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Summary

Flooding currently affects more people than almost any other natural
hazard (Van Loenhout et al., 2020) and the proportion of the world’s
population that lives in flood-exposed areas is growing rapidly (Tellman
et al., 2021). Part of the way society manages exposure to flood
risk is through estimation of flood design values. These values give
estimates of flood magnitude within a given return period and are
essential to making adaptive decisions for a variety of hydrologic
applications, e.g., infrastructure design, land use planning, and water
resource management. For flood retention-specific applications—e.g.
floodplain management and reservoir design—we often need design
values at multiple durations. Here our focus is the retention capacity
of a man-made or natural basin. We are therefore concerned with the
total flow volume we can expect to see over a short duration like one
hour vs a longer one like one day, regardless of whether that volume of
water comes from a single event or multiple consecutive events.

This thesis explores and develops statistical methods for obtaining
design values at different durations for flood retention-specific
applications. Specifically, we propose an extension to an existing flood-
duration-frequency model that allows for more realistic modeling of the
relationship between design values of different duration at individual
locations. A Bayesian inference framework for these local models is also
proposed, allowing for accessible uncertainty estimation and estimation
of a mixture model that helps establish the importance of the model
extension. We also assess the suitability of regression-based regional
flood frequency analysis models for estimating design values at multiple
durations at out-of-sample locations, and offer recommendations
for regional model structure if design value estimation at multiple
durations is the goal.
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Sammendrag

Flom påvirker flere mennesker enn nesten noen annen natur fare (Van
Loenhout et al., 2020), og andelen av verdens befolkning som bor i
områder utsatt for flom øker raskt (Tellman et al., 2021). En av måtene
vi håndterer eksponering for flomrisiko på, er å treffe beslutninger for
hvordan samfunnet kan tilpasses til flommer. Dette krever beregninger
av dimensjonerende verdier for flom som brukes for dimensjonering
av infrastruktur, arealplanlegging og vannressursforvaltning. En
dimensjonrende flom er beskrevet ved flomstørrelser for et gitt
gjentaksintervall. For anvendelser der kapasiteten til å takle flomvolum
er viktig, for eksempel flomsoneforvaltning og reservoarutforming,
trenger vi ofte dimensjonerende verdier for flomvolum over flere
varigheter. Da trenger vi beregninger av totalt volum vi kan forvente
å se over en kort varighet som en time vs. en lengre som en dag,
uavhengig av om det vannvolumet kommer fra en enkelt hendelse eller
flere påfølgende hendelser.

Denne avhandlingen utforsker og utvikler statistiske metoder
for å beregne dimensjonerende verdier for flommer med ulike
varigheter. Spesifikt foreslår vi en utvidelse av en eksisterende flom-
varighet-frekvens modell som tillater en mer realistisk modellering av
forholdet mellom dimensjonerende verdier med ulike varigheter på
steder med vannføringsobservasjoner. Det er utviklet et Bayesiansk
rammeverk for estimering av slike lokale modeller. Dette rammeverket
gjør det mulig å estimere usikkerhet i dimensjonerende verdier
samt å estimere en blandingsmodell som brukes for å fastslå
viktigheten av modellutvidelsen. Vi vurderer også egnetheten
til regresjonsbaserte regionale flom-varighet-frekvensmodeller for å
estimere dimensjonerende verdier med ulik varighet på steder uten
vannføringsmålinger Basert på resultatene gir vi anbefalinger for
regional modellstruktur hvis målet er å estimere dimensjonerende
verdier med flere varigheter.
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Chapter 1

Introduction

1.1 Motivation

Floods are one of the most widespread and costly natural hazards worldwide,
and their destructive capacity is expected to rise in the near future due to
climate change-induced increases in flood prevalence and growing economic value
in vulnerable areas (Alfieri et al., 2017; Field, 2012). Estimation of flood design
values will be essential for societal adaptation in flood prone areas. Flood frequency
analysis provides a well-established statistical framework for this estimation.
Many hydrologic applications where flood retention is important, e.g. floodplain
management and reservoir design, need design values at several durations, where
the duration d represents the total flow volume for a time span of d hours. In
Norway, the standard approach to obtaining design values at different durations is
to use daily data (data averaged over a calendar day) in a flood frequency analysis
and subsequently estimate a constant scaling ratio to scale between estimates
of different duration (Midtømme, 2011). This thesis investigates whether the
relationship between design values of different duration can be modeled more
concretely and directly. In order to do this, we develop new models and inference
approaches that allow us to assess the relationship between design values of
different duration.

Different modeling scenarios arise depending on whether we are building a
model for a single site with sufficient data for local frequency analysis or extending
estimates to ungauged or data-deficient sites, as well as if we have observed data
for a specific duration or if we are extrapolating to an unobserved duration.

Existing models that can extrapolate to unobserved durations depend on a
parametric relationship between return levels of different durations. These models
often assume that the ratio between return levels of different duration is constant
and not dependent on return period. This is a limitation of these models since
we might expect floods of short durations to be more heavy-tailed than floods of
longer durations. There is therefore a need for models that allow for more flexible
tail behavior, as well as robust estimation frameworks for such models.

Regional models that extend design values to ungauged or data-deficient sites
often base this extension on regression. We often aim to regionalize design values
beyond the range of the observed data. Two approaches can be used: developing
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Chapter 1. Introduction

regression models for flood quantiles or developing regression models for extreme
value distribution parameters, where in both cases response values come from local
frequency analysis. The choice of regression model, whether parametric or non-
or semi-parametric, can significantly impact the regionalization process. There
is limited existing literature comparing regression-based regional flood frequency
analysis models when multiple durations are required. A systematic evaluation of
the described modeling scenario is needed.

1.2 Objectives

This thesis focuses on two objectives, one for each of the modelling scenarios
summarized above. For each objective, we develop statistical solutions. The
statistics is always motivated by the operational potential of the approach and we
develop methodology only to the extent required to address our practical issues.

The first objective is to develop local models for situations where we have
sufficient data available at a single gauged site and wish to extend the flood
frequency estimates to unobserved durations. For this objective the following
research questions were identified:

1. Do models that allow for the ratio between return levels to change with
return period improve our ability to predict unobserved sub-daily durations?
(Paper I)

2. How sensitive are local models to the selected input durations? (Paper I)

The second objective is to development of regional models for situations where
we have observed data at the duration of interest at a sufficient number of sites and
wish to extend the flood frequency estimates at that duration to other, potentially
ungauged, sites. For this objective the following research questions were identified:

3. Can a semi-parametric (i.e. “data-driven”) regression model achieve
comparable or improved performance to two benchmark models (one
parametric and one non-parametric) on the 1 hour and/or the 24 hour
duration? (Paper II)

4. Within a regional regression model, can we identify and describe duration-
specific differences in how catchment covariates influence the median flood?
How impactful are these differences? (Paper II)

5. How does developing regression models for flood quantiles compare to
developing regression models for extreme value distribution parameters in
terms of predictive performance and consistency between durations? (Paper
III)

6. If our regional models produce estimates that are duration inconsistent, at
what return period do we observe the inconsistent estimate? Is the return
period within the range of the observed data? (Paper III)

2



1.3. Study design and outline

1.3 Study design and outline

This thesis is comprised of three papers and an introduction. We employ a variety
of Bayesian, frequentist, and machine learning approaches to fulfill the objectives
in the thesis. Paper I addresses objective (i) and develops parametric models–
and an associated Bayesian estimation framework–that allow for fully consistent
estimation of return levels across durations and return periods for an at-site
location with sufficient data to support flood frequency analysis. Additionally,
we take an existing parametrization of the generalized extreme value distribution
and introduce it in a hydrological context. Papers II and III address objective (ii)
and develop models using existing non- and semi-parametric modeling approaches
to investigate specific aspects of regional flood frequency analysis at multiple
durations. We also introduce a preliminary machine-learning-based variable
selection algorithm for regression-based regional flood frequency analysis. All
papers use an aggregation-based approach to obtaining annual maxima of different
duration, where annual maxima are sampled from discharge series averaged over
different durations. Thus the duration d represents the total flow volume for a
time span of d hours, not flood events that lasted precisely d hours. The models
in paper I can be extended to any duration, although the current analysis focuses
on the sub-daily durations of 1 and 12 hours. The models and analyses in papers
II and III focus on the 1 hour and 24 hour durations. Papers II and III use a set
of 232 gauging stations in Norway, which includes the 12 stations used in paper I
as a subset.

The remainder of the thesis is structured as follows: chapter 2 provides
a review of flood frequency analysis, existing approaches for obtaining flood
frequency estimates at different durations, and the statistical methodology needed
to estimate and evaluate the models in this thesis. Chapter 3 describes the dataset
and study area, and details the data processing approach used to obtain data at
different durations. Chapter 4 gives a short summary of each the three papers
in this thesis with an emphasis on describing study novelty and main findings.
Chapter 5 provides an overarching discussion of the work across all three papers,
and chapter 6 presents a summary of the answers to the research questions and
concluding statements.

3
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Chapter 2

Scientific and methodological back-
ground

2.1 Flood frequency analysis

Design values estimate the relationship between a flood’s return level (magnitude)
and return period (frequency). Methods for estimating design values typically fall
into one of three general categories, e.g. Filipova et al. (2019): (1) statistical
flood frequency analysis (FFA), which uses flood data to estimate the magnitude
of floods with specific return periods, (2) event-based hydrological modeling for
a single design event, which uses design rainfall or other single realizations of
initial conditions and precipitation as input to a hydrological model to simulate
the desired flood event, and (3) derived flood frequency methods, which combine
weather generators and hydrologic models to simulate synthetic discharge series
for statistical estimation of return periods. The first approach–statistical FFA–is
the focus of this thesis.

2.1.1 Extreme value theory

Flood frequency analysis usually requires us to estimate the probability of events
that are more extreme than any that have been observed. The challenge is then
how to statistically estimate a flood with a return period of, for example, 100
years given only a few decades of observed data. Extreme value theory provides a
framework for extrapolations of this type.

Two main types of observed flood data are typically used in extreme value
analyses: annual maximum series and peak-over-threshold series (Robson et al.,
1999). This thesis focuses on annual maxima. Annual maxima are block maxima;
that is, they are the maximum of a process over N time units of observation, where
N is the number of observations in a year (Coles, 2001). Let X1, . . . , XN be a set
of continuous, univariate random variables that are assumed to be independent
and identically distributed. If the normalized distribution of the maximum
max{X1, . . . , XN} converges as N → ∞ then it converges to a generalized extreme
value (GEV) distribution (Fisher et al., 1928; Jenkinson, 1955). The GEV is the
only possible limiting distribution of the properly normalized annual maxima and
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Chapter 2. Scientific and methodological background

as such it is widely applied to model annual maxima (Castro-Camilo et al., 2022).
In many national guidelines for flood frequency estimation other distributions than
the GEV are used (see, e.g. England Jr et al. (2019), Castellarin et al. (2012)).
For example, the Log Pearson type III distribution is used in the USA, Poland,
Lithuania and Slovenia, while the generalized logistic distribution is used in the UK
and a mixture of two Gumbel distributions is used in Italy and Spain (Castellarin
et al., 2012).

2.1.2 The generalized extreme value distribution

Extreme value theory defines three distinct representations of extreme value
behavior for block maxima, each corresponding to varying tail behaviors in the
distribution function of the Xi, i ∈ {1, ..., N} (Coles, 2001). Classically, these are
called the Gumbel, Frechet and Weibull families. The GEV distribution combines
these three classes of extreme value distributions into a single family of models. In
its standard location-scale parameterization, the cumulative distribution function
is given as

G(y) = exp
{

−
[
1 + ξ

(
y − µ

σ

)]−1/ξ
}

(2.1)

which is defined on {y : 1+ξ(z−µ)/σ > 0} with parameter bounds −∞ < µ < ∞,
σ > 0 and −∞ < ξ < ∞ and where y would be the observed annual maximum
streamflow for a specific year. The shape parameter, ξ, controls the three classes
of tail behavior for the GEV (Figure 2.1) (Coles, 2001). If ξ > 0, the limiting
distribution is heavy-tailed with an infinite upper endpoint and finite, parameter-
dependent lower endpoint. If ξ < 0, the GEV has a parameter-dependent upper
endpoint. The case where ξ = 0 is interpreted as the limit when ξ → 0 and leads
to unbounded (parameter-free) support.

These endpoints may impose artificial bounds on the model when the GEV
is a poor approximation to the data at hand, e.g. when the sample size is too
small (Stein, 2017; Castro-Camilo et al., 2022). For this reason guidelines for
FFA typically recommend assuming the shape parameter is equal to zero when
the data series is short. An overview of country specific applications of the GEV
for European countries can be found in Castellarin et al. (2012). Previous research
(Castellarin et al., 2012; Midtømme, 2011; Kobierska et al., 2018) recommends the
three-parameter GEV distribution for FFA on individual Norwegian stations with
long data series.

2.1.3 The reparameterized GEV distribution

The GEV in its standard parameterization (i.e. Equation 2.1) resembles well-
known location-scale families. However, while most location-scale parameteriza-
tions associate the location and scale parameters with the mean and variance, the
location and scale parameters of the GEV are not easily interpreted in terms of
these descriptors (Coles et al., 1996). Furthermore, the mean and variance are
unsuitable for the skewed nature of the distribution and are undefined for large
enough values of the shape parameter (Coles, 2001).

6
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Figure 2.1: Support of GEV densities. Support endpoints are marked. All densities have
µ = 0, σ = 1.

Given these constraints, the parameters of a GEV model are more easily
interpreted through quantile expressions. Castro-Camilo et al. (2022) suggest a
reparameterization such that the new location parameter is the quantile defined
by probability p (0 < p < 1). If p = 0.5, the relationship between the location
parameter, µ, and the location parameter under the reparameterization, η, is given
as

η =

µ + σ log(2)−ξ−1
ξ

if ξ ̸= 0
µ − log {log(2)} if ξ = 0.

(2.2)

In context of FFA, the new location parameter, η, has a reasonable interpretation
as the median annual maximum flood, with units that match the original
streamflow time series.

2.1.4 Flood frequency curves

Estimates of the quantiles of the GEV distribution give us the desired estimates
of low-probability, large-magnitude floods. Using the GEV model under the
reparameterization, quantiles are obtained by substituting η from Equation 2.2
for µ in Equation 2.1 and inverting the result:

zp =

η − σ
ξ

[
(−log(1 − p))−ξ − log(2)−ξ

]
if ξ ̸= 0

η − σlog {−log(1 − p)} + log {log(2)} if ξ = 0.
(2.3)

where G(zp) = 1 − p and zp is the return level associated with the return period
T such that T = 1/p. That is, the expression in Equation 2.3 defines the flood
frequency curve relating flood size to flood rarity (Robson et al., 1999).

If we define ℓp = −log(1−p), then the plot of zp against log ℓp forms the return
level plot (Coles, 2001). The logarithmic scale in the return level plot condenses the
distribution’s tail, emphasizing the impact of extrapolation and visually revealing
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Chapter 2. Scientific and methodological background

the type of tail behavior exhibited by the underlying GEV distribution. The return
level plot is linear in the case ξ = 0. If ξ < 0 the flood frequency curve is bounded
above (i.e. has a maximum possible value) and the return level plot is convex. If
ξ > 0 the flood frequency curve is unbounded above and the return level plot is
concave.

It is often useful to scale the flood frequency curve such that the two-year return
period has a return level of 1 (that is, scale the flood frequency curve by dividing
by the median flood) (Robson et al., 1999). Scaled versions of the flood frequency
curve are typically called growth curves. The scaling factor–the median flood in
this case–is typically called the index flood. This scaling is beneficial for hydrologic
analyses because separating the order of magnitude of a flood from the shape and
slope of the growth curve allows for cross-catchment comparisons (Robson et al.,
1999; Dalrymple, 1960). Under the reparameterization in Equation 2.2, this scaling
is straightforward as the median is explicitly included as a parameter in the flood
frequency curve (Equation 2.3).

2.1.5 Approaches for frequency analysis at ungauged catch-
ments

Flood frequency analysis is often required at ungauged sites or sites with
insufficient data. It is then necessary to use data from nearby or similar gauged
stations to estimate flood quantiles at the site of interest. This is termed regional
flood frequency analysis (RFFA). The process of transferring information from
hydrologically similar catchments to a particular catchment of interest is called
regionalization (Blöschl et al., 1995). There are many different approaches to
regionalization; see Blöschl (2013) or Odry et al. (2017) for a review. The focus
in this thesis is on regionalization via regression models that define a functional
relationship between a specific flood quantile and appropriate predictors, i.e.
catchment or climatic characteristics.

RFFA typically takes one of two paths (Fischer et al., 2021): (i) regionalize
flood quantiles of given return periods (in terms of Equation 2.3, this would
mean regionalizing zp directly) or (ii) regionalize parameters of the extreme value
distribution (in terms of Equation 2.3, regionalizing the GEV parameters η, σ
and ξ). The well-known index flood method (Dalrymple, 1960) is a special case
of (ii), where a regression model is established for the index flood and the other
distributional parameters are assumed constant for all sites in a region.

Index flood methods

The classic approach to RFFA is the index flood method (Dalrymple, 1960; Hosking
et al., 1988). The index flood method assumes that the flood frequency curve
follows the same distribution up to a site-specific scaling factor for all locations in
a region. The regions are defined to have similar flood generating processes. This
site-specific scaling factor is the index flood, i.e. a “typical”–usually the mean or
median–flood for a particular catchment. There are three separate steps to the
index flood method: (1) identification of homogenous regions or hydrologically
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similar stations (2) estimation of the index flood (3) derivation of a growth curve
that gives the relationship by which we can scale an index flood to a desired return
level.

If we have no data at a specified site, the index flood is derived from climatic
and catchment properties or based on appropriately scaled nearby measurement
stations. Then a regional growth curve is applied to the estimated index flood.
The regional growth curve is typically the average of all the individual growth
curves from sites in the identified region (Dalrymple, 1960). A variety of methods
can be used to derive the index flood from climatic and catchment properties
(Blöschl, 2013; Farquharson et al., 1992). Regression models are commonly used
but geostatistical or process-based methods can also be applied (Bocchiola et al.,
2003).

Although regression can be used to estimate the index flood, the index flood
method itself is distinct from regression-based RFFA. Regression-based RFFA
models attempt to capture the continuous variability of flood frequency curve
characteristics across space and/or climatic and catchment characteristics, while
the index flood method groups catchments that are assumed to share the same
distributional assumptions.

Regression methods

Regression models for RFFA are based on the assumption that spatial variations
in flood statistics are closely linked with regional catchment and climate
characteristics (Robson et al., 1999). The relationship between flood statistics
and catchment descriptors is likely nonlinear (Pandey et al., 1999; Tarquis et al.,
2011), mainly due to the inherent nonlinearity in hydrological processes (Durocher
et al., 2015). This nonlinearity stems from various factors, such as the non-
linear response of runoff to rainfall and snowmelt (Gioia et al., 2012), non-linear
snowmelt processes, and the influence of both events and catchment characteristics
on flood generation. Traditionally, to handle this nonlinearity, the predictors are
transformed such that they have a linear relationship with flood statistics and a
linear or log-linear regression model is fit. This is the approach used in the current
regional median flood model for Norway (Engeland et al., 2020).

Regression models in RFFA can be either parametric or non- or semi-
parametric. Parametric models include linear, log-linear, nonlinear, and
generalized linear models (Cunnane, 1988; Griffis et al., 2007; Pandey et al.,
1999; Thorarinsdottir et al., 2018; Clarke, 2001). Non- or semi-parametric models
include generalized additive models, artificial neural networks, random forests,
boosted or bagged tree ensembles, and support vector machines (Chebana et al.,
2014; Shu et al., 2008; Aziz et al., 2014; Desai et al., 2021; Esmaeili-Gisavandani et
al., 2023; Wang et al., 2015; Allahbakhshian-Farsani et al., 2020; Laimighofer et al.,
2022a; Gizaw et al., 2016). Parametric models rely on a parametric description of
what is called the functional form between predictors and response. For example,
we assume the relationship between the median flood and the mean temperature
in February is completely described by the functional form x2. In this situation,
we would need to estimate a regression coefficient—that is, we would need to
estimate the magnitude and direction of this functional form—but the underlying
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relationship will always be described by the square function. Parametric models
are easy to interpret and estimate and therefore widely used in RFFA (Blöschl,
2013). However, choosing the wrong functional form can introduce significant
bias to the results. Consequently, a large part of the work required when using a
parametric model revolves around identifying appropriate polynomial terms and
predictor transformations (Guisan et al., 2002).

Non- and semi-parametric regression models are termed “data-driven” because
the data determine the functional form relating the response to catchment
descriptors, rather than imposing a predefined parametric relationship through
model structure (Yee et al., 1991). Typically, we use a data-driven model when
a complex, nonlinear relationship between the predictors and response needs to
be established; however, if the true relationship is linear, a data-driven model will
recover the linear relationship (Härdle, 1990; Hastie et al., 1987). In this sense
data-driven models offers a potential simplification of the modeling process as we
no longer need to identify appropriate predictor transformations, although other
aspects of the modeling process (e.g. model selection and diagnostics) must still
be treated carefully (Härdle, 1990).

Here, we define a data-driven model as semi-parametric if we must specify
the probability distribution for the response. For instance, a generalized additive
model (GAM) modeling flood event distribution as log-normal falls into this
category (see, e.g. Barna et al. (2023b) or Chebana et al. (2014)). In contrast, a
non-parametric model, like a boosted tree ensemble (Laimighofer et al., 2022a;
Jarajapu et al., 2022) or artificial neural net (Aziz et al., 2014), does not
make explicit assumptions about the underlying distribution of flood events.
Choosing between a semi- and non-parametric model is guided by application. In
the semi-parametric framework, interpretation and inference are generally more
straightforward thanks to the underlying statistical assumptions (Hastie et al.,
1987). We can perform reliability analyses and calculate performance metrics
that might not be feasible with a non-parametric model. On the other hand,
non-parametric models can have higher predictive accuracy (Mosavi et al., 2018).
Additionally, they can handle predictor sets that might be problematic for semi-
parametric models. For instance, boosted tree ensembles can effectively manage
correlated or irrelevant predictors within a large set of potentially important
predictors (Elith et al., 2008), a common scenario in hydrologic applications
(Galelli et al., 2013).

2.2 Treatment of different flood durations

When considering multiple durations, we typically want estimates that are
consistent across durations. Here, consistent means we want the estimated values
to be consistent with physical realities: we do not want, for example, an estimate
that says more water will arrive in a 1-hour window than in a 24-hour window if
the latter time period encompasses the former.

Enforcing this consistency between durations in flood frequency analysis is
challenging from a statistical perspective. Flood frequency models are extreme
value models that are, by necessity, based on extrapolation. Independently
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estimating flood frequency curves for each duration of interest is not guaranteed
to give consistent results. Even minor deviations in model specifications or slight
variations in the parameters of the extreme value distribution across different
durations may be magnified on extrapolation and result in inconsistent estimates.

This section reviews the statistical methodologies developed to address the
problem of consistency across durations for applications where the total volume
of water is of interest. The focus on flood-retention specific applications means
that a duration d represents the total flow volume for a time span of d hours, not
individual flood events that lasted precisely d hours. Consistency across durations
is generally enforced in one of two ways:

(i) Models that simultaneously estimate several durations and quantiles at once
under consistency constraints.

(ii) Post-processing of model output that has been independently estimated at
several durations.

The current NVE guidelines (Engeland et al., 2020) are a special case of (i)
that focus on two specific durations (the instantaneous duration and a duration
corresponding to the total flow volume observed over a calendar day). The
specification of a total flow volume over a calendar day distinguish these guidelines
from the methods presented here in this chapter.

Within option (i) efforts are often focused on ways of making the consistency
constraints more realistic. One way of doing this is to attempt to explicitly
model the dependence structure between annual maxima at different durations.
Modeling this dependency has been an active area of research within precipitation
applications that also assess volume over specific durations, i.e. intensity-duration-
frequency (IDF) models. Examples of this dependency modeling would be, for
example, Jurado et al. (2020), Tyralis et al. (2019), and Muller et al. (2008).
An important distinction needs to be made here between the approaches listed
here and bivariate frequency analyses, which rely on identification of individual
flood events and explicitly model the dependence structure between peak discharge
and event duration (see, for example, the copula models of Gräler et al. (2013)).
Generally, the assessment of the total flow volume over a specific time window
requires aggregation of flood events. Event-based methodology for bivariate
frequency analysis is typically not appropriate here.

Another way of making the consistency constraints in option (i) more realistic
is to structure the constraints such that they produce a certain type of tail
behavior. This does not require explicit modeling of dependencies between
durations. Most recent work in this area has centered around development of
so-called “multiscaling” models, which build the consistency constraints such that
the slope and the intercept of the flood frequency curve can scale independently–
i.e., the model allows for the ratio between growth curves of different durations
to be dependent on return period. Multiscaling has been implemented for IDF
models (Van de Vyver, 2018; Courty et al., 2019; Fauer et al., 2021) and Barna
et al. (2023a) adapts this to QDF models. Typically, these multiscaling models
are “empirical multiscaling” models, i.e. they do not attempt to place strict

11



Chapter 2. Scientific and methodological background

mathematical assumptions on how the variance or other higher-order moments
change with increasing duration. Strictly theoretical multiscaling models would
be, for example, those presented in Gupta et al. (1990) or Van de Vyver (2018).

2.2.1 Flood-Duration-Frequency (QDF) models

Flood–duration–frequency (QDF) models are a type of extreme value model
that simultaneously estimate return levels for several durations under consistency
constraints. Typically the underlying extreme value distribution is assumed to
be GEV. QDF models are a type of dependent GEV, or d-GEV model, and are
analogous to intensity–duration–frequency (IDF) models for precipitation.

The foundations of QDF modeling were developed in the 1990s through
analyses of n-day flood volumes as explored in Balocki et al. (1994) and Sherwood
(1994). The original QDF model is attributed to Javelle et al. (1999). Historically,
application of QDF models has been concentrated in France, Canada, and Britain
in the early 2000s (Javelle et al., 2002; Javelle et al., 2003; Zaidman et al.,
2003; Cunderlik et al., 2006; Crochet, 2012; Onyutha et al., 2015). More recent
applications of QDF models can be found in Renima et al. (2018), Markiewicz
(2021), and Breinl et al. (2021). An extended QDF model that relaxes some of the
underlying assumptions in the original model can be found in Barna et al. (2023a).

Local QDF model

Let yd be a vector of annual maxima at duration d with index i ∈ [1, ..., n] referring
to the ith element. Then the yd under the original QDF model proposed in Javelle
et al. (2002) are independently distributed

yd,i ∼ GEV (ηd, β, ξ) (2.4)

where

ηd = η (1 + d/∆)−1 (2.5)

and η is the location parameter of the GEV under the quantile based
reparameterization proposed in Castro-Camilo et al. (2022). The parameter β
is given as

β = log
(

σ

η

)
. (2.6)

Then the parametric relationship between quantiles of different duration is
given as

zd,p = η

1 + d/∆

[
1 + eβ

{
(−log(1 − p))−ξ − log(2)−ξ

ξ

}]
(2.7)

where ∆ > 0. A value close to zero for ∆ indicates the total flow volume arrives
quickly, analogous to a flashy/peaked hydrograph with a pronounced duration
dependency for the median flood, whereas a high value of ∆ indicates a slower
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arrival of the total flow volume, analogous to a wide hydrograph with minor
duration dependency for the floods. The traditional flood frequency curve–that is,
a GEV distribution fit to an instantaneous time series–is recovered in the limit of
the aggregation window as d → 0.

In the original QDF model only η is dependent on d and ∆. Since only the
magnitude of the median flood (η) is duration-dependent in the model in Equation
2.7, the underlying assumption of the original QDF model is that the slope and
shape of the growth curve does not change with duration. That is, the original
QDF model assumes the ratio between floods of different duration is independent
of return period.

Regional QDF model

The regional QDF model as presented in Javelle et al. (2002) is an extension
of the index flood approach. It includes an additional parameter that quantifies
how the index flood changes with duration. This additional parameter is the
characteristic duration parameter, ∆. The steps for the regional QDF model
are: (1) identification of homogenous regions or hydrologically similar stations
(2) estimation of the index flood (3) estimation of the characteristic duration
parameter (4) derivation of a growth curve for the instantaneous duration that
gives the relationship by which we can scale an index flood and characteristic
duration parameter to a desired return level and specified duration. To estimate
∆ in step (3), we fit local QDF models to each site in the region. These local
QDF models are then extrapolated to the instantaneous duration (i.e., d = 0).
The regional growth curve is then an aggregate of the at-site QDF estimates of
the instantaneous duration.

To use the regional QDF model at a site with no data, we construct regional
relationships for both ∆ and the index flood such that they can be estimated by
climatic and catchment properties. In Javelle et al. (2002), this is achieved with
linear regression. Then, at a target site s ∈ S, the set of all stations in the data
set, the regional instantaneous growth curve can be unscaled with the site-specific
index flood and site-specific characteristic duration parameter:

zs,d,p = λ(p) · ηs · (1 + d/∆s)−1 (2.8)

where zs,d,p is the return level at target site s, duration d and probability p
corresponding to return period T such that T = 1/p. Here λ(p) is the regional
instantaneous growth curve. The site-specific index (median) flood ηs and site-
specific characteristic duration parameter ∆s are specified by linear models that
take relevant climatic and catchment descriptors as predictors.

The regional QDF model carries assumptions from both the index flood method
and the original local QDF model. Specifically, like the local QDF model,
it assumes that the shape and slope of the growth curve do not change with
duration (i.e., the growth curve follows the same distribution up to a duration-
specific scaling factor for all durations of interest). Additionally, like the index
flood method, it assumes that the growth curve follows the same distribution
up to site-specific scaling factor for all sites within a homogeneous region. If a
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parametric regression model is used to estimate ηs and ∆s, the regional QDF
model additionally assumes that, although the magnitude of the functional form
may change when regression coefficients are scaled for different durations, the
relationship between catchment descriptors and the site-specific parameter will
always be described by the same functional form regardless of the duration being
considered.

2.2.2 Post-processing of return levels

Post-processing allows us to independently estimate extreme value models at each
duration of interest, and thereafter, in a separate step, adjust the resulting return
levels such that they are duration consistent. Let zdi

p be the return level at
probability p from an extreme value model fit to data at observed duration di,
i ∈ {1, . . . , D}. Here the superscript distinguishes the independent fit at observed
duration di from a QDF model evaluated at target duration d. If the return
levels at a specific duration stem from a single extreme value distribution they are
necessarily monotonically increasing for increasing return period T , where T = 1/p.
Duration consistency at probability level p is then defined as

zdi
p ≤ zdj

p for di ≥ dj (2.9)

for any i, j ∈ {1, . . . , D}; that is, the return levels, when modeled with units of
volume over time, should be monotonically increasing as the aggregation interval
narrows.

Choice of a post-processing method that enforces duration consistency often
depends on the particular model architecture and inference approach used to fit
the extreme value model. If a Bayesian inference approach is used, the quantile
selection algorithm proposed in Roksvåg et al. (2021) is an option; the algorithm
searches for consistent return levels within the quantiles of the full posterior
distributions of the return levels. The selection of posterior quantiles adjusts the
flood frequency curves subject to consistency across durations and return levels.
Alternatively, an option that is not dependent on inference method is adjustment
via isotonic regression, also discussed in Roksvåg et al. (2021) and implemented in
Meyer (2013). Here point estimates for return levels are adjusted according to the
isotonic regression such that the resulting set of return levels is consistent across
durations and return periods. While the isotonic regression approach can be used
with any inference approach, it does not account for the uncertainty information
inherent to the fit of the extreme value distribution and can yield a flood frequency
curve that falls outside the support of the underlying distribution.

2.3 Model inference

Model inference is the process of estimating a statistical model and assessing
uncertainty in the fit. Mathematically, there are different ways to structure
the inference process. We could, for example, adopt a frequentist approach
to inference. This requires us to treat probability as the long-run relative
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frequency of an event. This approach gives us access to well-known estimation
methodologies such as unpenalized maximum likelihood and special cases thereof,
e.g. least squares and generalized least squares; these methodologies generate
point estimates for the quantities of interest (Gelman et al., 2020). Alternatively,
we could adopt a Bayesian approach to inference and treat probability as the
relative plausibility of an event. This approach allows us to define a probabilistic
expression of prior information and posterior uncertainty, from which it is possible
to estimate probability distributions for the quantities of interest (Gelman et al.,
2013).

Inference approaches in FFA have traditionally been frequentist (Hu et al.,
2020). It is common to use method of moments, both ordinary moments and linear
moments/probability weighted moments, or maximum likelihood estimations to
obtain parameter estimates (Kobierska et al., 2018; Renard et al., 2013; Ball
et al., 2019; England Jr et al., 2019; Castellarin et al., 2012; Robson et
al., 1999). Inference approaches for QDF models have also traditionally been
frequentist. Javelle et al. (2002) proposes a two-step estimation method, where
the characteristic duration parameter is estimated as the value that minimizes the
dispersion of the time scaled values of the growth curves of different duration,
and then the remaining model parameters are estimated using the method of
probability weighted moments (Hosking et al., 1985).

Choice of the particular mathematical structure for inference is driven by model
architecture and practical application. For complex model architectures—e.g. the
generalized additive models (GAMs) and extreme gradient boosted tree ensembles
(XGBoost) used in paper II—it is often practical to use existing implementations
(Wood, 2017; Chen et al., 2015) of inference approaches. In other cases, we
have a predetermined preference for a specific inference approach. This is
the case for paper I, which developed a Bayesian approach to QDF modeling.
Bayesian inference for extreme value models is relatively new (Coles, 2001)
and implementations are often less widely available than those for frequentist
approaches. As such, implementation of the inference approach is often an
important component of a Bayesian extreme value analysis. This section provides
a review of the Bayesian inferential framework.

2.3.1 The Bayesian framework

The goal of Bayesian inference is to combine an initial set of beliefs about the
data generating process (i.e. prior information) with a model of the data such
that we can make conclusions that are consistent with both sources of information
(Hoff, 2009). Bayes’ rule provides a mathematical structure for this combination.
Let Y be the set of all possible datasets, from which our observed dataset y will
result. Let Θ be the set of possible parameter values, from which we hope to
identify parameters θ that best describe the conditions that generate our data.
Then Bayes’ rule expresses our joint beliefs about y and θ in terms of probability
distributions over Y and Θ. Specifically, the prior distribution π(θ) describes our
beliefs about the behavior of θ independent of the observed data. The sampling
distribution, π(y|θ), describes our belief that we would observe y if we knew θ
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to be true. The prior distribution and the sampling distribution are combined to
yield the posterior distribution:

π(θ|y) = π(y|θ)π(θ)
π(y) ∝ π(y|θ)π(θ) (2.10)

which describes our belief that the true value is given by θ, having observed
dataset y. Here ∝ means “proportional to”. To obtain inferences for any particular
element θi ∈ θ we integrate out the remaining components to reach the posterior
distribution π(θi|y).

Certain aspects of the Bayesian inferential framework have the potential to be
advantageous for extreme value analyses (Coles et al., 1996; Coles, 2001). First
and foremost, the natural scarcity of extreme value data means incorporating
prior information about the parameters is appealing. Incorporating a prior has
the potential to steer the model away from less-favored values of the parameters,
leading to more stable estimation (Martins et al., 2000). Second, extreme value
analyses commonly need predictions, i.e. we need to estimate the probability of
future events reaching extreme levels. Predictive inference is practical in a Bayesian
framework because we can express a prediction and its associated uncertainty
through a full predictive distribution (Gelman et al., 2013).

2.3.2 Markov chain Monte Carlo methods for parameter estima-
tion

Analytically computing posterior quantities of interest from Eqn. 2.10 can
be challenging or impossible. Obtaining exact values involves integrating the
joint distribution π(y, θ) which can be infeasible if the dimension of θ is large.
However, we can approximate the posterior quantities of interest using simulation
methods like Markov chain Monte Carlo (MCMC), which allows us to sample from
complex probability distributions by constructing a Markov chain whose stationary
distribution matches the desired target distribution (Robert et al., 1999). MCMC
methods are a versatile class of approaches with general principles and procedures
that are applicable to a wide range of problems, facilitating estimation of complex
models that are challenging to tackle using alternative methods. For instance,
using a reversible jump MCMC sampler (Richardson et al., 1997) we can sample
mixture representations with an unknown and varying number of components, e.g.
the mixture model in paper I.

MCMC methods can be computationally expensive, particularly when dealing
with complex or high-dimensional target distributions (Robert et al., 1999).
However, there are various techniques available to mitigate this computational
burden. For example, adaptive proposal mechanisms can be employed to improve
the efficiency of the sampling process. Or, for instance, gradient-based MCMC
methods, such as Hamiltonian Monte Carlo (HMC), can be used to take advantage
of gradient information from the target distribution to guide the sampling process
more effectively (Gelman et al., 2015). Many of these techniques are implemented
in user-friendly software packages (e.g. BUGS by Lunn et al. (2000), and Rstan by
Stan Development Team (2023)), especially for common models and distributions.
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Specific probability distributions like GEV or generalized Pareto used in extreme
value analysis may require custom solutions.

2.4 Model evaluation

Typically we care about the predictive performance of our models. The way
we evaluate this predictive performance depends partly on the type of value
we are predicting. When we are predicting a single value (a point estimate),
we employ a scoring function, such as the absolute error, to measure how
close it is to the observed value. However, if we have access to the complete
predictive distribution, our model evaluation can be probabilistic in nature and
we can compare the probability distribution of model output to the corresponding
empirical distribution of observed data. In most cases, the second option provides
a more comprehensive assessment because it allows us to consider uncertainty
in the prediction (Thorarinsdottir et al., 2013; Gneiting, 2008). Nevertheless,
practical scenarios often necessitate point estimates, and a number of inference
methods are better suited for generating such point estimates (Gneiting, 2011).
This section provides a review of scoring functions, as well as one probabilistic
evaluation method (the integrated quadratic distance, or IQD).

2.4.1 Scoring functions

A scoring function S depends both on the predicted value and observed data.
Following the notation in Gneiting (2011), we average the scoring function over
the observed cases to generate the performance criterion:

S̄ = 1
k

k∑
i=1

S(ŷi, yi) (2.11)

where there are k predicted cases with corresponding point estimates ŷi, . . . , ŷk

and verifying observations y1, . . . , yk. The scoring function is typically negatively
oriented, i.e. a smaller value indicates better predictive performance.

Different scoring functions measure different aspects of the predictive
distribution. When the observed data set is small–as is often the case in extreme
value analyses–it is often prudent to assess the predictions on multiple scoring
functions (Coles, 2001). For instance, when the goal is evaluation of predicted
return levels, scoring functions expressed in terms of specific discharge units, such
as root mean squared error or absolute error, may prioritize minimizing errors
in regions with the highest discharge values (Engeland et al., 2020). On the
other hand, scoring functions that consider relative differences, like mean absolute
percent error or mean relative error, can mitigate the scaling issue but may be
sensitive to extreme over- or under-estimations (Gneiting, 2011).

2.4.2 Integrated quadratic distance (IQD)

The IQD measures the similarity between two distributions by integrating over
the squared distance between the distribution functions (Thorarinsdottir et al.,

17



Chapter 2. Scientific and methodological background

2013). Let F1 and F2 be two univariate distribution functions. In practice we
approximate F1 and F2 by the empirical CDF of a sample from the posterior. The
distance between F1 and F2 as measured by the IQD is then given by

IQD =
∫ +∞

−∞
(F1(y) − F2(y))2 dy (2.12)

where lower values of the IQD indicate better overall performance. The IQD is the
score divergence associated with the well-known proper scoring rule the continuous
ranked probability score (CRPS) (Gneiting et al., 2007; Hersbach, 2000); the main
difference between IQD and CRPS is that CRPS calculates the integrated squared
distance between a distribution and a scalar observation specified by a Heaviside
step function whereas IQD calculates the integrated squared distance between two
distributions (Thorarinsdottir et al., 2013).

2.4.3 Significance of scores

The permutation test, as defined in Thorarinsdottir et al. (2020), determines the
difference in performance between two models, m1 and m2, by computing

c = 1
k

k∑
i=1

(
ϕ(m1

i ) − ϕ(m2
i )
)

(2.13)

Here, k represents the total number of predicted cases and ϕ(·) is a divergence, or
distance, function. When comparing a point estimate and verifying observation,
ϕ(·) can be a scoring function. When comparing probability distributions, ϕ(·)
can be the IQD (see, e.g., Thorarinsdottir et al. (2013)). If c is negative, it
indicates that model m1 performs better than model m2 in terms of the distance
function, and vice versa. The permutation test creates resampled copies of c with
randomly swapped models m1 and m2. Under the null hypothesis that both models
perform equally well, the set of permutations cannot be differentiated from c. The
statistical test formalizes this concept by determining which quantile c occupies in
the set of permutations; if the p-value is less than 0.05, then it suggests that the
performance of m1 is significantly better than m2.
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Chapter 3

Study area and data

3.1 Norwegian climatology and catchments

The diverse topography and wide range of latitudes in Norway create significant
variation in temperature and precipitation patterns throughout the region. As
a result, Norway exhibits a large variety of hydrological regimes (Gottschalk et
al., 1979); see Figure 3.2. In this figure rain was computed using precipitation
and temperature data from the SeNorge 2.0 dataset (Lussana et al., 2019), while
snowmelt was derived from the SeNorge snow model (Saloranta, 2014).
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Figure 3.2: Panel (a) shows average precipitation totals (mm) for the entire year from
the period 1991-2020. Panel (b) shows locations of the 232 gauging stations used in
this thesis, where catchment area and average fraction of rain contribution to flood are
indicated by size and color, respectively. Panel (c) shows average temperature (◦C) for
the entire year from the period 1991-2020.

The two major flood generating processes in Norway are snowmelt and rainfall
(Gottschalk et al., 1979). The regional importance of snowmelt as a runoff
generating process varies greatly across the country. The regions primarily
driven by snowmelt are the inland and northern regions, which predominantly
experience high flows during spring and summer. Western and coastal regions
are primarily driven by rainfall and experience high flows during autumn and
winter. However, local climate and mixed or transitional flood regimes introduce
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substantial variability to these regional trends, and seasonal patterns are not very
distinct in rainfall-driven catchments (Vormoor et al., 2016).

The regional models in this thesis use a set of 232 gauging stations deemed
suitable for flood frequency analysis. See Engeland et al. (2020) for a discussion of
Norwegian gauging stations suitable for frequency analyses. The selected stations
exhibit a diversity of hydro-climatic regimes relative to Nordic catchments. The 12
stations used the at-site QDF analyses in paper I are a subset of the 232 stations
used for regional analysis in papers II and III.

3.2 Catchment descriptors

Geographical and hydro-climatic catchment descriptors available for the selected
stations are listed in Table 3.1. Note that all hydro-climatic descriptors were
based on interpolated observations given by the SeNorge 2.0 dataset (Lussana et
al., 2019). Rain was defined as precipitation when the temperature is above 0 ◦C.
Snow melt was extracted from the SeNorge snow model (Saloranta, 2014).

Table 3.1: Descriptions of all catchment descriptors used for regional modeling, grouped
into geographical and hydro-climatic descriptors. Abbreviations are further used in the
text and figures.

Variable Description Unit

A Logarithm of catchment area km2

O Catchment circumference m

AP Catchment area / circumference * 1000 km

D, Dnet Drainage density (total river length / area), (total river length excluding lakes / area) -

CL Logarithm of catchment length km

RL Length of main river km

RT L, RT L,net Total river length, and total river length excluding lakes km

RG, RG1085 Gradient of main river, and gradient of main river excluding the 10 % lowest and 15 % highest reaches m/km

H10, H50, H90,

HMAX , HMIN

The 10th, 50th, and 90th percentile of the hypsographic curve,

maximum elevation, minimum elevation
m.a.s.l.

HF Catchment relief (maximum elevation - minimum elevation) m

CS Mean slope ◦

AGlac, AAgr, ABog, AU ,

AL, ALE, AF or, AMount

Percentage of catchment covered by glaciers, agriculture, bogs, urban areas,

lakes, effective lake percentage, forests, mountains
%

QN Mean annual runoff 1961-1990 l/s/km2

PJan, PF eb, PMar, PApr, PMai, PJun,

PJul, PAug, PSep, POct, PNov, PDec

Mean precipitation from 1961-1990 in January, February, March, April, May, June,

July, August, September, October, November, December
mm/month

PN Mean annual precipitation 1961-1990 mm/year

PMed1Max, PMed2Max, PMed3Max, PMed4Max, PMed5Max Median of annual 1-, 2-, 3-, 4-, and 5-day precipitation mm/day

TJan, TF eb, TMar, TApr, TMai, TJun,

TJul, TAug, TSep, TOct, TNov, TDec

Mean temperature from 1961-1990 in January, February, March, April, May, June,

July, August, September, October, November, December
◦C

TN Mean annual temperature 1961-1990 ◦C

WJan, WF eb, WMar, WApr, WMai, WJun,

WJul, WAug, WSep, WOct, WNov, WDec

Mean sum of rainfall and snowmelt from 1961-1990 in January, February, March, April, May, June,

July, August, September, October, November, December
mm/month

WN Mean annual sum of rainfall and snowmelt 1961-1990 mm/year

WMed1Max, WMed2Max, WMed3Max, WMed4Max, WMed5Max Median of annual 1-, 2-, 3-, 4-, and 5-day rainfall and snowmelt mm/day

Catchment areas range from 0.52 km2 to 6182 km2, with a median of 124 km2.
About 53% of the catchments have over 1% of their area covered by lakes, with
a median effective lake coverage of 2.8%. Mean annual precipitation varies from
390 mm to 3196 mm, showing an east-west gradient, with higher levels along the
west coast. Mean annual temperature spans from -4.0 ◦C to 7.2 ◦C, with a median
of 0.15 ◦C. Temperature is influenced by elevation and latitude, decreasing as
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3.3. Streamflow data

elevation and latitude increase. Catchment altitudes range from sea level to 1104
m.a.s.l., and relief varies from 54 m to 2019 m. Catchments with greater relief are
typically located in the rugged mountain ranges along the west coast, contrasting
with flatter regions in the east.

Latitude and longitude are excluded as catchment descriptors. Paper II focuses
on identifying and describing hydrologically significant relationships at various
durations. Given this explanatory approach, we prefer to explain spatial variations
in flood sizes using geographical and hydro-climatic descriptors other than latitude
and longitude. Catchments that are close in space as the crow flies may be
very different in character, or quite distinct topographically (for example, if the
catchments are divided by a high mountain, as is often the case in the western
region of Norway) (Sælthun et al., 1997). Selecting a single latitude longitude
point to represent the entire area of a catchment is also non-trivial. Given these
considerations, we chose to address the question of spatial dependence through
the regionalization study in Paper II, where we examine if splitting the area of
study into pre-determined regions improves modelling performance. We found
splitting by regions did not meaningfully improve model performance, which does
not provide strong evidence for adding latitude / longitude terms to the regional
models. Other types of models that explicitly borrow information from the spatial
structure of the observations—e.g. geostatistical spatial models (such as those in
Merz et al. (2008))—would be an option for further investigating spatial or regional
dependence but are distinct from the marginal models for extremes developed in
this thesis.

3.3 Streamflow data

The observed streamflow time series were obtained from the national hydrological
database Hydra II hosted by the Norwegian Water Resources and Energy
Directorate (NVE). The streamflow records have at least 20 years of quality
controlled data for periods with minimal influence from river regulations and a
sufficient quality for high streamflows; see Engeland et al. (2016) for details.

The data have undergone rigorous quality control conducted by the hydrometric
section at NVE. Ice jams are an issue at numerous Norwegian stations and can
impact the accuracy of rating curves used for estimating streamflows from water
level measurements. In such instances, NVE’s internal quality assurance protocols
were applied to ensure precise discharge values. Furthermore, years with less than
300 days of data were excluded from the analysis.

The streamflow records are comprised of various collection methods, resulting
in data of different frequencies. Generally, earlier parts of the records offer
daily time resolution, while later segments feature higher (subdaily) measurement
frequencies, particularly after the transition to digitized limnigraph records and
digital measurements around 1980. The frequency of the subdaily measurements
varies from catchment to catchment. The measurement frequency at each
catchment was chosen by NVE to accurately represent flood peaks at individual
stations. This choice follows internal quality assurance protocols and is dictated
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Chapter 3. Study area and data

by catchment properties: a higher frequency of measurements is needed to capture
the behavior of quicker, “flashier” floods vs slower, smoother floods.

The regularity of subdaily measurements varies based on the source: the
digital measuring stations are set up to have a regular measuring frequency,
with approximately half of the digital stations in our study measuring every 60
minutes and the rest at 30 minutes or less. In contrast, the digitized limnigraph
records do not have a consistent frequency. The digitization process captures a
higher resolution of data around flood peaks and a coarser resolution of data in
periods with minimal flood activity. For stations with both limnigraph and digital
measurement periods, we assessed the resolution of the digitized limnigraph records
at flood peaks and found it was comparable to the digital measurement frequency.

Given the focus on sub-daily floods in the thesis, it is necessary to ensure that
the sampling frequency of the data adequately represents peak flood magnitudes.
In Paper I, which centers on a case study of twelve stations, this is achieved through
manual verification of the station-specific annual maxima. Papers II and III rely
on a larger dataset of 232 stations and construct regression relationships for the
median annual maximum flood (as opposed to individual annual maxima as used
in Paper I). The median annual maximum flood at both durations studied (1 and
24 hours) is computed over the total number of years of data available at each
station. This means that for certain stations, especially those with longer record
lengths, the median is constructed from annual maxima derived from streamflow
time series at a combination of different resolutions. In the case of the 1 hour
median annual maximum flood, this means the 1 hour median may partly rely on
data at a coarser time resolution interpolated to 1 hour spacing.

Thus the focus on the 1-hour median annual maximum flood in Papers II
and III prompts an examination of the percentage of subdaily data within the
records. We calculate the number of years of subdaily data for each station as
all years that have at least 200 days of subdaily data, and Figure 3.3 illustrates
the distribution of subdaily record percentages in our dataset. Approximately 100
stations have subdaily data percentages exceeding 90%, while others range from
20% to 90%. Stations with less than half their record as subdaily data undergo
manual validation to ensure that the sampling frequency adequately captured flood
peaks at those locations. Stations with lower subdaily percentages are often larger
catchments that have extensive overall record lengths, not below-average amounts
of subdaily data. On average, selected stations have around 27 years of high-
frequency data, with total record lengths in the dataset ranging from 20 to 129
years at station 62.5 (Bulken), as shown in Figure 3.3.

How to best make use of the available data will always be a question when
estimating summary statistics for short durations. Improved data collection
methods offering higher resolution data are crucial to analysis of short durations,
but this does not mean that older (and often much longer) portions of the
data record are useless in the context of short durations. Catchment dynamics
ultimately dictate what sort of data resolution is necessary for capture of the flood
peak. Inappropriately including coarser resolution data can introduce bias, while
excluding it can result in high uncertainty in short-duration statistics. To assess
the impact of sampling frequency on model performance in Paper II, we computed
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3.4. Data processing for durations

correlations between model performance and both total record length and the
percentage of subdaily data at the 1-hour duration. There was no correlation
between model performance and either total record length or percentage of
subdaily data for the evaluated metrics in the paper.
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Figure 3.3: Histograms for record length (years) and percent of the record that is subdaily
data. Only years that had at least 200 days of subdaily data count towards the subdaily
data total when calculating the record percentage. Stations with less than 50 % of the
record comprised of subdaily data were manually validated to make sure the sampling
frequency of the data was high enough to represent flood peaks at that location.

3.4 Data processing for durations

The focus in this thesis is on flood-retention specific applications. This means
a duration d represents the total flow volume for a time span of d hours, not
individual flood events that lasted precisely d hours. This assessment of the total
flow volume over a specific time window requires an aggregation-based approach
as used in Breinl et al. (2021) and Javelle et al. (2002). Specifically, let x0(τ) be
a time series at the reference duration, where the reference duration is the finest
time resolution of interest. Even spacing in the reference duration is enforced via
regular sampling of a linear interpolation of the observed data. A moving average
of window length d is applied to x0(τ) to manufacture a new time series, xd(t):

xd(t) = 1
d

∫ t+d/2

t−d/2
x0(τ) dτ (3.1)

Block maxima or peak over threshold values can then be extracted from xd(t) to
form sets of maxima given as:

{yd,1, yd,2, . . . , yd,n} (3.2)

where, in the case of annual maxima, n is the number of years of data. The width d
used as the length of the averaging window corresponds to the duration of interest
and the average in Equation (3.1) can be repeatedly applied under different d to
manufacture new sets of maxima that correspond to different durations of interest.
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Chapter 3. Study area and data

These sets of maxima produced under different d are dependent; that is,
since longer duration series are always aggregated from series of shorter duration,
the values in one set of maxima depend on the values in the other sets. This
dependency structure that is neither predictable nor directly relatable to catchment
properties. Figure 3.4 illustrates this. In some cases, annual maxima for different
durations can originate from the same flood event, creating strong dependency
due to temporal overlap and serial correlation. In other cases, maxima at
different durations stem from different flood events with potentially distinct flood
generation processes, resulting in weak dependency. This change in cross-duration
correlation is not inherently related to catchment properties. Additionally, annual
maxima may not consistently decrease as the aggregation interval increases. The
factors causing this inconsistent behavior (e.g., two flood events of similar volume
occurring closely or a wide and flat-topped flood event) are also not directly tied
to catchment properties.
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Figure 3.4: Figure showing two reasons why the dependency structure introduced by
aggregation-based treatment of durations is not easily modeled: (i) annual maxima for
each duration are not always primarily issued from the same flood event. In some
cases, these flood events can have completely different generating processes (top panel;
the shaded areas show the window of time from which the flood generating process is
calculated) and (ii) annual maxima are not guaranteed to decrease as the duration of
the averaging window is increased (see annual maxima at 7 days or greater). Data is
from Sjodalsvatn gauging station, for the year 2009. Figure is obtained from Barna et al.
(2023a).
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Chapter 4

Contributions of the thesis

4.1 Extended QDF model

Existing QDF models usually assume that only the index flood changes with
duration while the growth curve is held constant, e.g. Javelle et al. (2002),
Cunderlik et al. (2006), and Breinl et al. (2021). This is termed “simple scaling”
and is illustrated in the middle panel of Figure 4.5.
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Figure 4.5: Return level plots from a synthetic data set showing (i) flood frequency
curves estimated independently for four durations (left panel), (ii) output from a simple
scaling QDF model (middle panel), and (iii) output from a multiscaling QDF model
(right panel). The independent fits do not account for duration dependency. The simple
scaling model accounts for duration dependence in the magnitude of the index flood but
not the growth curve. The multiscaling model accounts for duration dependence in both
the magnitude of the index flood and the slope of the growth curve. Figure is obtained
from Barna et al. (2023a).

However, this assumption of constant growth curve across durations contradicts
empirical analyses of runoff scaling properties in Norway which show the
culmination factor, i.e. the ratio between peak and daily floods, may vary
depending on return period (Engeland et al., 2016; Sælthun et al., 1997). In
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these situations, application of simple scaling–which ignores the effect of duration
dependency on the growth curve–can lead to poor estimation in the tails of the
distribution.

“Multiscaling” models (see right panel, Figure 4.5) that allow for the ratio
between growth curves of different durations to be dependent on return period
already exist in the IDF literature (Van de Vyver, 2018; Courty et al., 2019; Fauer
et al., 2021). However, in all existing models the different scaling components are
placed on the location and scale parameters of the GEV in its standard location-
scale parameterization. It is therefore challenging to directly interpret how the
different scaling components influence the index flood and the growth curve, which
are best interpreted in terms of quantile expressions.

Paper I introduces a multiscaling extension of the QDF model originally
proposed by Javelle et al. (2002). This extension allows for the magnitude of
the index flood and the slope of the growth curve to scale independently with
duration. Additionally, paper I presents a Bayesian inference framework applicable
to both the original QDF model and its extended version. This framework
allows for flexible propagation of uncertainty and simultaneous model selection
and parameter estimation. This approach enables us to evaluate how sensitive
QDF models are to input durations and to determine the significance of adopting
the multiscaling extension versus the original QDF model. Current QDF models
are typically estimated in a two-step procedure where the characteristic duration
parameter is estimated first, followed by an estimation of the remaining parameters
(Javelle et al., 2002; Cunderlik et al., 2006). However, such two-step estimation
does not typically provide uncertainty information and is difficult to use with
multiscaling models.

4.1.1 Defining the extended QDF model

Let the relationship between the location parameter of the GEV and the median
flood be given as in Equation 2.2. Furthermore, let the scale parameter be
decomposed as a product of the median flood and a remainder term expressed
as an exponential function, eβ, such that the new scale parameter β is given as

β = log
(

σ

η

)
. (4.1)

Then the multiscaling extension of the QDF model allows η and β to depend
on the aggregation interval d and additional parameters ∆1 and ∆2, respectively.
The ξ parameter is kept duration-invariant due to the difficulties in estimating the
ξ parameter stemming from the involved parametric form of the CDF (Equation
2.1). The annual maxima are

yd,i ∼ GEV (ηd, βd, ξ) (4.2)

where
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ηd = η (1 + d∆1)−1 (4.3)

βd = log
(

σ

ηd(1 + d∆2)

)
(4.4)

and the distribution’s quantiles for a duration d corresponding to exceedance
probability p are given by

zd,p = η

1 + d∆1

[
1 + eβ

1 + d∆2

{
(−log(1 − p))−ξ − log(2)−ξ

ξ

}]
(4.5)

with constraint

0 < ∆2 < ∆1. (4.6)

The constraint on the Delta parameters reflects the fact that the data
aggregation performed in QDF modeling is more likely to have a larger effect
on the flood magnitude than on the decomposed scale parameter. Note the
inverse of the characteristic duration parameter ∆ from Javelle’s original QDF
model is used here for numerical stability during estimation. The value of the ∆1
parameter reflects the “flashiness” of the floods measured; a narrow hydrograph
will be associated with larger values of ∆1. The ∆2 parameter does not have an
equally accessible hydrologic interpretation but can be interpreted as a measure of
difference in growth curve slope across aggregation intervals; that is, if the ratio
between peak and daily floods is heavily dependent on return period we would
expect to see larger values of ∆2.

As the aggregation window shrinks to zero, that is, as d → 0, the extended
model is equivalent to the standard GEV model that creates the traditional flood
frequency curve. Similarly, as ∆2 → 0, the extended model approaches Javelle’s
QDF model. The extended QDF model can thus be considered an extension of
the original in the same way the original is an extension of the traditional flood
frequency curve.

4.1.2 Defining the mixture model

We define also a mixture model that combines elements of the original and
extended QDF models in an attempt to access the flexibility of the extended model
without adding unnecessary complexity. The model is a weighted average of the
original and extended models such that the density of the annual maximuma is
given by

2∑
j=1

mj g(·|θj) (4.7)

where mj is the weight on the component model, g is the density of the GEV
distribution, θ1 = {η DD

d , β DD
d , ξDD} and θ2 = {η J

d , βJ, ξJ}. Here the superscripts on
the parameter sets denote the extended and original models, respectively (in Barna
et al. (2023a) the extended model is referred to as the “Double-Delta” model and
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the original as “Javelle”). Using the Bayesian estimation framework, parameter
estimation and selection can be carried out simultaneously and the ∆2 parameter
is only added if merited.

Thus Equation 4.7 is a representation of a non-standard density from which it
is possible to obtain quantile estimates that are an average over the distributions
given by the extended model in Equation 4.2 and the original model in Equation
2.4, if the original model is reparameterized to take the inverse of the characteristic
duration parameter.

4.1.3 A Bayesian framework for QDF

For the Javelle and Double-Delta models, Bayesian inference is performed using a
Metropolis-Within-Gibbs algorithm (Robert et al., 1999). That is, samples from
the conditional distribution of the parameters θ1 and θ2, respectively, are obtained
by iterative sampling from the full conditional distributions of the individual
parameters so that each component of the model is updated in turn. Prior
distributions for the individual parameters assume independence. The prior on
η (units: m3/s) is a diffuse truncated normal distribution (truncNormal(40,100))
with a lower bound at zero. The prior on β is a diffuse Normal(0,100). For ξ, we
adopt the methodology from Martins et al. (2000) and employ a shifted Beta(6,9)
distribution within the interval [−0.5, 0.5]. In the Double-Delta model, the prior
for ∆1, equivalent to the prior for ∆ in the Javelle model, is a Lognormal(0,5).
The same values are applied to the prior for ∆2, which uses a truncated Lognormal
distribution with the lower bound determined by ∆1.

The conditional distribution of the mixture model is given by

π (m, θ|y) ∝ π(m)π (θ|m) g(y|θ, m) (4.8)

where π(·|·) is the generic conditional distribution consistent with this joint
specification and m ∈ {DD, J}, θ ∈ {θ1, θ2}, and y = (yd,i)i=n,d=D

i=1,d=1 , where n
is the number of years of data and D is the number of durations. The models have
equal prior probability, with π(m = J) = π(m = DD) = 0.5. Simplification of
Equation 4.8, considering the model without the model specification and separate
parameter sets, gives the conditional distributions of Double-Delta and Javelle.

Moving between models changes the dimension of θ. To account for this,
we employ a reversible jump MCMC algorithm, similar to the reversible jump
methodology for normal mixtures described in Richardson et al. (1997). The
reversible jump MCMC proceeds as follows:

1. updating θ:

(a) if m = DD update η DD, else update η J;
(b) if m = DD update β DD, else update β J;
(c) if m = DD update ξ DD, else update ξ J;
(d) if m = DD update ∆1 and ∆2 parameters in sequence, else update ∆;

2. splitting one Delta into two, or combining two Deltas into one.
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Step 1 is repeated 10 times under the same model before Step 2 (proposal to
jump between models) is taken. Repeating Step 1 for either the Javelle or Double-
Delta model details the MCMC algorithm used to fit the respective model. To
move from Double-Delta to Javelle we need to merge ∆1 and ∆2 into one ∆. The
combine proposal is deterministic and given by

∆ = ∆1 + ∆2. (4.9)

The reverse split proposal, going from Javelle to Double-Delta, involves one degree
of freedom, so we generate a random variable u such that

u ∼ Beta(5, 1) (4.10)

which is then used to set

∆1 = u∆
∆2 = (1 − u)∆.

(4.11)

For this split move the acceptance probability is min {1, A} where

A = π(m′, θ′|y)
π(m, θ|y)q(u) |J | (4.12)

where q(u) is the density function of u and J is the Jacobian of the transformation
described in Equation 4.11. The acceptance probability for the corresponding
combine move is min {1, A−1} but with substitutions that adhere to the proposal
in Equation 4.9.

4.1.4 Main findings for paper I

The multiscaling extension of the QDF model allows for a better approximation
of tail behavior at multiple durations, as evidenced by improved modeling of
both short-duration events and events with long return periods. In a case study
comprising 12 study locations in Norway, the extended QDF model performs better
than the original QDF model in 83% of the out of sample subdaily durations
studied when performance is measured by the integrated quadratic distance. The
mixture model shows the importance of the multiscaling extension: selectively
adding the second characteristic duration parameter (∆2 in Equation 4.5) is not
advantageous at the shortest durations as these durations tend to need maximum
flexibility from the QDF models.

In general, QDF models are generally able to predict out-of-sample durations
with a relatively moderate loss in accuracy when compared to in-sample estimates
for the same durations. However, we found the QDF framework to be highly
sensitive to the choice of durations used to fit the models. In particular, care should
be taken to fit the QDF models with the minimum number of durations needed
for the inference algorithm to converge. Generating too many sets of dependent
data to fit the model can produce results that are both biased and overconfident
(Figure 4.6). Moreover, the assumption of a constant shape parameter may be too
restrictive to model a wide range of durations (Figure 4.7).
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Figure 4.6: Return level plots generated from QDF models fit to two different data sets:
one set with six durations [24, 36, 48, 72, 96, 120 hours] and one set with four durations
[24, 36, 48, 72 hours]. The model fit to the six duration set is both overconfident and
biased at shorter durations; the posterior mean return level estimates are consistently
underestimated when compared to locally fit GEV models (solid black lines) and the
90% credible interval is artificially narrow and fails to capture the locally fit model for
the 24 and 1 hour durations.
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Figure 4.7: Return level plots showing a selected station where QDF models differ
substantially from the reference model on in-sample durations. The reference models
show a change in shape parameter with increasing duration. Figure is obtained from
Barna et al. (2023a).
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4.2 Index flood estimation at multiple durations

Regression models for RFFA are based on the assumption that spatial variations
in flood quantiles are closely related to regional covariates (i.e., catchment and
climatic characteristics) and that a regression model can describe this relationship.
If the regression model is parametric (e.g., a linear, log-linear, nonlinear or
generalized linear model) we additionally assume we know the functional form
that describes the relationship between flood quantiles and regional covariates. A
key question here is whether the functional forms established for flood quantiles
at one duration are suitable for flood quantiles at a different duration. That is:
are there duration-specific differences in how regional covariates influence flood
quantiles?

We identify a gap in RFFA when it comes to assessing regression models at
multiple durations. This gap exists both when (i) assessing predictive performance
of flood estimates at different durations and (ii) explaining regional models at
different durations, i.e. identifying and describing the underlying predictor-
response relationships the regression models rely on.

In paper II we apply an existing semi-parametric model architecture (a
generalized additive model, GAM) to address (i) and (ii) for a single robust flood
quantile: the median (index) flood. We test the predictive performance of the
GAM compared to the existing log-linear model for median flood estimation in
Norway and a full machine learning model (an extreme gradient boosting tree
ensemble, XGBoost). We establish the adequacy of the GAM as an explainable
model through predictive performance. Predictive performance is measured as
both predictive accuracy and reliability. We then use the GAM to detect and
describe the functional relationships between the median flood and climatic and
catchment descriptors at multiple durations.

While this study has relevance outside of QDF models, it also checks an often
neglected assumption for regional QDF and regional regression-based IDF models:
that differences in duration can be entirely captured by duration-specific scaling
applied equally to all coefficients in a parametric regression model.

4.2.1 XGBoost based predictor pre-selection for GAMs

Predictor selection for data-driven models (e.g. GAMs and XGBoost) is in general
challenging and a major roadblock to setting up analyses such as this one (Galelli
et al., 2013). A secondary contribution of this study is development of a workflow
that relies on a machine-learning based “tool”, that, when used in combination
with expert judgement, enhances the practicality of constructing GAMs.

The workflow for predictor selection has three steps. First, in Step A, machine
learning-based algorithm for predictor selection is applied to the full regional
covariate set to generate the pre-selection set. Then, in Step B, expert judgement
uses the pre-selection set to inform selection of the potential predictor set. Finally,
in Step C, the final predictor set is selected from the potential predictor set using
the routines for shrinkage selection within the model architecture of the GAM as
presented in Marra et al. (2011). The idea here is that Step A has the potential to
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uncover predictor information that was previously unclear, while at the same time
keeping Step A separate from Step C allows for a formal treatment of predictor
selection uncertainty and reliance on a proven selection technique that has been
rigorously compared to existing methodologies.

However, using a data-driven model for predictor selection implies in most cases
a model-based preselection, which is not guaranteed to generate a predictor set
that will work within other model architectures (i.e., Step A has the potential to
generate a set of predictors that is good for the chosen machine learning model
but not for a GAM). Therefore, part of the development of the workflow was
careful selection of an algorithm and machine learning model architecture that
could complement GAM development.

The chosen machine learning model is a gradient boosted tree ensemble
restricted to have tree depth of one. The implementation of the gradient boosted
tree ensemble is provided by XGBoost, and the tree depth is limited to one as we
do not consider variable interactions in the GAMs.

The idea here is that depth-restricted tree-based ensembles can capture
similar nonlinear predictor-response relationships to GAMs. This is a purely
practical conjecture: both methods are insensitive to monotone transformations
of predictors and adept at identifying nonlinear predictor-response relationships.
However, unlike GAMs, boosted tree ensembles can infer the relative importance of
predictors even when inputs are irrelevant or highly correlated. This makes them
an appealing option for pre-selection based on the entire catchment descriptor
set. To ensure nonredundant predictor selection, we incorporate the boosted tree
ensemble within an appropriate predictor selection algorithm.

The chosen algorithm is an existing algorithm (the Iterative Independent
Selection, or IIS, algorithm of Galelli et al. (2013), developed for application
to hydrology (Prasad et al., 2017; He et al., 2022; Pesantez et al., 2020))
that has been adapted to take a particular machine learning model architecture
(XGBoost). This adaptation of IIS to XGBoost was suggested by Alsahaf et al.
(2022) for parameter selection for classification problems; we extend the adaptation
to regression problems. Additionally, given our particular use case, we made
several minor additions to the algorithm to increase its redundancy and allow
for practitioners to assess the consistency of the algorithm output. These were (i)
averaging an internal variable ranking over 25 bootstrap samples as in Laimighofer
et al. (2022b) and (ii) running the IIS algorithm within a resampling method and
assessing the consistency of the algorithm output over the resampled data.

4.2.2 Main findings for paper II

We find that the predictive accuracy and reliability of the GAM developed
(floodGAM ) matched or exceeded that of the benchmark models at both durations
studied (1 and 24 hours). Specifically, on the 1 hour duration, floodGAM was both
more reliable and more accurate than the existing log-linear model for median
flood estimation in Norway. This is illustrated in Figure 4.8, which shows that
application of the log-linear model (RFFA_2018) outside of the duration it was
developed for results in a systematic underestimation of the median flood in large,
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snowmelt driven catchments. Predictive accuracy between floodGAM and the
existing model was measured by five different scoring measures (root mean squared
error, continuous ranked probability score, mean absolute error, mean relative
error, mean absolute percent error) and the differences were statistically significant
for all measures at the 1 hour duration. On the 24 hour duration, which was the
duration used to develop the existing log-linear model, there were no statistically
significant differences between floodGAM and the existing log-linear model, or
between floodGAM and XGBoost on either the 1 hour or 24 hour mean absolute
error (this was the only scoring measure computed for XGBoost due to constraints
introduced by distributional assumptions in the analysis).

Within the predictor set selected for this study, we observe duration-specific
differences in the form of the functional relationship between the median flood
and the two catchment descriptors effective lake percentage and catchment shape.
Significant duration-specific differences were not observed on the remaining five
predictors. Ignoring the differences observed on the two predictors results in a
statistically significant decline in predictive performance.
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Figure 4.8: Model to model comparison on absolute percent error, relative error, and the
continuous ranked probability score for the log-linear benchmark model (RFFA_2018)
and floodGAM on the 1 hour duration. In the panel headers, x represents the predicted
value and y the observed value. Points falling above the diagonal line indicate stations
where RFFA_2018 performed worse than floodGAM. Points falling below the diagonal
line indicate stations where floodGAM performed worse than RFFA_2018. The 2D
kernel density estimation of point density is underlaid to aid visual interpretation. Point
size shows catchment area, point color indicates the fraction of rain contribution to flood.

4.3 Regional flood frequency analysis at multiple
durations

RFFA commonly takes one of two paths: (i) the quantile regression technique
(QRT), where a regression model is developed for a predetermined flood quantile
of interest (Haddad et al., 2012; Ahn et al., 2016; Rahman et al., 2020; Ouali et al.,
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2016; Chebana et al., 2014; Zaman et al., 2012) and (ii) the parameter regression
technique (PRT), where regression models are developed for the parameters of an
extreme value distribution (Haddad et al., 2012; Ahn et al., 2016; Rahman et al.,
2020; Thorarinsdottir et al., 2018; Lima et al., 2016). Since RFFA typically focuses
on regionalization of high quantiles, implementations of the two approaches often
rely on distributional assumptions that allow for extrapolation beyond the range
of the observed data. In practice this means that the response variables for both
the PRT and the QRT are obtained from at-site frequency analysis. In the case of
the PRT, the response variables are the estimates of the parameters of the extreme
value distribution obtained from at-site frequency analysis. In the case of the QRT,
the target quantiles used as the response variables are estimated flood quantiles
obtained from at-site frequency analysis. Using estimated quantiles to construct
a series of (independent) regressions distinguishes the QRT from the more classic
quantile regression (see, e.g. Fasiolo et al. (2021)).

In data-sparse situations model structure plays a large role. We identify a gap
when it comes to assessing the impact of model structure on duration consistency
for estimates at out-of-sample locations. Paper III compares both the predictive
performance of the QRT and the PRT and their ability to provide estimates at
out-of-sample locations that match the observed consistency between durations
in the data. We consider two durations, the 1 hour and 24 hour durations. The
durations are treated independently this analysis: we derive return level estimates
using the PRT and the QRT once for the 1 hour duration and once for the 24 hour
duration. Return level estimates from these independent fits are then assessed for
consistency. Predictive accuracy is assessed for each duration within the range of
the observed data using the quantile score. Duration consistency is assessed on
the full range of return periods from 2 to 1000 years.

To ensure a direct comparison of the approaches, we maintain a constant
predictor set. The predictor set is chosen based on prior work in paper II. Given
the diverse range of durations, quantiles, and distributional parameters in our
study, a practical approach is to use data-driven regression models, specifically a
generalized additive modeling (GAM) approach. This method has been effectively
employed in previous flood quantile modeling studies (Chebana et al., 2014; Msilini
et al., 2022; Rahman et al., 2018; Barna et al., 2023b). Additionally, to further
facilitate a direct comparison between the PRT and QRT, we reparameterize the
generalized extreme value (GEV) distribution using the median as the location
parameter, following recent work by Castro-Camilo et al. (2022). Since the median
is also a target quantile for the QRT, this means we have one regression model that
is common to both methods. They therefore model the center of the distribution
equivalently. Any differences will be concentrated in how the spread and form of
the distribution is modeled.

While regional QDF models can be used to obtain design values at ungauged
locations, they introduce strong assumptions on the tail behavior of the model and
can be challenging to estimate due to the properties of the GEV distribution. We
therefore chose to establish regional models for each duration independently.
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4.3.1 Practical at-site GEV estimation with the probabilistic
programming language Stan

Both the PRT and QRT rely on at-site frequency analyses to obtain response
variables. This at-site estimation can be time consuming, particularly when
we need estimates at several durations. A secondary contribution of this study
is implementation of a Bayesian inference method for at-site GEV estimation
using the probabilistic programming language Stan. Stan provides full Bayesian
statistical inference using a powerful Hamiltonian Monte Carlo (HMC) algorithm
to fit models, provided the parameter bounds in the model are properly defined
(Gelman et al., 2015). The quantile-based reparameterization used in paper III
allows for us to define support-enforcing bounds for the GEV distribution; see,
for example, the discussions at Barna (2021) and Barna (2022). Stan allows
for very fast sampling (Neal et al., 2011), but, most importantly, provides a
range of useful diagnostics: using HMC to explore the target distribution means
failures in geometric ergodicity manifest in distinct behaviors that can be developed
into diagnostic tools. Gelman et al. (2015) provides an overview of the model
diagnostics within Stan. Given that we need accurate estimates at hundreds of
individual stations and durations, and that some of the stations are being fit with
as few as 20 data points, obvious indicators when something goes wrong in the
at-site estimation present a simplification of the modeling process.

4.3.2 Main findings for paper III

The PRT is more effective at preserving duration consistency compared to the
QRT. We observed five stations where the QRT produced duration inconsistent
estimates at out-of-sample locations whereas the PRT (and the local fit for
those locations) kept duration consistency. This QRT-specific inconsistency was
characterized by deviations in the out-of-sample estimated return levels at high
(greater than 2 year) return periods. This behavior was specific to QRT and was
not easily attributable to either record length or specific catchment properties; see
Figure 4.9.

Duration inconsistencies that are not characterized by the QRT-specific
behavior described above tend to arise in data-rich areas of the distribution. We
found that estimating the distribution center (median) out-of-sample produced
duration inconsistencies at 46 out of 232 stations. That is, at 46 stations the
estimated 24 hour median flood was higher than the estimated 1 hour median flood.
Here estimates are given by the posterior mean. The estimates for the parameters
controlling the spread and shape of the distribution, on the other hand, tend to
decrease with increasing duration (Figure 4.10). Analysis of uncertainty shows
that, for all distributional parameters, predictions at out-of-sample locations show
considerable overlap in the range of possible values between the 1 and 24 hour
durations.

Finally, we find that the predictive accuracy of the PRT and the QRT, as
measured by the quantile score, is very similar at each return period tested (10-,
20-, and 50-year return periods). This aligns with the results shown in Ahn et al.
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Figure 4.10: Duration-to-duration comparison of the out-of-sample parameter estimates
for the three parameters of the GEV distribution (under the parameterization used in
paper III). Stations that have at least one duration inconsistent return level are indicated
by triangular points and colored and sized accroding to catchment descriptors.

(2016), Rahman et al. (2020), and Haddad et al. (2012), all of which tested the
predictive performance at return periods within the range of the observed data
and found only modest differences between the PRT and QRT. Beyond the range
of the data, the PRT and QRT show similar tail behavior compared to local fits.
When we evaluate return level predictions relative to the locally estimated shape
parameter (a proxy for the tail behavior of the underlying flood frequency curve),
both methods consistently result in higher return level estimates at stations with
smaller shape parameter values and lower return level estimates at stations with
larger shape parameter values.

36



Chapter 5

Discussion and future considerations

The end goal of frequency analyses at multiple durations is typically estimation of
return levels that are consistent between durations. When we have sufficient data
at a site, it is possible to define a fully consistent model. Paper I develops models
for this at-site case, with a particular focus on a specific type of model: the QDF
model.

Regional modeling of duration-consistent extremes is much more involved.
QDF models, and their analogues for precipitation modeling (IDF models), have
been extended to a regional context before (Javelle et al., 2002; Cunderlik et al.,
2006). However, the assumptions required place very strict constraints on the
model components. These constraints are typically not supported by empirical
analyses (papers I and II). The regional models in papers II and III extend
estimates to out-of-sample locations without explicit consistency constraints and
investigate the nature of the duration inconsistencies that arise.

5.1 QDF models

QDF models establish a parametric relationship between quantiles of different
durations, making them a less flexible option than independently estimating—and
post-processing—return levels. Nevertheless, there are several potential benefits to
this parametric formulation. Most notably, it permits extrapolation to durations
that lack observed data. This unobserved duration of interest would typically
be the shortest duration that captures peak discharge. Estimation of the
culmination factor (the ratio between peak and daily floods), and establishing
if this culmination factor increases with increasing return period, is also often
relevant.

Paper I demonstrated that QDF models can effectively predict out-of-sample
sub-daily durations (1 and 12 hours) using coarser time resolution data, showing
only a modest decrease in accuracy compared to in-sample estimates. The
multiscaling extension proves valuable in most cases (83% of the out-of-sample sub-
daily durations), and allows for the culmination factor to increase with increasing
return period. Careful selection of input durations is important to avoid biasing
results and artificially reducing predictive uncertainty, but overall, the models
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demonstrate a strong capability to replicate in-sample behavior at out-of-sample
(i.e. unobserved) durations.

However, the results also indicate the assumption of a constant shape parameter
is limiting, particularly when modeling a wide range of durations (Figure 4.7).
Assuming a constant shape parameter while simultaneously fitting to multiple
durations means the estimate of the shape parameter will always, by necessity,
be a compromise between the input durations. In this case, it does not matter if
we accurately replicate in-sample behavior if that behavior is not characteristic of
the shortest target durations. This assumption of a constant shape parameter is
both common in these types of models (Fauer et al., 2021) and not easily solved
(Martins et al., 2000). In practice, we may be able to mitigate this issue at
individual locations by carefully selecting input durations that are close enough to
our out-of-sample duration of interest, if data for such input durations exist.

The assumption of a constant shape parameter is likely to be even more limiting
in a regional context, particularly because the shape parameter is notoriously
difficult to relate to catchment and climatic characteristics. Working around
this issue with careful selection of input durations is unlikely to be a practical
option in a regional model seeking to fit a variety of catchments at once. Another
challenge in a regional context is implementation of an inference approach once the
parameters of the QDF model depend on covariates. Maximum likelihood-based
estimation is often unstable (Ulrich et al., 2020) and Bayesian approaches in this
scenario are very computationally expensive: the more efficient (e.g. gradient-
based) approaches are unsuitable for the particular parametric form of the QDF
model, where the parameter dependent support is itself dependent on the input
duration.

Given these considerations, we identify the most promising direction for QDF
models is as a volume-based method for scaling to peak discharge at individual
sites. Estimating peak discharge is, in general, challenging. Scaling between daily
and unobserved peak discharge in Norway is currently performed by establishing a
relationship between daily and peak discharge for a selection of the largest floods
from a hydrologically similar catchment (Wilson et al., 2011). In this context,
QDF models offer a “volume-based” scaling, in contrast to “event-based” scaling.
The end goal for both of these approaches is some unobserved peak discharge. The
question is then: is it better to try and reach this peak discharge by examining
how flood volumes change (i.e. QDF), or picking out a few events we think are
representative of the catchment and creating ratios from those?

A potential advantage of QDF models as an alternative to event-based scaling
to peak discharge is that their structure accommodates incorporating data with
varying record lengths for different durations. This potentially allows for the
inclusion of information on short durations–even when data for these periods
is limited–although future work would need to establish how varying the record
length impacts the results, as it could, for example, place different weight on
different durations. Nevertheless, from a practical standpoint a framework that
allows for easy inclusion of all the data and approach that eliminates the need to
make subjective choices about specific events or data to include has much appeal.
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5.2 Regional models at multiple durations

QDF models enable us to extrapolate to unobserved durations. On the other
hand, the regional models in this thesis enable us to extend observed durations
to ungauged locations. That is: when we have observed data at a particular
duration from an adequate number of stations, we can develop an RFFA model
that enables us to extend this particular duration to an ungauged location. This
extension does not take place under explicit duration consistency constraints. Our
analyses show that there are special considerations when building RFFA models
that perform well when applied to a variety of durations. In particular, both the
type of regression model and the structure of the frequency analysis matter once
we start considering more than one duration.

Paper II showed that data-driven regression models are beneficial—with
regards to both predictive accuracy and reliability—when we require estimates
at multiple durations. While it is possible to create a parametric regression
model that performs well at a specific duration, achieving optimal performance
at multiple durations would necessitate reformulating the parametric relationship
for each one. As a result, data-driven models present a potential streamlining
of the modeling process when we require estimates at multiple durations. In a
subsequent study, paper III used the developed data-driven regression model in a
regional frequency analysis and found that duration consistency is better preserved
when the frequency analysis is structured such that the regression model operates
on the parameters of the extreme value distribution, rather than directly on flood
quantiles.

The parameters of an extreme value distribution describe its center, spread
and shape. Paper III additionally showed duration inconsistencies often arise
in conjunction with out-of-sample estimation of the distribution center. In the
reparameterization of the GEV used in this thesis, the center of the distribution
is described by the median. The median annual maximum flood is the index flood
for a catchment, which in flood frequency analysis has the useful interpretation
as the scaling factor separating the order of magnitude of a flood from the shape
and slope of the growth curve (see Section 2.1.4). That is, the results in paper
III demonstrate that difficulties distinguishing between the order of magnitude of
floods at different durations lead to duration inconsistencies at a subset of out-
of-sample locations. These difficulties are not observed to the same extent in the
out-of-sample estimation of the parameters controlling the spread and shape of
the distribution (Figure 4.10).

It is possible that out-of-sample estimation of the index flood is simply more
challenging than estimating the spread and shape parameters; Haddad et al.
(2012) found greater heterogeneity in the standard error of predicted values for
the index (mean) flood compared to the standard deviation and skew of their
extreme value distribution (Log-Pearson Type III). It is also possible that the
duration-specific distinctions seen in the parameters controlling the shape and
slope of the growth curve are a product of the aggregation-based approach we
use to obtain different durations; i.e., that our data processing smooths the data
sufficiently to influence the two parameters linked to variance and skewness in the
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GEV distribution. Practically, these results suggest that the index flood, when it is
used as a location parameter for a distribution, is the most promising candidate for
consistency constraints if we aim to ensure duration consistency through explicit
model constraints. The median, moreover, is a relatively interpretable parameter
of the extreme value distribution, and its units align with the original streamflow
time series. Analysis of uncertainty for each of the three distributional parameters
shows another potential option for duration-consistent estimates: credible intervals
for all three parameters show considerable overlap between different durations,
making the post-processing methods in Roksvåg et al. (2021) a potential solution
for extending RFFA model estimates if enforcing explicit consistency constraints
is not desirable.

The regional models in this thesis use annual maxima since flood guidelines
in Norway use annual maxima. However, an area of future work could involve
exploring the impact of seasonal flood regimes on RFFA models at different
durations. Paper II conducted a preliminary investigation in this area and found
season-specific changes in the partial response curves for climatic variables, which
were not evident in the geographical catchment descriptors or mean annual runoff
(see Appendix F of paper II). A potential explanation for this behavior is that
when using annual maxima, relationships between climatic predictors and annual
maxima may represent a compromise between various flood generating processes.
This aligns with findings in previous studies (e.g., Ouarda et al. (2006), McCuen
et al. (2003), Fischer et al. (2021)). Mixture models that explicitly account for
flood generating processes exist, such as those in Fischer (2018). However, these
models are not explicitly suited to the aggregation-based approach to obtaining
different durations. A potential avenue forward could be definition of seasonal
blocks as in Ulrich et al. (2021), who developed IDF curves with monthly varying
parameters.
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Conclusions

Objective (i): Development of local models for situations where we have
sufficient data available at a single gauged site and wish to extend the flood
frequency estimates to unobserved durations.

Summary: Extending to unobserved durations involves creating a parametric
relationship between durations, like in QDF models. To make this parametric
relationship more realistic, we can allow the index flood magnitude and growth
curve slope to scale independently with duration. However, since QDF models
are fit on several durations simultaneously the estimates will always, by necessity,
represent a compromise between the input durations. This can pose a problem, if,
for example, the shape parameter changes significantly from duration to duration.

Research questions:

1. Do models that allow for the ratio between return levels to change
with return period improve our ability to predict unobserved sub-
daily durations? (Paper I)

Allowing the ratio between return levels of different to increase with
increasing return period (allowing the index flood magnitude and growth
curve slope to scale independently) improves our ability to model several
durations simultaneously. This advantage is particularly pronounced when
modeling events with long return periods and/or short (sub-daily) durations.
This is in line with findings from precipitation (IDF) models (e.g. Fauer et
al. (2021) and Van de Vyver (2018)). Our extension relies on a new use of an
existing parametrization of the GEV distribution, allowing for the magnitude
of the index flood and the slope of the growth curve to scale independently
with duration. This increases the interpretability of the model as compared
to existing approaches. The multiscaling extension for QDF models proposed
in paper I is therefore recommended if the goal is extension to unobserved
sub-daily durations.

2. How sensitive are local models to the selected input durations?
(Paper I)
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The QDF models are sensitive to the input durations used to fit them. The
models should be fit with the minimum number of durations needed for the
inference algorithm to converge; generating too many sets of dependent data
to fit the model can produce results that are both biased and overconfident.
This is an often overlooked aspect of models that simultaneously estimate
durations under consistency constraints (i.e. QDF and IDF models). Our
investigation reveals a new finding with practical implications.
Moreover, care should be taken to select an appropriate range of input
durations. In particular, attempting to model a wide range of durations
with significant changes in the shape parameter may not work well with
QDF models, as they assume the shape parameter to be constant across
durations. This issue is also noted in, for example, Roksvåg et al. (2021)
and Fauer et al. (2021).

Objective (ii): Development of regional models for situations where we have
observed data at the duration of interest at a sufficient number of sites
and wish to extend the flood frequency estimates at that duration to other,
potentially ungauged, sites.

Summary: The type of regression model and the structure of the frequency anal-
ysis matter once we start constructing RFFA models for more than one duration.
First, the flexibility afforded by a semi-parametric regression model is beneficial
because we do not have to reformulate the functional form of the predictor-response
relationship at each duration. Previous research has established that it is advanta-
geous to relax parametric assumptions in RFFA (Chebana et al., 2014; Msilini et
al., 2022; Rahman et al., 2018); we show it is particularly beneficial when multiple
durations are considered. Second, RFFA models that regress on the parameters of
the extreme value distribution, rather than the quantiles, better preserve duration
consistency. When predicting distribution parameters at out-of-sample locations
it is often estimates of the distribution center (median) that are duration inconsis-
tent. While other RFFA research compares regression on parameters vs quantiles
of an extreme value distribution, our study is the first to examine the impact on
duration consistency.

Research questions:

3. Can a semi-parametric (i.e. “data-driven”) regression model
achieve comparable or improved performance to two benchmark
models (one parametric and one non-parametric) on the 1 hour
and/or the 24 hour duration? (Paper II)
Yes. The predictive accuracy and reliability of GAM developed for median
flood estimation matches or exceeds that of the benchmark models at
both durations studied. GAMs therefore present a modeling benefit and
a potential streamlining of the modeling process when we require estimates
at multiple durations. We note the fact that the performance of the log-
linear model matches that of the GAM on the specific duration for which
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the log-linear model was developed and estimated somewhat contradicts the
findings in Chebana et al. (2014), Msilini et al. (2022), and Rahman et al.
(2018), which consistently report that GAMs outperform log-linear models.
This difference may be attributed to the treatment of statistical significance;
existing research does not test for statistically significant differences. In
agreement with existing research, we also noted slightly lower point estimates
for the GAM compared to the log-linear model across all metrics and
durations, but we found this difference was not statistically significant at
the duration the log-linear model was developed for.

4. Within a regional regression model, can we identify and describe
duration-specific differences in how catchment covariates influence
the median flood? How impactful are these differences? (Paper
II)
We observe duration-specific differences in the form of the functional
relationship between the median flood and some of the catchment descriptors.
Ignoring these differences results in a statistically significant decline in
predictive performance. This suggests that it may be difficult to obtain
optimal performance on all durations when assuming a fixed or parametric
form between predictors and response.

5. How does developing regression models for flood quantiles compare
to developing regression models for extreme value distribution
parameters in terms of predictive performance and consistency
between durations? (Paper III)
The predictive accuracy of the approaches is very similar, confirming the
findings of Haddad et al. (2012), Ahn et al. (2016), and Rahman et al. (2020).
However, the parameter regression technique is more effective at preserving
duration consistency than the quantile regression technique.

6. If our regional models produce estimates that are duration
inconsistent, at what return period do we observe the inconsistent
estimate? Is the return period within the range of the observed
data? (Paper III)
Duration inconsistencies tend to occur in data-rich areas of the distribution;
we observed the out-of-sample estimation of the index (median) flood to be
duration inconsistent at about 20% of stations used in paper III. This aligns
with the results of Haddad et al. (2012), which found greater heterogeneity in
the standard error of predicted values for the index (mean) flood compared
to regression models for the standard deviation and skew of the Log-Pearson
Type III distribution.
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A B S T R A C T

Design flood values give estimates of flood magnitude within a given return period and are essential to making
adaptive decisions around land use planning, infrastructure design, and disaster mitigation. Many hydrologic
applications where flood retention is important, e.g. floodplain management and reservoir design, need design
flood values for different durations. Flood–Duration–Frequency (QDF) models extend the standard statistical
flood frequency analysis framework to multiple flood durations and are analogous to intensity–duration–
frequency models for precipitation. Implementations of QDF models commonly assume simple scaling, where
only the magnitude of the index flood is assumed to change with duration, despite empirical analyses showing
a more complex dependence structure. We propose a multiscaling extension to existing QDF models where
the magnitude of the index flood and the slope of the growth curve may scale independently with duration.
In an application to 12 locations in Norway, we assess how three different QDF models capture relationships
between floods of different duration. Incorporating duration dependency independently in both the index flood
and the growth curve (extended QDF model) improves modeling of both short-duration events and events with
long return periods. This model extension further expands the models’ ability to simultaneously model a wide
range of durations. As measured by the integrated quadratic distance, the extended QDF model performs better
than the original QDF model in 83% of the out of sample subdaily durations studied. Additionally, we find
that the choice of durations used to fit QDF models is a highly influential aspect of the modeling process.

1. Introduction

Floods are a widespread and costly threat to society worldwide.
Their destructive capacity is likely to increase in the near future due
to a rise in both the prevalence of floods under climate change and an
increase in the economic value of flood-prone areas (Alfieri et al., 2017;
Field et al., 2012). Estimation of design floods is an important aspect
of societal adaptation to increased flood risk. Such estimation can be
undertaken in one of three general ways, e.g. Filipova et al. (2019):
(1) statistical flood frequency analysis (FFA), where observed historical
flood events are used to estimate the magnitude of flood events with
a certain return period, (2) event-based hydrological modeling for a
single design event, where design rainfall or other single realizations
of initial conditions and precipitation are used as input to a hydro-
logical model that simulates the desired flood event and (3) derived
flood frequency methods, which use weather generators coupled with
hydrologic models to simulate long series of synthetic discharge that
can be used to statistically estimate the desired return periods. The first
approach—statistical FFA—is the focus of this paper.

∗ Corresponding author at: Norwegian Water Resources and Energy Directorate, P.O. Box 5091 Majorstua, NO-0301 Oslo, Norway.
E-mail address: daba@nve.no (D.M. Barna).

Flood–Duration–Frequency (QDF) models extend the standard sta-
tistical FFA framework to multiple flood durations and are analogous
to Intensity–Duration–Frequency (IDF) models for precipitation. Many
hydrologic applications where flood retention is important, e.g. flood-
plain management and reservoir design, need flood estimates for dif-
ferent durations. Typically, the annual maxima used in QDF model-
ing are sampled from discharge series averaged over different dura-
tions (Javelle et al., 2002; Cunderlik and Ouarda, 2006). This means
that the duration 𝑑 represents the total flow volume for a time span of 𝑑
hours, not flood events that lasted precisely 𝑑 hours. This aggregation-
based approach to obtaining annual maxima means QDF models pro-
vide an accessible way to get relationships between total flow volumes
and durations for applications where the total volume of water is of
interest.

In the QDF approach, an extreme value distribution (usually the
generalized extreme value, or GEV, distribution) is fit to annual maxima
from different durations. Then the relationship between the durations

https://doi.org/10.1016/j.jhydrol.2023.129448
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and the fitted distributions is described by the QDF model. This allows
for the quantiles of the distribution to be parametrically expressed as
a continuous formulation of both return period and duration, where
consistency between the quantiles of the distribution at different dura-
tions is enforced by the QDF model (Javelle et al., 2002). In practice
this means that, for example, the T-year flood for the mean daily
streamflow time series will never report a higher return level than
the T-year flood for the instantaneous streamflow time series (where
T describes the return period of the flood). Such consistency is not
guaranteed when estimating extreme value distributions individually
for several fixed durations and remains one of the main benefits of QDF
modeling in situations where the return level at several durations is of
interest. In addition, the parametric nature of the QDF model allows
for extrapolation to unobserved durations and establishes the potential
for prediction in ungauged basins (Javelle et al., 2002).

The foundations of QDF modeling were developed in the 1990s
through analysis of the relationships between n-day flood volumes
as explored in Balocki and Burges (1994) and Sherwood (1994). The
original QDF model is generally attributed to Javelle et al. (1999).
QDF modeling has found most of its application in France, Canada and
Britain in the early 2000s (Javelle et al., 2002, 2003; Zaidman et al.,
2003) although it has been applied a handful of times in the decades
since (Cunderlik et al., 2007; Crochet, 2012; Onyutha and Willems,
2015). In a guide to hydrological practices, the (World Meteorological
Organization, 2009) notes that QDF analysis remains under-utilized
despite its strong potential.

In more recent years, the QDF model has been used to characterize
flood events of different duration in Algeria (Renima et al., 2018), to
inform development of a depth–duration–frequency relationship used
to assess risk of rainfall-driven floods in Poland Markiewicz (2021)
and as a comparison point to IDF models when assessing catchment
behavior for runoff extremes in Austria (Breinl et al., 2021). As noted
in Breinl et al. (2021), the relationship quantified by the QDF model
is an analogue to the relationship quantified in IDF modeling for
precipitation extremes: in the hypothetical situation where all rainfall
becomes runoff and the time of concentration is instantaneous, the QDF
and IDF models have identical relationships.

Available QDF models usually assume that only the index flood
changes with duration, with the growth curve assumed constant across
durations (e.g. Javelle et al., 2002; Cunderlik and Ouarda, 2006; Breinl
et al., 2021). Here the index flood is the median annual maximum
flood. The growth curve is a scaled version of the flood frequency curve
created by taking the ratio of the flood of any frequency to the index
flood (Robson and Reed, 1999). The multiplication of the growth curve
and the index flood gives the flood frequency curve. We find it useful to
discuss the flood frequency curve in terms of index floods and growth
curves for a few reasons. First, it clarifies the discussion around an
established problem with QDF models. Second, the concept of the flood
frequency curve as an index flood and a growth curve fits with the
reparameterization introduced in Section 3. Third, this language and
reparameterization of the flood frequency curve aligns with regional-
ization methods; note that growth curves are presented in Dalrymple
(1960) as ‘‘basic, dimensionless frequency curves" allowing for cross
catchment comparisons.

This assumption of constant growth curve across durations contra-
dicts empirical analyses of runoff scaling properties in Norway that
show the ratio between peak and daily floods may be dependent on
return period (Engeland et al., 2020; Sælthun et al., 1997). ‘‘Multiscal-
ing" models that allow for this behavior—that is, models that allow for
the ratio between growth curves of different durations to be dependent
on return period—already exist in the IDF literature (Van de Vyver,
2018; Courty et al., 2019; Fauer et al., 2021). However, in all existing
models the different scaling components are placed on the location and
the scale parameter of the GEV distribution, respectively. This hinders
a direct interpretation in terms of scaling of the index flood on the one
hand and the growth curve on the other hand.

Here, we propose a multiscaling extension of the QDF model of
Javelle et al. (2002), where the magnitude of the index flood and the
slope of the growth curve may scale independently with duration.

The natural sparsity of available extreme value data means pa-
rameter estimation is, in general, challenging for extreme value mod-
els (Scarrott and MacDonald, 2012). The additional parameters intro-
duced by multiscaling models compound these challenges (Fauer et al.,
2021). We introduce an alternative parameterization of what we call
the characteristic duration parameters that allows for more numerical
stability. In addition, we adopt a Bayesian estimation approach that
allows for all parameters to be estimated concurrently. Bayesian esti-
mation of IDF models is well established and provides advantages such
as accessible uncertainty assessments, scaling to regional models via
hierarchical Bayesian approaches, and the ability to add information
through prior distributions have been shown to be relevant (Cheng
and AghaKouchak, 2014; Huard et al., 2010). Current QDF models are
typically estimated in a two-step procedure where the characteristic
duration parameter is estimated first, followed by an estimation of the
remaining parameters (Javelle et al., 2002; Cunderlik et al., 2007).
However, such two-step estimation does not typically provide uncer-
tainty information, is difficult to use with multiscaling models, and,
moreover, requires additional assumptions if the model is to be used in
a regional context (Cunderlik and Ouarda, 2006).

Design flood estimation is often most concerned with estimation of
peak discharge. In this case, a statistical estimation poses a challenge
since flood series of length appropriate for statistical FFA often contain
segments at a daily—or coarser—time resolution. This is dealt with
in practice as a data quality issue; most national guidelines for FFA
outline detailed data quality control steps and recommend application
of FFA only when fine resolution time series of suitable length exist,
or when catchment properties are such that daily data can be trusted
to provide a representative profile of the flood peak (Ball et al., 2019;
England et al., 2019; Castellarin et al., 2012). In the situation where we
have neither fine resolution time series nor catchment properties that
allow for construction of the flood peak from daily data, there exist
methodologies for scaling daily data to approximate the instantaneous
peak flow (Ding et al., 2015; Fill and Steiner, 2003).

In Norway, scaling between daily and instantaneous peak flows is
performed by establishing a relationship between the daily flows and
the instantaneous peak flows for the largest floods in the catchment. In
the case where no data is available, the relationship can be provided
by a hydrologically similar catchment. Wilson et al. (2011) notes the
uncertainty in this method is likely to be large and difficult to reconcile
with the uncertainty inherent to FFA. Therefore, it is of interest to
investigate the skill of QDF models to predict floods at subdaily unob-
served durations based on their parametric assumptions and available
coarser-time-resolution data at the site of interest.

To summarize, the main objective of this study is to assess how
different QDF models capture relationships between floods of different
duration. In particular we want to answer the following questions: (i) is
there one QDF model that best captures flood behavior at the shortest
(sub-daily) durations? (ii) what are the models’ abilities when estimat-
ing in sample and out of sample durations? and (iii) how sensitive
are QDF models to input durations? To this aim, we evaluate three
different models, one of which is the original QDF model as presented
in Javelle et al. (2002). The other two models investigated are new
QDF models that allow for differing degrees of duration dependency
in the growth curve. For comparison, three-parameter GEV distribu-
tions are fit independently to each duration in line with the current
guidelines (Midtømme, 2011; England et al., 2019).

The remainder of the paper is organized as follows: Section 2
introduces the data and describes several data artifacts unique to QDF
modeling. Section 3 presents the three QDF models investigated in
this study and details both the Bayesian framework and Markov chain
Monte Carlo (MCMC) sampling. To facilitate both interpretation and
inference, a quantile-based reparameterization of the GEV distribution
is proposed. Section 4 describes QDF model behavior and assesses
performance in relation to locally fit GEV distributions. The paper
finishes with a discussion (Section 5) and conclusions (Section 6).
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Fig. 1. Locations of twelve gauging stations used in study. Catchment area and fraction
of rain contribution to flood are also indicated.

2. Data

The flood data came from 12 streamflow stations in Norway that
have at least 28 years of quality-controlled data with minimal influence
from reservoirs and other installations that might alter the natural
streamflow. See Engeland et al. (2016) for details. All streamflow data
were taken from the Norwegian hydrological database Hydra II hosted
by the Norwegian Water Resources and Energy Directorate (NVE).

The locations of the gauging stations, as well as catchment areas and
flood generating processes, are shown in Fig. 1. The selected stations
are diverse relative to Nordic catchments, allowing us to evaluate the
QDF models on a variety of flood behaviors. See Table D.7 for a listing
of selected catchment properties. The catchment size ranges from 6.31
km2 (Gravå) to 570 km2 (Etna). In Norway the two major flood gener-
ating processes are snowmelt and rain. In Fig. 1 this is illustrated as the
average fractional rain contribution to each flood event. The average
rainfall contribution was estimated by calculating the ratio of rainfall
to total water depth from both rainfall and snowmelt accumulated in a
time window prior to each flood and then averaging these ratios over
all flood events. For details see Engeland et al. (2020). A fraction of rain
value close to one means the floods at this location are primarily driven
by rain; a value closer to zero means snowmelt is the dominant flood-
generating mechanism. Rain was calculated from the precipitation and
temperature from SeNorge 2.0 dataset (Lussana et al., 2019). Snow melt
was extracted from the SeNorge snow model (Saloranta, 2014). In our
dataset the rain contribution varies from 0.32 at Grosettjern to 0.95 at
Røykenes.

2.1. Data quality control

Each of the streamflow records encompasses a variety of collection
methods. These differing collection methods provide data at different
frequencies. Typically we find daily time resolution in the first part of a
streamflow record and a higher frequency of measurements in the latter

part of the streamflow record after adoption of digitized limnigraph
records and/or digital measurements.

It is necessary to make sure that the sampling frequency of the
data is high enough to represent peak flood magnitudes with sufficient
quality. This is especially important at small catchments; a higher fre-
quency of measurements is needed to capture the behavior of quicker,
‘‘flashier’’ floods vs slower, smoother floods. In the records for the
smallest catchments, this constraint excludes substantial parts with a
daily sampling frequency. For two large, primarily snowmelt driven
catchments–Etna and Viskvatn–we used the daily data in addition to
the more high-resolution data. The daily data was collected beginning
in 1920 for Etna and in 1903 for Viksvatn. The high-resolution data was
collected from 1983–2022 for Etna and from 1985–2022 for Viksvatn.
For all the remaining stations we used data from approximately 1970
to 2022, which is collected via a combination of limnigraph and digital
readings. Precise record lengths can be found in Table D.7. The time
resolution of the digital measurements and the digitization of the
limnigraph records were selected by NVE to be frequent enough to
represent flood peaks at individual stations.

In addition to quality control on the sampling frequency, the data
have already undergone a detailed quality control by the hydrometric
section at NVE. Ice jams are an issue at many stations in Norway and
may influence the validity of the rating curves used to calculate stream-
flows from measured water levels. When needed, specific correction
procedures (as specified in internal quality assurance protocols at NVE)
have been applied to get correct discharge. Any year with less than 300
days of data was discarded. The final data-set contains no extraordinary
flood events as seen in Appendix E.

2.2. Data processing for QDF

The data set for the QDF analysis is constructed from an evenly
spaced streamflow time series at the reference duration, where the
reference duration is the finest time resolution of interest. Even spacing
in the reference duration is enforced via regular sampling of a linear
interpolation of the observed data.

Let 𝑥0(𝜏) be this time series at the reference duration. A moving
average of window length 𝑑 was applied to 𝑥0(𝜏) to manufacture a new
time series, 𝑥𝑑 (𝑡):

𝑥𝑑 (𝑡) =
1
𝑑 ∫

𝑡+𝑑∕2

𝑡−𝑑∕2
𝑥0(𝜏) 𝑑𝜏 (1)

Block maxima or peak over threshold values can then be extracted from
𝑥𝑑 (𝑡) to form sets of maxima given as:
{
𝑄𝑑,1, 𝑄𝑑,2,… , 𝑄𝑑,𝑘

}
(2)

where, in the case of annual maxima, 𝑘 is the number of years of data.
The width 𝑑 used as the length of the averaging window corresponds
to the duration of interest and the average in Eqn (1) can be repeatedly
applied under different 𝑑 to manufacture new sets of maxima that
correspond to different durations of interest. Under this aggregation
approach, the durations 𝑑 represent the total volume of water that
arrives over a time span of 𝑑 hours, not flood events that lasted
precisely 𝑑 hours.

These sets of maxima produced under different 𝑑 are dependent;
that is, since longer duration series are always aggregated from series
of shorter duration, the values in one set of maxima depend on the
values in the other sets. Recent advances in IDF have focused on use of
multivariate extreme value theory models, which explicitly model this
dependence structure between sets of maxima (Jurado et al., 2020). The
QDF models presented in this study are simpler, so-called ‘‘univariate
extreme value theory models’’ and do not account for this dependence
structure. We use Fig. 2 to justify the choice of the simpler model.

The aggregation to total flow volume over a time span of duration
𝑑 described in Eq. (1) introduces a dependency structure that is nei-
ther predictable nor directly relatable to catchment properties. Fig. 2
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Fig. 2. In QDF modeling, the duration 𝑑 represents the total flow volume for a time span of 𝑑 hours, not flood events that lasted precisely 𝑑 hours. This means longer duration series
are always aggregated from series of shorter durations. This creates a dependency structure that is artificial yet not easily modeled. There are two reasons why this dependency
structure is not easily modeled, both of which are illustrated in this figure: (i) annual maxima for each duration are not always primarily issued from the same flood event. In
some cases, these flood events can have completely different generating processes (top panel; the shaded areas show the window of time from which the flood generating process
is calculated) and (ii) annual maxima are not guaranteed to decrease as the duration of the averaging window is increased (see annual maxima at 7 days or greater). Data is from
Sjodalsvatn gauging station, for the year 2009.

demonstrates this. First, annual maxima for different durations are in
some cases primarily issued from the same flood event; however, in
other cases the maxima at different durations are based on different
flood events with potentially different flood generating processes. In
the first scenario the annual maxima have a strong dependency due
to overlapping temporal support and serial correlation. In the second
there is weak dependency. This presence or absence of this change in
across duration correlation is not directly relatable to catchment prop-
erties. Second, annual maxima are not guaranteed to decrease as the
duration of the averaging window is increased and the circumstances
that produce this inconsistent behavior in maxima (for example, two
flood events of similar volume occurring within a short time period of
each other, or a particularly wide and flat-topped flood event) are also
not directly relatable to catchment properties.

3. Methods

Extreme value theory allows for the estimation of extreme events
by providing a framework for modeling the tail of probability dis-
tributions where such extreme events would lie. Let 𝑋1,… , 𝑋𝑛 be a
set of continuous, univariate random variables that are assumed to be
independent and identically distributed. If the normalized distribution
of the maximum max{𝑋1,… , 𝑋𝑛} converges as 𝑛 → ∞ then it converges
to a GEV distribution (Fisher and Tippett, 1928; Jenkinson, 1955).
See Coles (2001) for further details.

In flood frequency analysis the set of values that is taken to be
distributed GEV is typically the set of annual maxima. The GEV dis-
tribution is governed by a location, scale and shape parameter. The
special case where the shape parameter is equal to zero is termed the
Gumbel, or two-parameter, distribution. Both distributions are used in
European FFA and an overview of country specific application can be
found in Castellarin et al. (2012). Previous research (Castellarin et al.,
2012; Midtømme, 2011; Kobierska et al., 2018) recommends the three-
parameter GEV distribution for FFA on individual Norwegian stations.
The following QDF models are thus based in the three-parameter form

of the GEV, where the cumulative distribution function of the GEV is
given as

𝐺(𝑧) = exp
{
−
[
1 + 𝜉

( 𝑧 − 𝜇
𝜎

)]−1∕𝜉}
(3)

which is defined on {𝑧 ∶ 1+𝜉(𝑧−𝜇)∕𝜎 > 0} with parameter bounds −∞ <
𝜇 < ∞, 𝜎 > 0 and −∞ < 𝜉 < ∞ and where 𝑧 would be the observed
annual maximum streamflow for duration 𝑑 for a specific year. The case
where the shape parameter, 𝜉, is equal to zero is interpreted as the limit
when 𝜉 → 0.

The remainder of this section is organized as follows: first, a
quantile-based reparameterization of GEV distribution is adopted. Then
three different QDF models–one established model and two new
models–are introduced under this reparameterization. Finally, the fit-
ting methodologies and model evaluation metrics are described.

3.1. Reparameterization of the GEV distribution

The parameters of a GEV model are most easily interpreted in terms
of the quantile expressions; traditional descriptors such as the mean and
variance are inappropriate for the skewed distribution of the GEV and,
moreover, are undefined for certain values of the 𝜉 parameter (Coles,
2001). We reparametrize the GEV distribution using the 𝛼 = 0.5
quantile in line with the recent work of Castro-Camilo et al. (2022).
The relationship between the location parameter, 𝜇, and the location
parameter under the reparameterization, 𝜂 (i.e. the median flood), is
given as

𝜂 =

{
𝜇 + 𝜎 log(2)−𝜉−1

𝜉 if 𝜉 ≠ 0

𝜇 − log (log(2)) if 𝜉 = 0.
(4)

Estimates of extreme quantiles are obtained by substituting 𝜂 from
Eq. (4) for 𝜇 in Eq. (3) and inverting the result, giving

𝑧𝑝 = 𝜂 + 𝜎

{
(−log(1 − 𝑝))−𝜉 − log(2)−𝜉

𝜉

}
. (5)
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Fig. 3. Return level plots from a synthetic data set showing (i) flood frequency curves estimated independently for four durations (left panel), (ii) output from a simple scaling
QDF model (middle panel), and (iii) output from a multiscaling QDF model (right panel). The independent fits do not account for duration dependency. The simple scaling model
accounts for duration dependence in the magnitude of the index flood but not the growth curve. The multiscaling model accounts for duration dependence in both the magnitude
of the index flood and the slope of the growth curve.

Here, 𝐺(𝑧𝑝) = 1 − 𝑝 and 𝑧𝑝 is the return level associated with the
return period 𝑇 such that 𝑇 = 1∕𝑝. Finally, to reduce dependency
between parameters, the scale parameter is decomposed as a product
of the median flood and a remainder term expressed as an exponential
function, 𝑒𝛽 , such that the new scale parameter 𝛽 is given as

𝛽 = log
(
𝜎
𝜂

)
. (6)

The location parameter 𝜂 has a more reasonable interpretation
under the reparameterization in Eq. (5): it is now the median of the
GEV distribution, with units of 𝑚3∕𝑠. Consequently, it is much easier to
choose informative priors under the reparameterization—an important
advantage in a Bayesian framework (Gelman et al., 2013).

In addition to providing interpretable parameters, this parameteri-
zation has the added benefit of aligning with the index flood approach
popular in regional flood frequency modeling, where the median flood
for a group of catchments is taken as a typical, or ‘‘index’’, flood (Dal-
rymple, 1960). Explicitly including the median as a parameter in the
model means the order of magnitude of a flood can be separated from
the shape and slope of the growth curve. This has potential to simplify
the search for regressors in a regional QDF model (Castro-Camilo et al.,
2022).

3.2. Models

This section discusses three competing models. First the original
QDF model from (Javelle et al., 2002) is presented under the repa-
rameterization in Section 3.1. Then the new extended QDF model is
introduced. Finally, a mixture model taking components from both
previous models is introduced. Each of these models introduces addi-
tional parameters to the classic GEV model. The models differ in the
number of additional parameters added, but can all be classified as
duration-dependent GEV, or d-GEV, models.

We motivate the development of the extended, multiscaling QDF
model with Fig. 3.

The leftmost panel of the figure shows several flood frequency
curves estimated independently for four durations. The curves for 48
and 72 h are inconsistent; that is, the 72 h frequency curve crosses
the 48 h curve. Physically, there should not be a larger total volume of
water during a 48 h interval than a 72 h interval. These inconsistencies
can arise when we ignore duration dependence in both the index flood
and growth curve—that is, when we estimate durations independently.

QDF models enforce consistency between flood frequency curves
of different duration, as the middle and right panels of Fig. 3 show.

Existing QDF models account for duration dependence in the index
flood but not the growth curve. This is termed ‘‘simple scaling’’ and
is illustrated in the middle panel of Fig. 3. However, ignoring the
effect of duration dependency on the growth curve can lead to poor
estimation in the tails of the distribution. Models that account for
duration dependency in both the index flood and growth curve are
called ‘‘multiscaling’’ models. The extended QDF model accounts for
duration dependency in the growth curve by allowing the both the
magnitude of the index flood and the slope of the growth curve to
change with duration (right panel, Fig. 3).

3.2.1. Original QDF model
The annual maxima under the original QDF model proposed in

Javelle et al. (2002) are independently distributed

𝑄𝑑,𝑖 ∼ GEV
(
𝜂𝑑 , 𝛽, 𝜉

)
(7)

where

𝜂𝑑 = 𝜂 (1 + 𝑑𝛥)−1 (8)

and the quantile function under the reparameterization in Section 3.1
is given as

𝑧𝑑,𝑝 =
𝜂

1 + 𝑑𝛥

[
1 + 𝑒𝛽

{
(−log(1 − 𝑝))−𝜉 − log(2)−𝜉

𝜉

}]
(9)

where 𝛥 > 0. Note the inverse of the characteristic duration param-
eter 𝛥 from Javelle’s original QDF model is used here for numerical
stability during estimation. A high value for 𝛥 indicates the total flow
volume arrives quickly, analogous to a flashy/peaked hydrograph with
a pronounced duration dependency for the median flood, whereas
a value close to zero indicates a slower timespan, analogous to a
wide hydrograph with minor duration dependency for the floods. The
traditional flood frequency curve–that is, a GEV distribution fit to an
instantaneous time series–is recovered in the limit of the aggregation
window as 𝑑 → 0.

In Javelle’s model only 𝜂 is dependent on 𝑑 and 𝛥. This aligns with
the literature base for IDF modeling in the sense that the model can be
written as a separable function of 𝑑 and 𝑝. Notice further that if the 1+
𝑑𝛥 quantity in Eq. (9) was replaced with a power relationship the model
would match that of the IDF models summarized in Koutsoyiannis et al.
(1998). The power relationship and separable functional dependence
of the IDF model has its roots in stochastic process theory, although
the model as typically applied does not rely on this theory base since
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IDF models do not attempt to make explicit mathematical statements
about how the higher order moments (e.g., variance) change with
duration (Koutsoyiannis et al., 1998).

Since only the magnitude of the median flood (𝜂) is duration-
dependent in the model in Eq. (9), the underlying assumption of the
original QDF model is that the slope of the growth curve does not
change with duration.

3.2.2. Extended QDF model
The extended QDF model (referred to as the Double-Delta QDF

model) is structured to be able to capture differences in slope of the
growth curves coming from peak and daily values, or, indeed, values
coming from any two different aggregation intervals. Changing the
steepness of the growth curve dependent on duration requires extra
flexibility in the tail behavior of the model, so the model allows 𝜂 and 𝛽
to depend on the aggregation interval 𝑑 and additional parameters 𝛥1
and 𝛥2, respectively. The 𝜉 parameter is kept duration-invariant due
to the difficulties in estimating the 𝜉 parameter stemming from the
involved parametric form of the CDF (Eq. (3)). Under Double-Delta the
annual maxima are independently distributed as

𝑄𝑑,𝑖 ∼ GEV
(
𝜂𝑑 , 𝛽𝑑 , 𝜉

)
(10)

where

𝜂𝑑 = 𝜂
(
1 + 𝑑𝛥1

)−1 (11)

𝛽𝑑 = log
(

𝜎
𝜂𝑑 (1 + 𝑑𝛥2)

)
(12)

and the distribution’s quantiles for a duration 𝑑 corresponding to
exceedance probability 𝑝 are given by

𝑧𝑑,𝑝 =
𝜂

1 + 𝑑𝛥1

[
1 + 𝑒𝛽

1 + 𝑑𝛥2

{
(−log(1 − 𝑝))−𝜉 − log(2)−𝜉

𝜉

}]
(13)

with constraint

0 < 𝛥2 < 𝛥1. (14)

The constraint on the Delta parameters reflects the fact that the data
aggregation performed in QDF modeling (see Section 2.2) is more likely
to have a larger effect on the flood magnitude than on the decomposed
scale parameter. Recall that the value of the 𝛥1 parameter reflects
the ‘‘flashiness’’ of the floods measured; a narrow hydrograph will be
associated with larger values of 𝛥1. The 𝛥2 parameter does not have
an equally accessible hydrologic interpretation but can be interpreted
as a measure of difference in growth curve slope across aggregation
intervals; that is, if the ratio between peak and daily floods is heavily
dependent on return period we would expect to see larger values of 𝛥2.

As the aggregation window shrinks to zero, that is, as 𝑑 → 0,
the Double-Delta model is equivalent to the standard GEV model that
creates the traditional flood frequency curve. Similarly, as 𝛥2 → 0, the
Double-Delta model approaches Javelle’s QDF model. Double-Delta can
thus be considered an extension of Javelle in the same way Javelle is
an extension of the traditional flood frequency curve.

3.2.3. Mixture model
The mixture model is proposed in an attempt to access the flexibility

of the Double-Delta model without adding unnecessary complexity. The
model is a weighted average of the Double-Delta and Javelle models
such that the density of the annual maxima is given by
2∑

𝑗=1
𝑚𝑗 𝑔(⋅|𝜽𝑗 ) (15)

where 𝑚𝑗 is the weight on the component model, 𝑔 is the density of the
GEV distribution, 𝜽1 = {𝜂 DD

𝑑 , 𝛽 DD
𝑑 , 𝜉DD} and 𝜽2 = {𝜂 J

𝑑 , 𝛽J, 𝜉J}. Here
the superscripts on the parameter sets denote the Double-Delta and
Javelle models, respectively. Using Bayesian methodologies and the
reversible-jump algorithm detailed in Section 3.3, parameter estimation

and selection can be carried out simultaneously and the 𝛥2 parameter
is only added if merited.

Thus Eq. (15) is a representation of a non-standard density from
which it is possible to obtain quantile estimates that are an average
over the distributions given by the Double-Delta model in Eq. (10) and
the Javelle model in Eq. (7).

3.3. Bayesian framework

For the Javelle and Double-Delta models, Bayesian inference is per-
formed using a Metropolis-Within-Gibbs algorithm (Robert and Casella,
2004). That is, samples from the conditional distribution of the param-
eters 𝜽1 and 𝜽2, respectively, are obtained by iterative sampling from
the full conditional distributions of the individual parameters so that
each component of the model is updated in turn. Prior distributions
for the individual parameters assume independence. The prior on 𝜂,
which has units of m3∕𝑠, is a diffuse truncated normal distribution
truncNormal(40,100) with lower bound at zero. The prior on 𝛽 is a
diffuse Normal(0,100). For 𝜉, we follow the methodology in Martins
and Stedinger (2000) and use a shifted Beta(6,9) distribution on the
interval [−0.5, 0.5]. The prior for 𝛥1 in the Double-Delta model, which is
equivalent to the prior for 𝛥 in the Javelle model, is a Lognormal(0,5).
The same values are used in the prior for 𝛥2, which uses a truncated
Lognormal where the lower bound of the prior is given by 𝛥1.

The conditional distribution of the mixture model is given by

𝑝 (𝑚,𝜽|𝐐) ∝ 𝑝(𝑚)𝑝 (𝜽|𝑚) 𝑔(𝐐|𝜽, 𝑚) (16)

where 𝑝(⋅|⋅) is the generic conditional distribution consistent with this
joint specification and 𝑚 ∈ {DD, J}, 𝜽 ∈ {𝜽1,𝜽2}, and 𝐐 = (𝑄𝑑,𝑖)

𝑖=𝑘,𝑑=𝑛
𝑖=1,𝑑=1 ,

where 𝑘 is the number of years of data and 𝑛 is the total number of
durations. The models have equal prior probability, with 𝑝(𝑚 = 𝐽 ) =
𝑝(𝑚 = 𝐷𝐷) = 0.5. Simplification of Eq. (16), considering the model
without the model specification and separate parameter sets, gives the
conditional distributions of Double-Delta and Javelle.

Moving between models changes the dimension of 𝜽. To account
for this, we employ a reversible jump MCMC algorithm, similar to the
reversible jump methodology for normal mixtures described in Richard-
son and Green (1997). The reversible jump MCMC proceeds as follows:

1. updating 𝜽:

(a) if 𝑚 = DD update 𝜂 DD, else update 𝜂 J;
(b) if 𝑚 = DD update 𝛽 DD, else update 𝛽 J;
(c) if 𝑚 = DD update 𝜉 DD, else update 𝜉 J;
(d) if 𝑚 = DD update 𝛥1 and 𝛥2 parameters in sequence, else

update 𝛥;

2. splitting one Delta into two, or combining two Deltas into one.

Step 1 is repeated 10 times under the same model before Step 2
(proposal to jump between models) is taken. Repeating Step 1 for either
the Javelle or Double-Delta model details the MCMC algorithm used to
fit the respective model. To move from Double-Delta to Javelle we need
to merge 𝛥1 and 𝛥2 into one 𝛥. The combine proposal is deterministic
and given by

𝛥 = 𝛥1 + 𝛥2. (17)

The reverse split proposal, going from Javelle to Double-Delta,
involves one degree of freedom, so we generate a random variable 𝑢
such that

𝑢 ∼ 𝐵𝑒𝑡𝑎(5, 1) (18)

which is then used to set
𝛥1 = 𝑢𝛥

𝛥2 = (1 − 𝑢)𝛥.
(19)
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For this split move the acceptance probability is min {1, 𝐴} where

𝐴 = 𝑝(𝑚′,𝜽′|𝐐)
𝑝(𝑚,𝜽|𝐐)𝑞(𝑢)

|𝐽 | (20)

where 𝑞(𝑢) is the density function of 𝑢 and 𝐽 is the Jacobian of the
transformation described in Eq. (19). The acceptance probability for
the corresponding combine move is min

{
1, 𝐴−1} but with substitutions

that adhere to the proposal in Eq. (17).

3.3.1. Posterior return levels
The Markov chains detailed above return a collection of 𝑅 samples

𝜽[𝑟], 𝑟 = 1,… , 𝑅 (21)

where 𝑅 is the total number of iterations in the MCMC with a suitable
number of burn-in samples removed. Under the mixture model, 𝜽 can
be either 𝜽1 or 𝜽2 dependent on iteration 𝑟, while posterior samples
under Double-Delta or Javelle will return only 𝜽1 or 𝜽2, respectively.
This Markov sample of the parameter set directly yields, by using the
quantile function in either (9) or (13), a sample of quantiles
{
(𝑧𝑑,𝑝)[1],… , (𝑧𝑑,𝑝)[𝑅]

}
. (22)

This sample approximates the posterior distribution of the 𝑝th re-
turn level at duration 𝑑. From this sample it is possible to derive
approximations for the posterior mean and its credible intervals.

3.4. Evaluation methods

To assess the models we compare QDF model output to GEV dis-
tributions fit locally to each duration. Comparison is quantified first
through the proper evaluation metric integrated quadratic distance
(IQD) (Thorarinsdottir et al., 2013). Further, since the IQD is a measure
of overall distributional similarity and is not always sensitive to small
differences in tail behavior, we calculate the mean absolute percentage
error (MAPE) for select high quantiles.

The IQD measures the similarity between two distributions by inte-
grating over the squared distance between the distribution functions.
Let 𝐺 be the distribution function defined by the local GEV fit and
𝐺QDF be the distribution function defined by the QDF model at the
corresponding duration. In practice we approximate 𝐺 and 𝐺QDF by the
empirical CDF of a sample from the posterior. The distance between 𝐺
and 𝐺QDF as measured by the IQD is then given by

IQD = ∫
+∞

−∞

(
𝐺(𝑧) − 𝐺QDF(𝑧)

)2 d𝑧 (23)

where lower values of the IQD indicate better overall performance.
The IQD is the score divergence associated with the well-known proper
scoring rule the continuous ranked probability score (CRPS); the main
difference between IQD and CRPS is that CRPS calculates the integrated
squared distance between a distribution and a scalar observation speci-
fied by a Heaviside step function whereas IQD calculates the integrated
squared distance between two distributions.

The MAPE provides a measure of similarity as the percent difference
between the local GEV fit and the QDF model. Let 𝑧QDF

𝑑,𝑝 be the return
level at probability 𝑝 for the QDF model evaluated at duration 𝑑,
generated from the approximation to the posterior given in Eq. (22).
Similarly, let 𝑧GEV,d

𝑝 be the return level at probability 𝑝 for the local
GEV fit to data at duration 𝑑. Then the MAPE is given by

MAPE = 1
𝑛

𝑛∑
𝑖=1

||||||

𝑧GEV,d
𝑝 − 𝑧QDF

𝑑,𝑝

𝑧GEV,d
𝑝

||||||
∗ 100 (24)

where 𝑛 is the number of stations at which we wish to calculate the
MAPE.

4. Results

We evaluate three models: the original QDF model (Javelle), the
extended QDF model (Double-Delta), and the mixture model. We first
assess how well the models capture flood behavior for in-sample dura-
tions at a variety of catchments. Then we evaluate which of the models
is most effective at predicting out-of-sample durations, specifically
short (less than 24 h) durations from long durations (greater than or
equal to 24 h). Finally, we compare the models’ estimation abilities at
in- and out-of-sample durations.

Model evaluation is carried out by comparing the QDF models to
a collection of GEV models fit individually to each duration. The IQD
is used to assess model behavior across all quantiles; since it has low
tail sensitivity it best captures model behavior where the bulk of our
observations lie (i.e. return periods for which we have observed data).
We turn to the MAPE to assess tail behavior, where both the QDF model
and the reference model are extrapolated beyond the range of observed
data.

4.1. Model sensitivity to input durations

The QDF models should be fit with the minimum number of du-
rations needed to ensure converge of the MCMC sampler; feeding too
many sets of dependent data into the model can bias return level
estimates and artificially narrow the credible intervals. The bias is
especially prevalent when the data is generated by aggregating over
a longer time span and the goal is to predict short duration events.

To test this, the models were fit under three different sets of data:
two durations (24 and 36 h); four durations (24, 36, 48, 72 h); and
six durations (24, 36, 48, 72, 96, 120 h). For the two-duration set
the MCMC sampler failed to converge. Results from the other two
sets (‘‘24–72’’ and ‘‘24–120’’) are displayed in Fig. 4. The 24–120 set
provides a comparatively worse fit; the 90% credible interval for the
this set fails to capture the locally fit GEV models (dashed gray lines) for
the 24 and 1 h durations and the return levels are also underestimated
to a greater extent than in the 24–72 set. This behavior is replicated
across all three models and all twelve catchments (results not shown).

4.2. Model performance on in-sample durations

Here, we present results where the three QDF models are compared
against locally fit GEV models at every in-sample duration, where the
in-sample durations are 1, 24, 48, and 72 h. Such an in-sample com-
parison is useful for identifying specific scenarios where QDF models
struggle to fit the data rather than strict model-to-model rankings: since
models with more parameters have an in-sample advantage, Double-
Delta is expected to perform better than either Javelle or the mixture
model. Return level plots displaying the QDF model output and the
reference model at these four in-sample durations are displayed in
Figs. E.12–E.15.

4.2.1. Assessing model behavior using IQD
A comparison of in-sample IQD scores across stations, durations

and methods is given in Fig. 5. The scores are relatively similar across
models–most points fall on or along the diagonals in the two plots
in Fig. 5. As expected, the scores exhibit a slight preference towards
the Double-Delta model, which has the lowest average IQD score at
0.034 (highest distributional similarity to the reference model when all
durations and stations are considered). The mixture model has the next
lowest score at 0.037 and Javelle has the highest score at 0.040.

The analysis shows duration-specific preferences between models.
The Double-Delta model has a better average IQD score than either
Javelle or the mixture model at every in-sample duration where the
average is taken over all 12 stations considered in the study. However,
Double-Delta’s advantage is strongest at the shortest durations. Table 1
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Fig. 4. Return level plots from the Dyrdalsvatn gauging station using the Double-Delta model fit to two different data sets: one set with six durations [24, 36, 48, 72, 96, 120 h]
and one set with four durations [24, 36, 48, 72 h]. The model fit to the six duration set is both overconfident and biased at shorter durations; the posterior mean return level
estimates are consistently underestimated when compared to locally fit GEV models (dashed gray lines) and the 90% credible interval is artificially narrow and fails to capture
the locally fit model for the 24 and 1 h durations.

Fig. 5. Model-to-model comparison of interquantile distance (IQD) scores for each station and in-sample duration. Lower values of the IQD indicate better performance. The
extended QDF model (Double-Delta) serves as a reference to both the original QDF model (Javelle, left panel) and the mixture model (right panel). Notable values are indicated
by gray squares, and are discussed in the main text.

Table 1
Number of stations at which the extended QDF model
(Double-Delta) outperforms a comparison QDF model
as measured by IQD. Here ‘‘MM’’ denotes the mixture
model.

In-sample
duration

Comparison model

Javelle MM

1 h 10/12 10/12
24 h 9/12 9/12
48 h 7/12 7/12
72 h 7/12 8/12

reports the number of stations at which Double-Delta outperforms a
comparison QDF model at each duration.

Despite QDF models showing an overall good performance, there
are certain stations where each of the three QDF models differs substan-
tially from the reference model. This behavior is particularly prevalent
for the 1 and 24 h durations at Hugdal Bru, displayed in panel A of
Fig. 6. We suspect the issues with the shorter durations at Hugdal
Bru represent a conflict between the parameter constraints inherent
in the QDF models and the runoff-generating processes for sub-daily
streamflow at this particular station: Hugdal Bru is heavily snowmelt
driven, with a strong diurnal melt pattern. The data averaging used in
QDF modeling smooths out this sub-daily variation, but this relatively
large reduction in variance is not reflected in the parameter constraints
of the QDF model since the primary scaling occurs on the median
flood (a constraint described in Eq. (14)). Thus the behavior of 1 h
floods with return period under 5 years is difficult for the QDF models
to fit. Floods with higher return periods tend to come from larger
precipitation or melting events that supersede the diurnal cycle and
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Fig. 6. Return level plots showing two selected stations where QDF models differ substantially from the reference model on in-sample durations. (A) Hugdal Bru: the 1 h floods
with return period under 5 years are characterized by a diurnal melt-freeze cycle at this snowmelt-driven catchment; 1 h floods with longer return periods come from larger
precipitation or warming events that supersede the diurnal cycle and as such have a more consistent relationship with longer durations and are more easily characterized by QDF
models. (B) Gryta: the reference models show a change in shape parameter with increasing duration; QDF models cannot capture this behavior as the shape parameter is not
duration dependent.

as such have a more regular relationship between durations. Durations
above 24 h (without the diurnal cycle) also have a more regular
relationship between durations.

The QDF models assume a constant shape parameter across all
durations included in the analysis. As shown in panel B of Fig. 6, this
assumption may lead to estimates that diverge from local duration-
independent estimates where the latter analysis yields substantially
varying shape parameter estimates across the durations. Here, the
individually fit GEV models have shape parameters ranging from 0.140
for the 1 h duration to −0.037 for the 72 h duration. The QDF models
do not have duration dependence built into the shape parameter and
as such must choose one shape parameter for the entire set (in this
case 0.018 for Double-Delta, 0.021 for the mixture model and 0.036 for
Javelle). This inflexibility of the shape parameter is a known limitation
of QDF models but is not easily solved as this parameter faces estima-
tion difficulties due to the involved parametric form of the cumulative
distribution function of the GEV. As a result, the QDF models tend
to underestimate high quantiles for short durations and overestimate
high quantiles for longer durations. Specifically for Gryta, using Javelle
the 1 h duration is underestimated and the 48 and 72 h durations are
both overestimated to a greater extent than we see in the Double-Delta
model.

4.2.2. Assessing model behavior using MAPE
The within-sample MAPE was computed for the 100 year and 1000

year flood events (0.99 and 0.999 quantiles). These quantiles lie beyond
the observed range of data for most of the stations and thus require
extrapolation of both the QDF models and the reference model.

The Double-Delta model has the lowest MAPE at both return periods
when all in-sample durations and stations are taken into account (5.9%
error at the 100 year return period and 10.0% error at the 1000 year
return period). The mixture model has the next lowest MAPE with 6.5%
error at the 100 year return period and 12.1% error at the 1000 year
return period. The Javelle model has the highest MAPE with 7.7% error
at the 100 year return period and 12.1% error at the 1000 year return
period. As with the IQD, the advantage of Double-Delta is strongest at
the shortest durations; Table 2 reports the number of stations at which
Double-Delta outperforms either Javelle or the mixture model.

The addition of the second delta parameter has the most impact
when estimating events with long return periods. We see this in the
differences in behavior of the model-to-model comparisons between the
IQD and MAPE Figs. 5 and 7. Javelle and the mixture model appear
more similar when evaluated by the IQD than they do under the MAPE;

Table 2
Number of stations at which the extended QDF model (Double-
Delta) outperforms a comparison QDF model as measured by
MAPE. Here ‘‘MM’’ refers to the mixture model.

In-sample
duration

Comparison model T

Javelle MM

1 h 11/12 11/12

100
24 h 10/12 9/12
48 h 4/12 4/12
72 h 7/12 6/12

1 h 11/12 11/12

1000
24 h 9/12 9/12
48 h 4/12 4/12
72 h 6/12 6/12

that is, using the IQD score the two models have about the same amount
of clustering around the diagonal when compared to Double-Delta. But
using MAPE–which measures differences in tail behavior between the
QDF models and reference model–we see a difference between Javelle
and mixture model when compared to Double-Delta: the values for the
mixture model are much more closely clustered around the diagonal
in Fig. 7 than the values for Javelle. These stations that show an
improvement in MAPE under the mixture model are those that have
a high weight on the second delta parameter.

One of the stations that is most improved by the addition of the
second delta is Gryta (marked by gray squares in Fig. 7). The return
level plots in panel (B) of Fig. 6 show this station in particular benefits
from the adjustment of growth curve slope afforded by the second delta.
The second delta somewhat mitigates the effect of the assumption of a
constant shape parameter across durations. However, even with this
adjustment in growth curve slope both Double-Delta and the mixture
model have high error values for the 1 h duration at Gryta-around
20%–30%.

4.3. Model performance on out-of-sample durations

Here, the models were fit with four durations (24, 36, 48 and 60 h)
and the resulting parameter estimates were used to predict the 1 and
12 h durations. The QDF predictions were compared to locally fit GEV
models using both the IQD and MAPE. Return level plots showing the
reference and QDF models at both out of sample durations are displayed
in Figs. F.16–F.19.

63



Journal of Hydrology 620 (2023) 129448

10

D.M. Barna et al.

Fig. 7. Model-to-model comparison of the mean absolute percent error (MAPE) scores for each station and in-sample duration. Lower values of the MAPE indicate better performance.
The extended QDF model (Double-Delta) serves as a reference to both the original QDF model (Javelle, top panels) and the mixture model (bottom panels). Notable values are
indicated by gray squares, and are discussed in the main text.

Double-Delta has the best average IQD score on the out of sample
durations, reporting a score of 0.34 while the mixture model reports
a score of 0.42 and Javelle reports 0.44. Fig. 8 shows a model-to-
model comparison on the out of sample durations. There are only three
station and duration combinations (both the 1 and 12 h durations at
Sjodalsvatn and the 1 h duration at Dyrdalsvatn and Øyungen) where
Double-Delta performs worse, as measured by the IQD, than the other
two models. These stations are outlined in red in Fig. 8. At every
other station and duration Double-Delta performs the same or better.
All three QDF models provide a poor distributional fit for the sub-
daily durations at Hugdal Bru and the 1 h duration at Røykenes. These
stations are labeled by name in Fig. 8. Difficulties fitting the sub-
daily durations of Hugdal Bru are discussed in Section 4.2.1. The 1 h
duration at Røykenes exhibits a large change in shape parameter with
an increase in duration like the station Gryta shown in panel B of Fig. 6.

Double-Delta has the best average MAPE score on the out of sample
durations (11.1% error at the 100 year return period and 15.4% error
at the 1000 year return period). The mixture model has the next lowest
MAPE with 12.2% error at the 100 year return period and 16.9% error
at the 1000 year return period. The Javelle model has the highest MAPE
with 12.8% error at the 100 year return period and 17.4% error at the
1000 year return period. Double-Delta provides an equal or better fit
at around 80% of the stations and durations at both return periods.
Stations and durations where Double-Delta is outperformed by either
Javelle or the mixture model are outlined in red in Fig. 9.

Several of the smallest catchments (Gravå, Gryta and Grosettjern)
have high out-of-sample MAPE values. These three catchments have
some of the highest variation in the shape and slope of the individually
fit GEV models (see Tables A.3 and B.5, where the 𝛽 parameter is taken
as a proxy for slope).

A highly duration-dependent shape parameter is a known challenge
for QDF models (see the scenario in panel B of Fig. 6) and we would
expect the QDF models to struggle to find a shape parameter value
that approximates both the longest and shortest durations even when
these durations are in-sample. Furthermore, not only do we observe a
large shape parameter range but this range crosses zero for both Gryta
and Grosettjern, with the longer durations having a negative shape
parameter while the shorter durations have a positive shape parameter.
This is a substantial difference; a negative shape parameter corresponds
to an entirely different distribution family (Weibull) than a positive
shape parameter (Fréchet) within the GEV family.

Additionally, these three catchments experience the biggest change
in growth curve slope between either the 1 and 24 h duration or the
12 and 24 h duration while the rate of change of growth curve slope
is less for durations above 24 h; that is, there is a change in growth
curve slope in the sub-daily durations that is not replicated in the
longer durations. In summary, we observe high error for out of sample
durations at Gravå, Gryta and Grosettjern because the relationship
between the longer floods used to fit the model does not strongly inform
the relationship between sub-daily floods for these catchments.
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Fig. 8. Model-to-model comparison of interquantile distance (IQD) scores for each station and both out-of-sample durations. Lower values of the IQD indicate better performance.
The extended QDF model (Double-Delta) serves as a reference to both the original QDF model (Javelle, left panel) and the mixture model (right panel). Stations and durations
where Double-Delta performs worse than the other two models are outlined in red. Stations and durations that are fit particularly poorly by all three QDF models are labeled by
name. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Model-to-model comparison of mean absolute percent error (MAPE) scores for each station and both out-of-sample durations. Lower values of the MAPE indicate better
performance. The extended QDF model (Double-Delta) serves as a reference to both the original QDF model (Javelle, top panels) and the mixture model (bottom panels). Stations
and durations where Double-Delta performs worse than the other two models are outlined in red. Stations and durations that are fit particularly poorly by all three QDF models
are labeled by name. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Comparison of interquantile distance (IQD) score when durations are either predicted (out of sample) or included in the model fitting set (in sample). Lower values of
the IQD indicate better performance. The out-of-sample set was fit with durations 24, 36, 48, 60 h and used to predict the 1 and 12 h durations. The in-sample set was fit with
durations 1, 12, 24, 36, 48, 60 h. Stations and durations that are fit particularly poorly by all three QDF models are labeled by name.

4.4. Comparison of in- and out-of-sample sub-daily estimates

Here, the models were fit with six durations (1, 12, 24, 36, 48,
60 h) where the 1 and 12 h durations are evaluated as in-sample
durations. The output from these models is then compared to the output
from the previous section, where the models are fit on four durations
(24, 36, 48, 60 h) that are used to predict the 1 and 12 h durations.
The performance of each of these sets is evaluated at the 1 and 12 h
durations using both the IQD, as shown in Fig. 10, and MAPE, as shown
in Fig. 11.

The stations that have the greatest loss when going from in-sample
to out-of-sample tend to be stations that already had high IQD or
MAPE values. This means that if there is already a significant difference
between the QDF and reference models this difference is likely to be
amplified when predicting out of sample durations. Most stations and
durations, however, have a relatively moderate loss when moving from
in- to out-of-sample on both the IQD and MAPE (the exceptions to this
are labeled in Figs. 10 and 11). For the MAPE, this difference is on the
order of ±5%.

5. Discussion

We have, in accordance with our main objective, analyzed how
different QDF models capture the relationship between floods of dif-
ferent duration at 12 locations in Norway. By examining differences in
model fit between the three models studied, we identified reasoning
to explain why the extended QDF model (‘‘Double-Delta’’) outperforms
the other two models on the particular stations and durations studied,
and why this performance advantage is particularly pronounced for
situations where the focus is on long return periods and/or short
durations. Additionally, we tested the out-of-sample performance of
QDF models on sub-daily durations by comparing to models fit with
the sub-daily data included; we observed situations where the out-
of-sample set returned evaluation scores that were in line with the
in-sample set but also situations where the ability of QDF models to
predict sub-daily, out-of-sample durations was severely limited. Finally,
we assessed whether the choice of durations used to fit the QDF models
impacts model estimation and concluded QDF models are sensitive to
the durations used to fit them.

The Double-Delta model is what we term a ‘‘empirical multiscaling’’
model, where the main contribution of the proposed model is the ability
to adjust to certain types of changes in dependence structure with
respect to return period. Specifically, it can account for the situation

where the ratio between growth curves increases with increasing return
period. The original QDF model (Javelle), on the other hand, assumes
this ratio to be constant. As evidenced by the return level plots in
Figs. E.12–E.15, the assumption of a constant ratio will commonly
not hold, in particular, if the shortest duration of 1 h is included in
the comparison. The additional parameter in the Double-Delta model
allows for a better approximation of the tail behavior, especially for
short durations. Selectively adding the second delta–as the mixture
model does–is not advantageous at the shortest durations as these
durations tend to need maximum flexibility from the QDF models.

We make a distinction here between what we call empirical multi-
scaling and multiscaling in the strict theoretical sense. Strict theoretical
multiscaling models would be, for example, those presented in Gupta
and Waymire (1990) or the IDF models in Van de Vyver (2018). This
distinction is often overlooked in the literature since the parameteri-
zation of empirical- and strict-multiscaling models are in most cases
identical and the theoretical basis matters only for inference. However,
we think it useful to note that the QDF models presented here are
empirical and do not attempt to place strict mathematical assumptions
on how the variance or other higher-order moments change with
increasing duration.

A second important distinction needs to be made between QDF mod-
els and bivariate frequency analyses where the dependence structure
between peak discharge and event duration is explicitly modeled. The
aggregation-based approach to obtaining annual maxima means QDF
models provide an accessible way to get relationships between peak
volume and duration for applications where the total volume of water
is of interest. If singular flood events are the focus—for example, if we
need to know how long a road is closed following a particular flood
event—a bivariate, event-based approach such as one of the copula
models detailed in Gräler et al. (2013) is more appropriate.

QDF models are most useful when three considerations are kept in
mind. Firstly, we found that the choice of durations used to fit the
QDF model was a highly influential aspect of the modeling process.
The particular durations chosen will impact what relationship between
floods the QDF models can identify. In general, QDF models predict
sub-daily unobserved durations just as well as when those durations
are used to fit the model. However, as shown in Section 4.4, it is
possible to select in-sample durations that do not inform the duration
of interest. Avoiding this situation requires careful selection of appro-
priate in-sample durations. Such selection can be guided by design
value application; for example, it is unlikely we would need the 60
or 72 h duration on the smallest catchments in this study and can
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Fig. 11. Comparison of mean absolute percent error (MAPE) when durations are either predicted (out of sample) or included in the model fitting set (in sample). Lower values of
the MAPE indicate better performance. The out-of-sample set was fit with durations 24, 36, 48, 60 h and used to predict the 1 and 12 h durations. The in-sample set was fit with
durations 1, 12, 24, 36, 48, 60 h. Stations and durations that are fit particularly poorly by all three QDF models are labeled by name and dashed lines indicate ±5% difference
from the diagonal.

therefore avoid the somewhat contrived scenarios where we use what
are, for these catchments, only long-duration flood events to estimate
the shortest durations.

Secondly, the range of the selected durations also influences the
QDF model estimates. If the durations selected do not span a wide
enough range the QDF models will struggle to converge (Section 4.1).
However, too wide a range of durations can be challenging for QDF
models if the statistical properties of the floods change significantly
between durations (Section 4.2). We note that problems associated
with the latter situation can be partially mitigated through the extra
flexibility afforded by the extended QDF model (Double-Delta). Thirdly,
we found that generating too many sets of dependent data to fit the
model can produce results that are both biased and overconfident,
particularly when the generated data is aggregated over a longer time
span than the duration of interest (Fig. 4).

The QDF model assumes a constant shape parameter across all
durations, as with nearly all duration-dependent extreme value mod-
els (Fauer et al., 2021). This situation is illustrated in panel B of
Fig. 6. It would be technically possible to add duration dependence
to the shape parameter of the models in Eqs. (9), (13), and (15).
However, the observed difficulties in estimating the shape parameter
in Section 4.3 and the issues documented in Martins and Stedinger
(2000) indicate this approach may be very complex and pose severe
estimation problems. Additionally, observation of the shape parameter
values from individually fit GEV distributions demonstrate the shape
parameter does not appear to change with duration in as structured a
way as either the median flood (𝜂) or the change in slope of the growth
curves (where this change is described in part by 𝛽).

The Double-Delta model is a promising avenue for improved mod-
eling of short-duration events and events with long return periods
under a QDF modeling framework. We identify several areas of future
research. Extending the analysis presented in this paper to include
more gauging stations–including stations in diverse climate regions–is a
priority; while the catchments used in this study are diverse for Nordic
catchments, they are not diverse globally. Additionally, of particular

interest is how this extended QDF model will function in a regional
setting; many of the design flood values needed for operational use in
Norway are at ungauged sites or at sites with incomplete or very short
datasets.

Furthermore, it could be beneficial to include a more explicit con-
sideration of flood generating processes within QDF methods; seasonal
needs in reservoir management, for example, can mean that a varying
flood storage capacity needs to be defined within a year. Methods exist
to explicitly account for generating processes in FFA (see, for example,
the mixture models in Fischer, 2018) but are not directly suited to the
aggregation-based methodology underlying QDF. A potential avenue
forward could be definition of seasonal blocks as in Ulrich et al. (2021),
who developed IDF curves with monthly varying parameters.

Additionally, a potential area of improvement for predicting short
durations when the majority of the data is at a daily (or longer) time
resolution is to allow the QDF models to take data where the length
of the data record varies by duration, such that some information on
short durations can be included even if the data for these durations
is relatively scant. Finally, non-stationarity due to climate change will
be an important future area of research for QDF models. While this is
outside the scope of this study, we identify a few references that could
serve as an example for future research. Nonstationarity is addressed for
regional QDF models in Cunderlik and Ouarda (2006) and for regional
FFA models in a Bayesian framework in Guo et al. (2022).

6. Conclusions

This paper proposes a multiscaling extension of the QDF model
of Javelle et al. (2002), where the magnitude of the index flood and
the slope of the growth curve may scale independently with duration.
In the original QDF model only the magnitude of the index flood
scales across durations (Javelle et al., 2002). A Bayesian inference
algorithm is developed where the original QDF model, the extended
QDF model, or a mixture of the two may be estimated. In a case
study comprising 12 study locations in Norway, we analyze how these
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three different QDF models capture the relationship between floods
of different duration. The results suggest it is advantageous to allow
the index flood and growth curve slope to scale independently; that is,
it is advantageous to let the ratio between growth curves of different
duration be dependent on return period. This advantage is particularly
pronounced for situations where the focus is on long return periods
and/or short durations. Thus the extended QDF model is the most
promising avenue for capturing flood behavior at the shortest (sub-
daily) durations. In general, QDF models are generally able to predict
out-of-sample durations with a relatively moderate loss in accuracy
when compared to in-sample estimates for the same durations. How-
ever, we found the QDF framework to be highly sensitive to the choice
of durations used to fit the models. In particular, care should be taken
to fit the QDF models with the minimum number of durations needed
for the inference algorithm to converge. Generating too many sets of
dependent data to fit the model can produce results that are both biased
and overconfident. The extended QDF model has an improved ability
to simultaneously model a wider range of durations when compared to
the original QDF model.
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Appendix A. Shape parameter values for QDF and reference mod-
els

See Tables A.3 and A.4.

Appendix B. 𝜷 Parameter values for reference models

See Table B.5.

Appendix C. Mean absolute percent error for out-of-sample sub-
daily durations

See Table C.6.

Appendix D. Catchment properties for selected catchments

See Table D.7.

Table A.3
Posterior mean shape parameter values with 90% credible intervals for QDF model fit on durations (24, 36, 48, 60 h) and posterior mean shape parameter values for individually
fit GEV distributions. Stations are in order of catchment area.

Station Individually fit GEV QDF

Duration (h) Model type
1 12 24 36 48 60 DD MM J

Dyrdalsvatn 0.14 0.08 0.06 0.09 0.09 0.08 0.05 [-0.06, 0.17] 0.05 [−0.07, 0.17] 0.05 [−0.07, 0.17]
Gravå 0.18 0.12 0.10 0.07 0.06 0.05 0.04 [−0.07, 0.16] 0.04 [−0.06, 0.16] 0.04 [−0.06, 0.16]
Grosettjern 0.07 0.06 0.05 0.01 −0.01 −0.02 −0.04 [−0.11, 0.04] −0.04 [−0.1, 0.04] −0.03 [−0.1, 0.04]
Elgtjern 0.17 0.16 0.17 0.17 0.16 0.15 0.22 [0.1, 0.33] 0.22 [0.1, 0.33] 0.22 [0.1, 0.33]
Gryta 0.14 0.07 0.03 0 −0.02 −0.03 −0.07 [−0.16, 0.02] −0.07 [−0.16, 0.02] −0.07 [−0.16, 0.03]
Røykenes −0.02 −0.03 −0.05 −0.06 −0.07 −0.07 −0.13 [−0.2, −0.06] −0.13 [−0.19, −0.06] −0.13 [−0.19, −0.06]
Manndalen Bru 0.03 0.04 0.05 0.05 0.06 0.05 0.01 [−0.08, 0.12] 0.01 [−0.08, 0.12] 0.01 [−0.08, 0.11]
Øyungen 0.03 0.03 0.04 0.05 0.05 0.07 0.02 [−0.04, 0.10] 0.02 [−0.04, 0.10] 0.02 [−0.04, 0.10]
Sjodalsvatn 0.11 0.1 0.11 0.11 0.11 0.12 0.11 [0.01, 0.22] 0.11 [0.01, 0.23] 0.12 [0.01, 0.23]
Viksvatn −0.08 −0.08 −0.08 −0.09 −0.1 −0.11 −0.13 [−0.17, −0.08] −0.13 [−0.17, −0.08] −0.13 [−0.17, −0.08]
Hugdal Bru 0.02 0.05 0.05 0.09 0.09 0.09 0.05 [−0.04, 0.15] 0.05 [−0.04, 0.15] 0.05 [−0.04, 0.15]
Etna −0.04 −0.05 −0.06 −0.06 −0.07 −0.08 −0.11 [−0.16, −0.05] −0.11 [−0.16, −0.05] −0.11 [−0.16, −0.05]

Table A.4
Posterior mean shape parameter values with 90% credible intervals for QDF model fit on durations (1, 24, 48, 72 h) and posterior mean shape parameter values for individually
fit GEV distributions. Stations are in order of catchment area.

Station Individually fit GEV QDF

Duration (h) Model type
1 24 48 72 DD MM J

Dyrdalsvatn 0.14 0.06 0.09 0.06 0.06 [−0.05, 0.17] 0.06 [−0.04, 0.17] 0.06 [−0.04, 0.17]
Gravå 0.18 0.10 0.06 0.05 0.13 [0.03, 0.24] 0.14 [0.05, 0.26] 0.15 [0.03, 0.25]
Grosettjern 0.07 0.05 −0.01 −0.03 −0.01 [−0.09, 0.07] −0.01 [−0.08, 0.07] −0.01 [−0.08, 0.07]

(continued on next page)
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Table A.4 (continued).
Station Individually fit GEV QDF

Duration (h) Model type
1 24 48 72 DD MM J

Elgtjern 0.17 0.17 0.16 0.14 0.21 [0.10, 0.33] 0.21 [0.10, 0.32] 0.21 [0.10, 0.33]
Gryta 0.14 0.03 −0.02 −0.04 0.02 [−0.07, 0.11] 0.02 [−0.04, 0.12] 0.04 [−0.06, 0.11]
Røykenes −0.02 −0.05 −0.07 −0.07 −0.11 [−0.17, −0.04] −0.11 [−0.16, −0.04] −0.10 [−0.17, −0.04]
Manndalen Bru 0.03 0.05 0.06 0.04 0.003 [−0.09, 0.11] 0.002 [−0.09, 0.1] 0.002 [−0.09, 0.1]
Øyungen 0.03 0.04 0.05 0.08 0.02 [−0.04, 0.09] 0.02 [−0.05, 0.09] 0.02 [−0.05, 0.09]
Sjodalsvatn 0.11 0.11 0.11 0.12 0.12 [0.01, 0.22] 0.12 [0.01, 0.23] 0.12 [0.01, 0.22]
Viksvatn −0.08 −0.08 −0.10 −0.12 −0.13 [−0.17, −0.08] −0.12 [−0.17, −0.08] −0.12 [−0.17, −0.08]
Hugdal Bru 0.02 0.05 0.09 0.07 0.03 [−0.06, 0.13] 0.03 [−0.06, 0.13] 0.03 [−0.06, 0.13]
Etna −0.04 −0.06 −0.07 −0.07 −0.10 [−0.15, −0.04] −0.10 [−0.15, −0.04] −0.10 [−0.15, −0.04]

Table B.5
Posterior mean beta parameter values for individually fit GEV distributions. Stations are in order of
catchment area.

Station Individually fit GEV

Duration (h)
1 12 24 36 48 60 72

Dyrdalsvatn −1.56 −1.51 −1.4 −1.47 −1.5 −1.51 −1.55
Gravå −1.19 −1.37 −1.46 −1.5 −1.53 −1.53 −1.55
Grosettjern −1.22 −1.25 −1.28 −1.32 −1.34 −1.37 −1.37
Elgtjern −0.98 −1.00 −1.02 −1.06 −1.08 −1.09 −1.12
Gryta −0.92 −0.99 −1.07 −1.14 −1.18 −1.21 −1.25
Røykenes −1.28 −1.29 −1.31 −1.37 −1.44 −1.49 −1.55
Manndalen Bru −1.43 −1.47 −1.47 −1.50 −1.52 −1.51 −1.5
Øyungen −1.06 −1.07 −1.08 −1.10 −1.10 −1.11 −1.13
Sjodalsvatn −1.39 −1.39 −1.41 −1.42 −1.44 −1.47 −1.49
Viksvatn −1.59 −1.59 −1.60 −1.60 −1.61 −1.62 −1.63
Hugdal Bru −1.30 −1.38 −1.35 −1.37 −1.36 −1.34 −1.31
Etna −1.10 −1.11 −1.13 −1.13 −1.14 −1.15 −1.15

Table C.6
Mean absolute percent error (MAPE) for return levels at the 100 and 1000 year return periods. This is the table version of Fig. 9. The MAPE is calculated in regard to individually
fit GEV distributions (see Section 3.4 for details). Here ‘‘MM" denotes the mixture model. Stations are in order of catchment area.

Station Model type

DD MM J

Duration = 1 h Duration = 12 h Duration = 1 h Duration = 12 h Duration = 1 h Duration = 12 h

Return period (years) Return period (years) Return period (years) Return period (years) Return period (years) Return period (years)
100 1000 100 1000 100 1000 100 1000 100 1000 100 1000

Dyrdalsvatn 3.1 5.1 0.3 2.5 7.3 16.0 6.7 10.0 9.9 19.0 8.4 12.0
Gravå 49.0 58.0 25.0 33.0 51.0 61.0 27.0 35.0 51.0 61.0 27.0 35.0
Grosettjern 16.0 25.0 16.0 24.0 19.0 28.0 18.0 27.0 20.0 29.0 19.0 27.0
Elgtjern 10.0 20.0 7.6 18.0 2.0 5.5 0.2 8.7 4.5 2.7 1.8 6.9
Gryta 34.0 49.0 24.0 36.0 37.0 52.0 26.0 38.0 39.0 53.0 27.0 39.0
Røykenes 8.1 0.4 8.0 15.0 3.4 5.7 11.0 18.0 0.7 8.5 12.0 20.0
Manndalen Bru 7.5 9.8 7.0 10.0 11.0 14.0 9.8 13.0 12.0 15.0 10.0 13.0
Øyungen 6.4 6.0 0.4 1.2 2.0 1.1 3.3 4.4 0.9 0.0 4.0 5.2
Sjodalsvatn 2.6 3.3 0.5 1.2 1.6 1.1 2.4 1.9 1.6 1.0 2.4 1.7
Viksvatn 2.9 5.7 3.5 6.4 4.3 7.2 4.6 7.4 4.4 7.3 4.6 7.5
Hugdal Bru 14.0 11.0 6.3 5.5 17.0 15.0 9.1 8.6 18.0 16.0 9.5 9.1
Etna 7.6 13.0 6.4 11.0 10.0 16.0 8.3 13.0 10.0 16.0 8.4 13.0

Table D.7
Catchment area, median flood, record length, and fraction of rain for the 12 selected catchments used in this study.

Station name Catchment area
(km2)

Median flood
(m3/s)

Record length
(years)

FGP
(fraction of rain)

Dyrdalsvatn 3.31 7.52 32 0.93
Gravå 6.31 2.27 43 0.69
Grosettjern 6.6 1.54 53 0.32
Elgtjern 6.63 1.76 28 0.69
Gryta 7.03 1.99 54 0.59
Røykenes 50.09 65.84 39 0.95
Manndalen Bru 200.48 61.22 42 0.35
Øyungen 239.07 165.08 42 0.76
Sjodalsvatn 479.97 118.31 36 0.44
Viksvatn 508.13 174.01 118 0.76
Hugdal Bru 546.17 172.84 40 0.44
Etna 570.17 104.33 102 0.35
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Fig. E.12. In-sample return level plots for stations Dyrdalsvatn, Gravå, and Grosettjern.

Appendix E. In-sample return level plots

See Figs. E.12–E.15.

Appendix F. Out-of-sample return level plots

See Figs. F.16–F.19.
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Fig. E.13. In-sample return level plots for stations Elgtjern, Gryta, and Røykenes.
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Fig. E.14. In-sample return level plots for stations Manndalen Bru, Øyungen, and Sjodalsvatn.
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Fig. E.15. In-sample return level plots for stations Viskvatn, Hugdal Bru, and Etna.
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Fig. F.16. Out-of-sample return level plots for stations Dyrdalsvatn, Gravå, and Grosettjern.
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Fig. F.17. Out-of-sample return level plots for stations Elgtjern, Gryta, and Røykenes.
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Fig. F.18. Out-of-sample return level plots for stations Manndalen Bru, Øyungen, and Sjodalsvatn.
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Fig. F.19. Out-of-sample return level plots for stations Viksvatn, Hugdal Bru, and Etna.
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