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Abstract. We compare the algebras of the quantum automorphism group of finite-dimensional
C∗-algebra B, which includes the quantum permutation group S+

N , where N = dimB. We
show that matrix amplification and crossed products by trace-preserving actions by a finite
Abelian group Γ lead to isomorphic ∗-algebras. This allows us to transfer various proper-
ties such as inner unitarity, Connes embeddability, and strong 1-boundedness between the
various algebras associated with these quantum groups.

1. Introduction

Given a finite dimensional C∗-algebra B equipped with a faithful state ψ, Wang con-
structed in [58] the quantum automorphism group Aut+(B,ψ) of the finite measured quan-
tum space (B,ψ). By construction, it is a C∗-algebraic compact quantum group whose
underlying Hopf ∗-algebra O(Aut+(B,ψ)) is defined to be the universal ∗-algebra generated
by the coefficients of a ∗-coaction on B that leaves ψ invariant. In particular, when we con-
sider the “Plancherel” trace ψ on B, the canonical tracial state invariant under the classical
automorphism group Aut(B), then Aut+(B) = Aut(B,ψ) has a close analogy with Aut(B),
as the Abelianization of O(Aut+(B)) becomes the function algebra O(Aut(B)).

There are two extreme choices for B: one one hand is the abelian B = CN , on the other is
the full matrix algebra B = Mn. In the former case, Aut+(CN) is the quantum permutation
group S+

N that has a close analogy to the permutation group SN and is accessible via various
combinatorial methods. In the latter case, Aut+(Mn) can be identified with the projective
version of the quantum orthogonal group O+

n [4], which, besides combinatorial methods, also
allows analogy with classical functional analysis on the orthogonal group On. This kind of
correspondence is what we are going to exploit in this work.

In the framework of operator algebraic quantum groups, operator algebraic completions of
O(Aut+(B)) are known to have various interesting properties. In general, if dimB ≥ 5, it is
known that the reduced C∗-algebra Cr(Aut+(B)) is non-nuclear, exact, simple, with unique
trace, and possesses the complete metric approximation property, while the von Neumann
algebra L∞(Aut+(B)) is a non-injective, weakly amenable, strongly solid II1-factor with
the Haagerup property [17,29,37,40]. Moreover, O(S+

N) is residually finite-dimensional and
consequently L∞(S+

N) has the Connes Embedding Property (CEP), for all N [18].
The above results lead to a question: How much do the operator algebras Cr(Aut+(B))

and L∞(Aut+(B)) actually depend on the initial data B? One key tool common in the
above works is the C∗-tensor category of finite dimensional unitary representations of these
quantum groups, and induction of algebraic properties through monoidal equivalence. In
fact, the monoidal equivalence classes of the quantum groups Aut+(B) are classified by
the dimension of B [30], hence one may hope that the operator algebras Cr(Aut+(B)) or
L∞(Aut+(B)) may be closely related (possibly even isomorphic) as we range over B with
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dimB fixed. In particular, it is natural to ask if monoidal equivalence can be used to transfer
the CEP from L∞(S+

N) to all L∞(Aut+(B)).
At the C∗-algebraic level, even when dimB is fixed, Voigt [57] showed that Cr(Aut+(B))

do depend on the choice of fiber functors realizing these quantum groups out of the common
category Rep(Aut+(B)) = Rep(S+

N). Nonetheless, it is an interesting question to ask to what
degree the algebras above differ, on either the C∗-algebraic or the von Neumann algebraic
level.

Our main result is that, up to crossed products by finite Abelian groups and matrix am-
plification, there are some concrete relations between the algebras of these quantum groups.

Theorem A (Corollary 3.6, Theorem 6.5). Let N = dimB ≥ 4. Then there is a fi-
nite Abelian group Γ, a trace-preserving action α of Γ on O(Aut+(B)), and another trace-
preserving action β of Γ on the crossed product O(Aut+(B)) oα Γ, such that we have an
isomorphism of tracial ∗-algebras

O(Aut+(B))oα Γoβ Γ ∼= Mk ⊗O(S+
N).

We prove two versions of this result for different values of k = ord(Γ). Let us write
B =

⊕m
r=1 Mnr , and set d =

∏m
r=1 nr. Using cocycle deformation of Hopf algebras and

coactions, we obtain the above result for k = d4 from a 2-cocycle induced from a finite
subgroup of SN . However, we also show that the more efficient value k = d2 is achievable
using techniques inspired by non-local games in quantum information theory, in particular
a certain quantum colouring game of the so-called quantum complete graph KB [21].

Both of these ideas lead to the construction of certain concrete finite dimensional rep-
resentations of the linking algebra O(Aut+(B), S+

N) associated to the monoidal equivalence
between Aut+(B) and S+

N . Combining this with the standard induction argument, we can
transfer finite dimensional approximation results on S+

N [18] to all quantum automorphism
groups.

Theorem B (Corollary 4.6). Let B be a finite dimensional C∗-algebra and ψ be a faithful
tracial state on B. Then the Hopf ∗-algebra O(Aut+(B,ψ)) is residually finite-dimensional
and the von Neumann algebra L∞(Aut+(B)) has the CEP.

In fact, an even stronger form of residual finite-dimensionality holds for O(Aut+(B)).
Recall that the Hopf ∗-algebra O(G) of a compact quantum group is called inner unitary if
it admits an inner faithful ∗-homomorphism into some Mk [6,18]. Inner unitarity of O(G) is
a quantum generalization of the property of discrete group Γ admitting an embedding into
a unitary group Uk ⊆ Mk. Indeed, if O(G) = CΓ for some discrete group Γ, then O(G) is
inner unitary if and only if an embedding Γ ↪→ Uk exists. In general, O(G) is residually
finite-dimensional if it is inner unitary.

Theorem C (Proposition 4.8, Theorem 4.9). Let B be a finite-dimensional C∗-algebra.
Assume that dim(B) lies outside the range [6, 9]. Then O(Aut+(B)) is inner unitary. The
same conclusion also holds for the Hopf ∗-algebras O(O+

n ) for n 6= 3, where O+
n is the free

orthogonal quantum group.

Strong 1-boundedness is an important free probabilistic property of tracial von Neumann
algebras M introduced by Jung [42], that is computable from any finite generating set
U ⊂ M and is a strengthened version of δ0(U) ≤ 1 for Voiculescu’s modified free entropy
dimension [55]. In particular, this is an obstruction to isomorphism with another tracial von
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Neumann algebra with a generating set satisfying δ0(U) > 1, such as an interpolated free
group factor.

While δ0(U) could be difficult to compute in general, a useful estimate is given in terms of
`2-Betti numbers. Generalizing an estimate for the von Neumann algebras of discrete groups
[27,54], when G is a compact matrix quantum group and U is the standard set of generators
coming from the fundamental representation, one has [19]

(1.1) 1 ≤ δ0(U) ≤ 1− β(2)
0 (Ĝ) + β

(2)
1 (Ĝ),

where β
(2)
k (Ĝ) are the `2-Betti numbers of the discrete dual of G defined by Kyed [44].

For our quantum groups of interest, we have the vanishing of β
(2)
0 (Ĝ) and β

(2)
1 (Ĝ) [9,

11, 45], hence the standard generators satisfy δ0(U) = 1. To upgrade this to the strong 1-
boundedness, one needs to work with more precise algebraic relations, and estimate regularity
and rank of the induced operators [43, 49]. This was successfully carried out by the first
author and Vergnioux for O+

n [22], and by the second author for the quantum orthogonal
group O+

J associated with the symplectic matrix [32].
Based on these results and our main results, we can now prove the strong 1-boundedness

of Aut+(B) for some cases, as follows.

Theorem D (Corollary 5.8). Let B be a C∗-algebra such that dimB = n2 with n ≥ 3. Then
L∞(Aut+(B)) is a strongly 1-bounded II1-factor.

The starting point is the index 2 inclusion L∞(Aut+(Mn)) ⊂ L∞(O+
n ). Moreover, Theorem

A gives rise to finite index embeddings into the common overfactors of the von Neumann
algebras L∞(Aut+(B)) with fixed dimB. Thus, the remaining task is to obtain permanence
of strong 1-boundedness under such relations.

In general, given a finite index inclusions of II1-factors N ⊂M, one expects

δ0(X)− 1 = [M : N ] (δ0(Y )− 1)

for generating sets X for N and Y for M as an analogue of the Nielsen–Schreier Theorem
for inclusions of free groups. This theorem states that a finite index subgroup H of a free
group G of rank r(G) must also be free, and moreover that the rank r(H) of the subgroup
satisfies

r(H)− 1 = [G : H] (r(G)− 1) .

This was investigated by Jung in [41], where he proved, among other things, that this equality
holds ifM = N ⊗Mk for some k and Y is X together with the matrix units, but in general
only weaker inequalities were established.

Notice that Schreier’s formula above suggests that having free entropy dimension equal
to 1 is preserved by finite index inclusions. We can prove this statement under the stronger
assumption of strong 1-boundedness. The following result was also independently obtained
by Srivatsav Kunnawalkam Elayavalli (private communication).

Theorem E (Theorem 5.5). Assume that N ⊂ M is a unital finite index inclusion of
II1-factors. Then N is strongly 1-bounded if and only if M is strongly 1-bounded.

As a consequence of Theorems A and E, we can prove that an infinite family of quantum
automorphism groups give rise to new examples of strongly 1-bounded II1-factors which have
neither Property Γ nor Property (T).
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We also briefly consider the free unitary quantum groups U+
n . The estimate (1.1) becomes

1 ≤ δ0(U) ≤ 2 for this case [13], and the isomorphism L∞(U+
2 ) ∼= LF2 [3] suggests that

equality with the upper bound is likely to happen. While we cannot quite verify this, we can
show that L∞(U+

n ) is not strongly 1-bounded (Proposition 5.13). In particular, this implies
the non-isomorphism result L∞(U+

n ) � L∞(O+
m) for any n,m ≥ 2.

1.1. Outline of the Paper. In Section 2 we briefly review the necessary material on com-
pact quantum groups (in particular the quantum automorphism groups) and monoidal equiv-
alences between them.

We give the first proof of Theorem A using cocycle deformation in Section 3. Section
4 contains transference results for monoidal equivalence when the linking algebra admits a
finite dimensional representation and applies these results to the embeddings in Theorem
A. This establishes Theorem B and Theorem C. We continue with applications of Theorem
A to strong 1-boundedness in Section 5. We recall the definition of strong 1-boundedness
and some results from the theory of subfactors before establishing Theorem E, the main
technical result of the section, and proceed to derive Theorem D. Additionally we discuss
lack of strong 1-boundedness for the free unitary quantum groups.

In the final Section 6 we provide another proof of Theorem A using ideas from unitary
error bases and the theory of non-local games, which we first recall. This proof leads to
a more efficient version of Theorem A, with a smaller acting group and lower dimensional
matrix algebras.
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and Yamashita were partially supported by the NFR funded project 300837 “Quantum
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The authors also thank Srivatsav Kunnawalkam Elayavalli for useful insights on strongly
1-bounded von Neumann algebras.

2. Preliminaries

2.1. Compact Quantum Groups. For the basic theory of compact quantum groups and
their representation categories, we refer to the book [47].

Definition 2.1. A compact quantum group G consists of a unital Hopf ∗-algebra O(G) with
coproduct ∆: O(G)→ O(G)⊗O(G) together with a Haar functional, which is a linear map
h : O(G)→ C satisfying the following properties:

• h is invariant in the sense that (ι⊗ h)∆(x) = h(x)1 = (h⊗ ι)∆(x) for all x ∈ O(G);
• h is normalized such that h(1) = 1;
• For any x ∈ O(G) it holds that h(x∗x) ≥ 0.

We can associate two reduced operator algebras to G using the Haar functional in the
obvious way. The reduced C∗-algebra Cr(G) is the C∗-algebra completion of O(G) relative to
the GNS representation induced by the Haar functional h, and the von Neumann algebra of
G, L∞(G), is the von Neumann algebra Cr(G)′′ generated by Cr(G). If the Haar functional
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is a trace, we say that G is of Kac type. Note that in this case L∞(G) is a finite von Neumann
algebra, and we consider (the canonical normal extension of) h to be the canonical trace on
L∞(G).

A unitary representation of G on a finite dimensional Hilbert space H is a unitary corep-
resentation of O(G) on H. It is well-known that the category of finite dimensional unitary
representations of G, denoted Rep(G), is a rigid C∗-tensor category. A right action of G is
a right coaction of O(G) on some ∗-algebra A. More precisely, this is a ∗-homomorphism
δ : A → A ⊗ O(G) such that (ι ⊗∆)δ = (δ ⊗ ι)δ and (ι ⊗ ε)δ = ι. Left actions are defined
similarly. Given such an action of G on A, we can define the algebra of invariant elements
AG as consisting of those a ∈ A that satisfy δ(a) = a ⊗ 1. If it happens that AG = C1, we
say that the action is ergodic. The action is called free if the linear map A⊗A→ A⊗O(G)
given by a⊗ b 7→ δ(a)(b⊗ 1) is invertible.

There are many interesting examples of compact quantum groups. To close this section
we define the free unitary and free orthogonal quantum groups, and in the next section we
discuss in detail the family of examples known as the quantum automorphism groups.

Definition 2.2 ([2,53]). Let n ≥ 2 be an integer and choose complex invertible matrices Q
and F of size n such that Q is positive and FF ∈ RIn. We define the following two universal
∗-algebras:

O(U+
Q ) = C

〈
vij | 1 ≤ i, j ≤ n, V = (vij)ij and QV Q−1 are unitary

〉
O(O+

F ) = C
〈
uij | 1 ≤ i, j ≤ n, U = (uij)ij is unitary and U = FUF−1

〉
.

The Hopf ∗-algebra structure is then defined by

∆(wij) =
n∑
k=1

wik ⊗ wkj, (S ⊗ id)W = W
∗
, (ε⊗ id)W = 1n.

where W = [wij] ∈ {V, U}. The resulting compact quantum groups are called the free
unitary quantum group U+

Q and the free orthogonal quantum group O+
F , respectively.

In terms of representation theory, both U+
Q and O+

F can be interpreted as the universal
compact quantum groups given by defining unitary irreducible representations V and U
respectively, with prescribed dual representations. The matrices Q and F enter the picture
to correct for the fact that the contragredient representation to a unitary representation is
not automatically unitary in the case of quantum groups. Instead, it is in general necessary
to correct by conjugating by some matrix to obtain the dual representation. Then U+

Q is
the universal compact quantum group for which that conjugating matrix is precisely Q,
and the same statement for F holds for O+

F with the additional demand that its defining
representation is self-dual.

If one makes the choice Q = F = In, it is customary to write U+
In

= U+
n and O+

In
= O+

n .
O+
n and U+

n are always of Kac type. Moreover, their associated von Neumann algebras are
II1-factors and have been extensively studied (see for instance [16,24,29,35,36,40,52]). The
only other choice (up to isomorphism) of F that leads to a Kac type compact quantum
group is O+

J2m
, where J2m is the standard symplectic matrix of size 2m. We will denote

O+
J2m

= O+J
2m , as it can be realised as a graded twist of O+

2m [14].

2.2. Quantum Automorphism Groups. Following Wang, we consider the quantum au-
tomorphism group of a finite measured quantum space (B,ψ), as follows.
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Definition 2.3 ([58]). Let B be a finite-dimensional C∗-algebra B equipped with a faithful
state ψ. The quantum automorphism group Aut+(B,ψ) is the compact quantum group
with Hopf ∗-algebra O(Aut+(B,ψ)) given by the universal unital ∗-algebra generated by the
coefficients of a coaction

ρ : B → O(Aut+(B,ψ))⊗B,
satisfying the ψ-invariance condition

(id⊗ ψ)ρ(x) = ψ(x)1 (x ∈ B).

By coefficients of the coaction ρ we mean the set {(ω ⊗ id)ρ(x) : x ∈ B, ω ∈ B∗}
The Hopf ∗-algebra structure of O(Aut+(B,ψ)) is uniquely determined by the above

requirements. For example, the coproduct map

∆: O(Aut+(B,ψ))→ O(Aut+(B,ψ))⊗O(Aut+(B,ψ))

can be computed from the coaction identity

(ρ⊗ id)ρ = (id⊗∆)ρ.

The quantum group Aut+(B,ψ) can be regarded as a universal quantum analogue of
the compact group of ∗-automorphisms Aut(B) of B. More precisely, we call an automor-
phism α ∈ Aut(B) ψ-preserving if ψ ◦ α = ψ. Denoting the subgroup of all ψ-preserving
automorphisms by Aut(B,ψ) < Aut(B), one sees that the algebra of coordinate functions
O(Aut(B,ψ)) is precisely the Abelianization of O(Aut+(B,ψ)).

Definition 2.4. Let B be a finite-dimensional C∗-algebra, and δ > 0. A δ-form on B is a
state on B such that m◦m∗ = δid, where m∗ : B → B⊗B is the adjoint of the multiplication
map m : B ⊗B → B with respect to the Hermitian inner products associated with ψ.

It suffices to understand the quantum automorphism groups Aut+(B,ψ) with ψ a δ-form
due to the following result, a proof of which can be found in [29].

Proposition 2.5. Let B be a finite-dimensional C∗-algebra B equipped with a faithful state
ψ. Fix an isomorphism B =

⊕m
r=1 Br corresponding to the coarsest direct sum decomposition

with the property that every Br is a C∗-algebra and every restriction ψ|Br becomes a δr-form
for some δr. Denote by ψr the state obtained on Br by normalizing the restriction ψ|Br .
Then we have an isomorphism

O(Aut+(B,ψ)) ∼= ∗mr=1O(Aut+(Br, ψr))(2.1)

of Hopf ∗-algebras.

Example 2.6. Let B be a finite-dimensional C∗-algebra, and fix an isomorphism B =⊕m
r=1Mnr . Its Plancherel trace is the tracial state defined by

ψ(A) =
m∑
r=1

nr
dim(B)

Trnr(Ar) (A =
m⊕
r=1

Ar ∈ B, Ar ∈Mnr).

This is the unique tracial δ-form on B, and we have δ =
√

dimB.

Since the Plancherel trace ψ is always an invariant state for the action of Aut(B) on B, we
have Aut(B,ψ) = Aut(B), so Aut+(B,ψ) can truly be regarded as the quantum analogue of
Aut(B). With this in mind, we shall often suppress the ψ-dependence in our notation and
simply write Aut+(B) = Aut+(B,ψ) for the remainder of the paper, understanding that the
Plancherel trace is used unless specified otherwise.
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2.3. Monoidal equivalence and the linking algebra. Let G1 and G2 be monoidally
equivalent compact quantum groups, that is, suppose that there is a unitary monoidal equiv-
alence of C∗-tensor categories F : Rep(G1)→ Rep(G2). Such a situation is captured by the
associated linking algebra, or Hopf–Galois object [10, 12], which we denote by O(G1, G2).

This is a unital ∗-algebra equipped with a pair of commuting free ergodic coactions

δ1 : O(G1, G2)→ O(G1)⊗O(G1, G2), δ2 : O(G1, G2)→ O(G1, G2)⊗O(G2).

We denote by ω12 : O(G1, G2)→ C the unique faithful invariant state, which is characterized
by

ω12(x)1 = (h1 ⊗ id)δ1(x) = (id⊗ h2)δ2(x) (x ∈ O(G1, G2)).

More concretely, O(G1, G2) has a linear basis of the form (xπij)π,i,j where π runs over Irr(G1),
i runs over an index set for an orthonormal basis of Hπ, and j runs over such a set for HF (π),
with the convention xπij = 1 when π is the trivial representation. Note that each (possibly
rectangular) matrix Xπ = [xπij] ∈ Md(π),d(F (π)) ⊗O(G1, G2) is unitary. Then we can present
the above maps as

δ1(xπij) =

dim(π)∑
k=1

uπik ⊗ xπkj, δ2(xπij) =

dim(F (π))∑
k=1

xπik ⊗ u
F (π)
kj , ω12(xπij) = δ1,π.

Here, the uπij are the matrix coefficients of the representation π. As the δi are ∗-homomorphisms,
the algebra structure is also determined by this.

Exchanging the role of G1 and G2, we get another linking algebra O(G2, G1) and invariant
state ω21. There is a canonical isomorphism O(G2, G1) ∼= O(G1, G2)op given by yπji 7→ (xπij)

∗,
where the matrix coefficients yπji are defined analogously to xπij. Moreover, there exists a
unital ∗-homomorphism θ1 : O(G1)→ O(G1, G2)⊗O(G2, G1) defined on matrix elements of
unitary representations uπij ∈ O(G1) by

θ1(uπij) =

dim(F (π))∑
k=1

xπik ⊗ yπkj.

Note that θ1 is state preserving, in the sense that

h1(x)1 = (ω12 ⊗ id)θ1(x) = (id⊗ ω21)θ1(x) (x ∈ O(G1)).

Let G be a compact quantum group and denote the dual ∗-algebra of O(G) by U(G) (the
∗-structure is defined ω∗(a) = ω(S(a)∗) for ω ∈ U(G) and a ∈ O(G)). We write U(G × G)

for the dual of O(G)⊗O(G). The “coproduct” map ∆̂ : U(G)→ U(G×G) is defined to be
dual of the product map O(G)⊗O(G)→ O(G). See [47] for more details. In the following,
we are mostly interested in monoidal equivalences given by unitary dual 2-cocycles in the
following sense.

Definition 2.7. A unitary dual 2-cocycle for G is given by a unitary element σ ∈ U(G×G)
such that

σ1,2σ12,3 = σ2,3σ1,23.

Here, σ12,3 denotes (∆̂⊗ id)(σ) ∈ U(G×G×G). Without losing generality we can assume
the normalization condition

(ε⊗ id)(σ) = 1 = (id⊗ ε)(σ)



8 MICHAEL BRANNAN, FLORIS ELZINGA, SAMUEL J. HARRIS, AND MAKOTO YAMASHITA

for the trivial representation ε : U(G) → C, which we always do. Alternatively, we can
interpret σ as a bilinear form O(G)×O(G)→ C satisfying

σ(a(1), a
′
(1))σ(a(2)a

′
(2), a

′′) = σ(a′(1), a
′′
(1))σ(a, a′(2)a

′′
(2)), σ(1, a) = ε(a) = σ(a, 1),

and unitarity for the convolution algebra structure.
Given such σ and a left O(G)-comodule ∗-algebra B, we can twist the product of B to a

new associative product

b1 ·σ b2 = σ(b1
(1), b

2
(1))b

1
(2)b

2
(2),

where we denote the coaction as

B → O(G)⊗B, b 7→ b(1) ⊗ b(2).

With the new involution (see, e.g., [15]) given by

b] = σ(S−1(b(2)), b(1))b
∗
(3) = σ∗(b∗(2), S

−1(b∗(1)))b
∗
(3),

we obtain a ∗-algebra (B, ·σ , ]), which we denote by Bσ . This cocycle deformation is compat-
ible with C∗-structures: if B is a C∗-algebra and B → B ⊗Cu(G) is a C∗-algebraic coaction
and σ is as above, then a similar construction can be carried through, resulting in a C∗-
algebra σB. See [48] for details. In the particular case of a finite-dimensional C∗-algebra B
of interest to us, the resulting algebraic construction and C∗-algebraic construction coincide.
We also note that if ψ is a G-invariant state on B, then ψ remains a state when viewed as
a functional on σB.

Similarly, when B has a right coaction of O(G), we can define a new associative product
by

f 1 ·σ−1 f 2 = σ−1(f 1
(2), f

2
(2))f

1
(1)f

2
(1),

and a compatible ∗-structure. We denote this ∗-algebra by Bσ−1 .

Definition 2.8. [cf. [31]] With G and σ as above, we denote by O(G)σ the Hopf ∗-algebra
with the underlying coalgebraO(G) and algebra O(G)σ σ−1 . We also writeGσ for the compact
quantum group represented by O(G)σ.

Recall that Gσ can be directly characterized in terms of the structure of U(Gσ): as an
algebra it is the same as U(G), but the coproduct is given by ∆σ(T ) = σ∆(T )σ−1. There is
a unitary monoidal equivalence F : Rep(G)→ Rep(Gσ), whose underlying C∗-functor is the
identity functor and the tensor transform F (π)⊗ F (π′)→ F (π ⊗ π′) is given by the action
of (π ⊗ π′)(σ−1) on Hπ ⊗Hπ′ .

Remark 2.9. Up to isomorphism, any unitary monoidal equivalence F : Rep(G)→ Rep(G′)
satisfying dimHπ = dimHF (π) is of this form. See [12, Section 4]

The linking algebra O(Gσ, G) is given by O(G)σ . More generally, if B is any unital ∗-
algebra and B → O(G) ⊗ B is a coaction, then this same linear map defines a coaction
Bσ → O(Gσ)⊗ Bσ . See [12, Proposition 4.11] and [31].

Remark 2.10. When B is a finite dimensional C∗-algebra endowed with a left O(G)-comodule
structure and a G-invariant state ψ, the twisting Bσ comes from the above monoidal equiv-
alence F up to an isomorphism. To be more precise, let R be the unitary antipode on O(G).
Then the opposite algebra Bop = {bop | b ∈ B} admits a right O(G)-comodule ∗-algebra
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structure given by bop 7→ bop
(2)⊗R(b(1)). Together with the GNS inner product for the invari-

ant state ψ′(bop) = ψ(b), we get an object of Rep(G) represented by Bop. The corresponding
Rep(Gσ)-algebra has the product

b1op ·σ b2op = σ−1(R(b1
(1)), R(b2

(2)))(b
2op
(2) b

1op
(2) )op (b1, b2 ∈ B).

In other words, the corresponding left O(G)-comodule algebra is B with the twisted product

b1 ·′σ b2 = σ−1(R(b2
(1)), R(b1

(2)))b
1
(2)b

2
(2) = (R̂⊗ R̂)(σ−1)21(b1

(1), b
2
(1))b

1
(2)b

2
(2)

for the unitary antipode R̂ of U(G). By [28, Proposition 5.3], σ and (R̂ ⊗ R̂)(σ−1)21 are
cohomologous, hence the C∗-algebra (B, ·′σ ) is isomorphic to Bσ .

Turning to the quantum automorphism groups, they obey the same fusion rules as SO(3) =
Aut(M2). In fact, these compact quantum groups have the following rigidity properties.

Theorem 2.11 ([4,46]). The compact quantum groups Aut+(B,ψ) for a finite-dimensional
C∗-algebra B and a δ-form ψ have the same fusion rules as SO(3). Conversely, when G
is a compact quantum group with the same fusion rules as SO(3), there is such B and ψ
satisfying G ∼= Aut+(B,ψ).

Note that if G compact quantum group that has the fusion rules of SO(3), G = Aut+(B,ψ)
where B is, as a representation of G, represented by the direct sum of the trivial represen-
tation and the one corresponding to the irreducible 3-dimensional representation of SO(3).

Theorem 2.12 ([30]). Let (Bi, ψi) be finite-dimensional C∗-algebras with δi-forms ψi, for
i = 1, 2. Then the compact quantum groups Aut+(Bi, ψi) are monoidally equivalent if and
only if δ1 = δ2.

In this case, the linking algebra can be characterized as the universal ∗-algebra generated
by the coefficients of a unital ∗-homomorphism

ρ : B2 → B1 ⊗O(Aut+(B1, ψ1),Aut+(B2, ψ2))

satisfying the ψ2-ψ1-invariance condition

(ψ1 ⊗ 1)ρ(x) = ψ2(x)1 (x ∈ B2).

In fact, the nontriviality of this universal algebra characterizes the existence of monoidal
equivalence between Aut+(Bi, ψi). Note that if ψi are the respective Plancherel traces, we
have δi =

√
dimBi, and therefore the corresponding quantum groups Aut+(Bi) (of interest

to us in this paper) are monoidally equivalent if and only if dimB1 = dimB2.

3. Isomorphisms from 2-cocycle Deformations

In this section we establish our first main result of the paper–that every quantum auto-
morphism group Aut+(B) arises as a cocycle twist of a quantum permutation group S+

N .
The special case when B = Mn was established in [7]. The general case is a straightforward
generalization of the arguments there. We then apply this structure result to establish our
first crossed product isomorphisms.

Given natural numbers n1, . . . , nm, put Yr = {0 ≤ i < nr}, Xr = Yr × Yr, and X =
X1

∐
· · ·
∐
Xm. We also write N = |X| =

∑
r n

2
r. Note that each Xr has a free transitive

action of Γr = Znr × Znr . This induces an embedding

Γ = Γ1 × · · · × Γm < Sym(X) ∼= SN .
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Recall that Γ̂t has a T-valued nondegenerate 2-cocycle: up to a choice of identification Γ̂t ∼= Γt
and difference by coboundary, it can be written as

ω′t([j1, j2], [k1, k2]) = exp

(
2πi

nt
j1k2

)
.

Let ωt be a 2-cocycle cohomologous to ω′t satisfying ωt(h, h
−1) = 1. Concretely, we can

choose ψ(h) ∈ T such that ψ(h)−2 = ω′t(h, h
−1), and take ωt = ω′t∂ψ.

Then the product ω1×· · ·×ωm is a (nondegenerate) 2-cocycle on Γ̂, which can be presented
as a convolution invertible map σ0 : O(Γ)×O(Γ)→ C, with the additional normalization

(3.1) σ0(g, g−1) = 1 (g ∈ Γ).

Composing the restriction maps O(S+
N) → O(SN) → O(Γ), we obtain a convolution

invertible map

σ : O(S+
N)⊗O(S+

N)→ C.
This shall be the cocycle of interest in the sequel.

Theorem 3.1. We have O(S+
N)σ ∼= O(Aut+(

⊕m
i=1Mnr)).

Proof. The corepresentation category of O(S+
N)σ is monoidally equivalent to RepS+

N , and
the general classification result of such compact quantum groups, discussed in the previous
section, implies

O(S+
N)σ ∼= O(Aut+(B,ψ))

for some finite-dimensional C∗-algebra B and a δ-form ψ, such that δ2 = N . Moreover, the
cocycle twisting does not change the vector spaces underlying the representations, hence we
have B = C(X) as a vector space. We thus have δ2 = N = dimB, hence ψ must be the
Plancherel trace on B.

By Remark 2.10, the product map of B is given by the composition of the action of σ
and the product map of C(X), which is the product map of σC(X). That is, B = C(X)σ .
Now, by the product structure of σ0, each block Xr of X gives a copy of Mnr , while different
blocks remain orthogonal. This shows that

B ∼=
m⊕
r=1

Mnr ,

and we obtain the claim. �

Remark 3.2. It was kindly pointed out to us by an anonymous referee that the above theorem
actually admits quite a broad generalization, as follows. We thank the referee for allowing
us to include this result and for conveying the idea of the proof.

Theorem 3.3. Let (B,ψ) be finite dimensional C∗-algebra equipped with a δ-form ψ, and let
σ be a unitary 2-cocycle for Aut+(B,ψ). Then Aut+(B,ψ)σ ∼= Aut+(σB,ψ) canonically.

Proof. Let G = Aut+(B,ψ), and form σB and Gσ as described in Section 2. Recall that

σB = B and O(Gσ) = O(G) as comodules and coalgebras respectively. Moreover, the map

σB → σB ⊗ O(Gσ) is a ψ-preserving coaction. Hence we obtain a surjective morphism of
Hopf ∗-algebras π : O(Aut+(σB,ψ)) → O(Gσ). That is, Gσ < Aut+(σB,ψ) as a quantum
subgroup. But since these two quantum groups have the same fusion rules, it follows that
kerπ = {0} and thus Gσ = Aut+(σB,ψ). �
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Corollary 3.4. In the above setting of Theorem 3.1, with B =
⊕m

r=1 Mnr , there are h-
preserving actions of Γ2 on O(S+

N) and O(Aut+(B)) such that

Cr(S+
N)o Γ2 ∼= Cr(Aut+(B))o Γ2,

intertwining the induced traces.

Proof. This is a consequence of the structure theory for the general 2-cocycle deformation
scheme (cf. [59, Proposition 9]), but let us elaborate on this for the reader’s convenience.

Let Λ be a finite commutative group, and Λ̂ its Pontryagin dual. An action of Λ on a C∗-
algebra A is the same thing as a grading A =

⊕
k∈Λ̂Ak by Λ̂, or a coaction α : A→ C∗(Λ̂)⊗A.

For k ∈ Λ̂, let us write α(k)(x) for the projection of x to Ak.

Now, let σ be a 2-cocycle on Λ̂, normalized as in (3.1). The deformed algebra Aσ is still

graded by Λ̂. Let us denote the corresponding coaction map Aσ → C∗(Λ̂)⊗ Aσ by ασ.
We claim that AoΛ is isomorphic to Aσ oΛ. The corollary follows from this by considering

the action of Λ = Γ2 on O(S+
N) obtained by combining left and right translations.

We identify Aσ with the algebra A′′ generated by λ
(σ)
k ⊗ a on `2(Λ̂) ⊗ A for k ∈ Λ̂ and

a ∈ Ak, where λ
(σ)
k is the regular σ-representation λ

(σ)
k δk′ = σ(k, k′)δkk′ . (Here (δk)k∈Λ̂ is an

orthonormal basis for `2(Λ̂)). Then the coaction ασ becomes α′σ : λ
(σ)
k ⊗ a 7→ λk ⊗ λ(σ)

k ⊗ a
on A′′. Thus, the crossed product

C(Λ̂)n A′′ ∼= Aσ o Λ

is represented by the C∗-algebra on the right Hilbert A-module `2(Λ̂)⊗2 ⊗ A generated by

(χg)1 for g ∈ Λ̂ and
∑

k λk ⊗ λ
(σ)
k ⊗ α(k)(x) for k ∈ Λ̂ and x ∈ A. (Here χg ∈ C(Λ̂) denotes

the characteristic function of {g}.)
Similarly, we obtain an algebra A′ ∼= A instead of A′′ by removing σ, and an analogous

spatial presentation of A o Λ ∼= C(Λ̂) n A′. Let V be the unitary operator δk ⊗ δk′ 7→
σ(k−1, k′)δk ⊗ δk′ on `2(Λ̂)⊗2. We show that Φ = AdV12 conjugates C(Λ̂)nA′′ to C(Λ̂)nA′.

If k ∈ Λ̂ and x ∈ A′′, the action of Φ(α′σ(x)(χg)1) on the vector δk ⊗ δk′ ⊗ b is given by∑
h

δg,kσ(k−1, k′)σ(h, k′)σ(k−1h−1, hk′)δhk ⊗ δhk′ ⊗ α(h)(x)b.

Using the cocycle identity and (3.1) for σ, we see that this is equal to∑
h

σ(h, g)δg,kδhk ⊗ δhk′ ⊗ α(h)(x)b.

This is equal to the action of∑
h

σ(h, g)(λh ⊗ λh ⊗ α(h)(x))(χg)1 =
∑
h

σ(h, g)α′(α(h)(x))(χg)1,

which is indeed in C(Λ̂)n A′. �

Remark 3.5. The above corollary also holds at the purely algebraic level, as

O(S+
N)o Γ2 ∼= O(Aut+(B))o Γ2.

This can be seen either by analyzing the proof, or by considering the induced coactions of
the coalgebras O(S+

N) ∼= O(Aut+(B)). Moreover, we also get isomorphisms

O(S+
N)o Γ2 ∼= O(Aut+(B), S+

N)o Γ2 ∼= O(S+
N ,Aut+(B))o Γ2,
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since O(Aut+(B), S+
N) = O(S+

N)σ and similarly for the opposite linking algebra.

By the Takesaki–Takai duality [51], we obtain the following.

Corollary 3.6. In the setting of Corollary 3.4, there is a trace-preserving action of Γ2 on
Cr(S+

N)o Γ2 such that

(Cr(S+
N)o Γ2)o Γ2 ∼= Cr(Aut+(B))⊗Md4 ,

where d =
∏

r nr =
√
|Γ|. Moreover, this isomorphism intertwines the natural traces on both

sides.

Another consequence of the crossed product isomorphism in Corollary 3.4 are the embed-
dings (see [5, Lemma 4.1])
(3.2)
O(Aut+(B)) ↪→Md2 ⊗O(S+

N)⊗Md2
∼= O(S+

N)⊗Md4 & O(S+
N) ↪→ O(Aut+(B))⊗Md4 .

and various parallels for the C∗-algebraic and von Neumann algebraic settings, which has
further implications for the structure of the associated algebras Aut+(B) as we will see in
the next section.

In Section 6, we improve on the above and give an isomorphism between the iterated
crossed product by Γ and amplification by Md2 .

4. Monoidal Equivalence and Matrix Models

We now consider applications of the above crossed product isomorphism results to the
study of various external approximation properties for the associated quantum group alge-
bras, including the Connes Embedding property, residual finite-dimensionality, and inner
unitarity. We begin by working in a slightly more general framework and consider how
these approximation properties can be transferred between monoidally equivalent quantum
groups.

Definition 4.1 ([18]). A unital ∗-algebra A is said to be residually finite-dimensional, or
RFD, if there is an injective ∗-homomorphism

A →
∏
i∈I

Mdi

for some index set I and a family of positive integers (di)i∈I .

We consider this property for the ∗-algebras of the form O(G) for some compact quantum
group. When O(G) is RFD, then its Haar state h is an amenable trace and the quantum
group von Neumann algebra L∞(G) has the Connes Embedding Property (CEP) [8]. Recall
that a finite von Neumann algebra (M, τ) has the CEP if and only if there exists a τ -
preserving embedding M ↪→ Rω, where Rω is an ultrapower of the hyperfinite II1-factor
R.

4.1. Transfer of finite approximations. The following theorem shows that under the
assumption of the existence of a non-zero finite-dimensional ∗-representation of the linking
algebra O(G1, G2) on a Hilbert space, then one can transfer many approximate finitary
representation-theoretic properties from one quantum group to another.
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Theorem 4.2. Let G1 and G2 be monoidally equivalent compact quantum groups, and as-
sume that there exists a non-zero finite-dimensional ∗-representation π : O(G1, G2)→Md of
the linking algebra. Then the following statements are equivalent.

(1) O(G2) is RFD.
(2) O(G1, G2) is RFD.
(3) O(G1) is RFD.

Proof. By symmetry, it is enough to prove the implications (1) =⇒ (2) and (2) =⇒ (3).
(1) =⇒ (2). Define a ∗-homomorphism ρ : O(G1, G2)→ Md ⊗O(G2) by ρ = (π ⊗ id)δ2.

Note that ρ is injective because

ρ(x) = 0 =⇒ ρ(x∗x) = 0 =⇒ 0 = (id⊗ h2)ρ(x∗x) = π((id⊗ h2)δ2(x∗x)) = ω12(x∗x)π(1),

and ω12 is faithful. Since Md ⊗O(G2) is RFD and ρ is injective, we are done.
(2) =⇒ (3). Consider the injective ∗-homomorphism θ1 : O(G1) → O(G1, G2) ⊗
O(G2, G1) (see Section 4). Since O(G1, G2) is RFD if and only if the opposite algebra
O(G2, G1) is RFD, and tensor products of RFD algebras are RFD (indeed – if A ↪→

∏
iMdi ,

B ↪→
∏

jMdj , then A⊗ B ↪→
∏

i,jMdidj), we conclude that O(G1) is RFD. �

Since in the the proof of Theorem 4.2 we established the existence of various state-
preserving embeddings, the preceding theorem admits a natural analogue for the CEP.

Theorem 4.3. Let G1 and G2 be monoidally equivalent compact quantum groups of Kac
type. Assume that there exists a non-zero finite-dimensional ∗-representation of the linking
algebra O(G1, G2). Then the following statements are equivalent.

(1) L∞(G2) has the CEP.
(2) L∞(G1, G2) has the CEP.
(3) L∞(G1) has the CEP.

Proof. First note that the invariant state ω12 onO(G1, G2) is a trace, since both Gi are of Kac
type. Next, we note that in the proof of Theorem 4.2, we have constructed trace-preserving
embeddings

ρ : L∞(G1, G2)→Md ⊗ L∞(G2), θ1 : L∞(G1)→ L∞(G1, G2) ⊗̄ L∞(G2, G1),

σ : L∞(G2)→Md ⊗ L∞(G1)⊗Md.

From these embeddings, it follows that (1)—(3) are equivalent. �

Remark 4.4. The existence of a finite-dimensional representation π : O(G1, G2) → Md is a
fairly restrictive assumption. For example, it forces the unitary fiber functor F : Rep(G1)→
Rep(G2) to be dimension preserving, i.e., we have dimHρ = dimHF (ρ) for each ρ ∈ Rep(G1).
This follows from the fact that (id⊗π)(Xρ) ∈Md(ρ),d(F (ρ))⊗Md is a finite-dimensional unitary
operator, which can happen only if dimHρ = dimHF (ρ). In particular, this forces G2 to be
a 2-cocycle deformation of G1 (cf. Remark 2.9).

On the other hand, this assumption on the existence of π is necessary for the conclusions
to hold. For example, if n ≥ 3 and q ∈ (−1, 0) is such that q+q−1 = −n, then O+

n ∼m SUq(2)
[12], O(O+

n ) is RFD [26], while on the other hand O(SUq(2)) cannot be RFD because it is
not of Kac type [50].

Proposition 4.5. Let B be a finite-dimensional C∗-algebra, and put N = dimB. Then the
linking algebra O(Aut+(B), S+

N) has a finite-dimensional representation.



14 MICHAEL BRANNAN, FLORIS ELZINGA, SAMUEL J. HARRIS, AND MAKOTO YAMASHITA

Proof. By Theorem 3.1, we have Aut+(B) ∼= (S+
N)σ for some dual 2-cocycle σ induced from

some such σ0 for a finite subgroup G < S+
N . Thus the linking algebra O(Aut+(B), S+

N) =
O(S+

N)σ has a finite-dimensional quotient O(G)σ . �

Corollary 4.6. Let B be a finite-dimensional C∗-algebra equipped with any faithful trace ψ.
Then O(Aut+(B,ψ)) is RFD and hence has the CEP.

Proof. The claim for S+
N is established in [18]. This, together with Theorem 4.2 and Propo-

sition 4.5, implies the claim when ψ is the Plancherel trace. The general case then follows
from the free product decomposition in Proposition 2.5 and the stability of these properties
with respect to fee products [34]. �

4.2. Inner faithful representations.

Definition 4.7 ([1, 6]). Let G be a compact quantum group and A be unital ∗-algebra. A
∗-homomorphism π : O(G) → A is said to be inner faithful if ker(π) does not contain any
non-zero Hopf ∗-ideal. If there exists a finite-dimensional C∗-algebra A and an inner faithful
π : O(G)→ A, then we call O(G) an inner unitary Hopf ∗-algebra.

The notion of inner unitarity for Hopf ∗-algebras is a quantum analogue of (a strong form
of) linearity for discrete groups. Recall that a discrete group Γ is called a linear group if
there exists a faithful group homomorphism π : Γ→ GLd(C). In this context, we have that
Γ is linear if and only if the group algebra CΓ admits an inner faithful homomorphism to
Md (without assuming compatibility for ∗-structures) [6]. If the morphism π is ∗-preserving,
this is equivalent to saying that we have an embedding Γ ↪→ Ud. In general, if O(G) is inner
unitary, then it is RFD [18].

Proposition 4.8. Let B be a finite dimensional C∗-algebra such that dim(B) lies outside
the range [6, 9]. Then O(Aut+(B)) is inner unitary.

Proof. On the one hand, the Hopf ∗-algebras O(S+
N) are inner unitary for all N outside the

range [6, 9] by [18, Theorem 4.11]. On the other, we have an embedding of the form (3.2).
Then a straightforward adaptation of [6, Theorem 6.3] to the unitary setting implies that
O(Aut+(B)) must then also be inner unitary. �

Now, taking B = Mn and using the canonical embedding O(Aut+(B)) ⊆ O(O+
n ), we are

able to lift inner unitarity to free orthogonal quantum groups.

Theorem 4.9. The Hopf ∗-algebra O(O+
n ) is inner unitary for n = 2 and n ≥ 4.

Proof. We denote the conditional expectation O(O+
n )→ O(Aut+(Mn)) preserving the Haar

state by E. Let π : O(Aut+(Mn))→ B(H) be a ∗-homomorphism for some finite-dimensional
Hilbert space H that gives the inner unitarity of O(Aut+(Mn)). Consider the Hilbert space
H̃ = O(O+

n )⊗O(Aut+(Mn)) H, where, as usual, the inner product is given by

(f ′ ⊗ ξ′, f ⊗ ξ) = (π(E(f ∗f ′))ξ′, ξ).

The left multiplication defines a ∗-homomorphism π̃ : O(O+
n )→ B(H̃).

Since O(O+
n ) is finitely generated as a right O(Aut+(Mn))-module (we can take 1, uij for

1 ≤ i, j ≤ n as generators), H̃ is finite-dimensional. We claim that ker π̃ does not contain
any nonzero Hopf ∗-ideal.

Let I be a Hopf ∗-ideal of O(O+
n ) contained in ker π̃, and put O(G) = O(O+

n )/I. To show
that I = 0, it is enough to show that the restriction functor F : RepO+

n → RepG is full.
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By Frobenius reciprocity, this is equivalent to the claim that F (U⊗2) contains the unit with
multiplicity one whenever U is a nontrivial irreducible object of RepO+

n .
Take a nontrivial irreducible object U from RepO+

n . First suppose that U ∈ Rep Aut+(Mn).
Then, as π̃|O(Aut+(Mn)) contains π as a direct summand, we have I ∩O(Aut+(Mn)) = 0. This
implies that F (U) ∈ RepG is a nontrivial irreducible object as well. For the general case of
U being an irreducible object from RepO+

n , note that we have U⊗2 ∈ Rep Aut+(Mn), hence
from the above we have that F (U⊗2) has the same irreducible decomposition as U⊗2. But
this implies that F (U⊗2) contains the unit with multiplicity one. �

Remark 4.10. The first half of the above proof is a special case of the one for [1, Theorem
5.7]. Indeed, the following generalization holds: if O(G) is the regular algebra of a compact
quantum group G, and A = O(G′) is a inner unitary Hopf ∗-subalgebra of O(G) closed under
the adjoint action, and such that O(G) is finitely generated over A, then O(G) is also inner
unitary. To see this, one can observe that the proof of [1, Theorem 5.7] as its commutativity
assumption on A was only to make sure that O(G) is faithfully flat over A, which holds in
the above setting [25].

5. Strong 1-boundedness of quantum automorphism group factors

Let (M, τ) be a tracial von Neumann algebra, and let X = (X1, . . . , Xn) be an n-tuple
of self-adjoint elements of M and Y another such m-tuple. Recall Voiculescu’s relative
microstates free entropy χ(X : Y ) introduced in [55], which we from now on will refer
to as just relative free entropy. Using this, Voiculescu defined the (modified) free entropy
dimension

δ0(X) = n+ lim
ε↓0

χ(X + εS : S)

|log(ε)|
,

where S = (S1, . . . , Sn) is a free family of semicircular elements free from X. It satisfies
δ0(X) ≤ n and equality is attained for instance when X consists of n free semicircular
elements. Thus a free group factor LFm admits a generating set with the property that
its free entropy dimension is precisely m. While it is unknown whether this number is a
W∗-invariant in general, the related property of strong 1-boundedness introduced by Jung
does satisfy this.

Definition 5.1 ([42]). Let r ∈ R, then we call X an r-bounded set if and only if there exists
a constant K ≥ 0 such that for sufficiently small ε we have the estimate

χ(X + εS : S) ≤ (r − n)|log(ε)|+K.

We call X a strongly 1-bounded set if and only if it is a 1-bounded set and it contains an
element with finite free entropy (relative to the empty set).

Note that being r-bounded is a strengthening of the inequality δ0(X) ≤ r. For a self-
adjoint element to have finite free entropy it is sufficient that its spectral measure with
respect to τ admits a bounded density with respect to the Lebesgue measure.

Definition 5.2 ([42]). A finite von Neumann algebra M has property (J) if any finite set
of self-adjoint generators is 1-bounded, and is strongly 1-bounded if it admits a strongly
1-bounded generating set.
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Jung proved a remarkable result that any tracial von Neumann algebra admitting a
strongly 1-bounded generating set has property (J) [42]. In particular, these properties
are equivalent for finitely generated von Neumann algebras.

Now, let us note the following key technical ingredient, which is a slight modification of
[42, Theorem 5.3].

Proposition 5.3. Let A ⊂ B be an inclusion of tracial von Neumann algebras with A
strongly 1-bounded. Let {uj}∞j=1 be a sequence of unitaries in B, and write A0 = A and
Ak for the von Neumann algebra generated by A and {u1, . . . , uk}. Assume that for every j
there is a diffuse self-adjoint element yj ∈ Aj−1 such that ujyju

∗
j ∈ Aj−1. Denote by A∞ the

von Neumann algebra generated by A and all of the uj’s. Then A∞ has property (J).

Proof. The only difference from [42, Theorem 5.3] is that, instead of assuming ujuj−1u
∗
j ∈

Aj−1 and that uj is diffuse (the latter implicit in [42]), we allow uj to have atoms and assume
another diffuse self-adjoint element yj ∈ Aj−1 for the conjugation by uj. This is still enough
to have essentially the same proof as in [42, Theorem 5.3], noting that [42, Lemmas 5.1 and
5.2] apply. �

Another ingredient we need is the permanence of strong 1-boundedness under taking
amplifications, as follows.

Proposition 5.4 ([39], cf.[38, Proposition A.13(ii); 42, Corollary 3.6]). Let M be a strongly
1-bounded II1-factor. For any t > 0, the amplification Mt is again strongly 1-bounded.

Next let us recall some concepts from the theory of subfactors, see [33] and references
therein for details. LetN ⊂M be a finite index inclusion of II1-factors. Then, the orthogonal
projection e1 : L2(M)→ L2(N ) is called the Jones projection associated with this inclusion.
The von Neumann algebraM1 generated byM and e1 is again a II1-factor, and the inclusion
M⊂M1, called the basic construction, has the same index as N ⊂M. Moreover,M1 is the
commutant of the right multiplication action of N on L2(M). Iterating this construction,
we obtain the Jones tower

M−1 ⊂M0 ⊂M1 ⊂ . . . , M−1 = N , M0 =M.

We denote the Jones projection ofMi−1 ⊂Mi by ei ∈ B(L2(Mi−1)), so thatMi is generated
by Mi−1 and ei.

A key observation is that Mi−2 and Mop
i are commutants of each other on L2(Mi−1),

so that Mi and Mi−2 are amplifications of each other. In particular, M2i is always an
amplification of M, while M2i−1 is always an amplification of N .

There is also a subfactorN1 ⊂ N such thatN ⊂M is isomorphic to its basic construction.
Repeating this construction, we obtain the Jones tunnel

N−1 ⊃ N0 ⊃ N1 ⊃ . . . , N−1 =M, N0 = N ,
and we obtain corresponding Jones projections e−i ∈ Ni−1 for i ≥ 1. Again, N2i is an
amplification of N , while N2i−1 is an amplification of M.

5.1. Strong 1-boundedness of quantum automorphism group factors. We are now
ready for the proof of the main technical result of this section.

Theorem 5.5. Assume that we have a unital finite index inclusion N ⊂ M of II1-factors.
Then N is strongly 1-bounded if and only if M is strongly 1-bounded.



CROSSED PRODUCT EQUIVALENCE OF QUANTUM AUTOMORPHISM GROUPS 17

Proof. Assume that M is strongly 1-bounded. To show that N is strongly 1-bounded, it is
enough to have the same for M1 by Proposition 5.4.

Take the first Jones projection e1 as above, and set

u1 = 1− 2e1, un = 1 (n > 1).

We want to use Proposition 5.3 for A = M, B = M2, and {un} ⊂ B, to conclude that
M1 = M∨ {un | n = 1, 2, . . . } is strongly 1-bounded. It is enough to find a diffuse self-
adjoint element x ∈M that commutes with e1, as we would have

u1xu
∗
1 = x ∈M.

Since e1 is in the commutant of N , any choice of diffuse x = x∗ ∈ N will do.
Conversely, assume that N is strongly 1-bounded. We can then simply apply the same

argument as before. Indeed,M is generated by N and the Jones projection for N1 ⊂ N . �

Corollary 5.6. Assume that we have a unital finite index inclusion N ⊂M of II1-factors.
If at least one of N and M is strongly 1-bounded, then all of the II1-factors in the Jones
tower and tunnel are strongly 1-bounded.

Example 5.7. An interesting source of finite index inclusions comes from the graded twists of
compact quantum groups introduced in [14]. Using this technique, one can realise L∞(O+J

2m)
as an index 4 subfactor of L∞(O+

2m)⊗M2 (Examples 3.3 and 2.17 in [14]). Concretely, one
obtains O(O+J

2m) as a Hopf subalgebra of O(O+
2m) oα Z2 via the embedding uJij 7→ uij ⊗ g,

where g is the generator of Z2 and α(u) = −J2muJ2m. One then takes the crossed product
by the dual action.

It was shown in [22] that L∞(O+
n ) is strongly 1-bounded for all n ≥ 3. Building upon their

techniques, the case of L∞(O+J
2m) was settled for all m ≥ 2 in [32]. With Theorem 5.5 and

the graded twist technique in hand, we obtain an alternative proof for the latter case.

Corollary 5.8. Let B be a C∗-algebra such that dimB = n2 with n ≥ 3. Then L∞(Aut+(B))
is a strongly 1-bounded II1-factor.

Proof. The factoriality of L∞(Aut+(B)) is proved in [17], so it remains to prove the strong
1-boundedness.

Since L∞(Aut+(Mn)) is an index 2 subfactor of L∞(O+
n ) [17], it must be strongly 1-

bounded as soon as n ≥ 3. By Corollary 3.6, L∞(S+
n2) is a finite index subfactor of

L∞(Aut+(Mn)) ⊗Mk for some k. Hence L∞(S+
n2) must be strongly 1-bounded. As for the

general B with dimB = n2, again by Corollary 3.6 we have a finite index inclusion of L∞(S+
n2)

in L∞(Aut+(B))⊗M` for some `, hence L∞(Aut+(B)) must be strongly 1-bounded. �

Similar arguments applied to embeddings for the linking algebras discussed in Remark 3.5
give the following additional corollary.

Corollary 5.9. Let Bi for i = 1, 2 be finite dimensional C∗-algebras such that dimB1 =
dimB2 = n2 with n ≥ 3. Then the linking algebra O12 = O(Aut+(B1),Aut+(B2)) is non-
trivial. Let L12 be the tracial von Neumann algebra coming from the GNS-construction for
the trace ω12 on O12. Then L12 is strongly 1-bounded.

5.2. Lack of strong 1-boundedness for free unitary group factors. We next show
that the free unitary quantum groups U+

n give II1-factors L∞(U+
n ) that are not strongly

1-bounded, in contrast to the quantum groups O+
m and Aut+(B).
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Let us begin with a few remarks on the behaviour of r-boundedness under algebraic
manipulations and free products. It is well known that the value of the free entropy dimension
of some finite tuple of self-adjoint elements in a tracial von Neumann algebra depends only
on the generated ∗-algebra [56]. We show that this also holds for r-boundedness.

Proposition 5.10. Let (A, τ) be a tracial von Neumann algebra and let X = (X1, . . . , Xn)
and Y = (Y1, . . . , Ym) be finite tuples of self-adjoint elements of A. Assume that X and Y
generate the same ∗-algebra. Then X is r-bounded if and only if Y is r-bounded.

Proof. Assume that X is r-bounded. By assumption there exist noncommutative polyno-
mials P1, . . . , Pm in n variables such that Yj = Pj(X) for 1 ≤ j ≤ m. It is clear that the
conditions of [32, Lemma 4.1] are met, and so we can conclude that X ∪ Y is r-bounded.
But then [42, Lemma 3.1] implies that Y is r-bounded. By symmetry, we are done. �

We now investigate free products of ri-bounded sets. We get at least one estimate for free
from the subadditivity of relative free entropy.

Lemma 5.11. Let X(1), . . . , X(i) for some i ≥ 2 be such that X(j) is an rj-bounded set for
1 ≤ j ≤ i. Then ∪jX(j) is (r1 + · · ·+ ri)-bounded.

Of course, if the sets X(j) are free, one expects this to be the optimal level of boundedness
(provided each rj was optimal). Here optimal is meant in the sense that

δ0

(⋃
j

X(j)

)
= r1 + · · ·+ ri

This is not known in general even for just the free entropy dimension. However, the following
does hold by [23].

Proposition 5.12. Let Ai for 1 ≤ i ≤ n be Connes embeddable diffuse finite von Neumann
algebras. Assume that X(i) generates Ai and δ0(X(i)) = 1 for all i. Then in ∗ni=1Ai we have
δ0(
⋃
X(i)) = n.

Proof. This follows from [23, Proposition 2.4 and Corollary 4.8]. �

Proposition 5.13. For any n ≥ 2 and m ≥ 3, the II1-factors L∞(U+
n ) and L∞(O+

m) are not
isomorphic.

Proof. Since L∞(U+
2 ) ∼= LF2, which is not strongly 1-bounded, we may assume that n ≥ 3.

Consider L∞(O+
n ∗ O+

n ), and let U (k) = {u(k)
ij }ni,j=1 with k = 1, 2 be the two free sets of

matrix coefficients of the fundamental representations. Then δ0(U (1) ∪ U (2)) = 2. We now
use again the graded twist technique of [14] (compare with Example 5.7 above). In their
Examples 3.6 and 2.18 it is shown how to realise U+

n as a graded twist of O+
n ∗ O+

n by Z2.
The Z2 action on O+

n ∗O+
n is the one that swaps the two free copies of the generators of O+

n .
Taking once again the crossed product by the dual action, it follows that L∞(U+

n ) appears as
a finite index subfactor of L∞(O+

n ∗O+
n )⊗M2, and hence cannot be strongly 1-bounded. �

6. Unitary error bases and crossed product isomorphisms

In this final section we outline how the existence of “small” finite-dimensional represen-
tations of the linking algebra O(Aut+(B), S+

N) as in Proposition 4.5 is intimately related to
the construction of unitary error bases in quantum information theory. Note that a finite
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dimensional representation of the linking algebra can be interpreted as the isomorphism
game between B and CN having a quantum winning strategy. In fact, it was the study
of quantum graph colorings in [21] and their implementation via generalized unitary error
bases that initially inspired the authors to the concrete crossed product isomorphisms for
quantum automorphism groups that are derived in this section.

Definition 6.1. Let n ∈ N. A unitary error basis is a basis {ua}n
2

a=1 of Mn consisting of
unitary matrices that are orthogonal with respect to the normalized trace inner product:

tr(u∗aub) = δa,b (1 ≤ a, b ≤ n2).

We note that an equivalent characterization of a unitary error basis in Mn is a family of
unitaries {ua}n

2

a=1 with the following depolarization property :

n2∑
a=1

u∗axua = nTr(x)1.

Let (|i〉)ni=0 be a standard basis of Cn, and put

|φ〉 =
1√
n

n−1∑
i=0

|ii〉 =
1√
n

n−1∑
i=0

|i〉 ⊗ |i〉 ∈ Cn ⊗ Cn.

Let us further fix a primitive n-th root of unity ω. Then the generalized Pauli matrices
Xn, Zn ∈Mn are defined to be

Xn |j〉 = ωj |j〉 , Zn |j〉 = |j + 1〉 ,(6.1)

where the index is computed modulo n. We then put Ti,j = X i
nZ

j
n for 0 ≤ i, j ≤ n− 1, and

|φi,j〉 = (Ti,j ⊗ In) |φ〉 .
The Pauli matrices satisfy the commutation relation XnZn = ωZnXn, and we have tr(Ti,j) =
δi,0δj,0. Thus, {Ti,j | 0 ≤ i, j ≤ n− 1} is a unitary basis for (Mn, tr), called the Weyl unitary
error basis. On the other hand, {|φi,j〉 | 0 ≤ i, j ≤ n−1} is an orthonormal basis for Cn⊗Cn,
called a maximally entangled basis.

6.1. Finite dimensional representations of the linking algebra. Let us begin with a
concrete presentation of O(Aut+(B)). Throughout the section we work with a multimatrix
decomposition

B =
m⊕
r=1

Mnr ,

and denote the canonical matrix units for Mns inside of B by E
(s)
ij , 0 ≤ i, j ≤ ns − 1. Then

O(Aut+(B)) is the universal unital ∗-algebra generated by elements q
(s,r)
(i,j),(k,`), 1 ≤ s, r ≤ m,

0 ≤ i, j ≤ ns − 1, 0 ≤ k, ` ≤ nr − 1, satisfying

(1)
∑nr−1

v=0 q
(s,r)
(i,j),(k,v)q

(s′,r)
(i′,j′),(v,`) = δji′δss′q

(s,r)
(i,j′),(k,`);

(2)
∑ns−1

v=0 n−1
s q

(s,r)
(i,v),(k,`)q

(s,r′)
(v,j),(k′,`′) = δ`k′δrr′n

−1
r q

(s,r)
(i,j),(k,`′);

(3) q
(s,r)∗
(i,j),(k,`) = q

(s,r)
(j,i),(`,k);

(4)
∑m

s=1

∑ns−1
i=0 q

(s,r)
(i,i),(k,`) = δk`;

(5)
∑m

r=1

∑nr−1
k=0 nrq

(s,r)
(i,j),(k,k) = nsδij.
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The coproduct on O(Aut+(B)) is given by

(6.2) ∆(q
(r,s)
(i,j),(i′j′)) =

m∑
z=1

nz−1∑
k,`=0

q
(r,z)
(i,j),(k,`) ⊗ q

(z,s)
(k,`),(i′,j′).

Then the coaction of O(Aut+(B)) on B is given by

ρ(E
(s)
ij ) =

m∑
r=1

nr−1∑
k,`=0

q
(s,r)
(i,j),(k,`) ⊗ E

(r)
k` .

We now proceed to present a finite-dimensional representation of the linking algebra
O(Aut+(B), S+

dimB). Put N = dimB, d = n1n2 . . . nm, and identify Md
∼= Mn1 ⊗ . . .Mnm in

the usual way. For T ∈Mnr , we put

T (r) = In1 ⊗ In2 ⊗ · · · ⊗ Inr−1 ⊗ T ⊗ Inr+1 ⊗ · · · ⊗ Inm ∈Md.

For each 1 ≤ r ≤ m, let us write the Weyl error basis of Mnr as Ur,i,j = Ti,j. We then
take, for 1 ≤ s ≤ m, 0 ≤ a, b < ns, the elements

Ps,a,b =
nr−1∑
i,j=0

Ei,j ⊗ P (s)
(a,b),(i,j) ∈Mns ⊗Md ⊂ B ⊗Md, P(a,b),(i,j) =

1

ns
U∗s,a,bEi,jUs,a,b.

Now we can present a concrete representation of the linking algebra as in Proposition 4.5,
but with a smaller dimension than the one given in its proof. Write the standard basis of
minimal projections in the Abelian C∗-algebra CN as {es,a,b} for 1 ≤ s ≤ m and 0 ≤ a, b < ns.

Proposition 6.2. Under the above setting, the map

ρ̂ : CN → B ⊗Md, es,a,b 7→ Ps,a,b

is a unital ∗-homomorphism that is Plancherel trace covariant. In particular, the linking
algebra O(Aut+(B), S+

N) admits a non-zero ∗-homomorphism π to Md characterized by ρ̂ =
(id⊗ π)ρ.

Proof. When m = 1, this result is exactly [20, Proposition 7.2]. The general case only
requires some small modifications of the proof there.

Let us first fix 1 ≤ s ≤ m. First, the polarization property implies∑
a,b

Ps,a,b = Ins ⊗ Id.

Next, each Ps,a,b is a projection by a standard calculation. Moreover, the orthogonality
of (Us,i,j)i,j implies that the Ps,a,b and Ps,a′,b′ are mutually orthogonal. Since we also have
Ps,a,bPs′,a′,b′ = 0 for all s 6= s′, it follows that

ρ̂ : CN → B ⊗Md, ρ̂(es,a,b) = Ps,a,b

defines a ∗-homomorphism.
We also have

(ns Trns ⊗id)(Ps,a,b) = Id,

hence (ψ ⊗ id)(Ps,a,b) = 1
N

= ψ(es,a,b). This shows the compatibility with Plancherel traces.
The existence of π then follows from the universal properties of the algebras under consid-
eration. �



CROSSED PRODUCT EQUIVALENCE OF QUANTUM AUTOMORPHISM GROUPS 21

Now, let u(s,x,y),(r,v,w) denote the matrix coefficients of O(S+
N) corresponding to the basis

(es,x,y)s,x,y of CN . For each 1 ≤ s ≤ m, we fix a primitive ns-th root of unity ωns .

Theorem 6.3. In the above setting, there are unital ∗-homomorphisms

π : O(Aut+(B))→Md ⊗Md ⊗O(S+
N), ρ : O(S+

N)→Md ⊗Md ⊗O(Aut+(B)),

for d = n1 · · ·nm, that are compatible with traces induced by the Haar traces (that is (id ⊗
⊗id ⊗ hS+

N
)π = hAut+(B)(·)(1 ⊗ 1) and (id ⊗ ⊗id ⊗ hAut+(B))ρ = hS+

N
(·)(1 ⊗ 1)). These

morphisms are characterized by

π(q
(s,r)
(i,j),(k,`)) =

1

ns

ns−1∑
x,y=0

nr−1∑
v,w=0

ω−x(i−j)
ns ω−v(k−`)

nr E
(s)
i−y,j−y ⊗ E

(r)
k−w,`−w ⊗ u(s,x,y),(r,v,w),

ρ(u(s,x,y),(r,v,w)) =
1

nr

ns−1∑
i,j=0

nr−1∑
k,`=0

ωx(i−j)
ns ωv(k−`)

nr E
(s)
i−y,j−y ⊗ E

(r)
k−w,`−w ⊗ q

(s,r)
(i,j),(k,`).

Proof. As remarked in the proof of Theorem 4.3, the existence of a non-zero representation
O(Aut+(B), S+

N) → Md canonically gives rise to trace-preserving embeddings π, ρ with
the correct domains and ranges. The specific form of π, ρ described in the statement of the
present theorem follows if we choose to use the Weyl unitary error bases in the representation
O(Aut+(B), S+

N)→Md supplied by Proposition 6.2. �

Again, it is convenient to write the homomorphisms π and ρ in a different form.
Let Xnr , Znr ∈Mnr be generalized Pauli matrices as in (6.1). In the tensor product

Mn1 ⊗Mn1 ⊗Mn2 ⊗Mn2 ⊗ · · · ⊗Mnm ⊗Mnm ,

we write ϕ
[s]
ij for the projection

In1 ⊗ In1 ⊗ · · · ⊗ Ins−1 ⊗ Ins−1 ⊗ |φi,j〉 〈φi,j| ⊗ Ins+1 ⊗ Ins+1 ⊗ · · · ⊗ Inm ⊗ Inm .

Then the projections {ϕ[s]
ij | 0 ≤ i, j ≤ ns − 1, 1 ≤ s ≤ m} form a projection valued measure

with N outcomes in this rearranged tensor product Md ⊗Md. Similarly, we write T
[s]
i,j for

the operator

In1 ⊗ In1 ⊗ · · · ⊗ Ins−1 ⊗ Ins−1 ⊗ (X i
nsZ

j
ns ⊗ Ins)⊗ Ins+1 ⊗ Ins+1 ⊗ · · · ⊗ Inm ⊗ Inm .

We set X [s] = T
[s]
1,0 and Z [s] = T

[s]
0,1.

For each 1 ≤ r, s ≤ m, we set Q(s,r) =
ns−1∑
i,j=0

nr−1∑
k,`=0

E
(s)
ij ⊗ E

(r)
k` ⊗ q

(s,r)
(i,j),(k,`). Then we compute

(idd ⊗ idd ⊗ π)(Q(s,r))

=
1

ns

∑
i,j,k,`

∑
x,y,v,w

ω−x(i−j)
ns E

(s)
ij ⊗ ω−v(k−`)

nr E
(r)
k` ⊗ E

(s)
i−y,j−y ⊗ E

(r)
k−w,`−w ⊗ u(s,x,y),(r,v,w).

After a shuffle, we see that the image of (idd ⊗ idd ⊗ π)(Q(s,r)) in M⊗4
d ⊗O(S+

dim(B)) is given

by

nr

ns−1∑
x,y=0

nr−1∑
v,w=0

ϕ
[s]
−x,y ⊗ ϕ

[r]
−v,w ⊗ u(s,x,y),(r,v,w).
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Similarly, we have

ρ(u(s,x,y),(r,v,w)) =
1

nr

nr−1∑
i,j=0

ns−1∑
k,`=0

ωx(i−j)
ns E

(s)
i−y,j−y ⊗ ωv(k−`)

nr E
(r)
k−w,`−w ⊗ q

(s,r)
(i,j),(k,`)

= (T
[s]
x,−y ⊗ T

[r]
v,−w ⊗ 1)

(
1

nr
Q(s,r)

)
(T

[s]
x,−y ⊗ T

[r]
v,−w ⊗ 1)∗.

6.2. Iterated Crossed Product Isomorphisms. Next, let us establish a parallel of Corol-
lary 3.6, but with smaller group actions (using Γ instead of Γ2). For 1 ≤ t ≤ m, we define
algebra automorphisms α1,t, α2,t, α3,t, α4,t on O(Aut+(B)) by

α1,t(q
(s,r)
(i,j),(k,`)) =

{
q

(s,r)
(i,j),(k,`) (s 6= t)

ωi−jnt q
(s,r)
(i,j),(k,`) (s = t),

α3,t(q
(s,r)
(i,j),(k,`)) =

{
q

(s,r)
(i,j),(k,`) (r 6= t)

ωk−`nr q
(s,r)
(i,j),(k,`) (r = t),

α2,t(q
(s,r)
(i,j),(k,`)) =

{
q

(s,r)
(i,j),(k,`) (s 6= t)

q
(s,r)
(i+1,j+1),(k,`) (s = t),

α4,t(q
(s,r)
(i,j),(k,`)) =

{
q

(s,r)
(i,j),(k,`) (r 6= t)

q
(s,r)
(i,j),(k+1,`+1) (r = t).

In α2 and α4, the shifts (if applicable) are done with indices modulo nt.
From the above presentation, we see that αi,t is an automorphisms of order nt for all i.

Moreover, α1,t and α3,t′ commute for all t, t′ and α2,t and α4,t′ commute for all t, t′. Thus,
we have obtained group actions of the group Γ =

∏m
t=1(Znt × Znt) on O(Aut+(B)).

Proposition 6.4. The actions αi,t preserve the Haar trace of O(Aut+(B)).

Proof. By (6.2), the automorphism α1,t is a right comodule endomorphism in the sense that

(α1,t ⊗ id) ◦∆ = ∆ ◦ α1,t.

Combined with the right invariance condition (id⊗h)◦∆(x) = h(x)1, we obtain h◦α1,t = h.
The other cases are proved in the same way (with left equivariance and invariance for α3,t

and α4,t). �

Next, we construct the crossed product O(Aut+(B)) oα1,α3 Γ, which is the universal ∗-
algebra generated by elements q

(s,r)
(i,j),(k,`) and z1,t, z3,t′ , such that:

• The elements q
(s,r)
(i,j),(k,`) generate a copy of O(Aut+(B));

• zd1,t = zd3,t = 1 and z∗1,t = zd−1
1,t and z∗3,t = zd−1

3,t ; and [z1,t, z3,t′ ] = 0; and

• z1,tq
(s,r)
(i,j),(k,`)z

∗
1,t = α1,t(q

(s,r)
(i,j),(k,`)) and z3,tq

(s,r)
(i,j),(k,`)z

∗
3,t = α3,t(q

(s,r)
(i,j),(k,`)).

We consider the trace on this algebra induced by h.
The automorphisms α2,τ , α4,τ ′ on O(Aut+(B)) extend to trace-preserving automorphisms

on O(Aut+(B))oα1,α3 Γ by setting

α2,τ (z3,t) = z3,t, α2,τ (z1,t) =

{
z1,t τ 6= t

ω−1
nτ z1,t τ = t,

α4,τ (z1,t) = z1,t, α4,τ (z3,t) =

{
z3,t τ 6= t

ω−1
nτ z3,t τ = t.
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Theorem 6.5. Under the above setting, the homomorphism π in Theorem 6.3 extends to a
∗-isomorphism

(O(Aut+(B))oα1,α3 Γ)oα2,α4 Γ→Md ⊗Md ⊗O(S+
N)

that intertwines the traces induced by the Haar traces.

Proof. We extend π by the following formula on the generators of two copies of Γ:

π(z1,t) = X(t)
nt ⊗ Id ⊗ 1, π(z3,t) = Id ⊗X(t)

nt ⊗ 1,

π(z2,t) = Z(t)
nt ⊗ Id ⊗ 1, π(z4,t) = Id ⊗ Z(t)

nt ⊗ 1,

with generalized Pauli matrices as in (6.1). The compatibility with the original π on
O(Aut+(B)) follows from explicit presentation of (idd ⊗ idd ⊗ π)(Q(s,r)) in the previous
section. �

We thus see that, the Weyl unitary error basis of Md ⊗Md, together with the image of
π that was again defined through Weyl unitary bases of direct summands Mnr of B and
maximally entangled bases of Cnr ⊗ Cnr , generate a matrix amplification of O(S+

N).
There is a similar extension of the homomorphism ρ. On the algebra O(S+

N), we define
∗-algebra automorphisms βγ,t, 1 ≤ γ ≤ 4, 1 ≤ t ≤ m, by

β1,t(u(s,x,y),(r,v,w)) =

{
u(s,x,y),(r,v,w) (s 6= t)

u(s,x+1,y),(r,v,w) (s = t),

β3,t(u(s,x,y),(r,v,w)) =

{
u(s,x,y),(r,v,w) (r 6= t)

u(s,x,y+1),(r,v,w) (r = t),

β2,t(u(s,x,y),(r,v,w)) =

{
u(s,x,y),(r,v,w) (s 6= t

u(s,x,y),(r,v−1,w) (s = t),

β4,t(u(s,x,y),(r,v,w)) =

{
u(s,x,y),(r,v,w) (r 6= t)

u(s,x,y),(r,v,w−1) (r = t).

Evidently, each βγ,t is an automorphism on O(S+
N) of order nt, while β1,t ◦ β3,τ = β3,τ ◦ β1,t

and β2,t ◦ β4,τ = β4,τ ◦ β2,t for all 1 ≤ t, τ ≤ m. We thus get a group action of Γ on O(S+
N).

Again these preserve the Haar trace as in Proposition 6.4.
As before we form the crossed product

O(S+
N)oβ1,β3 Γ,

which is the universal ∗-algebra generated by elements u(s,x,y),(r,v,w), 1 ≤ r, s ≤ m, 0 ≤ x, y ≤
ns − 1, 0 ≤ v, w ≤ nr − 1, and z1,t, z3,t, 1 ≤ t ≤ m, satisfying the following:

• the elements u(s,x,y),(r,v,w) satisfy the relations of the fundamental unitary in O(S+
N);

• znt1,t = 1 = znt3,t and z∗1,t = znt−1
1,t and z∗3,t = znt−1

3,t for all 1 ≤ t ≤ m;
• [z1,t, z3,τ ] = 0 for all t, τ ;
• [z1,t, z1,τ ] = [z3,t, z3,τ ] = 0 for all t, τ ; and
• z1,tAz

∗
1,t = β1,t(A) and z3,tAz

∗
3,t = β3,t(A) for all A ∈ O(S+

N).
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The automorphisms β2,t, β4,t extend to O(S+
N)oβ1,β3 Γ by setting

β2,t(z3,τ ) = z3,τ ∀1 ≤ τ ≤ m, β2,t(z1,τ ) =

{
z1,τ t 6= τ

ω−1
nt z1,τ t = τ

β4,t(z1,τ ) = z1,τ , ∀1 ≤ τ ≤ m, β4,t(z3,τ ) =

{
z3,τ t 6= τ

ω−1
nt z3,τ t = τ.

Theorem 6.6. Under the above setting, the homomorphism ρ in Theorem 6.3 extends to a
∗-isomorphism

O(S+
N)oβ1,β3 Γoβ2,β4 Γ→Md ⊗Md ⊗O(Aut+(B))

that intertwines the traces induced by the Haar traces.

Proof. We get this by defining ρ(zi,t) by the same formula as in the proof of Theorem 6.5. �
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