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Homology and K -theory of dynamical systems II.
Smale spaces with totally disconnected transversal

Valerio Proietti and Makoto Yamashita

Abstract. We apply our previous work on the relation between groupoid homology andK-theory to
Smale spaces. More precisely, we consider the unstable equivalence relation of a Smale space with
totally disconnected stable sets and prove that the associated spectral sequence shows Putnam’s
stable homology groups on the second sheet. Moreover, this homology is in fact isomorphic to the
groupoid homology of the unstable equivalence relation.

1. Introduction

Continuing our previous work on the study of groupoid homology and operator K-theory
for ample groupoids, in this paper, we look at the groupoids arising from Smale spaces
and Putnam’s homology [32].

The framework of Smale spaces was introduced by Ruelle [36], who designed them to
model the basic sets of Axiom A diffeomorphisms [37]. This turned out to be a particularly
nice class of hyperbolic topological dynamical systems, where Markov partitions provide
a symbolic approximation of the dynamics.

Groupoids with a totally disconnected base (ample groupoids) arise from Smale spaces
with totally disconnected stable sets. This is especially useful in the study of dynamical
systems whose topological dimension is not zero, but whose dynamics is completely cap-
tured by a restriction to a totally disconnected transversal. Such spaces include generalized
solenoids [40, 45], substitution tiling spaces [2, Theorem 3.3], and dynamical systems of
self-similar group actions [25], and they can be characterized by certain inverse limits [43].

Beyond the theory of dynamical systems, these groupoids also play an important role
in the theory of operator algebras, where they provide an invaluable source of examples
of C �-algebras. These are obtained by considering the (reduced) groupoid C �-algebras
C �r .G/ [35], generalizing the crossed product algebras for group actions on the Cantor set.
The resulting C �-algebras capture interesting aspects of the homoclinic and heteroclinic
structure of expansive dynamics [17,29,39], extending the correspondence between shifts
of finite type and the Cuntz–Krieger algebras.
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In [28], based on the Meyer–Nest theory of triangulated categorical structure on the
equivariant KK-theory [20–22], we constructed a spectral sequence of the form

E2pq D Hp
�
G;Kq.C/

�
) KpCq

�
C �r .G/

�
(1)

for étale groupoids G that have torsion-free stabilizers and satisfy a strong form of the
Baum–Connes conjecture as in Tu’s work [41]. While this directly applies to the reduction
of the unstable equivalence relation to the transversals of Smale spaces as above, there is
another homology theory proposed by Putnam [32]. We show that one of the variants,H s

� ,
fits into this scheme for the groupoid Ru.Y; / of the unstable equivalence relation on the
underlying space, as follows.

Theorem A (Theorem 4.9). Let .Y; / be an irreducible Smale space with totally discon-
nected stable sets and Ru.Y;  / the groupoid of the unstable equivalence relation. Then,
there is a convergent spectral sequence

E2pq D E
3
pq D H

s
p .Y;  /˝Kq.C/) KpCq

�
C �
�
Ru.Y;  /

��
:

This result gives a partial answer to a question raised by Putnam, who aimed to relate
the K-theory of C �.Ru.Y;  // to his homology theory H s

� .Y;  / [32, Question 8.4.1].
An immediate consequence is that the K-groups of C �.Ru.Y;  // are of a finite rank.
Our proof of Theorem A above is based on a “relativized” analogue of the method we
developed in [28].

Although we give an independent proof of Theorem A, it can also be obtained from
the spectral sequence (1) and the result below.

Theorem B (Theorem 5.1). Let G be an étale groupoid, and suppose it is Morita equiv-
alent to Ru.Y;  /, we have an isomorphism H s

p .Y;  / ' Hp.G;Z/.

In order to prove the result above, we turn the definition of Putnam’s homology into
a resolution of modules which computes groupoid homology. As a corollary, we obtain
a Künneth formula for H s

� , generalizing a result in [8]. In the framework of substitution
tiling spaces [2], this result, combined with those of [28], implies that H s

� .�; !/ for the
associated Smale space .�; !/ is isomorphic to the degree shift of the Čech cohomology
of � (this partially solves [32, Question 8.3.2]).

This paper is organized as follows. In Section 2, we lay out the basic notation and
definitions for all the background objects of the paper.

In Section 3, we discuss the multiple fibered product of groupoid homomorphisms,
generalizing a construction described in [4]. This provides the spatial implementation
of the groupoid bar complex in the case of the inclusion map G.0/ ! G regarded as a
groupoid homomorphism. Turning to Smale spaces, a key technical transversality result in
Proposition 3.9 allows us to relate multiple fiber products of s-bijective maps f W .†;�/!
.Y; / from shifts of finite type to the multiple groupoid fibered products. This is a crucial
ingredient for Putnam’s homology.
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In Section 4, we consider a simplicial object relating homology and K-groups of the
groupoid following the scheme of [28]. We recall that the spectral sequence (1) appeared
from the Moore complex of the simplicial object .F.LnC1A//1nD0 with L D IndGX ResGX ,
converging to F.A/, with the functor F D K�.G Ë -/. For the groupoid of the unstable
equivalence relation on a Smale space .Y;  / with totally disconnected stable sets, we
follow the same scheme but replace X by the subgroupoid coming from an s-bijective
factor map from a shift of finite type. The resulting complex is isomorphic to the one
defining Putnam’s homology H s

� .Y;  /.
In Section 5, we combine the previous sections and prove our main results.
Next, in Section 6, we explain how a similar method applies to theK-groups of Ruelle

algebras. Here, we obtain a homology built out of Bowen–Franks groups closely following
Putnam’s homology theory. In Section 7, we discuss some examples, including solenoids
and self-similar group actions.

2. Preliminaries

In this section, we fix conventions and go over some preliminaries in order to clarify the
basic notions that will be used in the rest of the paper. We generally follow our exposition
in [28].

2.1. Locally compact groupoids

Throughout the paper, G denotes a topological groupoid with unit space X D G.0/. We
let s; r WG! X denote, respectively, the source and range maps. In addition, we let Gx D
s�1.x/,Gx D r�1.x/, and for a subsetA�X , we writeGAD

S
x2AGx ,GAD

S
x2AG

x ,
and GjA D GA \GA.

Definition 2.1. A topological groupoid G is étale if s and r are local homeomorphisms
and ample if it is étale and G.0/ is totally disconnected.

IfG is étale and g 2G, then by definition, for small enough neighborhoods U of s.g/,
there is a neighborhood U 0 of g such that s.U 0/D U , and the restrictions of s and r to U 0

are homeomorphisms onto the images. When this is the case, we write g.U /D r.U 0/ and
use g as a label for the map U ! g.U / induced by the identification of U � U 0 � g.U /.

As our blanket assumption, we further assume that a topological groupoid is second
countable, locally compact Hausdorff and admits a continuous Haar system �D .�x/x2X
(i.e., an invariant continuous distribution of Radon measures on the spaces .Gx/x2X ),
so that its full and reduced groupoid C �-algebras C �.G; �/, C �r .G; �/ make sense. In
general, these algebras may depend on �, though different Haar systems lead to Morita
equivalent C �-algebras (see also [28, Remark 1.7]). In particular,G andX are � -compact
and paracompact. When dealing with étale groupoids, we take as usual the counting mea-
sure onGx , and in this case, we suppress the notation � and simply writeC �r .G/ instead of
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C �r .G; �/. For a C �-algebra A equipped with an action of G, the (reduced) crossed prod-
uct of A by G in this paper will be equivalently denoted by A Ì G, G Ë A, or C �r .G; A/
depending on what is easier to read in context.

A locally compact groupoid G is amenable if there exists a net of probability mea-
sures on Gx for x 2 G.0/ which is approximately invariant; see [1]. In this case, we have
C �.G; �/ D C �r .G; �/ for any Haar system �. This covers all of our concrete examples.

The notion of Morita equivalence of groupoids in the sense of [23] plays an important
role in this paper. We review it here for convenience. First, recall a topological groupoid
G is proper if the map .r � s/WG ! X � X is proper. Furthermore, if Z is a locally
compact, Hausdorff G-space, we say that G acts properly on Z if the transformation
groupoid G Ë Z is proper. The map Z ! G.0/ underlying the G-action is called the
anchor map.

Definition 2.2. The groupoidsG andH are Morita equivalent if there is a locally compact
Hausdorff space Z such that

• Z is a free and proper left G-space with anchor map �WZ ! G.0/;

• Z is a free and proper right H -space with anchor map � WZ ! H .0/;

• the actions of G and H on Z commute;

• �WZ ! G.0/ induces a homeomorphism Z=H ! G.0/;

• � WZ ! H .0/ induces a homeomorphism GnZ ! H .0/.

This can be conveniently packaged by a bibundle over G and H : that is, a topological
space Z with G and H acting continuously from both sides with surjective and open
anchor maps, such that that the maps

G �G.0/ Z ! Z �H .0/ Z; .g; z/ 7! .gz; z/;

Z �H .0/ H ! Z �G.0/ Z; .z; h/ 7! .z; zh/

are homeomorphisms.
An important class of Morita equivalences comes from generalized transversals. For a

topological space X and x 2 X , let us denote the family of the open neighborhoods of x
by O.x/.

Definition 2.3 ([34]). Let G be a topological groupoid. A generalized transversal for G
is given by a topological space T and an injective continuous map f WT ! G.0/ such that

• f .T / meets every orbit of G;

• the condition (Ar) for the neighborhoods of x and f �1.rx/ holds for all x 2 G, i.e.,

8x 2 Gf .T /; U0 2 O.x/; V0 2 O
�
f �1.rx/

�
9U 2 O.x/; V 2 O

�
f �1.rx/

�
W

U � U0; V � V0; 8y 2 U 9Š z 2 U; s.y/ D s.z/; r.z/ 2 f .V /:

Under the above setting, there is a finer topology on the subgroupoid H D Gjf .T /
such that H is étale and Morita equivalent to G [34, Theorem 3.6]. The equivalence is
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implemented by the principal bibundle Gf .T / with a natural finer topology from that of
G and T .

2.2. Induction and restriction for groupoid KK-theory

Suppose G is an étale groupoid as in the previous subsection. We denote by KKG the
category of separableG-C �-algebras with the equivariant KK-groups KKG.A;B/ [15] as
morphisms sets.

Let H � G be an open subgroupoid with the same base space X D G.0/ D H .0/.
In particular, H is an étale groupoid over X , and the restriction of action gives a func-
tor ResGH WKKG ! KKH . It admits a left adjoint, which is an analogue of induction, as
follows. Full details will appear elsewhere in a joint work of the first named author with
C. Bönicke.

Let B be an H -C �-algebra, with structure map �WC0.X/! Z.M.B//. As before,
take the C0.G/-algebra

B 0 D C0.G/ ˝
s

C0.X/
B;

where the superscript s indicates that we regard C0.G/ as a C0.X/-algebra with respect
to the source map. This has a right action ofH , by the combination of the right translation
on C0.G/ and the action on B twisted by the inverse map of H . We then set

IndGH .B/ D B
0 ÌH D

�
C0.G/ ˝

s
C0.X/

B
�

Ìdiag H:

This can be regarded as the crossed product of B 0 by the transformation groupoid G ÌH
for the right translation action of H on G. Moreover, notice that G also acts on B 0 by left
translation on C0.G/. This induces a continuous action of G on IndGH .B/.

Let A be a G-C �-algebra. Then, the Haar system on G induces an A-valued inner
product on Cc.G/ ˝C0.X/ A, and by completion, we obtain a right Hilbert A-module
EGA D L

2.G;A/. We then have the following; see Appendix A for details.

Proposition 2.4. Under the above setting, EGA implements an equivariant strong Morita
equivalence between A and IndGG A.

Let � denote the inclusion homomorphism

IndGH ResGH .A/ D
�
C0.G/ ˝

s
C0.X/

A
�

ÌH !
�
C0.G/ ˝

s
C0.X/

A
�

ÌG D IndGG A;

induced by H � G because H is open, and let � denote the map

IndHH B D
�
C0.H/ ˝

s
C0.X/

B
�

ÌH !
�
C0.G/ ˝

s
C0.X/

B
�

ÌH D ResGH IndGH .B/;

induced by the ideal inclusion C0.H/ � C0.G/.

Theorem 2.5. The functor IndGH induces a functor KKH ! KKG , and there is a natural
isomorphism

KKG.IndGH B;A/ ' KKH .B;ResGH A/
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defining an adjunction ."; �/W IndGH a ResGH with counit and unit natural morphisms

"A D Œ��˝IndGG A
ŒEGA � 2 KKG.IndGH ResGH A;A/;

�B D Œ NE
H
B �˝IndHH B

Œ�� 2 KKH .B;ResGH IndGH B/:

Example 2.6. If G is the transformation groupoid � Ë X and H D X , the previous the-
orem amounts to

KK�ËX
�
C0.�/˝ B;A

�
' KKX .B;A/

for any C0.X/-algebra B andG-algebra A, where the �-action on C0.�/˝B is given by
translation on the factor C0.�/.

2.3. Triangulated categories and spectral sequences

Let us quickly recall the formalism of [28] behind the spectral sequence in (1). The main
ingredients are triangulated categories � and T with countable direct sums, and exact
functors EW � ! T and F W T ! � compatible with countable direct sums, with natural
isomorphisms

�.A; FB/ ' T .EA;B/ .A 2 � ; B 2 T /:

Let 	 denote the kernel of F , that is, the collection of morphisms f in � such that
Ff D 0. An object A 2 T is said to be 	-projective if any f 2 	.A0; A00/ induces the
zero map T .A;A0/! T .A;A00/. The category T has two triangulated subcategories: one
hE�i generated by the image of E and another N	 consisting of the objects N satisfying
FN D 0.

Now, consider the endofunctor L D EF on T .

Proposition 2.7 ([28, Proposition 3.1]). In the above setting, any object A 2 T admits
an 	-projective resolution P� consisting of Pn D LnC1A. The pair of subcategories
.hE�i;N	/ is complementary.

In particular, for any A 2 T , there is an exact triangle

P ! A! N ! †P

satisfying P 2 hE�i and N 2 N	 . By [20, Theorems 4.3 and 5.1], we then get the fol-
lowing.

Theorem 2.8. Let KW T ! Ab be a homological functor to the category of commutative
groups, and write Kn.A/ D K.†�nA/. With notation as above, there is a convergent
spectral sequence

Erpq ) KpCq.P /;

with the E2-sheet E2pq D Hp.Kq.P�//.

The Baum–Connes conjecture for groupoids allows us to compare P and A. We are
going to use the following fundamental result proved by J.-L. Tu.
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Theorem 2.9 ([41]). Suppose that G has the Haagerup property. Then, there exists a
proper G-space Z with an open surjective structure morphism Z ! X and a G Ë Z-
C �-algebra P which is a continuous field of nuclear C �-algebras over Z, such that P '
C0.X/ in KKG .

For the case of T D KKG , � D KKX , E D IndGX , and F D ResGX , we have the fol-
lowing.

Proposition 2.10 ([28]). Let G be an étale groupoid with torsion-free stabilizers and
satisfying the conclusions of Theorem 2.9. Any separable G-C �-algebra A belongs to the
localizing subcategory generated by the objects IndGX B for C0.X/-algebras B .

2.4. Smale spaces

Next, let us recall basic definitions on Smale spaces, mostly following [32].

Definition 2.11. A Smale space .X; �/ is given by a compact metric space .X; d/ and a
homeomorphism �WX ! X such that

• there exist constant 0 < "X and a continuous map®
.x; y/ 2 X �X j d.x; y/ � "X

¯
! X; .x; y/ 7! Œx; y�

satisfying the bracket axioms

Œx; x� D x;
�
x; Œy; z�

�
D Œx; z�;�

Œx; y�; z
�
D Œx; z�; �

�
Œx; y�

�
D
�
�.x/; �.y/

�
;

for any x; y; z in X when both sides are defined;

• there exists 0 < � < 1 satisfying the contraction axioms

Œx; y� D y ) d
�
�.x/; �.y/

�
� �d.x; y/;

Œx; y� D x) d
�
��1.x/; ��1.y/

�
� �d.x; y/;

whenever the brackets are defined.

Suppose x 2 X and 0 < " � "X . We define the local stable sets and the local unstable
sets around x as

X s.x; "/ D
®
y 2 X j d.x; y/ < "; Œy; x� D x

¯
;

Xu.x; "/ D
®
y 2 X j d.x; y/ < "; Œx; y� D x

¯
:

The bracket Œx; y� can be characterized as the unique element of X s.x; "/ \ Xu.y; "/
when 2d.x; y/ < " < "X . This means that, locally, we can choose coordinates so that (see
[33, Theorem 4.1.4])

Œ-; -�WXu.x; "/ �X s.x; "/! X
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is a homeomorphism onto an open neighborhood of x 2 X for all " smaller than some
"0X � "X=2.

A point x 2 X is called non-wandering if for all open sets U � X containing x there
exists N 2 N with U \ �N .U /¤ ;. Periodic points are dense among the non-wandering
points [33, Theorem 4.4.1]. We say that X is non-wandering if any point of X is non-
wandering. We will set a blanket assumption that Smale spaces are non-wandering. This
holds in virtually all interesting examples.

It can be shown that any non-wandering Smale space .X; �/ can be partitioned in a
finite number of �-invariant clopen setsX1; : : : ;Xn, in a unique way, such that .Xk ; �jXk /
is irreducible for k D 1; : : : ; n [30]. Irreducibility means that for every (ordered) pair U;V
of nonempty open sets in X , there exists N 2 N such that U \ �N .V / ¤ ;.

Example 2.12. A fundamental example of Smale space is given by shift of finite type (or
topological Markov shift). This can be modeled by finite directed graphs, as follows. A
directed graph G D .G 0; G 1; i; t / consists of finite sets G 0 and G 1, called vertices and
edges, and maps i; t WG 1 ! G 0. Thus, each edge e 2 G 1 represents a directed arrow from
i.e/ 2 G 0 to t .e/ 2 G 0. Then, a shift of finite type .†G ; �/ is defined as the space of
bi-infinite sequences of paths

†G D
®
e D .ek/k2Z 2 .G

1/Z j t .ek/ D i.ekC1/
¯
;

together with the left shift map �.e/k D ekC1. The metric is defined by d.e; f / D 2�n�1

for e ¤ f , where n is the largest integer such that ek D fk for jkj � n. In particular,
d.e; f / � 2�1 means that e; f share the central edge, i.e., e0 D f0. Then, we can define

Œe; f � D .: : : ; f�2; f�1; e0; e1; e2; : : :/:

The pair .†G ; �/ is a Smale space with constant " D 1=2.

We are particularly interested in groupoids encoding the unstable equivalence relation
of Smale spaces. Given x; y 2 X , we say they are

• stably equivalent, denoted by x �s y, if

lim
n!1

d
�
�n.x/; �n.y/

�
D 0I

• unstably equivalent, x �u y, if

lim
n!1

d
�
��n.x/; ��n.y/

�
D 0:

We denote the graphs of these relations as

Rs.X; �/ D
®
.x; y/ 2 X �X j x �s y

¯
;

Ru.X; �/ D
®
.x; y/ 2 X �X j y �u y

¯
;

and treat them as groupoids, with source, range, and composition maps given by

s.x; y/ D y; r.x; y/ D x; .x; y/ ı .w; z/ D .x; z/ if y D w.
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The class of x 2 X under the stable (resp., unstable) equivalence relation is called the
global stable (resp., unstable) set and is denoted by X s.x/ (resp., Xu.x/). They satisfy
the following identities:

X s.x/ D
[
n�0

��n
�
X s
�
�n.x/; "

��
; (2)

Xu.x/ D
[
n�0

�n
�
X s
�
��n.x/; "

��
; (3)

for any fixed " < "X .
This leads to locally compact Hausdorff topologies on the above groupoids [29]: con-

sider the induced topology on

Gns D
®
.x; y/ j y 2 ��n

�
X s
�
�n.x/; "

��¯
; Gnu D

®
.x; y/ j y 2 �n

�
Xu
�
��n.x/; "

��¯
as subsets of X �X . Then, Ru.X; �/ is the union of the increasing sequence .Gnu/n, with
open inclusion maps Gnu ! GnC1u . This makes G D Ru.X; �/ a locally compact Haus-
dorff groupoid. Moreover, the Bowen measure defines a Haar system on G. Of course,
analogous considerations make Rs.X; �/ a locally compact Hausdorff groupoid with a
Haar system.

To get an étale groupoid, we can take a transversal T � X and restrict the base space
to T , puttingGjT DGTT . A convenient choice is to take T DX s.x/ for some x 2X , with
the inductive limit topology from (2), which is an example of generalized transversal.
Slightly generalizing this, for a subset P � X , we write X s.P / meaning the union of all
X s.x/’s for x 2 P , with the disjoint union topology. Analogously we define Xu.P / DS
x2P X

u.x/. Let us put

Rs.X; P / D Rs.X; �/jXu.P /; Ru.X; P / D Ru.X; �/jXs.P /: (4)

Theorem 2.13 ([34, Theorem 1.1]). The groupoids in (4) are amenable.

2.5. Maps of Smale spaces

Given two Smale spaces .X; �/ and .Y;  /, a continuous and surjective map f WX ! Y

is called a factor map if it intertwines the respective self-maps, i.e.,

f ı � D  ı f: (5)

Equation (5) is enough to guarantee that f preserves the local product structure. In
particular, there is "f > 0 such that both Œx1; x2� and Œf .x1/; f .x2/� are defined and
f .Œx1; x2�/ D Œf .x1/; f .x2/� for all x1; x2 with d.x1; x2/ < "f .

Given " > 0 and x 2 X , let us write X.x; "/ D ¹y 2 X j d.y; x/ < "º.

Proposition 2.14 ([33, Lemma 5.1.11]). Let f WX ! Y be a factor map of Smale spaces
and y0 2Y a point whose preimage is finite. Then, given ">0, there exists ıD ı.z; "/ > 0



V. Proietti and M. Yamashita 966

such that

f �1
�
Y.y0; ı/

�
�

N[
iD1

X.xi ; "/

where we write f �1.y0/ D ¹x1; : : : ; xN º.

The assumption is automatically satisfied when .Y;  / is non-wandering.

Definition 2.15. A factor map f W .X; �/! .Y;  / is called s-resolving if it induces an
injective map fromX s.x/ to Y s.f .x// for each x 2X . It is called s-bijective if, moreover,
these induced maps are bijective.

Theorem 2.16 ([31, Corollary 3]). Let .X; �/ be an irreducible Smale space such that
X s.x; "/ is totally disconnected for every x 2 X and 0 < " < "X . Then, there is an irre-
ducible shift of finite type .†; �/ and an s-bijective factor map f W .†; �/! .X; �/.

Theorem 2.17 ([33, Theorem 5.2.4]). Let f WX ! Y be an s-resolving map between
Smale spaces. There is a constant N � 1 such that, for any y 2 Y , there exist x1; : : : ; xn
in X , with n � N , satisfying

f �1
�
Y u.y/

�
D

n[
kD1

Xu.xk/:

For any y 2 Y , the cardinality of the fiber f �1.y/ is less than or equal to N .

Let us list several additional facts about s-resolving maps, which can be found in [33].
First, if each point in Y is non-wandering, then f is s-bijective. Second, the induced maps
X s.x/! Y s.f .x// andXu.x/! Y u.f .x// are both continuous and proper in the induc-
tive limit topology of the presentation in (2) and (3). If, moreover, f is s-bijective, the map
X s.x/! Y s.f .x// is a homeomorphism. Assume thatX and Y are irreducible, and P is
an at most countable subset of X such that no two points of P are stably equivalent after
applying f . Then,

f � f WRu.X; P /! Ru
�
Y; f .P /

�
is a homeomorphism onto an open subgroupoid of Ru.Y; f .P //.

2.6. Putnam’s homology for Smale spaces

For any shift of finite type .†; �/, the K0-group K0.C �.Ru.†; �/// can be described as
Krieger’s dimension group Ds.†; �/ [13]. This group is generated by the elements ŒE�
for compact open sets E in the stable orbits in †. We can restrict ourselves to a collection
of stable orbits which form a generalized transversal and also assume that E is contained
in a local stable orbit [27, Lemma 1.3].

Let .Y;  / be an irreducible Smale space with totally disconnected stable sets. Then,
there is an irreducible shift of finite type .†;�/ and an s-bijective factor map f W .†;�/!
.Y;  /. Then, we obtain a Smale space †n by taking the fiber product of .nC 1/-copies
of † over Y and the diagonal action �n of � on †n, so that we have †0 D †.
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Then, we get a simplicial structure on the groups .Ds.†n; �n//
1
nD0, whose face maps

are induced by the maps ıs
k
W†n!†n�1 which delete the k-th entry of a point in†n. This

yields a well-defined map between the corresponding dimension groups, via the assign-
ment ŒE� 7! Œıs

k
.E/�. This way the groups Ds.†�; ��/ form a simplicial object, and the

associated homologyH s
� .Y; /, called stable homology of .Y; /, does not depend on the

choice of f [32, Section 5.5]; [27].

3. Fibered products of groupoids

We start by defining an appropriate notion of fibered product between groupoids which
will be used in the following proofs.

Definition 3.1. Let ˛WH ! G be a homomorphism of groupoids, and n � 2. We define
the n-th fibered product of H with respect to ˛ as the groupoid H�Gn, as follows:

• the object space is the set

.H�Gn/.0/ D
®
.y1; g1; y2; : : : ; gn�1; yn/ j yk 2 H

.0/; gk 2 G
˛.yk/

˛.ykC1/

¯
I

• the arrows from .y1; g1; y2; : : : ; gn�1; yn/ to .y01; g
0
1; y
0
2; : : : ; g

0
n�1; y

0
n/ are given by

the n-tuples .h1; : : : ; hn/ 2 H
y01
y1 � � � � �H

y0n
yn such that the squares in

˛.y01/ ˛.y02/ � � � ˛.y0n/

˛.y1/ ˛.y2/ � � � ˛.yn/

g 01 g 02 g 0n�1

˛.h1/

g1

˛.h2/

g2 gn�1

˛.hn/

are all commutative.

Of course, we can put H�G1 D H . We say that an arrow in H�Gn is represented by
the tuple .h1; g01; h2; : : : ; g

0
n�1; hn/ in the above situation. This way we can think ofH�Gn

as a subset ofH �G � � � � �G �H , and in the setting of topological groupoids, this gives
a compatible topology on H�Gn (for example, local compactness passes to H�Gn).

Remark 3.2. The above definition makes sense for n-tuples of different homomorphisms
˛k WHk ! G, so that we can define H1 �G � � � �G Hn as a groupoid. The case of n D 2
appears in [4].

We will need a slight generalization of Definition 3.1 falling under this more general
setting, where Hj D H except for one value j D k, with Hk D G.

Definition 3.3. In the setting of Definition 3.1, define a groupoidG �G H�Gn as follows:

• the object space is the set

.G �G H
�Gn/.0/

D
®
.g0; y1; g1; y2; : : : ; gn�1; yn/ j yk 2H

.0/; g02G˛.y1/; gk 2G
˛.yk/

˛.ykC1/
.k�1/

¯
I
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• a morphism from .g0; y1; g1; y2; : : : ; gn�1; yn/ to .g00; y
0
1; g
0
1; y
0
2; : : : ; g

0
n�1; y

0
n/ is

given by k 2 Grg
0
0

rg0 and an n-tuple .h1; : : : ; hn/ 2 H
y01
y1 � � � � � H

y0n
yn such that the

squares in

rg00 ˛.y01/ ˛.y02/ � � � ˛.y0n/

rg0 ˛.y1/ ˛.y2/ � � � ˛.yn/

g 00 g 01 g 02 g 0n�1

k ˛.h1/

g0 g1

˛.h2/

g2 gn�1

˛.hn/

are all commutative.

Again we say that an arrow ofG �G H�Gn is represented by .k; g00; h1; : : : ; hn/ in the
above situation. As in the case ofH�Gn, this induces a compatible topology in the setting
of topological groupoids.

Proposition 3.4. Let ˛WH ! G be a homomorphism of topological groupoids. Then,
H�Gn and G �G H�Gn are Morita equivalent as topological groupoids.

Proof. Consider the space

Z D
®
.g0; h1; g1; h2; : : : ; gn�1; hn/ j .g0; : : : ; gn�1/ 2 G

.n/; ˛.rhk/ D sgk�1
¯
:

We define a left action of G �G H�Gn as follows. The anchor map is

Z ! .G �G H
�Gn/.0/; .g0; h1; : : : ; hn/ 7! .g0; rh1; g1; : : : ; rhn/;

and an arrow of G �G H�Gn with source .g0; rh1; g1; : : : ; rhn/ acts by

.k; g00; h
0
1; : : : ; h

0
n/ � .g0; h1; : : : ; hn/ D .g

0
0; h
0
1h1; g

0
1; : : : ; h

0
nhn/:

On the other hand, there is a right action of H�Gn defined as follows. The anchor map is

Z! .H�Gn/.0/; .g0;h1; : : : ; hn/ 7! .sh1;g
0
1; : : : ; shn/;

�
g0k D ˛.hk/

�1gk˛.hkC1/
�
:

An arrow of H�Gn with a range .sh1; g01; : : : ; shn/ acts by

.g0; h1; : : : ; hn/ � .h
00
1; h
00
2; : : : ; h

00
n/ D .g0; h1h

00
1; g1; : : : ; hnh

00
n/:

We claim that Z is a bibundle implementing the Morita equivalence (compatibility
with topology will be obvious from the concrete “coordinate transform” formulas).

Comparing between Z �.G�GH�Gn/.0/ Z and Z �.H�Gn/.0/ H
�Gn amounts to a com-

parison of pairs .hk ; h0k/ with rhk D rh0
k

on the one hand and the composable pairs
.hk ; h

00
k
/ 2 H .2/ on the other. There is a bijective correspondence between the two sides,

given by the coordinate transform h0
k
D hkh

00
k

. Comparing Z �.H�Gn/.0/ Z with G �G
H�Gn �.G�GH�Gn/.0/ Z amounts to comparing the following:
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• on the side ofZ �.H�Gn/.0/ Z: ..g0;h1/; .g00;h
0
1//with .g0;˛.h1//; .g00;˛.h

0
1//2G

.2/

and sh1 D sh01, and .hk ; h0k/ 2 H
2 with shk D sh0k for k � 2;

• on the side of G �G H�Gn �.G�GH�Gn/.0/ Z: .k; g000/ 2 G
.2/, .h1; h001/ 2 H

.2/ with
sh1 D sg

00
0 , and .hk ; h00k/ 2 H

.2/ for k � 2.

Again we have a bijective correspondence by h0
k
D h00�1

k
, g0 D g000˛.h1/

�1, and g00 D
kg000˛.h

00
1/.

A slight generalization is obtained by considering the groupoidH�Ga�GG�GH�Gb

for a;b� 0. This is defined asH�G.aCbC1/ in Definition 3.1, with the difference that haC1
is not in H

y0aC1
yaC1 and instead in G

˛.y0aC1/

˛.yaC1/
.

Proposition 3.5. The groupoidH�Ga �G G �G H�Gb is Morita equivalent toH�G.aCb/.

Proof. Recall the construction in the proof of Proposition 3.4 for the Morita equivalence
between G �G H�Gb and H�Gb: we have the space

Z D
®
.g0; h1; g1; : : : ; hb/ j .g0; : : : ; gb�1/ 2 G

.b/; ˛.rhk/ D rgk
¯
;

which is a bimodule between these groupoids. Based on this, put

zZ D
®
.h1; g1; h2; : : : ; ga; gaC1; haC1; giC2; : : : ; haCb/ j .g1; : : : ; gaCb/ 2 G

.aCb/;

˛.rhk/ D rgk .k � a/; ˛.rhk/ D sgk .k > a/
¯
:

This has obvious “composition” actions of H�Ga �G G �G H�Gb from the left and
H�G.aCb/ from the right. By a similar argument as before, we can see that zZ implements
a Morita equivalence.

Next, let us show the compatibility of fiber products and generalized transversals.

Proposition 3.6. Let ˛WH!G be a homomorphism of topological groupoids and f WT!
H .0/ a generalized transversal. Consider the space

zT D
®
.t1; g1; t2; : : : ; tn/ j tk 2 T; gk 2 G

f .tk/

f .tkC1/

¯
with the induced topology from the natural embedding into T n �Gn�1. The map

Qf W zT ! .H�Gn/.0/; .t1; g1; t2; : : : ; tn/ 7!
�
f .t1/; g1; f .t2/; : : : ; f .tn/

�
is a generalized transversal for H�Gn.

Proof. Let us check the conditions in Definition 2.3. First, zT meets all orbits of H�Gn.
Indeed, if we take a point .y1; g1; y2; : : : ; gn�1; yn/ 2 .H�Gn/.0/, we can find tk 2 T and
hk 2H

f .tk/
yk for k D 1; : : : ; n. Then, there are unique g0

k
such that .h1; : : : ; hn/ represents

an arrow from .y1; g1; y2; : : : ; gn�1; yn/ to .f .t1/; g01; : : : ; f .tn//.
Next, we turn to checking condition (Ar). Thus, we consider an arrow x represented by

.h1; g1; h2; : : : ; gn�1; hn/ with the range rx D .f .t1/; g1; f .t2/; : : : ; gn�1; f .tn//, open
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neighborhood U0 of x, and another V0 of rx. We may assume that these neighborhoods
are of the form

U0 D .U
0
1 � U

00
1 � U

0
2 � � � � � U

0
n/ \H

�Gn;
�
U 0k 2 O.hk/; U

00
k 2 O.gk/

�
V0 D .V

0
1 � V

00
1 � V

0
2 � � � � � V

0
n/ \

zT ;
�
V 0k 2 O.tk/; V

00
k 2 O.gk/

�
:

Then, for each k, we can find zUk 2 O.hk/ with zUk � U 0k , zVk 2 O.tk/ with zVk � V 0k ,
realizing the condition (Ar). We claim that

U D . zU1 � U
00
1 � � � � �

zU 0n/ \H
�Gn; V D . zV1 � V

00
1 � � � � �

zVn/ \ zT

do the job. Indeed, if yD . Qh1; Qg1; � � � ; Qhn/2U , another element zD . Qh01; Qg
0
1; � � � ;

Qh0n/ as the
same source as y if and only if s Qhk D s Qh0k and f . Qhk/�1 Qgkf . QhkC1/D f . Qh0k/

�1 Qg0
k
f . Qh0

kC1
/

hold for all k. Moreover, rz 2 zT if and only if rh0
k
2 f .T / for all k. The elements Qg0

k

are determined by the Qh0
k

, and we can find such Qh0
k

uniquely by condition (Ar) for U 0
k

and V 0
k

.

Suppose f W T ! H .0/ is a generalized transversal for H such that f̨ W T ! G.0/

is also a transversal for G. Then, ˛ induces a homomorphism of étale groupoids from
H 0 D H jf .T / to G0 D Gj f̨ .T /.

Corollary 3.7. In the setting above, H�Gn is Morita equivalent to H 0�G0n.

Proof. The construction of Proposition 3.6 gives a generalized transversal for Qf W zT !
.H�Gn/.0/. The étale groupoid obtained by this is isomorphic to H 0�G0n.

Now, let .Y;  / be a non-wandering Smale space with totally disconnected unstable
sets and f W .†; �/! .Y; / an s-resolving (hence, s-bijective) factor map from a shift of
finite type.

Let †n denote the fibered product of n C 1 copies of † with respect to f . Then,
�n D � � � � � � � j†n defines a Smale space, which is again a shift of finite type. If a D
.a0; : : : ; an/ and b D .b0; : : : ; bn/ are points of †n, they are unstably (resp., stably)
equivalent if and only if ak is unstably (resp., stably) equivalent to bk for all k.

Theorem 3.8. In the setting above, set GDRu.Y;  /, HDRu.†; �/, and ˛Df �f W
H ! G as the induced groupoid homomorphism. Then, H�GnC1 is Morita equivalent to
Ru.†n; �n/ as a locally compact groupoid.

We will apply this to the s-bijective maps from Theorem 2.16. A key step is the fol-
lowing proposition, which is our first technical result.

Proposition 3.9. Let f W .X;�/! .Y; / be an s-resolving map of Smale spaces. Suppose
a0; : : : ; an in X are points such that f .a0/ �u f .ak/ for all k. Then, there are points
b0; : : : ; bn in X satisfying

ak �u bk ; f .b0/ D f .bk/

for k D 0; : : : ; n.
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y

z

 �jN .f .a0//  �jN .f .ak//

x0

b00

��jN .a0/

xk

b0
k

��jN .ak/

Figure 1. The configuration of points in the proof of Proposition 3.9. The vertical direction repre-
sents the stable direction, while the horizontal direction represents the unstable direction.

Proof. The configuration of points we consider in this proof is displayed in Figure 1.
By compactness, there is a sequence of nonnegative integers .jn/n, jn !1, such that
 �jn.f .a0// converges to a point y 2 Y . Since f .ak/ �u f .a0/, we must have the con-
vergence  �jn.f .ak//! y for k D 1; : : : ; n as well.

By Theorem 2.17, y has a finite preimage inX . Let "D 1=2 �max¹"X ; "f º, and choose
ı D ı.y; "/ given by Proposition 2.14, so that we have

f �1
�
Y.y; ı/

�
�

[
x2f �1.y/

X.x; "/:

Choose a big enough N such that

 �jN
�
f .ak/

�
2 Y u

�
 �jN

�
f .a0/

�
; "0
�
; d

�
 �jN

�
f .ak/

�
; y
�
< ı

hold for k D 0; : : : ; n and some "0 < "Y . Since  �jN .f .ak// D f .��jN .ak//, we have
��jN .ak/ 2 X.xk ; "/ where xk 2 X is a point satisfying f .xk/ D y.

Because of the choice of ", we can construct b0
k
D Œxk ; �

�jN .ak/�, and f commutes
with the bracket of these points. Then, zD f .b0

k
/D Œy; �jN .f .ak//� is independent of k

by our choice of jN . We also have b0
k
�u �

�jN .ak/ by construction. Then, bk D �jN .b0k/
is unstably equivalent to ak , and f .bk/ D  jN .z/ does not depend on k.

Let us note in passing that instead of the s-resolving condition one could assume
something else that still implies that f is finite-to-one for the above proof to work.

Proof of Theorem 3.8. We have an embedding of the groupoid Ru.†n; �n/ into H�GnC1

by the correspondence

.a0; : : : ; an/ 7! .a0; idy ; a1; : : : ; idy ; an/
�
y D f .a0/ D � � � D f .an/

�
at the level of objects and by�

.a0; : : : ; an/; .b0; : : : ; bn/
�
7!
�
.a0; b0/; : : : ; .an; bn/

�
at the level of arrows. Proposition 3.9 implies that †n � .H�GnC1/.0/ meets all orbits of
H�GnC1. Moreover, a; b 2 †n are connected by an arrow in .H�GnC1/.0/ if and only if
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they are connected in Ru.†n; �n/. Thus, Ru.†n; �n/ Õ .H�GnC1/†n Ô H�GnC1 gives
a Morita equivalence between the two groupoids. It is a routine task to see that this is
compatible with the topology on the two groupoids.

Combining Proposition 3.4, Corollary 3.7, and Theorem 3.8, we obtain the following.

Theorem 3.10. In addition to f W .†; �/! .Y;  / as above, let f 0W T ! † be a gener-
alized transversal for the locally compact groupoid Ru.†; �/ such that f ı f 0W T ! Y

defines a generalized transversal forRu.Y; /. Denote the corresponding étale groupoids
by

H D Ru.†; �/jf 0.T /; G D Ru.Y;  /jf ıf 0.T /:

The groupoid G �G H�GnC1 with respect to the natural inclusion H ! G is Morita
equivalent to Ru.†n; �n/ as a topological groupoid.

3.1. Semidirect products and transversality

Let � be a discrete group and G a groupoid admitting a left action of � by groupoid auto-
morphisms .� /2� . We denote the corresponding semidirect product by � ËG. Thus, an
arrow in � Ë G is represented by pairs .; g/ for  2 � and g 2 G, with range � .r.g//
and source s.g/, and composition is given by

.; g/. 0; g0/ D
�
 0; � 0�1.g/g

0
� �

s.g/ D � 0
�
r.g0/

��
:

Let H be another groupoid with an action of � by automorphisms .  /2� , and let
˛WH ! G be a homomorphism commuting with � and  . Then, we get a groupoid
homomorphism � ËH ! � ËG.

Proposition 3.11. Suppose that the fiber product of base H .0/�
G.0/

n meets all orbits in
the groupoid pullback H�Gn. Then, H .0/�

G.0/
n meets all orbits in .� ËH/��ËGn.

Proof. Let z D .y1; .1; g1/; y2; : : : ; .n�1; gn�1/; yn/ be a point of ..� ËH/��ËGn/.0/.
Note that we have

˛.y1/ D �1
�
r.g1/

�
; ˛.y2/ D s.g1/ D �2

�
r.g2/

�
; : : : ; ˛.yn/ D s.gn�1/I

thus, the tuple

z0 D
�
 .1���n�1/�1.y1/; �.2���n�1/�1.g1/;  .2���n�1/�1.y2/; : : : ; gn�1; yn

�
is a point in .H�Gn/.0/. Moreover, the arrows�

1 � � � n�1; id .1 ���n�1/�1 .y1/
�
; : : : ;

�
n�1; id 

�1n�1
.yn�1/

�
; .e; idyn/

in � ËH give an arrow from z0 to z in .� ËH/��ËGn up to the embedding G ! � ËG,
g 7! .e; g/, etc. By assumption, there is z00 2 H .0/�

G.0/
n and an arrow from z00 to z0;

hence, z is also in the orbit of z00.
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4. Spectral sequence for Smale spaces

Let us start with the following generalization of Proposition 2.10.

Theorem 4.1. Suppose that G is an étale groupoid with torsion-free stabilizers satisfying
the conclusion of Theorem 2.9 and thatH �G is an étale subgroupoid with the same base
space X . Any G-C �-algebra in the category KKG belongs to the localizing subcategory
generated by the image of IndGH WKKH ! KKG .

In Theorem 4.1, H is an open subgroupoid of G because H .0/ D X and H is étale.

Proof of Theorem 4.1. Consider the functors

ResGH WKKG ! KKH ; IndGH WKKH ! KKG

as in Section 2.2. By Proposition 2.7, we have a complementary pair .hP	i;N	/ for 	 D

ker ResGH , with hP	i being generated by the image of IndGH as a localizing subcategory.
Moreover, we have a natural isomorphism of functors IndGX ' IndGH IndHX . Concretely,

if A is a C0.X/-algebra,

IndGX ADC0.G/ ˝
s

C0.X/
A; IndGH IndHX AD

�
C0.G/ ˝

s r
C0.X/

C0.H/ ˝
s

C0.X/
A
�

ÌH

are G-equivariantly strongly Morita equivalent via a Hilbert C �-bimodule completion of
Cc.G/ ˝

s r
C0.X/

Cc.H/ ˝
s

C0.X/
A. Combined with Proposition 2.10, we obtain that A

belongs to hP	i.

Corollary 4.2. Let G, H , and A be as in Theorem 4.1. Let PH .A/ 2 hIndGH KKH i be the
algebra appearing in the exact triangle

PH .A/! A! N ! †PH .A/

that we get by applying Proposition 2.7. Then, we have PH .A/ ' A in KKG .

Corollary 4.3. Let G, H , and A be as in Theorem 4.1. Then, we have a convergent spec-
tral sequence

E2pq D Hp
�
Kq.G Ë L�C1A/

�
) KpCq.G Ë A/; (6)

where LnA D .IndGH ResGH /
n.A/.

Proof. The reduced crossed product functor

KKG ! KK; A 7! G Ë A

is exact and compatible with direct sums, while

KK! Ab; B 7! K0.B/

is a homological functor. Thus, their composition

K0.G Ë -/WKKG ! Ab
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is a homological functor, cf. [22, Examples 13 and 15]. Now we can apply Theorem 2.8
to get a spectral sequence

Hp
�
Kq.G Ë P�/

�
) KpCq

�
G Ë PH .A/

�
;

where P� is a .ker ResGH /-projective resolution of A. The .ker ResGH /-projective resolution
from Proposition 2.7 gives the left-hand side of (6). Now the claim follows from Corol-
lary 4.2.

Remark 4.4. It would be an interesting question to cast the above constructions to the
groupoid equivariant E-theory [26] since we mostly use the formal properties of KKG .
However, since some parts of our constructions involve reduced crossed products, there
are some details to be checked. (Note that H need not be a proper subgroupoid.)

4.1. Projective resolution from subgroupoid induction

Put Pn D LnC1A for the functor L D IndGH ResGH WKKG ! KKG . This is a simplicial
object in KKG , and the associated complex structure on P� is given by the differential

ın D

nX
iD0

.�1/idni WPn ! Pn�1; (7)

together with the augmentation morphism ı0 D "W P0 D LA ! A. This makes P� a
.ker ResGH /-projective resolution of A [28, Proposition 2.1].

Suppose G is a second countable locally compact Hausdorff étale groupoid, and H is
an open subgroupoid with the same base space. Let us analyze the chain complex in (7)
more concretely. Let snWG.n/ ! X be the map .g1; : : : ; gn/ 7! sgn.

Lemma 4.5. Let A be an H -C �-algebra. The C0.G.n//-algebra s�nA is endowed with a
continuous action of the groupoid G �G H�Gn.

Proof. We use .C0.G/˝min A/�.X/ as a model of C0.G/˝C0.X/ A and analogous mod-
els for other relative C �-algebra tensor products as well. Recall that the arrow set ofG �G
H�Gn can be identified with the set of tuples .g;g1; h1; : : : ; gn; hn/, where .g;g1; : : : ; gn/
2 G.2/, hi 2 H , and s.gi / D s.hi /. Then,

C0.G �G H
�Gn/ ˝s

C0.G.n//

�
C0.G

.n// ˝s C0.X/
A
�

'
�
C0.G �G H

�Gn �G.n//˝ A
�
Y
;

where Y is the space of tuples .g; g1; h1; : : : ; gn; hn; g1; : : : ; gn; x/ with .g; g1; h1; : : : ;
gn; hn/ as above and x D s.gn/. Let us set K D G.n�1/ and think of G.n/ as K �s r G.
We have

C0
�
G �G H

�G.n�1/ �K G
.n/
˝
s s

C0.X/
C0.H/ ˝

s
C0.G/

A
�

'
�
C0.G �G H

�G.n�1/ �K G
.n/
�H/˝ A

�
Z
;
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whereZ is the space of tuples .g;g1;h1; : : : ;gn�1;hn�1;gn;hn;x/where the components
are related as above. Via the obvious homeomorphism between Y andZ, we have the iden-
tification of these algebras. The structure map ˛WC0.H/ ˝s C0.G/

A! C0.H/ ˝
r

C0.G/
A

of the H -C �-algebra induces an isomorphism onto

C0
�
G �G H

�G.n�1/ �K G
.n/
˝
s s

C0.X/
C0.H/ ˝

r
C0.G/

A
�

'
�
C0.G �G H

�G.n�1/ �K G
.n/
�H/˝ A

�
Z0
;

where Z0 is the space of tuples .g; g1; h1; : : : ; gn�1; hn�1; gn; hn; y/ as above and y D
r.hn/. Finally, we have

C0.G �G H
�Gn/ ˝r

C0.G.n//

�
C0.G

.n//˝C0.X/ A
�

D C0.G �G H
�Gn �G.n/ ˝ A/Y 0 ;

where Y 0 is the space of tuples .g; g1; h1; : : : ; gn; hn; g01; : : : ; g
0
n; y/ as above, where

g01 D gg1h
�1
1 , g0i D hi�1gih

�1
i for i > 1, and y D s.g0n/ D r.hn/. Again the obvious

bijection between Y 0 and Z0 induces an isomorphism of the last two algebras, and com-
bining everything, we obtain an isomorphism

C0.G �G H
�Gn/ ˝s

C0.G.n//
s�nA! C0.G �G H

�Gn/ ˝r
C0.G.n//

s�nA

which is the desired structure morphism of the G �G H -C �-algebra.

Proposition 4.6. In the setting above, we have

G Ë LnA ' .G �G H�Gn/ Ë s�nA:

Proof. We have LnA D H�Gn Ë s�nA by expanding the definitions.

Using the Morita equivalence between G �G H�Gn and H�Gn, we can replace the
formula above with H�Gn Ë s�n�1A. This enables us to transport the simplicial structure
on .G Ë LnC1A/1nD0 to .H�G.nC1/ Ë s�nA/1nD0. The proof is again straightforward from
definitions.

Proposition 4.7. The induced simplicial structure on .H�G.nC1/ Ë s�nA/1nD0 has face
maps dni represented by the composition of KK-morphisms

C �r .H
�G.nC1/; s�nA/! C �r .H

�G i �G G �G H
�G.n�i/; s�nA/! C �r .H

�Gn; s�n�1A/;

where the first morphism is induced by the inclusion

H�G.nC1/ ! H�G i �G G �G H
�G.n�i/

as an open subgroupoid, and the second morphism is given by the Morita equivalence of
Proposition 3.5.
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For a suitable choice of P � † as in Section 2.5, we have an open inclusion of étale
groupoid

f � f WRu.†; P /! Ru
�
Y; f .P /

�
:

We set G D Ru.Y; f .P // and H D .f � f /.Ru.†; P //. Notice that G is an ample
groupoid and H is approximately finite-dimensional (AF) [33, 39].

Proposition 4.8. There is an isomorphism of chain complexes�
K0
�
G Ë L�C1C0.X/

�
; ı�
�
'
�
Ds.†�; ��/; d

s.f /�
�
;�

K1
�
G Ë L�C1C0.X/

�
; ı�
�
' 0:

Before going into the proof, let us recall the concept of correspondences between
groupoids. In general, if G and H are topological groupoids, a correspondence from
G to H is a topological space Z together with commuting proper actions G Õ Z Ô
H , such that the anchor map Z ! H .0/ is open (surjective) and induces a homeomor-
phismGnZ 'H .0/. Of course, one source of such correspondence is Morita equivalence.
Another example is provided by continuous homomorphisms f WG!H , where one puts
Z D ¹Œg; h� j f .sg/ D rhº with the relation Œg1g2; h� D Œg1; f .g2/h�.

If G and H are (second countable) locally compact Hausdorff groupoids with Haar
systems, a correspondence Z induces a right Hilbert C �r .H/-module C �r .Z/C�r .H/ with
a left action of C �r .G/ [16]. If the action of C �r .G/ is in K.C �r .Z/C�r .H//, we obtain a
mapK�.C �r .G//! K�.C

�
r .H//. While finding a good characterization of this condition

in terms of Z seems to be somewhat tricky, in concrete examples as below, it is not too
difficult. On the other hand, the composition of such Hilbert modules is easy to describe.
If H 0 is another topological groupoid with the Haar system, and Z0 is a correspondence
from H to H 0, we have the identification

C �r .Z/C�r .H/ ˝C�r .H/ C
�
r .Z

0/C�r .H 0/ ' C
�
r .Z �H Z0/C�r .H 0/:

Proof of Proposition 4.8. As before, consider the functorLD IndGH ResGH WKKG!KKG .
Then, we have

G Ë LnA ' .G �G H�Gn/ Ë s�nAI

see [28]. By Theorem 3.10, the C �-algebraG ËLnC1C0.X/ is strongly Morita equivalent
to C �.Ru.†n; �n//. From this, we have the identification of the underlying modules,
and it remains to compare the corresponding simplicial structures. Let us give a concrete
comparison of the mapsK0.C �r .H

�GnC1//!Ds.†n�1; �n�1/ corresponding to the 0-th
face maps, as the general case is completely parallel.

Let us put zG D Ru.Y;  /, zH D Ru.†; �/, take a (generalized) transversal T 0 for
Ru.†n; �n/, and put K D Ru.†n; �n/jT 0 , K 0 D Ru.†n�1; �n�1/jı0.T 0/ so that we have

Ds.†n; �n/ ' K0
�
C �r .K/

�
; Ds.†n�1; �n�1/ ' K0

�
C �r .K

0/
�
:

We denote the generalized transversal of zH� zGn induced byP , as in Proposition 3.6, by zTn.
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The map ı0 induces a groupoid homomorphismK ! K 0 and hence a correspondence
Zı0 fromK toK 0. Composing this with the Morita equivalence bibundle zTnC1.

zH� zGnC1/T 0 ,
we obtain a correspondence

zTnC1
. zH� zGnC1/T 0 �K Zı0 (8)

from H�GnC1 to K 0 representing the effect of ı0 on the K-groups.
As for the 0-th face map d0 of H�G�C1, let Z be the Morita equivalence bibun-

dle between G �G H�Gn and H�Gn from Proposition 3.4. Since H�GnC1 is an open
subgroupoid ofG �G H�Gn,Z becomes a correspondence fromH�GnC1 toH�Gn. Com-
posing this with the Morita equivalence zTn.

zH� zGn/ı0.T 0/ betweenH�Gn andK 0, we obtain
the correspondence

Z �H�Gn zTn.
zH� zGn/ı0.T 0/ (9)

from H�GnC1 to K 0 representing the effect of d0.
It remains to check that the above correspondences are isomorphic, hence giving iso-

morphic Hilbert modules. Expanding the ingredients of (9), we obtain the space

W D
®
.g0; h1; g1; h2; : : : ; gn�1; hn/ j .g0; : : : ; gn�1/ 2 G

.n/;

hk 2 zH
sgk�1 ; .sh1; : : : ; shn/ 2 ı0.T

0/
¯
:

On the other hand, (8) gives W �K K 0 with

W 0 D
®
.h1; g1; h2; : : : ; gn; hnC1/ j .g1; : : : ; gn/ 2 G

.n/;

hk 2 zH
rgk ; hnC1 2 zH

sgn ; .sh1; : : : ; shnC1/ 2 T
0
¯
:

The operation -�K K 0 “kills” the component h1, and we obtain the identification withW .

Thus, we obtain the isomorphisms of homology groups

Hp
�
Kq
�
G Ë L�C1C0.X/

�
; ı�
�
' H s

p .Y;  /˝Kq.C/:

Combining this with Corollary 4.3 and Proposition 4.8, we obtain the following main
result of this paper.

Theorem 4.9. Let .Y;  / be an irreducible Smale space with totally disconnected stable
sets. Then, there is a convergent spectral sequence

Erpq ) KpCq
�
C �
�
Ru.Y;  /

��
;

with E2pq D E
3
pq D H

s
p .Y;  /˝Kq.C/.

Corollary 4.10. The K-groups Ki .C �.Ru.Y;  /// have a finite rank.

Proof. By the above theorem, for i D 0; 1, the rank of Ki .C �.Ru.Y;  /// is bounded by
that of

L
kH

s
iC2k

.Y;  /. The latter is of finite rank by [32, Theorem 5.1.12].
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Remark 4.11. By the Pimsner–Voiculescu exact sequence, the same can be said for the
unstable Ruelle algebra C �.Ru.Y;  // Ë Z. If the stable relation Rs.Y;  / also has
finite-rank K-groups, the Ruelle algebras will have finitely generated K-groups by [12].

5. Comparison of homologies

In fact, Putnam’s homology is isomorphic to groupoid homology, as follows.

Theorem 5.1. We have H s
� .Y;  / ' H�.G;Z/.

The homology groups on the right-hand side of Theorem 5.1 are a special case of
groupoid homology with coefficients in equivariant sheaves [4].

When G is ample (as is the case in the theorem), such G-sheaves are represented by
unitary Cc.G;Z/-modules [38]. Here, we consider the convolution product on Cc.G;Z/,
and a module M over Cc.G;Z/ is said to be unitary if it has the factorization property
Cc.G;Z/M DM . The correspondence is given by �c.U;F / D Cc.U;Z/M for compact
open sets U � X if F is the sheaf corresponding to such a module M .

The homology of G with coefficient in F , denoted by H�.G; F /, is the homology
of the chain complex .Cc.G.n/;Z/˝Cc.X;Z/ M/1nD0 with differentials coming from the
simplicial structure as above. Concretely, the differential is given by

@nWCc.G
.n/;Z/˝Cc.X;Z/M ! Cc.G

.n�1/;Z/˝Cc.X;Z/M;

@n.f ˝m/ D

n�1X
iD0

.�1/i .dni /�f ˝mC .�1/
n˛n.f ˝m/;

where ˛n is the concatenation of the last leg ofCc.G.n/;Z/withM induced by the module
structure map Cc.G;Z/˝M ! M . This definition agrees with the one given in [4] as
there is no need to take c-soft resolutions of equivariant sheaves (see [28, Proposition 1.8]).

More generally, if F� is a chain complex ofG-sheaves modeled by a chain complex of
unitary Cc.G;Z/-modulesM�, we define H�.G;F�/, the hyperhomology with coefficient
F�, as the homology of the double complex .Cc.G.p/;Z/˝Cc.X;Z/ Mq/p;q . As usual, a
chain map of complexes of G-sheaves f WF� ! F 0� is a quasi-isomorphism if it induces
quasi-isomorphisms on the stalks. When F� and F 0� are bounded below, such maps induce
an isomorphism of the hyperhomology [4, Lemma 3.2].

Proof. Let us consider G.nC1/ as an H�G.nC1/-space by the anchor map

.g0; : : : ; gn/ 7! .g1; : : : ; gn/ 2 G
.n/
D .H�G.nC1//.0/

and the action map

.h1; g1; h2; : : : ; hn/.g0; : : : ; gn/ D .g0h
�1
1 ; g

0
1; : : : ; g

0
n/
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in the same notation used in Definition 3.1. Then, H0.H�G.nC1/; Cc.G.nC1/;Z// is a
unitary Cc.X;Z/-module by the action from the left, and the associated sheaf Fn on X is
a G-sheaf by the left translation action of G. At x 2 X , the stalk can be presented as

.Fn/x D H0
�
H�G.nC1/; Cc

�
.G.nC1//x ;Z

��
D Cc

�
.G.nC1//x ;Z

�
H�G.nC1/

: (10)

Indeed, the sheaf corresponding to the Cc.X; Z/-module Cc.G.nC1/; Z/ has the stalk
C c..G.nC1//x ; Z/ at x, and taking coinvariants by H�G.nC1/ commutes with taking
stalks.

We then have

H0.G; Fn/ ' H0.G �G H
�G.nC1/;Z/ ' H0.H

�G.nC1/;Z/:

The simplicial structure on .G �G H�G.nC1//n leads to the complex of G-sheaves

� � � ! F2 ! F1 ! F0; (11)

and H s
� .Y;  / is the homology of the complex obtained by applying the functor H0.G; -/

to (11).
We first claim that the augmented complex

� � � ! F2 ! F1 ! F0 ! Z! 0 (12)

is exact. It is enough to check the exactness at the level of stalks. In terms of the presenta-
tion (10), we have the chain complex

� � � ! Cc
�
.G.2//x ;Z

�
H�G2

! Cc.G
x ;Z/H ! Z

with differential

d
�
.g1; : : : ; gnC1/

�
D .g1g2; g3; : : : ; gnC1/ � .g1; g2g3; : : : ; gnC1/C � � �

C .�1/n�1.g1; : : : ; gngnC1/C .g1; : : : ; gn/;

where .g1; : : : ; gn/ 2 .G.n//x represents the image of ı.g1;:::;gn/ 2 Cc..G
.n//x ;Z/ in the

coinvariant space, and the augmentation is given by d.g/ D 1 at n D 0. This has a con-
tracting homotopy given by Z! Cc.G

x ;Z/H , a! a.idx/ and

Cc
�
.G.n//x ;Z

�
H�Gn

! Cc
�
.G.nC1//x ;Z

�
H�GnC1

; .g1; : : : ; gn/! .idx ; g1; : : : ; gn/I

hence, (12) is indeed exact.
We next claim thatHk.G;Fn/D 0 for k > 0. LetHnC1 be a subgroupoid of G which

is Morita equivalent to H�G.nC1/ (this exists by choosing a transversal for .†n; �n/ that
maps bijectively to a transversal of †). Then, the module H0.H�G.nC1/; Cc.G.nC1/;Z//
representing Fn is isomorphic to H0.HnC1; Cc.G;Z//. Thus, it is enough to check the
claim when n D 0.
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Let us write M D H0.H; Cc.G;Z//, and consider the double complex of modules
Cc.G

.pC1/ �X H
.q/;Z/ for p; q � 0, with differentials coming from the simplicial struc-

tures on .G.p//1pD0 and .H .q//1qD0, cf. [4, Theorem 4.4]. For fixed p, this is a resolution
of Cc.G.p/;Z/˝Cc.X;Z/M ; hence, the double complex computesH�.G;F /. For fixed q,
this is a resolution ofH0.G;Cc.G �X H .q/;Z//' Cc.H .q/;Z/, and this double complex
also computesH�.H;Z/. SinceH is Morita equivalent to an AF groupoid,Hk.H;Z/D 0
by [18, Theorem 4.11]. We thus obtain Hk.G; Fn/ D 0.

Finally, consider the hyperhomology H�.G; F�/. On the one hand, by the above van-
ishing of Hk.G; Fn/, this is isomorphic to the homology of the complex .H0.G; Fn//n,
i.e., H s

� .Y;  /. On the other hand, since F� is quasi-isomorphic to Z concentrated in
degree 0, we also have H�.G; F�/ ' H�.G;Z/.

As a consequence, we then have the following Künneth formula from the correspond-
ing result for groupoid homology [19, Theorem 2.4].

Corollary 5.2. Let .Y1; 1/ and .Y2; 2/ be Smale spaces with totally disconnected stable
sets. Then, we have a split exact sequence

0!
M
aCbDk

H s
a.Y1;  1/˝H

s
b .Y2;  2/! H s

k.Y1 � Y2;  1 �  2/

!

M
aCbDk�1

Tor
�
H s
a.Y1;  1/;H

s
b .Y2;  2/

�
! 0:

Remark 5.3. As usual, the splitting is not canonical. This generalizes [8, Theorem 6.5],
in which one of the factors is assumed to be a shift of finite type. Indeed, if .Y1;  1/ is
a shift of finite type, the first direct sum reduces to Ds.Y1;  1/˝H

s
k
.Y2;  2/, while the

second direct sum of torsion groups vanishes as the dimension group Ds.Y1;  1/, being
torsion-free, is flat.

Remark 5.4. Theorem 5.1 holds in general without the assumption of total disconnect-
edness on stable sets. We plan to expand on this direction in a forthcoming work.

Remark 5.5. Consider the Smale space .�; !/ of a substitution tiling system. As we
observed in [28, Section 4], if G is an étale groupoid Morita equivalent to Ru.�; !/, its
groupoid homology Hk.G;Z/ is isomorphic to the Čech cohomology {Hd�k.�/ for the
constant sheaf Z on �. Combined with Theorem 5.1, we obtain

H s
k.�; !/ '

{Hd�k.�/;

giving a positive answer to [32, Question 8.3.2] in the case of tiling spaces.

6. K -theory of Ruelle algebra

6.1. Semidirect product and homology

Recall the following result for semidirect products.
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Proposition 6.1 ([28, Proposition 3.8]). Suppose that � is torsion-free and satisfies the
strong Baum–Connes conjecture and that G is an ample groupoid with torsion-free stabi-
lizers satisfying the strong Baum–Connes conjecture. Then, any separable .� Ë G/-C �-
algebra A belongs to the localizing subcategory generated by the image of

Ind�ËG
X WKKX ! KK�ËG :

LetG and � be as above, and letA be a separable .� ËG/-C �-algebra. We can choose
a .ker ResGX /-projective resolution P� of A such that each Pn is a .� Ë G/-C �-algebra
and the structure morphisms of P� ! A are a restriction of morphisms in KK�ËG . For
example, the standard choice

Pn D .IndGX ResGX /
nC1A D C0.G

.nC1//˝C0.X/ A

satisfies this assumption.
Then, we have a complex of �-modules Kq.G Ë P�/. We claim that the hyperhomol-

ogy of � with this coefficient is the E2-sheet of our spectral sequence.

Proposition 6.2. In the above setting, we have a spectral sequence

Erpq ) KpCq.� ËG Ë A/

with E2pq D Hp.�;Kq.G Ë P�//.

Proof. Put LG D IndGX ResGX and L�B D C0.�/˝ B . Then, L� is a model of the end-
ofunctor Ind�ËG

G Res�ËG
G on KK�ËG . We then put Qa;b D LaC1� Pb , and consider the

natural bicomplex structure on .Qa;b/1a;bD0.
Let us show that the total complex TotQ�;� is a .ker Res�ËG

X /-resolution of A. We
have

Qa;b ' Ind�ËG
X Res�ËG

X Qa�1;b�1I

hence, Qa;b is .ker Res�ËG
X /-projective. Moreover, we claim that the augmented complex

TotQ�;�!A is .kerRes�ËG
X /-exact. Indeed, after applying Res�ËG

G to the bicomplexQ�;�,
each row gives the complexQ�;b consisting of the terms C0.�aC1/˝Pb for a � 0. Then,
the standard argument shows thatQ�;b is chain homotopic to Pb concentrated at degree 0;
hence, Res�ËG

G TotQ�;� is chain-homotopic to P�.
We now know that there is a spectral sequence converging to KpCq.� ËG Ë A/ with

E2pq D Hp.Kq.� ËG Ë Tot.Q�;�///. Observe that

G ËQa;b ' C0.�aC1/˝G Ë Pb;

where � is acting by translation on the first coordinate of �aC1. Then, we have

Kq.� ËG ËQa;b/ D ZŒ�a�˝Kq.G Ë Pb/:

Unpacking the differential, we see thatKq.� ËG Ë Tot.Q�;�// is the complex computing
the hyperhomology as in the claim.
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6.2. Application to Ruelle algebra

Let .Y;  / be a Smale space with totally disconnected stable sets. Then, the groupoid
Z Ë Ru.Y;  / behind the unstable Ruelle algebra

Ru.Y;  / D C
�
�
Ru.Y;  /

�
Ì Z

fits into the setting we considered for the semidirect products of étale groupoids (note
the notational difference: Ru indicates the Ruelle algebra, while Ru indicates the unsta-
ble equivalence relation). Indeed, as a generalized transversal of Ru.Y;  /, take T D
Y s.P / for some set P of periodic points of  , so  induces an automorphism of the
étale groupoid G D Ru.Y;  /jT as in (4). Then, Z Ë G is Morita equivalent to Z Ë 
Ru.Y;  /.

Let � W .†G ;�/! .Y; / be a (regular) s-bijective map of Smale spaces. Then, we have
the graph GN .�/ modeling the .N C 1/-fold fiber product of †G over X , so †GN .�/ D

.†G /N . Combined with functoriality, we get simplicial groups�
BF. sGN .�//

�1
ND0

;
�

ker.1 �  sGN .�//
�1
ND0

:

Proposition 6.3. There is a spectral sequence Erpq ) KpCq.Ru.Y;  // with

E1N;2k D BF. sGN .�//; E1N;2kC1 D ker.1 �  sGN .�//;

with the E1-differential E1p;q ! E1p�1;q given by the simplicial structure.

Proof. When f W .†; �/ ! .Y;  / is an s-bijective map and X 0 � † is a � -invariant
transversal such that f .X 0/ D X , we get a subgroupoid Z ËH � Z ËG from the reduc-
tion of Z ËRu.†; �/ to X 0. By Proposition 6.1, C0.X/ is in the triangulated subcategory
generated by the image of IndZËG

ZËH . We thus have a convergent spectral sequence

E1pq D Kq
�
.Z ËG/ Ë .IndZËG

ZËH ResZËG
ZËH /

pC1C0.X/
�
) KpCq

�
C �.Z ËG/

�
:

Moreover, by Proposition 3.11, we have

E1pq ' Kq
�
C �
�
Ru.†p; �p/

�
Ì Z

�
' Kq

�
Ru.†p; �p/

�
:

When .†; �/ is presented by a graph G , these can be interpreted as Kq.Ru.†Gp.�/; �//,
and the associated complex is the E1-sheet of the above spectral sequence.

Finally, for any graph G , we have

K0
�
Ru.†; �/

�
' BF. sG /; K1

�
Ru.†; �/

�
' ker.1 �  sG /

for the connecting map  s
G
WZG 0 ! ZG 0; see Appendix B.

There is another spectral sequence which plays nicer for low-dimensional examples.
Consider the subsets Bn � Gn.�/ for normalization, which is a complete system of rep-
resentatives of the free SnC1-orbits. We have an induced map Bn on ZBn, and the
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inductive limit groups Dn D lim
�!Bn

ZBn form a chain complex that is quasi-isomorphic
to Ds.G�.�// [32, Section 4.2]. Then, we have complexes

C� D
�

BF.Bn/
�1
kD0

; C 0� D
�

ker.1 � Bn/
�1
kD0

;

endowed with induced differentials.

Proposition 6.4. There is a spectral sequence Erpq)KpCq.Ru.Y; // such that E2pq D
0 for odd q and E2pq D E

2
p0 for even q, sitting in a long exact sequence

� � � ! Hp�1.C
0
�/! E2p0 ! Hp.C�/! Hp�2.C

0
�/! E2p�1;0 ! � � � : (13)

Proof. We keep the notations G and X from a previous proposition, but this time we use
the spectral sequence given by Proposition 6.2 for the resolution Pn D C0.G

.nC1// of
C0.X/.

As before, by transversality, we have

K0.G Ë Pn/ ' Ds
�
Gn.�/

�
; K1.G Ë Pn/ ' 0:

As above, take the complexD� withDn D lim
�!Bn

ZBn. The standard quasi-isomorphism
from Ds.G�.�// to D� as given in [32, Section 4.2] intertwines the actions of Gn and
Bn by construction. Generally, when D0� ! D� is a quasi-isomorphism of complexes of
�-modules, it induces an isomorphism of hyperhomology Hp.�;D�/ ' Hp.�;D

0
�/. We

thus have
E2pq D Hp

�
Z;Ds

�
G�.�/

��
' Hp.Z;D�/:

It remains to put Hp.Z;D�/ in a long exact sequence of the form (13). Recall that the
trivial ZŒZ�-module Z has a free resolution of length 1, given by

0! ZŒZ�
1��1
���! ZŒZ�! Z;

where �1 is the translation by 1. Thus, the hyperhomology H�.Z; D�/ can be computed
from the double complex with two rows of the form

� � � Dn Dn�1 � � � D0

� � � Dn Dn�1 � � � D0:

1�Bn 1�Bn�1 1�B0

It contains a subcomplex given by

� � � ker.1 � Bn/ ker.1 � Bn�1/ � � � ker.1 � B0/

� � � 0 0 � � � 0;

and the quotient is quasi-isomorphic to the complex of .BF.Bn//n. From this, we indeed
obtain a long exact sequence of the form (13).
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Remark 6.5. Recall that Y is of the form lim
 �

Y0 for a projective system of some compact
metric space Y0 and a suitable self-map gW Y0 ! Y0 as the connecting map at each step
[43, Theorem B], analogous to the standard presentation of the m1-solenoid in the next
section. Suppose further that g is open and the groupoid C �-algebra of the stable relation
Rs.Y;  / has finite-rank K-groups. Then, combining [12, Theorem 1.1] and [7, Corol-
lary 5.5], we see that K�.Ru.Y;  // fits in an exact sequence

K�C1
�
C.Y0/

� 1�ŒEg �
�����! K�C1

�
C.Y0/

�
! K�

�
Ru.Y;  /

�
! K�

�
C.Y0/

�
1�ŒEg �
�����! K�

�
C.Y0/

�
;

where Eg is the C.Y0/-bimodule associated with g. It would be an interesting problem to
compare the two ways to compute K�.Ru.Y;  //.

7. Examples

7.1. Solenoid

One class of examples is that of one-dimensional solenoids [42, 44]. Let us first explain
the easiest example, the m1-solenoid. Consider the space

Y D
®
.z0; z1; : : :/ j zk 2 S

1; zk D z
m
kC1

¯
;

which is the projective limit of

S1 S1 S1 � � �
zm [z zm [z zm [z

: (14)

A compatible metric is given by

d
�
.zk/k ; .z

0
k/k

�
D

X
k

m�kd0.zk ; z
0
k/;

where d0 is any metric on S1 compatible with its topology; for example, one may take the
arc-length metric d0.eis; eit / D js � t j when js � t j � � .

There is a natural “shift” self-homeomorphism

�WY ! Y; .z0; z1; : : :/ 7! .zm0 ; z
m
1 D z0; z

m
2 D z1; : : :/;

with inverse given by ��1..z0; z1; : : :// D .z1; z2; : : :/. Then, .Y; �/ is a Smale space
[32, 44].

Denote by � the canonical projection Y ! S1 on the first factor. As each step of (14) is
anm-to-1 map, ��1.z0/ can be identified with the Cantor set†D

Q1
nD1¹0; 1; : : : ;m� 1º

for any z0 2 S1. This allows us to write local stable and unstable sets around z D .zk/k ,
as

Y s.z; "/ D ��1.z0/ Š †; Y u.z; "/ D
®
.eitm

�k

zk/
1
kD0 j jt j < ı"

¯
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for small enough " > 0, with ı" > 0 depending on ". Note that � defines a fiber bun-
dle with fiber †, and Y u.z; "/ � †! Y corresponding to the bracket map gives local
trivializations.

Now, the groupoid Ru.Y; �/ is the transformation groupoid R Ë˛ Y for the flow

˛t .z0; z1; : : :/ D .e
itz0; e

itm�1z1; : : : ; e
itm�kzk ; : : :/ .t 2 R/:

Restricted to the transversal ��1.1/, we obtain the “odometer” transformation groupoid
Z Ëˇ †, where † is identified with lim

 �k
Zmk , and the generator 1 2 Z acts by the C1

map on Zmk .
There is a well-known factor map from the two-sided full shift onm letters onto .Y;�/.

Namely, writing

†0 D ¹0; 1; : : : ; m � 1ºZ D
®
.an/

1
nD�1 j 0 � an < m

¯
;

we have a continuous map f W†0 ! Y by

f
�
.an/n

�
D .zk/

1
kD0; zk D exp

 
2�i

1X
jD0

m�j�1aj�k

!
:

Then, we have f� D �f for � W†0 ! †0 defined by �..an/n/ D .anC1/n.
This allows us to compute all relevant invariants separately. As for theK-groups, [46]

gives

K0
�
C �
�
Ru.Y; �/

��
' Z

�
1

m

�
; K1

�
C �
�
Ru.Y; �/

��
' Z:

(These can be also obtained through the Connes–Thom isomorphism K�.C
�.Ru.Y; �///

' K�C1.Y /.) As for groupoid homology, we have

H�.Z Ëˇ †;Z/ ' H�
�
Z; C.†;Z/

�
;

where the right-hand side is the groupoid homology of Z with coefficient C.†;Z/ en-
dowed with the Z-module structure induced by ˇ. This leads to

H0.Z Ëˇ †;Z/ ' C.†;Z/ˇ ' Z

�
1

m

�
;

H1.Z Ëˇ †;Z/ ' C.†;Z/ˇ ' Z;

with coinvariants and invariants of ˇ, while Hn.Z Ëˇ †;Z/ D 0 for n > 1. The compu-
tation for H s

� .Y; �/ will be more involved, but one finds [32, Section 7.3] that

H s
0 .Y; �/ ' D

s.†0; �/ ' Z

�
1

m

�
; H s

1 .Y; �/ ' Z;

and H s
n.Y; �/ D 0 for n > 1. Thus, the spectral sequence of Theorem 4.9 collapses at the

E2-sheet, and there is no extension problem.
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ı ı

ı ı

Figure 2. G 21 .�/ for m D 2.

Now let us look at the unstable Ruelle algebra. From the Pimsner–Voiculescu exact
sequence, we get

K0
�
C �
�
Ru.Y; �/

�
Ì Z

�
' Z˚ Z=.1 �m/Z; K1

�
C �
�
Ru.Y; �/

�
Ì Z

�
' Z:

Let us relate our spectral sequence to these groups.
As in [32, Section 7.3], there is an s-bijective map � W†G ! Y for the graph G with

one vertex andm loops around it. Since †G 2 ! Y is regular, we use this to compute fiber
products. Now G 2 is the complete graph with m vertices. We thus have

BF.B20 / ' Z=.m � 1/Z; ker.1 � B20 / ' 0:

At the next step, G 21 .�/ is a graph with mC 2 vertices.
There is a single free S2-orbit, as the nontrivial element g 2 S2 acts by flipping across

the 45ı in Figure 2. Thus, the subset B21 is a singleton (given by a choice of vertex with a
loop), and the induced map B21 on ZB21 is the identity map. We thus have

BF.B21 / ' Z; ker.1 � B21 / ' Z:

For n > 1, we have B2n D ;; thus, BF.B2n / D 0 D ker.1 � B2n / for trivial reasons,
which are the torsion-free parts of K0.Z Ë C �.Ru.Y; �///.

Again from the computation [32, Section 7.3], the boundary map BF.B21 /!BF.B20 /
is zero. Then, Proposition 6.2 gives a spectral sequence with

E20q ' Z=.m � 1/Z; E21q ' Z; E22q ' Z; E2pq ' 0 .p > 2/

for even q, and E2pq D 0 for odd q. From this, we get an exact sequence

0! Z=.m � 1/Z! K0
�
C �
�
Ru.Y; �/

��
! Z! 0

and isomorphism K1.C
�.Ru.Y; �/// ' Z, as expected.

7.2. Self-similar group action

Let us explain an application to the Smale spaces of self-similar group actions. First, let
us recall the setting. We refer to [24,25] for unexplained terminology. LetX be a finite set
of symbols, with d D jX j, and let X� denote the set of words with letters in X with the
structure of a rooted tree. A faithful action of a group � on X� (by tree automorphisms)
is self-similar if it satisfies the condition

8x 2 X;  2 � 9 0 2 � 8w 2 X�W .xw/ D .x/ 0.w/:
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Writing  jx D  0 in the above setting, we get a cocycle .; x/ 7!  jx for the action of �
on X . This extends to a cocycle  ju for u 2 X�.

Consider the full shift space .†; y�/ where † D XZ and y�.x/k D xk�1 (note the
opposite convention). Thus, x; y 2 † are stably equivalent if and only if there is some N
such that xk D yk holds for k < N , while they are unstably equivalent if and only if this
holds for k > N .

Moreover, x; y 2 † are said to be asymptotically equivalent if there is a finite set
F � � and a sequence .n/n�0 in F , such that

n.x�nx�nC1 � � � / D y�ny�nC1 � � � for n � 0:

The quotient space S�;X by this relation is called the limit solenoid, and it is equipped with
the homeomorphism induced by the shift map, denoted by y� . When .�;X/ is contracting,
recurrent (or self-replicating), and regular, then .S�;X ; y�/ is a Smale space with totally
disconnected stable sets [25, Proposition 6.10] (alternatively, one can use [25, Proposi-
tion 2.6] in conjunction with the main result of [43]).

In the rest of the section, we assume that .�; X/ satisfies the above assumptions. Let
us give a more detailed description of the ingredients of the spectral sequence. Let us fix
x 2†, and let†s.x/ denote its stable equivalence class. We denote by T0 the set of points
y 2 †s.x/ such that yn D xn for n < 0.

Proposition 7.1. There is no point y ¤ x in †s.x/ which is asymptotically equivalent
to x.

Proof. Suppose that y 2 †s.x/ is asymptotically equivalent to y, and take a finite subset
F �� satisfying the defining condition of asymptotic equivalence between x and y above.

By contractibility assumption, there is a finite subset N � � containing e, andN0 2N
such that juj �N0 implies  ju 2N for  2 F . Moreover, by regularity and contractibility,
there is N1 2 N such that, for any ;  0 2 N and u 2 XN1 , one has either .u/ ¤  0.u/
or  ju D  0ju [25, Proposition 6.2]. By assumption x �s y, there is N 2 N such that
xk D yk for k � �N . Set M D N C N0 C N1, and u D x�Mx�MC1 � � � x�.NCN1/ 2

XN0 . Then, on the one hand,  0 D M ju is in N , and on the other hand,  0 should fix
v D x�.NCN1/C1 � � � x�N 2 X

N1 . Thus, we get  0jv D ejv; hence,  0 D e. This implies
that xk D yk for k > �N , and consequently, x D y.

Corollary 7.2. The projection map .†; y�/! .S�;X ; y�/ is s-bijective.

We can thus compute the homology groups H s
�.S�;X ; y�/ using the dimension groups

of iterated fiber products of † over S�;X .

Proposition 7.3. We have H s
0 .S�;X ; y�/ ' ZŒ1=d �.

Proof. Since Ds.†; y�/ ' ZŒ1=d �, it is enough to show that the boundary map

Ds.†1; y�1/! Ds.†; y�/

is trivial. Note that †1 is the graph of the asymptotic equivalence relation.
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Recall that †s.x/ admits a unique regular Borel measure � which is invariant under
the unstable equivalence relation and normalized as �.T0/ D 1. Namely, with the identi-
fication T0 ' XN , � is the infinite product of uniform measure on X . Then, the isomor-
phism Ds.†; y�/! ZŒ1=d � is given by ŒE� 7! �.E/ for compact open sets E � †s.x/.

Then, it is enough to show that the asymptotic equivalence relation on †s.x/ pre-
serves �. Let y; z 2 †s.x/ be two asymptotically equivalent points. Thus, there is a
sequence .n/1nD0 in � such that n.y�ny�nC1 � � � / D z�nz�nC1 � � � holds for all n. For
some fixed N , consider the compact open neighborhood E D ¹y0 j y0

k
D yk .k < N/º of

y in †s.x/, which has measure �.E/ D d�N . Then,

zE D
®
.y0; z0/ j y0 2 E;8n W n.y

0
�ny

0
�nC1 � � � / D z

0
�nz
0
�nC1 � � �

¯
is a compact open neighborhood of .y; z/ in †s1..y; z//, and the projection to the first
factor is a bijection zE ! E. Moreover, its projection to the second factor, E 0 D ¹z0 j
9y0W .y0; z0/ 2 zEº, can be written as E 0 D ¹z0 j z0

k
D zk .k < N/º. This has the same

measure as E; hence, the asymptotic equivalence relation indeed preserves �.

Let us next look at an étale groupoid model. Let T be the image of T0 in S�;X . We
denote the étale groupoid Ru.S�;X ; y�/jT by M�;X , so that C �.Ru.S�;X ; y�// is strongly
Morita equivalent to C �.M�;X /. As for the Ruelle algebra, the groupoid D�;X D Z Ë
M�;X is the groupoid of germs of partially defined homeomorphisms on XN , of the form
x1 � � �xmz 7! x01 � � �x

0
nz for z 2 XN , with xi ; x0i 2 X and  2 � (notice we range from 1

to m in the domain and from 1 to n in the codomain). The associated C �-algebra O�;X D

C �.D�;X / D Ru.S�;X ; y�/ has a presentation similar to Cuntz–Pimsner algebras. The
structure of these algebras, including their K-groups and equilibrium states, have been
previously studied in [9, 14].

Proposition 7.4 ([25, Proposition 6.8]). The image of y 2 T0 in S�;X is unstably equiv-
alent to the image of x if and only if .xkxkC1 � � � / D ykykC1 � � � for some  2 � and
k � 0.

This allows further recursive description of the groupoid homology, as follows. Let
M n
�;X be the groupoid of germs of partially defined transformations on XN of the form

x1 � � �xnz 7! x01 � � �x
0
nz for z 2XN , with xi ; x0i 2X and  2 � . These form an increasing

sequence of subgroupoids of M�;X such that
S
nM

n
�;X D M�;X . By the self-similarity

assumption, M n
�;X is isomorphic to the product groupoid Rn �M 0

�;X , where Rn is the
complete equivalence relation on Xn.

Proposition 7.5. The natural homomorphism from the group H0.M�;X ;Z/ ' ZŒ1=d � to
K0.C

�.M�;X // is injective.

Proof. First, we have H0.M�;X ;Z/ ' ZŒ1=d � by Proposition 7.3 and Theorem 5.1. By
the above discussion, the image of this group in K0.C �.M�;X // is equal to the image of
K0.Md1.C//, whereMd1.C/ is the UHF algebra that appears as the gauge invariant part
of Od � O�;X . The measure � in the proof of Proposition 7.3 defines a tracial state � on
C �.M�;X /. Thus, on the image of H0.M�;X ;Z/, � induces isomorphism to ZŒ1=d �.
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Turning to higher groupoid homology, we have

Hk.M�;X ;Z/ ' lim
�!
n

Hk.M
n
�;X ;Z/

from the compatibility of homology and increasing sequence of complexes. Moreover, by
the invariance of groupoid homology under Morita equivalence, we have

Hk.M
n
�;X ;Z/ ' Hk.M

0
�;X ;Z/:

Up to this isomorphism, the connecting maps Hk.M n
�;X ;Z/! Hk.M

nC1
�;X ;Z/ are all the

same.
If, moreover, the action of � on XN is topologically free1, then the groupoid M 0

�;X

(which is defined by the germs of the G-action on XN) can be identified with the trans-
formation groupoid � ËXN . Note that � ËXN can be regarded as the projective limit of
the groupoids � ËXn for increasing n. This again gives a presentation

Hk.� ËXN ;Z/ ' lim
�!
n

Hk.� ËXn;Z/:

By the recurrence assumption, the groupoid � Ë Xn is isomorphic to Rn � � , and we
have

M 0
�;X DM

k
�;X DM�;X

by [25, Proposition 5.2]. In particular, Hk.M�;X ;Z/ becomes the inductive limit of the
ordinary group homologyHk.�;Z/, with respect to the map induced by the matrix recur-
sion

�WZ� ! EndZ�

�
Z.X � �/

�
' Z.R1 � �/

for the permutation bimodule X � � , and the identification Hk.�;Z/ ' Hk.Rn � �;Z/.
Thus, under the above additional assumptions, our spectral sequence gives a computation
of the K-groups for the C �-algebra C �.Ru.S�;X ; y�// in terms of the direct limits of
sequences with the terms Hk.�;Z/.

Analogously, for the K-theory, we have

Ki
�
C �.M�;X /

�
' lim
�!
n

Ki
�
C �.� ËXn/

�
;

cf. [25, Proposition 3.8].

Example 7.6. As a concrete example, let us look at the binary adding machine from
[24, Section 1.7.1]. This one is given by � D Z, X D ¹0; 1º, and the action of 1 2 Z on
X� is presented as

a.0w/ D 1w; a.1w/ D 0a.w/

1This assumption is equivalent to the injectivity of the associated virtual endomorphisms of � and
forces the group � to be of polynomial growth [24, Section 6.1].
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for w 2 X�. To define the transversal, we choose x D .xk/k 2 XZ with xk D 0 for all k.
Then, the induced equivalence relation on T0 by Proposition 7.4 agrees with the orbit
equivalence relation of Z Ë lim

 �
Z2k from the previous section (up to a change of conven-

tion of the shift map). Turning to homology, on H0.Z;Z/ ' Z ' H1.Z;Z/, the matrix
recursion induces multiplication by 2, while it acts as the identity on H1.Z;Z/. This
gives a direct computation of H0.MZ;X ; Z/ ' ZŒ1=2� and H1.MZ;X ; Z/ ' Z, while
Hk.MZ;X ;Z/ D 0 for k > 1.

Next, let us look at higher dimensional odometer actions in more detail. Let us take
B 2 MN .Z/ \ GLN .Q/ with its eigenvalues all bigger than 1. Put � D ZN , and take
a set X of representatives of the B�-cosets in � . Then, we have a contracting, regular,
and recurrent action of � on X� such that the natural action of � on lim

 �n
�=Bn� can be

interpreted as the induced action onXN ; see [24] for details. Thus, the groupoid homology
Hk.M�;X ;Z/ can be identified with

Hk
�
�;C

�
lim
 �
n

�=Bn�;Z
��
' lim
�!
n

Hk
�
�;C.�=Bn�;Z/

�
:

The first step connecting map is Hk.�;Z/! Hk.�; C.�=B�;Z//, induced by the �-
equivariant embedding of Z into C.�=B�;Z/ as constant functions.

Now, recall that HN�k.�;Z/ is isomorphic to
Vk

� 0, where � 0 D Hom.�;Z/ is the
group of homomorphisms from � to Z. Let us describe an invariant formula for this.

Suppose that .vi /NiD1 is a basis of � , and let .vi /i be its dual basis in � 0. Then, we get
a graded commutative ZŒ��-algebra

��v� D ZŒ��˝
�̂ ®
a.v1/; : : : ; a.vN /

¯
;

where a.vi / are formal symbols subject to the rule a.vi / ^ a.vj / D �a.vj / ^ a.vi /.
In particular, the degree k part

Vk
¹a.v1/; : : : ; a.vN /º is a free commutative group with

basis a.vi1/ ^ � � � ^ a.vik / for 1 � i1 < i2 < � � � < ik � N . Then, multiplication by the
homogeneous element of degree 1,

Dv� D

NX
iD1

.1 � �vi /˝ a.v
i /;

defines a cochain complex structure on ��v� .
The degree shifted chain complex P v�� with P v�

k
D �N�kv�

is a free resolution of Z as
a ZŒ��-module. Then, H�.�;Z/ can be computed as the homology of Z˝� P

v�
� , which

is just the degree shift of
V�
¹a.v1/; : : : ; a.vN /º with trivial differential, hence it is equal

to the group
V�
¹a.v1/; : : : ; a.vN /º itself.

Let fv� W
V�
¹a.v1/; : : : ; a.vN /º !

V�
� 0 be the isomorphism of graded commutative

rings characterized by a.vi / 7! vi . Then, if .wi /i is another choice of basis in � , the map
of resolutions P v�� ! P

w�
� is compatible with fv� and fw� (up to chain-homotopy, this

map is unique).
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Now we are ready to identify the connecting map

�k WHk.�;Z/! Hk
�
�;C.�=B�;Z/

�
' Hk.�;Z/:

Proposition 7.7. With respect to the above identification HN�k.�;Z/ '
Vk

� 0, the map
�N�k is equal to

Vk
B t , where B t W� 0 ! � 0 is the adjoint of B .

Proof. Note that C.�=B�;Z/ can be identified with Ind�B� Z. Let us use the latter pre-
sentation to compute homology. By the Smith normal form, there is a basis .vi /i of � and
positive integers .mi /i such that .mivi /i is a basis of B� . Let us put wi D B�1mivi , so
that .wi /i is another basis of � . Then, the cochain complex Ind�B� �

�
w�

is given by the
same ZŒ��-module ��w� but the differential is the multiplication by

D0 D
X
i

.1 � �mivi /˝ a.w
i /:

Its degree shift Ind�B� P
w�
� gives a free resolution of Ind�B� Z.

Thus, Hk.�; Ind�B� Z/ is computed from the complex Z ˝� Ind�B� P
w�
� , which is

again the degree shift of
V�
¹a.v1/; : : : ; a.vN /º with trivial differential. The identification

Hk.�; Ind�B� Z/ '
N̂�k ®

a.v1/; : : : ; a.vN /
¯
' Hk.�;Z/

is the canonical isomorphism Hk.�; Ind�B� Z/ ' Hk.�;Z/. (One can see this by inter-
preting the k-th homology group Hk.�; Ind�B� Z/ as the k-th derived functor of M 7!
Z ˝� Ind�B� M and noting that Ind�B� is an exact functor which preserves projectivity,
i.e., it send projective modules to projective modules.)

We can concretely lift the embedding Z ! Ind�B� Z as a map of chain complexes
P
v�
� ! Ind�B� P

w�
� as the ZŒ��-linear extension of

a.vi1/ ^ � � � ^ a.vik / 7!
X

0�cij <mij

�ci1vi1C���Ccik vik
˝ a.wi1/ ^ � � � ^ a.wik /:

Then, the induced map HN�k.�;Z/! HN�k.�; Ind�B� Z/ becomes a transformation onVk
� 0 characterized by

vi1 ^ � � � ^ vik 7! mi1 � � �mikw
i1 ^ � � � ^ wik ;

which is exactly
Vk

B t .

Corollary 7.8. In the above setting, we have

HN�k.M�;X / ' lim
�!
n

k̂
� 0;

where the connecting map
Vk

� 0 !
Vk

� 0 at each step is given by
Vk

B t .
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Remark 7.9. More generally, when B1; B2; : : : are the endomorphisms of � of rank N ,
we get

HN�k
�
� Ë lim
 �
n

�=B1 � � �Bn�;Z
�
' lim
�!
n

k̂
� 0;

where the right hand is with respect to the inductive system with connecting maps
Vk
.B t1/;Vk

.B t2/; : : : on
Vk

� 0.

Back to the higher dimensional odometer action of � D ZN , we have

Ki
�
C �.� ËXn/

�
' Z2

N�1

'

M
k

HiC2k
�
�;C.�=Bn�;Z/

�
;

which implies that the spectral sequence for the �-action on the coefficient algebra C.Xn/
collapses at the E2-sheet. From Proposition 7.7, combined with the naturality of these
spectral sequences, we obtain that the maps

Ki
�
C �.� ËXn/

�
! Ki

�
C �.� ËXnC1/

�
are injective. As a consequence, the group Ki .C �.M�;X // has rank (equal to) 2N�1 for
i D 0; 1. Since

L
k HiC2k.M�;X ;Z/ has the same rank and is torsion-free, we conclude

that the spectral sequence for M�;X also collapses at the E2-sheet.

A. Induction functor for subgroupoids

Suppose that a groupoid G acts freely and properly from the right on a second countable,
locally compact, Hausdorff space Y . Then, the transformation groupoid Y ÌG is Morita
equivalent to the quotient space Y=G as a groupoid, with Y being the bibundle implement-
ing the equivalence. This induces the strong Morita equivalence between G Ë C0.Y / '
C �.Y ÌG/ and C0.Y=G/. In particular, for the case Y D G and the action given by right
translation, we get an isomorphism between G Ë C0.G/ and K.L2r .G//, where L2r .G/ is
the right Hilbert C0.X/-module completion of Cc.G/ with C0.X/-module structure from
r�WC0.X/! Cb.G/ and inner product from the Haar system.

Proof of Proposition 2.4. As in the assertion, let A be a G-C �-algebra. We have two
actions of G: on the one hand, it acts on s�A by the combination of right translation
on G and the original action on A, while on the other hand, it acts on r�A by the right
translation on G and trivially on A. Then, the structure morphism ˛W s�A! r�A of the
action intertwines these two actions. Morally, s�A can be thought of as a space of sec-
tions f .g/ 2 Asg for g 2 G, with the action of G given by f g

0

.g/ D g0�1f .gg0/ for
.g; g0/ 2 G.2/, while r�A can be thought as a space of sections f .g/ 2 Arg , with G act-
ing by f g

0

.g/D f .gg0/ for .g; g0/ 2 G.2/. We have . f̨ /.g/D gf .g/ for the sections of
the first kind, and these formulas give . f̨ g

0

/.g/ D gf .gg0/ D . f̨ /g
0

.g/.
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Now, IndGG ResGG.A/ is the crossed product of s�A by G, while K.L2r .G//˝C0.X/ A

is the crossed product of r�A by G. Consequently, we get an isomorphism between these
algebras. The extra action of G on IndGG ResGG.A/ comes from the action of G on s�A
given by the combination of the left translation on G and the trivial action on A. Under
the above isomorphism, this corresponds to the action on r�A given by the combination
of left translation on G and the original action on A. Thus, it corresponds to the diagonal
action of G on K.L2r .G//˝C0.X/ A.

More generally, the same argument gives an isomorphism

�W IndGH ResGH A '
�
C0.G/ ÌH

�
˝
r

C0.X/
A;

where G acts diagonally on the algebra on the right.
The functor IndGH WC

�
H ! C�G preserves split extensions, respects equivariant Morita

equivalence, and is compatible with homotopy. Then, it extends to a functor

IndGH WKKH ! KKG

by the universal property of KKH [28, Section A.3], analogous to the case of KK [10],
see also [3]. Let us give a more concrete description at the level of Kasparov cycles.

Consider an H -equivariant right Hilbert module E over B . By using an approximate
unit in B , we can equip E with a compatible C0.X/-action. We can form the Hilbert
module C0.G/˝ E over G0.G/˝ B and have a restriction on the diagonal to get s�E D
.C0.G/˝E/�.X/ over s�B ' .C0.G/˝B/�.X/. This still has an action ofH , analogous
to the right action of H on s�B .

Assume, moreover, .�; E; T / is an equivariant Kasparov module between H -C �-
algebras. Therefore, E is a graded right Hilbert module overB , T is an odd adjointable (or
self-adjoint) endomorphism, and � WC ! L.E/ is a �-representation, with commutation
relations as in [15]. Then, s�E is a right Hilbert module over s�B , with a left module struc-
ture over s�C . Moreover, we can extend T to s�T on s�E as the restriction of 1C0.G/˝ T ,
with the right commutation properties (they hold before restriction to �.X/). Finally, we
take the crossed product by the right action of H ,

IndGH .�;E; T / D jH .s
��; s�E; s�T /:

This way, we obtain a map IndGH WKKH .C; B/! KKG.IndGH C; IndGH B/, realizing the
extension of IndGH to KKH .

B. Bowen–Franks groups

Given A 2 End.Zn/, we call

BF.A/ D cok.1 � A/ D Zn=.1 � A/Zn

the Bowen–Franks group of A. For a square matrix A 2 Mn.Z/, we define BF.A/ by
interpreting A as an element of End.Zn/ by representing v 2 Zn by column vectors and
computing Av in the usual way.
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GivenB 2End.Zm/ and f WZn!Zm satisfyingBf D fA, we have the induced maps
BF.A/! BF.B/, ker.1�A/! ker.1�B/. This correspondence is covariant. Taking the
transpose of f , we also have contravariant maps BF.B t /! BF.At /, etc.

Given a square matrix A 2 Mn.¹0; 1º/, the associated shift of finite type .†A; �/ is
given by

†A D
®
.xk/k 2 ¹1; : : : ; nº

Z
j A.xk ; xkC1/ D 1

¯
; �.x/k D xkC1

�
x D .xk/k 2 †A

�
;

where we write Ai;j D A.i; j /. Then, we have

Z Ë C �
�
Rs.†A; �/

�
' OA ˝K; Z Ë C �

�
Ru.†A; �/

�
' OAt ˝K

for the Cuntz–Krieger algebra OA, and we also have

K0.OAt / ' BF.A/ ' K1.OA/; K1.OAt / ' ker.In � A/ ' K0.OA/I

see [5, 6, 11].
Given A 2 End.Zn/, let us look at the inductive system

Zn
A
�! Zn

A
�! � � �

and its inductive limit lim
�!A

Zn. Following [32], we represent the elements of lim
�!A

Zn by
Œv; i � for v 2 Zn and i 2 N (“v at the i -th copy of Zn”), subject to the rules Œv; i � D
ŒAv; i C 1� and Œv; i �C Œw; i � D Œv C w; i�. We have Œv; i � D 0 if and only if Aj v D 0
holds for some j .

We then have the automorphism ˛ on lim
�!A

Zn defined by

˛
�
Œv; i �

�
D Œv; i C 1�:

Lemma B.1. Under the above setting, we have

cok.1 � ˛/ ' BF.A/; ker.1 � ˛/ ' ker.1 � A/:

Proof. The inductive limit functor is exact; hence, we have

ker.1 � ˛/ ' lim
�!
A

ker.1 � A/; cok.1 � ˛/ ' lim
�!
A

BF.A/:

Thus, it is enough to check that A induces automorphisms on ker.1 � A/ and BF.A/ (we
will get the identity maps).

For ker.1 � A/, we have v 2 ker.1 � A/ if and only if v D Av; hence, AWZn 7! Zn

is restricted to a bijective map (identity map) on ker.1�A/. For BF.A/, again ŒAv� D Œv�
holds in BF.A/; hence, A induces the trivial isomorphism.

Combined with the Pimsner–Voiculescu sequence, we get a direct computation of

K0
�
Z Ë C �

�
Rs.†A; �/

��
' BF.A/; K1

�
Z Ë C �

�
Rs.†A; �/

��
' ker.1 � A/:
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Let G be an oriented graph, again following the convention of [32]. Thus, the associ-
ated shift of finite type is given by

†G D
®
e D .ek/k2Z j e

k
2 G1; t .ek/ D i.ekC1/

¯
; �.e/k D ekC1:

If we take the graph G2, we have †G2 D †A for the matrix A 2MG1.¹0; 1º/ defined by

Ae0;e D

´
1

�
t .e0/ D i.e/, .e0; e/ 2 G2

�
0 otherwise:

Denoting the corresponding endomorphism on ZG1 by  s
G2

, we have

Ds.G2/ D lim
�!
s
G2

ZG1:

We have Ds.G/ ' Ds.G2/ ' Ds.G3/ ' � � � for the higher block presentations.

Lemma B.2. Let ˛s
Gk

be the map ˛ as above, induced by  s
Gk

on the inductive limit

Ds.Gk/ D lim
�!
s
Gk

ZGk�1:

Then, the isomorphism Ds.G/ ' Ds.Gk/ intertwines ˛sG to ˛s
Gk

.

Proof. This follows from the concrete form of isomorphism

Ds.G/ ' Ds.Gk/; Œv; i � 7!
�
.tk/�.v/; i

�
I

see [32, Theorem 3.2.3].

Combining this with Lemma B.1, we obtain

BF. sG/ ' BF. s
Gk
/ and ker.1 �  sG/ ' ker.1 �  s

Gk
/:

Finally, let � WH ! G be a graph homomorphism that induces an s-bijective map
†H ! †G . Then, there is an integer K such that, for any k, the linear extension of

�s;K WH k�1
! ZGkCK�1; q 7!

X
q02.tK /�1.q/

�.q0/

implements the induced mapDs.H/!Ds.G/ up to the identificationDs.H/'Ds.H k/

andDs.G/'Ds.GkCK/; see [32, Section 3.4]. Moreover, �s;K commutes with  s
Hk and

 s
GkCK

. Combined with Lemmas B.1 and B.2, we see that �s;K also induces maps

BF. sH /! BF. sG/; ker.1 �  sH /! ker.1 �  sG/:

These maps are again functorial for graph homomorphisms that induce s-bijective maps.
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