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A B S T R A C T

A theoretical model to explain the scattering process of wave attenuation in a marginal ice zone is proposed.
Although many numerical methods have been developed to accurately estimate wave attenuation, it is not
easy to incorporate this knowledge and results into practical use. Therefore, a simplified estimation method
is developed here to explicitly and simply describe its fundamental mechanisms. We consider a periodic array
of ice floes, where the floe is modeled by a vertical rigid cylinder. Using a homogenization technique, a
homogenized free surface equivalent to the array is obtained. Then, we show that a dispersion relation of the
homogenized free surface waves makes all wave numbers complex. As a result, the exponential energy decay
in the scattering process is demonstrated. Under the deep water assumption, the wave attenuation coefficient is
proportional to the open water’s wave number, ice concentration ratio, and imaginary part of the floe’s heave
motion. To validate the proposed theory, a tank experiment was also conducted using cylindrical synthetic
ice plates. Although our model is obtained under many simplifications, the theoretical results show the same
tendency and order as the experimental results.
1. Introduction

Accurate global wave hindcast is essential to utilize the ocean
space. Such a wave hindcast is often based on the energy transport
equation (e.g. WAVEWATCH III®; WW3DG, 2019), and a source term
is represented by a linear sum of some components, such as wind–
wave interaction, nonlinear wave–wave interaction, wave breaking
(white-capping), and wave–ice interaction. As wave–ice interaction is
likely to contribute one of the important roles to local, as well as
global dynamics (Stroeve et al., 2007; Squire, 2020), an improve-
ment of numerical and theoretical models of wave–ice interaction is
demanded (e.g. Thomson et al., 2018).

Wave–ice interaction is especially of great importance in a marginal
ice zone where numerous pieces of compact ice are floating on the
surface of the water. Since wave energy exponentially decays with
distance (Robin, 1963; Wadhams et al., 1988), wave–ice interaction is
described by a wave attenuation coefficient. This attenuation is known
as a result of two processes, i.e. energy dissipation and scattering (see
the latest review by Squire, 2020). The dissipation covers various
factors, such as viscosity, inelastic collisions, overwash, wave breaking,
ice breaking, and so on, and (mechanical) energy is not conserved in
this process. Viscoelastic layer models are often used to explain the
dissipation process (e.g. De Carolis and Desiderio, 2002; Wang and
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Shen, 2010; Mosig et al., 2015; Sutherland et al., 2019). The dispersion
relation of these models offers a complex wave number (Keller, 1998;
De Carolis and Desiderio, 2002). This indicates that an imaginary
part of the wave number yields exponential decay of wave amplitude
and energy with distance. Such a dispersion relation is incorporated
in global wave hindcasts to determine the wave attenuation coeffi-
cient (e.g. WW3DG, 2019). Despite their efforts, further improvement
of models is still required from the view of overcoming homogeneous
linear assumptions (Squire, 2020). Therefore, more investigations into
nonlinear dynamics and modeling them are necessary. For example,
it is reported that the collision of ice floes induces turbulence, and it
results in energy dissipation (Løken et al., 2022).

The energy scattering process, on the other hand, conserves energy;
propagating wave energy is just redistributed by a boundary of ice,
i.e. the propagating energy decays due to wave reflection (or scattering)
by ice. A single scattering model induced by a motion of a rigid ice
floe was incorporated into the energy transport equation to calculate
a wave attenuation coefficient (Masson and LeBlond, 1989; Perrie and
Hu, 1996). Modeling of ice floe by an elastic plate (Squire et al., 1995)
was introduced to the energy transport equation (Meylan et al., 1997).
A multiple scattering model was developed based on an array of two-
dimensional elastic plates (Kohout and Meylan, 2008; Kohout et al.,
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Fig. 1. Problem descriptions and concepts. (a) The local coordinate system of a single ice floe. An ice floe is modeled by a floating vertical cylinder with radius 𝑎 and draft 𝑑.
b) The global coordinate system of marginal ice zone where marginal ice is modeled by a periodic array of cylinders. Distance between floes is 𝓁. (c) Concept of a homogenized
ree surface. The periodic array of ice floes in Fig. 1(b) is replaced with the homogenized free surface. This paper aims to find such a free surface.
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011). Three-dimensional multi-body models were proposed assuming
periodic array of discs (Chou, 1998). Nonuniform distribution of

loes was considered using the periodicity of a module where ice floes
re contained (Bennetts and Squire, 2009; Bennetts et al., 2010). A
lab-clustering method was established to calculate multiple scattering
y tens of thousands of ice floes (Montiel et al., 2016). The recent
evelopments in these numerical calculation methods have enabled
s to deeply understand the scattering process of the marginal ice
one. However, it is not easy to incorporate these numerical simu-
ations into wave hindcasts as these request high calculation costs
nd expertise. Therefore, a simple formula is generally preferred for
pplication purposes. For example, WAVEWATCH III® uses fit curves
f their simulations as empirical options (WW3DG, 2019).

Here, we revisit the problem of the scattering process of wave
ttenuation in a marginal ice zone. We propose a new scattering model
hat describes its fundamental mechanism in explicit and simplified
anners. We believe this facilitates the fundamental understanding of

he scattering process and its practical use. For a simplified estimation,
e assume an ice floe is a vertical rigid cylinder, and a marginal

ce zone is modeled by a periodic array of such a cylinder. Using a
omogenization technique (Garnaud and Mei, 2009), a homogenized
ree surface equivalent to the periodic array of ice floe is obtained.
his makes all wave numbers complex, and thus the wave attenuation

s given in the form of an exponential function with distance. A deep
ater assumption results in an explicit form of the wave attenuation

oefficient; the coefficient is proportional to the open water’s wave
umber, ice concentration ratio, and imaginary part of the floe’s heave
otion. In addition to this, we conducted a tank experiment using a
umber of cylindrical synthetic ice plates. The wave attenuation coeffi-
ients are estimated in consideration of correcting the wave dissipation
ue to the side walls of the tank. The comparison between numerical
nd experimental results is shown to validate the proposed model.

. Theoretical description

We consider a marginal ice zone consisting of discrete small ice
loes with a low concentration ratio. For such a case, the process of
ave attenuation is mainly described by the wave scattering (Squire
t al., 1995). In the present paper, a new theoretical model is proposed
o easily estimate wave attenuation due to the scattering process. The
roblem schematics and concepts are described in Fig. 1. A small ice
loe is modeled by a truncated vertical rigid cylinder floating on the
ree surface as shown in Fig. 1(a). Furthermore, the marginal ice zone
s modeled by a periodic array of such an ice floe as in Fig. 1(b). Here,
e replace the array with a homogenized free surface equivalent to the
rray as in Fig. 1(c). Using this homogenized free surface, a simplified
olution of the wave attenuation coefficient is proposed. The following
ubsections describe the details of the proposed theories.
2

.1. Boundary value problem of single ice floe in waves

Firstly, a boundary value problem of a single ice floe in waves is
riefly reviewed. We consider the three-dimensional coordinate system
− 𝑥𝑦𝑧 where 𝑧 = 0 plane denotes the undisturbed free surface of the

water, and vertically upward is defined by positive 𝑧 (see Fig. 1(a)).
The sea bottom is assumed flat at 𝑧 = −ℎ. For simplification, the
shape of the ice floe is assumed a vertical cylinder floating on the
free surface, of which radius and draft are 𝑎 and 𝑑. Here, only the
vertical motion (heave motion) of the floe is considered. Besides, the
floe is rigid, and an elastic response is not considered. We formulate
the boundary value problem of the floe based on the potential flow
theory (e.g. Newman, 2018); incompressible and inviscid fluid with
the irrotational motion is assumed. Furthermore, plane waves with a
circular frequency 𝜔 are considered. Wave amplitude and resultant
floe’s motion are sufficiently smaller than wavelength 𝜆, and thus the
linearization is applied. This results in the time-harmonic solutions,
such as velocity potential 𝛷(𝒙, 𝑡) = Re[𝜙(𝒙) exp(𝑖𝜔𝑡)], wave elevation
(𝒙, 𝑡) = Re[𝜁 (𝒙) exp(𝑖𝜔𝑡)], and heave motion of the floe 𝑥3(𝑡) =
e[𝑋3 exp(𝑖𝜔𝑡)]. Then, the linearized boundary value problem in a

requency domain is given as
2𝜙 = 0 (−ℎ ≤ 𝑧 ≤ 0), (1)
𝜕𝜙
𝜕𝑧

= 0 (𝑧 = −ℎ), (2)
𝜕𝜙
𝜕𝑧

= 𝑖𝜔𝑋3 (𝑧 = −𝑑), (3)

𝜕𝜙
𝜕𝑧

= 𝑖𝜔𝜁 (𝑧 = 0), (4a)

= − 𝑖𝜔
𝑔
𝜙 (𝑧 = 0), (4b)

𝜕𝜙
𝜕𝑧

= 𝜔2

𝑔
𝜙 (𝑧 = 0), (4c)

where 𝑔 is the gravitational acceleration. Here, (1) is the Laplace
equation that governs the fluid domain, (2) is the sea bottom condition,
and (3) is the floe bottom condition of which fluid velocity coincides
with floe’s velocity. Eqs. (4a) and (4b) are kinematic and dynamic
conditions of the free surface, respectively. Combining (4a) and (4b),
the linearized free surface condition (4c) is obtained. In addition, no
flux condition is imposed for a side wall. This problem is classical,
and this can be solved by any numerical simulation methods, such as
an eigenfunction matching method (Miles and Gilbert, 1968; Garrett,
1971), boundary element method (Lee and Lou, 1988), and CFD. Here,
the eigenfunction matching method is employed to obtain the velocity
potential around the single ice floe that seeks a spectral solution using

the orthogonality of eigenfunctions. The radiation, wave exciting, and



Applied Ocean Research 138 (2023) 103663T. Iida et al.

w
a
v
m
𝜌
a
m

2

t
r
a
d
a
f
o
a
b
i
w
I
b
o
w

u
h
i
n

𝜂

w
c
e
b
t

𝑖

g
(

𝑋

w
p
i
f

w
i
n
a
c

b
i

∇

𝜁

w
g
a
u
u
a
e
d

2

s
w
𝜁
w
w

w
W
r
(

hydrostatic forces are acting on the floe due to the hydrodynamic
and hydrostatic pressures (Newman, 2018). As a result, the following
equation of motion is given
[

−
(

1 +
𝐴33

𝜌𝜋𝑎2𝑑

)

+ 𝑖
𝐵33

𝜔𝜌𝜋𝑎2𝑑
+

𝑔
𝜔2𝑑

]

𝑋3
𝜁0

=
𝑔
𝜔2𝑑

𝐸3

𝜋𝑎2𝜌𝑔𝜁0
, (5)

here 𝜌 is fluid density, 𝜁0 is incident wave amplitude, 𝐴33 is the
dded mass, 𝐵33 is the damping coefficient due to wave-making (not
iscosity), and 𝐸3 is the wave exciting force. Note that the equation of
otion (5) is written in the non-dimensional form (using fluid density

, gravitational acceleration 𝑔, incident wave amplitude 𝜁0, and char-
cteristic lengths 𝑎 (radius) and 𝑑 (draft)) because the non-dimensional
otion will be used in the later section.

.2. Homogenized boundary value problem of waves in marginal ice zone

We assume that the marginal ice zone is modeled by an array of
he floes periodically arranged in distance 𝓁 (see Fig. 1(b)). The floe is
epresented by the floating vertical cylinder as described in Section 2.1,
nd all floes’ radii and drafts are uniforms. The radius, draft, and
istance are smaller than the wavelength, or at most in the same order
s the wavelength. In this subsection, we aim to model a homogenized
ree surface consisting of the free surface of the water and the surface
f floes as in Fig. 1(c). This idea is inspired by Garnaud and Mei (2009)
nd Mei (2012); they developed a model for an array of point absorbers,
ut they implied the applicability of their model to a problem of small
ce floes. Nevertheless, the point absorber has an energy extraction term
hich is assumed 𝑂(1), and hydrodynamic forces are ignored as 𝑂(𝜀).

n the case of ice floes, on the other hand, hydrodynamic forces must
e taken into account, and this influence does not appear in the leading
rder solution. Therefore, we shall modify the theory to bring it in line
ith our problem.

We focus on one floe in the array. The floe is surrounded by a
nit cell of which the horizontal square area is 𝓁2. To obtain the
omogenized free surface, it is assumed that the motion of the ice floe
mitates a wave elevation, namely, a pseudo-wave elevation. Then, a
ew wave amplitude 𝜂 in the local coordinate is defined as

(𝑟, 𝜃) =

{

𝜁 (𝑟 > 𝑎; on water surface)
𝑋3 (𝑟 ≤ 𝑎; on floe surface)

, (6)

here (𝑟, 𝜃) is a horizontal coordinate from the center of the floe (local
oordinate system). Firstly, boundary conditions of the pseudo-wave
levation are considered. Assuming the small draft of the floe, the floe
ottom condition (3) is approximated by the Taylor-series expansion at
he undisturbed free surface 𝑧 = 0 as

𝜔𝑋3 =
𝜕𝜙
𝜕𝑧

+ 𝑂(𝜙𝑑) (𝑧 = 0). (7)

We call (7) a pseudo-kinematic condition from the analogy of the
kinematic condition (4a). Furthermore, we assume the floe’s motion is
represented by the product of non-dimensional motion amplitude and
wave amplitude, i.e.

𝑋3 = 𝑋∗
3 𝜁, (8)

where non-dimensional motion amplitude holds 𝑋∗
3 = 𝑋3∕𝜁0 which

is found in (5). Note that non-dimensional motion amplitude 𝑋∗
3 is

calculated by (5), and this value is the same for all floes. On the other
hand, the dimensional motion amplitude 𝑋3 of each floe depends on its
lobal position. Applying the dynamic condition for free surface waves
4b) into (8), we get

3 = − 𝑖𝜔
𝑔
𝑋∗

3𝜙 (𝑧 = 0), (9)

where (9) is called a pseudo-dynamic condition. Combining (4a) and
(7), a new kinematic condition is given as
𝜕𝜙

= 𝑖𝜔𝜂 (𝑧 = 0). (10)
3

𝜕𝑧
Similarly, (4b) and (9) yield a new dynamic condition as

𝜂 = − 𝑖𝜔
𝑔
𝑓 (𝑟)𝜙 (𝑧 = 0), (11)

where

𝑓 (𝑟) =

{

1 (𝑟 > 𝑎)

𝑋∗
3 (𝑟 ≤ 𝑎)

. (12)

We further deform (11) by averaging wave amplitude over the
surface of the unit cell. Mean wave amplitude is calculated by

𝜂 = 1
𝓁2 ∬𝛥𝑆𝐹

𝜂𝑑𝑠 = − 𝑖𝜔
𝑔𝓁2 ∬𝛥𝑆𝐹

𝑓 (𝑟)𝜙𝑑𝑠, (13)

here 𝛥𝑆𝐹 denotes the surface boundary of the cell. Considering
eriodicity for the unit cell’s surrounding boundary, velocity potential
s independent of local coordinate (see Garnaud and Mei, 2009). It
acilitates the calculation of (13) as

𝜂 ≈ − 𝑖𝜔
𝑔𝓁2

𝜙∬𝛥𝑆𝐹
𝑓 (𝑟)𝑑𝑠 = − 𝑖𝜔

𝑔
𝜙 1
𝓁2

[(𝓁2 − 𝑆) +𝑋∗
3𝑆]

= − 𝑖𝜔
𝑔
[1 + 𝜓(𝑋∗

3 − 1)]𝜙, (14)

here 𝑆 = 𝜋𝑎2 is waterplane area of the floe and 𝜓 = 𝑆∕𝓁2 is an
ce concentration ratio (a.k.a. filling ratio). Note that (14) is valid
ot only for a vertical cylinder but also for other geometries (such as
rectangular plate). When the cylinder is considered, the maximum

oncentration ratio is 𝜓 = 𝜋∕4.
Summarizing the above boundary conditions, the homogenized

oundary value problem of wave propagation in the marginal ice zone
s formulated as
2𝜙 = 0 (−ℎ ≤ 𝑧 ≤ 0), (15)
𝜕𝜙
𝜕𝑧

= 0 (𝑧 = −ℎ), (16)

𝜕𝜙
𝜕𝑧

= 𝑖𝜔𝜁 (𝑧 = 0), (17a)

= − 𝑖𝜔
𝑔
[1 + 𝜓(𝑋∗

3 − 1)]𝜙 (𝑧 = 0), (17b)

𝜕𝜙
𝜕𝑧

= 𝜔2

𝑔
[1 + 𝜓(𝑋∗

3 − 1)]𝜙 (𝑧 = 0), (17c)

here wave amplitude is represented by 𝜁 as it is a function of the
lobal coordinate. Here, (17b) is the homogenized dynamic condition,
nd (17c) is the homogenized free surface condition. In the paper, we
sed the simplified calculation procedure. The same result is obtained
sing the perturbation series expansion which was used in Garnaud
nd Mei (2009). The difference from Garnaud and Mei (2009) is the
xpression of (8). As a result, only the term 𝑋∗

3 in (17b) and (17c) is
ifferent from Garnaud and Mei (2009), and the others are the same.

.3. Dispersion relation and wave attenuation in marginal ice zone

The homogenized boundary value problem (15) to (17c) is easily
olved. We consider the solution for time-harmonic long-crested plane
aves denoted by 𝐴 = Re[𝜁 exp(𝑖𝜔𝑡)] and 𝜁 = 𝜁 (0) exp(−𝑖𝜅𝑛𝑥) where
(0) is the wave amplitude at the measured up-wave position and 𝜅𝑛 is
ave number of waves in the marginal ice zone. Solving the problem,
e obtain the dispersion relation as

𝜔2

𝑔
[1 + 𝜓(𝑋∗

3 − 1)] = 𝜅𝑛 tanh 𝜅𝑛ℎ, (18)

here the solution of 𝜅𝑛 becomes complex because 𝑋∗
3 is complex.

hen the ice floe does not exist on the surface (i.e. the concentration
atio 𝜓 → 0) or the floe is too small (i.e. |𝑋∗

3 | → 1 and arg(𝑋∗
3 ) → 0),

18) is deformed as

𝜔2
= 𝑘𝑛 tanh 𝑘𝑛ℎ, (19)
𝑔
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Table 1
Wave numbers for open water 𝑘𝑛 and for marginal ice zone
𝜅𝑛 at following conditions: circular frequency 𝜔 = 0.5 rad∕s,
concentration ratio 𝜓 = 0.5, non-dimensional motion amplitude
𝑋∗

3 = 9.75 × 10−1 − 3.03𝑖 × 10−4 (floe radius 𝑎 = 20 m and draft
𝑑 = 1.0 m), and Water depth is sufficiently deep.

n 𝑘𝑛 𝜅𝑛
0 2.55 × 10−2 2.52 × 10−2 − 3.86𝑖 × 10−6

1 −7.54𝑖 × 10−3 2.01 × 10−7 − 7.56𝑖 × 10−3

2 −2.20𝑖 × 10−2 3.39 × 10−7 − 2.20𝑖 × 10−2

3 −3.57𝑖 × 10−2 3.09 × 10−7 − 3.58𝑖 × 10−2

4 −4.90𝑖 × 10−2 2.61 × 10−7 − 4.91𝑖 × 10−2

5 −6.22𝑖 × 10−2 2.21 × 10−7 − 6.22𝑖 × 10−2

where (19) is a dispersion relation of waves on open water (ice-free)
and 𝑘𝑛 is the wave number of this relation.

The example of wave numbers is shown in Table 1. Both wave
numbers for open water 𝑘𝑛 and the marginal ice zone 𝜅𝑛 are calculated
t the circular frequency 𝜔 = 0.5 rad∕s using (18) and (19). Water
epth is assumed deep. The floe size is set as the radius 𝑎 = 20 m
nd draft 𝑑 = 1.0 m, and then non-dimensional hydrodynamic forces
nd motion amplitude are given as 𝐴∗

33 = 14.61, 𝐵∗
33 = 5.86, 𝐸∗

3 =
.87 × 10−1 + 1.45𝑖 × 10−1, and 𝑋∗

3 = 9.75 × 10−1 − 3.03𝑖 × 10−4 where
uperscript ∗ denotes the non-dimensional values of these quantities
hose non-dimensionalizations are shown in (5). Furthermore, the

oncentration ratio 𝜓 = 0.5 is used. Table 1 shows the first six
olutions. Wave number for open water has one real solution 𝑘0 and
nfinite numbers of imaginary solutions 𝑘1, 𝑘2,…. The wave number 𝑘0
epresents progressive waves, and 𝑘1, 𝑘2,… describe local waves whose
mplitudes exponentially decay with distance, respectively. The wave
umber for the marginal ice zone has infinite numbers of solutions,
owever, all solutions are complex. This indicates that waves propagate
ith decaying amplitude; damped waves (e.g. Fox and Squire, 1994)
re generated. Interestingly, the dominant part of 𝜅𝑛 (real part for 𝜅0
nd imaginary part for others) is almost the same as that of 𝑘𝑛. As

amplitudes of 𝜅1, 𝜅2,… are small and decaying rapidly, 𝜅0 represents
he main waves in the marginal ice zone. It is also indicated that the
avelength is slightly modulated.

Now, we discuss the energy attenuation in the marginal ice zone. It
s known that many field observations indicate energy decays exponen-
ially with distance (e.g. Robin, 1963; Wadhams et al., 1988; Meylan
t al., 2018). Therefore, the energy 𝐸(𝑥) may be

𝐸(𝑥) = 𝐸(0)𝑒−𝛼𝑥, (20)

where 𝐸(0) is initial energy and 𝛼 is a wave attenuation coefficient. This
can be justified by considering the wave number. Here, we rewrite the
wave number as 𝜅0 = 𝜅R − 𝑖𝜅I where 𝜅I is defined positive (for long

ave frequencies). Then, wave elevation becomes

(𝑥, 𝑡) = Re[𝜁 (0)𝑒−𝑖𝜅0𝑥𝑒𝑖𝜔𝑡] = Re[𝜁 (0)𝑒−𝜅I𝑥𝑒𝑖(𝜔𝑡−𝑘R𝑥)]. (21)

herefore, wave energy is given as

(𝑥) ∝ |𝜁 |2 ∝ 𝑒−2𝜅I𝑥. (22)

his confirms that wave energy exponentially decays with distance, and
= 2𝜅I.

Using deep water assumption, the result becomes simpler. The wave
umber in deep water is given as

0 =
𝜔2

𝑔
[1 + 𝜓(𝑋∗

3 − 1)]. (23)

Therefore, the imaginary part of the wave number is explicitly ob-
tained, and the wave attenuation coefficient becomes

𝛼 = 2𝜅I = −2𝜔
2

𝑔
𝜓Im[𝑋∗

3 ] = −2𝐾0𝜓Im[𝑋∗
3 ] (24)

here 𝐾0 = 𝜔2∕𝑔 is the wave number for open water in the deep
ea. This indicates that the wave attenuation coefficient is proportional
4

o wave number 𝐾0, concentration ratio 𝜓 , and imaginary part of
he floe’s motion Im[𝑋∗

3 ]. The linear relationship between the wave
ttenuation coefficient and the concentration ratio in the scattering
rocess was reported in Bennetts et al. (2010). In addition, the power
aw relation between the wave attenuation coefficient and frequency
as also proposed in Meylan et al. (2018). These results are well

eproduced by this simplified model.
Using the above method, complex wave number and resultant atten-

ation are obtained. Similar results are given in the dissipation process
hrough viscoelastic layer models of an ice plate (Keller, 1998; De
arolis and Desiderio, 2002). In the dissipation process, the imaginary
art of the wave number is caused by viscosity; energy dissipates with
he distance. On the other hand, energy is conserved in the scattering
rocess; incident wave energy is redistributed to unsteady disturbance
ave energy by the floe. Here, disturbance waves consist of scattering
aves and the product of radiation waves and the floe’s motion. The

ncident wave energy is transformed into the scattering wave energy
y the existence of the floe (i.e. diffraction problem). In addition,
he incident wave energy is also transformed into the energy of the
otion of the floe, and this is transformed into the energy of the
otion-generated outgoing waves due to the wave-making damping

oefficient (i.e. radiation and motion-free problems). The total energy
hould be conserved, however, disturbance waves propagate radially,
nd the energy density fades with distance. Therefore, we ignore such
isturbance waves as these waves cannot travel far, and thus it looks
ike energy dissipates. We emphasize that energy is just transformed
nto disturbance wave energy and never dissipates. As a result, (24)
ndicates the attenuation of incident wave energy along to propagation
irection.

It is worth noting that incorporating the presence of objects into a
ispersion relation is also studied in the field of porous structures (Yu
nd Chwang, 1994). They often use arrays of the bottom-mounted verti-
al cylinders (e.g. Molin et al., 2016; Arnaud et al., 2017), and complex
ave numbers are given only when the viscous effect is considered. Fur-

hermore, considering a porosity of an ice plate in a viscoelastic layer
odel, a porous viscoelastic model was proposed (Chen et al., 2019;
u and Guyenne, 2022). These studies might be helpful to simulate

he wave energy dissipation in the marginal ice zone. We emphasize
hat boundary layers and resultant vortex at the cylinder’s side walls
re not always negligible for waves through the array of cylinders (see
agemoto et al., 2002; Antolloni et al., 2020). Nevertheless, these
re not considered because our purpose is to establish the simplified
stimation method of wave attenuation by the scattering process.

. Description of experiment

.1. Outline of tank experiment

To validate the proposed estimation method, a laboratory experi-
ent was conducted. A two-dimensional (2D) tank at Osaka University,

apan was used for this experiment. The schematic view of the tank
xperiment is shown in Fig. 2(a). The tank length is 14.0 m, and the
idth is 0.3 m. A water level of 0.45 m was kept throughout all mea-

urements, where fresh water was used. The plunger-type wave maker
nd absorber are equipped on both ends of the tank. The coordinate
ystem 𝑂 − 𝑥𝑧 is defined as in Fig. 2(a) where the origin 𝑂 is located
t the cross-section between the wave maker on the left-hand side of
he tank and the undisturbed free surface of the water. In addition, the
-axis and the 𝑥-axis are positive upward and rightward, respectively.
aves are generated by the wave maker on the left-hand side, and

hose waves are canceled by the wave absorber on the other side using
he wave absorption control theory (Milgram, 1970) to prevent the
ave reflection from the end of the tank.

We used cylindrical synthetic ice plates for this validation to inves-
igate wave attenuation due to the scattering process. The synthetic ice
late is made of polypropylene where the density is 0.9 g∕cm3. The
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Fig. 2. (a) Schematic view of experiment in a 2D tank. Free surface elevations are measured at No. 1, No. 2, No. 3, and No. 4 (No. 3 is used only when an ice floe is not
arranged). Synthetic ice plates are arranged on the ice domain where 𝐿 = 1.0, 1.5, and 2.0 m are the ice domain length. (b) Snapshot of a top view of the ice domain. Cylindrical
synthetic ice plates with a radius of 2.5 cm and a draft of 1.0 cm were randomly put on the free surface.
radius of the plate is 2.5 cm, and the thickness is 1.0 cm; the plate’s
draft is 0.9 cm. The numerically-calculated hydrodynamic forces and
motion of this plate are shown in Appendix A. Those synthetic ice plates
were arranged on the surface of the ice domain denoted in Fig. 2(a).
The center of the ice domain is at 𝑥3 = 7.0 m, and the ice domain
length is defined by 𝐿. A snapshot of the top view of the ice domain
is shown in Fig. 2(b). This experiment assumes a random arrangement
of the array although the proposed model assumes a periodic array of
the plates as in Fig. 1(b). Free surface elevations were measured by
four ultrasonic wave probes of which the sampling frequency is 100 Hz.
Those are labeled as No. 1, No. 2, No. 3, and No. 4 with corresponding
distances from the wave maker 𝑥1 = 4.0, 𝑥2 = 5.0, 𝑥3 = 7.0, and 𝑥4 = 9.0
m, respectively, as in Fig. 2(a). No. 1 and No. 2 were used to measure
and decompose incident waves and reflected waves from the edge of the
ice domain. On the other hand, No. 4 is used to measure transmitted
waves. No. 3 is only used in ice-free conditions.

In this paper, we conducted two sets of experiments. Firstly, the
influence of the ice domain length 𝐿 on wave attenuation was investi-
gated. We considered three lengths 𝐿 = 1.0, 1.5, and 2.0 m. Here, we
assumed a low concentration ratio 𝜓 = 0.3 to avoid wave dissipation by
collision. Therefore, the numbers of ice plates are 𝑁 = 46 for 𝐿 = 1.0 m,
𝑁 = 69 for 𝐿 = 1.5 m, and 𝑁 = 92 for 𝐿 = 2.0 m, respectively. Secondly,
the influence of the concentration ratio 𝜓 on wave attenuation was
investigated. Three concentration ratios 𝜓 = 0.3, 𝜓 = 0.5, and 𝜓 = 0.7
were considered. Here, the ice domain length is fixed as 𝐿 = 1.5 m.
The number of the ice plates are then 𝑁 = 69 for 𝜓 = 0.3, 𝑁 = 115 for
𝜓 = 0.5, and 𝑁 = 160 for 𝜓 = 0.7. Since this experiment has uncertainty
due to the random arrangement of ice plates and measurement system,
we repeated the experiment 5 times for every condition.

3.2. Outline of data analysis

In this paper, we discuss the first-order quantities, especially the
wave attenuation coefficient. Therefore, measured time series data are
transformed into Fourier series coefficients. The analysis range of time
series data is decided to avoid influences of transient wave front and
wave reflection. As the target wave period is small (𝑇 = 0.36 to
0.8 s), the wave dissipation due to the side walls of the tank is not
negligible. To remove such a dissipation, the wave dissipation ratio
𝐶dis(𝑇 , |𝑥𝑚 − 𝑥𝑛|) = 𝑐𝑚∕𝑐𝑛 (𝑚, 𝑛 = 1, 2, 3, 4) is firstly measured without
any synthetic ice floe (i.e. the ice-free condition), where 𝑐𝑚 is first
order wave amplitude at wave probe’s position (𝑚 denotes the number
of the probe). Using the dissipation ratio and the wave data of No. 1
and No. 2, amplitudes of incident waves and reflected waves from the
edge of the ice domain are decomposed. We extend the decomposition
method (Goda and Suzuki, 1976) to consider wave dissipation. This
5

method is described in Appendix B. Then, the reflection coefficient 𝐶𝑅
and transmission coefficient 𝐶𝑇 are calculated as

𝐶𝑅 =
𝑐𝑅

𝐶dis(𝑇 , 𝑥3 − 𝑥2)𝐶dis(𝑇 , 𝑥3 − 𝑥1)𝑐𝐼
,

𝐶𝑇 =
𝑐3

𝐶dis(𝑇 , 𝑥4 − 𝑥3)𝐶dis(𝑇 , 𝑥3 − 𝑥1)𝑐𝐼
, (25)

where 𝑐𝐼 and 𝑐𝑅 are decomposed incident and reflected wave am-
plitudes, respectively. It should be noted that those coefficients are
defined at the center of the ice domain. When the ice-free condition
is considered, the following energy conservation principle may be
satisfied:

|𝐶𝑅|
2 + |𝐶𝑇 |

2 = 1. (26)

The wave attenuation coefficient is estimated by the transmission
coefficient. Here, we assume the following relation:

𝑒−𝛼𝐿 = |𝐶𝑇 |
2. (27)

Therefore, the wave attenuation coefficient is given as

𝛼 = − 2
𝐿

log |𝐶𝑇 |. (28)

4. Results and discussion

Firstly, the dissipation ratios in ice-free conditions were measured to
understand the inherent dissipation characteristics of this experimental
tank. The dissipation ratios at three wave probe positions (No. 2, No. 3,
and No. 4) against the upwave position (No. 1) are plotted in Fig. 3(a).
This indicates that the wave elevation decreases as the distance is
longer, or as the wave period is shorter. Data at No. 4 show a monotonic
decrease in the wave elevation as the wave period is shorter. Whereas,
results at No. 2 and No. 3 have a peak at 𝑇 = 0.4 s. In addition, the
case of No. 2 exceeds 1 at 𝑇 = 0.36 s. The experimental tank is made
of acrylic plates, and the side walls warp slightly with water pressure.
Moreover, the joints of the tank’s plates were glued. Therefore, not only
side wall friction but also these inherent features could influence wave
dissipation, especially in the short wave period domain. To remove
these dissipation effects, hereafter these measured dissipation ratios are
used for the correction of the results (i.e. (25) is used). The corrected
wave reflection coefficient 𝐶𝑅, transmission coefficient 𝐶𝑇 , and total
energy |𝐶𝑅|

2 + |𝐶𝑇 |
2 in ice-free conditions are shown in Fig. 3(b). This

indicates that the wave reflection coefficients are almost zero for all
periods as there was no ice floe. In addition, the total energies are
almost 1; the energy conservation principle (26) is satisfied. Therefore,
the dissipation effects are well removed from the experimental results.

Secondly, the wave elevations in ice conditions were measured
to estimate the wave attenuation coefficient due to ice floes. Here,
the concentration ratio 𝜓 = 0.3 and ice domain lengths 𝐿 = 1.0,
1.5, and 2.0 m were considered. Corrected total energies are shown
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Fig. 3. (a) Experimentally measured wave dissipation ratio 𝐶dis(𝑇 , 𝑥𝑛 − 𝑥1) in ice-free conditions where 𝑛 = 2, 3, 4. Dissipation of wave elevations was measured in comparison with
upwave position No. 1. (b) Reflection coefficient 𝐶𝑅, transmission coefficient 𝐶𝑇 , and total energy |𝐶𝑅|

2 + |𝐶𝑇 |
2 in ice-free conditions where these values were corrected by wave

dissipation ratio to remove the influence of dissipation by side walls of the tank. All conditions were measured 5 times; symbols denote mean values and error bars represent
standard deviations.
Fig. 4. (a) Experimentally measured total energy |𝐶𝑅|
2 + |𝐶𝑇 |

2 in ice conditions where ice domain lengths 𝐿 = 1.0, 1.5, and 2.0 m were considered. Concentration ratio 𝜓 = 0.3
was considered. (b) Wave attenuation coefficients obtained by the calculation using the proposed model and experiments. All conditions were measured 5 times; symbols denote
mean values and error bars represent standard deviations.
in Fig. 4(a). It should be highlighted that the total energy is less
than 1 in all cases; the energy conservation principle is not satisfied.
In this problem, the dissipation and scattering processes by ice floes
are concerned. Viscosity and other non-conservative forces directly
contribute to energy dissipation as the dissipation process. On the
other hand, the wave scattering process does not ideally dissipate
energy. However, such scattering waves propagate radially, and this
energy density fades as distance. As a result, these waves dissipate
before they reach the measuring positions, even though this is the
scattering process. Note that it is difficult to decompose the cause of
the experimentally measured energy dissipation into dissipation and
scattering processes. Looking at Fig. 4(a), the energy dissipates more
as the period is shorter. In addition, the dissipation increases as the ice
domain length is longer. When the wave period is small, the deviation
is large (especially, the result of 𝐿 = 2.0 m at 𝑇 = 0.36 s). Using
6

the transmission coefficients, the wave attenuation coefficients are
estimated. Experimental results and the numerical result calculated by
the proposed homogenized scattering model are shown in Fig. 4(b). As
the experimental results are calculated by (28), the wave attenuation
coefficients are normalized by the ice domain length. Therefore, the
results should be almost the same regardless of the ice domain length.
Although the results of 𝐿 = 1.0 m have slightly larger values than
those of 𝐿 = 1.5 and 2.0 m, almost equivalent results are obtained. The
numerical result also describes a similar tendency. As for the standard
deviations of experimental results, these become bigger as the wave
periods are shorter. When the wave period is large (𝑇 ≥ 0.46 s), these
are small enough, and the influence of an arrangement of ice floes may
be small. On the other hand, when the wave period is large (especially
at 𝑇 = 0.36 s), the standard deviation is not small, and an arrangement
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Fig. 5. Wave attenuation coefficient obtained by the calculation using the proposed model and experiments. (a) Wave attenuation coefficients against wave period in linear scale.
(b) Wave attenuation coefficient against circular frequency in log–log scale. Three concentration ratios 𝜓 = 0.3, 0.5, and 0.7 are compared using the ice length 𝐿 = 1.5 m. All
conditions were measured 5 times; symbols denote mean values and error bars represent standard deviations.
of ice floes could affect wave attenuation. Our theory cannot consider
such a non-uniform arrangement, and only a mean value is given.

Finally, the wave attenuation coefficients were estimated by chang-
ing the concentration ratio. Here, the ice domain length 𝐿 = 1.5 m
was used, and three concentration ratios 𝜓 = 0.3, 0.5, and 0.7 were
considered. Those results are plotted in Figs. 5(a) and 5(b). These
figures are essentially the same, but Fig. 5(a) is plotted in linear scale;
Fig. 5(b) is plotted in log–log scale since the relation between the wave
attenuation coefficient and circular frequency seems to obey the power
law (Meylan et al., 2018). Our proposed model indicates the wave
attenuation is proportional to the concentration ratio as shown in (24).
The experimental results also show such a tendency. In any case, the
experimental results show more attenuation than that of the numerical
model at 𝑇 = 0.48 ∼ 0.8 s (i.e. 𝜔 = 7.9 ∼ 13.1 rad∕s). Since the
imaginary part of the heave motion is almost zero and the heave motion
is almost 1.0 for these wave periods (see Fig. A.6(c)), incident waves
are not disturbed by the ice floe. The dissipation process contributes to
wave attenuation for such long waves as observed in the experiment.
On the other hand, when the wave period is small, the non-dimensional
wave number 𝑘0𝑎 is not small enough, e.g. 𝑇 = 0.36 s corresponds to
𝜔 = 17.5 rad∕s and 𝑘0𝑎 = 0.78. Therefore, the small floe assumption
is not satisfied; the homogenized scattering model cannot estimate the
wave attenuation for these wave periods. Although the applicable range
is not large, the homogenized scattering model shows good agreement
with the experimental results within the appropriate range.

Our proposed homogenized scattering model is based on many
assumptions: only the scattering process is considered with a low con-
centration ratio; incompressible and inviscid fluid with the irrotational
motion is assumed to consider the potential flow; wave amplitude
and resultant floe motion are assumed small for linearization (wave
steepness satisfies 2𝜁∕𝜆 ≤ 1∕30); the marginal ice zone is modeled by
the periodic array of the vertical rigid cylinder, and random distribution
of sizes and arrangements are not considered; only heave motion of
the floe is considered to assume a pseudo-wave amplitude (8); the
floe’s radius and draft are sufficiently smaller than the wavelength for
applying the homogenization method (𝑘0𝑎, 𝑘0𝑑 ≪ 1); and disturbance
waves and these interactions are neglected. Therefore, we do not expect
very accurate results. Instead, we expect to roughly estimate wave
attenuation by the simplest model as much as possible. This is because
the explicit expression would facilitate our understanding of wave
attenuation in the marginal ice zone. In that sense, our model gives
7

reasonable agreement with experimental results. In this paper, we did
not discuss the influence of the water depth, and deep water is assumed
throughout it. We expect that the water depth effect in the dispersion
relation is almost similar to that of open water waves (see (18) and
(19)).

5. Conclusion

We present a new scattering model to theoretically explain a mech-
anism of wave attenuation in a marginal ice zone. Our aim is not to
establish a very accurate simulation model. Instead, we aim to present
a theoretical model to explicitly show the fundamental characteristics
of the scattering process using a simplified formulation. To make it
simple, we assume the floe is a vertical cylinder, the radius of the floe
is small (or at most comparable to wavelength), the draft is also small,
the floe is rigid, and the floes are periodically arranged with the same
distance. These assumptions as well as linear potential flow enable us
to derive a homogenized free surface condition that is equivalent to the
periodic array of ice floes. The resultant homogenized boundary value
problem yields a new dispersion relation, and all wave numbers become
complex. This indicates the exponential decay of wave amplitude and
energy with distance although energy must conserve in the scattering
process. Such energy inconsistency is a result of ignoring the radial
waves generated by floating bodies of which amplitude decreases and
vanishes with distance. Therefore, the model only shows the energy
attenuation of incident plane waves. Under the deep water condition,
the wave attenuation coefficient is proportional to the open water’s
wave number, ice concentration ratio, and imaginary part of the floe’s
heave motion.

In addition, a tank experiment was conducted to validate the pro-
posed theory. Cylindrical synthetic ice plates made of polypropylene
were used to uniform the condition with the theory. Because the target
wave periods are too small to neglect the wave dissipation caused by
the side walls of the tank, we first measured the dissipation ratios in
ice-free conditions. Based on these measurements, we corrected the
transmission and reflection coefficients to account for the dissipation
effects. These corrected coefficients in ice conditions were measured,
and the wave attenuation coefficients were estimated. The comparison
indicates that the attenuation coefficients obtained by the proposed
model show the same tendency and order as those by the experiments
although our model is obtained by some simplifications. We believe
that such a simple and explicit model may facilitate the qualitative
understanding of the scattering process in the marginal ice zone.
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Fig. A.6. Wave response of a single ice plate with radius 2.5 cm and draft 0.9 cm. (a) Added mass 𝐴∗
33 and damping coefficient 𝐵∗

33. (b) Wave exciting force 𝐸∗
3 . (c) Heave motion

𝑋∗
3 . All values on vertical axis are non-dimensionalized as in (5), while horizontal axis is dimensional wave period 𝑇 s which corresponds to the experimental range. These values

are calculated by the eigenfunction matching method.
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Appendix A. Wave response of a single ice plate

In order to calculate the wave attenuation coefficient, the non-
dimensional heave motion is required. Here, this is solved by the equa-
tion of motion (5), and hydrodynamic forces are given by the eigen-
function matching method (Miles and Gilbert, 1968; Garrett, 1971).
An infinite number of spectral solutions for the velocity potential are
truncated up to finite numbers, and these values are decided so as
to guarantee the convergence of the solution (e.g. Iida et al., 2023).
In the case of an ice plate with a radius of 2.5 cm and a draft of
0.9 cm which was used in the experiment, these hydrodynamic forces
and motion are given in Fig. A.6. Non-dimensional added mass 𝐴∗

33
and damping coefficient 𝐵∗

33 are shown in Fig. A.6(a), wave exciting
force 𝐸∗

3 is in Fig. A.6(b), and heave motion 𝑋∗
3 is in Fig. A.6(c) where

real part, imaginary part, and amplitude are plotted for wave exciting
force and motion as these values are complex. On the other hand, the
horizontal axis denotes dimensional wave period 𝑇 s, and this range
corresponds to that of the experiment. Note that the velocity potential
and motion are exactly solved with respect to the wave period here,
although the small radius and draft of the plate are assumed to obtain
the homogenized scattering model.
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Appendix B. Decomposition of incident waves and reflected waves

When wave reflection is expected, it is necessary to decompose inci-
dent waves and reflected waves to accurately calculate quantities. We
use two time-series data measured at different positions. The first-order
wave elevations at two positions are given as

𝜁𝑛 = 𝑎𝑛 cos𝜔𝑡 + 𝑏𝑛 sin𝜔𝑡 = 𝑐𝑛 cos(𝜔𝑡 + 𝜃𝑛) (𝑛 = 1, 2), (B.1)

where 𝑛 = 1 is at the upwave position (No. 1 in this case), 𝑎𝑛 and
𝑏𝑛 are first-order Fourier series coefficients, and 𝑐𝑛 =

√

𝑎2𝑛 + 𝑏2𝑛 and
𝜃𝑛 = tan−1(−𝑏𝑛∕𝑎𝑛) are amplitude and phase, respectively. When the
wave dissipation due to side walls is considered, the incident waves 𝜁𝐼
and reflected waves 𝜁𝑅 are written as follows:

𝜁𝐼 = 𝐶dis(𝑇 , 𝑥)𝑐𝐼 cos(𝜔𝑡 − 𝑘𝑥 + 𝜃𝐼 ), (B.2)

𝜁𝑅 = 𝐶dis(𝑇 ,𝓁 − 𝑥)𝑐𝑅 cos(𝜔𝑡 + 𝑘𝑥 + 𝜃𝑅), (B.3)

where 𝓁 is the distance between two wave probes, and 𝑐𝐼 , 𝜃𝐼 , 𝑐𝑅, and
𝜃𝑅 are amplitudes and phases of incident waves and reflected waves,
respectively. As this problem has 4 unknowns (𝑐𝐼 , 𝜃𝐼 , 𝑐𝑅, and 𝜃𝑅) with
4 Eqs. (B.1) to (B.3), this problem can be solved. The final results are
obtained as

𝑐𝐼 = 1
𝐴

√

𝐵2𝐺2 + 𝐶2𝐸2 +𝐷2𝐹 2 + 𝐴2𝐻2 − 2𝐵𝐶𝐸𝐺 − 2𝐵𝐷𝐹𝐺 + 2𝐶𝐷𝐸𝐹
𝐶2 +𝐷2

,

(B.4)

𝑐𝑅 = 1
𝐵

√

𝐴2𝐻2 + 𝐶2𝐹 2 +𝐷2𝐸2 + 𝐵2𝐺2 + 2𝐴𝐶𝐹𝐻 − 2𝐴𝐷𝐸𝐻 − 2𝐶𝐷𝐸𝐹
𝐶2 +𝐷2

,

(B.5)

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐴 = 𝐶dis(𝑇 , 0), 𝐵 = 𝐶dis(𝑇 ,𝓁)

𝐶 = (𝐴2 − 𝐵2) cos 𝑘𝓁, 𝐷 = (𝐴2 + 𝐵2) sin 𝑘𝓁

𝐸 = 𝑎1, 𝐹 = 𝑏1
𝐺 = 𝐴𝑎2 − 𝐵𝑎1 cos 𝑘𝓁 + 𝐵𝑏1 sin 𝑘𝓁

𝐻 = 𝐵𝑏2 − 𝐴𝑏1 cos 𝑘𝓁 + 𝐴𝑎1 sin 𝑘𝓁

. (B.6)

When the dissipation is not considered (i.e. 𝐶dis(𝑇 , 𝑥) = 1), the results
become

𝑐𝐼 = 1
2| sin 𝑘𝓁|

√

(𝑏2 − 𝑏1 cos 𝑘𝓁 + 𝑎1 sin 𝑘𝓁)2 + (𝑎2 − 𝑎1 cos 𝑘𝓁 − 𝑏1 sin 𝑘𝓁)2,

(B.7)

𝑐𝑅 = 1
2| sin 𝑘𝓁|

√

(−𝑏2 + 𝑏1 cos 𝑘𝓁 + 𝑎1 sin 𝑘𝓁)2 + (−𝑎2 + 𝑎1 cos 𝑘𝓁 − 𝑏1 sin 𝑘𝓁)2,

(B.8)

and those are the same with the Goda and Suzuki (1976). Note that
the results are sensitive to the experimental error of 𝑘𝓁, and thus
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𝑘𝓁 = 𝜃1 − 𝜃2 is used for the analysis. It is also highlighted that the
result diverges when sin 𝑘𝓁 ∼ 0. Such a case occurs if waves are not
eflected (i.e. perfect transmission). Then, the results are replaced with

𝐼 = 𝑐1, 𝑐𝑅 = 0 if | sin 𝑘𝓁| < 𝜀, (B.9)

here 𝜀 is a small parameter to detect divergence, and 𝜀 = 0.2 is used
n this paper.
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