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Abstract

We classify the singularities in the unframed Nakajima quiver varieties associated with extended 
Dynkin quivers and the corresponding minimal imaginary root with a small restriction on the 
parameters and use this to construct a number of hyper-K ̈ahler cobordisms between binary 
polyhedral spaces.

1. Introduction

In [19], Nakajima introduced a family of spaces he called quiver varieties. A quiver is simply a finite 
directed graph (Q, I), where I is the set of vertices and Q is the set of edges. We typically denote the 
quiver by Q. Given a dimension vector v ∈ ℤI

≥0, we form the vector space 

Rep(Q,v) := ⨁
(h : i→j)∈Q

Homℂ(ℂvi ,ℂvj ),

which carries a natural linear action of the compact Lie group Gv := ∏
i∈I

U(vi). The doubled quiver 

Q is obtained from Q by adjoining an opposite edge h : j → i for each edge h : i → j in Q. In this 
situation, one may give the complex vector space Rep(Q,v) a natural quaternionic structure preserved 
by the action of Gv. There is an associated hyper-K ̈ahler moment map μ : Rep(Q,v) →ℝ3 ⊗𝔤v, 
where 𝔤v = Lie(Gv). The quiver varieties associated with Q and v are then defined to be the hyper-
K ̈ahler quotients 

ℳξ(Q,v) := μ−1(ξ)/Gv,

for ξ = (ξ1,ξ2,ξ3) ∈ ℝ3 ⊗ℝI . Here, ξ  is regarded as an element of ℝ3 ⊗𝔤v using a canonical linear 
map from ℝI  onto the center of the Lie algebra. Given w ∈ ℤI , let 

Dw = {ζ ∈ ℝI : ζ ⋅w = ∑
i

ζiwi = 0} ⊂ ℝI .

It is then necessary that ξ ∈ ℝ3 ⊗Dv for ℳξ(Q,v) to be non-empty; however, for almost all such 
parameters, the quiver variety ℳξ(Q,v) carries the structure of a smooth hyper-K ̈ahler manifold. 
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912 G. O. HELLE

More generally, there is a decomposition 

ℳξ(Q,v) = ℳreg
ξ (Q,v)∪ℳsing

ξ (Q,v),

where the regular set ℳreg
ξ (Q,v) is open and carries the structure of a smooth hyper-K ̈ahler manifold, 

while the singular set ℳsing
ξ (Q,v) is its closed complement.

An extended Dynkin quiver Q is a quiver whose underlying unoriented graph is an extended 
Dynkin diagram of type ÃDE, that is, type Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8. In this situation, there is a dis-
tinguished dimension vector δ ∈ ℤI

≥0, the minimal positive imaginary root in the associated root 
system. The purpose of this paper is to study the singular members of the family of quiver varieties 
ℳξ(Q,δ) when Q is an extended Dynkin quiver. This family of spaces, whose non-singular members 
are the asymptotically locally euclidean (ALE) spaces, was first constructed and studied by Kron-
heimer [15] in a slightly different form. The fact that Kronheimer’s construction can be expressed in 
the above form is explained in [19, p. 372–373].

The McKay correspondence [18] sets up a bijection between the isomorphism classes of finite 
subgroups Γ ⊂ SU(2) and the extended Dynkin diagrams of type ÃDE. Kronheimer exploited this 
correspondence to show that the (non-empty) non-singular members of the family ℳξ(Q,δ) for 
ξ ∈ ℝ3 ⊗Dδ  are smooth four-dimensional hyper-K ̈ahler manifolds diffeomorphic to the minimal 
resolution of the quotient singularity ℂ2/Γ, where Γ ⊂ SU(2) is the finite subgroup associated with 
the underlying graph of Q under the McKay correspondence.

To state our first main result, let Q be an extended Dynkin quiver with vertex set I and minimal 
positive imaginary root δ ∈ ℤI . By deleting any vertex i ∈ I with δi = 1 from Q, one recovers the 
associated (non-extended) Dynkin graph of type ADE. Identify the set of vertices with {0,1,⋯ ,n}
for some n ∈ ℕ such that δ0 = 1. One may then realize the root system associated with the underlying 
Dynkin graph as a subset Φ ⊂ ℤn ⊂ ℝn with the coordinate vectors as a set of simple roots. Further-
more, there is a natural way to identify ℝn ≅ Dδ ⊂ ℝn+1, thereby identifying the set of parameters 
ℝ3 ⊗Dδ ≅ ℝ3 ⊗ℝn. With this in mind, our first main result can be stated as follows:

Theorem 1.1 Let ξ = (ξ1,ξ2,ξ3) ∈ ℝ3 ⊗ℝn satisfy ξ1 = 0. Then if Φ∩ ξ⟂ = {α ∈ Φ : α ⋅ ξ2 = α ⋅ ξ3 =
0} is non-empty, it is a root system in the subspace it spans and admits a decomposition into root 
systems of type ADE: 

Φ∩ ξ⟂ = Φ1 ∪Φ2 ∪⋯∪Φr . (1.1)

Furthermore, there is a natural bijection ρ : ℳsing
ξ (Q,δ) ≅ {Φ1,Φ2,⋯ ,Φr} and the local structure 

around the singularities can be described as follows: Let x ∈ℳsing
ξ (Q,δ) and let Γx ⊂ SU(2) be the 

finite group associated with ρ(x) under the McKay correspondence. Then, there is an open neighbor-
hood x ∈ Ux ⊂ℳξ(Q,δ) and a homeomorphism ϕx : Ux → Br(0)/Γx, where Br(0) ⊂ ℂ2 is the open 
ball of radius r, that restricts to a diffeomorphism 

ℳreg
ξ (Q,δ) ⊃ (Ux − {x}) ≅ (Br(0)− {0})/Γx.

The fact that ℳξ(Q,δ) is non-singular when ξ  avoids all the root walls Dθ for θ ∈ Φ is the content 
of [15, Corollary 2.10].
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SINGULAR QUIVER VARIETIES OVER EXTENDED DYNKIN QUIVERS 913

We give a brief outline of the proof of Theorem 1.1 and, in particular, explain why we make the 
restriction ξ1 = 0. The action of the compact group Gv on Rep(Q,v) extends to a linear action of the 
complexification Gc

δ = ∏n

i=0
GL(δi,ℂ). Moreover, the hyper-K ̈ahler moment map splits 

μ = (μℝ,μℂ) : Rep(Q,δ) →ℝ3 ⊗𝔤δ ≅ 𝔤δ⊕𝔤c
δ ,

where 𝔤c
δ = Lie(Gc

δ), and the second component is a moment for the action of Gc
δ  with respect to 

a complex symplectic form on Rep(Q,δ). In the situation where the parameter ξ = (ξ1,ξ2,ξ3) ∈
ℝ3 ⊗ℝn satisfies ξ1 = 0, there is a homeomorphism between the hyper-K ̈ahler quotient ℳξ(Q,δ)
and the geometric invariant theory (GIT) quotient μ−1

ℂ ((ξ2,ξ3))//Gc
δ . The elements of the latter quo-

tient have a representation theoretic interpretation. Indeed, if we write λ = ξ2 + iξ3 ∈ ℂI , the points of 
μ−1
ℂ (λ)//Gc

δ  are in natural bijection with the isomorphism classes of semi-simple modules of dimen-
sion δ over the deformed preprojective algebra Πλ = Πλ(Q) introduced in [7]. Under these bijections, 
the singularities in ℳξ(Q,δ) correspond precisely to the non-simple, semi-simple modules. Using 
the result by Crawley-Boevey [5] on the existence and uniqueness of simple Πλ-modules, we are 
able to set up a bijection between the latter set and the root systems in the statement of the theorem.

To establish the homeomorphisms ϕx : Ux → Br(0)/Γx, we employ the result of [17] that essen-
tially reduces the statement to the determination of the complex symplectic slice (see Definition 7.1) 
at a point ̃x ∈ μ−1(0,λ) above x. We should note that a result along these lines is given in
[15, Lemma 3.3]; however, the proof given there seems to contain a gap that we have been unable to 
close. For this reason, we have chosen to rely on the above-mentioned result instead.

The finite subgroups Γ ⊂ SU(2) are called the binary polyhedral groups. By restricting the canon-
ical action of Γ to the three-sphere S3 ⊂ ℂ2, we obtain the binary polyhedral spaces S3/Γ. In 
Proposition 8.3, we determine what kind of root space decomposition 

Φ∩ ξ = Φ1 ∪⋯∪Φr ,

one can obtain by varying the parameter ξ . Combining this with the above theorem, we obtain the 
following constructive procedure for hyper-K ̈ahler manifolds with a number of ends modeled on 
(0,∞)× S3/Γ for finite subgroups Γ ⊂ SU(2). In the following statement, we say that a subgraph H
of G is a full subgraph if every edge in G connecting a pair of vertices in H belongs to H.

Theorem 1.2 Let Γ0,Γ1,⋯ ,Γr ⊂ SU(2) be finite subgroups and let K0,K1,⋯ ,Kr  denote the cor-
responding (non-extended) Dynkin graphs. Let Q be an extended Dynkin quiver with vertex set I, 
whose underlying unoriented graph is the extended version of K0. Then if K1 ⊔K2 ⊔⋯⊔Kr  can be 
realized as a full subgraph of K0, there exists a parameter ξ ∈ ℝ3 ⊗ℝI  such that X = ℳreg

ξ (Q,δ)
satisfies the following properties:

(1) X is a connected hyper-Kähler manifold of dimension 4.
(2) There are disjoint open subsets U0,U1,⋯ ,Ur ⊂ X and for each 0 ≤ i ≤ r a diffeomorphism 

ϕi : Ui → (0,∞)× S3/Γi.

(3) The complement Y = X −⋃r

i=0
Ui is a compact four-manifold with boundary components S3/Γi

for 0 ≤ i ≤ r.

Note that the diffeomorphism ϕi, 0 ≤ i ≤ r, will generally not preserve the hyper-K ̈ahler structure.
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914 G. O. HELLE

We wish to briefly describe the gauge theoretic motivation for pursuing the above result. In [11], 
the author calculates the equivariant instanton Floer homology in the sense of [10] for the binary 
polyhedral spaces. The key geometric input needed for the calculations is a close understanding of 
the appropriate moduli spaces of SU(2)-instantons over the cylinders ℝ× S3/Γ for finite Γ ⊂ SU(2). 
In [2], Austin tackled this problem using an equivariant version of the classical ADHM correspon-
dence (see [9, Section 3.3] or [1]). This work inspired the generalized ADHM correspondence of 
Kronheimer and Nakajima [16] that describes instanton moduli spaces associated with unitary bun-
dles over the ALE spaces as Nakajima quiver varieties (for this later reformulation, see [19]). To 
elaborate, if Q is an extended Dynkin quiver whose underlying graph corresponds to Γ under the 
McKay correspondence, then by [15, Corollary 3.2] one has 

ℝ× S3/Γ ≅ (ℂ2 − {0})/Γ ≅ℳreg
0 (Q,δ),

where δ is the minimal imaginary root as before. With this in mind, the equivariant ADHM corre-
spondence of [2] can be regarded as a degenerate case of the generalized ADHM correspondence of 
[16]. These two cases suggest that it should be possible to extend the ADHM correspondence to the 
singular situation considered in this paper as well. This conjectural leap would open up the possi-
bility of studying cobordism maps in equivariant Floer homology associated with the many explicit 
cobordisms obtained from the above theorem.

The paper is organized as follows: In Section 2, we give the basic definitions concerning hyper-
K ̈ahler manifolds and hyper-K ̈ahler reduction. In Section 3, we introduce quivers and quiver varieties 
and state the key results that will be needed concerning these. In Section 4, we recall the basic 
elements of the complex representation theory of quivers. Afterwards, we give the definition of 
the deformed preprojective algebras Πλ(Q) and spell out the relation between the quiver variety 
ℳ(0,λ)(Q,v) and the isomorphism classes of semi-simple Πλ(Q)-modules. Finally, we recall the key 
result of [5] that eventually allows us to classify the singularities in ℳ(0,λ)(Q,v). In Section 5, we 
give the construction of the extended Dynkin diagrams from the underlying Dynkin diagram and 
review the necessary root space theory of the associated root systems.

Our original work starts in Section 6, where we establish the bijection between the singulari-
ties in the (extended Dynkin) quiver varieties and the components in the corresponding root space 
decomposition as in (1.1). In Section 7, we establish the local models around the singularities using 
a result of [17] and give the proof of Theorem 1.1. In the final section, we determine the possible 
configurations of singularities in the various quiver varieties and complete the proof of Theorem 1.2.

2. Hyper-Kähler reduction

A hyper-K ̈ahler manifold is a tuple (M,g, I,J,K) consisting of a smooth manifold M, a Rieman-
nian metric g and three almost complex structure maps I,J,K : TM → TM subject to the following 
conditions:

(1) I, J and K are orthogonal with respect to g,
(2) IJK = −1TM  and
(3) ∇gI = ∇gJ = ∇gK = 0, where ∇g is the Levi-Civita connection.

In particular, for each S ∈ {I,J,K}, the triple (M,g,S) is a K ̈ahler manifold with K ̈ahler form ωS
given by (ωS)p(v,w) = gp(Sv,w) for each p ∈ M and v,w ∈ TpM.
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SINGULAR QUIVER VARIETIES OVER EXTENDED DYNKIN QUIVERS 915

Following the terminology of [17], a tri-Hamiltonian hyper-K ̈ahler manifold is a triple (M,K ,μ)
consisting of a hyper-K ̈ahler manifold M, a compact Lie group K acting on M preserving the hyper-
K ̈ahler structure and a hyper-K ̈ahler moment map μ = (μI ,μJ ,μK) : M →ℝ3 ⊗𝔨*, where 𝔨 is the Lie 
algebra of K. Note that by definition μ is a hyper-K ̈ahler moment map if and only if the components 
μI ,μJ ,μK  are moment maps for the corresponding symplectic forms ωI ,ωJ ,ωK , respectively, in the 
sense familiar from symplectic geometry (see, for instance, [4]).

The group K acts on 𝔨* through the coadjoint action, and we denote the set of fixed points by 
(𝔨*)K . For each ξ ∈ ℝ3 ⊗ (𝔨*)K , the fiber μ−1(ξ) is K-invariant and the quotient space μ−1(ξ)/K  is 
called a hyper-K ̈ahler quotient.

Theorem 2.1 ([12]). Let (M,K,μ) be a tri-Hamiltonian hyper-Kähler manifold and let ξ ∈ ℝ3 ⊗
(𝔨*)K . If K acts freely on μ−1(ξ), then the following holds true.

(1) ξ  is a regular value for μ so that μ−1(ξ) is a smooth submanifold of M.
(2) The quotient μ−1(ξ)/K is a smooth manifold of dimension dimM − 4dimK and the projection 

π : μ−1(ξ) → μ−1(ξ)/K is a principal K-bundle.
(3) There is a unique hyper-Kähler structure on μ−1(ξ)/K with Kähler forms ω′I ,ω′J ,ω′K  such that 

π*(ω′S) = ωS|μ−1(ξ) for each S ∈ {I,J,K}.

The passage from (M,K ,μ) to μ−1(ξ)/K  for ξ ∈ ℝ3 ⊗ (𝔨*)K  is called hyper-K ̈ahler reduction. 
Even if the action of K on μ−1(ξ) fails to be free, the hyper-K ̈ahler quotient X := μ−1(ξ)/K  admits a 
decomposition into smooth hyper-K ̈ahler manifolds of various dimensions (see [17, Theorem 1.1]). 
For our purpose, it will be sufficient to note that if U ⊂ M denotes the open (possibly empty) set 
consisting of the free K-orbits, then μ|U : U →ℝ3 ⊗𝔨* is a moment map for the action of K on U, 
and therefore, (μ−1(ξ)∩U)/K =: Xreg ⊂ X carries the structure of a smooth hyper-K ̈ahler manifold 
by the above theorem. The open subset Xreg is called the regular set, and its closed complement 
Xsing := X −Xreg is called the singular set.

We will only be interested in a very simple instance of the above procedure. Let V be a quaternionic 
vector space equipped with a compatible real inner product g : V ×V →ℝ, that is, V is a real vector 
space equipped with three orthogonal endomorphisms I,J,K : V → V  satisfying the relations of the 
quaternion algebra: 

I2 = J2 = K2 = IJK = −1V .

Using the standard identification TpV ≅ V  for each p ∈ V , we may regard (V ,g, I,J,K) as a flat hyper-
K ̈ahler manifold. Let K be a compact Lie group acting linearly on V preserving (g, I,J,K). In this 
situation, the unique hyper-K ̈ahler moment map vanishing at 0 ∈ V , μ = (μI ,μJ ,μK) : V →ℝ3 ⊗𝔨*, 
is given by 

μI(x)(ξ) =
1
2
ωI(ξ ⋅ x,x) =

1
2

g(ξ ⋅ Ix,x),

for x ∈ V , ξ ∈ 𝔨 and similarly for μJ  and μK . We call the triple (V ,K ,μ) a linear tri-Hamiltonian 
hyper-K ̈ahler manifold.
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916 G. O. HELLE

3. Quiver varieties

A quiver is a finite directed graph (Q, I,s, t), where I is the set of vertices, Q is the set of edges and 
s, t : Q → I are the source and target maps. Given an edge h ∈ Q with s(h) = i ∈ I and t(h) = j ∈ I, 
we write h : i → j. We will abuse notation slightly and refer to the quiver simply as Q or (Q, I) letting 
s and t be implicit. The purpose of this section is to fix our notation, define the quiver varieties of 
interest and state a few results needed for our later work. We will later restrict our attention to the 
quivers specified in the following definition.

Definition 3.1 An extended Dynkin quiver is a quiver Q whose underlying unoriented graph is an 
extended Dynkin diagram of type Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8. Similarly, a Dynkin quiver is a quiver whose 
underlying unoriented graph is a Dynkin diagram of type An, Dn, E6, E7 or E8.

Let (Q, I) be a quiver. For each v = (vi)i∈I ∈ ℤI
≥0, called a dimension vector, define 

Rep(Q,v) :=⨁
h∈Q

Hom(ℂvs(h) ,ℂvt(h))

Gv :=∏
i∈I

U(vi)

Gc
v :=∏

i∈I

GL(vi,ℂ),

where U(vi) ⊂ GL(vi,ℂ) denotes the group of unitary matrices for each i ∈ I. There is an evi-
dent inclusion Gv ⊂ Gc

v  witnessing the fact that Gc
v  is the complexification of Gv. The Lie algebras

𝔤v := Lie(Gv) and 𝔤c
v := Lie(Gc

v) are given by 

𝔤v = ⨁
i∈I

𝔲(vi) and 𝔤c
v = ⨁

i∈I

End(ℂvi).

The group Gc
v  acts linearly on Rep(Q,v) by the formula 

g ⋅ x = (gt(h)xhg−1
s(h))h∈Q for g = (gi)i∈I ∈ Gc

v and x = (xh)h∈Q ∈ Rep(Q,v).

The subgroup Gv acts by restriction along the inclusion Gv ⊂ Gc
v . The space Rep(Q,v) carries a 

Hermitian inner product preserved by the action of Gv. Explicitly, 

(x,y) = ∑
h∈Q

tr(xhy*
h),

where tr is the trace and y*
h is the adjoint of yh with respect to the standard Hermitian inner product 

on ℂvi  for i ∈ I.

Definition 3.2 Let Q be a quiver. The opposite quiver Qop is defined by taking the same set of 
vertices and reverse the orientation of each edge. For an edge h ∈ Q, the opposite edge is denoted 
by h ∈ Qop. The doubled quiver Q is defined by taking the same set of vertices and let the set of 
edges be Q∪Qop. The orientation map ϵ : Q → {±1} is defined by ϵ(h) = +1 if h ∈ Q and ϵ(h) = −1
if h ∈ Qop.
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SINGULAR QUIVER VARIETIES OVER EXTENDED DYNKIN QUIVERS 917

We extend the bijection Q → Qop, h ↦ h, to an involution of Q by setting h2 = h1 if and only if 
h1 = h2 for h1 ∈ Q and h2 ∈ Qop.

Given a quiver Q with vertex set I and a dimension vector v ∈ ℤI
≥0, there is a natural decomposition 

Rep(Q,v) = Rep(Q,v)⊕Rep(Qop,v).

This gives rise to a quaternionic structure J : Rep(Q,v) → Rep(Q,v). In terms of the above decom-
position, J is given by J(x,y) = (−y*,x*), where (x*)h := (xh)* and similarly for y. The action of Gv
commutes with this quaternionic structure, and we may therefore regard Rep(Q,v) as a quaternionic 
representation of the compact group Gv. The components of the unique hyper-K ̈ahler moment map 
μ = (μℝ,μℂ) := Rep(Q,v) → 𝔤v ⊕𝔤c

v vanishing at zero, where the Lie algebras are identified with 
their duals using the trace pairing, have the explicit forms [19, p. 370] 

μℝ(x) =

√
−1
2

( ∑
h∈t−1(i)

xhx*
h − x*

h
xh)

i∈I

μℂ(x) = ( ∑
h∈t−1(i)

ϵ(h)xhxh)
i∈I

. (3.1)

In the terminology of the previous section, (Rep(Q,v),Gv,μ) is a linear tri-Hamiltonian hyper-K ̈ahler 
manifold.

Under the identifications of 𝔤v and 𝔤c
v with their dual spaces, the subspaces fixed under the coad-

joint action are identified with the centers Z(𝔤v) and Z(𝔤c
v). There are natural maps ℝI → Z(𝔤v) and 

ℂI → Z(𝔤c
v) given by 

(ξi)i∈I ∈ ℝI ↦(
√
−1ξi Idℂvi )i∈I ∈⨁

i∈I

Z(𝔲(vi))

(λi)i∈I ∈ ℂI ↦(λi Idℂvi )i∈I ∈⨁
i∈I

Z(End(ℂvi).

If vi ≠ 0 for each i ∈ I, then both of these are isomorphisms. Otherwise, they restrict to isomorphisms 
from ℝsuppv and ℂsuppv, respectively, where suppv = {i ∈ I : vi ≠ 0}. For any dimension vector v ∈
ℤI
≥0, we will tacitly regard elements ξ ∈ ℝI  and λ ∈ ℂI  as elements of Z(𝔤v) and Z(𝔤c

v), respectively, 
using the above maps.

Definition 3.3 Let Q be a quiver with vertex set I. For any dimension vector v ∈ ℤI
≥0 and parameter 

ξ = (ξℝ,ξℂ) ∈ ℝI ⊕ℂI  define 

ℳξ(Q,v) := μ−1(ξ)/Gv.

These hyper-K ̈ahler quotients are called (unframed) quiver varieties.

Remark 3.4 In [19], Nakajima defines what one may call framed quiver varieties ℳξ(v,w) associ-
ated with a quiver Q with vertex set I and two dimension vectors v,w ∈ ℤI . The above-defined spaces 
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918 G. O. HELLE

ℳξ(Q,v) correspond to his ℳξ(v,0). According to [5, p. 261], the spaces ℳξ(v,w) can be expressed 
as ℳξ′(Q1,v′), where Q1 is a quiver obtained from Q by adjoining a single vertex and a number of 
arrows depending on w. There is therefore no loss in generality in only considering these (unframed) 
quivers.

The subgroup T of scalars, that is, U(1) ≅ T ⊂ Gv, acts trivially on Rep(Q,v) so the action factors 
through Gv → Gv/T =: G′

v. As explained in the previous section, we obtain a decomposition 

ℳξ(Q,v) = ℳreg
ξ (Q,v)∪ℳsing

ξ (Q,v),

where the regular set ℳreg
ξ (Q,v) is the image of the free G′

v-orbits in μ−1(ξ) or equivalently the points 

x ∈ μ−1(ξ) with stabilizer T in Gv. The regular set is open in ℳξ(Q,v) and carries the structure of a 

smooth hyper-K ̈ahler manifold. The singular set ℳsing
ξ (Q,v) is the closed complement of the regular 

set.
The fact that the action of Gv factors through G′

v has another important implication, namely, that 
the moment map μ : Rep(Q,v) →ℝ3 ⊗𝔤v takes values in the subspace 𝔤v,0 ⊂ 𝔤v corresponding to 
(𝔤′v)* = Lie(G′

v)* under the isomorphism 𝔤*
v ≅ 𝔤v. This subspace consists precisely of the (ai)i∈I ∈ 𝔤v

satisfying ∑
i∈I

tr(ai) = 0. A parameter ξ = (ξ1,ξ2,ξ3) ∈ ℝ3 ⊗ℝI  corresponds to an element satisfying 
this condition precisely when 

v ⋅ ξk = ∑
i∈I

tr((ξk)i Idℂvi ) = 0 for k = 1,2,3,

where ⋅ denotes the usual scalar product. For each θ ∈ ℤI , define 

Dθ = {u ∈ ℝI : u ⋅ θ = 0} ⊂ ℝI .

The above then amounts to the fact that μ−1(ξ) = ∅ whenever ξk ∉ Dv for some 1 ≤ k ≤ 3. However, 
for most parameters ξ ∈ ℝ3 ⊗Dv, the space ℳξ(Q,v) will be a smooth hyper-K ̈ahler manifold. To 
state the relevant result, we have to recall the definition of the symmetric bilinear form associated 
with a quiver (see, for instance, [5, Section 2]).

Definition 3.5 Let Q be a quiver with vertex set I. The symmetric bilinear form (⋅, ⋅) : ℤI ×ℤI →ℤ
associated with the quiver is defined by 

(v,w) := 2∑
i∈I

viwi − ∑
h∈Q

vs(h)wt(h) for v,w ∈ ℤI .

If we identify the set of vertices I ≅ {1,2,⋯ ,n} for some n ∈ ℕ and let A = (aij) be the adjacency 
matrix of the unoriented graph underlying Q, that is, aij = aji is the number of edges connecting i
and j, then (v,w) = 2v ⋅w− v ⋅Aw. Alternatively, (v,w) = v ⋅Cw, where C = 2 id−A. The symmetric 
bilinear form therefore only depends on the underlying unoriented graph. If Q is a (extended) Dynkin 
quiver, then C is the Cartan matrix associated with the corresponding (extended) Dynkin diagram.

The following theorem is the unframed analogue of [19, Theorem 2.8]. Note that even though 
Nakajima’s result at first sight seems to cover the unframed case as well (in his notation, w = 0), this 
is not really true as one can show that the condition [19, Equation (2.9)] forces the relevant quiver 
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SINGULAR QUIVER VARIETIES OVER EXTENDED DYNKIN QUIVERS 919

variety to be empty and therefore excludes the parameters of interest. In the case of extended Dynkin 
quivers, the result is due to Kronheimer (see [15, Proposition 2.8, Corollary 2.10]). In the language 
of quivers, the corresponding statement is given in [19, Proposition 2.12].

Let ℤI  be partially ordered by v ≤ w if and only if vi ≤ wi for each i ∈ I.

Theorem 3.6 Let Q be a quiver with vertex set I. Given a dimension vector v ∈ ℤI
≥0 define 

R+(v) = {θ ∈ ℤI : 0 < θ < v and (θ,θ) ≤ 2}.

Then if 

ξ ∈ ℝ3 ⊗Dv −( ⋃
θ∈R+(v)

ℝ3 ⊗ (Dv ∩Dθ)) ,

the group G′
v acts freely on μ−1(ξ) ⊂ Rep(Q,v), and the quiver variety ℳξ(Q,v) is a (possibly empty) 

smooth hyper-Kähler manifold of dimension 4− 2(v,v).

Let (Q, I) be a quiver and fix a dimension vector v ∈ ℤI
≥0. The complex Lie group Gc

v  acts on 
Rep(Q,v) preserving the complex symplectic form ωℂ given by the formula 

ωℂ(x,y) = ∑
h∈Q

ϵ(h) tr(xhyh) for x,y ∈ Rep(Q,v). (3.2)

The corresponding moment map is precisely the component μℂ : Rep(Q,v) → 𝔤c
v in (3.1). From the 

given formula, it is clear that μℂ is algebraic and therefore μ−1
ℂ (ξℂ) carries the structure of an affine 

variety for each ξℂ ∈ ℂI . The action of the reductive group Gc
v  is algebraic so there is a complex 

analytic quotient μ−1
ℂ (ξℂ) → μ−1(ξℂ)//Gc

v . This is the analytification of the affine GIT quotient 

Specℂ[μ−1
ℂ (ξℂ)] → Spec(ℂ[μ−1

ℂ (ξℂ)]Gc
v ).

We will need a few standard facts concerning this construction (see, for instance, [8, Chapter 6] for 
the algebraic side of the story and [17, Section 2.4.1] and the references contained therein for the 
analytical perspective).

Lemma 3.7 As a topological space μ−1
ℂ (ξℂ)//Gc

v  is homeomorphic to the quotient space μ−1
ℂ (ξℂ)/ ∼

where x ∼ y if and only if Gc
v ⋅ x∩Gc

v ⋅ y ≠∅. Let q : μ−1
ℂ (ξℂ) → μ−1

ℂ (ξℂ)//Gc
v  denote the quotient 

map. Then, each fiber q−1(x) contains a unique closed orbit Gc
v ⋅ x̃, and if y ∈ q−1(x), then Gc

v ⋅ x ⊂
Gc

v ⋅ y.

In this setting, we have the following result comparing the analytic quotient and the hyper-K ̈ahler 
quotient.

Theorem 3.8 ([19, Theorem 3.1]) Let Q be a quiver with vertex set I and let v ∈ ℤI  be a dimension 
vector. Then, for each ξℂ ∈ ℂI , the inclusion μ−1(0,ξℂ) = μ−1

ℝ (0)∩ μ−1
ℂ (ξℂ) ↪ μ−1

ℂ (ξℂ) descends to 
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920 G. O. HELLE

a homeomorphism 

ℳ(0,ξℂ)(Q,v) = (μ−1
ℝ (0)∩ μ−1

ℂ (ξℂ))/Gv ≅ μ−1
ℂ (ξℂ)//Gc

v .

Moreover, each closed orbit Gc
v ⋅ x ⊂ μ−1

ℂ (ξℂ) intersects μ−1
ℝ (0) in a unique Gv-orbit.

Remark 3.9 The final statement is not explicitly stated in [19] but seems to be well known. See, for 
instance, [20, Proposition 2.4].

The above result implies that ℳ(0,ξℂ)(Q,v) carries the structure of a complex analytic space. We 
will have use for one final result. Let v ∈ ℤI

≥0 be a fixed-dimension vector and let ξℂ ∈ ℂI  such 
that Reξℂ, Imξℂ ∈ Dv. Choose ξℝ ∈ Dv −⋃θ∈R+(v)

Dθ and set ξ = (0,ξℂ) and ̃ξ = (ξℝ,ξℂ). The space 

ℳ ̃ξ(Q,v) is a smooth hyper-K ̈ahler manifold by Theorem 3.6. The inclusion 

μ−1( ̃ξ) = μ−1
ℝ (ξℝ)∩ μ−1

ℂ (ξℂ) ↪ μ−1
ℂ (ξℂ),

induces a map π : ℳ ̃ξ(Q,v) → μ−1
ℂ (ξℂ)//Gc

v ≅ℳξ(Q,v). In the following result, we regard ℳ ̃ξ(Q,v)
as a complex manifold by fixing the complex structure induced by the standard complex vector space 
structure of Rep(Q,v).

Theorem 3.10 ([19, Theorem 4.1]). The map π is holomorphic and provided ℳreg
ξ (Q,v) is non-

empty, it is a resolution of singularities, that is,

(1) π : ℳ ̃ξ(Q,v) →ℳξ(Q,v) is proper,

(2) π induces an isomorphism π−1(ℳreg
ξ (Q,v)) ≅ℳreg

ξ (Q,v) and

(3) π−1(ℳreg
ξ (Q,v)) is a dense subset of ℳ ̃ξ(Q,v).

4. Representations of quivers

We briefly recall a few basic notions concerning the representation theory of quivers. An excellent 
reference for this material is [3]. Afterwards, we give the definition of the deformed preprojective 
algebras Πλ = Πλ(Q) of [7] and spell out the correspondence between ℳ(0,λ)(Q,v) and the isomor-
phism classes of semi-simple Πλ-modules. Finally, we recall the construction of the root system 
associated with a quiver and state the key result of [5] relevant for our purpose.

A (complex) representation of a quiver Q is a pair (V, f ) where V = (Vi)i∈I  is a family of complex 
vector spaces and f = (fh : Vs(h) → Vt(h))h∈Q is a family of linear maps. We will only be concerned 
with finite dimensional representations; that is, V i is finite dimensional for each i ∈ I. The dimension 
of a representation (V, f ) is dimV := (dim(Vi))i∈I ∈ ℤI

≥0. A homomorphism u : (V , f ) → (W ,g) of 
representations is a collection of linear maps ui : Vi → Wi for i ∈ I such that fhus(h) = ut(h)gh for each 
h ∈ Q. We therefore have a category of complex representations of Q. This category is equivalent to 
the category of left modules over the quiver algebra ℂQ: the complex algebra generated by {ei : i ∈ I}
and {h : h ∈ Q} subject to the relations 

eiej = δijei, eih = δit(h)h and hej = δs(h)jh,

for all i, j ∈ I and h ∈ Q, where δij = 1 if i = j and δij = 0 otherwise. The {ei}i∈I  is a complete set of 
mutually orthogonal idempotents, in particular 1ℂQ = ∑

i∈I
ei.
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SINGULAR QUIVER VARIETIES OVER EXTENDED DYNKIN QUIVERS 921

We briefly recall the equivalence between representations of Q and left ℂQ-modules. Let (V, f ) be 
a representation of Q and put X = ⊕i∈IVi. For each i ∈ I, let ιi : Vi → X and πi : X → Vi denote the 
inclusion and projection, respectively. Define ρ : ℂQ → Endℂ(X) by ρ(ei) = ιi ∘πi for each i ∈ I and 
ρ(h) = ιt(h) ∘ fh ∘πs(h) for each h ∈ Q. One may then verify that ρ is a well-defined homomorphism 
of ℂ-algebras and therefore endows X with a ℂQ-module structure. One may recover (V, f ) from 
(X,ρ) by setting Vi = eiX for i ∈ I and fh = πt(h) ∘ ρ(h) ∘ ιs(h) for h ∈ Q. With this in mind, we will 
pass freely between the notion of a Q representation and a ℂQ-module.

A ℂQ-module X of dimension v ∈ ℤI  defines a unique Gc
v-orbit 𝒪X ⊂ Rep(Q,v). A representative 

x for the orbit is obtained by choosing a basis for Vi = eiX, thereby identifying Vi ≅ ℂvi , for each i ∈ I
and then letting xh : ℂvs(h) →ℂvt(h)  be the corresponding linear maps. The correspondence X ↦𝒪X
sets up a bijection between the isomorphism classes of ℂQ-modules of dimension v and the set 
of Gc

v-orbits in Rep(Q,v). Given a parameter λ ∈ ℂI , the Gc
v-orbits in μ−1

ℂ (λ) ⊂ Rep(Q,v) have a 
representation theoretic interpretation as well.

Definition 4.1 ([7, p. 611]). Let Q be a quiver with vertex set I. The deformed preprojective algebra 
Πλ = Πλ(Q) of weight λ ∈ ℂI  is defined to be the quotient of the quiver algebra ℂQ by the two-sided 
ideal generated by 

c := ∑
i∈I

λiei − ∑
h∈Q

(hh− hh).

Observe that there is a decomposition c = ∑
i
ci where 

ci = ei (λi1ℂQ − ∑
h∈t−1(i)

ϵ(h)hh) .

In view of formula (3.1) for μℂ, it is not hard to see that the Gc
v-orbit of a ℂQ-module X is contained 

in μ−1(λ) precisely when X descends to a Πλ-module along the projection ℂQ →Πλ. Therefore, the 
Gc

v-orbits in μ−1
ℂ (λ) ⊂ Rep(Q,v) are in natural bijection with the isomorphism classes of Πλ-modules 

of dimension v.
We have the following result describing the closed Gc

v-orbits in Rep(Q,v) (see, for instance,
[3, Section 2] for a proof). Note that a Gc

v-orbit is closed in the Zariski topology if and only if it 
is closed in the analytic topology.

Proposition 4.2 Let Q be a quiver with vertex set I and let X be a finite dimensional ℂQ-module 
of dimension v ∈ ℤI

≥0. Let 𝒪X  denote the orbit corresponding to the isomorphism class of X in 
Rep(Q,v). Then 𝒪X  is closed if and only if X is semi-simple. Moreover, let 

0 = X0 ⊂ X1 ⊂ X2 ⊂⋯⊂ Xn = X,

be a composition series for X; that is, each quotient Xk/Xk−1, 1 ≤ k ≤ n, is a simple module, and let 
Xss = ⨁n

i=1
Xi/Xi−1 be the semi-simplification of X. Then, 𝒪Xss

 is the unique closed orbit contained 
in the closure of 𝒪X .

Let 𝒮𝒮(Πλ,v) denote the set of isomorphism classes of semi-simple Πλ-modules of dimension v. 
For a semi-simple Πλ-module X, we let [X] denote its isomorphism class in 𝒮𝒮(Πλ,v).
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Proposition 4.3 Let Q be a quiver with vertex set I and let Πλ be the associated deformed 
preprojective algebra of weight λ ∈ ℂI . Then, for each dimension vector v ∈ ℤI , the map 

ρ : ℳ(0,λ)(Q,v) →𝒮𝒮(Πλ,v),

that assigns to a point x ∈ℳ(0,λ)(Q,v), the isomorphism class of the Πλ-module corresponding to 
any point x̃ ∈ μ−1(0,λ) in the fiber over x, is a well-defined bijection.

Moreover, if ρ(x) = [X] and X = ⨁k

j=1
njXj with the Xj simple and nj ∈ ℕ, then for any point x̃ ∈

μ−1(0,λ) above x, there are isomorphisms 

(Gv)x̃ ≅
k

∏
j=1

U(nj) and (Gc
v)x̃ ≅

k

∏
j=1

GL(nj,ℂ).

In particular, x ∈ℳreg
(0,λ)(Q,v) if and only if X is simple.

Proof. We divide the proof into four steps. The first sentence in each step is a claim that we then go 
on to verify.

Step 1: The rule [X] ↦𝒪X ⊂ μ−1
ℂ (λ) defines a bijection between 𝒮𝒮(Πλ,v) and the set of closed 

Gc
v-orbits in μ−1

ℂ (λ). We have seen that the given rule sets up a bijection between the set of iso-
morphism classes of Πλ-modules of dimension v and the Gc

v-orbits contained in μ−1
ℂ (λ). Since 

a Πλ-module X is semi-simple if and only if it is semi-simple as a ℂQ-module, Proposition 4.2 
ensures that this bijection restricts to a bijection between the isomorphism classes of the semi-simple 
Πλ-modules and the closed Gc

v-orbits in μ−1
ℂ (λ).

Step 2: The rule (Gv ⋅ x) ↦ (Gc
v ⋅ x) for x ∈ μ−1(0,λ) defines a bijection between the Gv-orbits in 

μ−1(0,λ) and the closed Gc
v-orbits in μ−1

ℂ (λ). For any dimension vector v ∈ ℤI  we have a commutative 
diagram 

where p and q are the quotient maps, i is the inclusion and j is the induced map between the quotients. 
According to Theorem 3.8, the map j is a homeomorphism and in particular a bijection. Therefore, 
the only thing we need to prove is that for each x ∈ μ−1

ℝ (0)∩ μ−1
ℂ (λ), the orbit Gc

v ⋅ x ⊂ μ−1
ℂ (λ) is 

closed. By Lemma 3.7, there is a unique closed orbit Gc
v ⋅ y ⊂ q−1q(i(x)). Moreover, by the second 

statement in Theorem 3.8, we may assume that y = i(z) for some z ∈ μ−1
ℝ (0)∩ μ−1

ℂ (λ). Then, as 
jp(x) = qi(x) = qi(z) = jp(z) and j is injective, we conclude that p(x) = p(z) and hence Gv ⋅ x = Gv ⋅ z. 
This implies that Gc

v ⋅ x = Gc
v ⋅ z, and as the latter orbit is closed by construction, the claim has been 

verified.
Step 3: The map ρ : ℳ(0,λ)(Q,v) →𝒮𝒮(Πλ,v) is a well-defined bijection. Let p : μ−1(0,λ) →

ℳ(0,λ)(Q,v) denote the quotient map as in the above diagram. The map sending x ∈ℳ(0,λ)(Q,v) to 
the Gv-orbit p−1(x) ⊂ μ−1(0,λ) is clearly a bijection. The map ρ sending a point x ∈ℳ(0,λ)(Q,v) to 
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SINGULAR QUIVER VARIETIES OVER EXTENDED DYNKIN QUIVERS 923

the isomorphism class of the Πλ-module associated with any choice of x̃ ∈ p−1(x) is then precisely 
the composition of the bijection x ↦ p−1(x) = Gv ⋅ x̃, the bijection of step 2 and the inverse of the 
bijection of step 1. It is then clear that ρ is a well-defined bijection.

Step 4: If ρ(x) = [X] and X = ∑k

j=1
njXj is a decomposition of X into simple modules, then for any 

x̃ ∈ p−1(x) it holds true that 

(Gv)x̃ ≅
k

∏
j=1

U(nj) and (Gc
v)x̃ ≅

k

∏
j=1

GL(nj,ℂ).

Let y ∈ μ−1
ℂ (λ) ⊂ Rep(Q,v) and denote the corresponding Πλ-module by Y. It is then easy to see 

that the stabilizer (Gc
v)y coincides with the module theoretic automorphism group AutΠλ(Y). If Y is 

semi-simple and Y = ⊕k
j=1njYj is a decomposition into simple modules, it follows by Schur’s lemma 

that 

AutΠλ(Y) ≅
k

∏
j=1

GL(nj,ℂ).

Let x ∈ℳ(0,λ), let x̃ ∈ μ−1
ℝ (0)∩ μ−1

ℂ (λ) be a point above x and let X = ∑k

j=1
njXk  be the correspond-

ing semi-simple Πλ-module decomposed into simple summands. From the above considerations, 
we may deduce that there is an isomorphism (Gc

v)x̃ ≅∏k

j=1
GL(nj,ℂ). For any point y ∈ μ−1

ℝ (0), 

it holds true that the inclusion of stabilizers ι : (Gv)y ↪ (Gc
v)y induces an isomorphism between 

the complexification of (Gv)y and (Gc
v)y (see [20, Proposition 1.6]). Applying this in the situation 

above, we deduce that ∏k

j=1
GL(nj,ℂ) is isomorphic to the complexification of (Gv)x̃ . In particular, 

(Gv)x̃  is isomorphic to a maximal compact subgroup of ∏k

j=1
GLnj

(ℂ), and as all such subgroups 
are conjugate, we deduce that there is an isomorphism 

(Gv)x̃ ≅
k

∏
j=1

U(nj).

This completes the final step and hence the proof.

In [5], Crawley-Boevey gives a strong result on the existence and uniqueness of simple
Πλ-modules. To state the result, we need to recall the construction of the root system associated 
with a quiver. Here, we follow [5, Section 2].

Let Q be a quiver with vertex set I and let (⋅, ⋅) : ℤI ×ℤI →ℤ be the associated symmetric bilinear 
form of Definition 3.5. Let {ϵi ∈ ℤI : i ∈ I} denote the standard basis of ℤI , that is, (ϵi)j = δij for 
i, j ∈ I. To simplify the exposition slightly, we will assume that Q contains no edge loops; that is, 
there is no h ∈ Q with s(h) = t(h). This is valid in the case of (extended) Dynkin quivers. Note that 
this condition implies that (ϵi,ϵi) = 2 for each i ∈ I.

For each i ∈ I, there is a reflection si : ℤI →ℤI  defined by si(v) = v− (v,ϵi)ϵi. These reflections 
generate a finite subgroup W ⊂ Autℤ(ℤI) called the Weyl group. The action of the Weyl group on 
ℤI  preserves the symmetric bilinear form associated with the quiver. The support of α ∈ ℤI  is the 
full subquiver of Q with vertex set {i ∈ I : αi ≠ 0}. The fundamental domain F ⊂ ℤI

≥0 − {0} is then 
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924 G. O. HELLE

defined to be the set of α ∈ ℤI
≥0 with connected support satisfying (α,ϵi) ≤ 0 for each i ∈ I. The root 

system associated with the quiver Q is defined to be Φ := Φre ∪Φim ⊂ ℤI  where 

Φre = ⋃
i∈I

W ⋅ ϵi and Φim = W ⋅ (F ∪−F).

The elements of Φre are called real roots and the elements of Φim are called imaginary roots. One 
may show that there is a decomposition Φ = Φ+ ∪Φ− into positive and negative roots, where a root 
α is positive (respectively negative) if α ∈ ℤI

≥0 (respectively α ∈ ℤI
≤0). We record the following 

elementary fact.

Lemma 4.4 For each α ∈ Φre, it holds true that (α,α) = 2. For each β ∈ Φim, it holds true that 
(β,β) ≤ 0.

Proof. As already noted, (ϵi,ϵi) = 2 for each i ∈ I. The first assertion now follows from the fact that 
each α ∈ Φre may be expressed in the form w ⋅ ϵi for some w ∈ W  and i ∈ I. For the second assertion, 
we may assume without loss of generality that β ∈ F. Writing β = ∑

i∈I
biϵi with bi ≥ 0, we find 

(β,β) = ∑
i∈I

bi(β,ϵi) ≤ 0,

since by definition (β,ϵi) ≤ 0 for each i ∈ I. 

We may now state the key result on the existence and uniqueness of simple Πλ-modules. In the 
following result, the function p : ℤI →ℤ is defined by the formula p(α) = 1− 1

2 (α,α).

Theorem 4.5 ([5, Theorem 1.2]). Let Q be a quiver with vertex set I. Let Πλ be the associated 
deformed preprojective algebra of weight λ ∈ ℂI . Then, for each α ∈ ℤI

≥0, the following is equivalent

(1) There exists a simple Πλ-module of dimension α.
(2) α is a positive root with λ ⋅α = 0, and for every decomposition α = ∑

t
β(t) into positive roots 

satisfying λ ⋅ β(t) = 0, one has 

p(α) >∑
t

p(β(t)).

In that situation, μ−1
ℂ (λ) ⊂ Rep(Q,α) is a reduced and irreducible complete intersection of 

dimension α ⋅α− 1 + 2p(α), and the general element is a simple representation.

5. Extended Dynkin quivers and their root systems

In our later work, it will be important to have a firm grip on the relation between the Dynkin diagrams 
and root systems of type ADE and their extended counterparts of type ÃDE. In this section, we briefly 
review the necessary root space theory, establish our notation and prove two basic lemmas needed 
to effectively apply Theorem 4.5.

Let K be a Dynkin diagram of type An, Dn, E6, E7 or E8, for short type ADE. Fix an identification 
of the set of vertices with {1,2,⋯ ,n} for some n ∈ ℕ. The Cartan matrix C = (cij)ij ∈ Mn(ℤ) of K
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SINGULAR QUIVER VARIETIES OVER EXTENDED DYNKIN QUIVERS 925

is then defined by cij = 2δij − aij, where aij = aji = 1 precisely when there is an edge connecting i to j
in K and otherwise 0. The associated root system Φ ⊂ ℤn is then constructed just as in the previous 
section using the pairing (v,w)C := v ⋅Cw. Note that this pairing is positive definite so that Φ = Φre. 
In particular, the coordinate vectors {ϵi : 1 ≤ i ≤ n} are a set of simple roots for Φ. There is a unique 
maximal root d ∈ Φ+ ⊂ ℤn with respect to the partial ordering ≤ on ℤn (see [13, Section 10.4]). 
The extended Dynkin diagram K̃ is constructed from K by adjoining a single vertex 0 and one edge 
connecting 0 to i if (d,ϵi)C = 1 for each 1 ≤ i ≤ n. The extended Cartan matrix C̃ is constructed from 
K̃  in the same way C was constructed from K. Explicitly, if we identify ℤn+1 = ℤϵ0 ⊕ℤn, 

C̃ = ( 2 −dtC
−Cd C

) .

The associated root system Φ̃ ⊂ ℤn+1 is then constructed using the pairing (v,w)C̃ := vtC̃w. We have 
the following useful description of the real roots in Φ and Φ̃ (see [14, Proposition 5.10]) 

Φ = {α ∈ ℤn : (α,α)C = 2} and Φ̃re = {β ∈ ℤn+1 : (β,β)C̃ = 2}. (5.1)

To understand the imaginary roots in Φ̃, define a linear map ψ : ℤn+1 →ℤn by ψ(ϵ0) = −d and ψ(ϵi) =
ϵi for 1 ≤ i ≤ n. Then, using the above explicit description of C̃, one obtains the following identity 

(v,w)C̃ = (ψ(v),ψ(w))C .

As the latter pairing is positive definite, one deduces that (⋅, ⋅)C̃  is positive semi-definite. It follows 
by Lemma 4.4 that the set of imaginary roots must coincide with the non-zero elements of Ker(ψ), 
that is, 

Φ̃im = {rδ : r ∈ ℤ− {0}},

where δ = (1,d)t ∈ ℤϵ0 ⊕ℤn = ℤn+1 is the minimal positive imaginary root. We will need two 
lemmas concerning these root systems.

Lemma 5.1 Define Σ := {β ∈ Φ̃ : 0 < β < δ}. Then, the map ψ : ℤn+1 →ℤn restricts to a bijection 
ψ : Σ→ Φ with inverse given by 

ψ−1(α) = { (0,α) if α ∈ Φ+

(1,d +α) if α ∈ Φ− ,

with respect to the decomposition ℤn+1 = ℤϵ0 ⊕ℤn. Furthermore, the adjoint ψ* : ℝn →ℝn+1, deter-
mined by ψ(θ) ⋅ τ = θ ⋅ψ*(τ) for θ ∈ ℤn+1 and τ ∈ ℝn, is given by ψ*(τ) = (−d ⋅ τ,τ) and corestricts 
to an isomorphism ℝn ≅ δ⟂ ⊂ ℝn+1.

Proof. Note first Σ ⊂ Φ̃re since δ is the minimal positive imaginary root. As (α,β)C̃ = (ψ(α),ψ(β))C
for all α,β ∈ ℤn+1, it follows from the description of the real roots in (5.1) that ψ(Σ) ⊂ Φ. The same 
result shows that the map κ : Φ→ Σ given by κ(α) = (0,α) if α ∈ Φ+ and κ(β) = (1,d + β) if β ∈ Φ−

is well defined. Using the definition of ψ, one easily verifies that ψκ = idΦ and κψ = idΣ. Hence, ψ is 
a bijection with inverse ψ−1 = κ.
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926 G. O. HELLE

For the second part, note that ψ extends uniquely to a linear map ψ : ℝn+1 →ℝn and hence has 
an adjoint ψ* : ℝn →ℝn+1 uniquely determined by the formula given in the statement. For each 
1 ≤ i ≤ n, we find ψ*(τ)i = ψ*(τ) ⋅ ϵi = τ ⋅ψ(ϵi) = τi, while ψ*(τ0) = τ ⋅ψ(ϵ0) = −τ ⋅ d. Thus, ψ*(τ) =
(−d ⋅ τ,τ). Finally, since ψ : ℝn+1 →ℝn is surjective, it follows that ψ* corestricts to an isomorphism 
onto Ker(ψ)⟂ = δ⟂. 

In the following lemma, we regard Φ ⊂ ℤn ⊂ ℝn as above, and we write (⋅, ⋅) : ℤn ×ℤn →ℤ for 
the Cartan pairing.

Lemma 5.2 For τ ∈ ℂn, define τ⟂ := Spanℝ(Reτ, Imτ)⟂ ⊂ ℝn with respect to the standard scalar 
product on ℝn. Then, if τ⟂ ∩Φ is non-empty, it is a root system in the subspace it spans and 
decomposes into a disjoint union of root systems of type ADE 

τ⟂ ∩Φ = Φ1 ∪Φ2 ∪⋯∪Φr .

Furthermore, Φj admits a unique base contained in Φ+ for each 1 ≤ j ≤ r.

Proof. Write Φτ = τ⟂ ∩Φ. The fact that τ⟂ ∩Φ is a root system in the subspace it spans follows from 
[13, Exercise III.9.7]. To see that Φτ  admits a base contained in Φ+ ⊂ ℤn

≥0, we mimic the proof for the 
existence of bases in a root system in [13, p. 48]. We may write Φτ = Φ+

τ ∪Φ−
τ  where Φ±

τ = τ⟂ ∩Φ±. 
As Φ−

τ = −Φ+
τ , it follows that Φτ  is non-empty if and only if Φ+

τ  is non-empty. We may therefore 
define S ⊂ Φ+

τ  to be the subset of α ∈ Φ+
τ  that admits no decomposition α = β + γ for β,γ ∈ Φ+

τ . This 
set is non-empty since any α = ∑

i
aiϵi ∈ Φ+

τ , ai ≥ 0, with ∑
i
ai minimal must belong to S. For any 

pair α ≠ β ∈ S, we have have (α,β) ≤ 0. Indeed, if (α,β) = 1, then either α− β or β−α will belong 
to Φ+

τ , contradicting either α ∈ S or β ∈ S. To see that the set S is linearly independent, suppose that 
∑

s∈S
ass = 0. Put S1 = {s ∈ S : as > 0}, S2 = S− S1 and write u = ∑

s∈S1
ass = ∑

t∈S2
btt where as > 0

and bt = −at ≥ 0. Then 

(u,u) = ∑
s,t

asbt(s, t) ≤ 0,

which is only possible if u = 0. Hence, as each s ∈ S is non-zero and has non-negative coefficients 
with respect to the standard basis ϵi, 1 ≤ i ≤ n, it follows that as = 0 for all s ∈ S as required. It is 
clear that every root α ∈ Φ+

τ  can be written as a positive integral linear combination of the elements 
of S, and we have thus verified that S is a base for Φτ . At this point, we may decompose S = S1 ∪ S2
∪⋯∪ Sr  into pairwise orthogonal sets in such a way that each Si is indecomposable, that is, admits 
no further decomposition into pairwise orthogonal sets. This yields a corresponding decomposition 
into irreducible root systems (see [13, Section 10.4]) Φτ = Φ1 ∪Φ2⋯∪Φr , where Si is a base for Φi
for each 1 ≤ i ≤ r. As each Φj is contained in Φ, all the roots have the same length, and this implies 
that Φj must be of type ADE for each j. 

The graphs K and K̃  are transformed into quivers by giving the edges arbitrary orientations. As 
already mentioned, the corresponding symmetric bilinear forms and root systems are independent of 
the choice of orientations. In particular, if Q is an extended Dynkin quiver, we may identify the set 
of vertices with {0,1,⋯ ,n} for some n ∈ ℕ and assume that we have root systems Φ̃ ⊂ ℤn+1, Φ ⊂ ℤn
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SINGULAR QUIVER VARIETIES OVER EXTENDED DYNKIN QUIVERS 927

such that the minimal positive imaginary root δ takes the form (1,d) ∈ ℤϵ0 ⊕ℤn, where d ∈ Φ is 
the maximal positive root. Furthermore, by Lemma 5.1, we have the map ψ : ℤn+1 →ℤn relating 
them and the adjoint ψ* : ℝn →ℝn+1 that allows us to identify ℝn ≅ δ⟂. We will work under these 
assumptions whenever convenient in the rest of the paper.

6. Classification of singularities

Let Q be an extended Dynkin quiver with vertex set I and minimal imaginary root δ ∈ ℤI . In this 
section, we will give a description of the singular set in the quiver variety ℳ(0,λ)(Q,δ) for λ ∈ ℂI . 

According to Proposition 4.3, the singular set ℳsing
(0,λ)(Q,δ) is in natural bijection with the isomor-

phism classes of semi-simple, non-simple Πλ-modules of dimension δ, so it suffices to determine 
the latter set.

For this purpose, let Φ̃ denote the root system associated with Q and let Σ = {α ∈ Φ̃ : 0 < α < δ}
as in Lemma 5.1. For λ ∈ ℂI , define Σλ = {α ∈ Σ : α ⋅ λ = 0} and let this set be partially ordered by 
α ≺ β if and only if β−α = ∑

t
γ(t) for some γ(t) ∈ Σλ. Finally, let Σmin

λ ⊂ Σλ denote the subset of 
minimal elements with respect to this partial ordering.

Lemma 6.1 There exists a simple Πλ-module of dimension δ if and only if δ ⋅ λ = 0. Moreover, there 
exists a simple Πλ-module of dimension α satisfying 0 < α < δ if and only if α ∈ Σmin

λ  and in that 
case the simple module is unique up to isomorphism.

Proof. According to Theorem 4.5, there exists a simple Πλ-module of dimension α ∈ ℤI
≥0 if and only 

if α is a root satisfying α ⋅ λ = 0, and for every decomposition α = ∑
t
β(t) into positive roots satisfying 

β(t) ⋅ λ = 0, it holds true that p(α) >∑
t
p(β(t)), where we recall that p(α) = 1− 1

2 (α,α). In our case 

of an extended Dynkin quiver, we have p(δ) = 1− 1
2 (δ,δ) = 1 and p(α) = 1− 1

2 (α,α) = 0 for every 
real root α ∈ Φ̃re. In any decomposition δ = ∑

t
β(t) into positive roots with at least two summands, 

the roots β(t) must be real because δ is the minimal positive imaginary root. Therefore, the condition 
p(δ) = 1 > 0 = ∑

t
p(β(t)) is trivially satisfied. We conclude that there exists a simple Πλ-module of 

dimension δ if and only if δ ⋅ λ = 0.
If α satisfies 0 < α < δ, there exists a simple Πλ-module of dimension α if and only if α ∈ Σλ, 

and for every decomposition α = ∑
t
β(t) with β(t) ∈ Σλ, it holds true that p(α) >∑

t
p(β(t)). This 

inequality is never satisfied since both sides reduce to zero. Consequently, the above condition can 
only be satisfied if α does not admit such a decomposition at all, and this is equivalent to α ∈ Σmin

λ . 
The fact that the simple Πλ-module is unique up to isomorphism in this case follows from the final 
part of Theorem 4.5 as explained in [5, p. 260]. 

Before we proceed, we record the following consequence.

Lemma 6.2 Let Q be an extended Dynkin quiver with vertex set I and minimal imaginary root δ. 
Let λ ∈ ℂI  satisfy λ ⋅ δ = 0. Then, the quiver variety ℳ(0,λ)(Q,δ) is connected and ℳreg

(0,λ)(Q,δ) is 
non-empty.
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928 G. O. HELLE

Proof. By the above lemma, there exists a simple Πλ-module of dimension δ in this situation. By 
Proposition 4.3, this implies that ℳreg

(0,λ)(Q,δ) is non-empty. Furthermore, by the final part of The-

orem 4.5, the variety μ−1
ℂ (λ) is irreducible in the Zariski topology. It is therefore connected in the 

analytic topology, and it follows that the quotient ℳ(0,λ)(Q,δ) ≅ μ−1
ℂ (λ)//Gc

δ  is connected as well.

In the following theorem, we make the assumptions on the extended Dynkin quiver Q as explained 
in the end of the previous section.

Theorem 6.3 Let Q be an extended Dynkin quiver with vertex set {0,1,⋯ ,n} and let Πλ be the 
associated deformed preprojective algebra of weight λ ∈ ℂn+1 satisfying λ ⋅ δ = 0. Let Φ ⊂ ℤn be the 
root system of type ADE associated with Q. Write λ = (λ1,τ) where λ1 ∈ ℂ and τ ∈ ℂn and let 

τ⟂ ∩Φ = Φ1 ∪⋯∪Φr ,

be a decomposition into (irreducible) subsystems of type ADE as in Lemma 5.2. Then, there is a 
bijection between {Φ1,⋯ ,Φr} and the isomorphism classes of semi-simple, non-simple Πλ-modules 
of dimension δ.

Proof. Let Φ̃ ⊂ ℤn+1 be the root system associated with Q. Let Σmin
λ ⊂ Σλ ⊂ Σ ⊂ Φ̃ be defined as in 

the beginning of the section. The content of Lemma 6.1 is then that there exists a simple Πλ-module 
of dimension α, 0 < α < δ, if and only if α ∈ Σmin

λ , and in that case, the module is unique up to 
isomorphism. This implies that a semi-simple, non-simple Πλ-module X = ∑k

t=0
ntXt  of dimension 

δ is uniquely determined up to isomorphism by the roots γt := dimXt ∈ Σmin
λ  and the multiplicities 

nt ∈ ℕ. We therefore have a bijective correspondence between the isomorphism classes of semi-
simple, non-simple Πλ-modules of dimension δ and sets {(nt ,γt)}k

t=0 for which nt ∈ ℕ, γt ∈ Σmin
λ  for 

each t, δ = ∑
t
ntγt  and either k ≥ 1 or n0 > 1.

Our task is to relate the collection of such sets with the root systems in the decomposition 

τ⟂ ∩Φ = Φ1 ∪⋯∪Φr ,

given in the statement of the theorem. Suppose that {(nt ,γt)}k
t=0 is such a set. As δ = (1,d) ∈ ℤ⊕ℤn, 

where d ∈ Φ is the maximal root, the condition δ = ∑
t
ntγt  implies that there is a distinguished 

root γt  with non-zero first component and thus necessarily nt = 1. After possibly rearranging the 
roots, we may take this root to be γ0. By Lemma 5.1, there are unique positive roots β,αt ∈ Φ+, 1 ≤
t ≤ k, such that γ0 = ψ−1(−β) = (1,d− β) and γt = ψ−1(αt) = (0,αt) for 1 ≤ t ≤ k. Moreover, since 
λ ⋅ δ = 0, there is a unique τ ∈ ℂn such that λ = (−d ⋅ τ,τ) = ψ*(τ). The relation θ ⋅ λ = ψ(θ) ⋅ τ for 
each θ ∈ ℤn+1 ensures that the bijection ψ : Σ ≅ Φ restricts to a bijection Σλ ≅ Φ∩ τ⟂. In particular, 
β,α1,⋯ ,αk ∈ Φ∩ τ⟂. Moreover, the minimality of γt = (0,αt), 1 ≤ t ≤ k, translates to the fact that 
each αt  is minimal among the roots in Φ+ ∩ τ⟂, while the minimality of γ0 = (1,d− β) translates to 
the fact that β ∈ Φ+ ∩ τ⟂ is maximal. This means that β must be the unique maximal positive root 
in precisely one of the systems Φj occurring in the decomposition of Φ∩ τ⟂. Furthermore, since the 
equality δ = ∑

t
ntγt  is equivalent to the equality β = ∑

t
ntαt , we also deduce that {αt : 1 ≤ t ≤ k}

must be the unique positive base in the same system.
This procedure is clearly reversible. Given a system Φj, let αt , 1 ≤ t ≤ k, be the unique positive 

base and let β = ∑
t
ntαt  be the maximal root. We may then define γ0 = (1,d− β) ∈ Σmin

λ , n0 = 1 and 
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SINGULAR QUIVER VARIETIES OVER EXTENDED DYNKIN QUIVERS 929

γt = (0,αt) ∈ Σmin
λ  for 1 ≤ t ≤ k. It then follows from our previous arguments that the set {(nt ,γt}k

t=1
satisfies the required conditions: nt ∈ ℕ, γt ∈ Σmin

λ  for all t and ∑
t
ntγt = δ. This completes the proof 

of the theorem.

7. Local structure and the proof of Theorem 1.1

The combination of Proposition 4.3 and Theorem 6.3 gives full control over the singularities in 
ℳ(0,λ)(Q,δ) for an extended Dynkin quiver Q. In this section, we establish the final results needed 
to complete the proof of Theorem 1.1.

Let Q be a quiver with vertex set I and let λ ∈ ℂI  be a parameter. Given a point x ∈ μ−1
ℂ (λ), 

consider the sequence 

Gc
v

bx
⟶ Rep(Q,v)

μℂ
⟶𝔤c

v,

where bx(g) = g ⋅ x is the orbit map at x. As μℂ is Gc
v-equivariant and λ ∈ ℂI  is identified with an 

element of Z(𝔤c
v), the composition μℂ ∘ bx is the constant map at λ. Hence, by differentiating this 

sequence at 1 ∈ Gc
v , we obtain a three-term complex 

0 ⟶𝔤c
v

σx
⟶ Rep(Q,v)

νx
⟶𝔤c

v ⟶ 0, (7.1)

where σx = d(bx)1 and νx = d(μℂ)x. By general properties of the moment map, it holds true that 
Ker(νx) = Im(σx)ωℂ , where the uppercase ωℂ denotes the complex symplectic complement. The 
tangent space Tx(Gc

v ⋅ x) = Im(σx) is therefore isotropic with respect to ωℂ. Moreover, the stabilizer 
H := (Gc

v)x acts naturally on each space in (7.1) making σx and νx H-equivariant. From these facts, it 
follows that Tx(Gc

v ⋅ x)ωℂ/Tx(Gc
v ⋅ x) = Ker(νx)/ Im(σx) inherits a complex symplectic form preserved 

by the induced action of H.

Definition 7.1 Let x ∈ μ−1
ℂ (λ). Then, the complex symplectic slice at x is the complex symplectic 

(Gc
v)x-representation 

Tx(Gc
v ⋅ x)ωℂ/Tx(Gc

v ⋅ x) = Ker(νx)/ Im(σx).

The following result is a consequence of [17, Theorem 1.4(iv)]. Here, we regard ℳ(0,λ)(Q,v) as 
a complex analytic space using Theorem 3.8.

Lemma 7.2 Let Q be a quiver with vertex set I, let v ∈ ℤI
≥0 be a dimension vector and let λ ∈ ℂI  be 

a parameter. Let y ∈ℳ(0,λ)(Q,v) and let x ∈ μ−1(0,λ) ⊂ Rep(Q,v) be a point above y. Set 

H := (Gc
v)x and W := Tp(Gc

v ⋅ x)ωℂ/Tx(Gc
v ⋅ x).

Let μW : W → 𝔥* be the unique complex symplectic moment map vanishing at 0, where 𝔥 =
Lie(H). Then, a neighborhood of y ∈ℳ(0,λ)(Q,v) is biholomorphic with a neighborhood of  0 in
(the analytification of) the GIT quotient μ−1

W (0)//H.

In view of this result, our task is to determine the complex symplectic slices at the points above 
the singular points in ℳ(0,λ)(Q,δ). It will be useful to introduce the following notation.
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Definition 7.3 Let Q be a quiver with vertex set I. For a pair of dimension vectors v,w ∈ ℤI
≥0, 

define 

Hom(v,w) := ⨁
i∈I

Hom(Vi,Wi) and Rep(Q;v,w) := ⨁
h∈Q

Hom(Vs(h),Wt(h)),

where Vi = ℂvi  and Wi = ℂwi  for each i ∈ I.

Note that Rep(Q;v,v) = Rep(Q,v) and that End(v) := Hom(v,v) = 𝔤c
v. The complex in (7.1) also 

has a relative analogue. Let v,w ∈ ℤI  be a pair of dimension vectors and let x ∈ Rep(Q,v) and y ∈
Rep(Q,w) satisfy μℂ(x) = μℂ(y) = λ for some λ ∈ ℂI . Define CQ(x,y) to be the sequence given by 

0 ⟶ Hom(v,w)
σx,y

⟶ Rep(Q;v,w)
νx,y

⟶ Hom(v,w) ⟶ 0,

where 

σx,y((ui)i∈I) = (ut(h)xh − yhus(h))h∈Q

νx,y((vh)h∈Q) = ( ∑
h∈t−1(i)

ϵ(h)(uhxh + yhuh))
i∈I

.

Note that CQ(x,x) is the complex of (7.1).

Lemma 7.4 Let X and Y denote the Πλ-modules corresponding to x ∈ Rep(Q,v) and y ∈ Rep(Q,w). 
Then, CQ(x,y) is a chain complex, that is, νx,y ∘ σx,y = 0, and if we denote the cohomology groups 
from left to right by H i

Q(x,y) for 0 ≤ i ≤ 2, we have

(1) H0
Q(x,y) ≅ HomΠλ(X,Y),

(2) H2
Q(x,y) ≅ HomΠλ(Y ,X)*,

(3) dimℂH1
Q(x,y) = dimℂH0

Q(x,y) + dimℂH2
Q(x,y)− (v,w).

Proof. To simplify the notation, we will write Vi = ℂvi  and Wi = ℂwi  for i ∈ I. Let u = (ui : Vi →
Wi)i∈I ∈ Hom(v,w). Then, using the definitions of σx,y and νx,y, we see that νx,y ∘ σx,y(u) equals 

=( ∑
h∈t−1(i)

ϵ(h)(ut(h)xhxh − yhus(h)xh + yhut(h)xh − yhyhus(h)))
i∈I

=( ∑
h∈t−1(h)

ui(ϵ(h)xhxh)− (ϵ(h)yhyh)ui)
i∈I

= (uiλi − λiui)i∈I = 0.

Here, we have used that s(h) = t(h), t(h) = s(h) and that μℂ(x) = μℂ(y) = λ. This shows that CQ(x,y)
is a chain complex.

Recall that Πλ was defined to be a quotient of the quiver algebra ℂQ. Therefore, we may also 
regard X and Y as ℂQ-modules and clearly HomℂQ(X,Y) = HomΠλ(X,Y). From the definition of 
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SINGULAR QUIVER VARIETIES OVER EXTENDED DYNKIN QUIVERS 931

a homomorphism of representations, it is clear that HomℂQ(X,Y) = Ker(σx,y) = H0
Q(x,y) proving

part (1).
For the second part, we use an idea from the proof of [6, Lemma 3.1] (this lemma and its 

proof implies our result for λ = 0). Let ϕ : Hom(w,v) → Hom(v,w)* be the isomorphism given 
by ϕ(u)(v) = ∑

i∈I
tr(uivi) and let ψ : Rep(Q;w,v) → Rep(Q;v,w)* be the isomorphism given by 

ψ(f )(g) = ∑
h∈Q

ϵ(h) tr(fhgh). Then, a rather tedious calculation shows that the following diagram 
commutes. 

Since both the vertical maps are isomorphisms, we conclude that 

Coker(νx,y)* ≅ Ker((νx,y)*) ≅ Ker(σy,x) = HomΠλ(Y ,X),

where the final equality follows from the first part. Hence, H2
Q(x,y) ≅ HomΠλ(Y ,X)*.

For the final part observe that 

(v,w) = 2∑
i∈I

viwi − ∑
h∈Q

vs(h)wt(h) = 2dimℂHom(v,w)− dimℂRep(Q;v,w),

is the Euler characteristic of the complex CQ(v,w). Since the Euler characteristic is preserved upon 
passage to cohomology, we obtain (v,w) = dimℂH0

Q(v,w)− dimℂH1
Q(v,w) + dimℂH2

Q(v,w), and 
this is equivalent to the formula stated in part (3). 

Remark 7.5 It is in fact also true that H1
Q(x,y) ≅ Ext1Πλ(X,Y). We give a sketch of the proof. By 

[3, Corollary 1.4.2], it holds true that Coker(σx,y) = Ext1ℂQ(X,Y). Moreover, there is an explicit way 
to relate this group to the set of isomorphism classes of extensions 0 → Y → Z → X → 0. Given an 
element [z] ∈ Ext1ℂQ(X,Y) represented by z = (zu : Vs(h) → Wt(h)), one may construct the extension Z

by setting eiZ = Ui = Vi ⊕Wi for each i ∈ I and letting zh : Us(h) → Ut(h) for h ∈ Q be given by the 
matrix 

zh = ( xh 0
zh yh

) .

The exact sequence 0 → Y → Z → X → 0 is given componentwise by the canonical exact sequence 
0 → Wi → Vi ⊕Wi → Vi → 0. This is then an extension of Πλ-modules if and only if μℂ(Z) = λ. It 
is then a matter of calculation to check that this is the case if and only if z ∈ Ker(νx,y).

Let Q be an extended Dynkin quiver with vertex set identified with {0,1,⋯ ,n} and minimal 
imaginary root δ ∈ ℤn+1. Let λ = (λ1,τ) ∈ ℂ⊕ℂn = ℂn+1 satisfy δ ⋅ λ = 0. Denote the root systems 

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/74/3/911/7048437 by guest on 02 February 2024



932 G. O. HELLE

by Φ̃ ⊂ ℤn+1 and Φ ⊂ ℤn as usual. By Proposition 4.3 and Theorem 6.3, the singular points in 
ℳ(0,λ)(Q,δ) are in bijection with the components in the root space decomposition 

Φ∩ τ⟂ = Φ1 ∪Φ2 ∪⋯∪Φr .

Write ℳsing
(0,λ)(Q,δ) = {y1,y2,⋯ ,yr}, where yi corresponds to Φi for each 1 ≤ i ≤ r.

Proposition 7.6 In the above situation fix i, 1 ≤ i ≤ r, and let x ∈ μ−1(0,λ) ⊂ Rep(Q,δ) be a point 
above yi. Let Q′ be the extended Dynkin quiver associated with the root system Φi and let δ′ denote 
its minimal imaginary root. Then, there is an isomorphism (Gc

δ)x ≅ Gc
δ′  and there is a complex 

symplectic isomorphism 

Tx(Gc
δ ⋅ x)ωℂ/Tx(Gc

δ ⋅ x) ≅ Rep(Q′,δ′),

equivariant along the above isomorphism of groups.

Proof. First note that the complex symplectic slice at x is precisely the cohomology group H1
Q(x,x). 

We will determine this complex symplectic space as an H := (Gc
δ)x representation. Let X = ⊕k

t=0ntZt
denote the semi-simple Πλ-module corresponding to x decomposed into simple summands. Then, 
according to Proposition 4.3, we have H = ∏k

t=0
GL(nt ,ℂ). Recall from the proof of Theorem 6.3 

that if we write γt = dimZt ∈ ℤn+1 for 0 ≤ t ≤ k, then after possibly rearranging the indices, we have 
γ0 = (1,d− β) ∈ ℤn+1 and γt = (0,αt) ∈ ℤn+1, 1 ≤ t ≤ k, where α1,α2,⋯ ,αt ∈ Φi ⊂ Φ∩ τ⟂ is a base 
and β = ∑n

t=1
ntαt  is the maximal root.

Let zj ∈ μ−1
ℂ (λ) ⊂ Rep(Q,γj) be the point corresponding to Z j. Then, the complex CQ(x,x)

decomposes according to the decomposition X = ∑k

t=0
ntZt , namely, 

CQ(x,x) ≅⨁
t,s

Hom(ℂns ,ℂnt )⊗CQ(zs,zt).

The stabilizer H = ∏k

t=0
GL(nt ,ℂ) only acts on the first factors, that is, 

(uj)j ⋅ (ft,s ⊗Bt,s)t,s = (utft,su
−1
s ⊗Bt,s)t,s,

for (uj)j ∈ H and ft,s ⊗Bt,s ∈ Hom(ℂns ,ℂnt )⊗CQ(zt ,zs). Passing to cohomology, we obtain 

H1
Q(x,x) ≅⨁

s,t

Hom(ℂns ,ℂnt )⊗H1
Q(zs,zt), (7.2)

and the action of H is the same as described above. By Lemma 7.4 part (3) and the fact that each Z t
is a simple module, we find 

dimℂH1
Q(zs,zt) = dimC HomΠλ(Zs,Zt) + dimℂHomΠλ(Zt ,Zs)* − (γs,γt)

= 2δst − (γs,γt). (7.3)

Let K̃  be the extended Dynkin graph associated with the root system Φi. Specifically, the vertex set 
is I = {0,1,⋯ ,k} corresponding to the roots α0 = −β,α1,⋯ ,αt  and a single edge connecting s to t if 
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and only if (αs,αt) = −1. As (γs,γt) = (αs,αt) for all s, t, we conclude by the dimension formula (7.3) 
that H1

Q(zs,zt) ≅ ℂ precisely when s≠ t and s and t are adjacent in K̃  and H1
Q(zs,zt) = 0 otherwise. 

The expression in (7.2) then takes the form 

H1
Q(x,x) ≅ ⨁

s→t in K̃
Hom(ℂns ,ℂnt ),

where each edge is repeated twice once with each orientation. If the identifications H1
Q(zs,zt) ≅ ℂ

for s and t adjacent in K̃ are chosen appropriately, the induced symplectic form is given by 

ω((fs,t)s,t ,(gs,t)s,t)) = ∑
s<t

ϵ(s, t)(tr(fs,tgt,s)− tr(ft,sgs,t)),

for some ϵ(s, t) = ±1. If s < t and there is an edge connecting s to t, we specify the orientation of 
the edge by s→ t if ϵ(s, t) = 1 and t→ s if ϵ(t,s) = −1. This gives rise to an extended Dynkin quiver 
Q′ with minimal imaginary root δ′ = (n0 = 1,n1,⋯ ,nk). It is now clear from the above work that 
H1

Q(x,x) ≅ Rep(Q′,δ′) as complex symplectic H ≅∏k

t=0
GL(nt ,ℂ) = Gc

δ′ representations.

To complete the proof of Theorem 1.1, we will need the following result.

Lemma 7.7 ([15, Corollary 3.2]). Let Q be an extended Dynkin quiver with minimal imaginary root 
δ. Let Γ ⊂ SU(2) be the finite subgroup associated with the underlying unoriented graph of Q under 
the McKay correspondence. Then, there is a homeomorphism 

ℳ0(Q,δ) ≅ ℂ2/Γ,

that restricts to an isometry away from the singular point. In particular, ℳreg
0 (Q,δ) =

ℳ0(Q,δ)− {0}.

Proof of Theorem 1.1. Let Q be an extended Dynkin quiver with vertex set {0,1,⋯ ,n} and minimal 
imaginary root δ = (1,d) ∈ ℤn+1, where d is the maximal positive root in the associated root system 
Φ ⊂ ℤn of type ADE. Let λ ∈ ℂn+1 be a parameter satisfying λ ⋅ δ = 0 and write λ = (λ1,τ) ∈ ℂ⊕ℂn. 
Then, by Theorem 6.3, there is a bijection between ℳsing

(0,λ)(Q,δ) and the components in the root space 
decomposition 

Φ∩ τ⟂ = Φ1 ∪Φ2 ∪⋯∪Φq.

Write ℳsing
(0,λ)(Q,δ) = {x1,⋯ ,xq}, where xi corresponds to Φi for 1 ≤ i ≤ q. For each 1 ≤ i ≤ q, 

let Q(i) denote the extended Dynkin quiver associated with the root system Φi and let δ(i) be the 
associated minimal positive imaginary root. Then, according to Proposition 7.6 and Lemma 7.2, 
there is for each 1 ≤ i ≤ q an open neighborhood U i of xi ∈ℳ(0,λ)(Q,δ), an open neighborhood V i

of 0 ∈ℳ0(Q(i),δ(i)) and a biholomorphism ρi : Ui → Vi. Importantly, since the category of complex 
manifolds is a full subcategory of the category of complex analytic spaces, this biholomorphism 
restricts to a biholomorphism ρi : Ureg

i ≅ V reg
i  of complex manifolds.

Let Γi ⊂ SU(2) be the finite subgroup associated with Q(i) under the McKay correspondence. 
By the above lemma, there is for each i, 1 ≤ i ≤ q, a homeomorphism ℳ0(Q(i),δ(i)) ≅ ℂ2/Γi that 
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934 G. O. HELLE

restricts to an isometry away from the singular point. This map restricts to a homeomorphism κi : Vi ≅
Wi ⊂ ℂ2/Γi for some open neighborhood W i around 0. By shrinking the U i and V i if necessary, 
we may assume that Wi = Br(0)/Γi for some r > 0 for each 1 ≤ i ≤ q. The compositions ϕi := κi ∘
ρi : Ui → Br(0)/Γi are then the required homeomorphisms. Indeed, for each i, both ρi and κi restrict 
to diffeomorphisms away from the singular point, so we deduce that the restriction 

ϕi = κi ∘ϕi : ℳreg
(0,λ)(Q,δ)∩Ui = Ui − {xi} ≅ (Br(0)− {0})/Γi,

is a diffeomorphism. This completes the proof.

8. Configurations of singularities and the proof of Theorem 1.2

Let Q be an extended Dynkin quiver with vertex set I = {0,1,⋯ ,n} and minimal imaginary root 
δ ∈ ℤn+1. In this section, we take up the question of what kind of configurations of singularities that 
can occur in ℳ(0,λ)(Q,δ) by varying the parameter λ. Assume that λ ⋅ δ = 0 and write λ = (λ1,τ) ∈
ℂ⊕ℂn. Then, according to Theorem 6.3 and the local structure result in the previous section, the 
configuration of singularities is uniquely determined by the root space decomposition 

Φ∩ τ⟂ = Φ1 ∪⋯∪Φr ,

where Φ ⊂ ℤn is the root system of type ADE associated with Q. The problem therefore reduces 
to determining the number and types of root systems that can occur in the above root space 
decomposition.

Give ℂ the total ordering determined by z ≤ w if and only if either Re(z) ≤ Re(w) or Rez = Rew
and Imz ≤ Imw. Note that this ordering is additive, that is, z ≤ w ⟹ z + c ≤ w + c for each c ∈ ℂ. 
We say that an element τ ∈ ℂn is dominant if τi ≥ 0 for each i. The value of this notion comes from 
the simple observation that if τ ∈ ℂn is dominant and θ ∈ ℤn, then τ ⋅ θ = 0 if and only if supp(θ)∩
supp(τ) = ∅.

Lemma 8.1 Let K denote the Dynkin diagram associated with the root system Φ ⊂ ℤn. Suppose 
τ ∈ ℂn is dominant and let J be the complement of supp(τ) in {1,2,⋯ ,n}. Let KJ ⊂ K be the full 
subgraph of K with vertex set J ⊂ {1,2,⋯ ,n}. Let 

KJ = K1 ⊔K2 ⊔⋯⊔Kr ,

be the decomposition of KJ into connected components. Then, 

Φ∩ τ⟂ = Φ1 ∪Φ2 ∪⋯∪Φr ,

where Φi is the ADE root system associated with Ki for each 1 ≤ i ≤ r.

Proof. Note first that every connected subgraph of a Dynkin graph of type ADE is again a Dynkin 
graph of type ADE. Let J i be the set of vertices for K i in the decomposition in the statement and put 
Si = {ϵj : j ∈ Ji}. We claim that S = ∪iSi is a base for Φ∩ τ⟂. Indeed, S clearly consists of linearly 
independent elements, and every element α ∈ Φ+ ∩ τ⟂ satisfies supp(α) ⊂ J so it can be written as 
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a positive linear integral combination of the elements of S. Then, as in the proof of Lemma 5.2, the 
root space decomposition 

Φ∩ τ⟂ = Φ1 ∪⋯∪Φr ,

is obtained by decomposing S into minimal pairwise orthogonal sets S = ∪iSi and letting Φi be the 
subsystem generated by Si. Importantly, this decomposition S = ∪iSi is precisely the decomposition 
introduced in the beginning. We conclude that Φi is the root system associated with the Dynkin graph 
K i for each 1 ≤ i ≤ r. 

For completeness, we also show that the decomposition for an arbitrary parameter τ can in fact be 
put in the above standard form. Recall that the Weyl group associated with Φ is the finite group W ⊂
Autℤ(ℤn) generated by the simple reflections si : ℤn →ℤn in the coordinate vectors ϵi for 1 ≤ i ≤ n. 
There is a unique action of W on ℂn such that (wα) ⋅ τ = α ⋅ (w−1τ) for all α ∈ ℤn and τ ∈ ℂn. This 
is the complexification of the dual action, where we identify (ℝn)* ≅ ℝn using the standard scalar 
product.

The following lemma follows essentially from the proof in [13, p. 51], see also [7, Lemma 7.2].

Lemma 8.2 For every τ ∈ ℂn, there exists w ∈ W such that wτ is dominant.

Proof. Write Φ = Φ+ ∪Φ− and define γ = 1
2 ∑α∈Φ+ α. By [13, p. 50], one has si(γ) = γ− ϵi for each 

1 ≤ i ≤ n. Choose w ∈ W  such that γ ⋅wτ ≥ γ ⋅w′τ for every w′ ∈ W  with respect to the total ordering 
on ℂ. We claim that τ′ := w ⋅ τ is dominant. Indeed, for each 1 ≤ i ≤ n, it holds true that 

γ ⋅ τ′ ≥ γ ⋅ siτ′ = siγ ⋅ τ′ = γ ⋅ τ′ − ϵi ⋅ τ′,

or equivalently τ′i = ϵi ⋅ τ′ ≥ 0. This shows that wτ = τ′ is dominant.

Proposition 8.3 Let K denote the Dynkin diagram associated with the root system Φ ⊂ ℤn. Given 
τ ∈ ℂn, let 

Φ∩ τ⟂ = Φ1 ∪⋯∪Φr ,

be the corresponding decomposition into ADE root systems. Then, there exists a full subgraph K ′ ⊂ K
and a decomposition K′ = K1 ⊔⋯⊔Kr  into connected components such that Φi is isomorphic to the 
root system associated with Ki for each i.

Proof. By the previous lemma, there exists a Weyl transformation w ∈ W  such that wτ ∈ ℂn is 
dominant. From the relation τ ⋅α = wτ ⋅wα, we deduce that the isomorphism w : Φ→ Φ restricts 
to an isomorphism τ⟂ ∩Φ→ (wτ)⟂ ∩Φ. As this is an isomorphism of root systems, it preserves the 
decomposition into irreducible components. The result therefore follows from Lemma 8.1 as wτ is 
dominant.

The final ingredient needed to complete the proof of Theorem 1.2 is contained in the follow-
ing proposition. We use the notation Br(x) ⊂ ℂ2 and Br(x) ⊂ ℂ2 for the open and closed ball, 
respectively, with center x ∈ ℂ2 and radius r.
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Proposition 8.4 Let Q be an extended Dynkin quiver with minimal imaginary root δ. Let Γ ⊂ SU(2)
be the finite subgroup associated with the underlying extended Dynkin graph under the McKay corre-
spondence. Let λ ∈ ℂn+1 be a parameter with λ ⋅ δ = 0. Then, there is an open subset U ⊂ℳreg

(0,λ)(Q,δ)
with compact complement in ℳ(0,λ)(Q,δ) and a diffeomorphism ϕ : U → (ℂ2 −BR(0))/Γ. Moreover, 
ϕ−1((ℂ2 −BR′(0))/Γ) is closed in ℳ(0,λ)(Q,δ) for each R′ > R.

Remark 8.5 The final assertion is included to explicitly state that there are no limit points in 
ℳ(0,λ)(Q,δ) as x ∈ (ℂ2 −BR(0))/Γ tends to ∞.

Proof. Choose a parameter ζ ∈ ℝn+1 satisfying ζ ⋅ δ = 0 and ζ ⋅ θ ≠ 0 for each θ ∈ R+(δ) (defined in 
Theorem 3.6) and put ξ = (0,λ) and ̃ξ = (ζ ,λ). To simplify the notation, write 

X̃ = ℳ ̃ξ(Q,δ) and X = ℳξ(Q,δ).

Then, according to Theorem 3.10, there is a holomorphic map π : X̃ → X which is a resolution of sin-
gularities. Furthermore, by Kronheimer’s result mentioned in the introduction [15, Corollary 3.12], 
the smooth four-dimensional hyper-K ̈ahler manifold X̃ is diffeomorphic to the minimal resolution 
of the quotient singularity ℂ2/Γ. We may therefore assume that there is a continuous proper map 
̂π : X̃ →ℂ2/Γ that restricts to a diffeomorphism ̂π−1((ℂ2 − {0})/Γ) ≅ (ℂ2 − {0})/Γ. The situation 

is summarized in the following diagram 

X
π
⟵ X̃

̂π
⟶ℂ2/Γ.

Since the open sets ̂π−1(BR(0)/Γ) for 1 < R <∞ cover X̃ and π−1(Xsing) are compact, there exists 
an R such that π−1(Xsing) ⊂ ̂π−1(BR(0)/Γ). Hence, 

V := ̂π−1((ℂ2 −BR(0))/Γ) ⊂ π−1(Xreg),

and as ̂π is proper, X −V = ̂π−1(BR(0)/Γ) is compact. The biholomorphism π : π−1(Xreg) ≅ Xreg

therefore maps V onto an open subset U ⊂ Xreg. The composition of the restrictions π−1 : U → V
and ̂π : V → (ℂ2 −BR(0))/Γ gives the required diffeomorphism ϕ : U ≅ (ℂ2 −BR(0))/Γ. Finally, 

ϕ−1(ℂ2 −BR′(0)))/Γ = π( ̂π−1(ℂ2 −BR′(0))/Γ),

is closed in X for each R′ > R because ̂π is continuous and π is a closed map (as it is proper and X
is locally compact Hausdorff). 

Proof of Theorem 1.2. Let Γ0,Γ1,⋯ ,Γq ⊂ SU(2) be finite subgroups and let K i denote the Dynkin 
diagram associated with K i for each 0 ≤ i ≤ q. Assume that K ′ := K1 ⊔K2 ⊔⋯⊔Kq can be realized 
as a full subgraph of K0. Identify the vertex set of K0 with {1,2,⋯ ,n} for some n ∈ ℕ and let 
J ⊂ {1,⋯ ,n} be the vertices of the subgraph K ′. Let Φ ⊂ ℤn be the root system associated with 
K and specify τ ∈ ℂn by τj = 1 if j ∉ J and τj = 0 otherwise. Then, τ is dominant and suppτ is 
complementary to J. By Lemma 8.1, we have a root space decomposition 

Φ∩ τ⟂ = Φ1 ∪⋯∪Φq, (8.1)

where Φi is the ADE root system associated with the Dynkin graph K i for each 1 ≤ i ≤ q.
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Let Q be an extended Dynkin quiver with the underlying extended Dynkin graph corresponding 
to Γ0 under the McKay correspondence (that is, K̃0). We identify the set of vertices with {0,1,⋯ ,n}
such that the minimal imaginary root is given by (1,d) ∈ ℤn+1 where d ∈ Φ ⊂ ℤn is the maximal 
positive root. Then, λ := (−d ⋅ τ,τ) ∈ ℂn+1 satisfies λ ⋅ δ = 0. Set X := ℳ(0,λ)(Q,δ). Then, accord-
ing to Theorem 1.1, we may write Xsing = {x1,x2,⋯ ,xq}, and for each 1 ≤ i ≤ q, there is an open 
neighborhood xi ⊂ Vi ⊂ X and a homeomorphism ϕi : Vi → Br(0)/Γi, for some fixed r indepen-
dent of i. Furthermore, each ϕi restricts to a diffeomorphism away from the singular point. Next, 
by Proposition 8.4, there is an open subset U′ ⊂ Xreg with X −U′ compact and a diffeomorphism 
ϕ0 : U′ ≅ (ℂ2 −BR′(0))/Γ0 for some R′ > 0. In addition, ϕ−1

0 ((ℂ2 −BR(0))/Γ) is closed in X for 
each R > R′.

For part (1), we already know that Xreg is a smooth hyper-K ̈ahler four-manifold. The space X is 
connected by Lemma 6.2, and in view of the above local models around the singularities, it is clear 
that Xreg = X − {x1,⋯ ,xq} is connected as well.

For parts (2) and (3), fix R > R′ and let C ⊂ X be the closed subset ϕ−1((ℂ2 −BR(0))/Γ). Since 
C ⊂ Xreg and X is Hausdorff, we may assume after possibly shrinking the V i (and hence r > 0) that 
the open sets V1,V2,⋯ ,Vq are pairwise disjoint and that Vi ∩C = ∅ for each i. Put 

U0 := ϕ−1((ℂ2 −BR(0))/Γ) ⊂ Xreg and Ui := Vi − {xi} ⊂ Xreg, 1 ≤ i ≤ q.

Then, the open subsets U0,U1,U2,⋯ ,Uq are pairwise disjoint, the complement of their union is com-
pact in Xreg and we have diffeomorphisms ϕ0 : U0 ≅ (ℂ2 −BR(0))/Γ and ϕi : Ui ≅ (Br(0)− {0})/Γ
for 1 ≤ i ≤ q. We now decrease r and increase R slightly to ensure that each ϕi extends over a slightly 
bigger open set for each 0 ≤ i ≤ q. The proof of part (2) is completed by composing ϕ0 with the evi-
dent diffeomorphism (ℂ2 −BR(0))/Γ ≅ (R,∞)× S3/Γ ≅ (0,∞)× S3/Γ and by composing ϕi with 
the diffeomorphism 

(Br(0)− {0})/Γi ≅ (0,r)× S3/Γi ≅ (0,∞)× S3/Γi,

where the final diffeomorphism includes a time reversal, for each 1 ≤ i ≤ q. Finally, Y = Xreg −
∪q

i=0Ui is a compact manifold with boundary components S3/Γi, 0 ≤ i ≤ q, because we arranged 
that ϕi actually extends to a diffeomorphism ϕ′i : U′

i ≅ (−t0,∞)× S3/Γi for some t0 > 0 for each 
0 ≤ i ≤ q. This completes the verification of part (3) and hence the proof.
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