it to the
attention of a number of researchers in economics. One of those researchers turned out
to be Paul Samuelson, who described Savage’s finding in the foreword to the English
translation of Bachelier’s dissertation [26] as follows:

“...Discovery or rediscovery of Louis Bachelier’s 1900 Sorbonne thesis [...] initially
involved a dozen or so postcards sent out from Yale by the late Jimmie Savage, a pioneer
in bringing back into fashion statistical use of Bayesian probabilities. In paraphrase, the
postcard’s message said, approximately, ‘Do any of you economist guys know about a
1914 French book on the theory of speculation by some French professor named Bachelier?’

Apparently 1 was the only fish to respond to Savage’s cast. The good MIT mathematical
library did not possess Savage’s 1914 reference. But it did have something better, namely
Bachelier’s original thesis itself.

I rapidly spread the news of the Bachelier gem among early finance theorists. And
when our MIT PhD Paul Cootner edited his collection of worthy finance papers, on my
suggestion he included an English version of Bachelier’s 1900 French text...”

Samuelson noticed that Bachelier’s quasi-Brownian model could potentially take
negative values, which is an unrealistic property for real-life prices. Therefore, he proposed
(Samuelson himself acknowledged—see, e.g., his comments in a foreword to [26]—that the
same idea was independently expressed by an astronomer M. Osborne in [28]) a simple
but very useful modification of Bachelier’s original approach: Brownian dynamics should
be used to model price logarithms rather than the prices themselves. After a small adjustment
with a linear trend, Samuelson’s model took the form of a geometric or (economic relative, the
term used by Samuelson himself [29]) Brownian motion

2
S(t) = S(O)exp{ (V - 02>t+c7W(t)}, ueR, $(0), ¢ >0, )
or, as a stochastic differential equation (SDE),

dS(t) = uS(t)dt + oS(HAW (). 3)

Note that the term wvolatility obtains a very specific meaning within the model
Equations (2) and (3); namely, it refers to the parameter . Such terminology is very
intuitive and, moreover, agrees well with the metric Equation (1) mentioned above: if
0=ty <t <..<t,=Tisa partition of the interval [0, T], then

1y < S(tk+1))2 2
= log————=)] =0
T kzzl S(te)

in L2 as the diameter of the partition max; |t — x| — O (see, e.g., [30]). Due to its
simplicity and tractability, the log-normal process Equations (2) and (3), together with the
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corresponding notion of volatility, subsequently became a mainstream choice for stock price
models for the next couple of decades. Even now, well informed of multiple arguments
against the geometric Brownian motion, practitioners still use it as a benchmark or a reliable
“first approximation” model.

It is important to note that, in addition to the market model, Bachelier also considered
the problem of option pricing and eventually derived an expression that can be called a
precursor of the now famous Black—Scholes formula. Of course, his rationale was not based
on the no-arbitrage principle and had a number of shortcomings, as is often the case with
pioneering works. The correction of those shortcomings became the subject of a number
of studies in the 1960s, among which one can mention [31-33]. Samuelson himself also
heavily contributed to that topic; see, e.g., [34] or his paper [35] (in co-authorship with
Robert Merton), where it was suggested to consider a warrant/option payoff as a function
of the price of the underlying asset. One could argue that these works were just a few
steps away from the breakthrough made by Black, Scholes, and Merton just a couple of
years later.

Here, it is worth paying attention to the fact that the options market remained relatively
illiquid until the end of the 1960s. The reason for that was the lack of a consistent pricing
methodology, and serious investors regarded options as akin to gambling rather than
worthy trading instruments. It is somewhat ironic that even Robert Merton himself, right
in his pivotal article [9], wrote the following:

“Because options are specialized and relatively unimportant financial securities, the
amount of time and space devoted to the development of a pricing theory might be
questioned...”

However, in 1968, a demand for that type of contract suddenly arose from the Chicago
Board of Trade. The organization observed a significant decline in commodity futures
trading on its exchange and, therefore, opted to create additional instruments for investors.
They settled on options, and, in 1973, the Chicago Board of Options Exchange commenced
its activity. Precisely in that year, two revolutionary papers appeared: “The pricing of options
and corporate liabilities” [8] by Fischer Black and Myron Scholes and “Theory of rational option
pricing” [9] by Robert Merton. As a side note, the publication of the Black and Scholes paper
was far from a smooth process: in 1987 [36], Black recalled that the manuscript was rejected
first by the Journal of Political Economy and then by the Review of Economics and Statistics. The
paper was published only after Eugene Fama and Merton Miller personally recommended
the Journal of Political Economy to reconsider its decision (in the meanwhile, Robert Merton
showed a great deal of academic integrity by delaying the publication of his own article so
that Black and Scholes would be the first).

The ideas of Black, Scholes, and Merton revolutionized mathematical finance and
enjoyed empirical success: Stephen Ross, for instance, claimed in 1987 [37] that

“When judged by its ability to explain the empirical data, option pricing theory is the

most successful theory not only in finance, but in all of economics.”

2.2. Implied Volatility and the Smile Phenomenon

The main result of Black, Scholes, and Merton can be formulated as follows: if a stock
follows the model Equations (2) and (3), then, under some assumptions, the discounted
no-arbitrage price of a standard European call option CBS = CBS(t, S) evolves as a function
of the current time ¢ and current price S and must satisfy a partial differential equation,
known now as the Black-Scholes formula, of the form

acB-S 1 ) 232cB-S acB—S

1 _ .(BS _
5 2(7 552 +rS 35 rC 0 4)

with a boundary condition (in what follows, we will utilize the standard notation
(x)+ := max{x,0})
CBS(T,8) = (S —K)4, (5)
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where r denotes the instantaneous interest rate, that is assumed to be constant, T is the
maturity date of the option, and K is its exercise price. As mentioned above, the Black—
Scholes-Merton rationale relies on a number of rather abstract assumptions that do not align
with real-world market conditions. In particular, their reasoning required specific price
dynamics, the absence of transaction costs, and the capacity to buy and sell any quantity
of assets. However, the inability to perfectly replicate the reality does not necessarily
carry significant implications. Black, Scholes, and Merton themselves were aware of the
limitations of their approach: for example, ref. [38] quotes Fisher Black on this subject:

“Yet that weakness is also its greatest strength. People like the model because they
can easily understand its assumptions. The model is often good as a first approxima-
tion, and if you can see the holes in the assumptions you can use the model in more
sophisticated ways.”

What really mattered was the successful empirical performance of the vanilla Black—
Scholes—Merton model; as noted by J. Wiggins, one of the pioneers of continuous-time
stochastic volatility modeling, “given the elegance and tractability of the Black—Scholes for-
mula, profitable application of alternate models requires that economically significant valuation
improvements can be obtained empirically” [39].

However, after the Black Monday market crash in 1987, it became evident that there
were glaring flaws within the log-normal paradigm, prompting the need for rectification.
Jackwerth and Rubinstein [40] described the problem as follows:

“Following the standard paradigm, assume that stock market returns are lognormally
distributed with an annualized volatility of 20% (near their historical realization). On
19 October 1987, the two month S&P 500 futures price fell 29%. Under the lognormal
hypothesis, this is a —27 standard deviation event with probability 10~10. Even if one
were to have lived through the entire 20 billion year life of the universe and experienced
this 20 billion times (20 billion big bangs), that such a decline could have happened even
once in this period is a virtual impossibility.”

Evidently, experiencing “virtually impossible” price falls which rendered investors
insolvent was already a good argument to reassess financial modeling approaches. Yet,
apart from that single shock that, in principle, could be attributed to a single anomaly,
there was another consistent phenomenon that manifested itself in the aftermath of Black
Monday: the volatility smile.

In order to explain the problem, let us first discuss the parameters of the Black-
Scholes model in more detail. Note that the sole value in the Black-Scholes formula,
Equations (4) and (5), that is not directly observable is the volatility parameter ¢: indeed,
the maturity date T and exercise price K are given in the specifications of the given op-
tion contract, whereas the price S(f) can be read from the market. The volatility ¢ is
unknown and necessitates some form of estimation based on data. In 1976, Latané and
Rendelman [41] proposed an elegant method to address this problem. First of all, note that
Equations (4) and (5) have an explicit solution of the form

log “° 4+ & (T — 1)
ovT —t

log “° ¥ — &(T — 1)

oT —t !

CBS(t,5(t)) = S(t)®

(6)
—Ke "I
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2
where ®(x) := [ e’dey. For simplicity, let us take t = 0 and re-parametrize

Equation (6) as

5l
3

TS0 2 TS0 2
log K( )+ 5T _Ke TP log © K( L - 7T

oVT oVT

CBS(T,5(0),K,0) := S(0)® @)

Take the actual market price C(T, K) of the corresponding option with payoff K and
maturity date T and notice that, since CBS(T,5(0),K,0) is supposed to coincide with C,
the volatility ¢ can be obtained from the equation

CBS(T,5(0),K,0) — C(T,K) = 0. (8)

The solution ¢ = ¢(T, K) to this equation is called the implied volatility. Note that
in the literature (see, e.g., [42], p. 244), T is often written as a function 310g_m of time to
K

maturity T and log-moneyness x := log 7TS0)” ie.,

Tiog-m (T, ) 1= T (T, S(0)e*"'T).

In what follows, we will slightly abuse the notation and omit the subscript “log-m”,
using 7 (T, K) for the function of strike and 7(T, k) for the function of log-moneyness.

If the stock price model, Equations (2) and (3), indeed corresponds to reality well
enough, 0(T, K) should be approximately constant for options with the same underlying
asset but differing maturities T and strikes K. However, this is not the case! For instance,
0(T,K) turns out to change with T for fixed K (see Figure 1 below).

SPX implied volatility as function of maturity, K=4100

Implied volatility
0170 0175 0180 0185
.
.

0.165

0.160

T T T T T
0 100 200 300 400

Time to maturity (days)

Figure 1. Variation in implied volatility with time to maturity T for a fixed strike K. The values were
calculated using S&P500 (SPX) option prices on 3 May 2023, retrieved from finance.yahoo.com [43].
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A straightforward modification of Equation (2), considered by Merton in his original
paper [9], appears to accommodate this issue. Namely, if the volatility ¢ = o (t) is assumed
to be a deterministic function of time, one can obtain a version of Equation (6) of the form

log 7EV(T}?S("‘) + % ftT az(s)ds)

CBS(1,5(h)) = S(t)CI><

where 72(t,T) := % |, :+T 0?(s)ds. Then, the counterpart (at t = 0) of Equation (8) takes
the form

~

CBS(T,5(0),K,7(0,T)) — C(T,K) =0,

so its solution 7 (T, K) is supposed to represent 7(0, T) and, hence, it is allowed to vary with
T for fixed K. One may even argue that it is actually reasonable to assume that o changes
with time: as noted in [44], p. 144, “there is nothing inconsistent about expecting high volatility
this year and low volatility next year”.

Regarding the variation in K for a fixed T, the implied volatility remained relatively flat
(more precisely, some dependence was present, but it was subtle enough to be disregarded;
see, e.g., the discussion in [44], chapter 1) before the above-mentioned Black Monday crash
in 1987. Starting from that (terrible) date, investors observed notable variability in the
implied volatility in K characterized by distinct convex patterns (see Figure 2 below as well
as [45]) which were eventually called “volatility smiles” or “volatility smirks”. Such behavior
was consistent, had a direct adverse impact on the empirical performance of the Black-
Scholes formula, and could not be explained by the price dynamics of Equations (2) and (3).

Figure 2 also reveals two important typical characteristics of implied volatility smiles
related to the change in the smile shape with T.

e  First of all, note that the smile gradually flattens out as the time to maturity T increases.
However, this decrease is fairly slow: for example, in Figure 2, the curvature is
noticeable 262 days (Figure 2g) and even 962 days (Figure 2h) before maturity. The
latter effect turns out to require special treatment; in this regard, see Section 3.3 below,
as well as [46-48].

e Second, observe the behavior of the smile at-the-money, i.e., when K = S(0)e’T (or, in
terms of log-moneyness, when x = 0): as T becomes smaller, the smile at-the-money
tends to become steeper. Figure 3 characterizes this phenomenon in more detail: for
each T, we took implied volatilities of seven options with strikes closest to S(0)e'T,
performed a least squares linear fit on them, and depicted the absolute values of the
resulting slopes in Figure 3a. It turns out that the variation in absolute slopes with
T for shorter maturities seems to be well described by the power law C T=3FH with
H = 0, at least as a first approximation (see the discussion at the end of Section 3.3 below,
as well as [49,50]). As an illustration, the red lines in Figure 3a,b depict power-law
fits for the SPX implied volatility slopes corresponding to 3 May 2023; for our dataset,
H = 0.06226572. A similar type of behavior is reported by, e.g., Fouque, Papanicolaou,
Sircar, and Selna (2004) [51], Gatheral, Jaisson, and Rosenbaum (2018) [52] and, more
recently, by Delemotte, De Marco, and Segonne (2023) [50].
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Figure 2. Implied volatility smiles for different times to maturity. The values were calculated using

S&P500 (SPX) option prices on 3 May 2023, retrieved from finance.yahoo.com [43]. Vertical red lines

correspond to the at-the-money level K = S(0)e'”.
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Estimation of the SPX implied volatility skew Estimation of the SPX implied volatility skew (log-scale)

skew
Log-skew

o 500 1000 1500 3 4

5
Time to maturity (days) Log-time to maturity (days)

(a) Regular scale (b) Logarithmic scale

Figure 3. Absolute values of at-the-money implied volatility slopes on regular (a) and log-log (b)
scales. Blue dots denote the data and red lines denote the regression fits 1:5753587 7 —-0.4377343 (3) and
1.5753587 — 0.4377343log T (b). The values were calculated using S&P500 (SPX) option prices on 3
May 2023, retrieved from finance.yahoo.com [43].

In principle, a “perfect” model should capture the shape of the entire implied volatility
surface (T,K) — (T, K) (or, equivalently, (T, «) — (T, «); see Figure 4). Here, by “captur-
ing the volatility surface”, we mean the established benchmark for assessing the performance
of a model by its ability to reproduce the shape of (T, K) or, equivalently, 7(T,«). As a
rule, testing adheres to the following algorithm:

(1) the parameters of the model are calibrated with respect to the market data;
(2) the calibrated parameters are plugged into the model and the respective model no-

arbitrage European option prices are computed;

(3) these “synthetic” prices are then used to construct the implied volatility surface by
the procedure described here in Section 2.2;

(4) finally, the obtained model-generated surface is compared to the implied volatility
surface extracted from real-world option prices.

Log-moneyness

02

Implied volatiity

Figure 4. Implied volatility surface (T, x) — 0(T, k). The values were calculated using S&P500 (SPX)
option prices on 3 May 2023, retrieved from finance.yahoo.com [43].



Mathematics 2023, 11, 4201

10 of 35

For example, if one wants to reproduce the power law described above, one may
demand the model-generated at-the-money volatility skew

¥(T) = ’aaK(AT(T,K) ©)

k=0
to have the power-law asymptotics O(T’%+H ), T — 0. However, as we will see later, the
task of constructing a model that reproduces all of the stylized facts simultaneously—both
for long and short maturities—is not straightforward at all.

2.3. Fat Tails, Leverage, Clustering, and Long Memory

The empirical evidence of volatility smiles makes a spectacular point against the geomet-
ric Brownian dynamics of Equations (2) and (3). However, it certainly does not stand alone as
the sole argument in this regard. In fact, objections to the log-normality of prices appeared
as early as the log-normal model itself. In this section, we briefly enumerate several pivotal
stylized facts concerning log-returns and the volatility of financial time series. For a more
detailed discussion of this topic, we also refer our readers to [53] Section 2.2, [54] Section 3,
well-known survey articles [1,55], or the book [56].

2.3.1. Fat Tails and Non-Gaussian Distribution of log-Returns

First of all, statistical analyses of price returns pointed out that their distributions
have fat tails, i.e., the probabilities of extreme values tend to be significantly higher than
predicted by log-normal models. In this context, we mention the empirical studies of Man-
delbrot [57] (1963) and Fama [58] (1965); see also [59] for an early review. In response to
this phenomenon, Mandelbrot proposed modeling price log-returns with a-stable distribu-
tions, which are characterized by infinite variance. However, this idea seems to contradict
subsequent studies (such as [55]) which suggest that the variance of returns should be
finite. Overall, ref. [55] gives the following summary regarding the properties of the “true”
log-returns distribution: it tends to be non-Gaussian, sharp-peaked, and heavy-tailed.
Clearly, there are multiple parametric models satisfying these three properties and one
can mention log-return models based on inverse Gaussian distributions [60], generalized
hyperbolic distributions [61], truncated stable distributions [62,63], and so on. For a more
recent analysis of the topic, see also [64].

2.3.2. Leverage and Zumbach Effect

Another interesting phenomenon not grasped by the geometric Brownian motion
is the so-called leverage effect: a negative correlation between the variance and returns of
an asset. This empirical artifact, initially noticed by Black [65] and then studied in more
detail by Christie [66], Cheung and Ng [67], and Duffee [68], was explained by Black
himself as follows: a decrease in a stock price results in a drop of firm’s equity value
and hence increases its financial leverage (in this context, the term “leverage” means the
company’s debt relative to its equity). This, according to Black, makes the stock riskier and,
hence, more volatile. Interestingly, the name “leverage effect” stuck due to this explanation,
although subsequent research [69-71] pointed out that this correlation may not be connected
to the leverage at all. Zumbach, in [56] section 3.9.1, gives a different interpretation of
this negative correlation: downward moves of stock prices are generally perceived as
unfavorable, triggering many sales and thereby increasing the volatility. Conversely,
upward moves do not result in such drastic changes in investors’ portfolios, given that the
majority of market participants already hold long positions. Zumbach [72] also studied
another effect of the same nature now recognized as the Zumbach effect: pronounced trends
in stock price movement, irrespective of sign, increase the subsequent volatility. This effect
stems from the fact that large price moves motivate investors to modify their portfolios,
unlike scenarios where prices oscillate within a narrower range.
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2.3.3. Volatility Clustering

The next empirical contradiction to the Black-Scholes—-Merton framework arises from
a direct econometric analysis of financial time series uncovering clusters of high and low
volatility episodes. As noted by Mandelbrot [57], “large changes tend to be followed by large
changes, of either sign, and small changes tend to be followed by small changes” (see Figure 5b).

There are several ways to interpret this phenomenon. Some authors (see, e.g., [73],
chapter 3) identify volatility clustering with mean reversion: in loose terms, this term refers
to volatility’s tendency to “return back” to the mean level of its long-run distribution (see,
e.g., [73] section 2.3.1 and chapter 3), with possible extended periods of staying above or
below the latter. Another—and, perhaps, more nuanced—way to quantify clustering lies
in analyzing the autocorrelation function of absolute log-returns (see, e.g., an excellent
review [74] on the topic), i.e.,

corr(|R(t)],|R(t + T)]), (10)

S(t+A)
5(1)
may vary between a fraction of a second for tick data to several days). Multiple empirical
studies [1,15,63,74-79] report that the autocorrelation function, Equation (10), is consistently
positive and, moreover, shows signs of slow decay of the type O(t#), T — oo, with an

exponent 0 < B < 0.5.

where the log-return R(t) := log( ) is defined for some given time scale A (which

S&P500 index, 2019-2023 Daily log-returns of S&P500 index, 2019-2023
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Figure 5. Daily split-adjusted values of the S&P500 (SPX) index (a) and the corresponding logarithmic
returns (b). Note that the amplitude of fluctuations in log-returns tends to form clusters over time;
the period of the highest variation, in March 2020, corresponds to the shock caused by the COVID-19
pandemic. The data were retrieved from finance.yahoo.com [43].

2.3.4. Long Range Dependence

The O(t~#) decay of Equation (10) as T — oo requires a separate discussion due to its
profound implications. For 8 € (0, 1), such behavior is often referred to as the long-range
dependence (see, e.g., [80,81]), and if its statistical significance is established, it indicates the
presence of memory in the market. Notably, confirming the long-range dependence poses a
substantial challenge: by its nature, memory manifests itself when T — oo, which raises the
concern that any statistical estimation procedure of Equation (10) might be inconsistent due
to, e.g., the non-stationarity of financial time series over extended time periods (see, e.g.,
discussion in [82] section 1.4). Moreover, as shown in [52] section 4, mis-specification of the
model in the estimation procedure can result in a spurious long memory conclusion, even
if the “correct” model does not exhibit long memory at all. Nevertheless, several studies
still report the presence of long-range dependence on financial markets. For instance,
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Willinger et al. [83] apply the so-called rescaled range (R/S) analysis technique to the CRSP
(Center for Research in Security Prices) daily stock time series and find some weak evidence
of memory in the data (as the authors write, “...we find empirical evidence of long-range
dependence in stock price returns, but because the corresponding degree of long-range dependence
... 1s typically very low ... the evidence is not absolutely conclusive”). Lobato and Velasco [84]
analyze volatility in connection to trading volumes and find that both of these financial
characteristics exhibit the same degree of long memory. Another interesting point comes
from the analysis of the implied volatility surface: Comte and Renault [47] noticed that the
decrease in the smile amplitude as time to maturity increased was much slower than many
advanced market models predicted. They argued that such an effect could be mimicked by
having long memory in volatility (see also a simulation study [48] that directly confirms
this claim).

3. Continuous Models of Volatility

As previously discussed, the real-world data does not support the standard log-normal
framework of Equations (2) and (3). Luckily, developments in the option pricing theory
subsequent to the seminal Black, Scholes, and Merton papers allowed for some flexibility in
terms of the choice of price models. Namely, we refer to the gradual translation of the Black—
Scholes—Merton approach into the language of martingale theory which evolved in the
celebrated Fundamental Theorem of Asset Pricing—the result which connects non-arbitrage
pricing and the existence of equivalent local martingale measures. In this regard, we
mention the early research of Ross [85], Harrison and Kreps [86], Harrison and Pliska [87],
Kreps [88], as well as subsequent seminal works of Delbaen and Schachermayer [89-91]
(see also [92] for a detailed historical overview on the subject). This line of research
eventually evolved into a general theory allowing for quite a broad variety of price models
to choose from—hence giving researchers all the necessary tools to adjust the classical
model, Equation (2), to account for volatility smiles and all other empirical inconsistencies.

As highlighted in Section 2, the particular problem of Equation (3) lies in the fact
that the volatility parameter o cannot be constant: it varies with time in an unpredictable
manner, is correlated with the current price level, and has clusters of low and high values
with some evidence of long-range dependence. One of the possible ways to treat this
problem is by modifying Equation (3) by introducing an appropriate stochastic volatility
process {c(t), t > 0} instead of the deterministic coefficient o, i.e., by taking

ds(t) = u(H)S(t)dt + o (H)S(HAW(1). (11)

Note that, in general, it is reasonable to treat the drift coefficient p = {u(t), t > 0} as a
stochastic process as well; however, we will not cover modeling drift in this survey.

Naturally, now the problem comes down to the selection of a particular process
{o(t), t > 0} that, once inserted in Equation (11), can best reproduce the behavior of real-
world prices. In this section, we list prominent continuous volatility modeling approaches
and briefly characterize their performance.

3.1. Local Volatility
3.1.1. CEV Model

The first cluster of models covered in this survey are the so-called local or deterministic
volatility models. The core idea behind this approach is the assumption that the process
o = {o(t), t > 0} in Equation (11) is a non-random function of the current price and
time, i.e., 0(t) = o(t,S(t)). Perhaps the first model of this kind was the constant elasticity of
variance (CEV) model suggested by Cox in his 1975 note [93]. (Note that the original 1975
note remained unpublished since ].C Cox viewed it as a simple extension of his earlier work
with S. Ross [94]. The version [93] cited here appeared in the Journal of Portfolio Management
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in 1997 as a tribute to F. Black and his contribution to studying the leverage effect.) The
CEV model assumes that o'(,S(t)) = 6SP(t), i.e., Equation (11) takes the form

dS(t) = uS(t)dt 4 6S'TP(1)dW (1), (12)

where the parameter f is called the elasticity parameter. Initially, Cox considered g € [—1,0).
In such a case, the increase in S(t) decreases the value of (¢, S(t)) = §SP(t) and vice versa,
hence, reproducing the leverage effect. The case B > 0, more inherent to commodity prices,
was discussed in [95]. For more details on the model Equation (12), we also recommend
the survey article [96].

As a final remark regarding the CEV model, we note that the SDE Equation (12) exhibits
substantially different behavior depending on the exact value of 8. If B # 0, the diffusion
coefficient in Equation (12) is not Lipschitz and, hence, the existence and uniqueness of the

solution cannot be guaranteed by the classical result. For g [— %, 0) , the solution exists

in the celebrated Yamada—-Watanabe theorem (see, e.g., [97]), but the cases 5 € (71, f%)

and B > 0 require a separate and very careful treatment. For more details in that regard, we
refer the reader to [98] chapter 5, as well as to the discussion in [99].

3.1.2. Local Volatility and Dupire Formula

The general local volatility was initially considered by Derman and Kani [100] and
Dupire [101]. Both assumed the risk-neutral dynamics of the form

ds(t) = rS(t)dt + o(t, S(£))S(HAW (), (13)

where r denotes the interest rate. Note that this model is far more intricate and flexible
than it seems at first glance. Unlike the CEV approach, Equation (13) does not specify
any parametric form of the function ¢. Instead, the no-arbitrage principle and properties
of diffusion allow ¢ to be fully recovered from option prices using the celebrated Dupire
formula (for its derivation, see the original paper [101] or [102] subsection 2.2.1), assuming
no dividends,

aC aC
e s) JZM(T,K)+rSaK(T,K) ”

22C ’
Szﬁ(T' K) (T.K)=(t,5)

where C(T, K), as before, denotes the price at f = 0 of the European call-option with payoff
K and maturity T. It is possible to prove (see, e.g., [102] subsection 2.2.2) that no-arbitrage
conditions imply that the expression on the right-hand side of Equation (13) is well defined.
Moreover, recalling that

C(T,K) = CB5(T,5(0),K,(T,K)), (15)

where CBS is defined by Equation (7), one can plug the right-hand side of Equations (15) to (14)
in place of C(T, K) and obtain the theoretical relation between the implied volatility o and
local volatility function ¢ that can then be used to accurately calibrate Equation (13) to the
current implied volatility smiles (see, e.g., [102] section 2.3). For more details on local volatility
models, we refer the reader to [102] chapter 2.

3.1.3. Shortcomings of Local Volatility

As mentioned above, local volatility models are perhaps the simplest and the most
straightforward generalizations of the original log-normal model Equations (2) and (3).
In addition to their simplicity and tractability, they inherit another convenient property
of the classical geometric Brownian motion: one can show that the market produced by
Equation (13) is complete, i.e., any option with S as an underlying asset can be perfectly
hedged by a self-financing portfolio composed exclusively of S and a riskless asset. How-
ever, despite the obvious mathematical attractiveness of this feature, some sources actually
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view completeness as a disadvantage from the modeling viewpoint. As noted in [20]
chapter 10,

“While absence of arbitrage is both a reasonable property to assume in a real market
and a generic property of many stochastic models, market completeness is neither a
financially realistic nor a theoretically robust property. From a financial point of view,
market completeness implies that options are redundant assets and the very existence of
the options market becomes a mystery, if not a paradox in such models.”

This observation suggests that local volatility models may be too restrictive to grasp
the complexity of the stock dynamics. And, importantly, such a claim is supported by
multiple studies. For example, Buraschi and Jackwerth [103] utilize a formal statistical
testing procedure to check whether options are indeed “redundant”, and their findings
strongly reject this hypothesis, questioning the viability of the model Equation (13). Another
empirical study by Dumas et al. [104] analyzes the predictive performance of Equation (13)
and concludes that its out-of-sample results are no better than ones of the standard Black—
Scholes approach. Gatheral et al. [52] indicate that the dynamics Equation (13) tends
to generate future volatility surfaces “completely unlike those we observe”. Ait-Sahalia and
Jacod [105] utilize a statistical test based on local time to check whether stock prices follow
the SDE of the form

dS(t) = a(S(t))dt +b(S(t))dW(t),

where g and b are some deterministic functions, and report a “clear rejection” of such a
model, advocating for alternative approaches (in fact, they consider an even more general
framework, with jumps and microstructure noise, and still reject the local volatility hypoth-
esis). For more details on the performance of local volatility models, see also an overview
in section 4 of [4].

3.2. Stochastic Volatility Models

As indicated above, local volatility models can be subject to criticism as they might
not possess sufficient flexibility to grasp the market in its full complexity. An alternative
approach, known as stochastic volatility, involves modeling with a dedicated stochastic
process that exhibits only partial dependence with S. Note that the term “stochastic volatil-
ity” may seem too vague given that the volatility o(t, S(t)) employed in local models is
also a stochastic process; nevertheless, in the literature, the term “stochastic” generally
refers to approaches that treat volatility separately from the price dynamics. For exam-
ple, o = {o(t), t > 0} may be another diffusion driven by a separate Brownian motion
B = {B(t), t > 0} correlated with W. Naturally, within this framework, there are countless
candidates for ¢, and choosing a particular one that characterizes the market well is a
complex task. However, stylized facts presented in Section 2.3 offer several starting points
that are useful to keep in mind.

¢ To begin with, given the nature of volatility, it seems reasonable to model it with a
non-negative process. In practice, this can be achieved by modeling log volatility and
then taking an exponential. Alternatively, one may utilize non-negative diffusions
such as Bessel-type processes (see, e.g., [30] chapter XI).

*  Selecting an appropriate dependence structure between B and W from Equation (11)
provides all the necessary tools to account for the leverage effect: a typical assumption
isE[W(t)B(t)] = pt with =1 < p < 0.

¢ Another property shared by multiple stochastic volatility models is mean-reversion.
As mentioned above in Section 2.3, this behavior seems to be a common trait for
real-life volatility. Moreover, a thoroughly chosen mean-reverting process can, to some
extent, mimic the clustering effect (see, e.g., [73], Chapter 3). A common approach to
introduce mean reversion to the dynamics is to take a drift term of the form

01(02 —o(t))
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in the SDE for volatility. This drift “pulls o back” to the level 6, whenever o deviates
from it. The parameter ¢, calibrates the speed of mean-reversion.

Starting from the 1987 pioneering works of Hull and White [106], Wiggins [39], and

Scott [107], multiple generations of approaches and numerous models have emerged in the
literature. While not attempting to provide an exhaustive list, we present below a selection
of notable contributions.

Hull and White [106] assumed that the squared volatility o = {az(t), t > 0} is itself
a geometric Brownian motion, i.e., price and volatility satisfy stochastic differential
equations of the form
dS(t) = uS(t)dt + o (t)S(£)dW(t),
do?(t) = 0102(t)dt + 6,02(t)dB(t)

respectively, where B and W are two Brownian motions that are allowed to be corre-
lated to account for the leverage effect. Note that the volatility process is positive but
not mean-reverting.

Wiggins [39] suggested a slightly more general dynamics of the form

dS(t) = uS(t)dt + o (£)S()dAW (),
do(t) = f(o(t))dt + 0o (t)dB(t).

Scott [107] and Stein and Stein [108] considered the volatility to be an Ornstein—
Uhlenbeck process, i.e.,

dS(t) = uS(t)dt 4 o (t)S(t)dW(t), 16)
do(t) = 61(0, — o(t))dt + 03dB(t).
Note that ¢ is not positive: the Ornstein—-Uhlenbeck process is Gaussian and, hence,
can take negative values with positive probability. In practice, this issue is treated by
either taking the absolute value of ¢ or introducing a reflecting barrier to the volatility
dynamics [109].
Heston [110] introduced the SDE of the form

dS(t) = uS(t)dt + /o (t)S(t)dW(t),
do(t) = 601(0, — o (t))dt + 034/ (t)dB(t).

In this model, now commonly referred to as the Heston model, the volatility follows the
so-called Cox—Ingersoll-Ross or square root process (see also [111]), which enjoys strict
positivity provided that 26,6, > 9%. Benhamou et al. [112] considered a modification
of Equation (17) of the form

(17)

dS(t) = /o (DS(HAW(1),
do(t) = 01(02(t) — o(£))dt + 03(t) /o (1)dB(1),
d(W, B); = p(t)dt,

with time-dependent 6,, 63, and correlation p to account for structural changes on the
market. Another modification of Equation (17) was considered in [113]: there, the
discounted price dynamics was assumed to follow
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£) = /o (H)S(H)AW(t)
do(t) = 01(Z4) (62(Z2) — 0(1))dt + 63(Z1) (/o (H)dB(1)
d<W,B>t = p(Zt)dt,

where Z is a homogeneous continuous-time Markov chain that represents market
switching between different regimes.
Melino and Turnbull [114,115] considered the model of the form

dS(t) = (a+ bS(t))dt + o (t)SPAW (1), a8)
dlog(o(t)) = (61 + 62log(c(t)))dt + 63dB(t),
where B € [%, 1} , i.e., the log volatility is a mean-reverting Ornstein—Uhlenbeck

process and S can be regarded as a combination of the CEV Equation (12) with
stochastic volatility.
Hagan et al. [116] proposed the stochastic alpha-beta-rho (SABR) model of the form

ds(t) = o(1)sP(t)dW (1),

(19)
do(t) = ao(t)dB(t).

where « > 0,0 < B < 1and E[W(t)B(t)] = pt, =1 < p < 1. Note that the case
B e (0, %) is quite intricate from the mathematical perspective and requires a special
treatment; see [98] for more details.

Lewis [117] and, later, Carr and Sun [118] (see also Baldeaux and Badran [119] section 2)
considered the so-called 3/2 model

S(t) = S(t)mdw(t)/ (20)

do(t) = ko (t) (0 — o (t))dt + /2 (£)dB(t).

The motivation behind the model partially comes from the statistical analysis of
volatility models performed by Jawaheri [120] and Bakshi et al. [121], as well as from
its ability to replicate the VIX skew (see Section 4 for further details). For more details
on the existence and properties of the solution to Equation (20), we refer the reader
to [98].

Gatheral [122] presented the double CEV dynamics of the form

S(t)FdW

o(t) = —x(co(t) — o' (t))dt + no*(t)dB(t), (1)
da’(t) = —«(o ( ) — 0)dt +y'd’P(t)dB (1),

S(¥)

where a, 8 € B, 1} .

Fouque et al. [123] propose a multiscale stochastic volatility. Their approach lies in
modeling volatility with two diffusions, one fluctuating on a fast “time scale”, and the
other fluctuating on a “slow” time scale. Namely, their model takes the form

45(8) = S ()t -+ oS (DAW(E),
o) = £ (1), 2()),

av() = 16 - YO+ 2 amy 1)

42(0) = 6e(2(1) + Vo (Z(1))dBa(r),
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BH(t) :

0 . B
r(H+1) /W (= 9)"72 = (=5)"~2)dB(s) +

where f is a bounded positive function, §,& > 0 are assumed to be small, Y is the
fast scale volatility factor, i.e., a fast mean-reverting process, and Z is the slow scale
volatility factor. Later, in [124], Fouque and Saporito employed the same multiscale
paradigm to model the Heston-type stochastic volatility-of-volatility parameter:

AS(t) = S(t)\/o(HdW(t),
do(t) = (0 — o (t))dt +n(t)\/o(t)dW'(t),

n(t) = f(Y(t), Z(1)), (22)

T (v (1))aB(e)

dZ(t) = o(£)5c(Z(t))dt + /o0 (t)g(Z())dB' ().

In addition to reproducing the leverage effect and clustering via mean reversion,
Brownian stochastic volatility models turn out to have an additional important advantage:
they have an ability to capture, to some extent, “smiley” patterns of the implied volatility
(see, e.g., [125], [73] section 2.8.2 or [18]). However, by design, parametric stochastic
volatility models impose structural constraints on the relationship between the dynamics
of the spot and implied volatilities and, hence, may not be able to capture the exact shape
of the implied volatility surface (see, e.g., [18] figure 3.6).

A detailed analysis on that matter can be found in [42,126], in particular, as stated
in [126] section 7.1 or [42] remark 11.3.21, Brownian diffusion models of volatility tend to
produce the at-the-money skew ¥(T) = O(1), T — 0, where ¥ is defined by Equation (9).
This directly contradicts the empirical behavior of O(T~F), =~ %, mentioned in Section 2.3.
In addition, as highlighted by Comte and Renault [47] (see also [46]), the decrease in the
real-life volatility smile amplitude as T — co seems to be much slower than predicted
by the classical Brownian diffusions. Comte and Renault connect this phenomenon to
the long-range dependence in the volatility dynamics, which is well aligned with several
empirical studies listed above in Section 2.3 that also report long memory on the market.

In other words, the inherent properties of Brownian motion limit the modeling capa-
bilities of diffusion models and it is no surprise that a lot of effort was made to advance the
stochastic volatility framework further to account for the mentioned inconsistencies.

3.3. Fractional and Rough Models

One of the ways to extend the stochastic volatility models described in Section 3.2
involves substituting the standard Brownian driver B with an alternative process possessing
the attributes to capture the intended stylized facts. Perhaps the most common option
utilized in the literature is fractional Brownian motion BH = {BH(t),t > 0}, defined as a
Gaussian process with B (0) = 0 a.s., E[BH(#)] = 0 for all t > 0 and

E[B" (18" (s)] = %(tZH T2 i sPH), st (23)

where H can take values in (0,1) and is called the Hurst index (this parameter is named
after Harold Edwin Hurst (1880-1978) who studied long-range dependence in fluctuations
of the water level in the River Nile). Fractional Brownian motion was initially considered
by Kolmogorov [127] and later reintroduced by Mandelbrot and van Ness [128], who also
obtained its Volterra-type representation

1 1

r(n+1) [ e s-ans) 4
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where B = { B(t), t > 0} is a standard Brownian motion. In the literature, a truncated
version of Equation (24) called the Riemann—Liouville fractional Brownian motion is often used:

t
B = ——— [ (=) 2dB(s), 25)
r(Hﬁ%%) 0
and the Volterra kernel
K(t,s) = _ (t— S)Hf%]ls<t (26)
F(H¥%%)

in Equation (25) is called the fractional kernel.

Fractional Brownian motion is extremely convenient from the mathematical perspec-
tive: it is the only stochastic process that simultaneously [129]
. is Gaussian;
*  has stationary increments;
e isself-similar, ie.,

BH(at) 2 aHBH (1), Va > 0. (27)

In addition, if H = 1/2, BY coincides with a standard Brownian motion and, hence,
can be viewed as a broad generalization of the latter. Interestingly, the value H = 1/2
turns out to be the boundary between two distinct volatility modeling paradigms, one

favoring H > 1/2 and the other advocating for H < 1/2, and the aim of this subsection is
to characterize both of them.

3.3.1. Fractional Models with Long Memory: H > 1/2

First of all, observe that

E[B"(1) (8" () ~ B (n —1))] = %(nZH 20— 17 4 (n — 22

~HQ2H-1)n*f72, n - .

(28)

Therefore, if H € (1/2,1), the autocorrelation function behaves as O(n~f) with
B € (0,1), revealing the long memory property. In particular, if H € (3/4,1), the behavior
of Equation (28) matches the empirical estimates 0 < B < % for absolute log-returns
highlighted in Section 2.3.

Historically, the long memory of fractional Brownian motion for H > 1/2 was the
original reason to employ the latter in volatility modeling. Namely, in 1998, Comte and
Renault [47] suggested the first continuous time fractional volatility model of the form

o(t) =6 exp{Gz /Ot 693(t5)dBH(s)}, (29)

which can mimic volatility persistence and explain slow decays in the smile amplitude of
implied volatility surfaces when T — oo (in this regard, we also recommend the simulation
study [48] that illustrates this phenomenon numerically). Other contributions studying
stochastic volatility driven by fractional Brownian motion with H > 1/2 include:

e Ref. [130], which considers the model of the form
ds(t) = o(t)dW(t),
t
ot) = F( [ att,u)a8" ) + 7000

where F, a, and f are nuisance parameters and ¢y is a random initial condition;
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. Refs. [131,132], which discuss a fractional counterpart of the model Equation (16):

dS(t) = uS(t)dt + o (Y (t))S(t)dW(t),

Y(t) = —61 Y (t)dt + 0,dBH (1), (30)

where y, 61, 6; > 0, and ¢ is a deterministic function that is additionally assumed to
have sublinear growth in [132];
*  the series of papers [133-135] that proposes

dS(t) = uS()dt + o (Y (£)S(HdW (),

v = (;’é) - 92Y(t)>dt + 92—3dBH(t),

(31)

where y, 61, 62, 83 > 0, and o is a given function with sublinear growth. Note
that Equation (31) can be regarded as a fractional extension of the Heston model
Equation (17) since the process X (t) = Y?(t) satisfies the pathwise SDE

dX(t) = (01 — 02X (t))dt + 034/ X (£)dBH (¢).

In some models, long memory is incorporated not directly through fractional Brownian
motion, but rather by combining standard Brownian diffusions with the fractional kernel
Equation (26). Examples of this approach can be found in, e.g., [131,136], where the prices
are assumed to follow

dS(t) = u(t)S(t)dt + o (t)S(t)dW(t),

1 t 1
Iw/w(t—s)ff X (s)ds,

dX(t) = 6,(02 — X(1))dt + 051/ X (£)dB(t),

where W and B are correlated standard Brownian motions.

As a final remark, we mention the special interplay between the long memory and self-
similarity Equation (27) properties of fractional Brownian motion. As previously discussed
in Section 2.3, any measures of long-range dependence are hard to estimate statistically:
the analysis of time series during overly extended time periods naturally raises concerns
about data non-stationarity. However, if the data are additionally assumed to display
self-similarity, its long-term behavior can be inferred from high-frequency observations
over shorter periods. For a detailed discussion on self-similarity in financial time series, as
well as its connection with long memory, we refer the reader to [1] subsections 2.3 and 2.4.

o (t) =0+

3.3.2. Rough Revolution: H < 1/2

As highlighted in the simulation study [48], fractional Brownian motion with H > 1/2
indeed allows the behavior of implied volatility surfaces to be captured for longer maturities.
However, a high Hurst index does not seem to have any positive impact on the short-term
fit. For example, Alos, Le6n, and Vives in section 7.2.1 of their 2007 paper [126] analyze the
behavior of the short-term implied volatility skew, Equation (9), generated by a variation
of the model Equation (30) with H > 1/2, and analytically prove that it does not behave as
O(T#), B~ %, when T — 0. Interestingly, in section 7.2.2 of the same paper, they notice
that the stochastic volatility model driven by a Riemann-Liouville fractional Brownian
motion with H € (0,1/2) produces the required skew asymptotics O(T_%+H )as T — 0.

The arguments in [126] were based on Malliavin calculus (see, e.g., [137,138]): under
certain regularity assumptions, the short-term explosion of the implied volatility skew
translates to the explosion of the Malliavin derivative of volatility, the property which holds
for, e.g., fractional Brownian motion with H < 1/2. In 2014 (although [52] appeared in
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Quantitative Finance in 2018, the preprint had been available on SSRN and ArXiv since 2014),
Gatheral, Jaisson, and Rosenbaum [52] advocated for H < 1/2 from a different perspective:
using estimation techniques based on power variations, they came to a conclusion that
volatility must have Holder regularity of order ~ 0.1. Using Equation (23), it is easy to
check that

E[|B"(t) - B (s)]”] = |t = s]*", st >0,

s0, by the Kolmogorov—Chentsov theorem (see, e.g., [139] p. 192), the paths of B are Holder
continuous up to the order H. In other words, ref. [52] concluded that fractional Brownian
motions with very small Hurst index H are preferable choices for stochastic volatility
modeling. Later, in 2021, Fukasawa [140] re-visited the interplay between roughness and
the power law of the at-the-money volatility skew. The main theoretical result presented
in [140] is as follows: if the price S is a positive continuous semimartingale and if the at-the-
money implied volatility skew, Equation (9), exhibits the power-law behavior of the form

T-3tH, T 0, H ~ 0, then Hy-Holder continuity of the quadratic variation derivative

% (log S)¢ (32)
leads to an arbitrage opportunity if Hy > H. Note that Equation (32) exactly coincides
with o = {o(t), t > 0} in the general stochastic volatility model Equation (11) and, hence,
ref. [140] implies that, in a continuous setting with the power law of the implied volatility
skew, the volatility process “has to” be rough to avoid arbitrage.

These collective observations rapidly developed into a vast research field known as
“rough volatility”, with hundreds of papers published over the years. For an extensive
literature list on the topic that is regularly updated by specialists in the field, we refer the

reader to [141]. Some notable models include (in all cases, H € (0, %) ):
* the rough fractional stochastic volatility (RESV) model [52]

t

o(t) = exp{@l + 92/

o

8_93(t_s)dBH(S) },

which can be regarded as a rough counterpart of the model Equation (29);
*  the rough Bergomi model [142,143]

dS(t) = y/o(t)S(t)dW(t),
't 1 (33)
o(t) = Go(t)exp{291/0 (t—s)"~2dB(s) — Q%tZH},

where 61 > 0 and 0 is a deterministic function;
¢ the mixed rough Bergomi model [144,145]

ds(t) = s(t)\/@dB(f)r
o(t) = 6o(t) (5 exp{291 /Ot(t —s)H 24w (s) — G%tZH} (34)

(= )P 3dw(s) — ethH}),

+(1-9) exp{Z()Z/O

where § € [0,1], 61, 62 > 0, and 6 is a deterministic function;
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¢  the rough SABR model [146] where the price is given by
ds(t) = \/a()B(S(H))dW(t),
t
o(t) = y(t) exp{Q\/ZH/ (t—u)H-2dB(s) — ;taZH}dB(t),
0
with 0 < t <'s, 6y being a positive random process and  being a positive continu-
ous function;

*  the rough Stein-Stein model [147]

dS(£) = (1) S(HdW (L),
1 t _1
o(t) = 1"<H+%)/0 (t—s)H2dB(s);

¢ the fast-varying rough volatility [148]

ds(t) = u(t)dt + o*(HdW(1),

o (1) = F(Z: (1)), -
P t—s

ZE(t) = ﬁ/m ICH<£>dB(s),

where Ky (t) := Cy (i.‘H_l — fot(t - S)H_%e’sds) Cy > 0, F is positive and bounded
one-to-one function, 8 > 0, and ¢ > 0 is assumed to be small;
e the rough Heston model [149]

dS(t) = /o (H)S(HAW(1),

o(t) = o(0) + : (Ft(_HslHl)z (91 (6, — o(s))ds + 63 /U(s)dB(s)) (36)
2

and its modification, the quadratic rough Heston model [150,151],

) ‘ N (37)
Z(t) = /(;t 91w(90(s) —Z(s))ds + tezﬂ a(Z(s) —b)? 4+ cdW(s),

where B, W are Brownian motions, 4, b, ¢, 61, 65, 63 > 0, and 6y is a deterministic function.

The rough Heston approach Equation (36) is especially interesting from the modeling
perspective: in addition to the power-law behavior of Equation (9), it can reproduce
a special form of the Zumbach effect [152,153] and can be interpreted as the limit of a
reasonable tick-by-tick price model based on two-dimensional Hawkes processes [154], i.e.,
it deduces the roughness of the volatility directly from the market microstructure.

3.3.3. Puzzles of Fractionality and Roughness

In principle, one can divide the majority of arguments in favor of rough volatility into
two distinct categories:
*  econometric studies like [52], which involve regularity estimations of volatility from
historical high-frequency samples of an asset (e.g., S&P500 index);
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* analyses from the options pricing perspective such as [126,140] that justify roughness
by its ability to reproduce, e.g., the power-law behavior of implied volatility skews,
Equation (9).

However, as is often the case when modeling extremely complex systems like the
financial market, neither of these arguments is convincing enough to be unequivocally
declared undeniable and immune to valid criticism. For example, the methodology used
in [52] was examined by Rogers [155], Cont and Das [156], as well as Fukasawa, Takabatake,
and Westphal [157,158]: they apply the same regularity estimation procedure as in [52] to
synthetic datasets and report that the estimator tends to produce low values of H regardless
of the true parameter used in the simulation. This issue is explained as follows in the above-
mentioned literature: since the volatility ¢ is not observable directly, one must first extract
some volatility proxy from the stock data and then use it as the sample for regularity
estimation. However, this procedure results in additional approximation errors that bias
the estimator of H towards zero. The authors of [52] acknowledge this issue themselves,
writing that “estimation errors when estimating volatility can be quite significant for some models,
leading to downward biases in the measurement of the smoothness” [52] p. 946.

Interestingly, there were several subsequent attempts to account for the problem
described above. For example, Fukasawa, Takabatake, and Westphal [157,158] develop a
more robust estimation technique and still report that H < 0.1 is indeed the best fit for the
volatility model

dlog o?(t) = 6, (t)dt + 6,dBH (1) (38)

with 8; being an unknown adapted cadlag process. Bolko et al. [159] perform the general-
ized method of moment (GMM) estimation and also confirm the roughness of volatility for
thirty-one leading stock indexes under the assumption that log ¢ is a fractional Ornstein—
Uhlenbeck process.

Next, the claim that the implied volatility skew follows the power law can also be
challenged. For example, Guyon and El Amrani [49] investigate the volatility skew behavior
in more detail and conclude that

“...power law fits the term-structure of ATM skew of equity indexes quite well over a
large range of maturities, from 1 month to a few years. But this should not lead one to
conclude that the ATM skew blows up like this power law at zero maturity. Zooming in
on the short maturities shows that the power-law extrapolation fits the data poorly.”

In summary, Guyon and El Amrani ([49] p. 14) argue that “far from being infinite, the
zero-maturity extrapolation of the skew is distributed around a typical value of 1.5” (in this context,
“the skew” means the value ¥(0) in Equation (9)). On the contrary, Delemotte, De Marco,
and Ségonne [50] investigate the behavior of average volatility skews between 2007 and
2015 (a period that is different from the period 2020-2022 of Guyon and El Amrani [49])
and find that a power-law-type explosive behavior of the implied volatility skew when
T — 0 is entirely appropriate! In addition, they argue ([50] section 3) that the average skew
behaves differently for shorter and longer maturities. Their analysis suggests that

T3 H T <Ty,

39
T-3tH,  T>T, )

E[¥(T)] o {

where Hy > Hj and Tj is roughly 2 months.

What is the reason for such a discrepancy in conclusions regarding very similar (and
sometimes literally the same) datasets? Features like the behavior of the volatility skew
are very intricate and their assessment based on discrete data leaves much space for
interpretation and extrapolation. For example, Delemotte, De Marco, and Ségonne ([50]
pp- 2-3) compare their result to [49] and summarize the difference as follows:

“As a result, both models could very reasonably be used to extrapolate the ATM skew for
very short maturities, and in any case below the first maturity quoted on the market, while
leading to different skew asymptotics: finite limiting skew in the 2-factors Bergomi model,
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and exploding skew in the 2PL model—indicating that the question of the explosive
or non-explosive nature of the short-end of the skew curve might be (at least in
the case of the SP500 index) hard to disambiguate.”

In some sense, this ambiguity is very natural: the volatility itself is a purely theoretical
(albeit meaningful) concept, and hence there is no single “ultimately true volatility model”.
In this context, the question “is volatility truly rough?” lacks a definitive “correct” answer.
Rough volatility is a valid modeling framework with its advantages and limitations which
indeed mimics some important features of the data; for example, the empirically observed
steepness of smiles at-the-money does increase close to maturity (as clearly visible in
Figure 2), and rough models seem to capture this effect better than classical Brownian
diffusions, irrespective of whether this increase “truly” follows the power law. In turn,
econometric analyses like [157-159] can be viewed as reasonable reality checks which can
reveal possible points of contradiction with data and test specific models against each other;
for example, the results of [157-159] could mean that Equation (38) with small H seems
to be more consistent with some features of the data than, e.g., Equation (18) with p =1
or Equation (29) with H > % On the other hand, other models may also be compatible
with observations. After all, according to a famous aphorism commonly attributed to the
statistician George Box, all models are wrong, but some are useful.

With this disclaimer in mind, let us finish this subsection with a discussion of another
intricate point coming from the interplay between roughness and long memory in the specific
context of fractional Brownian motion B. More precisely, long memory requires the Hurst in-
dex H > 1/2 whereas roughness demands H < 1/2. Despite some studies that demonstrate
spurious long memory appearing due to model mis-specifications (see, e.g., [52] section 4),
roughness alone cannot explain the behavior of the entire volatility surface. For example,
Funahashi and Kijima [160] demonstrate that volatility models based on fractional Brown-
ian motion with H < 1/2 do not give the required rate of decrease in the smile amplitude
as T — oo, whereas H > 1/2 gives this effect (see also [48]).

It should be noted that this contradiction, referred to as the “fractional modeling puzzle”
in [160], is somewhat synthetic: in general, long memory and roughness do not depend
on each other and can co-exist within a single stochastic process. In other words, the
reason for this “fractional puzzle” comes from the properties of fractional Brownian motion
itself and a different modeling framework may utilize both of these features without any
structural contradictions (see, e.g., the model based on Brownian semi-stationary processes
by Bennedsen, Lunde, and Pakkanen [161]). Nevertheless, in a continuous setting, BH
seems to be an extremely convenient and valuable asset from the mathematical perspective:

¢ itis Gaussian, enabling the utilization of numerous methods from Gaussian process

theory including efficient numerical methods, Malliavin calculus, etc. (see, e.g., [138]

chapter 5);
¢ it has stationary increments and is ergodic, which facilitates various statistical estima-

tion techniques (see, e.g., [162]);

* despite being non-semimartingale, fractional Brownian motion has a developed

stochastic integration theory [129].

In the literature, there are several possible approaches to incorporate long memory
and roughness within the fractional framework. The most straightforward methodology is
to use two fractional Brownian motions with different Hurst indices. Such a model was
utilized in, e.g., [160] (see also [137] section 7.7) in the form

dS(t) = uS(t)dt + o (X1(t), X2(t))dW(t),

. S o . (40)

dX'(t) = (07 — 0,X'(t))dt + 65dB™i(t), i=1,2,
with BH1, pH2 being two fractional Brownian motions with H; > 1/2 and Hy < 1/2. The
authors report that this model indeed manages to grasp the implied volatility surface with the
power law for short maturities and slower decay of the smile amplitude for long maturities.
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Such a suggestion somehow resonates with the observations made in [50]: the authors also
discuss the possibility of introducing several factors with different regularity into the model
in order to reproduce Equation (39) (although they consider 0 < Hp < Hp < %).

Another interesting possibility—a multifractional Brownian motion—is advocated in
Corlay et al. [163] (see also [164]). There, the authors estimate the local roughness of the
volatility and conclude that it is heavily variable and has periods of low (~0.1) and high
(~0.8) regularity (see [163] figure 2). It is also important to note that [52] section 2.6 also
reports some dependence of the volatility roughness on time.

As a generalization of both approaches mentioned above, one can also consider the
usage of Gaussian Volterra processes Z(t fo (t,5)dB(s). Such volatility drivers were
considered in, e.g., [165,166] or the series of papers [167, 168]

3.4. Usability Challenges of Stochastic Volatility Models

We finish this section with several remarks that, in our opinion, are worth the attention
of the reader.

3.4.1. Positivity of Volatility

As mentioned in Section 3.2, one of the natural expectations from a “reasonable” volatil-
ity model is the positivity of its paths. This requirement actually goes beyond the simple
consideration that ¢ = {¢(t), t > 0} should resemble its original proxy, Equation (1), and is
connected to the procedure of transition between the physical and the pricing measures. In
the Black—Scholes-type models Equation (11), martingale densities usually involve terms of
the form fo 0(1 )dW ) and fo 02 ds (see, e.g., [169] proposition 1.11) which can be poorly

defined if the volatility hits zero w1th positive probability. Of course, one may model the
market under the pricing measure in the first place, but, in this situation, one sacrifices the
ambition to justify the approach with econometric analysis based on historical time series
as in [52] which, of course, should be performed under the physical measure.

3.4.2. Possibility of Moment Explosions

A common issue for the stochastic volatility framework is the possibility of moment
explosions in price [99]. That means that the moment of the price E[S”(t)] may be infinite for
all time points t after some t,. Moment explosions can be a notable drawback from at least
two perspectives. First, numerical schemes involving L"-convergence become inaccessible.
Another perspective is asset pricing, as noted in [99] section 8, “several actively traded fixed-
income derivatives require at least L? solutions to avoid infinite model prices”. In principle, both
positivity and the absence of moment explosions can be achieved by assuming bounds
on the volatility; see, e.g., [123,132,148,167,168,170,171] and the footnote on p. 2 in [151].
It seems that this assumption is not too aggravating: in industry, there seems to be a
consensus [172] that real-world proxies of volatility are typically range-bound.

3.4.3. Importance of Numerical Methods

As noted in [18] p. 24, the standard Heston model is still widely used despite all the
empirical inconsistencies outlined in Section 3.2. The reason for this is mainly the availability
of algorithms for practically all possible applications. Stochastic volatility models normally do
not have closed-form expressions for option pricing, portfolio optimization, hedging, etc., and,
therefore, the development of efficient numerics for them is of acute importance. It is especially
relevant for fractional/rough models which are predominantly non-Markovian and, hence,
cannot utilize various stochastic optimization techniques developed for Markov processes. In
recent years, some work in this direction has been performed in, e.g., [151,167,168,173-175].

4. VIX and the Joint Calibration Puzzle

As previously mentioned in the Introduction, volatility is an important tool for quan-
tifying risk, in addition to being a critical variable in option pricing. Therefore, it is no
surprise that market actors have been seeking dedicated financial instruments to hedge
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against drastic volatility changes and capitalize on overall volatility trends. Nowadays,
derivatives written on various volatility proxies are extremely popular among investors: for
instance, according to the Cboe Annual Report 2022 [176], the CBOE Volatility Index (VIX,
see Figure 6) is one of the most traded underlying assets of the Chicago Board Options
Exchange, alongside the S&P 500 (SPX) index.

Since volatility is not a directly observable value and, in some sense, it comes from
the theoretical domain, its quantification is a necessary step before considering its use
as an underlying asset. Naturally, various methodologies have been applied for such
quantification; a detailed historical overview of this subject can be found in, e.g., [177]
section 3. Here, we mention the early approaches of Gastineau (1977) [178] and Cox
and Rubinstein (1985) [179] appendix 8A, who proposed indices based on the implied
volatility, as well as Brenner and Galai (1989) [180], who suggested a metric coming from
the realized volatility and considered derivatives employing it as the underlying asset.
Another index utilizing an average of S&P100 option implied volatilities was introduced
by Fleming et al. [181], and this methodology was used by the Chicago Board Options
Exchange for computation of their early version of VIX between 1993 and 2003. The general
idea behind the modern computation of VIX can be traced back to Breeden and Litzenberger
(1978) [182], but the exact formulas were crystallized in the works of Dupire [183] and Carr
and Madan [184].

Nowadays, VIX is the preeminent volatility proxy on a global scale, closely connected
to a volatility modeling challenge occasionally referred to as “The Holy Grail of volatility
modeling” [150,185]. In order to outline this problem in more detail and prevent any
ambiguity, let us first dedicate some time and delve into the specifics of VIX computation
and interpretation.

Cboe VIX, 2005-2023

VIX

40

20

T T T T
2005 2010 2015 2020

Year

Figure 6. Daily values of the CBOE VIX index, 2005-2023. Note the two spikes in 2008 and 2020
which correspond to the respective economic crises. The data were retrieved from CBOE.com [186].

4.1. Intermezzo: VIX and Its Interpretation

Assume that the SPX forward price S is a continuous martingale satisfying
ds(t) = o(t)S(t)dW(t), (41)

on a filtered probability space (Q), F, {F;}, Q) under the risk-neutral probability measure
Q, where W is a Q-Brownian motion and o = {c (), t > 0} is an adapted square integrable
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stochastic process. It is easy to verify that, under some mild assumptions on ¢, Equation (41)
has a unique solution of the form

S(t) =S(0 )exp{ / ds—i—/ }

Next, fix a period of time T (in the case of CBOE VIX, T = 30 days) and consider

the value X St T)
t+
~ZEq {log =0 ‘ ]—"t]. (42)
One the one hand, since, by the martingale property,
t+T
Eq [ / o (s)dW(s) ‘}}} —0,
t
one can observe that
t+T t+T
2K, {logw ] ]—'t} - _2g, [—1/ o2(s)ds +/ o(s)dW(s) ’ ]—'t]
T T 2 Jt ¢ (43)
T
_ 1 2
= T./t Eg {(7 (s) ]]-'t}ds.
On the other hand, by Taylor’s formula with integral remainder,
S(t+T) S(t+T)—S(t) /S(f+T> (S(t+T)—K)
1 = - —————=dK
%750 g0 s(0) K2
_ S(t+T) —S(1) SO (K=S(t+T))+ © (S(t+T)—K)+
B0 /0 kx K /s R
and hence, since
S(t+T)—S(t) _
o[ g | A <o
by the martingale property, Equation (42) can be re-written as
2 S(t+T _ 2 SO (K—=S(t+T))+
_TE@[ 08 gy ‘]—"t} _EQ[T/O e dK]ft}
~ (S(t+T)=K)s ]
E / ———F——dK | F
i Q[ sm K2 ‘ t
T K2
o [ —
/ ol(S(+T) —K), | F]
Js(t) K2

:zerT</S() dK / CtKT )
T 0

where r is the instantaneous interest rate and P;(K, T), C¢(K, T) are, respectively, the prices
(at moment ¢) of put and call options with strike K and expiry date ¢ + T. To summarize,
under the settings specified above, Equations (43) and (44) yield

1 T 2¢'T [ 1S() Py(K,T) * Cy(K,T)
T/t Eg[o(s) | Fi]ds = = (/0 ik [T dK) (45)

VIXis computed (see, e.g., [187] or [188] section 1.5.2) by discretizing the right-hand
side of Equation (45) (note that the latter relies exclusively on the empirically observable
values, SPX forward S(t) and put/call option prices):
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ZerT 1 Pt(K’, T) N C (K T) 1 S(t) 2
2 R ] t ’
e <fZMI<%(Kf“ B A (% 1)

where K_p < K_(p—1) < ... < Kp are payoffs of all listed out-of-the-money put options
with maturity att + T, Ky < S(t), and K7 < K; < ... < Ky are payoffs of all listed out-of-
the-money call options with maturity at t + T, K; > S(t). In the meanwhile, the left-hand
side of Equation (45) is a standard notion of the forward variance, precisely the value one
intends to capture.

4.2. VIX Smile and the Joint Calibration Puzzle

Despite any potential inaccuracies, VIX stands as the most popular proxy for market
volatility in the world and, therefore, it is unsurprising that derivatives with VIX underlying
them are actively traded on the market. In particular, in March 2004, CBOE launched VIX
futures and, in February 2006, VIX options were introduced—and, naturally, a problem of
pricing such derivatives emerged.

First of all, having VIX option prices, one can use the procedure described in Section 2.2
and construct the corresponding implied volatility surface o(T, K), with T denoting the
time to maturity and K being the strike. Contrary to the convex “smiles” for derivatives
written on classical stocks and stock indices, the VIX implied volatility (T, K) consistently
exhibits concave behavior in K for every fixed T with positive slope at the money (see [189]
figure 1, as well as [119,124], or [190]).

It turns out that continuous stochastic volatility models have mixed success in repro-
ducing this phenomenon, especially for shorter maturities—in this regard, we recommend
an excellent review [191] on the topic. Alos, Garcfa-Lorite, and Gonzalez [189] (see also [137]
chapter 10) use Malliavin calculus tools and analyze selected models to check whether they
produce the positive slope at the money for short maturities. Their results show that:

e The SABR model, Equation (19), gives a flat skew, but its modification, called the mixed
SABR model

o (t) = 6 (5 exp{261W(t) - e%t} +(1-0) exp{zezwa) - egt}),

where § € [0,1], 6, 61, 62 > 0, generates the required positive slope provided that
6 #0,1and 61 # 6y;

e The Heston model, Equation (17), normally generates negative VIX skew (see also [113]
Figure 3); however, under some conditions on coefficients (e.g., when Feller condition
is violated, see [190]), the slope can be positive;

*  Therough Bergomi model, Equation (33), as well as its mixed modification, Equation (34),
both give the required slope (see also [143]).

Other notable continuous stochastic volatilities that are able to capture the upward
smirk include:

e The 3/2 model, Equation (20) [119] section 2;

*  The double CEV model, Equation (21) [18];

*  The Heston with stochastic vol-of-vol model, Equation (22) [124];

*  The quintic Ornstein—Uhlenbeck model [192]:

(46)
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and, more generally, a class of Gaussian polynomial models [174]:

o(t) = \Joo()) LX) __

VEPRX©)]) W
X(t) = /(:}C(t — $)dB(s),

where 6 > 0, p is a polynomial, and K is a square integrable Volterra kernel;
¢ The quadratic rough Heston model, Equation (37).

As one can see, multiple continuous models, both standard Brownian diffusions and
rough volatility models, are able to reproduce the shape of the VIX smile. However, there
is an additional dimension to that problem: since there is a direct connection between SPX
and VIX, models calibrated with respect to the SPX data should be consistent with VIX and
vice versa. In other words, one seeks a market model that would jointly calibrate to both
VIX and SPX simultaneously. As noted by Guyon in [185], “Without such models, financial
institutions could possibly arbitrage each other, and even market making desks within the same
institution could do so...”.

It turns out that this problem, known as the “joint calibration puzzle”, is extremely
difficult to solve; so much so that some researchers label it “the Holy Grail of volatility
modeling” [150,185]. For a long time, continuous-time stochastic volatility models without
jumps failed to produce the perfect SPX-VIX joint calibration. Some notable attempts
include the 3/2 model [119], double CEV model [18], Heston with stochastic vol-of-vol
model [124], and rough Bergomi model [143]—in all cases, the joint fit was only partially
successful, predominantly failing for short maturities (see also an excellent presentation by
J. Guyon [144] on the topic). The most fruitful approaches in solving the joint calibration
puzzle were outside of the continuous-time continuous-price paradigm:

¢ Cont and Kokholm [193] use jump diffusions to directly model forward variances and
SPX; jumps indeed allow the ATM S&P500 skew and the ATM VIX implied volatility
to be de-coupled, giving a good joint fit;

¢  Guyon [185,194] utilizes nonparametric discrete time model building joint probability
measures on SPX and VIX on a discrete set of dates; this allows an almost perfect joint
calibration to be obtained.

However, in recent years there have been several successful attempts inside the fully
continuous framework, all with a higher number of parameters:

*  Gatheral, Jusselin, and Rosenbaum [150] and Rosenbaum and Zhang [151] show that
the quadratic rough Heston model, Equation (37), calibrates very well to SPX and
VIX smiles;

e AbiJaber, Illand, and Li [174,192] provide a good fit with Gaussian polynomial models,
Equation (47);

*  Bourgey and Guyon ([195], Section 4) extend the discrete time model of [185,194] to a
continuous-time setting;

*  Guyon and Mustapha [196] achieve an impressive calibration with the model

1
dS; = —Eag(t, Ss, Yt)dt + U’S(t, Ss, Yt)th,

dY; = “uy(t, Ss, Yt)di’ + Uy(t, St, Yt) (p(t, St, Yt)th + 4/ 1-— pz(t, Ss, Yt)dBt),

where the drift, volatility, and correlation functions o, yy, oy, and p are modeled with
neural networks.

4.3. VIX and Continuous Models: Interpretation Issues

We finish this section by highlighting a significant caveat related to the interpretation
and tractability of VIX within the context of continuous stochastic volatility models.
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Despite the undoubted elegance of the VIX computation methodology, the precision of
VIX per se in capturing the volatility of SPX heavily depends on the underlying assumptions.
Namely, it is crucial that SPX is assumed to follow continuous dynamics, Equation (41)
and any deviations from this model lead to some deterioration in the VIX tractability. In
particular, if there are jumps in the SPX forward dynamics, Equation (43) does not hold,
with an additional term appearing on the right-hand side of the expression (see, e.g., [197]).
Therefore, if Equation (41) is violated, Equation (45) does not hold either, and VIX loses its
original interpretation.

It is important to note that the viability of the model Equation (41) can be tested
statistically by comparing VIX to variance swap contracts. By definition, a variance swap is a
futures contract with a payoff at the moment T of the form

1 S(t) \?
T};(logs(tk ) - Vs,

k—1)

where 0 =ty < t; < --- < t, = T is a partition of [0, T] and V'S denotes the corresponding
swap rate that is determined by the market. Non-arbitrage arguments imply that, if the
dynamics Equation (41) indeed holds and some mild assumptions on ¢ are satisfied,

n 2 T
()] o sl

k=1

VS =Eq

as maxy |ty — tx_1| — 0. In other words, under the model Equation (41), market swap rates
V/VS should approximately coincide with VIX. However, as reported by Ait-Sahalia et
al. in their analysis [197] using the over-the-counter swap rate data, there is a statistically
significant gap between VS and VIX?: the values of VS — VIX? are mostly positive, larger
during market turmoils but sizable even in quiet times. For more details in that regard, as
well as for possible alternatives to the current VIX computation method, we also refer the
reader to the discussions in [198-200].

In other words, there is some evidence showing that the tractability of VIX as a
volatility index is not that straightforward and the real-world observations of VIX are not
sampled from

1 t+T
7 ), Eq[0?(s) | Fi]ds (48)
as models with continuous price dynamics assume (as suggested in [200], in the presence
of jumps, VIX measures the risk-neutral entropy of the simple return on the S&P 500 index
rather than (48)). Therefore, fitting stochastic volatility models with the continuous price
dynamics to VIX without any adjustments may in principle produce unstable results.

5. Concluding Remarks

In this survey, we outlined—though with considerably broad brushstrokes—the exist-
ing literature on stochastic volatility. Clearly, the number of approaches is very large and
we acknowledge that we are far from describing all of them, even within the considerably
narrower framework of continuous models. Nevertheless, we hope that the reader received
a general understanding of the motivation behind this modeling paradigm.

We conclude our presentation by saying that updating, refining, and improving
models still seems an endless race. Right now, new techniques and modeling paradigms
are being developed—in particular, we mention [201], which finds strong arguments for
fully path-dependent volatility models as well as machine learning and signature methods
such as in [202-205] (the model in the latter actually includes the Gaussian polynomial
models, Equation (47), as a special case). Perhaps these novel tools will become the new
classics and open new frontiers in understanding the financial market.
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